1 /* 2 * 3 * hfcpci.c low level driver for CCD's hfc-pci based cards 4 * 5 * Author Werner Cornelius (werner@isdn4linux.de) 6 * based on existing driver for CCD hfc ISA cards 7 * type approval valid for HFC-S PCI A based card 8 * 9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) 10 * Copyright 2008 by Karsten Keil <kkeil@novell.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module options: 27 * 28 * debug: 29 * NOTE: only one poll value must be given for all cards 30 * See hfc_pci.h for debug flags. 31 * 32 * poll: 33 * NOTE: only one poll value must be given for all cards 34 * Give the number of samples for each fifo process. 35 * By default 128 is used. Decrease to reduce delay, increase to 36 * reduce cpu load. If unsure, don't mess with it! 37 * A value of 128 will use controller's interrupt. Other values will 38 * use kernel timer, because the controller will not allow lower values 39 * than 128. 40 * Also note that the value depends on the kernel timer frequency. 41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible. 42 * If the kernel uses 100 Hz, steps of 80 samples are possible. 43 * If the kernel uses 300 Hz, steps of about 26 samples are possible. 44 * 45 */ 46 47 #include <linux/interrupt.h> 48 #include <linux/module.h> 49 #include <linux/pci.h> 50 #include <linux/delay.h> 51 #include <linux/mISDNhw.h> 52 #include <linux/slab.h> 53 54 #include "hfc_pci.h" 55 56 static const char *hfcpci_revision = "2.0"; 57 58 static int HFC_cnt; 59 static uint debug; 60 static uint poll, tics; 61 static struct timer_list hfc_tl; 62 static unsigned long hfc_jiffies; 63 64 MODULE_AUTHOR("Karsten Keil"); 65 MODULE_LICENSE("GPL"); 66 module_param(debug, uint, S_IRUGO | S_IWUSR); 67 module_param(poll, uint, S_IRUGO | S_IWUSR); 68 69 enum { 70 HFC_CCD_2BD0, 71 HFC_CCD_B000, 72 HFC_CCD_B006, 73 HFC_CCD_B007, 74 HFC_CCD_B008, 75 HFC_CCD_B009, 76 HFC_CCD_B00A, 77 HFC_CCD_B00B, 78 HFC_CCD_B00C, 79 HFC_CCD_B100, 80 HFC_CCD_B700, 81 HFC_CCD_B701, 82 HFC_ASUS_0675, 83 HFC_BERKOM_A1T, 84 HFC_BERKOM_TCONCEPT, 85 HFC_ANIGMA_MC145575, 86 HFC_ZOLTRIX_2BD0, 87 HFC_DIGI_DF_M_IOM2_E, 88 HFC_DIGI_DF_M_E, 89 HFC_DIGI_DF_M_IOM2_A, 90 HFC_DIGI_DF_M_A, 91 HFC_ABOCOM_2BD1, 92 HFC_SITECOM_DC105V2, 93 }; 94 95 struct hfcPCI_hw { 96 unsigned char cirm; 97 unsigned char ctmt; 98 unsigned char clkdel; 99 unsigned char states; 100 unsigned char conn; 101 unsigned char mst_m; 102 unsigned char int_m1; 103 unsigned char int_m2; 104 unsigned char sctrl; 105 unsigned char sctrl_r; 106 unsigned char sctrl_e; 107 unsigned char trm; 108 unsigned char fifo_en; 109 unsigned char bswapped; 110 unsigned char protocol; 111 int nt_timer; 112 unsigned char __iomem *pci_io; /* start of PCI IO memory */ 113 dma_addr_t dmahandle; 114 void *fifos; /* FIFO memory */ 115 int last_bfifo_cnt[2]; 116 /* marker saving last b-fifo frame count */ 117 struct timer_list timer; 118 }; 119 120 #define HFC_CFG_MASTER 1 121 #define HFC_CFG_SLAVE 2 122 #define HFC_CFG_PCM 3 123 #define HFC_CFG_2HFC 4 124 #define HFC_CFG_SLAVEHFC 5 125 #define HFC_CFG_NEG_F0 6 126 #define HFC_CFG_SW_DD_DU 7 127 128 #define FLG_HFC_TIMER_T1 16 129 #define FLG_HFC_TIMER_T3 17 130 131 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */ 132 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */ 133 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */ 134 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */ 135 136 137 struct hfc_pci { 138 u_char subtype; 139 u_char chanlimit; 140 u_char initdone; 141 u_long cfg; 142 u_int irq; 143 u_int irqcnt; 144 struct pci_dev *pdev; 145 struct hfcPCI_hw hw; 146 spinlock_t lock; /* card lock */ 147 struct dchannel dch; 148 struct bchannel bch[2]; 149 }; 150 151 /* Interface functions */ 152 static void 153 enable_hwirq(struct hfc_pci *hc) 154 { 155 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE; 156 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 157 } 158 159 static void 160 disable_hwirq(struct hfc_pci *hc) 161 { 162 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE); 163 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 164 } 165 166 /* 167 * free hardware resources used by driver 168 */ 169 static void 170 release_io_hfcpci(struct hfc_pci *hc) 171 { 172 /* disable memory mapped ports + busmaster */ 173 pci_write_config_word(hc->pdev, PCI_COMMAND, 0); 174 del_timer(&hc->hw.timer); 175 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle); 176 iounmap(hc->hw.pci_io); 177 } 178 179 /* 180 * set mode (NT or TE) 181 */ 182 static void 183 hfcpci_setmode(struct hfc_pci *hc) 184 { 185 if (hc->hw.protocol == ISDN_P_NT_S0) { 186 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */ 187 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */ 188 hc->hw.states = 1; /* G1 */ 189 } else { 190 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */ 191 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */ 192 hc->hw.states = 2; /* F2 */ 193 } 194 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel); 195 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states); 196 udelay(10); 197 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */ 198 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 199 } 200 201 /* 202 * function called to reset the HFC PCI chip. A complete software reset of chip 203 * and fifos is done. 204 */ 205 static void 206 reset_hfcpci(struct hfc_pci *hc) 207 { 208 u_char val; 209 int cnt = 0; 210 211 printk(KERN_DEBUG "reset_hfcpci: entered\n"); 212 val = Read_hfc(hc, HFCPCI_CHIP_ID); 213 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val); 214 /* enable memory mapped ports, disable busmaster */ 215 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 216 disable_hwirq(hc); 217 /* enable memory ports + busmaster */ 218 pci_write_config_word(hc->pdev, PCI_COMMAND, 219 PCI_ENA_MEMIO + PCI_ENA_MASTER); 220 val = Read_hfc(hc, HFCPCI_STATUS); 221 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val); 222 hc->hw.cirm = HFCPCI_RESET; /* Reset On */ 223 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 224 set_current_state(TASK_UNINTERRUPTIBLE); 225 mdelay(10); /* Timeout 10ms */ 226 hc->hw.cirm = 0; /* Reset Off */ 227 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 228 val = Read_hfc(hc, HFCPCI_STATUS); 229 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val); 230 while (cnt < 50000) { /* max 50000 us */ 231 udelay(5); 232 cnt += 5; 233 val = Read_hfc(hc, HFCPCI_STATUS); 234 if (!(val & 2)) 235 break; 236 } 237 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt); 238 239 hc->hw.fifo_en = 0x30; /* only D fifos enabled */ 240 241 hc->hw.bswapped = 0; /* no exchange */ 242 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER; 243 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */ 244 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ 245 hc->hw.sctrl_r = 0; 246 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */ 247 hc->hw.mst_m = 0; 248 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 249 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */ 250 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg)) 251 hc->hw.mst_m |= HFCPCI_F0_NEGATIV; 252 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 253 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 254 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 255 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 256 257 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC | 258 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER; 259 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 260 261 /* Clear already pending ints */ 262 val = Read_hfc(hc, HFCPCI_INT_S1); 263 264 /* set NT/TE mode */ 265 hfcpci_setmode(hc); 266 267 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 268 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 269 270 /* 271 * Init GCI/IOM2 in master mode 272 * Slots 0 and 1 are set for B-chan 1 and 2 273 * D- and monitor/CI channel are not enabled 274 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC 275 * STIO2 is used as data input, B1+B2 from IOM->ST 276 * ST B-channel send disabled -> continuous 1s 277 * The IOM slots are always enabled 278 */ 279 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 280 /* set data flow directions: connect B1,B2: HFC to/from PCM */ 281 hc->hw.conn = 0x09; 282 } else { 283 hc->hw.conn = 0x36; /* set data flow directions */ 284 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 285 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0); 286 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1); 287 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0); 288 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1); 289 } else { 290 Write_hfc(hc, HFCPCI_B1_SSL, 0x80); 291 Write_hfc(hc, HFCPCI_B2_SSL, 0x81); 292 Write_hfc(hc, HFCPCI_B1_RSL, 0x80); 293 Write_hfc(hc, HFCPCI_B2_RSL, 0x81); 294 } 295 } 296 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 297 val = Read_hfc(hc, HFCPCI_INT_S2); 298 } 299 300 /* 301 * Timer function called when kernel timer expires 302 */ 303 static void 304 hfcpci_Timer(struct hfc_pci *hc) 305 { 306 hc->hw.timer.expires = jiffies + 75; 307 /* WD