1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * hfcpci.c     low level driver for CCD's hfc-pci based cards
5  *
6  * Author     Werner Cornelius (werner@isdn4linux.de)
7  *            based on existing driver for CCD hfc ISA cards
8  *            type approval valid for HFC-S PCI A based card
9  *
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
12  *
13  * Module options:
14  *
15  * debug:
16  *	NOTE: only one poll value must be given for all cards
17  *	See hfc_pci.h for debug flags.
18  *
19  * poll:
20  *	NOTE: only one poll value must be given for all cards
21  *	Give the number of samples for each fifo process.
22  *	By default 128 is used. Decrease to reduce delay, increase to
23  *	reduce cpu load. If unsure, don't mess with it!
24  *	A value of 128 will use controller's interrupt. Other values will
25  *	use kernel timer, because the controller will not allow lower values
26  *	than 128.
27  *	Also note that the value depends on the kernel timer frequency.
28  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
29  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
30  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
31  */
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/mISDNhw.h>
38 #include <linux/slab.h>
39 
40 #include "hfc_pci.h"
41 
42 static const char *hfcpci_revision = "2.0";
43 
44 static int HFC_cnt;
45 static uint debug;
46 static uint poll, tics;
47 static struct timer_list hfc_tl;
48 static unsigned long hfc_jiffies;
49 
50 MODULE_AUTHOR("Karsten Keil");
51 MODULE_LICENSE("GPL");
52 module_param(debug, uint, S_IRUGO | S_IWUSR);
53 module_param(poll, uint, S_IRUGO | S_IWUSR);
54 
55 enum {
56 	HFC_CCD_2BD0,
57 	HFC_CCD_B000,
58 	HFC_CCD_B006,
59 	HFC_CCD_B007,
60 	HFC_CCD_B008,
61 	HFC_CCD_B009,
62 	HFC_CCD_B00A,
63 	HFC_CCD_B00B,
64 	HFC_CCD_B00C,
65 	HFC_CCD_B100,
66 	HFC_CCD_B700,
67 	HFC_CCD_B701,
68 	HFC_ASUS_0675,
69 	HFC_BERKOM_A1T,
70 	HFC_BERKOM_TCONCEPT,
71 	HFC_ANIGMA_MC145575,
72 	HFC_ZOLTRIX_2BD0,
73 	HFC_DIGI_DF_M_IOM2_E,
74 	HFC_DIGI_DF_M_E,
75 	HFC_DIGI_DF_M_IOM2_A,
76 	HFC_DIGI_DF_M_A,
77 	HFC_ABOCOM_2BD1,
78 	HFC_SITECOM_DC105V2,
79 };
80 
81 struct hfcPCI_hw {
82 	unsigned char		cirm;
83 	unsigned char		ctmt;
84 	unsigned char		clkdel;
85 	unsigned char		states;
86 	unsigned char		conn;
87 	unsigned char		mst_m;
88 	unsigned char		int_m1;
89 	unsigned char		int_m2;
90 	unsigned char		sctrl;
91 	unsigned char		sctrl_r;
92 	unsigned char		sctrl_e;
93 	unsigned char		trm;
94 	unsigned char		fifo_en;
95 	unsigned char		bswapped;
96 	unsigned char		protocol;
97 	int			nt_timer;
98 	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
99 	dma_addr_t		dmahandle;
100 	void			*fifos; /* FIFO memory */
101 	int			last_bfifo_cnt[2];
102 	/* marker saving last b-fifo frame count */
103 	struct timer_list	timer;
104 };
105 
106 #define	HFC_CFG_MASTER		1
107 #define HFC_CFG_SLAVE		2
108 #define	HFC_CFG_PCM		3
109 #define HFC_CFG_2HFC		4
110 #define HFC_CFG_SLAVEHFC	5
111 #define HFC_CFG_NEG_F0		6
112 #define HFC_CFG_SW_DD_DU	7
113 
114 #define FLG_HFC_TIMER_T1	16
115 #define FLG_HFC_TIMER_T3	17
116 
117 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
118 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
119 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
120 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
121 
122 
123 struct hfc_pci {
124 	u_char			subtype;
125 	u_char			chanlimit;
126 	u_char			initdone;
127 	u_long			cfg;
128 	u_int			irq;
129 	u_int			irqcnt;
130 	struct pci_dev		*pdev;
131 	struct hfcPCI_hw	hw;
132 	spinlock_t		lock;	/* card lock */
133 	struct dchannel		dch;
134 	struct bchannel		bch[2];
135 };
136 
137 /* Interface functions */
138 static void
139 enable_hwirq(struct hfc_pci *hc)
140 {
141 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
142 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
143 }
144 
145 static void
146 disable_hwirq(struct hfc_pci *hc)
147 {
148 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
149 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
150 }
151 
152 /*
153  * free hardware resources used by driver
154  */
155 static void
156 release_io_hfcpci(struct hfc_pci *hc)
157 {
158 	/* disable memory mapped ports + busmaster */
159 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
160 	del_timer(&hc->hw.timer);
161 	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
162 	iounmap(hc->hw.pci_io);
163 }
164 
165 /*
166  * set mode (NT or TE)
167  */
168 static void
169 hfcpci_setmode(struct hfc_pci *hc)
170 {
171 	if (hc->hw.protocol == ISDN_P_NT_S0) {
172 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
173 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
174 		hc->hw.states = 1;		/* G1 */
175 	} else {
176 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
177 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
178 		hc->hw.states = 2;		/* F2 */
179 	}
180 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
181 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
182 	udelay(10);
183 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
184 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
185 }
186 
187 /*
188  * function called to reset the HFC PCI chip. A complete software reset of chip
189  * and fifos is done.
190  */
191 static void
192 reset_hfcpci(struct hfc_pci *hc)
193 {
194 	u_char	val;
195 	int	cnt = 0;
196 
197 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
198 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
199 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
200 	/* enable memory mapped ports, disable busmaster */
201 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
202 	disable_hwirq(hc);
203 	/* enable memory ports + busmaster */
204 	pci_write_config_word(hc->pdev, PCI_COMMAND,
205 			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
206 	val = Read_hfc(hc, HFCPCI_STATUS);
207 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
208 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
209 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
210 	set_current_state(TASK_UNINTERRUPTIBLE);
211 	mdelay(10);			/* Timeout 10ms */
212 	hc->hw.cirm = 0;		/* Reset Off */
213 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
214 	val = Read_hfc(hc, HFCPCI_STATUS);
215 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
216 	while (cnt < 50000) { /* max 50000 us */
217 		udelay(5);
218 		cnt += 5;
219 		val = Read_hfc(hc, HFCPCI_STATUS);
220 		if (!(val & 2))
221 			break;
222 	}
223 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
224 
225 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
226 
227 	hc->hw.bswapped = 0;	/* no exchange */
228 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
229 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
230 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
231 	hc->hw.sctrl_r = 0;
232 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
233 	hc->hw.mst_m = 0;
234 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
235 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
236 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
237 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
238 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
239 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
240 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
241 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
242 
243 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
244 		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
245 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
246 
247 	/* Clear already pending ints */
248 	val = Read_hfc(hc, HFCPCI_INT_S1);
249 
250 	/* set NT/TE mode */
251 	hfcpci_setmode(hc);
252 
253 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
254 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
255 
256 	/*
257 	 * Init GCI/IOM2 in master mode
258 	 * Slots 0 and 1 are set for B-chan 1 and 2
259 	 * D- and monitor/CI channel are not enabled
260 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
261 	 * STIO2 is used as data input, B1+B2 from IOM->ST
262 	 * ST B-channel send disabled -> continuous 1s
263 	 * The IOM slots are always enabled
264 	 */
265 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
266 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
267 		hc->hw.conn = 0x09;
268 	} else {
269 		hc->hw.conn = 0x36;	/* set data flow directions */
270 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
271 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
272 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
273 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
274 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
275 		} else {
276 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
277 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
278 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
279 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
280 		}
281 	}
282 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
283 	val = Read_hfc(hc, HFCPCI_INT_S2);
284 }
285 
286 /*
287  * Timer function called when kernel timer expires
288  */
289 static void
290 hfcpci_Timer(struct timer_list *t)
291 {
292 	struct hfc_pci *hc = from_timer(hc, t, hw.timer);
293 	hc->hw.timer.expires = jiffies + 75;
294 	/* WD RESET */
295 /*
296  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
297  *	add_timer(&hc->hw.timer);
298  */
299 }
300 
301 
302 /*
303  * select a b-channel entry matching and active
304  */
