1 /* 2 * 3 * hfcpci.c low level driver for CCD's hfc-pci based cards 4 * 5 * Author Werner Cornelius (werner@isdn4linux.de) 6 * based on existing driver for CCD hfc ISA cards 7 * type approval valid for HFC-S PCI A based card 8 * 9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) 10 * Copyright 2008 by Karsten Keil <kkeil@novell.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module options: 27 * 28 * debug: 29 * NOTE: only one poll value must be given for all cards 30 * See hfc_pci.h for debug flags. 31 * 32 * poll: 33 * NOTE: only one poll value must be given for all cards 34 * Give the number of samples for each fifo process. 35 * By default 128 is used. Decrease to reduce delay, increase to 36 * reduce cpu load. If unsure, don't mess with it! 37 * A value of 128 will use controller's interrupt. Other values will 38 * use kernel timer, because the controller will not allow lower values 39 * than 128. 40 * Also note that the value depends on the kernel timer frequency. 41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible. 42 * If the kernel uses 100 Hz, steps of 80 samples are possible. 43 * If the kernel uses 300 Hz, steps of about 26 samples are possible. 44 * 45 */ 46 47 #include <linux/module.h> 48 #include <linux/pci.h> 49 #include <linux/delay.h> 50 #include <linux/mISDNhw.h> 51 #include <linux/slab.h> 52 53 #include "hfc_pci.h" 54 55 static const char *hfcpci_revision = "2.0"; 56 57 static int HFC_cnt; 58 static uint debug; 59 static uint poll, tics; 60 static struct timer_list hfc_tl; 61 static unsigned long hfc_jiffies; 62 63 MODULE_AUTHOR("Karsten Keil"); 64 MODULE_LICENSE("GPL"); 65 module_param(debug, uint, S_IRUGO | S_IWUSR); 66 module_param(poll, uint, S_IRUGO | S_IWUSR); 67 68 enum { 69 HFC_CCD_2BD0, 70 HFC_CCD_B000, 71 HFC_CCD_B006, 72 HFC_CCD_B007, 73 HFC_CCD_B008, 74 HFC_CCD_B009, 75 HFC_CCD_B00A, 76 HFC_CCD_B00B, 77 HFC_CCD_B00C, 78 HFC_CCD_B100, 79 HFC_CCD_B700, 80 HFC_CCD_B701, 81 HFC_ASUS_0675, 82 HFC_BERKOM_A1T, 83 HFC_BERKOM_TCONCEPT, 84 HFC_ANIGMA_MC145575, 85 HFC_ZOLTRIX_2BD0, 86 HFC_DIGI_DF_M_IOM2_E, 87 HFC_DIGI_DF_M_E, 88 HFC_DIGI_DF_M_IOM2_A, 89 HFC_DIGI_DF_M_A, 90 HFC_ABOCOM_2BD1, 91 HFC_SITECOM_DC105V2, 92 }; 93 94 struct hfcPCI_hw { 95 unsigned char cirm; 96 unsigned char ctmt; 97 unsigned char clkdel; 98 unsigned char states; 99 unsigned char conn; 100 unsigned char mst_m; 101 unsigned char int_m1; 102 unsigned char int_m2; 103 unsigned char sctrl; 104 unsigned char sctrl_r; 105 unsigned char sctrl_e; 106 unsigned char trm; 107 unsigned char fifo_en; 108 unsigned char bswapped; 109 unsigned char protocol; 110 int nt_timer; 111 unsigned char __iomem *pci_io; /* start of PCI IO memory */ 112 dma_addr_t dmahandle; 113 void *fifos; /* FIFO memory */ 114 int last_bfifo_cnt[2]; 115 /* marker saving last b-fifo frame count */ 116 struct timer_list timer; 117 }; 118 119 #define HFC_CFG_MASTER 1 120 #define HFC_CFG_SLAVE 2 121 #define HFC_CFG_PCM 3 122 #define HFC_CFG_2HFC 4 123 #define HFC_CFG_SLAVEHFC 5 124 #define HFC_CFG_NEG_F0 6 125 #define HFC_CFG_SW_DD_DU 7 126 127 #define FLG_HFC_TIMER_T1 16 128 #define FLG_HFC_TIMER_T3 17 129 130 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */ 131 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */ 132 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */ 133 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */ 134 135 136 struct hfc_pci { 137 u_char subtype; 138 u_char chanlimit; 139 u_char initdone; 140 u_long cfg; 141 u_int irq; 142 u_int irqcnt; 143 struct pci_dev *pdev; 144 struct hfcPCI_hw hw; 145 spinlock_t lock; /* card lock */ 146 struct dchannel dch; 147 struct bchannel bch[2]; 148 }; 149 150 /* Interface functions */ 151 static void 152 enable_hwirq(struct hfc_pci *hc) 153 { 154 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE; 155 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 156 } 157 158 static void 159 disable_hwirq(struct hfc_pci *hc) 160 { 161 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE); 162 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 163 } 164 165 /* 166 * free hardware resources used by driver 167 */ 168 static void 169 release_io_hfcpci(struct hfc_pci *hc) 170 { 171 /* disable memory mapped ports + busmaster */ 172 pci_write_config_word(hc->pdev, PCI_COMMAND, 0); 173 del_timer(&hc->hw.timer); 174 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle); 175 iounmap(hc->hw.pci_io); 176 } 177 178 /* 179 * set mode (NT or TE) 180 */ 181 static void 182 hfcpci_setmode(struct hfc_pci *hc) 183 { 184 if (hc->hw.protocol == ISDN_P_NT_S0) { 185 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */ 186 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */ 187 hc->hw.states = 1; /* G1 */ 188 } else { 189 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */ 190 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */ 191 hc->hw.states = 2; /* F2 */ 192 } 193 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel); 194 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states); 195 udelay(10); 196 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */ 197 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 198 } 199 200 /* 201 * function called to reset the HFC PCI chip. A complete software reset of chip 202 * and fifos is done. 203 */ 204 static void 205 reset_hfcpci(struct hfc_pci *hc) 206 { 207 u_char val; 208 int cnt = 0; 209 210 printk(KERN_DEBUG "reset_hfcpci: entered\n"); 211 val = Read_hfc(hc, HFCPCI_CHIP_ID); 212 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val); 213 /* enable memory mapped ports, disable busmaster */ 214 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 215 disable_hwirq(hc); 216 /* enable memory ports + busmaster */ 217 pci_write_config_word(hc->pdev, PCI_COMMAND, 218 PCI_ENA_MEMIO + PCI_ENA_MASTER); 219 val = Read_hfc(hc, HFCPCI_STATUS); 220 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val); 221 hc->hw.cirm = HFCPCI_RESET; /* Reset On */ 222 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 223 set_current_state(TASK_UNINTERRUPTIBLE); 224 mdelay(10); /* Timeout 10ms */ 225 hc->hw.cirm = 0; /* Reset Off */ 226 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 227 val = Read_hfc(hc, HFCPCI_STATUS); 228 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val); 229 while (cnt < 50000) { /* max 50000 us */ 230 udelay(5); 231 cnt += 5; 232 val = Read_hfc(hc, HFCPCI_STATUS); 233 if (!(val & 2)) 234 break; 235 } 236 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt); 237 238 hc->hw.fifo_en = 0x30; /* only D fifos enabled */ 239 240 hc->hw.bswapped = 0; /* no exchange */ 241 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER; 242 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */ 243 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ 244 hc->hw.sctrl_r = 0; 245 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */ 246 hc->hw.mst_m = 0; 247 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 248 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */ 249 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg)) 250 hc->hw.mst_m |= HFCPCI_F0_NEGATIV; 251 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 252 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 253 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 254 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 255 256 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC | 257 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER; 258 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 259 260 /* Clear already pending ints */ 261 val = Read_hfc(hc, HFCPCI_INT_S1); 262 263 /* set NT/TE mode */ 264 hfcpci_setmode(hc); 265 266 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 267 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 268 269 /* 270 * Init GCI/IOM2 in master mode 271 * Slots 0 and 1 are set for B-chan 1 and 2 272 * D- and monitor/CI channel are not enabled 273 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC 274 * STIO2 is used as data input, B1+B2 from IOM->ST 275 * ST B-channel send disabled -> continous 1s 276 * The IOM slots are always enabled 277 */ 278 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 279 /* set data flow directions: connect B1,B2: HFC to/from PCM */ 280 hc->hw.conn = 0x09; 281 } else { 282 hc->hw.conn = 0x36; /* set data flow directions */ 283 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 284 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0); 285 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1); 286 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0); 287 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1); 288 } else { 289 Write_hfc(hc, HFCPCI_B1_SSL, 0x80); 290 Write_hfc(hc, HFCPCI_B2_SSL, 0x81); 291 Write_hfc(hc, HFCPCI_B1_RSL, 0x80); 292 Write_hfc(hc, HFCPCI_B2_RSL, 0x81); 293 } 294 } 295 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 296 val = Read_hfc(hc, HFCPCI_INT_S2); 297 } 298 299 /* 300 * Timer function called when kernel timer expires 301 */ 302 static void 303 hfcpci_Timer(struct hfc_pci *hc) 304 { 305 hc->hw.timer.expires = jiffies + 75; 306 /* WD RESET */ 307 /* 308 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80); 309 * add_timer(&hc->hw.timer); 310 */ 311 } 312 