RESET */ 308 /* 309 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80); 310 * add_timer(&hc->hw.timer); 311 */ 312 } 313 314 315 /* 316 * select a b-channel entry matching and active 317 */ 318 static struct bchannel * 319 Sel_BCS(struct hfc_pci *hc, int channel) 320 { 321 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) && 322 (hc->bch[0].nr & channel)) 323 return &hc->bch[0]; 324 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) && 325 (hc->bch[1].nr & channel)) 326 return &hc->bch[1]; 327 else 328 return NULL; 329 } 330 331 /* 332 * clear the desired B-channel rx fifo 333 */ 334 static void 335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo) 336 { 337 u_char fifo_state; 338 struct bzfifo *bzr; 339 340 if (fifo) { 341 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 342 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX; 343 } else { 344 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 345 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX; 346 } 347 if (fifo_state) 348 hc->hw.fifo_en ^= fifo_state; 349 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 350 hc->hw.last_bfifo_cnt[fifo] = 0; 351 bzr->f1 = MAX_B_FRAMES; 352 bzr->f2 = bzr->f1; /* init F pointers to remain constant */ 353 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 354 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16( 355 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1)); 356 if (fifo_state) 357 hc->hw.fifo_en |= fifo_state; 358 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 359 } 360 361 /* 362 * clear the desired B-channel tx fifo 363 */ 364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo) 365 { 366 u_char fifo_state; 367 struct bzfifo *bzt; 368 369 if (fifo) { 370 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 371 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX; 372 } else { 373 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 374 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX; 375 } 376 if (fifo_state) 377 hc->hw.fifo_en ^= fifo_state; 378 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 379 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 380 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) " 381 "z1(%x) z2(%x) state(%x)\n", 382 fifo, bzt->f1, bzt->f2, 383 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 384 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2), 385 fifo_state); 386 bzt->f2 = MAX_B_FRAMES; 387 bzt->f1 = bzt->f2; /* init F pointers to remain constant */ 388 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 389 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2); 390 if (fifo_state) 391 hc->hw.fifo_en |= fifo_state; 392 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 393 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 394 printk(KERN_DEBUG 395 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n", 396 fifo, bzt->f1, bzt->f2, 397 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 398 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2)); 399 } 400 401 /* 402 * read a complete B-frame out of the buffer 403 */ 404 static void 405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz, 406 u_char *bdata, int count) 407 { 408 u_char *ptr, *ptr1, new_f2; 409 int maxlen, new_z2; 410 struct zt *zp; 411 412 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 413 printk(KERN_DEBUG "hfcpci_empty_fifo\n"); 414 zp = &bz->za[bz->f2]; /* point to Z-Regs */ 415 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */ 416 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 417 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 418 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; 419 if ((count > MAX_DATA_SIZE + 3) || (count < 4) || 420 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) { 421 if (bch->debug & DEBUG_HW) 422 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet " 423 "invalid length %d or crc\n", count); 424 #ifdef ERROR_STATISTIC 425 bch->err_inv++; 426 #endif 427 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 428 bz->f2 = new_f2; /* next buffer */ 429 } else { 430 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC); 431 if (!bch->rx_skb) { 432 printk(KERN_WARNING "HFCPCI: receive out of memory\n"); 433 return; 434 } 435 count -= 3; 436 ptr = skb_put(bch->rx_skb, count); 437 438 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL) 439 maxlen = count; /* complete transfer */ 440 else 441 maxlen = B_FIFO_SIZE + B_SUB_VAL - 442 le16_to_cpu(zp->z2); /* maximum */ 443 444 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL); 445 /* start of data */ 446 memcpy(ptr, ptr1, maxlen); /* copy data */ 447 count -= maxlen; 448 449 if (count) { /* rest remaining */ 450 ptr += maxlen; 451 ptr1 = bdata; /* start of buffer */ 452 memcpy(ptr, ptr1, count); /* rest */ 453 } 454 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 455 bz->f2 = new_f2; /* next buffer */ 456 recv_Bchannel(bch, MISDN_ID_ANY, false); 457 } 458 } 459 460 /* 461 * D-channel receive procedure 462 */ 463 static int 464 receive_dmsg(struct hfc_pci *hc) 465 { 466 struct dchannel *dch = &hc->dch; 467 int maxlen; 468 int rcnt, total; 469 int count = 5; 470 u_char *ptr, *ptr1; 471 struct dfifo *df; 472 struct zt *zp; 473 474 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx; 475 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) { 476 zp = &df->za[df->f2 & D_FREG_MASK]; 477 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 478 if (rcnt < 0) 479 rcnt += D_FIFO_SIZE; 480 rcnt++; 481 if (dch->debug & DEBUG_HW_DCHANNEL) 482 printk(KERN_DEBUG 483 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n", 484 df->f1, df->f2, 485 le16_to_cpu(zp->z1), 486 le16_to_cpu(zp->z2), 487 rcnt); 488 489 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) || 490 (df->data[le16_to_cpu(zp->z1)])) { 491 if (dch->debug & DEBUG_HW) 492 printk(KERN_DEBUG 493 "empty_fifo hfcpci packet inv. len " 494 "%d or crc %d\n", 495 rcnt, 496 df->data[le16_to_cpu(zp->z1)]); 497 #ifdef ERROR_STATISTIC 498 cs->err_rx++; 499 #endif 500 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 501 (MAX_D_FRAMES + 1); /* next buffer */ 502 df->za[df->f2 & D_FREG_MASK].z2 = 503 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) & 504 (D_FIFO_SIZE - 1)); 505 } else { 506 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC); 507 if (!dch->rx_skb) { 508 printk(KERN_WARNING 509 "HFC-PCI: D receive out of memory\n"); 510 break; 511 } 512 total = rcnt; 513 rcnt -= 3; 514 ptr = skb_put(dch->rx_skb, rcnt); 515 516 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE) 517 maxlen = rcnt; /* complete transfer */ 518 else 519 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2); 520 /* maximum */ 521 522 ptr1 = df->data + le16_to_cpu(zp->z2); 523 /* start of data */ 524 memcpy(ptr, ptr1, maxlen); /* copy data */ 525 rcnt -= maxlen; 526 527 if (rcnt) { /* rest remaining */ 528 ptr += maxlen; 529 ptr1 = df->data; /* start of buffer */ 530 memcpy(ptr, ptr1, rcnt); /* rest */ 531 } 532 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 533 (MAX_D_FRAMES + 1); /* next buffer */ 534 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16(( 535 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1)); 536 recv_Dchannel(dch); 537 } 538 } 539 return 1; 540 } 541 542 /* 543 * check for transparent receive data and read max one 'poll' size if avail 544 */ 545 static void 546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz, 547 struct bzfifo *txbz, u_char *bdata) 548 { 549 __le16 *z1r, *z2r, *z1t, *z2t; 550 int new_z2, fcnt_rx, fcnt_tx, maxlen; 551 u_char *ptr, *ptr1; 552 553 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */ 554 z2r = z1r + 1; 555 z1t = &txbz->za[MAX_B_FRAMES].z1; 556 z2t = z1t + 1; 557 558 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r); 559 if (!fcnt_rx) 560 return; /* no data avail */ 561 562 if (fcnt_rx <= 0) 563 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */ 564 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */ 565 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 566 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 567 568 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 569 if (fcnt_tx <= 0) 570 fcnt_tx += B_FIFO_SIZE; 571 /* fcnt_tx contains available bytes in tx-fifo */ 572 fcnt_tx = B_FIFO_SIZE - fcnt_tx; 573 /* remaining bytes to send (bytes in tx-fifo) */ 574 575 if (test_bit(FLG_RX_OFF, &bch->Flags)) { 576 bch->dropcnt += fcnt_rx; 577 *z2r = cpu_to_le16(new_z2); 578 return; 579 } 580 maxlen = bchannel_get_rxbuf(bch, fcnt_rx); 581 if (maxlen < 0) { 582 pr_warning("B%d: No bufferspace for %d bytes\n", 583 bch->nr, fcnt_rx); 584 } else { 585 ptr = skb_put(bch->rx_skb, fcnt_rx); 586 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL) 587 maxlen = fcnt_rx; /* complete transfer */ 588 else 589 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r); 590 /* maximum */ 591 592 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL); 593 /* start of data */ 594 memcpy(ptr, ptr1, maxlen); /* copy data */ 595 fcnt_rx -= maxlen; 596 597 if (fcnt_rx) { /* rest remaining */ 598 ptr += maxlen; 599 ptr1 = bdata; /* start