305 static struct bchannel *
306 Sel_BCS(struct hfc_pci *hc, int channel)
307 {
308 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
309 	    (hc->bch[0].nr & channel))
310 		return &hc->bch[0];
311 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
312 		 (hc->bch[1].nr & channel))
313 		return &hc->bch[1];
314 	else
315 		return NULL;
316 }
317 
318 /*
319  * clear the desired B-channel rx fifo
320  */
321 static void
322 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
323 {
324 	u_char		fifo_state;
325 	struct bzfifo	*bzr;
326 
327 	if (fifo) {
328 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
329 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
330 	} else {
331 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
332 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
333 	}
334 	if (fifo_state)
335 		hc->hw.fifo_en ^= fifo_state;
336 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
337 	hc->hw.last_bfifo_cnt[fifo] = 0;
338 	bzr->f1 = MAX_B_FRAMES;
339 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
340 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
341 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
342 		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
343 	if (fifo_state)
344 		hc->hw.fifo_en |= fifo_state;
345 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
346 }
347 
348 /*
349  * clear the desired B-channel tx fifo
350  */
351 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
352 {
353 	u_char		fifo_state;
354 	struct bzfifo	*bzt;
355 
356 	if (fifo) {
357 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
358 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
359 	} else {
360 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
361 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
362 	}
363 	if (fifo_state)
364 		hc->hw.fifo_en ^= fifo_state;
365 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
366 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
367 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
368 		       "z1(%x) z2(%x) state(%x)\n",
369 		       fifo, bzt->f1, bzt->f2,
370 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
371 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
372 		       fifo_state);
373 	bzt->f2 = MAX_B_FRAMES;
374 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
375 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
376 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
377 	if (fifo_state)
378 		hc->hw.fifo_en |= fifo_state;
379 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
380 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
381 		printk(KERN_DEBUG
382 		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
383 		       fifo, bzt->f1, bzt->f2,
384 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
385 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
386 }
387 
388 /*
389  * read a complete B-frame out of the buffer
390  */
391 static void
392 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
393 		   u_char *bdata, int count)
394 {
395 	u_char		*ptr, *ptr1, new_f2;
396 	int		maxlen, new_z2;
397 	struct zt	*zp;
398 
399 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
400 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
401 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
402 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
403 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
404 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
405 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
406 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
407 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
408 		if (bch->debug & DEBUG_HW)
409 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
410 			       "invalid length %d or crc\n", count);
411 #ifdef ERROR_STATISTIC
412 		bch->err_inv++;
413 #endif
414 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
415 		bz->f2 = new_f2;	/* next buffer */
416 	} else {
417 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
418 		if (!bch->rx_skb) {
419 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
420 			return;
421 		}
422 		count -= 3;
423 		ptr = skb_put(bch->rx_skb, count);
424 
425 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
426 			maxlen = count;		/* complete transfer */
427 		else
428 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
429 				le16_to_cpu(zp->z2);	/* maximum */
430 
431 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
432 		/* start of data */
433 		memcpy(ptr, ptr1, maxlen);	/* copy data */
434 		count -= maxlen;
435 
436 		if (count) {	/* rest remaining */
437 			ptr += maxlen;
438 			ptr1 = bdata;	/* start of buffer */
439 			memcpy(ptr, ptr1, count);	/* rest */
440 		}
441 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
442 		bz->f2 = new_f2;	/* next buffer */
443 		recv_Bchannel(bch, MISDN_ID_ANY, false);
444 	}
445 }
446 
447 /*
448  * D-channel receive procedure
449  */
450 static int
451 receive_dmsg(struct hfc_pci *hc)
452 {
453 	struct dchannel	*dch = &hc->dch;
454 	int		maxlen;
455 	int		rcnt, total;
456 	int		count = 5;
457 	u_char		*ptr, *ptr1;
458 	struct dfifo	*df;
459 	struct zt	*zp;
460 
461 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
462 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
463 		zp = &df->za[df->f2 & D_FREG_MASK];
464 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
465 		if (rcnt < 0)
466 			rcnt += D_FIFO_SIZE;
467 		rcnt++;
468 		if (dch->debug & DEBUG_HW_DCHANNEL)
469 			printk(KERN_DEBUG
470 			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
471 			       df->f1, df->f2,
472 			       le16_to_cpu(zp->z1),
473 			       le16_to_cpu(zp->z2),
474 			       rcnt);
475 
476 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
477 		    (df->data[le16_to_cpu(zp->z1)])) {
478 			if (dch->debug & DEBUG_HW)
479 				printk(KERN_DEBUG
480 				       "empty_fifo hfcpci packet inv. len "
481 				       "%d or crc %d\n",
482 				       rcnt,
483 				       df->data[le16_to_cpu(zp->z1)]);
484 #ifdef ERROR_STATISTIC
485 			cs->err_rx++;
486 #endif
487 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
488 				(MAX_D_FRAMES + 1);	/* next buffer */
489 			df->za[df->f2 & D_FREG_MASK].z2 =
490 				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
491 					    (D_FIFO_SIZE - 1));
492 		} else {
493 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
494 			if (!dch->rx_skb) {
495 				printk(KERN_WARNING
496 				       "HFC-PCI: D receive out of memory\n");
497 				break;
498 			}
499 			total = rcnt;
500 			rcnt -= 3;
501 			ptr = skb_put(dch->rx_skb, rcnt);
502 
503 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
504 				maxlen = rcnt;	/* complete transfer */
505 			else
506 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
507 			/* maximum */
508 
509 			ptr1 = df->data + le16_to_cpu(zp->z2);
510 			/* start of data */
511 			memcpy(ptr, ptr1, maxlen);	/* copy data */
512 			rcnt -= maxlen;
513 
514 			if (rcnt) {	/* rest remaining */
515 				ptr += maxlen;
516 				ptr1 = df->data;	/* start of buffer */
517 				memcpy(ptr, ptr1, rcnt);	/* rest */
518 			}
519 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
520 				(MAX_D_FRAMES + 1);	/* next buffer */
521 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
522 									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
523 			recv_Dchannel(dch);
524 		}
525 	}
526 	return 1;
527 }
528 
529 /*
530  * check for transparent receive data and read max one 'poll' size if avail
531  */
532 static void
533 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
534 			struct bzfifo *txbz, u_char *bdata)
535 {
536 	__le16	*z1r, *z2r, *z1t, *z2t;
537 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
538 	u_char	*ptr, *ptr1;
539 
540 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
541 	z2r = z1r + 1;
542 	z1t = &txbz->za[MAX_B_FRAMES].z1;
543 	z2t = z1t + 1;
544 
545 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
546 	if (!fcnt_rx)
547 		return;	/* no data avail */
548 
549 	if (fcnt_rx <= 0)
550 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
551 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
552 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
553 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
554 
555 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
556 	if (fcnt_tx <= 0)
557 		fcnt_tx += B_FIFO_SIZE;
558 	/* fcnt_tx contains available bytes in tx-fifo */
559 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
560 	/* remaining bytes to send (bytes in tx-fifo) */
561 
562 	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
563 		bch->dropcnt += fcnt_rx;
564 		*z2r = cpu_to_le16(new_z2);
565 		return;
566 	}
567 	maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
568 	if (maxlen < 0) {
569 		pr_warning("B%d: No bufferspace for %d bytes\n",
570 			   bch->nr, fcnt_rx);
571 	} else {
572 		ptr = skb_put(bch->rx_skb, fcnt_rx);
573 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
574 			maxlen = fcnt_rx;	/* complete transfer */
575 		else
576 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
577 		/* maximum */
578 
579 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
580 		/* start of data */
581 		memcpy(ptr, ptr1, maxlen);	/* copy data */
582 		fcnt_rx -= maxlen;
583 
584 		if (fcnt_rx) {	/* rest remaining */
585 			ptr += maxlen;
586 			ptr1 = bdata;	/* start of buffer */
587 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
588 		}
589 		recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
