1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *	NOTE: only one poll value must be given for all cards
30  *	See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *	NOTE: only one poll value must be given for all cards
34  *	Give the number of samples for each fifo process.
35  *	By default 128 is used. Decrease to reduce delay, increase to
36  *	reduce cpu load. If unsure, don't mess with it!
37  *	A value of 128 will use controller's interrupt. Other values will
38  *	use kernel timer, because the controller will not allow lower values
39  *	than 128.
40  *	Also note that the value depends on the kernel timer frequency.
41  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46 
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
53 
54 #include "hfc_pci.h"
55 
56 static const char *hfcpci_revision = "2.0";
57 
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
63 
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
66 module_param(debug, uint, S_IRUGO | S_IWUSR);
67 module_param(poll, uint, S_IRUGO | S_IWUSR);
68 
69 enum {
70 	HFC_CCD_2BD0,
71 	HFC_CCD_B000,
72 	HFC_CCD_B006,
73 	HFC_CCD_B007,
74 	HFC_CCD_B008,
75 	HFC_CCD_B009,
76 	HFC_CCD_B00A,
77 	HFC_CCD_B00B,
78 	HFC_CCD_B00C,
79 	HFC_CCD_B100,
80 	HFC_CCD_B700,
81 	HFC_CCD_B701,
82 	HFC_ASUS_0675,
83 	HFC_BERKOM_A1T,
84 	HFC_BERKOM_TCONCEPT,
85 	HFC_ANIGMA_MC145575,
86 	HFC_ZOLTRIX_2BD0,
87 	HFC_DIGI_DF_M_IOM2_E,
88 	HFC_DIGI_DF_M_E,
89 	HFC_DIGI_DF_M_IOM2_A,
90 	HFC_DIGI_DF_M_A,
91 	HFC_ABOCOM_2BD1,
92 	HFC_SITECOM_DC105V2,
93 };
94 
95 struct hfcPCI_hw {
96 	unsigned char		cirm;
97 	unsigned char		ctmt;
98 	unsigned char		clkdel;
99 	unsigned char		states;
100 	unsigned char		conn;
101 	unsigned char		mst_m;
102 	unsigned char		int_m1;
103 	unsigned char		int_m2;
104 	unsigned char		sctrl;
105 	unsigned char		sctrl_r;
106 	unsigned char		sctrl_e;
107 	unsigned char		trm;
108 	unsigned char		fifo_en;
109 	unsigned char		bswapped;
110 	unsigned char		protocol;
111 	int			nt_timer;
112 	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
113 	dma_addr_t		dmahandle;
114 	void			*fifos; /* FIFO memory */
115 	int			last_bfifo_cnt[2];
116 	/* marker saving last b-fifo frame count */
117 	struct timer_list	timer;
118 };
119 
120 #define	HFC_CFG_MASTER		1
121 #define HFC_CFG_SLAVE		2
122 #define	HFC_CFG_PCM		3
123 #define HFC_CFG_2HFC		4
124 #define HFC_CFG_SLAVEHFC	5
125 #define HFC_CFG_NEG_F0		6
126 #define HFC_CFG_SW_DD_DU	7
127 
128 #define FLG_HFC_TIMER_T1	16
129 #define FLG_HFC_TIMER_T3	17
130 
131 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
134 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
135 
136 
137 struct hfc_pci {
138 	u_char			subtype;
139 	u_char			chanlimit;
140 	u_char			initdone;
141 	u_long			cfg;
142 	u_int			irq;
143 	u_int			irqcnt;
144 	struct pci_dev		*pdev;
145 	struct hfcPCI_hw	hw;
146 	spinlock_t		lock;	/* card lock */
147 	struct dchannel		dch;
148 	struct bchannel		bch[2];
149 };
150 
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
154 {
155 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
157 }
158 
159 static void
160 disable_hwirq(struct hfc_pci *hc)
161 {
162 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
164 }
165 
166 /*
167  * free hardware resources used by driver
168  */
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
171 {
172 	/* disable memory mapped ports + busmaster */
173 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174 	del_timer(&hc->hw.timer);
175 	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176 	iounmap(hc->hw.pci_io);
177 }
178 
179 /*
180  * set mode (NT or TE)
181  */
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
184 {
185 	if (hc->hw.protocol == ISDN_P_NT_S0) {
186 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
187 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
188 		hc->hw.states = 1;		/* G1 */
189 	} else {
190 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
191 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
192 		hc->hw.states = 2;		/* F2 */
193 	}
194 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196 	udelay(10);
197 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
199 }
200 
201 /*
202  * function called to reset the HFC PCI chip. A complete software reset of chip
203  * and fifos is done.
204  */
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
207 {
208 	u_char	val;
209 	int	cnt = 0;
210 
211 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
212 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
213 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214 	/* enable memory mapped ports, disable busmaster */
215 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216 	disable_hwirq(hc);
217 	/* enable memory ports + busmaster */
218 	pci_write_config_word(hc->pdev, PCI_COMMAND,
219 			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
220 	val = Read_hfc(hc, HFCPCI_STATUS);
221 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
223 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
224 	set_current_state(TASK_UNINTERRUPTIBLE);
225 	mdelay(10);			/* Timeout 10ms */
226 	hc->hw.cirm = 0;		/* Reset Off */
227 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228 	val = Read_hfc(hc, HFCPCI_STATUS);
229 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230 	while (cnt < 50000) { /* max 50000 us */
231 		udelay(5);
232 		cnt += 5;
233 		val = Read_hfc(hc, HFCPCI_STATUS);
234 		if (!(val & 2))
235 			break;
236 	}
237 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
238 
239 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
240 
241 	hc->hw.bswapped = 0;	/* no exchange */
242 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
245 	hc->hw.sctrl_r = 0;
246 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
247 	hc->hw.mst_m = 0;
248 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
250 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
256 
257 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
258 		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
259 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
260 
261 	/* Clear already pending ints */
262 	val = Read_hfc(hc, HFCPCI_INT_S1);
263 
264 	/* set NT/TE mode */
265 	hfcpci_setmode(hc);
266 
267 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
269 
270 	/*
271 	 * Init GCI/IOM2 in master mode
272 	 * Slots 0 and 1 are set for B-chan 1 and 2
273 	 * D- and monitor/CI channel are not enabled
274 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275 	 * STIO2 is used as data input, B1+B2 from IOM->ST
276 	 * ST B-channel send disabled -> continuous 1s
277 	 * The IOM slots are always enabled
278 	 */
279 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
281 		hc->hw.conn = 0x09;
282 	} else {
283 		hc->hw.conn = 0x36;	/* set data flow directions */
284 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289 		} else {
290 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
294 		}
295 	}
296 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297 	val = Read_hfc(hc, HFCPCI_INT_S2);
298 }
299 
300 /*
301  * Timer function called when kernel timer expires
302  */
303 static void
304 hfcpci_Timer(struct hfc_pci *hc)
305 {
306 	hc->hw.timer.expires = jiffies + 75;
307 	/* WD RESET */
308 /*
309  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
310  *	add_timer(&hc->hw.timer);
311  */
312 }
313 
314 
315 /*
316  * select a b-channel entry matching and active
317  */
318 static struct bchannel *
319 Sel_BCS(struct hfc_pci *hc, int channel)
320 {
321 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
322 	    (hc->bch[0].nr & channel))
323 		return &hc->bch[0];
324 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
325 		 (hc->bch[1].nr & channel))
326 		return &hc->bch[1];
327 	else
328 		return NULL;
329 }
330 
331 /*
332  * clear the desired B-channel rx fifo
333  */
334 static void
335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
336 {
337 	u_char		fifo_state;
338 	struct bzfifo	*bzr;
339 
340 	if (fifo) {
341 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
342 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
343 	} else {
344 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
345 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
346 	}
347 	if (fifo_state)
348 		hc->hw.fifo_en ^= fifo_state;
349 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
350 	hc->hw.last_bfifo_cnt[fifo] = 0;
351 	bzr->f1 = MAX_B_FRAMES;
352 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
353 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
354 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
355 		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
356 	if (fifo_state)
357 		hc->hw.fifo_en |= fifo_state;
358 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
359 }
360 
361 /*