313 314 /* 315 * select a b-channel entry matching and active 316 */ 317 static struct bchannel * 318 Sel_BCS(struct hfc_pci *hc, int channel) 319 { 320 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) && 321 (hc->bch[0].nr & channel)) 322 return &hc->bch[0]; 323 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) && 324 (hc->bch[1].nr & channel)) 325 return &hc->bch[1]; 326 else 327 return NULL; 328 } 329 330 /* 331 * clear the desired B-channel rx fifo 332 */ 333 static void 334 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo) 335 { 336 u_char fifo_state; 337 struct bzfifo *bzr; 338 339 if (fifo) { 340 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 341 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX; 342 } else { 343 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 344 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX; 345 } 346 if (fifo_state) 347 hc->hw.fifo_en ^= fifo_state; 348 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 349 hc->hw.last_bfifo_cnt[fifo] = 0; 350 bzr->f1 = MAX_B_FRAMES; 351 bzr->f2 = bzr->f1; /* init F pointers to remain constant */ 352 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 353 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16( 354 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1)); 355 if (fifo_state) 356 hc->hw.fifo_en |= fifo_state; 357 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 358 } 359 360 /* 361 * clear the desired B-channel tx fifo 362 */ 363 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo) 364 { 365 u_char fifo_state; 366 struct bzfifo *bzt; 367 368 if (fifo) { 369 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 370 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX; 371 } else { 372 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 373 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX; 374 } 375 if (fifo_state) 376 hc->hw.fifo_en ^= fifo_state; 377 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 378 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 379 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) " 380 "z1(%x) z2(%x) state(%x)\n", 381 fifo, bzt->f1, bzt->f2, 382 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 383 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2), 384 fifo_state); 385 bzt->f2 = MAX_B_FRAMES; 386 bzt->f1 = bzt->f2; /* init F pointers to remain constant */ 387 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 388 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2); 389 if (fifo_state) 390 hc->hw.fifo_en |= fifo_state; 391 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 392 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 393 printk(KERN_DEBUG 394 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n", 395 fifo, bzt->f1, bzt->f2, 396 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 397 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2)); 398 } 399 400 /* 401 * read a complete B-frame out of the buffer 402 */ 403 static void 404 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz, 405 u_char *bdata, int count) 406 { 407 u_char *ptr, *ptr1, new_f2; 408 int total, maxlen, new_z2; 409 struct zt *zp; 410 411 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 412 printk(KERN_DEBUG "hfcpci_empty_fifo\n"); 413 zp = &bz->za[bz->f2]; /* point to Z-Regs */ 414 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */ 415 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 416 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 417 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; 418 if ((count > MAX_DATA_SIZE + 3) || (count < 4) || 419 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) { 420 if (bch->debug & DEBUG_HW) 421 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet " 422 "invalid length %d or crc\n", count); 423 #ifdef ERROR_STATISTIC 424 bch->err_inv++; 425 #endif 426 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 427 bz->f2 = new_f2; /* next buffer */ 428 } else { 429 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC); 430 if (!bch->rx_skb) { 431 printk(KERN_WARNING "HFCPCI: receive out of memory\n"); 432 return; 433 } 434 total = count; 435 count -= 3; 436 ptr = skb_put(bch->rx_skb, count); 437 438 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL) 439 maxlen = count; /* complete transfer */ 440 else 441 maxlen = B_FIFO_SIZE + B_SUB_VAL - 442 le16_to_cpu(zp->z2); /* maximum */ 443 444 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL); 445 /* start of data */ 446 memcpy(ptr, ptr1, maxlen); /* copy data */ 447 count -= maxlen; 448 449 if (count) { /* rest remaining */ 450 ptr += maxlen; 451 ptr1 = bdata; /* start of buffer */ 452 memcpy(ptr, ptr1, count); /* rest */ 453 } 454 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 455 bz->f2 = new_f2; /* next buffer */ 456 recv_Bchannel(bch, MISDN_ID_ANY); 457 } 458 } 459 460 /* 461 * D-channel receive procedure 462 */ 463 static int 464 receive_dmsg(struct hfc_pci *hc) 465 { 466 struct dchannel *dch = &hc->dch; 467 int maxlen; 468 int rcnt, total; 469 int count = 5; 470 u_char *ptr, *ptr1; 471 struct dfifo *df; 472 struct zt *zp; 473 474 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx; 475 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) { 476 zp = &df->za[df->f2 & D_FREG_MASK]; 477 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 478 if (rcnt < 0) 479 rcnt += D_FIFO_SIZE; 480 rcnt++; 481 if (dch->debug & DEBUG_HW_DCHANNEL) 482 printk(KERN_DEBUG 483 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n", 484 df->f1, df->f2, 485 le16_to_cpu(zp->z1), 486 le16_to_cpu(zp->z2), 487 rcnt); 488 489 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) || 490 (df->data[le16_to_cpu(zp->z1)])) { 491 if (dch->debug & DEBUG_HW) 492 printk(KERN_DEBUG 493 "empty_fifo hfcpci paket inv. len " 494 "%d or crc %d\n", 495 rcnt, 496 df->data[le16_to_cpu(zp->z1)]); 497 #ifdef ERROR_STATISTIC 498 cs->err_rx++; 499 #endif 500 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 501 (MAX_D_FRAMES + 1); /* next buffer */ 502 df->za[df->f2 & D_FREG_MASK].z2 = 503 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) & 504 (D_FIFO_SIZE - 1)); 505 } else { 506 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC); 507 if (!dch->rx_skb) { 508 printk(KERN_WARNING 509 "HFC-PCI: D receive out of memory\n"); 510 break; 511 } 512 total = rcnt; 513 rcnt -= 3; 514 ptr = skb_put(dch->rx_skb, rcnt); 515 516 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE) 517 maxlen = rcnt; /* complete transfer */ 518 else 519 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2); 520 /* maximum */ 521 522 ptr1 = df->data + le16_to_cpu(zp->z2); 523 /* start of data */ 524 memcpy(ptr, ptr1, maxlen); /* copy data */ 525 rcnt -= maxlen; 526 527 if (rcnt) { /* rest remaining */ 528 ptr += maxlen; 529 ptr1 = df->data; /* start of buffer */ 530 memcpy(ptr, ptr1, rcnt); /* rest */ 531 } 532 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 533 (MAX_D_FRAMES + 1); /* next buffer */ 534 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16(( 535 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1)); 536 recv_Dchannel(dch); 537 } 538 } 539 return 1; 540 } 541 542 /* 543 * check for transparent receive data and read max one 'poll' size if avail 544 */ 545 static void 546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz, 547 struct bzfifo *txbz, u_char *bdata) 548 { 549 __le16 *z1r, *z2r, *z1t, *z2t; 550 int new_z2, fcnt_rx, fcnt_tx, maxlen; 551 u_char *ptr, *ptr1; 552 553 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */ 554 z2r = z1r + 1; 555 z1t = &txbz->za[MAX_B_FRAMES].z1; 556 z2t = z1t + 1; 557 558 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r); 559 if (!fcnt_rx) 560 return; /* no data avail */ 561 562 if (fcnt_rx <= 0) 563 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */ 564 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */ 565 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 566 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 567 568 if (fcnt_rx > MAX_DATA_SIZE) { /* flush, if oversized */ 569 *z2r = cpu_to_le16(new_z2); /* new position */ 570 return; 571 } 572 573 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 574 if (fcnt_tx <= 0) 575 fcnt_tx += B_FIFO_SIZE; 576 /* fcnt_tx contains available bytes in tx-fifo */ 577 fcnt_tx = B_FIFO_SIZE - fcnt_tx; 578 /* remaining bytes to send (bytes in tx-fifo) */ 579 580 bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC); 581 if (bch->rx_skb) { 582 ptr = skb_put(bch->rx_skb, fcnt_rx); 583 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL) 584 maxlen = fcnt_rx; /* complete transfer */ 585 else 586 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r); 587 /* maximum */ 588 589 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL); 590 /* start of data */ 591 memcpy(ptr, ptr1, maxlen); /* copy data */ 592 fcnt_rx -= maxlen; 593 594 if (fcnt_rx) { /* rest remaining */ 595 ptr += maxlen; 596 ptr1 = bdata; /* start of buffer */ 597 memcpy(ptr, ptr1, fcnt_rx); /* rest */ 598 } 599 recv_Bchannel(bch, fcnt_tx); /* bch, id */ 600 } else 601 printk(KERN_WARNING "HFCPCI: receive out of memory\n"); 602 603 *z2r = cpu_to_le16(new_z2); /* new position */ 604 } 605 606 /* 607 * B-channel