590 	}
591 	*z2r = cpu_to_le16(new_z2);		/* new position */
592 }
593 
594 /*
595  * B-channel main receive routine
596  */
597 static void
598 main_rec_hfcpci(struct bchannel *bch)
599 {
600 	struct hfc_pci	*hc = bch->hw;
601 	int		rcnt, real_fifo;
602 	int		receive = 0, count = 5;
603 	struct bzfifo	*txbz, *rxbz;
604 	u_char		*bdata;
605 	struct zt	*zp;
606 
607 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
608 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
609 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
610 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
611 		real_fifo = 1;
612 	} else {
613 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
614 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
615 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
616 		real_fifo = 0;
617 	}
618 Begin:
619 	count--;
620 	if (rxbz->f1 != rxbz->f2) {
621 		if (bch->debug & DEBUG_HW_BCHANNEL)
622 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
623 			       bch->nr, rxbz->f1, rxbz->f2);
624 		zp = &rxbz->za[rxbz->f2];
625 
626 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
627 		if (rcnt < 0)
628 			rcnt += B_FIFO_SIZE;
629 		rcnt++;
630 		if (bch->debug & DEBUG_HW_BCHANNEL)
631 			printk(KERN_DEBUG
632 			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
633 			       bch->nr, le16_to_cpu(zp->z1),
634 			       le16_to_cpu(zp->z2), rcnt);
635 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
636 		rcnt = rxbz->f1 - rxbz->f2;
637 		if (rcnt < 0)
638 			rcnt += MAX_B_FRAMES + 1;
639 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
640 			rcnt = 0;
641 			hfcpci_clear_fifo_rx(hc, real_fifo);
642 		}
643 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
644 		if (rcnt > 1)
645 			receive = 1;
646 		else
647 			receive = 0;
648 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
649 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
650 		return;
651 	} else
652 		receive = 0;
653 	if (count && receive)
654 		goto Begin;
655 
656 }
657 
658 /*
659  * D-channel send routine
660  */
661 static void
662 hfcpci_fill_dfifo(struct hfc_pci *hc)
663 {
664 	struct dchannel	*dch = &hc->dch;
665 	int		fcnt;
666 	int		count, new_z1, maxlen;
667 	struct dfifo	*df;
668 	u_char		*src, *dst, new_f1;
669 
670 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
671 		printk(KERN_DEBUG "%s\n", __func__);
672 
673 	if (!dch->tx_skb)
674 		return;
675 	count = dch->tx_skb->len - dch->tx_idx;
676 	if (count <= 0)
677 		return;
678 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
679 
680 	if (dch->debug & DEBUG_HW_DFIFO)
681 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
682 		       df->f1, df->f2,
683 		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
684 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
685 	if (fcnt < 0)
686 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
687 	if (fcnt > (MAX_D_FRAMES - 1)) {
688 		if (dch->debug & DEBUG_HW_DCHANNEL)
689 			printk(KERN_DEBUG
690 			       "hfcpci_fill_Dfifo more as 14 frames\n");
691 #ifdef ERROR_STATISTIC
692 		cs->err_tx++;
693 #endif
694 		return;
695 	}
696 	/* now determine free bytes in FIFO buffer */
697 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
698 		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
699 	if (maxlen <= 0)
700 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
701 
702 	if (dch->debug & DEBUG_HW_DCHANNEL)
703 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
704 		       count, maxlen);
705 	if (count > maxlen) {
706 		if (dch->debug & DEBUG_HW_DCHANNEL)
707 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
708 		return;
709 	}
710 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
711 		(D_FIFO_SIZE - 1);
712 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
713 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
714 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
715 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
716 	/* end fifo */
717 	if (maxlen > count)
718 		maxlen = count;	/* limit size */
719 	memcpy(dst, src, maxlen);	/* first copy */
720 
721 	count -= maxlen;	/* remaining bytes */
722 	if (count) {
723 		dst = df->data;	/* start of buffer */
724 		src += maxlen;	/* new position */
725 		memcpy(dst, src, count);
726 	}
727 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
728 	/* for next buffer */
729 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
730 	/* new pos actual buffer */
731 	df->f1 = new_f1;	/* next frame */
732 	dch->tx_idx = dch->tx_skb->len;
733 }
734 
735 /*
736  * B-channel send routine
737  */
738 static void
739 hfcpci_fill_fifo(struct bchannel *bch)
740 {
741 	struct hfc_pci	*hc = bch->hw;
742 	int		maxlen, fcnt;
743 	int		count, new_z1;
744 	struct bzfifo	*bz;
745 	u_char		*bdata;
746 	u_char		new_f1, *src, *dst;
747 	__le16 *z1t, *z2t;
748 
749 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
750 		printk(KERN_DEBUG "%s\n", __func__);
751 	if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
752 		if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
753 		    !test_bit(FLG_TRANSPARENT, &bch->Flags))
754 			return;
755 		count = HFCPCI_FILLEMPTY;
756 	} else {
757 		count = bch->tx_skb->len - bch->tx_idx;
758 	}
759 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
760 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
761 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
762 	} else {
763 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
764 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
765 	}
766 
767 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
768 		z1t = &bz->za[MAX_B_FRAMES].z1;
769 		z2t = z1t + 1;
770 		if (bch->debug & DEBUG_HW_BCHANNEL)
771 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
772 			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
773 			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
774 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
775 		if (fcnt <= 0)
776 			fcnt += B_FIFO_SIZE;
777 		if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
778 			/* fcnt contains available bytes in fifo */
779 			if (count > fcnt)
780 				count = fcnt;
781 			new_z1 = le16_to_cpu(*z1t) + count;
782 			/* new buffer Position */
783 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
784 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
785 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
786 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
787 			/* end of fifo */
788 			if (bch->debug & DEBUG_HW_BFIFO)
789 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
790 				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
791 				       fcnt, maxlen, new_z1, dst);
792 			if (maxlen > count)
793 				maxlen = count;		/* limit size */
794 			memset(dst, bch->fill[0], maxlen); /* first copy */
795 			count -= maxlen;		/* remaining bytes */
796 			if (count) {
797 				dst = bdata;		/* start of buffer */
798 				memset(dst, bch->fill[0], count);
799 			}
800 			*z1t = cpu_to_le16(new_z1);	/* now send data */
801 			return;
802 		}
803 		/* fcnt contains available bytes in fifo */
804 		fcnt = B_FIFO_SIZE - fcnt;
805 		/* remaining bytes to send (bytes in fifo) */
806 
807 	next_t_frame:
808 		count = bch->tx_skb->len - bch->tx_idx;
809 		/* maximum fill shall be poll*2 */
810 		if (count > (poll << 1) - fcnt)
811 			count = (poll << 1) - fcnt;
812 		if (count <= 0)
813 			return;
814 		/* data is suitable for fifo */
815 		new_z1 = le16_to_cpu(*z1t) + count;
816 		/* new buffer Position */
817 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
818 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
819 		src = bch->tx_skb->data + bch->tx_idx;
820 		/* source pointer */
821 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
822 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
823 		/* end of fifo */
824 		if (bch->debug & DEBUG_HW_BFIFO)
825 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
826 			       "maxl(%d) nz1(%x) dst(%p)\n",
827 			       fcnt, maxlen, new_z1, dst);
828 		fcnt += count;
829 		bch->tx_idx += count;
830 		if (maxlen > count)
831 			maxlen = count;		/* limit size */
832 		memcpy(dst, src, maxlen);	/* first copy */
833 		count -= maxlen;	/* remaining bytes */
834 		if (count) {
835 			dst = bdata;	/* start of buffer */
836 			src += maxlen;	/* new position */
837 			memcpy(dst, src, count);
838 		}
839 		*z1t = cpu_to_le16(new_z1);	/* now send data */
840 		if (bch->tx_idx < bch->tx_skb->len)
841 			return;
842 		dev_kfree_skb(bch->tx_skb);
843 		if (get_next_bframe(bch))
844 			goto next_t_frame;
845 		return;
846 	}
847 	if (bch->debug & DEBUG_HW_BCHANNEL)
848 		printk(KERN_DEBUG
849 		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
850 		       __func__, bch->nr, bz->f1, bz->f2,
851 		       bz->za[bz->f1].z1);
852 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
853 	if (fcnt < 0)
854 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
855 	if (fcnt > (MAX_B_FRAMES - 1)) {
856 		if (bch->debug & DEBUG_HW_BCHANNEL)
857 			printk(KERN_DEBUG
858 			       "hfcpci_fill_Bfifo more as 14 frames\n");
859 		return;
860 	}
861 	/* now determine free bytes in FIFO buffer */
862 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
863 		le16_to_cpu(bz->za[bz->f1].z1) - 1;
864 	if (maxlen <= 0)
865 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
866 
867 	if (bch->debug & DEBUG_HW_BCHANNEL)
868 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
869 		       bch->nr, count, maxlen);
