1 /*
2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3  *
4  * Author	Andreas Eversberg (jolly@eversberg.eu)
5  * ported to mqueue mechanism:
6  *		Peter Sprenger (sprengermoving-bytes.de)
7  *
8  * inspired by existing hfc-pci driver:
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * Thanks to Cologne Chip AG for this great controller!
29  */
30 
31 /*
32  * module parameters:
33  * type:
34  *	By default (0), the card is automatically detected.
35  *	Or use the following combinations:
36  *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37  * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38  * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39  *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
40  *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41  *	Bit 10    = spare
42  *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44  *	Bit 13	  = spare
45  *	Bit 14    = 0x04000 = Use external ram (128K)
46  *	Bit 15    = 0x08000 = Use external ram (512K)
47  *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48  * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49  *	Bit 18    = spare
50  *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51  * (all other bits are reserved and shall be 0)
52  *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53  *		 bus (PCM master)
54  *
55  * port: (optional or required for all ports on all installed cards)
56  *	HFC-4S/HFC-8S only bits:
57  *	Bit 0	  = 0x001 = Use master clock for this S/T interface
58  *			    (ony once per chip).
59  *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60  *			    Don't use this unless you know what you are doing!
61  *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62  *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63  *		 received from port 1
64  *
65  *	HFC-E1 only bits:
66  *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67  *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68  *	Bit 2     = 0x0004 = Report LOS
69  *	Bit 3     = 0x0008 = Report AIS
70  *	Bit 4     = 0x0010 = Report SLIP
71  *	Bit 5     = 0x0020 = Report RDI
72  *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73  *			     mode instead.
74  *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
75  * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
76  *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77  *			     (E1 only)
78  *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79  *			     for default.
80  * (all other bits are reserved and shall be 0)
81  *
82  * debug:
83  *	NOTE: only one debug value must be given for all cards
84  *	enable debugging (see hfc_multi.h for debug options)
85  *
86  * poll:
87  *	NOTE: only one poll value must be given for all cards
88  *	Give the number of samples for each fifo process.
89  *	By default 128 is used. Decrease to reduce delay, increase to
90  *	reduce cpu load. If unsure, don't mess with it!
91  *	Valid is 8, 16, 32, 64, 128, 256.
92  *
93  * pcm:
94  *	NOTE: only one pcm value must be given for every card.
95  *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96  *	By default (0), the PCM bus id is 100 for the card that is PCM master.
97  *	If multiple cards are PCM master (because they are not interconnected),
98  *	each card with PCM master will have increasing PCM id.
99  *	All PCM busses with the same ID are expected to be connected and have
100  *	common time slots slots.
101  *	Only one chip of the PCM bus must be master, the others slave.
102  *	-1 means no support of PCM bus not even.
103  *	Omit this value, if all cards are interconnected or none is connected.
104  *	If unsure, don't give this parameter.
105  *
106  * dslot:
107  *	NOTE: only one poll value must be given for every card.
108  *	Also this value must be given for non-E1 cards. If omitted, the E1
109  *	card has D-channel on time slot 16, which is default.
110  *	If 1..15 or 17..31, an alternate time slot is used for D-channel.
111  *	In this case, the application must be able to handle this.
112  *	If -1 is given, the D-channel is disabled and all 31 slots can be used
113  *	for B-channel. (only for specific applications)
114  *	If you don't know how to use it, you don't need it!
115  *
116  * iomode:
117  *	NOTE: only one mode value must be given for every card.
118  *	-> See hfc_multi.h for HFC_IO_MODE_* values
119  *	By default, the IO mode is pci memory IO (MEMIO).
120  *	Some cards requre specific IO mode, so it cannot be changed.
121  *	It may be usefull to set IO mode to register io (REGIO) to solve
122  *	PCI bridge problems.
123  *	If unsure, don't give this parameter.
124  *
125  * clockdelay_nt:
126  *	NOTE: only one clockdelay_nt value must be given once for all cards.
127  *	Give the value of the clock control register (A_ST_CLK_DLY)
128  *	of the S/T interfaces in NT mode.
129  *	This register is needed for the TBR3 certification, so don't change it.
130  *
131  * clockdelay_te:
132  *	NOTE: only one clockdelay_te value must be given once
133  *	Give the value of the clock control register (A_ST_CLK_DLY)
134  *	of the S/T interfaces in TE mode.
135  *	This register is needed for the TBR3 certification, so don't change it.