of buffer */ 600 memcpy(ptr, ptr1, fcnt_rx); /* rest */ 601 } 602 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */ 603 } 604 *z2r = cpu_to_le16(new_z2); /* new position */ 605 } 606 607 /* 608 * B-channel main receive routine 609 */ 610 static void 611 main_rec_hfcpci(struct bchannel *bch) 612 { 613 struct hfc_pci *hc = bch->hw; 614 int rcnt, real_fifo; 615 int receive = 0, count = 5; 616 struct bzfifo *txbz, *rxbz; 617 u_char *bdata; 618 struct zt *zp; 619 620 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 621 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 622 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 623 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2; 624 real_fifo = 1; 625 } else { 626 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 627 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 628 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1; 629 real_fifo = 0; 630 } 631 Begin: 632 count--; 633 if (rxbz->f1 != rxbz->f2) { 634 if (bch->debug & DEBUG_HW_BCHANNEL) 635 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n", 636 bch->nr, rxbz->f1, rxbz->f2); 637 zp = &rxbz->za[rxbz->f2]; 638 639 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 640 if (rcnt < 0) 641 rcnt += B_FIFO_SIZE; 642 rcnt++; 643 if (bch->debug & DEBUG_HW_BCHANNEL) 644 printk(KERN_DEBUG 645 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n", 646 bch->nr, le16_to_cpu(zp->z1), 647 le16_to_cpu(zp->z2), rcnt); 648 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt); 649 rcnt = rxbz->f1 - rxbz->f2; 650 if (rcnt < 0) 651 rcnt += MAX_B_FRAMES + 1; 652 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) { 653 rcnt = 0; 654 hfcpci_clear_fifo_rx(hc, real_fifo); 655 } 656 hc->hw.last_bfifo_cnt[real_fifo] = rcnt; 657 if (rcnt > 1) 658 receive = 1; 659 else 660 receive = 0; 661 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 662 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata); 663 return; 664 } else 665 receive = 0; 666 if (count && receive) 667 goto Begin; 668 669 } 670 671 /* 672 * D-channel send routine 673 */ 674 static void 675 hfcpci_fill_dfifo(struct hfc_pci *hc) 676 { 677 struct dchannel *dch = &hc->dch; 678 int fcnt; 679 int count, new_z1, maxlen; 680 struct dfifo *df; 681 u_char *src, *dst, new_f1; 682 683 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO)) 684 printk(KERN_DEBUG "%s\n", __func__); 685 686 if (!dch->tx_skb) 687 return; 688 count = dch->tx_skb->len - dch->tx_idx; 689 if (count <= 0) 690 return; 691 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx; 692 693 if (dch->debug & DEBUG_HW_DFIFO) 694 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__, 695 df->f1, df->f2, 696 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1)); 697 fcnt = df->f1 - df->f2; /* frame count actually buffered */ 698 if (fcnt < 0) 699 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */ 700 if (fcnt > (MAX_D_FRAMES - 1)) { 701 if (dch->debug & DEBUG_HW_DCHANNEL) 702 printk(KERN_DEBUG 703 "hfcpci_fill_Dfifo more as 14 frames\n"); 704 #ifdef ERROR_STATISTIC 705 cs->err_tx++; 706 #endif 707 return; 708 } 709 /* now determine free bytes in FIFO buffer */ 710 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) - 711 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1; 712 if (maxlen <= 0) 713 maxlen += D_FIFO_SIZE; /* count now contains available bytes */ 714 715 if (dch->debug & DEBUG_HW_DCHANNEL) 716 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n", 717 count, maxlen); 718 if (count > maxlen) { 719 if (dch->debug & DEBUG_HW_DCHANNEL) 720 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n"); 721 return; 722 } 723 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) & 724 (D_FIFO_SIZE - 1); 725 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1); 726 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */ 727 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 728 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 729 /* end fifo */ 730 if (maxlen > count) 731 maxlen = count; /* limit size */ 732 memcpy(dst, src, maxlen); /* first copy */ 733 734 count -= maxlen; /* remaining bytes */ 735 if (count) { 736 dst = df->data; /* start of buffer */ 737 src += maxlen; /* new position */ 738 memcpy(dst, src, count); 739 } 740 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 741 /* for next buffer */ 742 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 743 /* new pos actual buffer */ 744 df->f1 = new_f1; /* next frame */ 745 dch->tx_idx = dch->tx_skb->len; 746 } 747 748 /* 749 * B-channel send routine 750 */ 751 static void 752 hfcpci_fill_fifo(struct bchannel *bch) 753 { 754 struct hfc_pci *hc = bch->hw; 755 int maxlen, fcnt; 756 int count, new_z1; 757 struct bzfifo *bz; 758 u_char *bdata; 759 u_char new_f1, *src, *dst; 760 __le16 *z1t, *z2t; 761 762 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 763 printk(KERN_DEBUG "%s\n", __func__); 764 if ((!bch->tx_skb) || bch->tx_skb->len == 0) { 765 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) && 766 !test_bit(FLG_TRANSPARENT, &bch->Flags)) 767 return; 768 count = HFCPCI_FILLEMPTY; 769 } else { 770 count = bch->tx_skb->len - bch->tx_idx; 771 } 772 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 773 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 774 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2; 775 } else { 776 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 777 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1; 778 } 779 780 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 781 z1t = &bz->za[MAX_B_FRAMES].z1; 782 z2t = z1t + 1; 783 if (bch->debug & DEBUG_HW_BCHANNEL) 784 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) " 785 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count, 786 le16_to_cpu(*z1t), le16_to_cpu(*z2t)); 787 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 788 if (fcnt <= 0) 789 fcnt += B_FIFO_SIZE; 790 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) { 791 /* fcnt contains available bytes in fifo */ 792 if (count > fcnt) 793 count = fcnt; 794 new_z1 = le16_to_cpu(*z1t) + count; 795 /* new buffer Position */ 796 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 797 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 798 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 799 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 800 /* end of fifo */ 801 if (bch->debug & DEBUG_HW_BFIFO) 802 printk(KERN_DEBUG "hfcpci_FFt fillempty " 803 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n", 804 fcnt, maxlen, new_z1, dst); 805 if (maxlen > count) 806 maxlen = count; /* limit size */ 807 memset(dst, bch->fill[0], maxlen); /* first copy */ 808 count -= maxlen; /* remaining bytes */ 809 if (count) { 810 dst = bdata; /* start of buffer */ 811 memset(dst, bch->fill[0], count); 812 } 813 *z1t = cpu_to_le16(new_z1); /* now send data */ 814 return; 815 } 816 /* fcnt contains available bytes in fifo */ 817 fcnt = B_FIFO_SIZE - fcnt; 818 /* remaining bytes to send (bytes in fifo) */ 819 820 next_t_frame: 821 count = bch->tx_skb->len - bch->tx_idx; 822 /* maximum fill shall be poll*2 */ 823 if (count > (poll << 1) - fcnt) 824 count = (poll << 1) - fcnt; 825 if (count <= 0) 826 return; 827 /* data is suitable for fifo */ 828 new_z1 = le16_to_cpu(*z1t) + count; 829 /* new buffer Position */ 830 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 831 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 832 src = bch->tx_skb->data + bch->tx_idx; 833 /* source pointer */ 834 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 835 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 836 /* end of fifo */ 837 if (bch->debug & DEBUG_HW_BFIFO) 838 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) " 839 "maxl(%d) nz1(%x) dst(%p)\n", 840 fcnt, maxlen, new_z1, dst); 841 fcnt += count; 842 bch->tx_idx += count; 843 if (maxlen > count) 844 maxlen = count; /* limit size */ 845 memcpy(dst, src, maxlen); /* first copy */ 846 count -= maxlen; /* remaining bytes */ 847 if (count) { 848 dst = bdata; /* start of buffer */ 849 src += maxlen; /* new position */ 850 memcpy(dst, src, count); 851 } 852 *z1t = cpu_to_le16(new_z1); /* now send data */ 853 if (bch->tx_idx < bch->tx_skb->len) 854 return; 855 dev_kfree_skb(bch->tx_skb); 856 if (get_next_bframe(bch)) 857 goto next_t_frame; 858 return; 859 } 860 if (bch->debug & DEBUG_HW_BCHANNEL) 861 printk(KERN_DEBUG 862 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n", 863 __func__, bch->nr, bz->f1, bz->f2, 864 bz->za[bz->f1].z1); 865 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */ 866 if (fcnt < 0) 867 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */ 868 if (fcnt > (MAX_B_FRAMES - 1)) { 869 if (bch->debug & DEBUG_HW_BCHANNEL) 870 printk(KERN_DEBUG 871 "hfcpci_fill_Bfifo more as 14 frames\n"); 872 return; 873 } 874 /* now determine free bytes in FIFO buffer */ 875 maxlen = le16_to_cpu(bz->za[bz->f2].z2) - 876 le16_to_cpu(bz->za[bz->f1].z1) - 1; 877 if (maxlen <= 0) 878 maxlen += B_FIFO_SIZE; /* count now contains available bytes */ 879 880 if (bch->debug & DEBUG_HW_BCHANNEL) 881 