870 
871 	if (maxlen < count) {
872 		if (bch->debug & DEBUG_HW_BCHANNEL)
873 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
874 		return;
875 	}
876 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
877 	/* new buffer Position */
878 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
879 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
880 
881 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
882 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
883 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
884 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
885 	/* end fifo */
886 	if (maxlen > count)
887 		maxlen = count;	/* limit size */
888 	memcpy(dst, src, maxlen);	/* first copy */
889 
890 	count -= maxlen;	/* remaining bytes */
891 	if (count) {
892 		dst = bdata;	/* start of buffer */
893 		src += maxlen;	/* new position */
894 		memcpy(dst, src, count);
895 	}
896 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
897 	bz->f1 = new_f1;	/* next frame */
898 	dev_kfree_skb(bch->tx_skb);
899 	get_next_bframe(bch);
900 }
901 
902 
903 
904 /*
905  * handle L1 state changes TE
906  */
907 
908 static void
909 ph_state_te(struct dchannel *dch)
910 {
911 	if (dch->debug)
912 		printk(KERN_DEBUG "%s: TE newstate %x\n",
913 		       __func__, dch->state);
914 	switch (dch->state) {
915 	case 0:
916 		l1_event(dch->l1, HW_RESET_IND);
917 		break;
918 	case 3:
919 		l1_event(dch->l1, HW_DEACT_IND);
920 		break;
921 	case 5:
922 	case 8:
923 		l1_event(dch->l1, ANYSIGNAL);
924 		break;
925 	case 6:
926 		l1_event(dch->l1, INFO2);
927 		break;
928 	case 7:
929 		l1_event(dch->l1, INFO4_P8);
930 		break;
931 	}
932 }
933 
934 /*
935  * handle L1 state changes NT
936  */
937 
938 static void
939 handle_nt_timer3(struct dchannel *dch) {
940 	struct hfc_pci	*hc = dch->hw;
941 
942 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
943 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
944 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
945 	hc->hw.nt_timer = 0;
946 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
947 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
948 		hc->hw.mst_m |= HFCPCI_MASTER;
949 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
950 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
951 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
952 }
953 
954 static void
955 ph_state_nt(struct dchannel *dch)
956 {
957 	struct hfc_pci	*hc = dch->hw;
958 
959 	if (dch->debug)
960 		printk(KERN_DEBUG "%s: NT newstate %x\n",
961 		       __func__, dch->state);
962 	switch (dch->state) {
963 	case 2:
964 		if (hc->hw.nt_timer < 0) {
965 			hc->hw.nt_timer = 0;
966 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
967 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
968 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
969 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
970 			/* Clear already pending ints */
971 			(void) Read_hfc(hc, HFCPCI_INT_S1);
972 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
973 			udelay(10);
974 			Write_hfc(hc, HFCPCI_STATES, 4);
975 			dch->state = 4;
976 		} else if (hc->hw.nt_timer == 0) {
977 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
978 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
979 			hc->hw.nt_timer = NT_T1_COUNT;
980 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
981 			hc->hw.ctmt |= HFCPCI_TIM3_125;
982 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
983 				  HFCPCI_CLTIMER);
984 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
985 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
986 			/* allow G2 -> G3 transition */
987 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
988 		} else {
989 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
990 		}
991 		break;
992 	case 1:
993 		hc->hw.nt_timer = 0;
994 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
995 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
996 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
997 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
998 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
999 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1000 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1001 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1002 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1003 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1004 		break;
1005 	case 4:
1006 		hc->hw.nt_timer = 0;
1007 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 		break;
1012 	case 3:
1013 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1014 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1015 						&dch->Flags)) {
1016 				handle_nt_timer3(dch);
1017 				break;
1018 			}
1019 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1020 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1021 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1022 			hc->hw.nt_timer = NT_T3_COUNT;
1023 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1024 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1025 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1026 				  HFCPCI_CLTIMER);
1027 		}
1028 		break;
1029 	}
1030 }
1031 
1032 static void
1033 ph_state(struct dchannel *dch)
1034 {
1035 	struct hfc_pci	*hc = dch->hw;
1036 
1037 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1038 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1039 		    hc->hw.nt_timer < 0)
1040 			handle_nt_timer3(dch);
1041 		else
1042 			ph_state_nt(dch);
1043 	} else
1044 		ph_state_te(dch);
1045 }
1046 
1047 /*
1048  * Layer 1 callback function
1049  */
1050 static int
1051 hfc_l1callback(struct dchannel *dch, u_int cmd)
1052 {
1053 	struct hfc_pci		*hc = dch->hw;
1054 
1055 	switch (cmd) {
1056 	case INFO3_P8:
1057 	case INFO3_P10:
1058 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1059 			hc->hw.mst_m |= HFCPCI_MASTER;
1060 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1061 		break;
1062 	case HW_RESET_REQ:
1063 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1064 		/* HFC ST 3 */
1065 		udelay(6);
1066 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1067 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1068 			hc->hw.mst_m |= HFCPCI_MASTER;
1069 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1070 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1071 			  HFCPCI_DO_ACTION);
1072 		l1_event(dch->l1, HW_POWERUP_IND);
1073 		break;
1074 	case HW_DEACT_REQ:
1075 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1076 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1077 		skb_queue_purge(&dch->squeue);
1078 		if (dch->tx_skb) {
1079 			dev_kfree_skb(dch->tx_skb);
1080 			dch->tx_skb = NULL;
1081 		}
1082 		dch->tx_idx = 0;
1083 		if (dch->rx_skb) {
1084 			dev_kfree_skb(dch->rx_skb);
1085 			dch->rx_skb = NULL;
1086 		}
1087 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1088 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1089 			del_timer(&dch->timer);
1090 		break;
1091 	case HW_POWERUP_REQ:
1092 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1093 		break;
1094 	case PH_ACTIVATE_IND:
1095 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1096 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1097 			    GFP_ATOMIC);
1098 		break;
1099 	case PH_DEACTIVATE_IND:
1100 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1101 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1102 			    GFP_ATOMIC);
1103 		break;
1104 	default:
1105 		if (dch->debug & DEBUG_HW)
1106 			printk(KERN_DEBUG "%s: unknown command %x\n",
1107 			       __func__, cmd);
1108 		return -1;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Interrupt handler
1115  */
1116 static inline void
1117 tx_birq(struct bchannel *bch)
1118 {
1119 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1120 		hfcpci_fill_fifo(bch);
1121 	else {
1122 		if (bch->tx_skb)
1123 			dev_kfree_skb(bch->tx_skb);
1124 		if (get_next_bframe(bch))
1125 			hfcpci_fill_fifo(bch);
1126 	}
1127 }
1128 
1129 static inline void
1130 tx_dirq(struct dchannel *dch)
1131 {
1132 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1133 		hfcpci_fill_dfifo(dch->hw);
1134 	else {
1135 		if (dch->tx_skb)
1136 			dev_kfree_skb(dch->tx_skb);
1137 		if (get_next_dframe(dch))
1138 			hfcpci_fill_dfifo(dch->hw);
1139 	}
1140 }
1141 
1142 static irqreturn_t
1143 hfcpci_int(int intno, void *dev_id)
1144 {
1145 	struct hfc_pci	*hc = dev_id;
1146 	u_char		exval;
1147 	struct bchannel	*bch;
1148 	u_char		val, stat;
1149 
1150 	spin_lock(&hc->lock);
1151 	if (!(hc->hw.int_m2 & 0x08)) {
1152 		spin_unlock(&hc->lock);
1153 		return IRQ_NONE; /* not initialised */
1154 	}
1155 	stat = Read_hfc(hc, HFCPCI_STATUS);
1156 	if (HFCPCI_ANYINT & stat) {
1157 		val = Read_hfc(hc, HFCPCI_INT_S1);
1158 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1159 			printk(KERN_DEBUG
1160 			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1161 	} else {
1162 		/* shared */
1163 		spin_unlock(&hc->lock);
1164 		return IRQ_NONE;
1165 	}
1166 	hc->irqcnt++;
1167 
1168 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1169 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1170 	val &= hc->hw.int_m1;
1171 	if (val & 0x40) {	/* state machine irq */
1172 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1173 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1174 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1175 			       hc->dch.state, exval);
1176 		hc->dch.state = exval;