main receive routine 608 */ 609 static void 610 main_rec_hfcpci(struct bchannel *bch) 611 { 612 struct hfc_pci *hc = bch->hw; 613 int rcnt, real_fifo; 614 int receive = 0, count = 5; 615 struct bzfifo *txbz, *rxbz; 616 u_char *bdata; 617 struct zt *zp; 618 619 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 620 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 621 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 622 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2; 623 real_fifo = 1; 624 } else { 625 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 626 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 627 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1; 628 real_fifo = 0; 629 } 630 Begin: 631 count--; 632 if (rxbz->f1 != rxbz->f2) { 633 if (bch->debug & DEBUG_HW_BCHANNEL) 634 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n", 635 bch->nr, rxbz->f1, rxbz->f2); 636 zp = &rxbz->za[rxbz->f2]; 637 638 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 639 if (rcnt < 0) 640 rcnt += B_FIFO_SIZE; 641 rcnt++; 642 if (bch->debug & DEBUG_HW_BCHANNEL) 643 printk(KERN_DEBUG 644 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n", 645 bch->nr, le16_to_cpu(zp->z1), 646 le16_to_cpu(zp->z2), rcnt); 647 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt); 648 rcnt = rxbz->f1 - rxbz->f2; 649 if (rcnt < 0) 650 rcnt += MAX_B_FRAMES + 1; 651 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) { 652 rcnt = 0; 653 hfcpci_clear_fifo_rx(hc, real_fifo); 654 } 655 hc->hw.last_bfifo_cnt[real_fifo] = rcnt; 656 if (rcnt > 1) 657 receive = 1; 658 else 659 receive = 0; 660 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 661 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata); 662 return; 663 } else 664 receive = 0; 665 if (count && receive) 666 goto Begin; 667 668 } 669 670 /* 671 * D-channel send routine 672 */ 673 static void 674 hfcpci_fill_dfifo(struct hfc_pci *hc) 675 { 676 struct dchannel *dch = &hc->dch; 677 int fcnt; 678 int count, new_z1, maxlen; 679 struct dfifo *df; 680 u_char *src, *dst, new_f1; 681 682 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO)) 683 printk(KERN_DEBUG "%s\n", __func__); 684 685 if (!dch->tx_skb) 686 return; 687 count = dch->tx_skb->len - dch->tx_idx; 688 if (count <= 0) 689 return; 690 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx; 691 692 if (dch->debug & DEBUG_HW_DFIFO) 693 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__, 694 df->f1, df->f2, 695 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1)); 696 fcnt = df->f1 - df->f2; /* frame count actually buffered */ 697 if (fcnt < 0) 698 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */ 699 if (fcnt > (MAX_D_FRAMES - 1)) { 700 if (dch->debug & DEBUG_HW_DCHANNEL) 701 printk(KERN_DEBUG 702 "hfcpci_fill_Dfifo more as 14 frames\n"); 703 #ifdef ERROR_STATISTIC 704 cs->err_tx++; 705 #endif 706 return; 707 } 708 /* now determine free bytes in FIFO buffer */ 709 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) - 710 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1; 711 if (maxlen <= 0) 712 maxlen += D_FIFO_SIZE; /* count now contains available bytes */ 713 714 if (dch->debug & DEBUG_HW_DCHANNEL) 715 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n", 716 count, maxlen); 717 if (count > maxlen) { 718 if (dch->debug & DEBUG_HW_DCHANNEL) 719 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n"); 720 return; 721 } 722 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) & 723 (D_FIFO_SIZE - 1); 724 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1); 725 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */ 726 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 727 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 728 /* end fifo */ 729 if (maxlen > count) 730 maxlen = count; /* limit size */ 731 memcpy(dst, src, maxlen); /* first copy */ 732 733 count -= maxlen; /* remaining bytes */ 734 if (count) { 735 dst = df->data; /* start of buffer */ 736 src += maxlen; /* new position */ 737 memcpy(dst, src, count); 738 } 739 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 740 /* for next buffer */ 741 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 742 /* new pos actual buffer */ 743 df->f1 = new_f1; /* next frame */ 744 dch->tx_idx = dch->tx_skb->len; 745 } 746 747 /* 748 * B-channel send routine 749 */ 750 static void 751 hfcpci_fill_fifo(struct bchannel *bch) 752 { 753 struct hfc_pci *hc = bch->hw; 754 int maxlen, fcnt; 755 int count, new_z1; 756 struct bzfifo *bz; 757 u_char *bdata; 758 u_char new_f1, *src, *dst; 759 __le16 *z1t, *z2t; 760 761 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 762 printk(KERN_DEBUG "%s\n", __func__); 763 if ((!bch->tx_skb) || bch->tx_skb->len <= 0) 764 return; 765 count = bch->tx_skb->len - bch->tx_idx; 766 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 767 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 768 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2; 769 } else { 770 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 771 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1; 772 } 773 774 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 775 z1t = &bz->za[MAX_B_FRAMES].z1; 776 z2t = z1t + 1; 777 if (bch->debug & DEBUG_HW_BCHANNEL) 778 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) " 779 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count, 780 le16_to_cpu(*z1t), le16_to_cpu(*z2t)); 781 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 782 if (fcnt <= 0) 783 fcnt += B_FIFO_SIZE; 784 /* fcnt contains available bytes in fifo */ 785 fcnt = B_FIFO_SIZE - fcnt; 786 /* remaining bytes to send (bytes in fifo) */ 787 788 /* "fill fifo if empty" feature */ 789 if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) { 790 /* printk(KERN_DEBUG "%s: buffer empty, so we have " 791 "underrun\n", __func__); */ 792 /* fill buffer, to prevent future underrun */ 793 count = HFCPCI_FILLEMPTY; 794 new_z1 = le16_to_cpu(*z1t) + count; 795 /* new buffer Position */ 796 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 797 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 798 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 799 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 800 /* end of fifo */ 801 if (bch->debug & DEBUG_HW_BFIFO) 802 printk(KERN_DEBUG "hfcpci_FFt fillempty " 803 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n", 804 fcnt, maxlen, new_z1, dst); 805 fcnt += count; 806 if (maxlen > count) 807 maxlen = count; /* limit size */ 808 memset(dst, 0x2a, maxlen); /* first copy */ 809 count -= maxlen; /* remaining bytes */ 810 if (count) { 811 dst = bdata; /* start of buffer */ 812 memset(dst, 0x2a, count); 813 } 814 *z1t = cpu_to_le16(new_z1); /* now send data */ 815 } 816 817 next_t_frame: 818 count = bch->tx_skb->len - bch->tx_idx; 819 /* maximum fill shall be poll*2 */ 820 if (count > (poll << 1) - fcnt) 821 count = (poll << 1) - fcnt; 822 if (count <= 0) 823 return; 824 /* data is suitable for fifo */ 825 new_z1 = le16_to_cpu(*z1t) + count; 826 /* new buffer Position */ 827 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 828 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 829 src = bch->tx_skb->data + bch->tx_idx; 830 /* source pointer */ 831 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 832 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 833 /* end of fifo */ 834 if (bch->debug & DEBUG_HW_BFIFO) 835 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) " 836 "maxl(%d) nz1(%x) dst(%p)\n", 837 fcnt, maxlen, new_z1, dst); 838 fcnt += count; 839 bch->tx_idx += count; 840 if (maxlen > count) 841 maxlen = count; /* limit size */ 842 memcpy(dst, src, maxlen); /* first copy */ 843 count -= maxlen; /* remaining bytes */ 844 if (count) { 845 dst = bdata; /* start of buffer */ 846 src += maxlen; /* new position */ 847 memcpy(dst, src, count); 848 } 849 *z1t = cpu_to_le16(new_z1); /* now send data */ 850 if (bch->tx_idx < bch->tx_skb->len) 851 return; 852 /* send confirm, on trans, free on hdlc. */ 853 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) 854 confirm_Bsend(bch); 855 dev_kfree_skb(bch->tx_skb); 856 if (get_next_bframe(bch)) 857 goto next_t_frame; 858 return; 859 } 860 if (bch->debug & DEBUG_HW_BCHANNEL) 861 printk(KERN_DEBUG 862 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n", 863 __func__, bch->nr, bz->f1, bz->f2, 864 bz->za[bz->f1].z1); 865 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */ 866 if (fcnt < 0) 867 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */ 868 if (fcnt > (MAX_B_FRAMES - 1)) { 869 if (bch->debug & DEBUG_HW_BCHANNEL) 870 printk(KERN_DEBUG 871 "hfcpci_fill_Bfifo more as 14 frames\n"); 872 return; 873 } 874 /* now determine free bytes in FIFO buffer */ 875 maxlen = le16_to_cpu(bz->za[bz->f2].z2) - 876 le16_to_cpu(bz->za[bz->f1].z1) - 1; 877 if (maxlen <= 0) 878 maxlen += B_FIFO_SIZE; /* count now contains available bytes */ 879 880 if (bch->debug & DEBUG_HW_BCHANNEL) 881 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n", 882 bch->nr, count, maxlen); 883 884 if (maxlen < count) { 885 if (bch->debug & DEBUG_HW_BCHANNEL) 886 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n"); 887 return; 888 } 889 