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n", 882 bch->nr, count, maxlen); 883 884 if (maxlen < count) { 885 if (bch->debug & DEBUG_HW_BCHANNEL) 886 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n"); 887 return; 888 } 889 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count; 890 /* new buffer Position */ 891 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 892 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 893 894 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES); 895 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */ 896 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL); 897 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1); 898 /* end fifo */ 899 if (maxlen > count) 900 maxlen = count; /* limit size */ 901 memcpy(dst, src, maxlen); /* first copy */ 902 903 count -= maxlen; /* remaining bytes */ 904 if (count) { 905 dst = bdata; /* start of buffer */ 906 src += maxlen; /* new position */ 907 memcpy(dst, src, count); 908 } 909 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */ 910 bz->f1 = new_f1; /* next frame */ 911 dev_kfree_skb(bch->tx_skb); 912 get_next_bframe(bch); 913 } 914 915 916 917 /* 918 * handle L1 state changes TE 919 */ 920 921 static void 922 ph_state_te(struct dchannel *dch) 923 { 924 if (dch->debug) 925 printk(KERN_DEBUG "%s: TE newstate %x\n", 926 __func__, dch->state); 927 switch (dch->state) { 928 case 0: 929 l1_event(dch->l1, HW_RESET_IND); 930 break; 931 case 3: 932 l1_event(dch->l1, HW_DEACT_IND); 933 break; 934 case 5: 935 case 8: 936 l1_event(dch->l1, ANYSIGNAL); 937 break; 938 case 6: 939 l1_event(dch->l1, INFO2); 940 break; 941 case 7: 942 l1_event(dch->l1, INFO4_P8); 943 break; 944 } 945 } 946 947 /* 948 * handle L1 state changes NT 949 */ 950 951 static void 952 handle_nt_timer3(struct dchannel *dch) { 953 struct hfc_pci *hc = dch->hw; 954 955 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 956 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 957 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 958 hc->hw.nt_timer = 0; 959 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 960 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 961 hc->hw.mst_m |= HFCPCI_MASTER; 962 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 963 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 964 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 965 } 966 967 static void 968 ph_state_nt(struct dchannel *dch) 969 { 970 struct hfc_pci *hc = dch->hw; 971 972 if (dch->debug) 973 printk(KERN_DEBUG "%s: NT newstate %x\n", 974 __func__, dch->state); 975 switch (dch->state) { 976 case 2: 977 if (hc->hw.nt_timer < 0) { 978 hc->hw.nt_timer = 0; 979 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 980 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 981 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 982 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 983 /* Clear already pending ints */ 984 (void) Read_hfc(hc, HFCPCI_INT_S1); 985 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE); 986 udelay(10); 987 Write_hfc(hc, HFCPCI_STATES, 4); 988 dch->state = 4; 989 } else if (hc->hw.nt_timer == 0) { 990 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 991 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 992 hc->hw.nt_timer = NT_T1_COUNT; 993 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 994 hc->hw.ctmt |= HFCPCI_TIM3_125; 995 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 996 HFCPCI_CLTIMER); 997 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 998 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags); 999 /* allow G2 -> G3 transition */ 1000 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1001 } else { 1002 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1003 } 1004 break; 1005 case 1: 1006 hc->hw.nt_timer = 0; 1007 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1008 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1009 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1010 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1011 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1012 hc->hw.mst_m &= ~HFCPCI_MASTER; 1013 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1014 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1015 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 1016 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1017 break; 1018 case 4: 1019 hc->hw.nt_timer = 0; 1020 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1021 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1022 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1023 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1024 break; 1025 case 3: 1026 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) { 1027 if (!test_and_clear_bit(FLG_L2_ACTIVATED, 1028 &dch->Flags)) { 1029 handle_nt_timer3(dch); 1030 break; 1031 } 1032 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1033 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 1034 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1035 hc->hw.nt_timer = NT_T3_COUNT; 1036 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 1037 hc->hw.ctmt |= HFCPCI_TIM3_125; 1038 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 1039 HFCPCI_CLTIMER); 1040 } 1041 break; 1042 } 1043 } 1044 1045 static void 1046 ph_state(struct dchannel *dch) 1047 { 1048 struct hfc_pci *hc = dch->hw; 1049 1050 if (hc->hw.protocol == ISDN_P_NT_S0) { 1051 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) && 1052 hc->hw.nt_timer < 0) 1053 handle_nt_timer3(dch); 1054 else 1055 ph_state_nt(dch); 1056 } else 1057 ph_state_te(dch); 1058 } 1059 1060 /* 1061 * Layer 1 callback function 1062 */ 1063 static int 1064 hfc_l1callback(struct dchannel *dch, u_int cmd) 1065 { 1066 struct hfc_pci *hc = dch->hw; 1067 1068 switch (cmd) { 1069 case INFO3_P8: 1070 case INFO3_P10: 1071 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1072 hc->hw.mst_m |= HFCPCI_MASTER; 1073 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1074 break; 1075 case HW_RESET_REQ: 1076 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); 1077 /* HFC ST 3 */ 1078 udelay(6); 1079 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */ 1080 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1081 hc->hw.mst_m |= HFCPCI_MASTER; 1082 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1083 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1084 HFCPCI_DO_ACTION); 1085 l1_event(dch->l1, HW_POWERUP_IND); 1086 break; 1087 case HW_DEACT_REQ: 1088 hc->hw.mst_m &= ~HFCPCI_MASTER; 1089 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1090 skb_queue_purge(&dch->squeue); 1091 if (dch->tx_skb) { 1092 dev_kfree_skb(dch->tx_skb); 1093 dch->tx_skb = NULL; 1094 } 1095 dch->tx_idx = 0; 1096 if (dch->rx_skb) { 1097 dev_kfree_skb(dch->rx_skb); 1098 dch->rx_skb = NULL; 1099 } 1100 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1101 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1102 del_timer(&dch->timer); 1103 break; 1104 case HW_POWERUP_REQ: 1105 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION); 1106 break; 1107 case PH_ACTIVATE_IND: 1108 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 1109 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1110 GFP_ATOMIC); 1111 break; 1112 case PH_DEACTIVATE_IND: 1113 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1114 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1115 GFP_ATOMIC); 1116 break; 1117 default: 1118 if (dch->debug & DEBUG_HW) 1119 printk(KERN_DEBUG "%s: unknown command %x\n", 1120 __func__, cmd); 1121 return -1; 1122 } 1123 return 0; 1124 } 1125 1126 /* 1127 * Interrupt handler 1128 */ 1129 static inline void 1130 tx_birq(struct bchannel *bch) 1131 { 1132 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) 1133 hfcpci_fill_fifo(bch); 1134 else { 1135 if (bch->tx_skb) 1136 dev_kfree_skb(bch->tx_skb); 1137 if (get_next_bframe(bch)) 1138 hfcpci_fill_fifo(bch); 1139 } 1140 } 1141 1142 static inline void 1143 tx_dirq(struct dchannel *dch) 1144 { 1145 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len) 1146 hfcpci_fill_dfifo(dch->hw); 1147 else { 1148 if (dch->tx_skb) 1149 dev_kfree_skb(dch->tx_skb); 1150 if (get_next_dframe(dch)) 1151 hfcpci_fill_dfifo(dch->hw); 1152 } 1153 } 1154 1155 static irqreturn_t 1156 hfcpci_int(int intno, void *dev_id) 1157 { 1158 struct hfc_pci *hc = dev_id; 1159 u_char exval; 1160 struct bchannel *bch; 1161 u_char val, stat; 1162 1163 spin_lock(&hc->lock); 1164 if (!