1177 		schedule_event(&hc->dch, FLG_PHCHANGE);
1178 		val &= ~0x40;
1179 	}
1180 	if (val & 0x80) {	/* timer irq */
1181 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1182 			if ((--hc->hw.nt_timer) < 0)
1183 				schedule_event(&hc->dch, FLG_PHCHANGE);
1184 		}
1185 		val &= ~0x80;
1186 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1187 	}
1188 	if (val & 0x08) {	/* B1 rx */
1189 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1190 		if (bch)
1191 			main_rec_hfcpci(bch);
1192 		else if (hc->dch.debug)
1193 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1194 	}
1195 	if (val & 0x10) {	/* B2 rx */
1196 		bch = Sel_BCS(hc, 2);
1197 		if (bch)
1198 			main_rec_hfcpci(bch);
1199 		else if (hc->dch.debug)
1200 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1201 	}
1202 	if (val & 0x01) {	/* B1 tx */
1203 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1204 		if (bch)
1205 			tx_birq(bch);
1206 		else if (hc->dch.debug)
1207 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1208 	}
1209 	if (val & 0x02) {	/* B2 tx */
1210 		bch = Sel_BCS(hc, 2);
1211 		if (bch)
1212 			tx_birq(bch);
1213 		else if (hc->dch.debug)
1214 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1215 	}
1216 	if (val & 0x20)		/* D rx */
1217 		receive_dmsg(hc);
1218 	if (val & 0x04) {	/* D tx */
1219 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1220 			del_timer(&hc->dch.timer);
1221 		tx_dirq(&hc->dch);
1222 	}
1223 	spin_unlock(&hc->lock);
1224 	return IRQ_HANDLED;
1225 }
1226 
1227 /*
1228  * timer callback for D-chan busy resolution. Currently no function
1229  */
1230 static void
1231 hfcpci_dbusy_timer(struct timer_list *t)
1232 {
1233 }
1234 
1235 /*
1236  * activate/deactivate hardware for selected channels and mode
1237  */
1238 static int
1239 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1240 {
1241 	struct hfc_pci	*hc = bch->hw;
1242 	int		fifo2;
1243 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1244 
1245 	if (bch->debug & DEBUG_HW_BCHANNEL)
1246 		printk(KERN_DEBUG
1247 		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1248 		       bch->state, protocol, bch->nr, bc);
1249 
1250 	fifo2 = bc;
1251 	pcm_mode = (bc >> 24) & 0xff;
1252 	if (pcm_mode) { /* PCM SLOT USE */
1253 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1254 			printk(KERN_WARNING
1255 			       "%s: pcm channel id without HFC_CFG_PCM\n",
1256 			       __func__);
1257 		rx_slot = (bc >> 8) & 0xff;
1258 		tx_slot = (bc >> 16) & 0xff;
1259 		bc = bc & 0xff;
1260 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1261 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1262 		       __func__);
1263 	if (hc->chanlimit > 1) {
1264 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1265 		hc->hw.sctrl_e &= ~0x80;
1266 	} else {
1267 		if (bc & 2) {
1268 			if (protocol != ISDN_P_NONE) {
1269 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1270 				hc->hw.sctrl_e |= 0x80;
1271 			} else {
1272 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1273 				hc->hw.sctrl_e &= ~0x80;
1274 			}
1275 			fifo2 = 1;
1276 		} else {
1277 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1278 			hc->hw.sctrl_e &= ~0x80;
1279 		}
1280 	}
1281 	switch (protocol) {
1282 	case (-1): /* used for init */
1283 		bch->state = -1;
1284 		bch->nr = bc;
1285 		/* fall through */
1286 	case (ISDN_P_NONE):
1287 		if (bch->state == ISDN_P_NONE)
1288 			return 0;
1289 		if (bc & 2) {
1290 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1291 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1292 		} else {
1293 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1294 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1295 		}
1296 		if (fifo2 & 2) {
1297 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1298 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1299 					   HFCPCI_INTS_B2REC);
1300 		} else {
1301 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1302 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1303 					   HFCPCI_INTS_B1REC);
1304 		}
1305 #ifdef REVERSE_BITORDER
1306 		if (bch->nr & 2)
1307 			hc->hw.cirm &= 0x7f;
1308 		else
1309 			hc->hw.cirm &= 0xbf;
1310 #endif
1311 		bch->state = ISDN_P_NONE;
1312 		bch->nr = bc;
1313 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1314 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1315 		break;
1316 	case (ISDN_P_B_RAW):
1317 		bch->state = protocol;
1318 		bch->nr = bc;
1319 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1320 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1321 		if (bc & 2) {
1322 			hc->hw.sctrl |= SCTRL_B2_ENA;
1323 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1324 #ifdef REVERSE_BITORDER
1325 			hc->hw.cirm |= 0x80;
1326 #endif
1327 		} else {
1328 			hc->hw.sctrl |= SCTRL_B1_ENA;
1329 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1330 #ifdef REVERSE_BITORDER
1331 			hc->hw.cirm |= 0x40;
1332 #endif
1333 		}
1334 		if (fifo2 & 2) {
1335 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1336 			if (!tics)
1337 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1338 						  HFCPCI_INTS_B2REC);
1339 			hc->hw.ctmt |= 2;
1340 			hc->hw.conn &= ~0x18;
1341 		} else {
1342 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1343 			if (!tics)
1344 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1345 						  HFCPCI_INTS_B1REC);
1346 			hc->hw.ctmt |= 1;
1347 			hc->hw.conn &= ~0x03;
1348 		}
1349 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1350 		break;
1351 	case (ISDN_P_B_HDLC):
1352 		bch->state = protocol;
1353 		bch->nr = bc;
1354 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1355 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1356 		if (bc & 2) {
1357 			hc->hw.sctrl |= SCTRL_B2_ENA;
1358 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1359 		} else {
1360 			hc->hw.sctrl |= SCTRL_B1_ENA;
1361 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1362 		}
1363 		if (fifo2 & 2) {
1364 			hc->hw.last_bfifo_cnt[1] = 0;
1365 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1366 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1367 					  HFCPCI_INTS_B2REC);
1368 			hc->hw.ctmt &= ~2;
1369 			hc->hw.conn &= ~0x18;
1370 		} else {
1371 			hc->hw.last_bfifo_cnt[0] = 0;
1372 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1373 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1374 					  HFCPCI_INTS_B1REC);
1375 			hc->hw.ctmt &= ~1;
1376 			hc->hw.conn &= ~0x03;
1377 		}
1378 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1379 		break;
1380 	default:
1381 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1382 		return -ENOPROTOOPT;
1383 	}
1384 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1385 		if ((protocol == ISDN_P_NONE) ||
1386 		    (protocol == -1)) {	/* init case */
1387 			rx_slot = 0;
1388 			tx_slot = 0;
1389 		} else {
1390 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1391 				rx_slot |= 0xC0;
1392 				tx_slot |= 0xC0;
1393 			} else {
1394 				rx_slot |= 0x80;
1395 				tx_slot |= 0x80;
1396 			}
1397 		}
1398 		if (bc & 2) {
1399 			hc->hw.conn &= 0xc7;
1400 			hc->hw.conn |= 0x08;
1401 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1402 			       __func__, tx_slot);
1403 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1404 			       __func__, rx_slot);
1405 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1406 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1407 		} else {
1408 			hc->hw.conn &= 0xf8;
1409 			hc->hw.conn |= 0x01;
1410 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1411 			       __func__, tx_slot);
1412 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1413 			       __func__, rx_slot);
1414 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1415 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1416 		}
1417 	}
1418 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1419 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1420 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1421 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1422 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1423 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1424 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1425 #ifdef REVERSE_BITORDER
1426 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1427 #endif
1428 	return 0;
1429 }
1430 
1431 static int
1432 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1433 {
1434 	struct hfc_pci	*hc = bch->hw;
1435 
1436 	if (bch->debug & DEBUG_HW_BCHANNEL)
1437 		printk(KERN_DEBUG
1438 		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1439 		       bch->state, protocol, bch->nr, chan);
1440 	if (bch->nr != chan) {
1441 		printk(KERN_DEBUG
1442 		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1443 		       bch->nr, chan);
1444 		return -EINVAL;
1445 	}
1446 	switch (protocol) {
1447 	case (ISDN_P_B_RAW):
1448 		bch->state = protocol;
1449 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1450 		if (chan & 2) {
1451 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1452 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1453 			if (!tics)
1454 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1455 			hc->hw.ctmt |= 2;
1456 			hc->hw.conn &= ~0x18;
1457 #ifdef REVERSE_BITORDER
1458 			hc->hw.cirm |= 0x80;
1459 #endif
1460 		} else {
1461 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1462 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1463 			if (!tics)
1464 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1465 			hc->hw.ctmt |= 1;