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count; 890 /* new buffer Position */ 891 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 892 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 893 894 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES); 895 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */ 896 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL); 897 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1); 898 /* end fifo */ 899 if (maxlen > count) 900 maxlen = count; /* limit size */ 901 memcpy(dst, src, maxlen); /* first copy */ 902 903 count -= maxlen; /* remaining bytes */ 904 if (count) { 905 dst = bdata; /* start of buffer */ 906 src += maxlen; /* new position */ 907 memcpy(dst, src, count); 908 } 909 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */ 910 bz->f1 = new_f1; /* next frame */ 911 dev_kfree_skb(bch->tx_skb); 912 get_next_bframe(bch); 913 } 914 915 916 917 /* 918 * handle L1 state changes TE 919 */ 920 921 static void 922 ph_state_te(struct dchannel *dch) 923 { 924 if (dch->debug) 925 printk(KERN_DEBUG "%s: TE newstate %x\n", 926 __func__, dch->state); 927 switch (dch->state) { 928 case 0: 929 l1_event(dch->l1, HW_RESET_IND); 930 break; 931 case 3: 932 l1_event(dch->l1, HW_DEACT_IND); 933 break; 934 case 5: 935 case 8: 936 l1_event(dch->l1, ANYSIGNAL); 937 break; 938 case 6: 939 l1_event(dch->l1, INFO2); 940 break; 941 case 7: 942 l1_event(dch->l1, INFO4_P8); 943 break; 944 } 945 } 946 947 /* 948 * handle L1 state changes NT 949 */ 950 951 static void 952 handle_nt_timer3(struct dchannel *dch) { 953 struct hfc_pci *hc = dch->hw; 954 955 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 956 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 957 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 958 hc->hw.nt_timer = 0; 959 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 960 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 961 hc->hw.mst_m |= HFCPCI_MASTER; 962 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 963 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 964 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 965 } 966 967 static void 968 ph_state_nt(struct dchannel *dch) 969 { 970 struct hfc_pci *hc = dch->hw; 971 u_char val; 972 973 if (dch->debug) 974 printk(KERN_DEBUG "%s: NT newstate %x\n", 975 __func__, dch->state); 976 switch (dch->state) { 977 case 2: 978 if (hc->hw.nt_timer < 0) { 979 hc->hw.nt_timer = 0; 980 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 981 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 982 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 983 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 984 /* Clear already pending ints */ 985 val = Read_hfc(hc, HFCPCI_INT_S1); 986 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE); 987 udelay(10); 988 Write_hfc(hc, HFCPCI_STATES, 4); 989 dch->state = 4; 990 } else if (hc->hw.nt_timer == 0) { 991 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 992 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 993 hc->hw.nt_timer = NT_T1_COUNT; 994 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 995 hc->hw.ctmt |= HFCPCI_TIM3_125; 996 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 997 HFCPCI_CLTIMER); 998 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 999 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1000 /* allow G2 -> G3 transition */ 1001 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1002 } else { 1003 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1004 } 1005 break; 1006 case 1: 1007 hc->hw.nt_timer = 0; 1008 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1009 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1010 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1011 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1012 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1013 hc->hw.mst_m &= ~HFCPCI_MASTER; 1014 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1015 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1016 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 1017 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1018 break; 1019 case 4: 1020 hc->hw.nt_timer = 0; 1021 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1022 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1023 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1024 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1025 break; 1026 case 3: 1027 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) { 1028 if (!test_and_clear_bit(FLG_L2_ACTIVATED, 1029 &dch->Flags)) { 1030 handle_nt_timer3(dch); 1031 break; 1032 } 1033 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1034 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 1035 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1036 hc->hw.nt_timer = NT_T3_COUNT; 1037 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 1038 hc->hw.ctmt |= HFCPCI_TIM3_125; 1039 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 1040 HFCPCI_CLTIMER); 1041 } 1042 break; 1043 } 1044 } 1045 1046 static void 1047 ph_state(struct dchannel *dch) 1048 { 1049 struct hfc_pci *hc = dch->hw; 1050 1051 if (hc->hw.protocol == ISDN_P_NT_S0) { 1052 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) && 1053 hc->hw.nt_timer < 0) 1054 handle_nt_timer3(dch); 1055 else 1056 ph_state_nt(dch); 1057 } else 1058 ph_state_te(dch); 1059 } 1060 1061 /* 1062 * Layer 1 callback function 1063 */ 1064 static int 1065 hfc_l1callback(struct dchannel *dch, u_int cmd) 1066 { 1067 struct hfc_pci *hc = dch->hw; 1068 1069 switch (cmd) { 1070 case INFO3_P8: 1071 case INFO3_P10: 1072 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1073 hc->hw.mst_m |= HFCPCI_MASTER; 1074 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1075 break; 1076 case HW_RESET_REQ: 1077 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); 1078 /* HFC ST 3 */ 1079 udelay(6); 1080 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */ 1081 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1082 hc->hw.mst_m |= HFCPCI_MASTER; 1083 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1084 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1085 HFCPCI_DO_ACTION); 1086 l1_event(dch->l1, HW_POWERUP_IND); 1087 break; 1088 case HW_DEACT_REQ: 1089 hc->hw.mst_m &= ~HFCPCI_MASTER; 1090 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1091 skb_queue_purge(&dch->squeue); 1092 if (dch->tx_skb) { 1093 dev_kfree_skb(dch->tx_skb); 1094 dch->tx_skb = NULL; 1095 } 1096 dch->tx_idx = 0; 1097 if (dch->rx_skb) { 1098 dev_kfree_skb(dch->rx_skb); 1099 dch->rx_skb = NULL; 1100 } 1101 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1102 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1103 del_timer(&dch->timer); 1104 break; 1105 case HW_POWERUP_REQ: 1106 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION); 1107 break; 1108 case PH_ACTIVATE_IND: 1109 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 1110 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1111 GFP_ATOMIC); 1112 break; 1113 case PH_DEACTIVATE_IND: 1114 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1115 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1116 GFP_ATOMIC); 1117 break; 1118 default: 1119 if (dch->debug & DEBUG_HW) 1120 printk(KERN_DEBUG "%s: unknown command %x\n", 1121 __func__, cmd); 1122 return -1; 1123 } 1124 return 0; 1125 } 1126 1127 /* 1128 * Interrupt handler 1129 */ 1130 static inline void 1131 tx_birq(struct bchannel *bch) 1132 { 1133 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) 1134 hfcpci_fill_fifo(bch); 1135 else { 1136 if (bch->tx_skb) 1137 dev_kfree_skb(bch->tx_skb); 1138 if (get_next_bframe(bch)) 1139 hfcpci_fill_fifo(bch); 1140 } 1141 } 1142 1143 static inline void 1144 tx_dirq(struct dchannel *dch) 1145 { 1146 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len) 1147 hfcpci_fill_dfifo(dch->hw); 1148 else { 1149 if (dch->tx_skb) 1150 dev_kfree_skb(dch->tx_skb); 1151 if (get_next_dframe(dch)) 1152 hfcpci_fill_dfifo(dch->hw); 1153 } 1154 } 1155 1156 static irqreturn_t 1157 hfcpci_int(int intno, void *dev_id) 1158 { 1159 struct hfc_pci *hc = dev_id; 1160 u_char exval; 1161 struct bchannel *bch; 1162 u_char val, stat; 1163 1164 spin_lock(&hc->lock); 1165 if (!