362  * clear the desired B-channel tx fifo
363  */
364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
365 {
366 	u_char		fifo_state;
367 	struct bzfifo	*bzt;
368 
369 	if (fifo) {
370 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
371 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
372 	} else {
373 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
374 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
375 	}
376 	if (fifo_state)
377 		hc->hw.fifo_en ^= fifo_state;
378 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
379 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
380 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
381 		       "z1(%x) z2(%x) state(%x)\n",
382 		       fifo, bzt->f1, bzt->f2,
383 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
384 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
385 		       fifo_state);
386 	bzt->f2 = MAX_B_FRAMES;
387 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
388 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
389 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
390 	if (fifo_state)
391 		hc->hw.fifo_en |= fifo_state;
392 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
393 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
394 		printk(KERN_DEBUG
395 		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
396 		       fifo, bzt->f1, bzt->f2,
397 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
398 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
399 }
400 
401 /*
402  * read a complete B-frame out of the buffer
403  */
404 static void
405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
406 		   u_char *bdata, int count)
407 {
408 	u_char		*ptr, *ptr1, new_f2;
409 	int		maxlen, new_z2;
410 	struct zt	*zp;
411 
412 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
413 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
414 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
415 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
416 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
417 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
418 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
419 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
420 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
421 		if (bch->debug & DEBUG_HW)
422 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
423 			       "invalid length %d or crc\n", count);
424 #ifdef ERROR_STATISTIC
425 		bch->err_inv++;
426 #endif
427 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
428 		bz->f2 = new_f2;	/* next buffer */
429 	} else {
430 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
431 		if (!bch->rx_skb) {
432 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
433 			return;
434 		}
435 		count -= 3;
436 		ptr = skb_put(bch->rx_skb, count);
437 
438 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439 			maxlen = count;		/* complete transfer */
440 		else
441 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
442 				le16_to_cpu(zp->z2);	/* maximum */
443 
444 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445 		/* start of data */
446 		memcpy(ptr, ptr1, maxlen);	/* copy data */
447 		count -= maxlen;
448 
449 		if (count) {	/* rest remaining */
450 			ptr += maxlen;
451 			ptr1 = bdata;	/* start of buffer */
452 			memcpy(ptr, ptr1, count);	/* rest */
453 		}
454 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455 		bz->f2 = new_f2;	/* next buffer */
456 		recv_Bchannel(bch, MISDN_ID_ANY);
457 	}
458 }
459 
460 /*
461  * D-channel receive procedure
462  */
463 static int
464 receive_dmsg(struct hfc_pci *hc)
465 {
466 	struct dchannel	*dch = &hc->dch;
467 	int		maxlen;
468 	int		rcnt, total;
469 	int		count = 5;
470 	u_char		*ptr, *ptr1;
471 	struct dfifo	*df;
472 	struct zt	*zp;
473 
474 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476 		zp = &df->za[df->f2 & D_FREG_MASK];
477 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478 		if (rcnt < 0)
479 			rcnt += D_FIFO_SIZE;
480 		rcnt++;
481 		if (dch->debug & DEBUG_HW_DCHANNEL)
482 			printk(KERN_DEBUG
483 			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484 			       df->f1, df->f2,
485 			       le16_to_cpu(zp->z1),
486 			       le16_to_cpu(zp->z2),
487 			       rcnt);
488 
489 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490 		    (df->data[le16_to_cpu(zp->z1)])) {
491 			if (dch->debug & DEBUG_HW)
492 				printk(KERN_DEBUG
493 				       "empty_fifo hfcpci paket inv. len "
494 				       "%d or crc %d\n",
495 				       rcnt,
496 				       df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498 			cs->err_rx++;
499 #endif
500 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501 				(MAX_D_FRAMES + 1);	/* next buffer */
502 			df->za[df->f2 & D_FREG_MASK].z2 =
503 				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504 					    (D_FIFO_SIZE - 1));
505 		} else {
506 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507 			if (!dch->rx_skb) {
508 				printk(KERN_WARNING
509 				       "HFC-PCI: D receive out of memory\n");
510 				break;
511 			}
512 			total = rcnt;
513 			rcnt -= 3;
514 			ptr = skb_put(dch->rx_skb, rcnt);
515 
516 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517 				maxlen = rcnt;	/* complete transfer */
518 			else
519 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520 			/* maximum */
521 
522 			ptr1 = df->data + le16_to_cpu(zp->z2);
523 			/* start of data */
524 			memcpy(ptr, ptr1, maxlen);	/* copy data */
525 			rcnt -= maxlen;
526 
527 			if (rcnt) {	/* rest remaining */
528 				ptr += maxlen;
529 				ptr1 = df->data;	/* start of buffer */
530 				memcpy(ptr, ptr1, rcnt);	/* rest */
531 			}
532 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533 				(MAX_D_FRAMES + 1);	/* next buffer */
534 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535 									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536 			recv_Dchannel(dch);
537 		}
538 	}
539 	return 1;
540 }
541 
542 /*
543  * check for transparent receive data and read max one 'poll' size if avail
544  */
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547 			struct bzfifo *txbz, u_char *bdata)
548 {
549 	__le16	*z1r, *z2r, *z1t, *z2t;
550 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
551 	u_char	*ptr, *ptr1;
552 
553 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
554 	z2r = z1r + 1;
555 	z1t = &txbz->za[MAX_B_FRAMES].z1;
556 	z2t = z1t + 1;
557 
558 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559 	if (!fcnt_rx)
560 		return;	/* no data avail */
561 
562 	if (fcnt_rx <= 0)
563 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
564 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
565 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
567 
568 	if (fcnt_rx > MAX_DATA_SIZE) {	/* flush, if oversized */
569 		*z2r = cpu_to_le16(new_z2);		/* new position */
570 		return;
571 	}
572 
573 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
574 	if (fcnt_tx <= 0)
575 		fcnt_tx += B_FIFO_SIZE;
576 	/* fcnt_tx contains available bytes in tx-fifo */
577 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
578 	/* remaining bytes to send (bytes in tx-fifo) */
579 
580 	bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
581 	if (bch->rx_skb) {
582 		ptr = skb_put(bch->rx_skb, fcnt_rx);
583 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
584 			maxlen = fcnt_rx;	/* complete transfer */
585 		else
586 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
587 		/* maximum */
588 
589 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
590 		/* start of data */
591 		memcpy(ptr, ptr1, maxlen);	/* copy data */
592 		fcnt_rx -= maxlen;
593 
594 		if (fcnt_rx) {	/* rest remaining */
595 			ptr += maxlen;
596 			ptr1 = bdata;	/* start of buffer */
597 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
598 		}
599 		recv_Bchannel(bch, fcnt_tx); /* bch, id */
600 	} else
601 		printk(KERN_WARNING "HFCPCI: receive out of memory\n");
602 
603 	*z2r = cpu_to_le16(new_z2);		/* new position */
604 }
605 
606 /*
607  * B-channel main receive routine
608  */
609 static void
610 main_rec_hfcpci(struct bchannel *bch)
611 {
612 	struct hfc_pci	*hc = bch->hw;
613 	int		rcnt, real_fifo;
614 	int		receive = 0, count = 5;
615 	struct bzfifo	*txbz, *rxbz;
616 	u_char		*bdata;
617 	struct zt	*zp;
618 
619 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
620 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
621 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
622 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
623 		real_fifo = 1;
624 	} else {
625 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
626 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
627 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
628 		real_fifo = 0;
629 	}
630 Begin:
631 	count--;
632 	if (rxbz->f1 != rxbz->f2) {
633 		if (bch->debug & DEBUG_HW_BCHANNEL)
634 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
635 			       bch->nr, rxbz->f1, rxbz->f2);
636 		zp = &rxbz->za[rxbz->f2];
637 
638 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
639 		if (rcnt < 0)
640 			rcnt += B_FIFO_SIZE;
641 		rcnt++;
642 		if (bch->debug & DEBUG_HW_BCHANNEL)
643 			printk(KERN_DEBUG
644 			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
645 			       bch->nr, le16_to_cpu(zp->z1),
646 			       le16_to_cpu(zp->z2), rcnt);
647 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
648 		rcnt = rxbz->f1 - rxbz->f2;
649 		if (rcnt < 0)
650 			rcnt += MAX_B_FRAMES + 1;
651 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
652 			rcnt = 0;
653 			hfcpci_clear_fifo_rx(hc, real_fifo);
654 		}
655 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
656 		if (rcnt > 1)
657 			receive = 1;
658 		else
659 			receive = 0;
660 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
661 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
662 		return;
663 	} else
664 		receive = 0;
665 	if (count && receive)
666 		goto Begin;
667 
668 }
669 
670 /*
671  * D-channel send routine
672  */
673 static void
674 hfcpci_fill_dfifo(struct hfc_pci *hc)
675 {
676 	struct dchannel	*dch = &hc->dch;
677 	int		fcnt;
678 	int		count, new_z1, maxlen;
679 	struct dfifo	*df;
680 	u_char		*src, *dst, new_f1;
681 
682 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
683 		printk(KERN_DEBUG "%s\n", __func__);
684 
685 	if (!dch->tx_skb)
686 		return;
687 	count = dch->tx_skb->len - dch->tx_idx;
688 	if (count <= 0)
689 		return;
690 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
691 
692 	if (dch->debug & DEBUG_HW_DFIFO)
693 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
694 		       df->f1, df->f2,
695 		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
696 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
697 	if (fcnt < 0)
698 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
699 	if (fcnt > (MAX_D_FRAMES - 1)) {
700 		if (dch->debug & DEBUG_HW_DCHANNEL)
701 			printk(KERN_DEBUG
702 			       "hfcpci_fill_Dfifo more as 14 frames\n");
703 #ifdef ERROR_STATISTIC
704 		cs->err_tx++;
705 #endif
706 		return;
707 	}
708 	/* now determine free bytes in FIFO buffer */
709 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
710 		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
711 	if (maxlen <= 0)
712 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
713 
714 	if (dch->debug & DEBUG_HW_DCHANNEL)
715 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
716 		       count, maxlen);
717 	if (count > maxlen) {
718 		if (dch->debug & DEBUG_HW_DCHANNEL)
719 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
720 		return;
721 	}
722 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
723 		(D_FIFO_SIZE - 1);
724 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
725 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
726 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728 	/* end fifo */
729 	if (maxlen > count)
730 		maxlen = count;	/* limit size */
731 	memcpy(dst, src, maxlen);	/* first copy */
732 
733 	count -= maxlen;	/* remaining bytes */
734 	if (count) {
735 		dst = df->data;	/* start of buffer */
736 		src += maxlen;	/* new position */
737 		memcpy(dst, src, count);
738 	}
739 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
740 	/* for next buffer */
741 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
742 	/* new pos actual buffer */
743 	df->f1 = new_f1;	/* next frame */
744 	dch->tx_idx = dch->tx_skb->len;
745 }
746 
747 /*
748  * B-channel send routine
749  */
750 static void
751 hfcpci_fill_fifo(struct bchannel *bch)
752 {
753 	struct hfc_pci	*hc = bch->hw;
754 	int		maxlen, fcnt;
755 	int		count, new_z1;
756 	struct bzfifo	*bz;
757 	u_char		*bdata;
758 	u_char		new_f1, *src, *dst;
759 	__le16 *z1t, *z2t;
760 
761 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
762 		printk(KERN_DEBUG "%s\n", __func__);
763 	if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
764 		return;
765 	count = bch->tx_skb->len - bch->tx_idx;
766 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
767 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
768 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
769 	} else {
770 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
771 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
772 	}
773 
774 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
775 		z1t = &bz->za[MAX_B_FRAMES].z1;
776 		z2t = z1t + 1;
777 		if (bch->debug & DEBUG_HW_BCHANNEL)
778 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
779 			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
780 			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
781 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
782 		if (fcnt <= 0)
783 			fcnt += B_FIFO_SIZE;
784 		/* fcnt contains available bytes in fifo */
785 		fcnt = B_FIFO_SIZE - fcnt;
786 		/* remaining bytes to send (bytes in fifo) */
787 
788 		/* "fill fifo if empty" feature */
789 		if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
790 			/* printk(KERN_DEBUG "%s: buffer empty, so we have "
791 			   "underrun\n", __func__); */
792 			/* fill buffer, to prevent future underrun */
793 			count = HFCPCI_FILLEMPTY;
794 			new_z1 = le16_to_cpu(*z1t) + count;
795 			/* new buffer Position */
796 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
798 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800 			/* end of fifo */
801 			if (bch->debug & DEBUG_HW_BFIFO)
802 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
803 				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804 				       fcnt, maxlen, new_z1, dst);
805 			fcnt += count;
806 			if (maxlen > count)
807 				maxlen = count;		/* limit size */
808 			memset(dst, 0x2a, maxlen);	/* first copy */
809 			count -= maxlen;		/* remaining bytes */
810 			if (count) {
811 				dst = bdata;		/* start of buffer */
812 				memset(dst, 0x2a, count);
813 			}
814 			*z1t = cpu_to_le16(new_z1);	/* now send data */
815 		}
816 
817 	next_t_frame:
818 		count = bch->tx_skb->len - bch->tx_idx;
819 		/* maximum fill shall be poll*2 */
820 		if (count > (poll << 1) - fcnt)
821 			count = (poll << 1) - fcnt;
822 		if (count <= 0)
823 			return;
824 		/* data is suitable for fifo */
825 		new_z1 = le16_to_cpu(*z1t) + count;
826 		/* new buffer Position */
827 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
828 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
829 		src = bch->tx_skb->data + bch->tx_idx;
830 		/* source pointer */
831 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
832 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
833 		/* end of fifo */
834 		if (bch->debug & DEBUG_HW_BFIFO)
835 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
836 			       "maxl(%d) nz1(%x) dst(%p)\n",
837 			       fcnt, maxlen, new_z1, dst);
838 		fcnt += count;
839 		bch->tx_idx += count;
840 		if (maxlen > count)
841 			maxlen = count;		/* limit size */
842 		memcpy(dst, src, maxlen);	/* first copy */
843 		count -= maxlen;	/* remaining bytes */
844 		if (count) {
845 			dst = bdata;	/* start of buffer */
846 			src += maxlen;	/* new position */
847 			memcpy(dst, src, count);
848 		}
849 		*z1t = cpu_to_le16(new_z1);	/* now send data */
850 		if (bch->tx_idx < bch->tx_skb->len)
851 			return;
852 		/* send confirm, on trans, free on hdlc. */
853 		if (test_bit(FLG_TRANSPARENT, &bch->Flags))
854 			confirm_Bsend(bch);
855 		dev_kfree_skb(bch->tx_skb);
856 		if (get_next_bframe(bch))
857 			goto next_t_frame;
858 		return;
859 	}
860 	if (bch->debug & DEBUG_HW_BCHANNEL)
861 		printk(KERN_DEBUG
862 		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863 		       __func__, bch->nr, bz->f1, bz->f2,
864 		       bz->za[bz->f1].z1);
865 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
866 	if (fcnt < 0)
867 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
868 	if (fcnt > (MAX_B_FRAMES - 1)) {
869 		if (bch->debug & DEBUG_HW_BCHANNEL)
870 			printk(KERN_DEBUG
871 			       "hfcpci_fill_Bfifo more as 14 frames\n");
872 		return;
873 	}
874 	/* now determine free bytes in FIFO buffer */
875 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876 		le16_to_cpu(bz->za[bz->f1].z1) - 1;
877 	if (maxlen <= 0)
878 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
879 
880 	if (bch->debug & DEBUG_HW_BCHANNEL)
881 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882 		       bch->nr, count, maxlen);
883 
884 	if (maxlen < count) {
885 		if (bch->debug & DEBUG_HW_BCHANNEL)
886 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887 		return;
888 	}
889 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890 	/* new buffer Position */