1466 			hc->hw.conn &= ~0x03;
1467 #ifdef REVERSE_BITORDER
1468 			hc->hw.cirm |= 0x40;
1469 #endif
1470 		}
1471 		break;
1472 	case (ISDN_P_B_HDLC):
1473 		bch->state = protocol;
1474 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1475 		if (chan & 2) {
1476 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1477 			hc->hw.last_bfifo_cnt[1] = 0;
1478 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1479 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1480 			hc->hw.ctmt &= ~2;
1481 			hc->hw.conn &= ~0x18;
1482 		} else {
1483 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1484 			hc->hw.last_bfifo_cnt[0] = 0;
1485 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1486 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1487 			hc->hw.ctmt &= ~1;
1488 			hc->hw.conn &= ~0x03;
1489 		}
1490 		break;
1491 	default:
1492 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1493 		return -ENOPROTOOPT;
1494 	}
1495 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1496 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1497 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1498 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1499 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1500 #ifdef REVERSE_BITORDER
1501 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1502 #endif
1503 	return 0;
1504 }
1505 
1506 static void
1507 deactivate_bchannel(struct bchannel *bch)
1508 {
1509 	struct hfc_pci	*hc = bch->hw;
1510 	u_long		flags;
1511 
1512 	spin_lock_irqsave(&hc->lock, flags);
1513 	mISDN_clear_bchannel(bch);
1514 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1515 	spin_unlock_irqrestore(&hc->lock, flags);
1516 }
1517 
1518 /*
1519  * Layer 1 B-channel hardware access
1520  */
1521 static int
1522 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1523 {
1524 	return mISDN_ctrl_bchannel(bch, cq);
1525 }
1526 static int
1527 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1528 {
1529 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1530 	struct hfc_pci	*hc = bch->hw;
1531 	int		ret = -EINVAL;
1532 	u_long		flags;
1533 
1534 	if (bch->debug & DEBUG_HW)
1535 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1536 	switch (cmd) {
1537 	case HW_TESTRX_RAW:
1538 		spin_lock_irqsave(&hc->lock, flags);
1539 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1540 		spin_unlock_irqrestore(&hc->lock, flags);
1541 		break;
1542 	case HW_TESTRX_HDLC:
1543 		spin_lock_irqsave(&hc->lock, flags);
1544 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1545 		spin_unlock_irqrestore(&hc->lock, flags);
1546 		break;
1547 	case HW_TESTRX_OFF:
1548 		spin_lock_irqsave(&hc->lock, flags);
1549 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1550 		spin_unlock_irqrestore(&hc->lock, flags);
1551 		ret = 0;
1552 		break;
1553 	case CLOSE_CHANNEL:
1554 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1555 		deactivate_bchannel(bch);
1556 		ch->protocol = ISDN_P_NONE;
1557 		ch->peer = NULL;
1558 		module_put(THIS_MODULE);
1559 		ret = 0;
1560 		break;
1561 	case CONTROL_CHANNEL:
1562 		ret = channel_bctrl(bch, arg);
1563 		break;
1564 	default:
1565 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1566 		       __func__, cmd);
1567 	}
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Layer2 -> Layer 1 Dchannel data
1573  */
1574 static int
1575 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1576 {
1577 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1578 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1579 	struct hfc_pci		*hc = dch->hw;
1580 	int			ret = -EINVAL;
1581 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1582 	unsigned int		id;
1583 	u_long			flags;
1584 
1585 	switch (hh->prim) {
1586 	case PH_DATA_REQ:
1587 		spin_lock_irqsave(&hc->lock, flags);
1588 		ret = dchannel_senddata(dch, skb);
1589 		if (ret > 0) { /* direct TX */
1590 			id = hh->id; /* skb can be freed */
1591 			hfcpci_fill_dfifo(dch->hw);
1592 			ret = 0;
1593 			spin_unlock_irqrestore(&hc->lock, flags);
1594 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1595 		} else
1596 			spin_unlock_irqrestore(&hc->lock, flags);
1597 		return ret;
1598 	case PH_ACTIVATE_REQ:
1599 		spin_lock_irqsave(&hc->lock, flags);
1600 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1601 			ret = 0;
1602 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1603 				hc->hw.mst_m |= HFCPCI_MASTER;
1604 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1605 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1606 				spin_unlock_irqrestore(&hc->lock, flags);
1607 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1608 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1609 				break;
1610 			}
1611 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1612 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1613 				  HFCPCI_DO_ACTION | 1);
1614 		} else
1615 			ret = l1_event(dch->l1, hh->prim);
1616 		spin_unlock_irqrestore(&hc->lock, flags);
1617 		break;
1618 	case PH_DEACTIVATE_REQ:
1619 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1620 		spin_lock_irqsave(&hc->lock, flags);
1621 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1622 			/* prepare deactivation */
1623 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1624 			skb_queue_purge(&dch->squeue);
1625 			if (dch->tx_skb) {
1626 				dev_kfree_skb(dch->tx_skb);
1627 				dch->tx_skb = NULL;
1628 			}
1629 			dch->tx_idx = 0;
1630 			if (dch->rx_skb) {
1631 				dev_kfree_skb(dch->rx_skb);
1632 				dch->rx_skb = NULL;
1633 			}
1634 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1635 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1636 				del_timer(&dch->timer);
1637 #ifdef FIXME
1638 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1639 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1640 #endif
1641 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1642 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1643 			ret = 0;
1644 		} else {
1645 			ret = l1_event(dch->l1, hh->prim);
1646 		}
1647 		spin_unlock_irqrestore(&hc->lock, flags);
1648 		break;
1649 	}
1650 	if (!ret)
1651 		dev_kfree_skb(skb);
1652 	return ret;
1653 }
1654 
1655 /*
1656  * Layer2 -> Layer 1 Bchannel data
1657  */
1658 static int
1659 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1660 {
1661 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1662 	struct hfc_pci		*hc = bch->hw;
1663 	int			ret = -EINVAL;
1664 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1665 	unsigned long		flags;
1666 
1667 	switch (hh->prim) {
1668 	case PH_DATA_REQ:
1669 		spin_lock_irqsave(&hc->lock, flags);
1670 		ret = bchannel_senddata(bch, skb);
1671 		if (ret > 0) { /* direct TX */
1672 			hfcpci_fill_fifo(bch);
1673 			ret = 0;
1674 		}
1675 		spin_unlock_irqrestore(&hc->lock, flags);
1676 		return ret;
1677 	case PH_ACTIVATE_REQ:
1678 		spin_lock_irqsave(&hc->lock, flags);
1679 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1680 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1681 		else
1682 			ret = 0;
1683 		spin_unlock_irqrestore(&hc->lock, flags);
1684 		if (!ret)
1685 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1686 				    NULL, GFP_KERNEL);
1687 		break;
1688 	case PH_DEACTIVATE_REQ:
1689 		deactivate_bchannel(bch);
1690 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1691 			    NULL, GFP_KERNEL);
1692 		ret = 0;
1693 		break;
1694 	}
1695 	if (!ret)
1696 		dev_kfree_skb(skb);
1697 	return ret;
1698 }
1699 
1700 /*
1701  * called for card init message
1702  */
1703 
1704 static void
1705 inithfcpci(struct hfc_pci *hc)
1706 {
1707 	printk(KERN_DEBUG "inithfcpci: entered\n");
1708 	timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1709 	hc->chanlimit = 2;
1710 	mode_hfcpci(&hc->bch[0], 1, -1);
1711 	mode_hfcpci(&hc->bch[1], 2, -1);
1712 }
1713 
1714 
1715 static int
1716 init_card(struct hfc_pci *hc)
1717 {
1718 	int	cnt = 3;
1719 	u_long	flags;
1720 
1721 	printk(KERN_DEBUG "init_card: entered\n");
1722 
1723 
1724 	spin_lock_irqsave(&hc->lock, flags);
1725 	disable_hwirq(hc);
1726 	spin_unlock_irqrestore(&hc->lock, flags);
1727 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1728 		printk(KERN_WARNING
1729 		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1730 		return -EIO;
1731 	}
1732 	spin_lock_irqsave(&hc->lock, flags);
1733 	reset_hfcpci(hc);
1734 	while (cnt) {
1735 		inithfcpci(hc);
1736 		/*
1737 		 * Finally enable IRQ output
1738 		 * this is only allowed, if an IRQ routine is already
1739 		 * established for this HFC, so don't do that earlier
1740 		 */
1741 		enable_hwirq(hc);
1742 		spin_unlock_irqrestore(&hc->lock, flags);
1743 		/* Timeout 80ms */
1744 		set_current_state(TASK_UNINTERRUPTIBLE);
1745 		schedule_timeout((80 * HZ) / 1000);
1746 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1747 		       hc->irq, hc->irqcnt);
1748 		/* now switch timer interrupt off */
1749 		spin_lock_irqsave(&hc->lock, flags);
1750 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1751 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1752 		/* reinit mode reg */
1753 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1754 		if (!hc->irqcnt) {
1755 			printk(KERN_WARNING
1756 			       "HFC PCI: IRQ(%d) getting no interrupts "
1757 			       "during init %d\n", hc->irq, 4 - cnt);
1758 			if (cnt == 1)
1759 				break;
1760 			else {
1761 				reset_hfcpci(hc);
1762 				cnt--;
1763 			}
1764 		} else {
1765 			spin_unlock_irqrestore(&hc->lock, flags);
1766 			hc->initdone = 1;
1767 			return 0;