(hc->hw.int_m2 & 0x08)) { 1166 spin_unlock(&hc->lock); 1167 return IRQ_NONE; /* not initialised */ 1168 } 1169 stat = Read_hfc(hc, HFCPCI_STATUS); 1170 if (HFCPCI_ANYINT & stat) { 1171 val = Read_hfc(hc, HFCPCI_INT_S1); 1172 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1173 printk(KERN_DEBUG 1174 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val); 1175 } else { 1176 /* shared */ 1177 spin_unlock(&hc->lock); 1178 return IRQ_NONE; 1179 } 1180 hc->irqcnt++; 1181 1182 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1183 printk(KERN_DEBUG "HFC-PCI irq %x\n", val); 1184 val &= hc->hw.int_m1; 1185 if (val & 0x40) { /* state machine irq */ 1186 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf; 1187 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1188 printk(KERN_DEBUG "ph_state chg %d->%d\n", 1189 hc->dch.state, exval); 1190 hc->dch.state = exval; 1191 schedule_event(&hc->dch, FLG_PHCHANGE); 1192 val &= ~0x40; 1193 } 1194 if (val & 0x80) { /* timer irq */ 1195 if (hc->hw.protocol == ISDN_P_NT_S0) { 1196 if ((--hc->hw.nt_timer) < 0) 1197 schedule_event(&hc->dch, FLG_PHCHANGE); 1198 } 1199 val &= ~0x80; 1200 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); 1201 } 1202 if (val & 0x08) { /* B1 rx */ 1203 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1204 if (bch) 1205 main_rec_hfcpci(bch); 1206 else if (hc->dch.debug) 1207 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n"); 1208 } 1209 if (val & 0x10) { /* B2 rx */ 1210 bch = Sel_BCS(hc, 2); 1211 if (bch) 1212 main_rec_hfcpci(bch); 1213 else if (hc->dch.debug) 1214 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n"); 1215 } 1216 if (val & 0x01) { /* B1 tx */ 1217 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1218 if (bch) 1219 tx_birq(bch); 1220 else if (hc->dch.debug) 1221 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n"); 1222 } 1223 if (val & 0x02) { /* B2 tx */ 1224 bch = Sel_BCS(hc, 2); 1225 if (bch) 1226 tx_birq(bch); 1227 else if (hc->dch.debug) 1228 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n"); 1229 } 1230 if (val & 0x20) /* D rx */ 1231 receive_dmsg(hc); 1232 if (val & 0x04) { /* D tx */ 1233 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags)) 1234 del_timer(&hc->dch.timer); 1235 tx_dirq(&hc->dch); 1236 } 1237 spin_unlock(&hc->lock); 1238 return IRQ_HANDLED; 1239 } 1240 1241 /* 1242 * timer callback for D-chan busy resolution. Currently no function 1243 */ 1244 static void 1245 hfcpci_dbusy_timer(struct hfc_pci *hc) 1246 { 1247 } 1248 1249 /* 1250 * activate/deactivate hardware for selected channels and mode 1251 */ 1252 static int 1253 mode_hfcpci(struct bchannel *bch, int bc, int protocol) 1254 { 1255 struct hfc_pci *hc = bch->hw; 1256 int fifo2; 1257 u_char rx_slot = 0, tx_slot = 0, pcm_mode; 1258 1259 if (bch->debug & DEBUG_HW_BCHANNEL) 1260 printk(KERN_DEBUG 1261 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n", 1262 bch->state, protocol, bch->nr, bc); 1263 1264 fifo2 = bc; 1265 pcm_mode = (bc>>24) & 0xff; 1266 if (pcm_mode) { /* PCM SLOT USE */ 1267 if (!test_bit(HFC_CFG_PCM, &hc->cfg)) 1268 printk(KERN_WARNING 1269 "%s: pcm channel id without HFC_CFG_PCM\n", 1270 __func__); 1271 rx_slot = (bc>>8) & 0xff; 1272 tx_slot = (bc>>16) & 0xff; 1273 bc = bc & 0xff; 1274 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE)) 1275 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n", 1276 __func__); 1277 if (hc->chanlimit > 1) { 1278 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1279 hc->hw.sctrl_e &= ~0x80; 1280 } else { 1281 if (bc & 2) { 1282 if (protocol != ISDN_P_NONE) { 1283 hc->hw.bswapped = 1; /* B1 and B2 exchanged */ 1284 hc->hw.sctrl_e |= 0x80; 1285 } else { 1286 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1287 hc->hw.sctrl_e &= ~0x80; 1288 } 1289 fifo2 = 1; 1290 } else { 1291 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1292 hc->hw.sctrl_e &= ~0x80; 1293 } 1294 } 1295 switch (protocol) { 1296 case (-1): /* used for init */ 1297 bch->state = -1; 1298 bch->nr = bc; 1299 case (ISDN_P_NONE): 1300 if (bch->state == ISDN_P_NONE) 1301 return 0; 1302 if (bc & 2) { 1303 hc->hw.sctrl &= ~SCTRL_B2_ENA; 1304 hc->hw.sctrl_r &= ~SCTRL_B2_ENA; 1305 } else { 1306 hc->hw.sctrl &= ~SCTRL_B1_ENA; 1307 hc->hw.sctrl_r &= ~SCTRL_B1_ENA; 1308 } 1309 if (fifo2 & 2) { 1310 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2; 1311 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS + 1312 HFCPCI_INTS_B2REC); 1313 } else { 1314 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1; 1315 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS + 1316 HFCPCI_INTS_B1REC); 1317 } 1318 #ifdef REVERSE_BITORDER 1319 if (bch->nr & 2) 1320 hc->hw.cirm &= 0x7f; 1321 else 1322 hc->hw.cirm &= 0xbf; 1323 #endif 1324 bch->state = ISDN_P_NONE; 1325 bch->nr = bc; 1326 test_and_clear_bit(FLG_HDLC, &bch->Flags); 1327 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags); 1328 break; 1329 case (ISDN_P_B_RAW): 1330 bch->state = protocol; 1331 bch->nr = bc; 1332 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1333 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1334 if (bc & 2) { 1335 hc->hw.sctrl |= SCTRL_B2_ENA; 1336 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1337 #ifdef REVERSE_BITORDER 1338 hc->hw.cirm |= 0x80; 1339 #endif 1340 } else { 1341 hc->hw.sctrl |= SCTRL_B1_ENA; 1342 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1343 #ifdef REVERSE_BITORDER 1344 hc->hw.cirm |= 0x40; 1345 #endif 1346 } 1347 if (fifo2 & 2) { 1348 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1349 if (!tics) 1350 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS + 1351 HFCPCI_INTS_B2REC); 1352 hc->hw.ctmt |= 2; 1353 hc->hw.conn &= ~0x18; 1354 } else { 1355 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1356 if (!tics) 1357 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS + 1358 HFCPCI_INTS_B1REC); 1359 hc->hw.ctmt |= 1; 1360 hc->hw.conn &= ~0x03; 1361 } 1362 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags); 1363 break; 1364 case (ISDN_P_B_HDLC): 1365 bch->state = protocol; 1366 bch->nr = bc; 1367 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1368 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1369 if (bc & 2) { 1370 hc->hw.sctrl |= SCTRL_B2_ENA; 1371 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1372 } else { 1373 hc->hw.sctrl |= SCTRL_B1_ENA; 1374 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1375 } 1376 if (fifo2 & 2) { 1377 hc->hw.last_bfifo_cnt[1] = 0; 1378 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1379 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS + 1380 HFCPCI_INTS_B2REC); 1381 hc->hw.ctmt &= ~2; 1382 hc->hw.conn &= ~0x18; 1383 } else { 1384 hc->hw.last_bfifo_cnt[0] = 0; 1385 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1386 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS + 1387 HFCPCI_INTS_B1REC); 1388 hc->hw.ctmt &= ~1; 1389 hc->hw.conn &= ~0x03; 1390 } 1391 test_and_set_bit(FLG_HDLC, &bch->Flags); 1392 break; 1393 default: 1394 printk(KERN_DEBUG "prot not known %x\n", protocol); 1395 return -ENOPROTOOPT; 1396 } 1397 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 1398 if ((protocol == ISDN_P_NONE) || 1399 (protocol == -1)) { /* init case */ 1400 rx_slot = 0; 1401 tx_slot = 0; 1402 } else { 1403 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 1404 rx_slot |= 0xC0; 1405 tx_slot |= 0xC0; 1406 } else { 1407 rx_slot |= 0x80; 1408 tx_slot |= 0x80; 1409 } 1410 } 1411 if (bc & 2) { 1412 hc->hw.conn &= 0xc7; 1413 hc->hw.conn |= 0x08; 1414 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n", 1415 __func__, tx_slot); 1416 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n", 1417 __func__, rx_slot); 1418 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot); 1419 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot); 1420 } else { 1421 hc->hw.conn &= 0xf8; 1422 hc->hw.conn |= 0x01; 1423 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n", 1424 __func__, tx_slot); 1425 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n", 1426 __func__, rx_slot); 1427 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot); 1428 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot); 1429 } 1430 } 1431 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 1432 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1433 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1434 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 1435 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1436 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1437 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1438 #ifdef REVERSE_BITORDER 1439 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1440 #endif 1441 return 0; 1442 } 1443 1444 static int 1445 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) 1446 { 1447 struct hfc_pci *hc = bch->hw; 1448 1449 if (bch->debug & DEBUG_HW_BCHANNEL) 1450 printk(KERN_DEBUG 1451 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n", 1452 bch->state, protocol, bch->nr, chan); 1453 if (bch->nr != chan) { 1454 printk(KERN_DEBUG 1455 "HFCPCI rxtest wrong channel parameter %x/%x\n", 1456 bch->nr, chan); 1457 return -EINVAL; 1458 } 1459 switch (protocol) { 1460 case (ISDN_P_B_RAW): 1461 bch->state = protocol; 1462 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1463 if (chan & 2) { 1464 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1465 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1466 if (!tics) 1467 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1468 hc->hw.ctmt |= 2; 1469 hc->hw.conn &= ~0x18; 1470 #ifdef REVERSE_BITORDER 1471 hc->hw.cirm |= 0x80; 1472 #endif 1473 } else { 1474 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1475 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1476 if (!tics) 1477 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1478 hc->hw.ctmt |= 1; 1479 hc->hw.conn &= ~0x03; 1480 #ifdef REVERSE_BITORDER 1481 hc->hw.cirm |= 0x40; 1482 #endif 1483 } 1484 break; 1485 case (ISDN_P_B_HDLC): 1486 bch->state = protocol; 1487 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1488 if (chan & 2) { 1489 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1490 hc->hw.last_bfifo_cnt[1] = 0; 