(hc->hw.int_m2 & 0x08)) { 1165 spin_unlock(&hc->lock); 1166 return IRQ_NONE; /* not initialised */ 1167 } 1168 stat = Read_hfc(hc, HFCPCI_STATUS); 1169 if (HFCPCI_ANYINT & stat) { 1170 val = Read_hfc(hc, HFCPCI_INT_S1); 1171 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1172 printk(KERN_DEBUG 1173 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val); 1174 } else { 1175 /* shared */ 1176 spin_unlock(&hc->lock); 1177 return IRQ_NONE; 1178 } 1179 hc->irqcnt++; 1180 1181 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1182 printk(KERN_DEBUG "HFC-PCI irq %x\n", val); 1183 val &= hc->hw.int_m1; 1184 if (val & 0x40) { /* state machine irq */ 1185 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf; 1186 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1187 printk(KERN_DEBUG "ph_state chg %d->%d\n", 1188 hc->dch.state, exval); 1189 hc->dch.state = exval; 1190 schedule_event(&hc->dch, FLG_PHCHANGE); 1191 val &= ~0x40; 1192 } 1193 if (val & 0x80) { /* timer irq */ 1194 if (hc->hw.protocol == ISDN_P_NT_S0) { 1195 if ((--hc->hw.nt_timer) < 0) 1196 schedule_event(&hc->dch, FLG_PHCHANGE); 1197 } 1198 val &= ~0x80; 1199 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); 1200 } 1201 if (val & 0x08) { /* B1 rx */ 1202 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1203 if (bch) 1204 main_rec_hfcpci(bch); 1205 else if (hc->dch.debug) 1206 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n"); 1207 } 1208 if (val & 0x10) { /* B2 rx */ 1209 bch = Sel_BCS(hc, 2); 1210 if (bch) 1211 main_rec_hfcpci(bch); 1212 else if (hc->dch.debug) 1213 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n"); 1214 } 1215 if (val & 0x01) { /* B1 tx */ 1216 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1217 if (bch) 1218 tx_birq(bch); 1219 else if (hc->dch.debug) 1220 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n"); 1221 } 1222 if (val & 0x02) { /* B2 tx */ 1223 bch = Sel_BCS(hc, 2); 1224 if (bch) 1225 tx_birq(bch); 1226 else if (hc->dch.debug) 1227 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n"); 1228 } 1229 if (val & 0x20) /* D rx */ 1230 receive_dmsg(hc); 1231 if (val & 0x04) { /* D tx */ 1232 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags)) 1233 del_timer(&hc->dch.timer); 1234 tx_dirq(&hc->dch); 1235 } 1236 spin_unlock(&hc->lock); 1237 return IRQ_HANDLED; 1238 } 1239 1240 /* 1241 * timer callback for D-chan busy resolution. Currently no function 1242 */ 1243 static void 1244 hfcpci_dbusy_timer(struct hfc_pci *hc) 1245 { 1246 } 1247 1248 /* 1249 * activate/deactivate hardware for selected channels and mode 1250 */ 1251 static int 1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol) 1253 { 1254 struct hfc_pci *hc = bch->hw; 1255 int fifo2; 1256 u_char rx_slot = 0, tx_slot = 0, pcm_mode; 1257 1258 if (bch->debug & DEBUG_HW_BCHANNEL) 1259 printk(KERN_DEBUG 1260 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n", 1261 bch->state, protocol, bch->nr, bc); 1262 1263 fifo2 = bc; 1264 pcm_mode = (bc >> 24) & 0xff; 1265 if (pcm_mode) { /* PCM SLOT USE */ 1266 if (!test_bit(HFC_CFG_PCM, &hc->cfg)) 1267 printk(KERN_WARNING 1268 "%s: pcm channel id without HFC_CFG_PCM\n", 1269 __func__); 1270 rx_slot = (bc >> 8) & 0xff; 1271 tx_slot = (bc >> 16) & 0xff; 1272 bc = bc & 0xff; 1273 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE)) 1274 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n", 1275 __func__); 1276 if (hc->chanlimit > 1) { 1277 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1278 hc->hw.sctrl_e &= ~0x80; 1279 } else { 1280 if (bc & 2) { 1281 if (protocol != ISDN_P_NONE) { 1282 hc->hw.bswapped = 1; /* B1 and B2 exchanged */ 1283 hc->hw.sctrl_e |= 0x80; 1284 } else { 1285 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1286 hc->hw.sctrl_e &= ~0x80; 1287 } 1288 fifo2 = 1; 1289 } else { 1290 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1291 hc->hw.sctrl_e &= ~0x80; 1292 } 1293 } 1294 switch (protocol) { 1295 case (-1): /* used for init */ 1296 bch->state = -1; 1297 bch->nr = bc; 1298 case (ISDN_P_NONE): 1299 if (bch->state == ISDN_P_NONE) 1300 return 0; 1301 if (bc & 2) { 1302 hc->hw.sctrl &= ~SCTRL_B2_ENA; 1303 hc->hw.sctrl_r &= ~SCTRL_B2_ENA; 1304 } else { 1305 hc->hw.sctrl &= ~SCTRL_B1_ENA; 1306 hc->hw.sctrl_r &= ~SCTRL_B1_ENA; 1307 } 1308 if (fifo2 & 2) { 1309 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2; 1310 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS | 1311 HFCPCI_INTS_B2REC); 1312 } else { 1313 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1; 1314 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS | 1315 HFCPCI_INTS_B1REC); 1316 } 1317 #ifdef REVERSE_BITORDER 1318 if (bch->nr & 2) 1319 hc->hw.cirm &= 0x7f; 1320 else 1321 hc->hw.cirm &= 0xbf; 1322 #endif 1323 bch->state = ISDN_P_NONE; 1324 bch->nr = bc; 1325 test_and_clear_bit(FLG_HDLC, &bch->Flags); 1326 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags); 1327 break; 1328 case (ISDN_P_B_RAW): 1329 bch->state = protocol; 1330 bch->nr = bc; 1331 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1332 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1333 if (bc & 2) { 1334 hc->hw.sctrl |= SCTRL_B2_ENA; 1335 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1336 #ifdef REVERSE_BITORDER 1337 hc->hw.cirm |= 0x80; 1338 #endif 1339 } else { 1340 hc->hw.sctrl |= SCTRL_B1_ENA; 1341 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1342 #ifdef REVERSE_BITORDER 1343 hc->hw.cirm |= 0x40; 1344 #endif 1345 } 1346 if (fifo2 & 2) { 1347 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1348 if (!tics) 1349 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS | 1350 HFCPCI_INTS_B2REC); 1351 hc->hw.ctmt |= 2; 1352 hc->hw.conn &= ~0x18; 1353 } else { 1354 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1355 if (!tics) 1356 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS | 1357 HFCPCI_INTS_B1REC); 1358 hc->hw.ctmt |= 1; 1359 hc->hw.conn &= ~0x03; 1360 } 1361 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags); 1362 break; 1363 case (ISDN_P_B_HDLC): 1364 bch->state = protocol; 1365 bch->nr = bc; 1366 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1367 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1368 if (bc & 2) { 1369 hc->hw.sctrl |= SCTRL_B2_ENA; 1370 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1371 } else { 1372 hc->hw.sctrl |= SCTRL_B1_ENA; 1373 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1374 } 1375 if (fifo2 & 2) { 1376 hc->hw.last_bfifo_cnt[1] = 0; 1377 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1378 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS | 1379 HFCPCI_INTS_B2REC); 1380 hc->hw.ctmt &= ~2; 1381 hc->hw.conn &= ~0x18; 1382 } else { 1383 hc->hw.last_bfifo_cnt[0] = 0; 1384 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1385 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS | 1386 HFCPCI_INTS_B1REC); 1387 hc->hw.ctmt &= ~1; 1388 hc->hw.conn &= ~0x03; 1389 } 1390 test_and_set_bit(FLG_HDLC, &bch->Flags); 1391 break; 1392 default: 1393 printk(KERN_DEBUG "prot not known %x\n", protocol); 1394 return -ENOPROTOOPT; 1395 } 1396 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 1397 if ((protocol == ISDN_P_NONE) || 1398 (protocol == -1)) { /* init case */ 1399 rx_slot = 0; 1400 tx_slot = 0; 1401 } else { 1402 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 1403 rx_slot |= 0xC0; 1404 tx_slot |= 0xC0; 1405 } else { 1406 rx_slot |= 0x80; 1407 tx_slot |= 0x80; 1408 } 1409 } 1410 if (bc & 2) { 1411 hc->hw.conn &= 0xc7; 1412 hc->hw.conn |= 0x08; 1413 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n", 1414 __func__, tx_slot); 1415 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n", 1416 __func__, rx_slot); 1417 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot); 1418 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot); 1419 } else { 1420 hc->hw.conn &= 0xf8; 1421 hc->hw.conn |= 0x01; 1422 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n", 1423 __func__, tx_slot); 1424 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n", 1425 __func__, rx_slot); 1426 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot); 1427 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot); 1428 } 1429 } 1430 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 1431 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1432 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1433 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 1434 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1435 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1436 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1437 #ifdef REVERSE_BITORDER 1438 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1439 #endif 1440 return 0; 1441 } 1442 1443 static int 1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) 1445 { 1446 struct hfc_pci *hc = bch->hw; 1447 1448 if (bch->debug & DEBUG_HW_BCHANNEL) 1449 printk(KERN_DEBUG 1450 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n", 1451 bch->state, protocol, bch->nr, chan); 1452 if (bch->nr != chan) { 1453 printk(KERN_DEBUG 1454 "HFCPCI rxtest wrong channel parameter %x/%x\n", 1455 bch->nr, chan); 1456 return -EINVAL; 1457 } 1458 switch (protocol) { 1459 case (ISDN_P_B_RAW): 1460 bch->state = protocol; 1461 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1462 if (chan & 2) { 1463 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1464 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1465 if (!tics) 1466 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1467 hc->hw.ctmt |= 2; 1468 hc->hw.conn &= ~0x18; 1469 #ifdef REVERSE_BITORDER 1470 hc->hw.cirm |= 0x80; 1471 #endif 1472 } else { 1473 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1474 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1475 if (!tics) 1476 