891 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
893 
894 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
896 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898 	/* end fifo */
899 	if (maxlen > count)
900 		maxlen = count;	/* limit size */
901 	memcpy(dst, src, maxlen);	/* first copy */
902 
903 	count -= maxlen;	/* remaining bytes */
904 	if (count) {
905 		dst = bdata;	/* start of buffer */
906 		src += maxlen;	/* new position */
907 		memcpy(dst, src, count);
908 	}
909 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
910 	bz->f1 = new_f1;	/* next frame */
911 	dev_kfree_skb(bch->tx_skb);
912 	get_next_bframe(bch);
913 }
914 
915 
916 
917 /*
918  * handle L1 state changes TE
919  */
920 
921 static void
922 ph_state_te(struct dchannel *dch)
923 {
924 	if (dch->debug)
925 		printk(KERN_DEBUG "%s: TE newstate %x\n",
926 		       __func__, dch->state);
927 	switch (dch->state) {
928 	case 0:
929 		l1_event(dch->l1, HW_RESET_IND);
930 		break;
931 	case 3:
932 		l1_event(dch->l1, HW_DEACT_IND);
933 		break;
934 	case 5:
935 	case 8:
936 		l1_event(dch->l1, ANYSIGNAL);
937 		break;
938 	case 6:
939 		l1_event(dch->l1, INFO2);
940 		break;
941 	case 7:
942 		l1_event(dch->l1, INFO4_P8);
943 		break;
944 	}
945 }
946 
947 /*
948  * handle L1 state changes NT
949  */
950 
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953 	struct hfc_pci	*hc = dch->hw;
954 
955 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958 	hc->hw.nt_timer = 0;
959 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961 		hc->hw.mst_m |= HFCPCI_MASTER;
962 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
965 }
966 
967 static void
968 ph_state_nt(struct dchannel *dch)
969 {
970 	struct hfc_pci	*hc = dch->hw;
971 
972 	if (dch->debug)
973 		printk(KERN_DEBUG "%s: NT newstate %x\n",
974 		       __func__, dch->state);
975 	switch (dch->state) {
976 	case 2:
977 		if (hc->hw.nt_timer < 0) {
978 			hc->hw.nt_timer = 0;
979 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983 			/* Clear already pending ints */
984 			(void) Read_hfc(hc, HFCPCI_INT_S1);
985 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986 			udelay(10);
987 			Write_hfc(hc, HFCPCI_STATES, 4);
988 			dch->state = 4;
989 		} else if (hc->hw.nt_timer == 0) {
990 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992 			hc->hw.nt_timer = NT_T1_COUNT;
993 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994 			hc->hw.ctmt |= HFCPCI_TIM3_125;
995 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996 				  HFCPCI_CLTIMER);
997 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999 			/* allow G2 -> G3 transition */
1000 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001 		} else {
1002 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1003 		}
1004 		break;
1005 	case 1:
1006 		hc->hw.nt_timer = 0;
1007 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1013 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017 		break;
1018 	case 4:
1019 		hc->hw.nt_timer = 0;
1020 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024 		break;
1025 	case 3:
1026 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028 						&dch->Flags)) {
1029 				handle_nt_timer3(dch);
1030 				break;
1031 			}
1032 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035 			hc->hw.nt_timer = NT_T3_COUNT;
1036 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1038 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039 				  HFCPCI_CLTIMER);
1040 		}
1041 		break;
1042 	}
1043 }
1044 
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048 	struct hfc_pci	*hc = dch->hw;
1049 
1050 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1051 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052 		    hc->hw.nt_timer < 0)
1053 			handle_nt_timer3(dch);
1054 		else
1055 			ph_state_nt(dch);
1056 	} else
1057 		ph_state_te(dch);
1058 }
1059 
1060 /*
1061  * Layer 1 callback function
1062  */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066 	struct hfc_pci		*hc = dch->hw;
1067 
1068 	switch (cmd) {
1069 	case INFO3_P8:
1070 	case INFO3_P10:
1071 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072 			hc->hw.mst_m |= HFCPCI_MASTER;
1073 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074 		break;
1075 	case HW_RESET_REQ:
1076 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077 		/* HFC ST 3 */
1078 		udelay(6);
1079 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1080 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081 			hc->hw.mst_m |= HFCPCI_MASTER;
1082 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084 			  HFCPCI_DO_ACTION);
1085 		l1_event(dch->l1, HW_POWERUP_IND);
1086 		break;
1087 	case HW_DEACT_REQ:
1088 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1089 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090 		skb_queue_purge(&dch->squeue);
1091 		if (dch->tx_skb) {
1092 			dev_kfree_skb(dch->tx_skb);
1093 			dch->tx_skb = NULL;
1094 		}
1095 		dch->tx_idx = 0;
1096 		if (dch->rx_skb) {
1097 			dev_kfree_skb(dch->rx_skb);
1098 			dch->rx_skb = NULL;
1099 		}
1100 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102 			del_timer(&dch->timer);
1103 		break;
1104 	case HW_POWERUP_REQ:
1105 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106 		break;
1107 	case PH_ACTIVATE_IND:
1108 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110 			    GFP_ATOMIC);
1111 		break;
1112 	case PH_DEACTIVATE_IND:
1113 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115 			    GFP_ATOMIC);
1116 		break;
1117 	default:
1118 		if (dch->debug & DEBUG_HW)
1119 			printk(KERN_DEBUG "%s: unknown command %x\n",
1120 			       __func__, cmd);
1121 		return -1;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Interrupt handler
1128  */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133 		hfcpci_fill_fifo(bch);
1134 	else {
1135 		if (bch->tx_skb)
1136 			dev_kfree_skb(bch->tx_skb);
1137 		if (get_next_bframe(bch))
1138 			hfcpci_fill_fifo(bch);
1139 	}
1140 }
1141 
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146 		hfcpci_fill_dfifo(dch->hw);
1147 	else {
1148 		if (dch->tx_skb)
1149 			dev_kfree_skb(dch->tx_skb);
1150 		if (get_next_dframe(dch))
1151 			hfcpci_fill_dfifo(dch->hw);
1152 	}
1153 }
1154 
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158 	struct hfc_pci	*hc = dev_id;
1159 	u_char		exval;
1160 	struct bchannel	*bch;
1161 	u_char		val, stat;
1162 
1163 	spin_lock(&hc->lock);
1164 	if (!(hc->hw.int_m2 & 0x08)) {
1165 		spin_unlock(&hc->lock);
1166 		return IRQ_NONE; /* not initialised */
1167 	}
1168 	stat = Read_hfc(hc, HFCPCI_STATUS);
1169 	if (HFCPCI_ANYINT & stat) {
1170 		val = Read_hfc(hc, HFCPCI_INT_S1);
1171 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172 			printk(KERN_DEBUG
1173 			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174 	} else {
1175 		/* shared */
1176 		spin_unlock(&hc->lock);
1177 		return IRQ_NONE;
1178 	}
1179 	hc->irqcnt++;
1180 
1181 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183 	val &= hc->hw.int_m1;
1184 	if (val & 0x40) {	/* state machine irq */
1185 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188 			       hc->dch.state, exval);
1189 		hc->dch.state = exval;
1190 		schedule_event(&hc->dch, FLG_PHCHANGE);
1191 		val &= ~0x40;
1192 	}
1193 	if (val & 0x80) {	/* timer irq */
1194 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1195 			if ((--hc->hw.nt_timer) < 0)
1196 				schedule_event(&hc->dch, FLG_PHCHANGE);
1197 		}
1198 		val &= ~0x80;
1199 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200 	}
1201 	if (val & 0x08) {	/* B1 rx */
1202 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203 		if (bch)
1204 			main_rec_hfcpci(bch);
1205 		else if (hc->dch.debug)
1206 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207 	}
1208 	if (val & 0x10) {	/* B2 rx */
1209 		bch = Sel_BCS(hc, 2);
1210 		if (bch)
1211 			main_rec_hfcpci(bch);
1212 		else if (hc->dch.debug)
1213 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214 	}
1215 	if (val & 0x01) {	/* B1 tx */
1216 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217 		if (bch)
1218 			tx_birq(bch);
1219 		else if (hc->dch.debug)
1220 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221 	}
1222 	if (val & 0x02) {	/* B2 tx */
1223 		bch = Sel_BCS(hc, 2);
1224 		if (bch)
1225 			tx_birq(bch);
1226 		else if (hc->dch.debug)
1227 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228 	}
1229 	if (val & 0x20)		/* D rx */
1230 		receive_dmsg(hc);
1231 	if (val & 0x04) {	/* D tx */
1232 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233 			del_timer(&hc->dch.timer);
1234 		tx_dirq(&hc->dch);
1235 	}
1236 	spin_unlock(&hc->lock);
1237 	return IRQ_HANDLED;
1238 }
1239 
1240 /*
1241  * timer callback for D-chan busy resolution. Currently no function