136  */
137 
138 /*
139  * debug register access (never use this, it will flood your system log)
140  * #define HFC_REGISTER_DEBUG
141  */
142 
143 static const char *hfcmulti_revision = "2.00";
144 
145 #include <linux/module.h>
146 #include <linux/pci.h>
147 #include <linux/delay.h>
148 #include <linux/mISDNhw.h>
149 #include <linux/mISDNdsp.h>
150 
151 /*
152 #define IRQCOUNT_DEBUG
153 #define IRQ_DEBUG
154 */
155 
156 #include "hfc_multi.h"
157 #ifdef ECHOPREP
158 #include "gaintab.h"
159 #endif
160 
161 #define	MAX_CARDS	8
162 #define	MAX_PORTS	(8 * MAX_CARDS)
163 
164 static LIST_HEAD(HFClist);
165 static spinlock_t HFClock; /* global hfc list lock */
166 
167 static void ph_state_change(struct dchannel *);
168 static void (*hfc_interrupt)(void);
169 static void (*register_interrupt)(void);
170 static int (*unregister_interrupt)(void);
171 static int interrupt_registered;
172 
173 static struct hfc_multi *syncmaster;
174 int plxsd_master; /* if we have a master card (yet) */
175 static spinlock_t plx_lock; /* may not acquire other lock inside */
176 EXPORT_SYMBOL(plx_lock);
177 
178 #define	TYP_E1		1
179 #define	TYP_4S		4
180 #define TYP_8S		8
181 
182 static int poll_timer = 6;	/* default = 128 samples = 16ms */
183 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
184 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
185 #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
186 #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
187 				   (0x60 MUST be included!) */
188 static u_char silence =	0xff;	/* silence by LAW */
189 
190 #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
191 #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
192 #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
193 
194 /*
195  * module stuff
196  */
197 
198 static uint	type[MAX_CARDS];
199 static uint	pcm[MAX_CARDS];
200 static uint	dslot[MAX_CARDS];
201 static uint	iomode[MAX_CARDS];
202 static uint	port[MAX_PORTS];
203 static uint	debug;
204 static uint	poll;
205 static uint	timer;
206 static uint	clockdelay_te = CLKDEL_TE;
207 static uint	clockdelay_nt = CLKDEL_NT;
208 
209 static int	HFC_cnt, Port_cnt, PCM_cnt = 99;
210 
211 MODULE_AUTHOR("Andreas Eversberg");
212 MODULE_LICENSE("GPL");
213 module_param(debug, uint, S_IRUGO | S_IWUSR);
214 module_param(poll, uint, S_IRUGO | S_IWUSR);
215 module_param(timer, uint, S_IRUGO | S_IWUSR);
216 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
217 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
218 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
219 module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR);
220 module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR);
221 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
222 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
223 
224 #ifdef HFC_REGISTER_DEBUG
225 #define HFC_outb(hc, reg, val) \
226 	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
227 #define HFC_outb_nodebug(hc, reg, val) \
228 	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
229 #define HFC_inb(hc, reg) \
230 	(hc->HFC_inb(hc, reg, __func__, __LINE__))
231 #define HFC_inb_nodebug(hc, reg) \
232 	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
233 #define HFC_inw(hc, reg) \
234 	(hc->HFC_inw(hc, reg, __func__, __LINE__))
235 #define HFC_inw_nodebug(hc, reg) \
236 	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
237 #define HFC_wait(hc) \
238 	(hc->HFC_wait(hc, __func__, __LINE__))
239 #define HFC_wait_nodebug(hc) \
240 	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
241 #else
242 #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
243 #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
244 #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
245 #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
246 #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
247 #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
248 #define HFC_wait(hc)			(hc->HFC_wait(hc))
249 #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
250 #endif
251 
252 /* HFC_IO_MODE_PCIMEM */
253 static void
254 #ifdef HFC_REGISTER_DEBUG
255 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
256 		const char *function, int line)
257 #else
258 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
259 #endif
260 {
261 	writeb(val, (hc->pci_membase)+reg);
262 }
263 static u_char
264 #ifdef HFC_REGISTER_DEBUG
265 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
266 #else
267 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
268 #endif
269 {
270 	return readb((hc->pci_membase)+reg);
271 }
272 static u_short
273 #ifdef HFC_REGISTER_DEBUG
274 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
275 #else
276 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
277 #endif
278 {
279 	return readw((hc->pci_membase)+reg);
280 }
281 static void
282 #ifdef HFC_REGISTER_DEBUG
283 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
284 #else
285 HFC_wait_pcimem(struct hfc_multi *hc)
286 #endif
287 {
288 	while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
289 }
290 
291 /* HFC_IO_MODE_REGIO */
292 static void
293 #ifdef HFC_REGISTER_DEBUG
294 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
295 	const char *function, int line)
296 #else
297 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
298 #endif
299 {
300 	outb(reg, (hc->pci_iobase)+4);
301 	outb(val, hc->pci_iobase);
302 }
303 static u_char
304 #ifdef HFC_REGISTER_DEBUG
305 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
306 #else
307 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
308 #endif
309 {
310 	outb(reg, (hc->pci_iobase)+4);
311 	return inb(hc->pci_iobase);
312 }
313 static u_short
314 #ifdef HFC_REGISTER_DEBUG
315 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
316 #else
317 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
318 #endif
319 {
320 	outb(reg, (hc->pci_iobase)+4);
321 	return inw(hc->pci_iobase);
322 }
323 static void
324 #ifdef HFC_REGISTER_DEBUG
325 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
326 #else
327 HFC_wait_regio(struct hfc_multi *hc)
328 #endif
329 {
330 	outb(R_STATUS, (hc->pci_iobase)+4);
331 	while (inb(hc->pci_iobase) & V_BUSY);
332 }
333 
334 #ifdef HFC_REGISTER_DEBUG
335 static void
336 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
337 		const char *function, int line)
338 {
339 	char regname[256] = "", bits[9] = "xxxxxxxx";
340 	int i;
341 
342 	i = -1;
343 	while (hfc_register_names[++i].name) {
344 		if (hfc_register_names[i].reg == reg)
345 			strcat(regname, hfc_register_names[i].name);
346 	}
347 	if (regname[0] == '\0')
348 		strcpy(regname, "register");