1768 		}
1769 	}
1770 	disable_hwirq(hc);
1771 	spin_unlock_irqrestore(&hc->lock, flags);
1772 	free_irq(hc->irq, hc);
1773 	return -EIO;
1774 }
1775 
1776 static int
1777 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1778 {
1779 	int	ret = 0;
1780 	u_char	slot;
1781 
1782 	switch (cq->op) {
1783 	case MISDN_CTRL_GETOP:
1784 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1785 			 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1786 		break;
1787 	case MISDN_CTRL_LOOP:
1788 		/* channel 0 disabled loop */
1789 		if (cq->channel < 0 || cq->channel > 2) {
1790 			ret = -EINVAL;
1791 			break;
1792 		}
1793 		if (cq->channel & 1) {
1794 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1795 				slot = 0xC0;
1796 			else
1797 				slot = 0x80;
1798 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1799 			       __func__, slot);
1800 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1801 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1802 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1803 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1804 		}
1805 		if (cq->channel & 2) {
1806 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1807 				slot = 0xC1;
1808 			else
1809 				slot = 0x81;
1810 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1811 			       __func__, slot);
1812 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1813 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1814 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1815 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1816 		}
1817 		if (cq->channel & 3)
1818 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1819 		else {
1820 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1821 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1822 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1823 		}
1824 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1825 		break;
1826 	case MISDN_CTRL_CONNECT:
1827 		if (cq->channel == cq->p1) {
1828 			ret = -EINVAL;
1829 			break;
1830 		}
1831 		if (cq->channel < 1 || cq->channel > 2 ||
1832 		    cq->p1 < 1 || cq->p1 > 2) {
1833 			ret = -EINVAL;
1834 			break;
1835 		}
1836 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1837 			slot = 0xC0;
1838 		else
1839 			slot = 0x80;
1840 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1841 		       __func__, slot);
1842 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1843 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1844 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1845 			slot = 0xC1;
1846 		else
1847 			slot = 0x81;
1848 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1849 		       __func__, slot);
1850 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1851 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1852 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1853 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1854 		hc->hw.trm |= 0x80;
1855 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1856 		break;
1857 	case MISDN_CTRL_DISCONNECT:
1858 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1859 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1860 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1861 		break;
1862 	case MISDN_CTRL_L1_TIMER3:
1863 		ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1864 		break;
1865 	default:
1866 		printk(KERN_WARNING "%s: unknown Op %x\n",
1867 		       __func__, cq->op);
1868 		ret = -EINVAL;
1869 		break;
1870 	}
1871 	return ret;
1872 }
1873 
1874 static int
1875 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1876 	      struct channel_req *rq)
1877 {
1878 	int err = 0;
1879 
1880 	if (debug & DEBUG_HW_OPEN)
1881 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1882 		       hc->dch.dev.id, __builtin_return_address(0));
1883 	if (rq->protocol == ISDN_P_NONE)
1884 		return -EINVAL;
1885 	if (rq->adr.channel == 1) {
1886 		/* TODO: E-Channel */
1887 		return -EINVAL;
1888 	}
1889 	if (!hc->initdone) {
1890 		if (rq->protocol == ISDN_P_TE_S0) {
1891 			err = create_l1(&hc->dch, hfc_l1callback);
1892 			if (err)
1893 				return err;
1894 		}
1895 		hc->hw.protocol = rq->protocol;
1896 		ch->protocol = rq->protocol;
1897 		err = init_card(hc);
1898 		if (err)
1899 			return err;
1900 	} else {
1901 		if (rq->protocol != ch->protocol) {
1902 			if (hc->hw.protocol == ISDN_P_TE_S0)
1903 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1904 			if (rq->protocol == ISDN_P_TE_S0) {
1905 				err = create_l1(&hc->dch, hfc_l1callback);
1906 				if (err)
1907 					return err;
1908 			}
1909 			hc->hw.protocol = rq->protocol;
1910 			ch->protocol = rq->protocol;
1911 			hfcpci_setmode(hc);
1912 		}
1913 	}
1914 
1915 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1916 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1917 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1918 			    0, NULL, GFP_KERNEL);
1919 	}
1920 	rq->ch = ch;
1921 	if (!try_module_get(THIS_MODULE))
1922 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1923 	return 0;
1924 }
1925 
1926 static int
1927 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1928 {
1929 	struct bchannel		*bch;
1930 
1931 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1932 		return -EINVAL;
1933 	if (rq->protocol == ISDN_P_NONE)
1934 		return -EINVAL;
1935 	bch = &hc->bch[rq->adr.channel - 1];
1936 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1937 		return -EBUSY; /* b-channel can be only open once */
1938 	bch->ch.protocol = rq->protocol;
1939 	rq->ch = &bch->ch; /* TODO: E-channel */
1940 	if (!try_module_get(THIS_MODULE))
1941 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1942 	return 0;
1943 }
1944 
1945 /*
1946  * device control function
1947  */
1948 static int
1949 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1950 {
1951 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1952 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1953 	struct hfc_pci		*hc = dch->hw;
1954 	struct channel_req	*rq;
1955 	int			err = 0;
1956 
1957 	if (dch->debug & DEBUG_HW)
1958 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1959 		       __func__, cmd, arg);
1960 	switch (cmd) {
1961 	case OPEN_CHANNEL:
1962 		rq = arg;
1963 		if ((rq->protocol == ISDN_P_TE_S0) ||
1964 		    (rq->protocol == ISDN_P_NT_S0))
1965 			err = open_dchannel(hc, ch, rq);
1966 		else
1967 			err = open_bchannel(hc, rq);
1968 		break;
1969 	case CLOSE_CHANNEL:
1970 		if (debug & DEBUG_HW_OPEN)
1971 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1972 			       __func__, hc->dch.dev.id,
1973 			       __builtin_return_address(0));
1974 		module_put(THIS_MODULE);
1975 		break;
1976 	case CONTROL_CHANNEL:
1977 		err = channel_ctrl(hc, arg);
1978 		break;
1979 	default:
1980 		if (dch->debug & DEBUG_HW)
1981 			printk(KERN_DEBUG "%s: unknown command %x\n",
1982 			       __func__, cmd);
1983 		return -EINVAL;
1984 	}
1985 	return err;
1986 }
1987 
1988 static int
1989 setup_hw(struct hfc_pci *hc)
1990 {
1991 	void	*buffer;
1992 
1993 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1994 	hc->hw.cirm = 0;
1995 	hc->dch.state = 0;
1996 	pci_set_master(hc->pdev);
1997 	if (!hc->irq) {
1998 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
1999 		return 1;
2000 	}
2001 	hc->hw.pci_io =
2002 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2003 
2004 	if (!hc->hw.pci_io) {
2005 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2006 		return 1;
2007 	}
2008 	/* Allocate memory for FIFOS */
2009 	/* the memory needs to be on a 32k boundary within the first 4G */
2010 	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2011 	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2012 	/* We silently assume the address is okay if nonzero */
2013 	if (!buffer) {
2014 		printk(KERN_WARNING
2015 		       "HFC-PCI: Error allocating memory for FIFO!\n");
2016 		return 1;
2017 	}
2018 	hc->hw.fifos = buffer;
2019 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2020 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2021 	if (unlikely(!hc->hw.pci_io)) {
2022 		printk(KERN_WARNING
2023 		       "HFC-PCI: Error in ioremap for PCI!\n");
2024 		pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos,
2025 				    hc->hw.dmahandle);
2026 		return 1;
2027 	}
2028 
2029 	printk(KERN_INFO
2030 	       "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2031 	       (u_long) hc->hw.pci_io, hc->hw.fifos,
2032 	       &hc->hw.dmahandle, hc->irq, HZ);
2033 
2034 	/* enable memory mapped ports, disable busmaster */
2035 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2036 	hc->hw.int_m2 = 0;
2037 	disable_hwirq(hc);
2038 	hc->hw.int_m1 = 0;
2039 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2040 	/* At this point the needed PCI config is done */
2041 	/* fifos are still not enabled */
2042 	timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2043 	/* default PCM master */
2044 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2045 	return 0;
2046 }
2047 
2048 static void
2049 release_card(struct hfc_pci *hc) {
2050 	u_long	flags;
2051 
2052 	spin_lock_irqsave(&hc->lock, flags);
2053 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2054 	disable_hwirq(hc);
2055 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2056 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2057 	if (hc->dch.timer.function != NULL) {
2058 		del_timer(&hc->dch.timer);
2059 		hc->dch.timer.function = NULL;
2060 	}
2061 	spin_unlock_irqrestore(&hc->lock, flags);
2062 	if (hc->hw.protocol == ISDN_P_TE_S0)