1242  */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247 
1248 /*
1249  * activate/deactivate hardware for selected channels and mode
1250  */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254 	struct hfc_pci	*hc = bch->hw;
1255 	int		fifo2;
1256 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1257 
1258 	if (bch->debug & DEBUG_HW_BCHANNEL)
1259 		printk(KERN_DEBUG
1260 		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261 		       bch->state, protocol, bch->nr, bc);
1262 
1263 	fifo2 = bc;
1264 	pcm_mode = (bc >> 24) & 0xff;
1265 	if (pcm_mode) { /* PCM SLOT USE */
1266 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267 			printk(KERN_WARNING
1268 			       "%s: pcm channel id without HFC_CFG_PCM\n",
1269 			       __func__);
1270 		rx_slot = (bc >> 8) & 0xff;
1271 		tx_slot = (bc >> 16) & 0xff;
1272 		bc = bc & 0xff;
1273 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275 		       __func__);
1276 	if (hc->chanlimit > 1) {
1277 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1278 		hc->hw.sctrl_e &= ~0x80;
1279 	} else {
1280 		if (bc & 2) {
1281 			if (protocol != ISDN_P_NONE) {
1282 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283 				hc->hw.sctrl_e |= 0x80;
1284 			} else {
1285 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286 				hc->hw.sctrl_e &= ~0x80;
1287 			}
1288 			fifo2 = 1;
1289 		} else {
1290 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1291 			hc->hw.sctrl_e &= ~0x80;
1292 		}
1293 	}
1294 	switch (protocol) {
1295 	case (-1): /* used for init */
1296 		bch->state = -1;
1297 		bch->nr = bc;
1298 	case (ISDN_P_NONE):
1299 		if (bch->state == ISDN_P_NONE)
1300 			return 0;
1301 		if (bc & 2) {
1302 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304 		} else {
1305 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307 		}
1308 		if (fifo2 & 2) {
1309 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311 					   HFCPCI_INTS_B2REC);
1312 		} else {
1313 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315 					   HFCPCI_INTS_B1REC);
1316 		}
1317 #ifdef REVERSE_BITORDER
1318 		if (bch->nr & 2)
1319 			hc->hw.cirm &= 0x7f;
1320 		else
1321 			hc->hw.cirm &= 0xbf;
1322 #endif
1323 		bch->state = ISDN_P_NONE;
1324 		bch->nr = bc;
1325 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327 		break;
1328 	case (ISDN_P_B_RAW):
1329 		bch->state = protocol;
1330 		bch->nr = bc;
1331 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333 		if (bc & 2) {
1334 			hc->hw.sctrl |= SCTRL_B2_ENA;
1335 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337 			hc->hw.cirm |= 0x80;
1338 #endif
1339 		} else {
1340 			hc->hw.sctrl |= SCTRL_B1_ENA;
1341 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343 			hc->hw.cirm |= 0x40;
1344 #endif
1345 		}
1346 		if (fifo2 & 2) {
1347 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348 			if (!tics)
1349 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350 						  HFCPCI_INTS_B2REC);
1351 			hc->hw.ctmt |= 2;
1352 			hc->hw.conn &= ~0x18;
1353 		} else {
1354 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355 			if (!tics)
1356 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357 						  HFCPCI_INTS_B1REC);
1358 			hc->hw.ctmt |= 1;
1359 			hc->hw.conn &= ~0x03;
1360 		}
1361 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362 		break;
1363 	case (ISDN_P_B_HDLC):
1364 		bch->state = protocol;
1365 		bch->nr = bc;
1366 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368 		if (bc & 2) {
1369 			hc->hw.sctrl |= SCTRL_B2_ENA;
1370 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371 		} else {
1372 			hc->hw.sctrl |= SCTRL_B1_ENA;
1373 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374 		}
1375 		if (fifo2 & 2) {
1376 			hc->hw.last_bfifo_cnt[1] = 0;
1377 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379 					  HFCPCI_INTS_B2REC);
1380 			hc->hw.ctmt &= ~2;
1381 			hc->hw.conn &= ~0x18;
1382 		} else {
1383 			hc->hw.last_bfifo_cnt[0] = 0;
1384 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386 					  HFCPCI_INTS_B1REC);
1387 			hc->hw.ctmt &= ~1;
1388 			hc->hw.conn &= ~0x03;
1389 		}
1390 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1391 		break;
1392 	default:
1393 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1394 		return -ENOPROTOOPT;
1395 	}
1396 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397 		if ((protocol == ISDN_P_NONE) ||
1398 		    (protocol == -1)) {	/* init case */
1399 			rx_slot = 0;
1400 			tx_slot = 0;
1401 		} else {
1402 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403 				rx_slot |= 0xC0;
1404 				tx_slot |= 0xC0;
1405 			} else {
1406 				rx_slot |= 0x80;
1407 				tx_slot |= 0x80;
1408 			}
1409 		}
1410 		if (bc & 2) {
1411 			hc->hw.conn &= 0xc7;
1412 			hc->hw.conn |= 0x08;
1413 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414 			       __func__, tx_slot);
1415 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416 			       __func__, rx_slot);
1417 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419 		} else {
1420 			hc->hw.conn &= 0xf8;
1421 			hc->hw.conn |= 0x01;
1422 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423 			       __func__, tx_slot);
1424 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425 			       __func__, rx_slot);
1426 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428 		}
1429 	}
1430 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440 	return 0;
1441 }
1442 
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446 	struct hfc_pci	*hc = bch->hw;
1447 
1448 	if (bch->debug & DEBUG_HW_BCHANNEL)
1449 		printk(KERN_DEBUG
1450 		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451 		       bch->state, protocol, bch->nr, chan);
1452 	if (bch->nr != chan) {
1453 		printk(KERN_DEBUG
1454 		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455 		       bch->nr, chan);
1456 		return -EINVAL;
1457 	}
1458 	switch (protocol) {
1459 	case (ISDN_P_B_RAW):
1460 		bch->state = protocol;
1461 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462 		if (chan & 2) {
1463 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465 			if (!tics)
1466 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467 			hc->hw.ctmt |= 2;
1468 			hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470 			hc->hw.cirm |= 0x80;
1471 #endif
1472 		} else {
1473 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475 			if (!tics)
1476 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477 			hc->hw.ctmt |= 1;
1478 			hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480 			hc->hw.cirm |= 0x40;
1481 #endif
1482 		}
1483 		break;
1484 	case (ISDN_P_B_HDLC):
1485 		bch->state = protocol;
1486 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487 		if (chan & 2) {
1488 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489 			hc->hw.last_bfifo_cnt[1] = 0;
1490 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492 			hc->hw.ctmt &= ~2;
1493 			hc->hw.conn &= ~0x18;
1494 		} else {
1495 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496 			hc->hw.last_bfifo_cnt[0] = 0;
1497 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499 			hc->hw.ctmt &= ~1;
1500 			hc->hw.conn &= ~0x03;
1501 		}
1502 		break;
1503 	default:
1504 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1505 		return -ENOPROTOOPT;
1506 	}
1507 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515 	return 0;
1516 }
1517 
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521 	struct hfc_pci	*hc = bch->hw;
1522 	u_long		flags;
1523 
1524 	spin_lock_irqsave(&hc->lock, flags);
1525 	mISDN_clear_bchannel(bch);
1526 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1527 	spin_unlock_irqrestore(&hc->lock, flags);
1528 }
1529 
1530 /*
1531  * Layer 1 B-channel hardware access
1532  */
1533 static int
1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1535 {
1536 	int	ret = 0;
1537 
1538 	switch (cq->op) {
1539 	case MISDN_CTRL_GETOP:
1540 		cq->op = MISDN_CTRL_FILL_EMPTY;
1541 		break;
1542 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1543 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1544 		if (debug & DEBUG_HW_OPEN)
1545 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1546 			       "off=%d)\n", __func__, bch->nr, !!cq->p1);
1547 		break;
1548 	default:
1549 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1550 		ret = -EINVAL;
1551 		break;
1552 	}
1553 	return ret;
1554 }
1555 static int
1556 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1557 {
1558 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1559 	struct hfc_pci	*hc = bch->hw;
1560 	int		ret = -EINVAL;
1561 	u_long		flags;
1562 
1563 	if (bch->debug & DEBUG_HW)
1564 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1565 	switch (cmd) {
1566 	case HW_TESTRX_RAW:
1567 		spin_lock_irqsave(&hc->lock, flags);