349 
350 	bits[7] = '0'+(!!(val&1));
351 	bits[6] = '0'+(!!(val&2));
352 	bits[5] = '0'+(!!(val&4));
353 	bits[4] = '0'+(!!(val&8));
354 	bits[3] = '0'+(!!(val&16));
355 	bits[2] = '0'+(!!(val&32));
356 	bits[1] = '0'+(!!(val&64));
357 	bits[0] = '0'+(!!(val&128));
358 	printk(KERN_DEBUG
359 	    "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
360 	    hc->id, reg, regname, val, bits, function, line);
361 	HFC_outb_nodebug(hc, reg, val);
362 }
363 static u_char
364 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
365 {
366 	char regname[256] = "", bits[9] = "xxxxxxxx";
367 	u_char val = HFC_inb_nodebug(hc, reg);
368 	int i;
369 
370 	i = 0;
371 	while (hfc_register_names[i++].name)
372 		;
373 	while (hfc_register_names[++i].name) {
374 		if (hfc_register_names[i].reg == reg)
375 			strcat(regname, hfc_register_names[i].name);
376 	}
377 	if (regname[0] == '\0')
378 		strcpy(regname, "register");
379 
380 	bits[7] = '0'+(!!(val&1));
381 	bits[6] = '0'+(!!(val&2));
382 	bits[5] = '0'+(!!(val&4));
383 	bits[4] = '0'+(!!(val&8));
384 	bits[3] = '0'+(!!(val&16));
385 	bits[2] = '0'+(!!(val&32));
386 	bits[1] = '0'+(!!(val&64));
387 	bits[0] = '0'+(!!(val&128));
388 	printk(KERN_DEBUG
389 	    "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
390 	    hc->id, reg, regname, val, bits, function, line);
391 	return val;
392 }
393 static u_short
394 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
395 {
396 	char regname[256] = "";
397 	u_short val = HFC_inw_nodebug(hc, reg);
398 	int i;
399 
400 	i = 0;
401 	while (hfc_register_names[i++].name)
402 		;
403 	while (hfc_register_names[++i].name) {
404 		if (hfc_register_names[i].reg == reg)
405 			strcat(regname, hfc_register_names[i].name);
406 	}
407 	if (regname[0] == '\0')
408 		strcpy(regname, "register");
409 
410 	printk(KERN_DEBUG
411 	    "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
412 	    hc->id, reg, regname, val, function, line);
413 	return val;
414 }
415 static void
416 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
417 {
418 	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
419 	    hc->id, function, line);
420 	HFC_wait_nodebug(hc);
421 }
422 #endif
423 
424 /* write fifo data (REGIO) */
425 void
426 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
427 {
428 	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
429 	while (len>>2) {
430 		outl(*(u32 *)data, hc->pci_iobase);
431 		data += 4;
432 		len -= 4;
433 	}
434 	while (len>>1) {
435 		outw(*(u16 *)data, hc->pci_iobase);
436 		data += 2;
437 		len -= 2;
438 	}
439 	while (len) {
440 		outb(*data, hc->pci_iobase);
441 		data++;
442 		len--;
443 	}
444 }
445 /* write fifo data (PCIMEM) */
446 void
447 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
448 {
449 	while (len>>2) {
450 		writel(*(u32 *)data, (hc->pci_membase)+A_FIFO_DATA0);
451 		data += 4;
452 		len -= 4;
453 	}
454 	while (len>>1) {
455 		writew(*(u16 *)data, (hc->pci_membase)+A_FIFO_DATA0);
456 		data += 2;
457 		len -= 2;
458 	}
459 	while (len) {
460 		writeb(*data, (hc->pci_membase)+A_FIFO_DATA0);
461 		data++;
462 		len--;
463 	}
464 }
465 /* read fifo data (REGIO) */
466 void
467 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
468 {
469 	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
470 	while (len>>2) {
471 		*(u32 *)data = inl(hc->pci_iobase);
472 		data += 4;
473 		len -= 4;
474 	}
475 	while (len>>1) {
476 		*(u16 *)data = inw(hc->pci_iobase);
477 		data += 2;
478 		len -= 2;
479 	}
480 	while (len) {
481 		*data = inb(hc->pci_iobase);
482 		data++;
483 		len--;
484 	}
485 }
486 
487 /* read fifo data (PCIMEM) */
488 void
489 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
490 {
491 	while (len>>2) {
492 		*(u32 *)data =
493 			readl((hc->pci_membase)+A_FIFO_DATA0);
494 		data += 4;
495 		len -= 4;
496 	}
497 	while (len>>1) {
498 		*(u16 *)data =
499 			readw((hc->pci_membase)+A_FIFO_DATA0);
500 		data += 2;
501 		len -= 2;
502 	}
503 	while (len) {
504 		*data = readb((hc->pci_membase)+A_FIFO_DATA0);
505 		data++;
506 		len--;
507 	}
508 }
509 
510 
511 static void
512 enable_hwirq(struct hfc_multi *hc)
513 {
514 	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
515 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
516 }
517 
518 static void
519 disable_hwirq(struct hfc_multi *hc)
520 {
521 	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
522 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
523 }
524 
525 #define	NUM_EC 2
526 #define	MAX_TDM_CHAN 32
527 
528 
529 inline void
530 enablepcibridge(struct hfc_multi *c)
531 {
532 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
533 }
534 
535 inline void
536 disablepcibridge(struct hfc_multi *c)
537 {
538 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
539 }
540 
541 inline unsigned char
542 readpcibridge(struct hfc_multi *hc, unsigned char address)
543 {
544 	unsigned short cipv;
545 	unsigned char data;
546 
547 	if (!hc->pci_iobase)
548 		return 0;
549 
550 	/* slow down a PCI read access by 1 PCI clock cycle */
551 	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
552 
553 	if (address == 0)
554 		cipv = 0x4000;
555 	else
556 		cipv = 0x5800;
557 
558 	/* select local bridge port address by writing to CIP port */
559 	/* data = HFC_inb(c, cipv); * was _io before */
560 	outw(cipv, hc->pci_iobase + 4);
561 	data = inb(hc->pci_iobase);
562 
563 	/* restore R_CTRL for normal PCI read cycle speed */
564 	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
565 
566 	return data;
567 }
568 
569 inline void
570 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
571 {
572 	unsigned short cipv;
573 	unsigned int datav;
574 
575 	if (!hc->pci_iobase)
576 		return;
577 
578 	if (address == 0)
579 		cipv = 0x4000;
580 	else
581 		cipv = 0x5800;
582 
583 	/* select local bridge port address by writing to CIP port */
584 	outw(cipv, hc->pci_iobase + 4);
585 	/* define a 32 bit dword with 4 identical bytes for write sequence */
586 	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
587 	    ((__u32) data << 24);
588 
589 	/*
590 	 * write this 32 bit dword to the bridge data port
591 	 * this will initiate a write sequence of up to 4 writes to the same
592 	 * address on the local bus interface the number of write accesses
593 	 * is undefined but >=1 and depends on the next PCI transaction
594 	 * during write sequence on the local bus
595 	 */
596 	outl(datav, hc->pci_iobase);
597 }
598 
599 inline void
600 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
601 {
602 	/* Do data pin read low byte */
603 	HFC_outb(hc, R_GPIO_OUT1, reg);
604 }
605 
606 inline void