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1477 hc->hw.ctmt |= 1; 1478 hc->hw.conn &= ~0x03; 1479 #ifdef REVERSE_BITORDER 1480 hc->hw.cirm |= 0x40; 1481 #endif 1482 } 1483 break; 1484 case (ISDN_P_B_HDLC): 1485 bch->state = protocol; 1486 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1487 if (chan & 2) { 1488 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1489 hc->hw.last_bfifo_cnt[1] = 0; 1490 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1491 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1492 hc->hw.ctmt &= ~2; 1493 hc->hw.conn &= ~0x18; 1494 } else { 1495 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1496 hc->hw.last_bfifo_cnt[0] = 0; 1497 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1498 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1499 hc->hw.ctmt &= ~1; 1500 hc->hw.conn &= ~0x03; 1501 } 1502 break; 1503 default: 1504 printk(KERN_DEBUG "prot not known %x\n", protocol); 1505 return -ENOPROTOOPT; 1506 } 1507 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1508 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1509 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1510 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1511 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1512 #ifdef REVERSE_BITORDER 1513 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1514 #endif 1515 return 0; 1516 } 1517 1518 static void 1519 deactivate_bchannel(struct bchannel *bch) 1520 { 1521 struct hfc_pci *hc = bch->hw; 1522 u_long flags; 1523 1524 spin_lock_irqsave(&hc->lock, flags); 1525 mISDN_clear_bchannel(bch); 1526 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1527 spin_unlock_irqrestore(&hc->lock, flags); 1528 } 1529 1530 /* 1531 * Layer 1 B-channel hardware access 1532 */ 1533 static int 1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 1535 { 1536 return mISDN_ctrl_bchannel(bch, cq); 1537 } 1538 static int 1539 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1540 { 1541 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1542 struct hfc_pci *hc = bch->hw; 1543 int ret = -EINVAL; 1544 u_long flags; 1545 1546 if (bch->debug & DEBUG_HW) 1547 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); 1548 switch (cmd) { 1549 case HW_TESTRX_RAW: 1550 spin_lock_irqsave(&hc->lock, flags); 1551 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg); 1552 spin_unlock_irqrestore(&hc->lock, flags); 1553 break; 1554 case HW_TESTRX_HDLC: 1555 spin_lock_irqsave(&hc->lock, flags); 1556 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg); 1557 spin_unlock_irqrestore(&hc->lock, flags); 1558 break; 1559 case HW_TESTRX_OFF: 1560 spin_lock_irqsave(&hc->lock, flags); 1561 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1562 spin_unlock_irqrestore(&hc->lock, flags); 1563 ret = 0; 1564 break; 1565 case CLOSE_CHANNEL: 1566 test_and_clear_bit(FLG_OPEN, &bch->Flags); 1567 deactivate_bchannel(bch); 1568 ch->protocol = ISDN_P_NONE; 1569 ch->peer = NULL; 1570 module_put(THIS_MODULE); 1571 ret = 0; 1572 break; 1573 case CONTROL_CHANNEL: 1574 ret = channel_bctrl(bch, arg); 1575 break; 1576 default: 1577 printk(KERN_WARNING "%s: unknown prim(%x)\n", 1578 __func__, cmd); 1579 } 1580 return ret; 1581 } 1582 1583 /* 1584 * Layer2 -> Layer 1 Dchannel data 1585 */ 1586 static int 1587 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) 1588 { 1589 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1590 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1591 struct hfc_pci *hc = dch->hw; 1592 int ret = -EINVAL; 1593 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1594 unsigned int id; 1595 u_long flags; 1596 1597 switch (hh->prim) { 1598 case PH_DATA_REQ: 1599 spin_lock_irqsave(&hc->lock, flags); 1600 ret = dchannel_senddata(dch, skb); 1601 if (ret > 0) { /* direct TX */ 1602 id = hh->id; /* skb can be freed */ 1603 hfcpci_fill_dfifo(dch->hw); 1604 ret = 0; 1605 spin_unlock_irqrestore(&hc->lock, flags); 1606 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 1607 } else 1608 spin_unlock_irqrestore(&hc->lock, flags); 1609 return ret; 1610 case PH_ACTIVATE_REQ: 1611 spin_lock_irqsave(&hc->lock, flags); 1612 if (hc->hw.protocol == ISDN_P_NT_S0) { 1613 ret = 0; 1614 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1615 hc->hw.mst_m |= HFCPCI_MASTER; 1616 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1617 if (test_bit(FLG_ACTIVE, &dch->Flags)) { 1618 spin_unlock_irqrestore(&hc->lock, flags); 1619 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 1620 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1621 break; 1622 } 1623 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); 1624 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1625 HFCPCI_DO_ACTION | 1); 1626 } else 1627 ret = l1_event(dch->l1, hh->prim); 1628 spin_unlock_irqrestore(&hc->lock, flags); 1629 break; 1630 case PH_DEACTIVATE_REQ: 1631 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1632 spin_lock_irqsave(&hc->lock, flags); 1633 if (hc->hw.protocol == ISDN_P_NT_S0) { 1634 /* prepare deactivation */ 1635 Write_hfc(hc, HFCPCI_STATES, 0x40); 1636 skb_queue_purge(&dch->squeue); 1637 if (dch->tx_skb) { 1638 dev_kfree_skb(dch->tx_skb); 1639 dch->tx_skb = NULL; 1640 } 1641 dch->tx_idx = 0; 1642 if (dch->rx_skb) { 1643 dev_kfree_skb(dch->rx_skb); 1644 dch->rx_skb = NULL; 1645 } 1646 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1647 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1648 del_timer(&dch->timer); 1649 #ifdef FIXME 1650 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 1651 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 1652 #endif 1653 hc->hw.mst_m &= ~HFCPCI_MASTER; 1654 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1655 ret = 0; 1656 } else { 1657 ret = l1_event(dch->l1, hh->prim); 1658 } 1659 spin_unlock_irqrestore(&hc->lock, flags); 1660 break; 1661 } 1662 if (!ret) 1663 dev_kfree_skb(skb); 1664 return ret; 1665 } 1666 1667 /* 1668 * Layer2 -> Layer 1 Bchannel data 1669 */ 1670 static int 1671 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) 1672 { 1673 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1674 struct hfc_pci *hc = bch->hw; 1675 int ret = -EINVAL; 1676 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1677 unsigned long flags; 1678 1679 switch (hh->prim) { 1680 case PH_DATA_REQ: 1681 spin_lock_irqsave(&hc->lock, flags); 1682 ret = bchannel_senddata(bch, skb); 1683 if (ret > 0) { /* direct TX */ 1684 hfcpci_fill_fifo(bch); 1685 ret = 0; 1686 } 1687 spin_unlock_irqrestore(&hc->lock, flags); 1688 return ret; 1689 case PH_ACTIVATE_REQ: 1690 spin_lock_irqsave(&hc->lock, flags); 1691 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) 1692 ret = mode_hfcpci(bch, bch->nr, ch->protocol); 1693 else 1694 ret = 0; 1695 spin_unlock_irqrestore(&hc->lock, flags); 1696 if (!ret) 1697 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, 1698 NULL, GFP_KERNEL); 1699 break; 1700 case PH_DEACTIVATE_REQ: 1701 deactivate_bchannel(bch); 1702 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, 1703 NULL, GFP_KERNEL); 1704 ret = 0; 1705 break; 1706 } 1707 if (!ret) 1708 dev_kfree_skb(skb); 1709 return ret; 1710 } 1711 1712 /* 1713 * called for card init message 1714 */ 1715 1716 static void 1717 inithfcpci(struct hfc_pci *hc) 1718 { 1719 printk(KERN_DEBUG "inithfcpci: entered\n"); 1720 hc->dch.timer.function = (void *) hfcpci_dbusy_timer; 1721 hc->dch.timer.data = (long) &hc->dch; 1722 init_timer(&hc->dch.timer); 1723 hc->chanlimit = 2; 1724 mode_hfcpci(&hc->bch[0], 1, -1); 1725 mode_hfcpci(&hc->bch[1], 2, -1); 1726 } 1727 1728 1729 static int 1730 init_card(struct hfc_pci *hc) 1731 { 1732 int cnt = 3; 1733 u_long flags; 1734 1735 printk(KERN_DEBUG "init_card: entered\n"); 1736 1737 1738 spin_lock_irqsave(&hc->lock, flags); 1739 disable_hwirq(hc); 1740 spin_unlock_irqrestore(&hc->lock, flags); 1741 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) { 1742 printk(KERN_WARNING 1743 "mISDN: couldn't get interrupt %d\n", hc->irq); 1744 return -EIO; 1745 } 1746 spin_lock_irqsave(&hc->lock, flags); 1747 reset_hfcpci(hc); 1748 while (cnt) { 1749 inithfcpci(hc); 1750 /* 1751 * Finally enable IRQ output 1752 * this is only allowed, if an IRQ routine is already 1753 * established for this HFC, so don't do that earlier 1754 */ 1755 enable_hwirq(hc); 1756 spin_unlock_irqrestore(&hc->lock, flags); 1757 /* Timeout 80ms */ 1758 set_current_state(TASK_UNINTERRUPTIBLE); 1759 schedule_timeout((80 * HZ) / 1000); 1760 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n", 1761 hc->irq, hc->irqcnt); 1762 /* now switch timer interrupt off */ 1763 spin_lock_irqsave(&hc->lock, flags); 1764 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1765 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1766 /* reinit mode reg */ 1767 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1768 if (!hc->irqcnt) { 1769 printk(KERN_WARNING 1770 "HFC PCI: IRQ(%d) getting no interrupts " 1771 "during init %d\n", hc->irq, 4 - cnt); 1772 if (cnt == 1) 1773 break; 1774 else { 1775 reset_hfcpci(hc); 1776 cnt--; 1777 } 1778 } else { 1779 spin_unlock_irqrestore(&hc->lock, flags); 1780 hc->initdone = 1; 1781 return 0; 1782 } 1783 } 1784 disable_hwirq(hc); 1785 spin_unlock_irqrestore(&hc->lock, flags); 1786 free_irq(hc->irq, hc); 1787 return -EIO; 1788 } 1789 1790 static int 1791 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq) 1792 { 1793 int ret = 0; 1794 u_char slot; 1795 1796 switch (cq->op) { 1797 case MISDN_CTRL_GETOP: 1798 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | 1799 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3; 1800 break; 1801 case MISDN_CTRL_LOOP: 1802 /* channel 0 disabled loop */ 1803 if (cq->channel < 0 || cq->channel > 2) { 1804 ret = -EINVAL; 1805 break; 1806 } 1807 if (cq->channel & 1) { 1808 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1809 slot = 0xC0; 1810 else 1811 slot = 0x80; 1812 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1813 __func__, slot); 1814 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1815 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1816 hc->hw.conn = (hc->hw.conn & ~7) | 6; 1817 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1818 } 1819 if (cq->channel & 2) { 1820 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1821 slot = 0xC1; 1822 else 1823 slot = 0x81; 1824 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1825 __func__, slot); 1826 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1827 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1828 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30; 1829 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1830 } 1831 if (cq->channel & 3) 1832 hc->hw.trm |= 0x80; /* enable IOM-loop */ 1833 else { 1834 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1835 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1836 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1837 } 1838 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1839 break; 1840 case MISDN_CTRL_CONNECT: 1841 if (cq->channel == cq->p1) { 1842 ret = -EINVAL; 1843 break; 1844 } 1845 if (cq->channel < 1 || cq->channel > 2 || 1846 cq->p1 < 1 || cq->p1 > 2) { 1847 ret = -EINVAL; 1848 break; 1849 } 1850 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1851 slot = 0xC0; 1852 else 1853 slot = 0x80; 1854 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1855 __func__, slot); 1856 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1857 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1858 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1859 slot = 0xC1; 1860 else 1861 slot = 0x81; 1862 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1863 __func__, slot); 1864 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1865 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1866 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36; 1867 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1868 hc->hw.trm |= 0x80; 1869 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1870 break; 1871 case MISDN_CTRL_DISCONNECT: 1872 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1873 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1874 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1875 break; 1876 case MISDN_CTRL_L1_TIMER3: 1877 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); 1878 break; 1879 default: 1880 printk(KERN_WARNING "%s: unknown Op %x\n", 1881 __func__, cq->op); 1882 ret = -EINVAL; 1883 break; 1884 } 1885 return ret; 1886 } 1887 1888 static int 1889 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, 1890 struct channel_req *rq) 1891 { 1892 int err = 0; 1893 1894 if (debug & DEBUG_HW_OPEN) 1895 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, 1896 hc->dch.dev.id, __builtin_return_address(0)); 1897 if (rq->protocol == ISDN_P_NONE) 1898 return -EINVAL; 1899 if (rq->adr.channel == 1) { 1900 /* TODO: E-Channel */ 1901 return -EINVAL; 1902 } 1903 if (!hc->initdone) { 1904 if (rq->protocol == ISDN_P_TE_S0) { 1905 err = create_l1(&hc->dch, hfc_l1callback); 1906 if (err) 1907 return err; 1908 } 1909 hc->hw.protocol = rq->protocol; 1910 ch->protocol = rq->protocol; 1911 err = init_card(hc); 1912 if (err) 1913 return err; 1914 } else { 1915 if (rq->protocol != ch->protocol) { 1916 if (hc->hw.protocol == ISDN_P_TE_S0) 1917 l1_event(hc->dch.l1, CLOSE_CHANNEL); 1918 if (rq->protocol == ISDN_P_TE_S0) { 1919 err = create_l1(&hc->dch, hfc_l1callback); 1920 if (err) 1921 return err; 1922 } 1923 hc->hw.protocol = rq->protocol; 1924 ch->protocol = rq->protocol; 1925 hfcpci_setmode(hc); 1926 } 1927 } 1928 1929 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) || 1930 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) { 1931 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 1932 0, NULL, GFP_KERNEL); 1933 } 1934 rq->ch = ch; 1935 if (!try_module_get(THIS_MODULE)) 1936 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1937 return 0; 1938 } 1939 1940 static int 1941 open_bchannel(struct hfc_pci *hc, struct channel_req *rq) 1942 { 1943 struct bchannel *bch; 1944 1945 if (rq->adr.channel == 0 || rq->adr.channel > 2) 1946 return -EINVAL; 1947 if (rq->protocol == ISDN_P_NONE) 1948 return -EINVAL; 1949 bch = &hc->bch[rq->adr.channel - 1]; 1950 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 1951 return -EBUSY; /* b-channel can be only open once */ 1952 bch->ch.protocol = rq->protocol; 1953 rq->ch = &bch->ch; /* TODO: E-channel */ 1954 if (!try_module_get(THIS_MODULE)) 1955 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1956 return 0; 1957 } 1958 1959 /* 1960 * device control function 1961 */ 1962 static int 1963 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1964 { 1965 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1966 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1967 struct hfc_pci *hc = dch->hw; 1968 struct channel_req *rq; 1969 int err = 0; 1970 1971 if (dch->debug & DEBUG_HW) 1972 printk(KERN_DEBUG "%s: cmd:%x %p\n", 1973 __func__, cmd, arg); 1974 switch (cmd) { 1975 case OPEN_CHANNEL: 1976 rq = arg; 1977 if ((rq->protocol == ISDN_P_TE_S0) || 1978 (rq->protocol == ISDN_P_NT_S0)) 1979 err = open_dchannel(hc, ch, rq); 1980 else 1981 err = open_bchannel(hc, rq); 1982 break; 1983 case CLOSE_CHANNEL: 1984 if (debug & DEBUG_HW_OPEN) 1985 printk(KERN_DEBUG "%s: dev(%d) close from %p\n", 1986 __func__, hc->dch.dev.id, 1987 __builtin_return_address(0)); 1988 module_put(THIS_MODULE); 1989 break; 1990 case CONTROL_CHANNEL: 1991 err = channel_ctrl(hc, arg); 1992 break; 1993 default: 1994 if (dch->debug & DEBUG_HW) 1995 printk(KERN_DEBUG "%s: unknown command %x\n", 1996 __func__, cmd); 1997 return -EINVAL; 1998 } 1999 return err; 2000 } 2001 2002 static int 2003 setup_hw(struct hfc_pci *hc) 2004 { 2005 void *buffer; 2006 2007 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision); 2008 hc->hw.cirm = 0; 2009 hc->dch.state = 0; 2010 pci_set_master(hc->pdev); 2011 if (!hc->irq) { 2012 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n"); 2013 return 1; 2014 } 2015 hc->hw.pci_io = 2016 (char __iomem *)(unsigned long)hc->pdev->resource[1].start; 2017 2018 if (!hc->hw.pci_io) { 2019 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n"); 2020 return 1; 2021 } 2022 /* Allocate memory for FIFOS */ 2023 /* the memory needs to be on a 32k boundary within the first 4G */ 2024 pci_set_dma_mask(hc->pdev, 0xFFFF8000); 2025 buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle); 2026 /* We silently assume the address is okay if nonzero */ 2027 if (!buffer) { 2028 printk(KERN_WARNING 2029 "HFC-PCI: Error allocating memory for FIFO!\n"); 2030 return 1; 2031 } 2032 hc->hw.fifos = buffer; 2033 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle); 2034 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256); 2035 printk(KERN_INFO 2036 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n", 2037 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos, 2038 (u_long) hc->hw.dmahandle, hc->irq, HZ); 2039 /* enable memory mapped ports, disable busmaster */ 2040 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 2041 hc->hw.int_m2 = 0; 2042 disable_hwirq(hc); 2043 hc->hw.int_m1 = 0; 2044 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 2045 /* At this point the needed PCI config is done */ 2046 /* fifos are still not enabled */ 2047 hc->hw.timer.function = (void *) hfcpci_Timer; 2048 hc->hw.timer.data = (long) hc; 2049 init_timer(&hc->hw.timer); 2050 /* default PCM master */ 2051 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg); 2052 return 0; 2053 } 2054 2055 static void 2056 release_card(struct hfc_pci *hc) { 2057 u_long flags; 2058 2059 spin_lock_irqsave(&hc->lock, flags); 2060 hc->hw.int_m2 = 0; /* interrupt output off ! */ 2061 disable_hwirq(hc); 2062 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE); 2063 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE); 2064 if (hc->dch.timer.function != NULL) { 2065 del_timer(&hc->dch.timer); 2066 hc->dch.timer.function = NULL; 2067 } 2068 spin_unlock_irqrestore(&hc->lock, flags); 2069 if (hc->hw.protocol == ISDN_P_TE_S0) 2070 l1_event(hc->dch.l1, CLOSE_CHANNEL); 2071 if (hc->initdone) 2072 free_irq(hc->irq, hc); 2073 release_io_hfcpci(hc); /* must release after free_irq! */ 2074 mISDN_unregister_device(&hc->dch.dev); 2075 