1568 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1569 		spin_unlock_irqrestore(&hc->lock, flags);
1570 		break;
1571 	case HW_TESTRX_HDLC:
1572 		spin_lock_irqsave(&hc->lock, flags);
1573 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1574 		spin_unlock_irqrestore(&hc->lock, flags);
1575 		break;
1576 	case HW_TESTRX_OFF:
1577 		spin_lock_irqsave(&hc->lock, flags);
1578 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1579 		spin_unlock_irqrestore(&hc->lock, flags);
1580 		ret = 0;
1581 		break;
1582 	case CLOSE_CHANNEL:
1583 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1584 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1585 			deactivate_bchannel(bch);
1586 		ch->protocol = ISDN_P_NONE;
1587 		ch->peer = NULL;
1588 		module_put(THIS_MODULE);
1589 		ret = 0;
1590 		break;
1591 	case CONTROL_CHANNEL:
1592 		ret = channel_bctrl(bch, arg);
1593 		break;
1594 	default:
1595 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1596 		       __func__, cmd);
1597 	}
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Layer2 -> Layer 1 Dchannel data
1603  */
1604 static int
1605 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1606 {
1607 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1608 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1609 	struct hfc_pci		*hc = dch->hw;
1610 	int			ret = -EINVAL;
1611 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1612 	unsigned int		id;
1613 	u_long			flags;
1614 
1615 	switch (hh->prim) {
1616 	case PH_DATA_REQ:
1617 		spin_lock_irqsave(&hc->lock, flags);
1618 		ret = dchannel_senddata(dch, skb);
1619 		if (ret > 0) { /* direct TX */
1620 			id = hh->id; /* skb can be freed */
1621 			hfcpci_fill_dfifo(dch->hw);
1622 			ret = 0;
1623 			spin_unlock_irqrestore(&hc->lock, flags);
1624 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1625 		} else
1626 			spin_unlock_irqrestore(&hc->lock, flags);
1627 		return ret;
1628 	case PH_ACTIVATE_REQ:
1629 		spin_lock_irqsave(&hc->lock, flags);
1630 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1631 			ret = 0;
1632 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1633 				hc->hw.mst_m |= HFCPCI_MASTER;
1634 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1635 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1636 				spin_unlock_irqrestore(&hc->lock, flags);
1637 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1638 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1639 				break;
1640 			}
1641 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1642 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1643 				  HFCPCI_DO_ACTION | 1);
1644 		} else
1645 			ret = l1_event(dch->l1, hh->prim);
1646 		spin_unlock_irqrestore(&hc->lock, flags);
1647 		break;
1648 	case PH_DEACTIVATE_REQ:
1649 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1650 		spin_lock_irqsave(&hc->lock, flags);
1651 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1652 			/* prepare deactivation */
1653 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1654 			skb_queue_purge(&dch->squeue);
1655 			if (dch->tx_skb) {
1656 				dev_kfree_skb(dch->tx_skb);
1657 				dch->tx_skb = NULL;
1658 			}
1659 			dch->tx_idx = 0;
1660 			if (dch->rx_skb) {
1661 				dev_kfree_skb(dch->rx_skb);
1662 				dch->rx_skb = NULL;
1663 			}
1664 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1665 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1666 				del_timer(&dch->timer);
1667 #ifdef FIXME
1668 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1669 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1670 #endif
1671 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1672 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1673 			ret = 0;
1674 		} else {
1675 			ret = l1_event(dch->l1, hh->prim);
1676 		}
1677 		spin_unlock_irqrestore(&hc->lock, flags);
1678 		break;
1679 	}
1680 	if (!ret)
1681 		dev_kfree_skb(skb);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Layer2 -> Layer 1 Bchannel data
1687  */
1688 static int
1689 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1690 {
1691 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1692 	struct hfc_pci		*hc = bch->hw;
1693 	int			ret = -EINVAL;
1694 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1695 	unsigned int		id;
1696 	u_long			flags;
1697 
1698 	switch (hh->prim) {
1699 	case PH_DATA_REQ:
1700 		spin_lock_irqsave(&hc->lock, flags);
1701 		ret = bchannel_senddata(bch, skb);
1702 		if (ret > 0) { /* direct TX */
1703 			id = hh->id; /* skb can be freed */
1704 			hfcpci_fill_fifo(bch);
1705 			ret = 0;
1706 			spin_unlock_irqrestore(&hc->lock, flags);
1707 			if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1708 				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1709 		} else
1710 			spin_unlock_irqrestore(&hc->lock, flags);
1711 		return ret;
1712 	case PH_ACTIVATE_REQ:
1713 		spin_lock_irqsave(&hc->lock, flags);
1714 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1715 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1716 		else
1717 			ret = 0;
1718 		spin_unlock_irqrestore(&hc->lock, flags);
1719 		if (!ret)
1720 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1721 				    NULL, GFP_KERNEL);
1722 		break;
1723 	case PH_DEACTIVATE_REQ:
1724 		deactivate_bchannel(bch);
1725 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1726 			    NULL, GFP_KERNEL);
1727 		ret = 0;
1728 		break;
1729 	}
1730 	if (!ret)
1731 		dev_kfree_skb(skb);
1732 	return ret;
1733 }
1734 
1735 /*
1736  * called for card init message
1737  */
1738 
1739 static void
1740 inithfcpci(struct hfc_pci *hc)
1741 {
1742 	printk(KERN_DEBUG "inithfcpci: entered\n");
1743 	hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1744 	hc->dch.timer.data = (long) &hc->dch;
1745 	init_timer(&hc->dch.timer);
1746 	hc->chanlimit = 2;
1747 	mode_hfcpci(&hc->bch[0], 1, -1);
1748 	mode_hfcpci(&hc->bch[1], 2, -1);
1749 }
1750 
1751 
1752 static int
1753 init_card(struct hfc_pci *hc)
1754 {
1755 	int	cnt = 3;
1756 	u_long	flags;
1757 
1758 	printk(KERN_DEBUG "init_card: entered\n");
1759 
1760 
1761 	spin_lock_irqsave(&hc->lock, flags);
1762 	disable_hwirq(hc);
1763 	spin_unlock_irqrestore(&hc->lock, flags);
1764 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1765 		printk(KERN_WARNING
1766 		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1767 		return -EIO;
1768 	}
1769 	spin_lock_irqsave(&hc->lock, flags);
1770 	reset_hfcpci(hc);
1771 	while (cnt) {
1772 		inithfcpci(hc);
1773 		/*
1774 		 * Finally enable IRQ output
1775 		 * this is only allowed, if an IRQ routine is already
1776 		 * established for this HFC, so don't do that earlier
1777 		 */
1778 		enable_hwirq(hc);
1779 		spin_unlock_irqrestore(&hc->lock, flags);
1780 		/* Timeout 80ms */
1781 		current->state = TASK_UNINTERRUPTIBLE;
1782 		schedule_timeout((80 * HZ) / 1000);
1783 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1784 		       hc->irq, hc->irqcnt);
1785 		/* now switch timer interrupt off */
1786 		spin_lock_irqsave(&hc->lock, flags);
1787 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1788 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1789 		/* reinit mode reg */
1790 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1791 		if (!hc->irqcnt) {
1792 			printk(KERN_WARNING
1793 			       "HFC PCI: IRQ(%d) getting no interrupts "
1794 			       "during init %d\n", hc->irq, 4 - cnt);
1795 			if (cnt == 1)
1796 				break;
1797 			else {
1798 				reset_hfcpci(hc);
1799 				cnt--;
1800 			}
1801 		} else {
1802 			spin_unlock_irqrestore(&hc->lock, flags);
1803 			hc->initdone = 1;
1804 			return 0;
1805 		}
1806 	}
1807 	disable_hwirq(hc);
1808 	spin_unlock_irqrestore(&hc->lock, flags);
1809 	free_irq(hc->irq, hc);
1810 	return -EIO;
1811 }
1812 
1813 static int
1814 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1815 {
1816 	int	ret = 0;
1817 	u_char	slot;
1818 
1819 	switch (cq->op) {
1820 	case MISDN_CTRL_GETOP:
1821 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1822 			MISDN_CTRL_DISCONNECT;
1823 		break;
1824 	case MISDN_CTRL_LOOP:
1825 		/* channel 0 disabled loop */
1826 		if (cq->channel < 0 || cq->channel > 2) {
1827 			ret = -EINVAL;
1828 			break;
1829 		}
1830 		if (cq->channel & 1) {
1831 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1832 				slot = 0xC0;
1833 			else
1834 				slot = 0x80;
1835 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1836 			       __func__, slot);
1837 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1838 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1839 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1840 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1841 		}
1842 		if (cq->channel & 2) {
1843 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1844 				slot = 0xC1;
1845 			else
1846 				slot = 0x81;