607 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
608 {
609 	cpld_set_reg(hc, reg);
610 
611 	enablepcibridge(hc);
612 	writepcibridge(hc, 1, val);
613 	disablepcibridge(hc);
614 
615 	return;
616 }
617 
618 inline unsigned char
619 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
620 {
621 	unsigned char bytein;
622 
623 	cpld_set_reg(hc, reg);
624 
625 	/* Do data pin read low byte */
626 	HFC_outb(hc, R_GPIO_OUT1, reg);
627 
628 	enablepcibridge(hc);
629 	bytein = readpcibridge(hc, 1);
630 	disablepcibridge(hc);
631 
632 	return bytein;
633 }
634 
635 inline void
636 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
637 {
638 	cpld_write_reg(hc, 0, 0xff & addr);
639 	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
640 }
641 
642 inline unsigned short
643 vpm_read_address(struct hfc_multi *c)
644 {
645 	unsigned short addr;
646 	unsigned short highbit;
647 
648 	addr = cpld_read_reg(c, 0);
649 	highbit = cpld_read_reg(c, 1);
650 
651 	addr = addr | (highbit << 8);
652 
653 	return addr & 0x1ff;
654 }
655 
656 inline unsigned char
657 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
658 {
659 	unsigned char res;
660 
661 	vpm_write_address(c, addr);
662 
663 	if (!which)
664 		cpld_set_reg(c, 2);
665 	else
666 		cpld_set_reg(c, 3);
667 
668 	enablepcibridge(c);
669 	res = readpcibridge(c, 1);
670 	disablepcibridge(c);
671 
672 	cpld_set_reg(c, 0);
673 
674 	return res;
675 }
676 
677 inline void
678 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
679     unsigned char data)
680 {
681 	vpm_write_address(c, addr);
682 
683 	enablepcibridge(c);
684 
685 	if (!which)
686 		cpld_set_reg(c, 2);
687 	else
688 		cpld_set_reg(c, 3);
689 
690 	writepcibridge(c, 1, data);
691 
692 	cpld_set_reg(c, 0);
693 
694 	disablepcibridge(c);
695 
696 	{
697 	unsigned char regin;
698 	regin = vpm_in(c, which, addr);
699 	if (regin != data)
700 		printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
701 			"0x%x\n", data, addr, regin);
702 	}
703 
704 }
705 
706 
707 void
708 vpm_init(struct hfc_multi *wc)
709 {
710 	unsigned char reg;
711 	unsigned int mask;
712 	unsigned int i, x, y;
713 	unsigned int ver;
714 
715 	for (x = 0; x < NUM_EC; x++) {
716 		/* Setup GPIO's */
717 		if (!x) {
718 			ver = vpm_in(wc, x, 0x1a0);
719 			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
720 		}
721 
722 		for (y = 0; y < 4; y++) {
723 			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
724 			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
725 			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
726 		}
727 
728 		/* Setup TDM path - sets fsync and tdm_clk as inputs */
729 		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
730 		vpm_out(wc, x, 0x1a3, reg & ~2);
731 
732 		/* Setup Echo length (256 taps) */
733 		vpm_out(wc, x, 0x022, 1);
734 		vpm_out(wc, x, 0x023, 0xff);
735 
736 		/* Setup timeslots */
737 		vpm_out(wc, x, 0x02f, 0x00);
738 		mask = 0x02020202 << (x * 4);
739 
740 		/* Setup the tdm channel masks for all chips */
741 		for (i = 0; i < 4; i++)
742 			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
743 
744 		/* Setup convergence rate */
745 		printk(KERN_DEBUG "VPM: A-law mode\n");
746 		reg = 0x00 | 0x10 | 0x01;
747 		vpm_out(wc, x, 0x20, reg);
748 		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
749 		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
750 
751 		vpm_out(wc, x, 0x24, 0x02);
752 		reg = vpm_in(wc, x, 0x24);
753 		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
754 
755 		/* Initialize echo cans */
756 		for (i = 0; i < MAX_TDM_CHAN; i++) {
757 			if (mask & (0x00000001 << i))
758 				vpm_out(wc, x, i, 0x00);
759 		}
760 
761 		/*
762 		 * ARM arch at least disallows a udelay of
763 		 * more than 2ms... it gives a fake "__bad_udelay"
764 		 * reference at link-time.
765 		 * long delays in kernel code are pretty sucky anyway
766 		 * for now work around it using 5 x 2ms instead of 1 x 10ms
767 		 */
768 
769 		udelay(2000);
770 		udelay(2000);
771 		udelay(2000);
772 		udelay(2000);
773 		udelay(2000);
774 
775 		/* Put in bypass mode */
776 		for (i = 0; i < MAX_TDM_CHAN; i++) {
777 			if (mask & (0x00000001 << i))
778 				vpm_out(wc, x, i, 0x01);
779 		}
780 
781 		/* Enable bypass */
782 		for (i = 0; i < MAX_TDM_CHAN; i++) {
783 			if (mask & (0x00000001 << i))
784 				vpm_out(wc, x, 0x78 + i, 0x01);
785 		}
786 
787 	}
788 }
789 
790 void
791 vpm_check(struct hfc_multi *hctmp)
792 {
793 	unsigned char gpi2;
794 
795 	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
796 
797 	if ((gpi2 & 0x3) != 0x3)
798 		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
799 }
800 
801 
802 /*
803  * Interface to enable/disable the HW Echocan
804  *
805  * these functions are called within a spin_lock_irqsave on
806  * the channel instance lock, so we are not disturbed by irqs
807  *
808  * we can later easily change the interface to make  other
809  * things configurable, for now we configure the taps
810  *
811  */
812 
813 void
814 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
815 {
816 	unsigned int timeslot;
817 	unsigned int unit;
818 	struct bchannel *bch = hc->chan[ch].bch;
819 #ifdef TXADJ
820 	int txadj = -4;
821 	struct sk_buff *skb;
822 #endif
823 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
824 		return;
825 
826 	if (!bch)
827 		return;
828 
829 #ifdef TXADJ
830 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
831 		sizeof(int), &txadj, GFP_ATOMIC);
832 	if (skb)
833 		recv_Bchannel_skb(bch, skb);
834 #endif
835 
836 	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
837 	unit = ch % 4;
838 
839 	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
840 	    taps, timeslot);
841 
842 	vpm_out(hc, unit, timeslot, 0x7e);
843 }
844 
845 void
846 vpm_echocan_off(struct hfc_multi *hc, int ch)
847 {
848 	unsigned int timeslot;
849 	unsigned int unit;
850 	struct bchannel *bch = hc->chan[ch].bch;
851 #ifdef TXADJ
852 	int txadj = 0;
853 	struct sk_buff *skb;
854 #endif
855 
856 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
857 		return;
858 
859 	if (!bch)
860 		return;
861 
862 #ifdef TXADJ
863 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
864 		sizeof(int), &txadj, GFP_ATOMIC);
865 	if (skb)
866 		recv_Bchannel_skb(bch, skb);
867 #endif
868 
869 	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
870 	unit = ch % 4;
871 
872 	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
873 	    timeslot);
874 	/* FILLME */
875 	vpm_out(hc, unit, timeslot, 0x01);
876 }
877 
878 
879 /*
880  * Speech Design resync feature
881  * NOTE: This is called sometimes outside interrupt handler.