mISDN_freebchannel(&hc->bch[1]); 2076 mISDN_freebchannel(&hc->bch[0]); 2077 mISDN_freedchannel(&hc->dch); 2078 pci_set_drvdata(hc->pdev, NULL); 2079 kfree(hc); 2080 } 2081 2082 static int 2083 setup_card(struct hfc_pci *card) 2084 { 2085 int err = -EINVAL; 2086 u_int i; 2087 char name[MISDN_MAX_IDLEN]; 2088 2089 card->dch.debug = debug; 2090 spin_lock_init(&card->lock); 2091 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state); 2092 card->dch.hw = card; 2093 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 2094 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 2095 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 2096 card->dch.dev.D.send = hfcpci_l2l1D; 2097 card->dch.dev.D.ctrl = hfc_dctrl; 2098 card->dch.dev.nrbchan = 2; 2099 for (i = 0; i < 2; i++) { 2100 card->bch[i].nr = i + 1; 2101 set_channelmap(i + 1, card->dch.dev.channelmap); 2102 card->bch[i].debug = debug; 2103 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1); 2104 card->bch[i].hw = card; 2105 card->bch[i].ch.send = hfcpci_l2l1B; 2106 card->bch[i].ch.ctrl = hfc_bctrl; 2107 card->bch[i].ch.nr = i + 1; 2108 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels); 2109 } 2110 err = setup_hw(card); 2111 if (err) 2112 goto error; 2113 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1); 2114 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name); 2115 if (err) 2116 goto error; 2117 HFC_cnt++; 2118 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt); 2119 return 0; 2120 error: 2121 mISDN_freebchannel(&card->bch[1]); 2122 mISDN_freebchannel(&card->bch[0]); 2123 mISDN_freedchannel(&card->dch); 2124 kfree(card); 2125 return err; 2126 } 2127 2128 /* private data in the PCI devices list */ 2129 struct _hfc_map { 2130 u_int subtype; 2131 u_int flag; 2132 char *name; 2133 }; 2134 2135 static const struct _hfc_map hfc_map[] = 2136 { 2137 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"}, 2138 {HFC_CCD_B000, 0, "Billion B000"}, 2139 {HFC_CCD_B006, 0, "Billion B006"}, 2140 {HFC_CCD_B007, 0, "Billion B007"}, 2141 {HFC_CCD_B008, 0, "Billion B008"}, 2142 {HFC_CCD_B009, 0, "Billion B009"}, 2143 {HFC_CCD_B00A, 0, "Billion B00A"}, 2144 {HFC_CCD_B00B, 0, "Billion B00B"}, 2145 {HFC_CCD_B00C, 0, "Billion B00C"}, 2146 {HFC_CCD_B100, 0, "Seyeon B100"}, 2147 {HFC_CCD_B700, 0, "Primux II S0 B700"}, 2148 {HFC_CCD_B701, 0, "Primux II S0 NT B701"}, 2149 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"}, 2150 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"}, 2151 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"}, 2152 {HFC_BERKOM_A1T, 0, "German telekom A1T"}, 2153 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"}, 2154 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"}, 2155 {HFC_DIGI_DF_M_IOM2_E, 0, 2156 "Digi International DataFire Micro V IOM2 (Europe)"}, 2157 {HFC_DIGI_DF_M_E, 0, 2158 "Digi International DataFire Micro V (Europe)"}, 2159 {HFC_DIGI_DF_M_IOM2_A, 0, 2160 "Digi International DataFire Micro V IOM2 (North America)"}, 2161 {HFC_DIGI_DF_M_A, 0, 2162 "Digi International DataFire Micro V (North America)"}, 2163 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"}, 2164 {}, 2165 }; 2166 2167 static struct pci_device_id hfc_ids[] = 2168 { 2169 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0), 2170 (unsigned long) &hfc_map[0] }, 2171 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000), 2172 (unsigned long) &hfc_map[1] }, 2173 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006), 2174 (unsigned long) &hfc_map[2] }, 2175 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007), 2176 (unsigned long) &hfc_map[3] }, 2177 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008), 2178 (unsigned long) &hfc_map[4] }, 2179 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009), 2180 (unsigned long) &hfc_map[5] }, 2181 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A), 2182 (unsigned long) &hfc_map[6] }, 2183 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B), 2184 (unsigned long) &hfc_map[7] }, 2185 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C), 2186 (unsigned long) &hfc_map[8] }, 2187 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100), 2188 (unsigned long) &hfc_map[9] }, 2189 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700), 2190 (unsigned long) &hfc_map[10] }, 2191 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701), 2192 (unsigned long) &hfc_map[11] }, 2193 { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1), 2194 (unsigned long) &hfc_map[12] }, 2195 { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675), 2196 (unsigned long) &hfc_map[13] }, 2197 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT), 2198 (unsigned long) &hfc_map[14] }, 2199 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T), 2200 (unsigned long) &hfc_map[15] }, 2201 { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575), 2202 (unsigned long) &hfc_map[16] }, 2203 { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0), 2204 (unsigned long) &hfc_map[17] }, 2205 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E), 2206 (unsigned long) &hfc_map[18] }, 2207 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E), 2208 (unsigned long) &hfc_map[19] }, 2209 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A), 2210 (unsigned long) &hfc_map[20] }, 2211 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A), 2212 (unsigned long) &hfc_map[21] }, 2213 { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2), 2214 (unsigned long) &hfc_map[22] }, 2215 {}, 2216 }; 2217 2218 static int 2219 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2220 { 2221 int err = -ENOMEM; 2222 struct hfc_pci *card; 2223 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data; 2224 2225 card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC); 2226 if (!card) { 2227 printk(KERN_ERR "No kmem for HFC card\n"); 2228 return err; 2229 } 2230 card->pdev = pdev; 2231 card->subtype = m->subtype; 2232 err = pci_enable_device(pdev); 2233 if (err) { 2234 kfree(card); 2235 return err; 2236 } 2237 2238 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n", 2239 m->name, pci_name(pdev)); 2240 2241 card->irq = pdev->irq; 2242 pci_set_drvdata(pdev, card); 2243 err = setup_card(card); 2244 if (err) 2245 pci_set_drvdata(pdev, NULL); 2246 return err; 2247 } 2248 2249 static void 2250 hfc_remove_pci(struct pci_dev *pdev) 2251 { 2252 struct hfc_pci *card = pci_get_drvdata(pdev); 2253 2254 if (card) 2255 release_card(card); 2256 else 2257 if (debug) 2258 printk(KERN_DEBUG "%s: drvdata already removed\n", 2259 __func__); 2260 } 2261 2262 2263 static struct pci_driver hfc_driver = { 2264 .name = "hfcpci", 2265 .probe = hfc_probe, 2266 .remove = hfc_remove_pci, 2267 .id_table = hfc_ids, 2268 }; 2269 2270 static int 2271 _hfcpci_softirq(struct device *dev, void *arg) 2272 { 2273 struct hfc_pci *hc = dev_get_drvdata(dev); 2274 struct bchannel *bch; 2275 if (hc == NULL) 2276 return 0; 2277 2278 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) { 2279 spin_lock(&hc->lock); 2280 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 2281 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */ 2282 main_rec_hfcpci(bch); 2283 tx_birq(bch); 2284 } 2285 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2); 2286 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */ 2287 main_rec_hfcpci(bch); 2288 tx_birq(bch); 2289 } 2290 spin_unlock(&hc->lock); 2291 } 2292 return 0; 2293 } 2294 2295 static void 2296 hfcpci_softirq(void *arg) 2297 { 2298 WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, arg, 2299 _hfcpci_softirq) != 0); 2300 2301 /* if next event would be in the past ... */ 2302 if ((s32)(hfc_jiffies + tics - jiffies) <= 0) 2303 hfc_jiffies = jiffies + 1; 2304 else 2305 hfc_jiffies += tics; 2306 hfc_tl.expires = hfc_jiffies; 2307 add_timer(&hfc_tl); 2308 } 2309 2310 static int __init 2311 HFC_init(void) 2312 { 2313 int err; 2314 2315 if (!poll) 2316 poll = HFCPCI_BTRANS_THRESHOLD; 2317 2318 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2319 tics = (poll * HZ) / 8000; 2320 if (tics < 1) 2321 tics = 1; 2322 poll = (tics * 8000) / HZ; 2323 if (poll > 256 || poll < 8) { 2324 printk(KERN_ERR "%s: Wrong poll value %d not in range " 2325 "of 8..256.\n", __func__, poll); 2326 err = -EINVAL; 2327 return err; 2328 } 2329 } 2330 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2331 printk(KERN_INFO "%s: Using alternative poll value of %d\n", 2332 __func__, poll); 2333 hfc_tl.function = (void *)hfcpci_softirq; 2334 hfc_tl.data = 0; 2335 init_timer(&hfc_tl); 2336 hfc_tl.expires = jiffies + tics; 2337 hfc_jiffies = hfc_tl.expires; 2338 add_timer(&hfc_tl); 2339 } else 2340 tics = 0; /* indicate the use of controller's timer */ 2341 2342 err = pci_register_driver(&hfc_driver); 2343 if (err) { 2344 if (timer_pending(&hfc_tl)) 2345 del_timer(&hfc_tl); 2346 } 2347 2348 return err; 2349 } 2350 2351 static void __exit 2352 HFC_cleanup(void) 2353 { 2354 if (timer_pending(&hfc_tl)) 2355 del_timer(&hfc_tl); 2356 2357 pci_unregister_driver(&hfc_driver); 2358 } 2359 2360 module_init(HFC_init); 2361 module_exit(HFC_cleanup); 2362 2363 MODULE_DEVICE_TABLE(pci, hfc_ids); 2364