1847 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1848 			       __func__, slot);
1849 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1850 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1851 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1852 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1853 		}
1854 		if (cq->channel & 3)
1855 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1856 		else {
1857 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1858 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1859 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1860 		}
1861 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1862 		break;
1863 	case MISDN_CTRL_CONNECT:
1864 		if (cq->channel == cq->p1) {
1865 			ret = -EINVAL;
1866 			break;
1867 		}
1868 		if (cq->channel < 1 || cq->channel > 2 ||
1869 		    cq->p1 < 1 || cq->p1 > 2) {
1870 			ret = -EINVAL;
1871 			break;
1872 		}
1873 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1874 			slot = 0xC0;
1875 		else
1876 			slot = 0x80;
1877 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1878 		       __func__, slot);
1879 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1880 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1881 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1882 			slot = 0xC1;
1883 		else
1884 			slot = 0x81;
1885 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1886 		       __func__, slot);
1887 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1888 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1889 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1890 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1891 		hc->hw.trm |= 0x80;
1892 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1893 		break;
1894 	case MISDN_CTRL_DISCONNECT:
1895 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1896 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1897 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1898 		break;
1899 	default:
1900 		printk(KERN_WARNING "%s: unknown Op %x\n",
1901 		       __func__, cq->op);
1902 		ret = -EINVAL;
1903 		break;
1904 	}
1905 	return ret;
1906 }
1907 
1908 static int
1909 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1910 	      struct channel_req *rq)
1911 {
1912 	int err = 0;
1913 
1914 	if (debug & DEBUG_HW_OPEN)
1915 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1916 		       hc->dch.dev.id, __builtin_return_address(0));
1917 	if (rq->protocol == ISDN_P_NONE)
1918 		return -EINVAL;
1919 	if (rq->adr.channel == 1) {
1920 		/* TODO: E-Channel */
1921 		return -EINVAL;
1922 	}
1923 	if (!hc->initdone) {
1924 		if (rq->protocol == ISDN_P_TE_S0) {
1925 			err = create_l1(&hc->dch, hfc_l1callback);
1926 			if (err)
1927 				return err;
1928 		}
1929 		hc->hw.protocol = rq->protocol;
1930 		ch->protocol = rq->protocol;
1931 		err = init_card(hc);
1932 		if (err)
1933 			return err;
1934 	} else {
1935 		if (rq->protocol != ch->protocol) {
1936 			if (hc->hw.protocol == ISDN_P_TE_S0)
1937 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1938 			if (rq->protocol == ISDN_P_TE_S0) {
1939 				err = create_l1(&hc->dch, hfc_l1callback);
1940 				if (err)
1941 					return err;
1942 			}
1943 			hc->hw.protocol = rq->protocol;
1944 			ch->protocol = rq->protocol;
1945 			hfcpci_setmode(hc);
1946 		}
1947 	}
1948 
1949 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1950 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1951 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1952 			    0, NULL, GFP_KERNEL);
1953 	}
1954 	rq->ch = ch;
1955 	if (!try_module_get(THIS_MODULE))
1956 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1957 	return 0;
1958 }
1959 
1960 static int
1961 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1962 {
1963 	struct bchannel		*bch;
1964 
1965 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1966 		return -EINVAL;
1967 	if (rq->protocol == ISDN_P_NONE)
1968 		return -EINVAL;
1969 	bch = &hc->bch[rq->adr.channel - 1];
1970 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1971 		return -EBUSY; /* b-channel can be only open once */
1972 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1973 	bch->ch.protocol = rq->protocol;
1974 	rq->ch = &bch->ch; /* TODO: E-channel */
1975 	if (!try_module_get(THIS_MODULE))
1976 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1977 	return 0;
1978 }
1979 
1980 /*
1981  * device control function
1982  */
1983 static int
1984 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1985 {
1986 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1987 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1988 	struct hfc_pci		*hc = dch->hw;
1989 	struct channel_req	*rq;
1990 	int			err = 0;
1991 
1992 	if (dch->debug & DEBUG_HW)
1993 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1994 		       __func__, cmd, arg);
1995 	switch (cmd) {
1996 	case OPEN_CHANNEL:
1997 		rq = arg;
1998 		if ((rq->protocol == ISDN_P_TE_S0) ||
1999 		    (rq->protocol == ISDN_P_NT_S0))
2000 			err = open_dchannel(hc, ch, rq);
2001 		else
2002 			err = open_bchannel(hc, rq);
2003 		break;
2004 	case CLOSE_CHANNEL:
2005 		if (debug & DEBUG_HW_OPEN)
2006 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2007 			       __func__, hc->dch.dev.id,
2008 			       __builtin_return_address(0));
2009 		module_put(THIS_MODULE);
2010 		break;
2011 	case CONTROL_CHANNEL:
2012 		err = channel_ctrl(hc, arg);
2013 		break;
2014 	default:
2015 		if (dch->debug & DEBUG_HW)
2016 			printk(KERN_DEBUG "%s: unknown command %x\n",
2017 			       __func__, cmd);
2018 		return -EINVAL;
2019 	}
2020 	return err;
2021 }
2022 
2023 static int
2024 setup_hw(struct hfc_pci *hc)
2025 {
2026 	void	*buffer;
2027 
2028 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2029 	hc->hw.cirm = 0;
2030 	hc->dch.state = 0;
2031 	pci_set_master(hc->pdev);
2032 	if (!hc->irq) {
2033 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2034 		return 1;
2035 	}
2036 	hc->hw.pci_io =
2037 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2038 
2039 	if (!hc->hw.pci_io) {
2040 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2041 		return 1;
2042 	}
2043 	/* Allocate memory for FIFOS */
2044 	/* the memory needs to be on a 32k boundary within the first 4G */
2045 	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2046 	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2047 	/* We silently assume the address is okay if nonzero */
2048 	if (!buffer) {
2049 		printk(KERN_WARNING
2050 		       "HFC-PCI: Error allocating memory for FIFO!\n");
2051 		return 1;
2052 	}
2053 	hc->hw.fifos = buffer;
2054 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2055 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2056 	printk(KERN_INFO
2057 	       "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2058 	       (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2059 	       (u_long) hc->hw.dmahandle, hc->irq, HZ);
2060 	/* enable memory mapped ports, disable busmaster */
2061 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2062 	hc->hw.int_m2 = 0;
2063 	disable_hwirq(hc);
2064 	hc->hw.int_m1 = 0;
2065 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2066 	/* At this point the needed PCI config is done */
2067 	/* fifos are still not enabled */
2068 	hc->hw.timer.function = (void *) hfcpci_Timer;
2069 	hc->hw.timer.data = (long) hc;
2070 	init_timer(&hc->hw.timer);
2071 	/* default PCM master */
2072 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2073 	return 0;
2074 }
2075 
2076 static void
2077 release_card(struct hfc_pci *hc) {
2078 	u_long	flags;
2079 
2080 	spin_lock_irqsave(&hc->lock, flags);
2081 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2082 	disable_hwirq(hc);
2083 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2084 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2085 	if (hc->dch.timer.function != NULL) {
2086 		del_timer(&hc->dch.timer);
2087 		hc->dch.timer.function = NULL;
2088 	}
2089 	spin_unlock_irqrestore(&hc->lock, flags);
2090 	if (hc->hw.protocol == ISDN_P_TE_S0)
2091 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2092 	if (hc->initdone)
2093 		free_irq(hc->irq, hc);
2094 	release_io_hfcpci(hc); /* must release after free_irq! */
2095 	mISDN_unregister_device(&hc->dch.dev);
2096 	mISDN_freebchannel(&hc->bch[1]);
2097 	mISDN_freebchannel(&hc->bch[0]);
2098 	mISDN_freedchannel(&hc->dch);
2099 	pci_set_drvdata(hc->pdev, NULL);
2100 	kfree(hc);
2101 }
2102 
2103 static int
2104 setup_card(struct hfc_pci *card)
2105 {
2106 	int		err = -EINVAL;
2107 	u_int		i;
2108 	char		name[MISDN_MAX_IDLEN];
2109 
2110 	card->dch.debug = debug;
2111 	spin_lock_init(&card->lock);
2112 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2113 	card->dch.hw = card;