882  * We must lock irqsave, so no other interrupt (other card) will occurr!
883  * Also multiple interrupts may nest, so must lock each access (lists, card)!
884  */
885 static inline void
886 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
887 {
888 	struct hfc_multi *hc, *next, *pcmmaster = 0;
889 	u_int *plx_acc_32, pv;
890 	u_long flags;
891 
892 	spin_lock_irqsave(&HFClock, flags);
893 	spin_lock(&plx_lock); /* must be locked inside other locks */
894 
895 	if (debug & DEBUG_HFCMULTI_PLXSD)
896 		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
897 			__func__, syncmaster);
898 
899 	/* select new master */
900 	if (newmaster) {
901 		if (debug & DEBUG_HFCMULTI_PLXSD)
902 			printk(KERN_DEBUG "using provided controller\n");
903 	} else {
904 		list_for_each_entry_safe(hc, next, &HFClist, list) {
905 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
906 				if (hc->syncronized) {
907 					newmaster = hc;
908 					break;
909 				}
910 			}
911 		}
912 	}
913 
914 	/* Disable sync of all cards */
915 	list_for_each_entry_safe(hc, next, &HFClist, list) {
916 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
917 			plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
918 			pv = readl(plx_acc_32);
919 			pv &= ~PLX_SYNC_O_EN;
920 			writel(pv, plx_acc_32);
921 			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
922 				pcmmaster = hc;
923 				if (hc->type == 1) {
924 					if (debug & DEBUG_HFCMULTI_PLXSD)
925 						printk(KERN_DEBUG
926 							"Schedule SYNC_I\n");
927 					hc->e1_resync |= 1; /* get SYNC_I */
928 				}
929 			}
930 		}
931 	}
932 
933 	if (newmaster) {
934 		hc = newmaster;
935 		if (debug & DEBUG_HFCMULTI_PLXSD)
936 			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
937 				"interface.\n", hc->id, hc);
938 		/* Enable new sync master */
939 		plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
940 		pv = readl(plx_acc_32);
941 		pv |= PLX_SYNC_O_EN;
942 		writel(pv, plx_acc_32);
943 		/* switch to jatt PLL, if not disabled by RX_SYNC */
944 		if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
945 			if (debug & DEBUG_HFCMULTI_PLXSD)
946 				printk(KERN_DEBUG "Schedule jatt PLL\n");
947 			hc->e1_resync |= 2; /* switch to jatt */
948 		}
949 	} else {
950 		if (pcmmaster) {
951 			hc = pcmmaster;
952 			if (debug & DEBUG_HFCMULTI_PLXSD)
953 				printk(KERN_DEBUG
954 					"id=%d (0x%p) = PCM master syncronized "
955 					"with QUARTZ\n", hc->id, hc);
956 			if (hc->type == 1) {
957 				/* Use the crystal clock for the PCM
958 				   master card */
959 				if (debug & DEBUG_HFCMULTI_PLXSD)
960 					printk(KERN_DEBUG
961 					    "Schedule QUARTZ for HFC-E1\n");
962 				hc->e1_resync |= 4; /* switch quartz */
963 			} else {
964 				if (debug & DEBUG_HFCMULTI_PLXSD)
965 					printk(KERN_DEBUG
966 					    "QUARTZ is automatically "
967 					    "enabled by HFC-%dS\n", hc->type);
968 			}
969 			plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
970 			pv = readl(plx_acc_32);
971 			pv |= PLX_SYNC_O_EN;
972 			writel(pv, plx_acc_32);
973 		} else
974 			if (!rm)
975 				printk(KERN_ERR "%s no pcm master, this MUST "
976 					"not happen!\n", __func__);
977 	}
978 	syncmaster = newmaster;
979 
980 	spin_unlock(&plx_lock);
981 	spin_unlock_irqrestore(&HFClock, flags);
982 }
983 
984 /* This must be called AND hc must be locked irqsave!!! */
985 inline void
986 plxsd_checksync(struct hfc_multi *hc, int rm)
987 {
988 	if (hc->syncronized) {
989 		if (syncmaster == NULL) {
990 			if (debug & DEBUG_HFCMULTI_PLXSD)
991 				printk(KERN_WARNING "%s: GOT sync on card %d"
992 					" (id=%d)\n", __func__, hc->id + 1,
993 					hc->id);
994 			hfcmulti_resync(hc, hc, rm);
995 		}
996 	} else {
997 		if (syncmaster == hc) {
998 			if (debug & DEBUG_HFCMULTI_PLXSD)
999 				printk(KERN_WARNING "%s: LOST sync on card %d"
1000 					" (id=%d)\n", __func__, hc->id + 1,
1001 					hc->id);
1002 			hfcmulti_resync(hc, NULL, rm);
1003 		}
1004 	}
1005 }
1006 
1007 
1008 /*
1009  * free hardware resources used by driver
1010  */
1011 static void
1012 release_io_hfcmulti(struct hfc_multi *hc)
1013 {
1014 	u_int	*plx_acc_32, pv;
1015 	u_long	plx_flags;
1016 
1017 	if (debug & DEBUG_HFCMULTI_INIT)
1018 		printk(KERN_DEBUG "%s: entered\n", __func__);
1019 
1020 	/* soft reset also masks all interrupts */
1021 	hc->hw.r_cirm |= V_SRES;
1022 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1023 	udelay(1000);
1024 	hc->hw.r_cirm &= ~V_SRES;
1025 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1026 	udelay(1000); /* instead of 'wait' that may cause locking */
1027 
1028 	/* release Speech Design card, if PLX was initialized */
1029 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1030 		if (debug & DEBUG_HFCMULTI_PLXSD)
1031 			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1032 			    __func__, hc->id + 1);
1033 		spin_lock_irqsave(&plx_lock, plx_flags);