1491 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1492 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1493 hc->hw.ctmt &= ~2; 1494 hc->hw.conn &= ~0x18; 1495 } else { 1496 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1497 hc->hw.last_bfifo_cnt[0] = 0; 1498 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1499 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1500 hc->hw.ctmt &= ~1; 1501 hc->hw.conn &= ~0x03; 1502 } 1503 break; 1504 default: 1505 printk(KERN_DEBUG "prot not known %x\n", protocol); 1506 return -ENOPROTOOPT; 1507 } 1508 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1509 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1510 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1511 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1512 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1513 #ifdef REVERSE_BITORDER 1514 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1515 #endif 1516 return 0; 1517 } 1518 1519 static void 1520 deactivate_bchannel(struct bchannel *bch) 1521 { 1522 struct hfc_pci *hc = bch->hw; 1523 u_long flags; 1524 1525 spin_lock_irqsave(&hc->lock, flags); 1526 mISDN_clear_bchannel(bch); 1527 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1528 spin_unlock_irqrestore(&hc->lock, flags); 1529 } 1530 1531 /* 1532 * Layer 1 B-channel hardware access 1533 */ 1534 static int 1535 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 1536 { 1537 int ret = 0; 1538 1539 switch (cq->op) { 1540 case MISDN_CTRL_GETOP: 1541 cq->op = MISDN_CTRL_FILL_EMPTY; 1542 break; 1543 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */ 1544 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags); 1545 if (debug & DEBUG_HW_OPEN) 1546 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d " 1547 "off=%d)\n", __func__, bch->nr, !!cq->p1); 1548 break; 1549 default: 1550 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); 1551 ret = -EINVAL; 1552 break; 1553 } 1554 return ret; 1555 } 1556 static int 1557 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1558 { 1559 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1560 struct hfc_pci *hc = bch->hw; 1561 int ret = -EINVAL; 1562 u_long flags; 1563 1564 if (bch->debug & DEBUG_HW) 1565 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); 1566 switch (cmd) { 1567 case HW_TESTRX_RAW: 1568 spin_lock_irqsave(&hc->lock, flags); 1569 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg); 1570 spin_unlock_irqrestore(&hc->lock, flags); 1571 break; 1572 case HW_TESTRX_HDLC: 1573 spin_lock_irqsave(&hc->lock, flags); 1574 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg); 1575 spin_unlock_irqrestore(&hc->lock, flags); 1576 break; 1577 case HW_TESTRX_OFF: 1578 spin_lock_irqsave(&hc->lock, flags); 1579 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1580 spin_unlock_irqrestore(&hc->lock, flags); 1581 ret = 0; 1582 break; 1583 case CLOSE_CHANNEL: 1584 test_and_clear_bit(FLG_OPEN, &bch->Flags); 1585 if (test_bit(FLG_ACTIVE, &bch->Flags)) 1586 deactivate_bchannel(bch); 1587 ch->protocol = ISDN_P_NONE; 1588 ch->peer = NULL; 1589 module_put(THIS_MODULE); 1590 ret = 0; 1591 break; 1592 case CONTROL_CHANNEL: 1593 ret = channel_bctrl(bch, arg); 1594 break; 1595 default: 1596 printk(KERN_WARNING "%s: unknown prim(%x)\n", 1597 __func__, cmd); 1598 } 1599 return ret; 1600 } 1601 1602 /* 1603 * Layer2 -> Layer 1 Dchannel data 1604 */ 1605 static int 1606 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) 1607 { 1608 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1609 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1610 struct hfc_pci *hc = dch->hw; 1611 int ret = -EINVAL; 1612 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1613 unsigned int id; 1614 u_long flags; 1615 1616 switch (hh->prim) { 1617 case PH_DATA_REQ: 1618 spin_lock_irqsave(&hc->lock, flags); 1619 ret = dchannel_senddata(dch, skb); 1620 if (ret > 0) { /* direct TX */ 1621 id = hh->id; /* skb can be freed */ 1622 hfcpci_fill_dfifo(dch->hw); 1623 ret = 0; 1624 spin_unlock_irqrestore(&hc->lock, flags); 1625 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 1626 } else 1627 spin_unlock_irqrestore(&hc->lock, flags); 1628 return ret; 1629 case PH_ACTIVATE_REQ: 1630 spin_lock_irqsave(&hc->lock, flags); 1631 if (hc->hw.protocol == ISDN_P_NT_S0) { 1632 ret = 0; 1633 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1634 hc->hw.mst_m |= HFCPCI_MASTER; 1635 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1636 if (test_bit(FLG_ACTIVE, &dch->Flags)) { 1637 spin_unlock_irqrestore(&hc->lock, flags); 1638 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 1639 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1640 break; 1641 } 1642 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); 1643 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1644 HFCPCI_DO_ACTION | 1); 1645 } else 1646 ret = l1_event(dch->l1, hh->prim); 1647 spin_unlock_irqrestore(&hc->lock, flags); 1648 break; 1649 case PH_DEACTIVATE_REQ: 1650 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1651 spin_lock_irqsave(&hc->lock, flags); 1652 if (hc->hw.protocol == ISDN_P_NT_S0) { 1653 /* prepare deactivation */ 1654 Write_hfc(hc, HFCPCI_STATES, 0x40); 1655 skb_queue_purge(&dch->squeue); 1656 if (dch->tx_skb) { 1657 dev_kfree_skb(dch->tx_skb); 1658 dch->tx_skb = NULL; 1659 } 1660 dch->tx_idx = 0; 1661 if (dch->rx_skb) { 1662 dev_kfree_skb(dch->rx_skb); 1663 dch->rx_skb = NULL; 1664 } 1665 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1666 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1667 del_timer(&dch->timer); 1668 #ifdef FIXME 1669 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 1670 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 1671 #endif 1672 hc->hw.mst_m &= ~HFCPCI_MASTER; 1673 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1674 ret = 0; 1675 } else { 1676 ret = l1_event(dch->l1, hh->prim); 1677 } 1678 spin_unlock_irqrestore(&hc->lock, flags); 1679 break; 1680 } 1681 if (!ret) 1682 dev_kfree_skb(skb); 1683 return ret; 1684 } 1685 1686 /* 1687 * Layer2 -> Layer 1 Bchannel data 1688 */ 1689 static int 1690 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) 1691 { 1692 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1693 struct hfc_pci *hc = bch->hw; 1694 int ret = -EINVAL; 1695 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1696 unsigned int id; 1697 u_long flags; 1698 1699 switch (hh->prim) { 1700 case PH_DATA_REQ: 1701 spin_lock_irqsave(&hc->lock, flags); 1702 ret = bchannel_senddata(bch, skb); 1703 if (ret > 0) { /* direct TX */ 1704 id = hh->id; /* skb can be freed */ 1705 hfcpci_fill_fifo(bch); 1706 ret = 0; 1707 spin_unlock_irqrestore(&hc->lock, flags); 1708 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) 1709 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 1710 } else 1711 spin_unlock_irqrestore(&hc->lock, flags); 1712 return ret; 1713 case PH_ACTIVATE_REQ: 1714 spin_lock_irqsave(&hc->lock, flags); 1715 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) 1716 ret = mode_hfcpci(bch, bch->nr, ch->protocol); 1717 else 1718 ret = 0; 1719 spin_unlock_irqrestore(&hc->lock, flags); 1720 if (!ret) 1721 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, 1722 NULL, GFP_KERNEL); 1723 break; 1724 case PH_DEACTIVATE_REQ: 1725 deactivate_bchannel(bch); 1726 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, 1727 NULL, GFP_KERNEL); 1728 ret = 0; 1729 break; 1730 } 1731 if (!ret) 1732 dev_kfree_skb(skb); 1733 return ret; 1734 } 1735 1736 /* 1737 * called for card init message 1738 */ 1739 1740 static void 1741 inithfcpci(struct hfc_pci *hc) 1742 { 1743 printk(KERN_DEBUG "inithfcpci: entered\n"); 1744 hc->dch.timer.function = (void *) hfcpci_dbusy_timer; 1745 hc->dch.timer.data = (long) &hc->dch; 1746 init_timer(&hc->dch.timer); 1747 hc->chanlimit = 2; 1748 mode_hfcpci(&hc->bch[0], 1, -1); 1749 mode_hfcpci(&hc->bch[1], 2, -1); 1750 } 1751 1752 1753 static int 1754 init_card(struct hfc_pci *hc) 1755 { 1756 int cnt = 3; 1757 u_long flags; 1758 1759 printk(KERN_DEBUG "init_card: entered\n"); 1760 1761 1762 spin_lock_irqsave(&hc->lock, flags); 1763 disable_hwirq(hc); 1764 spin_unlock_irqrestore(&hc->lock, flags); 1765 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) { 1766 printk(KERN_WARNING 1767 "mISDN: couldn't get interrupt %d\n", hc->irq); 1768 return -EIO; 1769 } 1770 spin_lock_irqsave(&hc->lock, flags); 1771 reset_hfcpci(hc); 1772 while (cnt) { 1773 inithfcpci(hc); 1774 /* 1775 * Finally enable IRQ output 1776 * this is only allowed, if an IRQ routine is already 1777 * established for this HFC, so don't do that earlier 1778 */ 1779 enable_hwirq(hc); 1780 spin_unlock_irqrestore(&hc->lock, flags); 1781 /* Timeout 80ms */ 1782 current->state = TASK_UNINTERRUPTIBLE; 1783 schedule_timeout((80*HZ)/1000); 1784 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n", 1785 hc->irq, hc->irqcnt); 1786 /* now switch timer interrupt off */ 1787 spin_lock_irqsave(&hc->lock, flags); 1788 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1789 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1790 /* reinit mode reg */ 1791 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1792 if (!hc->irqcnt) { 1793 printk(KERN_WARNING 1794 "HFC PCI: IRQ(%d) getting no interrupts " 1795 "during init %d\n", hc->irq, 4 - cnt); 1796 if (cnt == 1) 1797 break; 1798 else { 1799 reset_hfcpci(hc); 1800 cnt--; 1801 } 1802 } else { 1803 spin_unlock_irqrestore(&hc->lock, flags); 1804 hc->initdone = 1; 1805 return 0; 1806 } 1807 } 1808 disable_hwirq(hc); 1809 spin_unlock_irqrestore(&hc->lock, flags); 1810 free_irq(hc->irq, hc); 1811 return -EIO; 1812 } 1813 1814 static int 1815 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq) 1816 { 1817 int ret = 0; 1818 u_char slot; 1819 1820 switch (cq->op) { 1821 case MISDN_CTRL_GETOP: 1822 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | 1823 MISDN_CTRL_DISCONNECT; 1824 break; 1825 case MISDN_CTRL_LOOP: 1826 /* channel 0 disabled loop */ 1827 if (cq->channel < 0 || cq->channel > 2) { 1828 ret = -EINVAL; 1829 break; 1830 } 1831 if (cq->channel & 1) { 1832 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1833 slot = 0xC0; 1834 else 1835 slot = 0x80; 1836 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1837 __func__, slot); 1838 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1839 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1840 hc->hw.conn = (hc->hw.conn & ~7) | 6; 1841 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1842 } 1843 if (cq->channel & 2) { 1844 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1845 slot = 0xC1; 1846 else 1847 slot = 0x81; 1848 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1849 __func__, slot); 1850 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1851 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1852 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30; 1853 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1854 } 1855 if (cq->channel & 3) 1856 hc->hw.trm |= 0x80; /* enable IOM-loop */ 1857 else { 1858 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1859 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1860 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1861 } 1862 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1863 break; 1864 case MISDN_CTRL_CONNECT: 1865 if (cq->channel == cq->p1) { 1866 ret = -EINVAL; 1867 break; 1868 } 1869 if (cq->channel < 1 || cq->channel > 2 || 1870 cq->p1 < 1 || cq->p1 > 2) { 1871 ret = -EINVAL; 1872 break; 1873 } 1874 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1875 slot = 0xC0; 1876 else 1877 slot = 0x80; 1878 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1879 __func__, slot); 1880 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1881 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1882 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1883 slot = 0xC1; 1884 else 1885 slot = 0x81; 1886 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1887 __func__, slot); 1888 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1889 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1890 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36; 1891 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1892 hc->hw.trm |= 0x80; 1893 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1894 break; 1895 case MISDN_CTRL_DISCONNECT: 1896 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1897 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1898 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1899 break; 1900 default: 1901 printk(KERN_WARNING "%s: unknown Op %x\n", 1902 __func__, cq->op); 1903 ret = -EINVAL; 1904 break; 1905 } 1906 return ret; 1907 } 1908 1909 static int 1910 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, 1911 struct channel_req *rq) 1912 { 1913 int err = 0; 1914 1915 if (debug & DEBUG_HW_OPEN) 1916 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, 1917 hc->dch.dev.id, __builtin_return_address(0)); 1918 if (rq->protocol == ISDN_P_NONE) 1919 return -EINVAL; 1920 if (rq->adr.channel == 1) { 1921 /* TODO: E-Channel */ 1922 return -EINVAL; 1923 } 1924 if (!hc->initdone) { 1925 if (rq->protocol == ISDN_P_TE_S0) { 1926 err = create_l1(&hc->dch, hfc_l1callback); 1927 if (err) 1928 return err; 1929 } 1930 hc->hw.protocol = rq->protocol; 1931 ch->protocol = rq->protocol; 1932 err = init_card(hc); 1933 if (err) 1934 return err; 1935 } else { 1936 if (rq->protocol != ch->protocol) { 1937 if (hc->hw.protocol == ISDN_P_TE_S0) 1938 l1_event(hc->dch.l1, CLOSE_CHANNEL); 1939 if (rq->protocol == ISDN_P_TE_S0) { 1940 err = create_l1(&hc->dch, hfc_l1callback); 1941 if (err) 1942 return err; 1943 } 1944 hc->hw.protocol = rq->protocol; 1945 ch->protocol = rq->protocol; 1946 hfcpci_setmode(hc); 1947 } 1948 } 1949 1950 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) || 1951 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) { 1952 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 1953 0, NULL, GFP_KERNEL); 1954 } 1955 rq->ch = ch; 1956 if (!try_module_get(THIS_MODULE)) 1957 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1958 return 0; 1959 } 1960 1961 static int 1962 open_bchannel(struct hfc_pci *hc, struct channel_req *rq) 1963 { 1964 struct bchannel *bch; 1965 1966 if (rq->adr.channel > 2) 1967 return -EINVAL; 1968 if (rq->protocol == ISDN_P_NONE) 1969 return -EINVAL; 1970 bch = &hc->bch[rq->adr.channel - 1]; 1971 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 1972 return -EBUSY; /* b-channel can be only open once */ 1973 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags); 1974 bch->ch.protocol = rq->protocol; 1975 rq->ch = &bch->ch; /* TODO: E-channel */ 1976 if (!try_module_get(THIS_MODULE)) 1977 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1978 return 0; 1979 } 1980 1981 /* 1982 * device control function 1983 */ 1984 static int 1985 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1986 { 1987 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1988 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1989 struct hfc_pci *hc = dch->hw; 1990 struct channel_req *rq; 1991 int err = 0; 1992 1993 if (dch->debug & DEBUG_HW) 1994 printk(KERN_DEBUG "%s: cmd:%x %p\n", 1995 __func__, cmd, arg); 1996 switch (cmd) { 1997 case OPEN_CHANNEL: 1998 rq = arg; 1999 if ((rq->protocol == ISDN_P_TE_S0) || 2000 (rq->protocol == ISDN_P_NT_S0)) 2001 err = open_dchannel(hc, ch, rq); 2002 else 2003 err = open_bchannel(hc, rq); 2004 break; 2005 case CLOSE_CHANNEL: 2006 if (debug & DEBUG_HW_OPEN) 2007 printk(KERN_DEBUG "%s: dev(%d) close from %p\n", 2008 __func__, hc->dch.dev.id, 2009 __builtin_return_address(0)); 2010 module_put(THIS_MODULE); 2011 break; 2012 case CONTROL_CHANNEL: 2013 err = channel_ctrl(hc, arg); 2014 break; 2015 default: 2016 if (dch->debug & DEBUG_HW) 2017 printk(KERN_DEBUG "%s: unknown command %x\n", 2018 __func__, cmd); 2019 return -EINVAL; 2020 } 2021 return err; 2022 } 2023 2024 static int 2025 setup_hw(struct hfc_pci *hc) 2026 { 2027 void *buffer; 2028 2029 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision); 2030 hc->hw.cirm = 0; 2031 hc->dch.state = 0; 2032 pci_set_master(hc->pdev); 2033 if (!hc->irq) { 2034 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n"); 2035 return 1; 2036 } 2037 hc->hw.pci_io = 2038 (char __iomem *)(unsigned long)hc->pdev->resource[1].start; 2039 2040 if (!hc->hw.pci_io) { 2041 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n"); 2042 return 1; 2043 } 2044 /* Allocate memory for FIFOS */ 2045 /* the memory needs to be on a 32k boundary within the first 4G */ 2046 pci_set_dma_mask(hc->pdev, 0xFFFF8000); 2047 buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle); 2048 /* We silently assume the address is okay if nonzero */ 2049 if (!buffer) { 2050 printk(KERN_WARNING 2051 "HFC-PCI: Error allocating memory for FIFO!\n"); 2052 return 1; 2053 } 2054 hc->hw.fifos = buffer; 2055 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle); 2056 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256); 2057 printk(KERN_INFO 2058 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n", 2059 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos, 2060 (u_long) hc->hw.dmahandle, hc->irq, HZ); 2061 /* enable memory mapped ports, disable busmaster */ 2062 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 2063 hc->hw.int_m2 = 0; 2064 disable_hwirq(hc); 2065 hc->hw.int_m1 = 0; 2066 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 2067 /* At this point the needed PCI config is done */ 2068 /* fifos are still not enabled */ 2069 hc->hw.timer.function = (void *) hfcpci_Timer; 2070 hc->hw.timer.data = (long) hc; 2071 init_timer(&hc->hw.timer); 2072 /* default PCM master */ 2073 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg); 2074 return 0; 2075 } 2076 2077 static void 2078 release_card(struct hfc_pci *hc) { 2079 u_long flags; 2080 2081 spin_lock_irqsave(&hc->lock, flags); 2082 hc->hw.int_m2 = 0; /* interrupt output off ! */ 2083 disable_hwirq(hc); 2084 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE); 2085 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE); 2086 if (hc->dch.timer.function != NULL) { 2087 del_timer(&hc->dch.timer); 2088 hc->dch.timer.function = NULL; 2089 } 2090 spin_unlock_irqrestore(&hc->lock, flags); 2091 if (hc->hw.protocol == ISDN_P_TE_S0) 2092 l1_event(hc->dch.l1, CLOSE_CHANNEL); 2093 if (hc->initdone) 2094 free_irq(hc->irq, hc); 2095 release_io_hfcpci(hc); /* must release after free_irq! */ 