2063 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2064 	if (hc->initdone)
2065 		free_irq(hc->irq, hc);
2066 	release_io_hfcpci(hc); /* must release after free_irq! */
2067 	mISDN_unregister_device(&hc->dch.dev);
2068 	mISDN_freebchannel(&hc->bch[1]);
2069 	mISDN_freebchannel(&hc->bch[0]);
2070 	mISDN_freedchannel(&hc->dch);
2071 	pci_set_drvdata(hc->pdev, NULL);
2072 	kfree(hc);
2073 }
2074 
2075 static int
2076 setup_card(struct hfc_pci *card)
2077 {
2078 	int		err = -EINVAL;
2079 	u_int		i;
2080 	char		name[MISDN_MAX_IDLEN];
2081 
2082 	card->dch.debug = debug;
2083 	spin_lock_init(&card->lock);
2084 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2085 	card->dch.hw = card;
2086 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2087 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2088 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2089 	card->dch.dev.D.send = hfcpci_l2l1D;
2090 	card->dch.dev.D.ctrl = hfc_dctrl;
2091 	card->dch.dev.nrbchan = 2;
2092 	for (i = 0; i < 2; i++) {
2093 		card->bch[i].nr = i + 1;
2094 		set_channelmap(i + 1, card->dch.dev.channelmap);
2095 		card->bch[i].debug = debug;
2096 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2097 		card->bch[i].hw = card;
2098 		card->bch[i].ch.send = hfcpci_l2l1B;
2099 		card->bch[i].ch.ctrl = hfc_bctrl;
2100 		card->bch[i].ch.nr = i + 1;
2101 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2102 	}
2103 	err = setup_hw(card);
2104 	if (err)
2105 		goto error;
2106 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2107 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2108 	if (err)
2109 		goto error;
2110 	HFC_cnt++;
2111 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2112 	return 0;
2113 error:
2114 	mISDN_freebchannel(&card->bch[1]);
2115 	mISDN_freebchannel(&card->bch[0]);
2116 	mISDN_freedchannel(&card->dch);
2117 	kfree(card);
2118 	return err;
2119 }
2120 
2121 /* private data in the PCI devices list */
2122 struct _hfc_map {
2123 	u_int	subtype;
2124 	u_int	flag;
2125 	char	*name;
2126 };
2127 
2128 static const struct _hfc_map hfc_map[] =
2129 {
2130 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2131 	{HFC_CCD_B000, 0, "Billion B000"},
2132 	{HFC_CCD_B006, 0, "Billion B006"},
2133 	{HFC_CCD_B007, 0, "Billion B007"},
2134 	{HFC_CCD_B008, 0, "Billion B008"},
2135 	{HFC_CCD_B009, 0, "Billion B009"},
2136 	{HFC_CCD_B00A, 0, "Billion B00A"},
2137 	{HFC_CCD_B00B, 0, "Billion B00B"},
2138 	{HFC_CCD_B00C, 0, "Billion B00C"},
2139 	{HFC_CCD_B100, 0, "Seyeon B100"},
2140 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2141 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2142 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2143 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2144 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2145 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2146 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2147 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2148 	{HFC_DIGI_DF_M_IOM2_E, 0,
2149 	 "Digi International DataFire Micro V IOM2 (Europe)"},
2150 	{HFC_DIGI_DF_M_E, 0,
2151 	 "Digi International DataFire Micro V (Europe)"},
2152 	{HFC_DIGI_DF_M_IOM2_A, 0,
2153 	 "Digi International DataFire Micro V IOM2 (North America)"},
2154 	{HFC_DIGI_DF_M_A, 0,
2155 	 "Digi International DataFire Micro V (North America)"},
2156 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2157 	{},
2158 };
2159 
2160 static const struct pci_device_id hfc_ids[] =
2161 {
2162 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2163 	  (unsigned long) &hfc_map[0] },
2164 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2165 	  (unsigned long) &hfc_map[1] },
2166 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2167 	  (unsigned long) &hfc_map[2] },
2168 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2169 	  (unsigned long) &hfc_map[3] },
2170 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2171 	  (unsigned long) &hfc_map[4] },
2172 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2173 	  (unsigned long) &hfc_map[5] },
2174 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2175 	  (unsigned long) &hfc_map[6] },
2176 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2177 	  (unsigned long) &hfc_map[7] },
2178 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2179 	  (unsigned long) &hfc_map[8] },
2180 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2181 	  (unsigned long) &hfc_map[9] },
2182 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2183 	  (unsigned long) &hfc_map[10] },
2184 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2185 	  (unsigned long) &hfc_map[11] },
2186 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2187 	  (unsigned long) &hfc_map[12] },
2188 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2189 	  (unsigned long) &hfc_map[13] },
2190 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2191 	  (unsigned long) &hfc_map[14] },
2192 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2193 	  (unsigned long) &hfc_map[15] },
2194 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2195 	  (unsigned long) &hfc_map[16] },
2196 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2197 	  (unsigned long) &hfc_map[17] },
2198 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2199 	  (unsigned long) &hfc_map[18] },
2200 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2201 	  (unsigned long) &hfc_map[19] },
2202 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2203 	  (unsigned long) &hfc_map[20] },
2204 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2205 	  (unsigned long) &hfc_map[21] },
2206 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2207 	  (unsigned long) &hfc_map[22] },
2208 	{},
2209 };
2210 
2211 static int
2212 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2213 {
2214 	int		err = -ENOMEM;
2215 	struct hfc_pci	*card;
2216 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2217 
2218 	card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2219 	if (!card) {
2220 		printk(KERN_ERR "No kmem for HFC card\n");
2221 		return err;
2222 	}
2223 	card->pdev = pdev;
2224 	card->subtype = m->subtype;
2225 	err = pci_enable_device(pdev);
2226 	if (err) {
2227 		kfree(card);
2228 		return err;
2229 	}
2230 
2231 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2232 	       m->name, pci_name(pdev));
2233 
2234 	card->irq = pdev->irq;
2235 	pci_set_drvdata(pdev, card);
2236 	err = setup_card(card);
2237 	if (err)
2238 		pci_set_drvdata(pdev, NULL);
2239 	return err;
2240 }
2241 
2242 static void
2243 hfc_remove_pci(struct pci_dev *pdev)
2244 {
2245 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2246 
2247 	if (card)
2248 		release_card(card);
2249 	else
2250 		if (debug)
2251 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2252 			       __func__);
2253 }
2254 
2255 
2256 static struct pci_driver hfc_driver = {
2257 	.name = "hfcpci",
2258 	.probe = hfc_probe,
2259 	.remove = hfc_remove_pci,
2260 	.id_table = hfc_ids,
2261 };
2262 
2263 static int
2264 _hfcpci_softirq(struct device *dev, void *unused)
2265 {
2266 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2267 	struct bchannel *bch;
2268 	if (hc == NULL)
2269 		return 0;
2270 
2271 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2272 		spin_lock(&hc->lock);
2273 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2274 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2275 			main_rec_hfcpci(bch);
2276 			tx_birq(bch);
2277 		}
2278 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2279 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2280 			main_rec_hfcpci(bch);
2281 			tx_birq(bch);
2282 		}
2283 		spin_unlock(&hc->lock);
2284 	}
2285 	return 0;
2286 }
2287 
2288 static void
2289 hfcpci_softirq(struct timer_list *unused)
2290 {
2291 	WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2292 				      _hfcpci_softirq) != 0);
2293 
2294 	/* if next event would be in the past ... */
2295 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2296 		hfc_jiffies = jiffies + 1;
2297 	else
2298 		hfc_jiffies += tics;
2299 	hfc_tl.expires = hfc_jiffies;
2300 	add_timer(&hfc_tl);
2301 }
2302 
2303 static int __init
2304 HFC_init(void)
2305 {
2306 	int		err;
2307 
2308 	if (!poll)
2309 		poll = HFCPCI_BTRANS_THRESHOLD;
2310 
2311 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2312 		tics = (poll * HZ) / 8000;
2313 		if (tics < 1)
2314 			tics = 1;
2315 		poll = (tics * 8000) / HZ;
2316 		if (poll > 256 || poll < 8) {
2317 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2318 			       "of 8..256.\n", __func__, poll);
2319 			err = -EINVAL;
2320 			return err;
2321 		}
2322 	}
2323 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2324 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2325 		       __func__, poll);
2326 		timer_setup(&hfc_tl, hfcpci_softirq, 0);
2327 		hfc_tl.expires = jiffies + tics;
2328 		hfc_jiffies = hfc_tl.expires;
2329 		add_timer(&hfc_tl);
2330 	} else
2331 		tics = 0; /* indicate the use of controller's timer */
2332 
2333 	err = pci_register_driver(&hfc_driver);
2334 	if (err) {
2335 		if (timer_pending(&hfc_tl))
2336 			del_timer(&hfc_tl);
2337 	}
2338 
2339 	return err;
2340 }
2341 
2342 static void __exit
2343 HFC_cleanup(void)
2344 {
2345 	if (timer_pending(&hfc_tl))
2346 		del_timer(&hfc_tl);
2347 
2348 	pci_unregister_driver(&hfc_driver);
2349 }
2350 
2351 module_init(HFC_init);
2352 module_exit(HFC_cleanup);
2353 
2354 MODULE_DEVICE_TABLE(pci, hfc_ids);
2355