1034 		plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1035 		writel(PLX_GPIOC_INIT, plx_acc_32);
1036 		pv = readl(plx_acc_32);
1037 		/* Termination off */
1038 		pv &= ~PLX_TERM_ON;
1039 		/* Disconnect the PCM */
1040 		pv |= PLX_SLAVE_EN_N;
1041 		pv &= ~PLX_MASTER_EN;
1042 		pv &= ~PLX_SYNC_O_EN;
1043 		/* Put the DSP in Reset */
1044 		pv &= ~PLX_DSP_RES_N;
1045 		writel(pv, plx_acc_32);
1046 		if (debug & DEBUG_HFCMULTI_INIT)
1047 			printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1048 				__func__, pv);
1049 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1050 	}
1051 
1052 	/* disable memory mapped ports / io ports */
1053 	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1054 	pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1055 	if (hc->pci_membase)
1056 		iounmap((void *)hc->pci_membase);
1057 	if (hc->plx_membase)
1058 		iounmap((void *)hc->plx_membase);
1059 	if (hc->pci_iobase)
1060 		release_region(hc->pci_iobase, 8);
1061 
1062 	if (hc->pci_dev) {
1063 		pci_disable_device(hc->pci_dev);
1064 		pci_set_drvdata(hc->pci_dev, NULL);
1065 	}
1066 	if (debug & DEBUG_HFCMULTI_INIT)
1067 		printk(KERN_DEBUG "%s: done\n", __func__);
1068 }
1069 
1070 /*
1071  * function called to reset the HFC chip. A complete software reset of chip
1072  * and fifos is done. All configuration of the chip is done.
1073  */
1074 
1075 static int
1076 init_chip(struct hfc_multi *hc)
1077 {
1078 	u_long			flags, val, val2 = 0, rev;
1079 	int			i, err = 0;
1080 	u_char			r_conf_en, rval;
1081 	u_int			*plx_acc_32, pv;
1082 	u_long			plx_flags, hfc_flags;
1083 	int			plx_count;
1084 	struct hfc_multi	*pos, *next, *plx_last_hc;
1085 
1086 	spin_lock_irqsave(&hc->lock, flags);
1087 	/* reset all registers */
1088 	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1089 
1090 	/* revision check */
1091 	if (debug & DEBUG_HFCMULTI_INIT)
1092 		printk(KERN_DEBUG "%s: entered\n", __func__);
1093 	val = HFC_inb(hc, R_CHIP_ID)>>4;
1094 	if (val != 0x8 && val != 0xc && val != 0xe) {
1095 		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1096 		err = -EIO;
1097 		goto out;
1098 	}
1099 	rev = HFC_inb(hc, R_CHIP_RV);
1100 	printk(KERN_INFO
1101 	    "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1102 	    val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1103 	if (rev == 0) {
1104 		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1105 		printk(KERN_WARNING
1106 		    "HFC_multi: NOTE: Your chip is revision 0, "
1107 		    "ask Cologne Chip for update. Newer chips "
1108 		    "have a better FIFO handling. Old chips "
1109 		    "still work but may have slightly lower "
1110 		    "HDLC transmit performance.\n");
1111 	}
1112 	if (rev > 1) {
1113 		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1114 		    "consider chip revision = %ld. The chip / "
1115 		    "bridge may not work.\n", rev);
1116 	}
1117 
1118 	/* set s-ram size */
1119 	hc->Flen = 0x10;
1120 	hc->Zmin = 0x80;
1121 	hc->Zlen = 384;
1122 	hc->DTMFbase = 0x1000;
1123 	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1124 		if (debug & DEBUG_HFCMULTI_INIT)
1125 			printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1126 			    __func__);
1127 		hc->hw.r_ctrl |= V_EXT_RAM;
1128 		hc->hw.r_ram_sz = 1;
1129 		hc->Flen = 0x20;
1130 		hc->Zmin = 0xc0;
1131 		hc->Zlen = 1856;
1132 		hc->DTMFbase = 0x2000;
1133 	}
1134 	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1135 		if (debug & DEBUG_HFCMULTI_INIT)
1136 			printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1137 			    __func__);
1138 		hc->hw.r_ctrl |= V_EXT_RAM;
1139 		hc->hw.r_ram_sz = 2;
1140 		hc->Flen = 0x20;
1141 		hc->Zmin = 0xc0;
1142 		hc->Zlen = 8000;
1143 		hc->DTMFbase = 0x2000;
1144 	}
1145 	hc->max_trans = poll << 1;
1146 	if (hc->max_trans > hc->Zlen)
1147 		hc->max_trans = hc->Zlen;
1148 
1149 	/* Speech Design PLX bridge */
1150 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1151 		if (debug & DEBUG_HFCMULTI_PLXSD)
1152 			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1153 			    __func__, hc->id + 1);
1154 		spin_lock_irqsave(&plx_lock, plx_flags);
1155 		plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1156 		writel(PLX_GPIOC_INIT, plx_acc_32);
1157 		pv = readl(plx_acc_32);
1158 		/* The first and the last cards are terminating the PCM bus */
1159 		pv |= PLX_TERM_ON; /* hc is currently the last */
1160 		/* Disconnect the PCM */
1161 		pv |= PLX_SLAVE_EN_N;
1162 		pv &= ~PLX_MASTER_EN;
1163 		pv &= ~PLX_SYNC_O_EN;
1164 		/* Put the DSP in Reset */
1165 		pv &= ~PLX_DSP_RES_N;
1166 		writel(pv, plx_acc_32);
1167 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1168 		if (debug & DEBUG_HFCMULTI_INIT)
1169 			printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1170 				__func__, pv);
1171 		/*
1172 		 * If we are the 3rd PLXSD card or higher, we must turn
1173 		 * termination of last PLXSD card off.