2114 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2115 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2116 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2117 	card->dch.dev.D.send = hfcpci_l2l1D;
2118 	card->dch.dev.D.ctrl = hfc_dctrl;
2119 	card->dch.dev.nrbchan = 2;
2120 	for (i = 0; i < 2; i++) {
2121 		card->bch[i].nr = i + 1;
2122 		set_channelmap(i + 1, card->dch.dev.channelmap);
2123 		card->bch[i].debug = debug;
2124 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2125 		card->bch[i].hw = card;
2126 		card->bch[i].ch.send = hfcpci_l2l1B;
2127 		card->bch[i].ch.ctrl = hfc_bctrl;
2128 		card->bch[i].ch.nr = i + 1;
2129 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2130 	}
2131 	err = setup_hw(card);
2132 	if (err)
2133 		goto error;
2134 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2135 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2136 	if (err)
2137 		goto error;
2138 	HFC_cnt++;
2139 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2140 	return 0;
2141 error:
2142 	mISDN_freebchannel(&card->bch[1]);
2143 	mISDN_freebchannel(&card->bch[0]);
2144 	mISDN_freedchannel(&card->dch);
2145 	kfree(card);
2146 	return err;
2147 }
2148 
2149 /* private data in the PCI devices list */
2150 struct _hfc_map {
2151 	u_int	subtype;
2152 	u_int	flag;
2153 	char	*name;
2154 };
2155 
2156 static const struct _hfc_map hfc_map[] =
2157 {
2158 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2159 	{HFC_CCD_B000, 0, "Billion B000"},
2160 	{HFC_CCD_B006, 0, "Billion B006"},
2161 	{HFC_CCD_B007, 0, "Billion B007"},
2162 	{HFC_CCD_B008, 0, "Billion B008"},
2163 	{HFC_CCD_B009, 0, "Billion B009"},
2164 	{HFC_CCD_B00A, 0, "Billion B00A"},
2165 	{HFC_CCD_B00B, 0, "Billion B00B"},
2166 	{HFC_CCD_B00C, 0, "Billion B00C"},
2167 	{HFC_CCD_B100, 0, "Seyeon B100"},
2168 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2169 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2170 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2171 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2172 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2173 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2174 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2175 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2176 	{HFC_DIGI_DF_M_IOM2_E, 0,
2177 	 "Digi International DataFire Micro V IOM2 (Europe)"},
2178 	{HFC_DIGI_DF_M_E, 0,
2179 	 "Digi International DataFire Micro V (Europe)"},
2180 	{HFC_DIGI_DF_M_IOM2_A, 0,
2181 	 "Digi International DataFire Micro V IOM2 (North America)"},
2182 	{HFC_DIGI_DF_M_A, 0,
2183 	 "Digi International DataFire Micro V (North America)"},
2184 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2185 	{},
2186 };
2187 
2188 static struct pci_device_id hfc_ids[] =
2189 {
2190 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2191 	  (unsigned long) &hfc_map[0] },
2192 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2193 	  (unsigned long) &hfc_map[1] },
2194 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2195 	  (unsigned long) &hfc_map[2] },
2196 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2197 	  (unsigned long) &hfc_map[3] },
2198 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2199 	  (unsigned long) &hfc_map[4] },
2200 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2201 	  (unsigned long) &hfc_map[5] },
2202 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2203 	  (unsigned long) &hfc_map[6] },
2204 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2205 	  (unsigned long) &hfc_map[7] },
2206 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2207 	  (unsigned long) &hfc_map[8] },
2208 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2209 	  (unsigned long) &hfc_map[9] },
2210 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2211 	  (unsigned long) &hfc_map[10] },
2212 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2213 	  (unsigned long) &hfc_map[11] },
2214 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2215 	  (unsigned long) &hfc_map[12] },
2216 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2217 	  (unsigned long) &hfc_map[13] },
2218 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2219 	  (unsigned long) &hfc_map[14] },
2220 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2221 	  (unsigned long) &hfc_map[15] },
2222 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2223 	  (unsigned long) &hfc_map[16] },
2224 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2225 	  (unsigned long) &hfc_map[17] },
2226 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2227 	  (unsigned long) &hfc_map[18] },
2228 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2229 	  (unsigned long) &hfc_map[19] },
2230 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2231 	  (unsigned long) &hfc_map[20] },
2232 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2233 	  (unsigned long) &hfc_map[21] },
2234 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2235 	  (unsigned long) &hfc_map[22] },
2236 	{},
2237 };
2238 
2239 static int __devinit
2240 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2241 {
2242 	int		err = -ENOMEM;
2243 	struct hfc_pci	*card;
2244 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2245 
2246 	card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2247 	if (!card) {
2248 		printk(KERN_ERR "No kmem for HFC card\n");
2249 		return err;
2250 	}
2251 	card->pdev = pdev;
2252 	card->subtype = m->subtype;
2253 	err = pci_enable_device(pdev);
2254 	if (err) {
2255 		kfree(card);
2256 		return err;
2257 	}
2258 
2259 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2260 	       m->name, pci_name(pdev));
2261 
2262 	card->irq = pdev->irq;
2263 	pci_set_drvdata(pdev, card);
2264 	err = setup_card(card);
2265 	if (err)
2266 		pci_set_drvdata(pdev, NULL);
2267 	return err;
2268 }
2269 
2270 static void __devexit
2271 hfc_remove_pci(struct pci_dev *pdev)
2272 {
2273 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2274 
2275 	if (card)
2276 		release_card(card);
2277 	else
2278 		if (debug)
2279 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2280 			       __func__);
2281 }
2282 
2283 
2284 static struct pci_driver hfc_driver = {
2285 	.name = "hfcpci",
2286 	.probe = hfc_probe,
2287 	.remove = __devexit_p(hfc_remove_pci),
2288 	.id_table = hfc_ids,
2289 };
2290 
2291 static int
2292 _hfcpci_softirq(struct device *dev, void *arg)
2293 {
2294 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2295 	struct bchannel *bch;
2296 	if (hc == NULL)
2297 		return 0;
2298 
2299 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2300 		spin_lock(&hc->lock);
2301 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2302 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2303 			main_rec_hfcpci(bch);
2304 			tx_birq(bch);
2305 		}
2306 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2307 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2308 			main_rec_hfcpci(bch);
2309 			tx_birq(bch);
2310 		}
2311 		spin_unlock(&hc->lock);
2312 	}
2313 	return 0;
2314 }
2315 
2316 static void
2317 hfcpci_softirq(void *arg)
2318 {
2319 	(void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2320 				      _hfcpci_softirq);
2321 
2322 	/* if next event would be in the past ... */
2323 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2324 		hfc_jiffies = jiffies + 1;
2325 	else
2326 		hfc_jiffies += tics;
2327 	hfc_tl.expires = hfc_jiffies;
2328 	add_timer(&hfc_tl);
2329 }
2330 
2331 static int __init
2332 HFC_init(void)
2333 {
2334 	int		err;
2335 
2336 	if (!poll)
2337 		poll = HFCPCI_BTRANS_THRESHOLD;
2338 
2339 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2340 		tics = (poll * HZ) / 8000;
2341 		if (tics < 1)
2342 			tics = 1;
2343 		poll = (tics * 8000) / HZ;
2344 		if (poll > 256 || poll < 8) {
2345 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2346 			       "of 8..256.\n", __func__, poll);
2347 			err = -EINVAL;
2348 			return err;
2349 		}
2350 	}
2351 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2352 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2353 		       __func__, poll);
2354 		hfc_tl.function = (void *)hfcpci_softirq;
2355 		hfc_tl.data = 0;
2356 		init_timer(&hfc_tl);
2357 		hfc_tl.expires = jiffies + tics;
2358 		hfc_jiffies = hfc_tl.expires;
2359 		add_timer(&hfc_tl);
2360 	} else
2361 		tics = 0; /* indicate the use of controller's timer */
2362 
2363 	err = pci_register_driver(&hfc_driver);
2364 	if (err) {
2365 		if (timer_pending(&hfc_tl))
2366 			del_timer(&hfc_tl);
2367 	}
2368 
2369 	return err;
2370 }
2371 
2372 static void __exit
2373 HFC_cleanup(void)
2374 {
2375 	if (timer_pending(&hfc_tl))
2376 		del_timer(&hfc_tl);
2377 
2378 	pci_unregister_driver(&hfc_driver);
2379 }
2380 
2381 module_init(HFC_init);
2382 module_exit(HFC_cleanup);
2383 
2384 MODULE_DEVICE_TABLE(pci, hfc_ids);
2385