2096 mISDN_unregister_device(&hc->dch.dev); 2097 mISDN_freebchannel(&hc->bch[1]); 2098 mISDN_freebchannel(&hc->bch[0]); 2099 mISDN_freedchannel(&hc->dch); 2100 pci_set_drvdata(hc->pdev, NULL); 2101 kfree(hc); 2102 } 2103 2104 static int 2105 setup_card(struct hfc_pci *card) 2106 { 2107 int err = -EINVAL; 2108 u_int i; 2109 char name[MISDN_MAX_IDLEN]; 2110 2111 card->dch.debug = debug; 2112 spin_lock_init(&card->lock); 2113 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state); 2114 card->dch.hw = card; 2115 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 2116 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 2117 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 2118 card->dch.dev.D.send = hfcpci_l2l1D; 2119 card->dch.dev.D.ctrl = hfc_dctrl; 2120 card->dch.dev.nrbchan = 2; 2121 for (i = 0; i < 2; i++) { 2122 card->bch[i].nr = i + 1; 2123 set_channelmap(i + 1, card->dch.dev.channelmap); 2124 card->bch[i].debug = debug; 2125 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM); 2126 card->bch[i].hw = card; 2127 card->bch[i].ch.send = hfcpci_l2l1B; 2128 card->bch[i].ch.ctrl = hfc_bctrl; 2129 card->bch[i].ch.nr = i + 1; 2130 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels); 2131 } 2132 err = setup_hw(card); 2133 if (err) 2134 goto error; 2135 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1); 2136 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name); 2137 if (err) 2138 goto error; 2139 HFC_cnt++; 2140 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt); 2141 return 0; 2142 error: 2143 mISDN_freebchannel(&card->bch[1]); 2144 mISDN_freebchannel(&card->bch[0]); 2145 mISDN_freedchannel(&card->dch); 2146 kfree(card); 2147 return err; 2148 } 2149 2150 /* private data in the PCI devices list */ 2151 struct _hfc_map { 2152 u_int subtype; 2153 u_int flag; 2154 char *name; 2155 }; 2156 2157 static const struct _hfc_map hfc_map[] = 2158 { 2159 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"}, 2160 {HFC_CCD_B000, 0, "Billion B000"}, 2161 {HFC_CCD_B006, 0, "Billion B006"}, 2162 {HFC_CCD_B007, 0, "Billion B007"}, 2163 {HFC_CCD_B008, 0, "Billion B008"}, 2164 {HFC_CCD_B009, 0, "Billion B009"}, 2165 {HFC_CCD_B00A, 0, "Billion B00A"}, 2166 {HFC_CCD_B00B, 0, "Billion B00B"}, 2167 {HFC_CCD_B00C, 0, "Billion B00C"}, 2168 {HFC_CCD_B100, 0, "Seyeon B100"}, 2169 {HFC_CCD_B700, 0, "Primux II S0 B700"}, 2170 {HFC_CCD_B701, 0, "Primux II S0 NT B701"}, 2171 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"}, 2172 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"}, 2173 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"}, 2174 {HFC_BERKOM_A1T, 0, "German telekom A1T"}, 2175 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"}, 2176 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"}, 2177 {HFC_DIGI_DF_M_IOM2_E, 0, 2178 "Digi International DataFire Micro V IOM2 (Europe)"}, 2179 {HFC_DIGI_DF_M_E, 0, 2180 "Digi International DataFire Micro V (Europe)"}, 2181 {HFC_DIGI_DF_M_IOM2_A, 0, 2182 "Digi International DataFire Micro V IOM2 (North America)"}, 2183 {HFC_DIGI_DF_M_A, 0, 2184 "Digi International DataFire Micro V (North America)"}, 2185 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"}, 2186 {}, 2187 }; 2188 2189 static struct pci_device_id hfc_ids[] = 2190 { 2191 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0), 2192 (unsigned long) &hfc_map[0] }, 2193 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000), 2194 (unsigned long) &hfc_map[1] }, 2195 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006), 2196 (unsigned long) &hfc_map[2] }, 2197 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007), 2198 (unsigned long) &hfc_map[3] }, 2199 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008), 2200 (unsigned long) &hfc_map[4] }, 2201 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009), 2202 (unsigned long) &hfc_map[5] }, 2203 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A), 2204 (unsigned long) &hfc_map[6] }, 2205 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B), 2206 (unsigned long) &hfc_map[7] }, 2207 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C), 2208 (unsigned long) &hfc_map[8] }, 2209 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100), 2210 (unsigned long) &hfc_map[9] }, 2211 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700), 2212 (unsigned long) &hfc_map[10] }, 2213 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701), 2214 (unsigned long) &hfc_map[11] }, 2215 { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1), 2216 (unsigned long) &hfc_map[12] }, 2217 { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675), 2218 (unsigned long) &hfc_map[13] }, 2219 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT), 2220 (unsigned long) &hfc_map[14] }, 2221 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T), 2222 (unsigned long) &hfc_map[15] }, 2223 { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575), 2224 (unsigned long) &hfc_map[16] }, 2225 { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0), 2226 (unsigned long) &hfc_map[17] }, 2227 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E), 2228 (unsigned long) &hfc_map[18] }, 2229 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E), 2230 (unsigned long) &hfc_map[19] }, 2231 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A), 2232 (unsigned long) &hfc_map[20] }, 2233 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A), 2234 (unsigned long) &hfc_map[21] }, 2235 { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2), 2236 (unsigned long) &hfc_map[22] }, 2237 {}, 2238 }; 2239 2240 static int __devinit 2241 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2242 { 2243 int err = -ENOMEM; 2244 struct hfc_pci *card; 2245 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data; 2246 2247 card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC); 2248 if (!card) { 2249 printk(KERN_ERR "No kmem for HFC card\n"); 2250 return err; 2251 } 2252 card->pdev = pdev; 2253 card->subtype = m->subtype; 2254 err = pci_enable_device(pdev); 2255 if (err) { 2256 kfree(card); 2257 return err; 2258 } 2259 2260 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n", 2261 m->name, pci_name(pdev)); 2262 2263 card->irq = pdev->irq; 2264 pci_set_drvdata(pdev, card); 2265 err = setup_card(card); 2266 if (err) 2267 pci_set_drvdata(pdev, NULL); 2268 return err; 2269 } 2270 2271 static void __devexit 2272 hfc_remove_pci(struct pci_dev *pdev) 2273 { 2274 struct hfc_pci *card = pci_get_drvdata(pdev); 2275 2276 if (card) 2277 release_card(card); 2278 else 2279 if (debug) 2280 printk(KERN_DEBUG "%s: drvdata already removed\n", 2281 __func__); 2282 } 2283 2284 2285 static struct pci_driver hfc_driver = { 2286 .name = "hfcpci", 2287 .probe = hfc_probe, 2288 .remove = __devexit_p(hfc_remove_pci), 2289 .id_table = hfc_ids, 2290 }; 2291 2292 static int 2293 _hfcpci_softirq(struct device *dev, void *arg) 2294 { 2295 struct hfc_pci *hc = dev_get_drvdata(dev); 2296 struct bchannel *bch; 2297 if (hc == NULL) 2298 return 0; 2299 2300 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) { 2301 spin_lock(&hc->lock); 2302 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 2303 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */ 2304 main_rec_hfcpci(bch); 2305 tx_birq(bch); 2306 } 2307 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2); 2308 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */ 2309 main_rec_hfcpci(bch); 2310 tx_birq(bch); 2311 } 2312 spin_unlock(&hc->lock); 2313 } 2314 return 0; 2315 } 2316 2317 static void 2318 hfcpci_softirq(void *arg) 2319 { 2320 (void) driver_for_each_device(&hfc_driver.driver, NULL, arg, 2321 _hfcpci_softirq); 2322 2323 /* if next event would be in the past ... */ 2324 if ((s32)(hfc_jiffies + tics - jiffies) <= 0) 2325 hfc_jiffies = jiffies + 1; 2326 else 2327 hfc_jiffies += tics; 2328 hfc_tl.expires = hfc_jiffies; 2329 add_timer(&hfc_tl); 2330 } 2331 2332 static int __init 2333 HFC_init(void) 2334 { 2335 int err; 2336 2337 if (!poll) 2338 poll = HFCPCI_BTRANS_THRESHOLD; 2339 2340 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2341 tics = (poll * HZ) / 8000; 2342 if (tics < 1) 2343 tics = 1; 2344 poll = (tics * 8000) / HZ; 2345 if (poll > 256 || poll < 8) { 2346 printk(KERN_ERR "%s: Wrong poll value %d not in range " 2347 "of 8..256.\n", __func__, poll); 2348 err = -EINVAL; 2349 return err; 2350 } 2351 } 2352 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2353 printk(KERN_INFO "%s: Using alternative poll value of %d\n", 2354 __func__, poll); 2355 hfc_tl.function = (void *)hfcpci_softirq; 2356 hfc_tl.data = 0; 2357 init_timer(&hfc_tl); 2358 hfc_tl.expires = jiffies + tics; 2359 hfc_jiffies = hfc_tl.expires; 2360 add_timer(&hfc_tl); 2361 } else 2362 tics = 0; /* indicate the use of controller's timer */ 2363 2364 err = pci_register_driver(&hfc_driver); 2365 if (err) { 2366 if (timer_pending(&hfc_tl)) 2367 del_timer(&hfc_tl); 2368 } 2369 2370 return err; 2371 } 2372 2373 static void __exit 2374 HFC_cleanup(void) 2375 { 2376 if (timer_pending(&hfc_tl)) 2377 del_timer(&hfc_tl); 2378 2379 pci_unregister_driver(&hfc_driver); 2380 } 2381 2382 module_init(HFC_init); 2383 module_exit(HFC_cleanup); 2384 2385 MODULE_DEVICE_TABLE(pci, hfc_ids); 2386