1174 		 */
1175 		spin_lock_irqsave(&HFClock, hfc_flags);
1176 		plx_count = 0;
1177 		plx_last_hc = NULL;
1178 		list_for_each_entry_safe(pos, next, &HFClist, list) {
1179 			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1180 				plx_count++;
1181 				if (pos != hc)
1182 					plx_last_hc = pos;
1183 			}
1184 		}
1185 		if (plx_count >= 3) {
1186 			if (debug & DEBUG_HFCMULTI_PLXSD)
1187 				printk(KERN_DEBUG "%s: card %d is between, so "
1188 					"we disable termination\n",
1189 				    __func__, plx_last_hc->id + 1);
1190 			spin_lock_irqsave(&plx_lock, plx_flags);
1191 			plx_acc_32 = (u_int *)(plx_last_hc->plx_membase
1192 					+ PLX_GPIOC);
1193 			pv = readl(plx_acc_32);
1194 			pv &= ~PLX_TERM_ON;
1195 			writel(pv, plx_acc_32);
1196 			spin_unlock_irqrestore(&plx_lock, plx_flags);
1197 			if (debug & DEBUG_HFCMULTI_INIT)
1198 			    printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1199 					__func__, pv);
1200 		}
1201 		spin_unlock_irqrestore(&HFClock, hfc_flags);
1202 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1203 	}
1204 
1205 	/* we only want the real Z2 read-pointer for revision > 0 */
1206 	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1207 		hc->hw.r_ram_sz |= V_FZ_MD;
1208 
1209 	/* select pcm mode */
1210 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1211 		if (debug & DEBUG_HFCMULTI_INIT)
1212 			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1213 			    __func__);
1214 	} else
1215 	if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1216 		if (debug & DEBUG_HFCMULTI_INIT)
1217 			printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1218 			    __func__);
1219 		hc->hw.r_pcm_md0 |= V_PCM_MD;
1220 	} else {
1221 		if (debug & DEBUG_HFCMULTI_INIT)
1222 			printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1223 			    __func__);
1224 	}
1225 
1226 	/* soft reset */
1227 	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1228 	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1229 	HFC_outb(hc, R_FIFO_MD, 0);
1230 	hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1231 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1232 	udelay(100);
1233 	hc->hw.r_cirm = 0;
1234 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1235 	udelay(100);
1236 	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1237 
1238 	/* Speech Design PLX bridge pcm and sync mode */
1239 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1240 		spin_lock_irqsave(&plx_lock, plx_flags);
1241 		plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1242 		pv = readl(plx_acc_32);
1243 		/* Connect PCM */
1244 		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1245 			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1246 			pv |= PLX_SYNC_O_EN;
1247 			if (debug & DEBUG_HFCMULTI_INIT)
1248 				printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1249 					__func__, pv);
1250 		} else {
1251 			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1252 			pv &= ~PLX_SYNC_O_EN;
1253 			if (debug & DEBUG_HFCMULTI_INIT)
1254 				printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1255 					__func__, pv);
1256 		}
1257 		writel(pv, plx_acc_32);
1258 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1259 	}
1260 
1261 	/* PCM setup */
1262 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1263 	if (hc->slots == 32)
1264 		HFC_outb(hc, R_PCM_MD1, 0x00);
1265 	if (hc->slots == 64)
1266 		HFC_outb(hc, R_PCM_MD1, 0x10);
1267 	if (hc->slots == 128)
1268 		HFC_outb(hc, R_PCM_MD1, 0x20);
1269 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1270 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1271 		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1272 	else
1273 		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1274 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1275 	for (i = 0; i < 256; i++) {
1276 		HFC_outb_nodebug(hc, R_SLOT, i);
1277 		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1278 		HFC_outb_nodebug(hc, A_CONF, 0);
1279 		hc->slot_owner[i] = -1;
1280 	}
1281 
1282 	/* set clock speed */
1283 	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1284 		if (debug & DEBUG_HFCMULTI_INIT)
1285 			printk(KERN_DEBUG
1286 			    "%s: setting double clock\n", __func__);
1287 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1288 	}
1289 
1290 	/* B410P GPIO */
1291 	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1292 		printk(KERN_NOTICE "Setting GPIOs\n");
1293 		HFC_outb(hc, R_GPIO_SEL, 0x30);
1294 		HFC_outb(hc, R_GPIO_EN1, 0x3);
1295 		udelay(1000);
1296 		printk(KERN_NOTICE "calling vpm_init\n");
1297 		vpm_init(hc);
1298 	}
1299 
1300 	/* check if R_F0_CNT counts (8 kHz frame count) */
1301 	val = HFC_inb(hc, R_F0_CNTL);
1302 	val += HFC_inb(hc, R_F0_CNTH) << 8;
1303 	if (debug & DEBUG_HFCMULTI_INIT)
1304 		printk(KERN_DEBUG
1305 		    "HFC_multi F0_CNT %ld after reset\n", val);
1306 	spin_unlock_irqrestore(&hc->lock, flags);
1307 	set_current_state(TASK_UNINTERRUPTIBLE);
1308 	schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1309 	spin_lock_irqsave(&hc->lock, flags);
1310 	val2 = HFC_inb(hc, R_F0_CNTL);
1311 	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1312 	if (debug & DEBUG_HFCMULTI_INIT)
1313 		printk(KERN_DEBUG
1314 			"HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1315 		    val2);
1316 	if (val2 >= val+8) { /* 1 ms */
1317 		/* it counts, so we keep the pcm mode */
1318 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1319 			printk(KERN_INFO "controller is PCM bus MASTER\n");
1320 		else
1321 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1322 			printk(KERN_INFO "controller is PCM bus SLAVE\n");
1323 		else {
1324 			test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1325 			printk(KERN_INFO "controller is PCM bus SLAVE "
1326 				"(auto detected)\n");
1327 		}
1328 	} else {
1329 		/* does not count */
1330 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1331 controller_fail:
1332 			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1333 			    "pulse. Seems that controller fails.\n");
1334 			err = -EIO;
1335 			goto out;
1336 		}
1337 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1338 			printk(KERN_INFO "controller is PCM bus SLAVE "
1339 				"(ignoring missing PCM clock)\n");
1340 		} else {
1341 			/* only one pcm master */
1342 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1343 				&& plxsd_master) {
1344 				printk(KERN_ERR "HFC_multi ERROR, no clock "
1345 				    "on another Speech Design card found. "
1346 				    "Please be sure to connect PCM cable.\n");
1347 				err = -EIO;
1348 				goto out;
1349 			}
1350 			/* retry with master clock */
1351 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1352 				spin_lock_irqsave(&plx_lock, plx_flags);
1353 				plx_acc_32 = (u_int *)(hc->plx_membase +
1354 					PLX_GPIOC);
1355 				pv = readl(plx_acc_32);
1356 				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1357 				pv |= PLX_SYNC_O_EN;
1358 				writel(pv, plx_acc_32);
1359 				spin_unlock_irqrestore(&plx_lock, plx_flags);
1360 				if (debug & DEBUG_HFCMULTI_INIT)
1361 				    printk(KERN_WARNING "%s: master: PLX_GPIO"
1362 					"=%x\n", __func__, pv);
1363 			}
1364 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1365 			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1366 			spin_unlock_irqrestore(&hc->lock, flags);
1367 			set_current_state(TASK_UNINTERRUPTIBLE);
1368 			schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1369 			spin_lock_irqsave(&hc->lock, flags);
1370 			val2 = HFC_inb(hc, R_F0_CNTL);
1371 			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1372 			if (debug & DEBUG_HFCMULTI_INIT)
1373 				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1374 					"10 ms (2nd try)\n", val2);
1375 			if (val2 >= val+8) { /* 1 ms */
1376 				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1377 					&hc->chip);
1378 				printk(KERN_INFO "controller is PCM bus MASTER "
1379 					"(auto detected)\n");
1380 			} else
1381 				goto controller_fail;
1382 		}
1383 	}
1384 
1385 	/* Release the DSP Reset */
1386 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1387 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1388 			plxsd_master = 1;
1389 		spin_lock_irqsave(&plx_lock, plx_flags);
1390 		plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1391 		pv = readl(plx_acc_32);
1392 		pv |=  PLX_DSP_RES_N;
1393 		writel(pv, plx_acc_32);
1394 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1395 		if (debug & DEBUG_HFCMULTI_INIT)
1396 			printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1397 				__func__, pv);
1398 	}
1399 
1400 	/* pcm id */
1401 	if (hc->pcm)
1402 		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1403 			hc->pcm);
1404 	else {
1405 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1406 		 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1407 			PCM_cnt++; /* SD has proprietary bridging */
1408 		}
1409 		hc->pcm = PCM_cnt;
1410 		printk(KERN_INFO "controller has PCM BUS ID %d "
1411 			"(auto selected)\n", hc->pcm);
1412 	}
1413 
1414 	/* set up timer */
1415 	HFC_outb(hc, R_TI_WD, poll_timer);
1416 	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1417 
1418 	/*
1419 	 * set up 125us interrupt, only if function pointer is available
1420 	 * and module parameter timer is set
1421 	 */
1422 	if (timer && hfc_interrupt && register_interrupt) {
1423 		/* only one chip should use this interrupt */
1424 		timer = 0;
1425 		interrupt_registered = 1;
1426 		hc->hw.r_irqmsk_misc |= V_PROC_IRQMSK;
1427 		/* deactivate other interrupts in ztdummy */
1428 		register_interrupt();
1429 	}
1430 
1431 	/* set E1 state machine IRQ */
1432 	if (hc->type == 1)
1433 		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1434 
1435 	/* set DTMF detection */
1436 	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1437 		if (debug & DEBUG_HFCMULTI_INIT)
1438 			printk(KERN_DEBUG "%s: enabling DTMF detection "
1439 			    "for all B-channel\n", __func__);
1440 		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1441 		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1442 			hc->hw.r_dtmf |= V_ULAW_SEL;
1443 		HFC_outb(hc, R_DTMF_N, 102 - 1);
1444 		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1445 	}
1446 
1447 	/* conference engine */
1448 	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1449 		r_conf_en = V_CONF_EN | V_ULAW;
1450 	else
1451 		r_conf_en = V_CONF_EN;
1452 	HFC_outb(hc, R_CONF_EN, r_conf_en);
1453 
1454 	/* setting leds */
1455 	switch (hc->leds) {
1456 	case 1: /* HFC-E1 OEM */
1457 		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1458 			HFC_outb(hc, R_GPIO_SEL, 0x32);
1459 		else
1460 			HFC_outb(hc, R_GPIO_SEL, 0x30);
1461 
1462 		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1463 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1464 
1465 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1466 		break;
1467 
1468 	case 2: /* HFC-4S OEM */
1469 	case 3:
1470 		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1471 		HFC_outb(hc, R_GPIO_EN1, 0xff);
1472 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1473 		break;
1474 	}
1475 
1476 	/* set master clock */
1477 	if (hc->masterclk >= 0) {
1478 		if (debug & DEBUG_HFCMULTI_INIT)
1479 			printk(KERN_DEBUG "%s: setting ST master clock "
1480 			    "to port %d (0..%d)\n",
1481 			    __func__, hc->masterclk, hc->ports-1);
1482 		hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1483 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1484 	}
1485 
1486 	/* setting misc irq */
1487 	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1488 	if (debug & DEBUG_HFCMULTI_INIT)
1489 		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1490 		    hc->hw.r_irqmsk_misc);
1491 
1492 	/* RAM access test */
1493 	HFC_outb(hc, R_RAM_ADDR0, 0);
1494 	HFC_outb(hc, R_RAM_ADDR1, 0);
1495 	HFC_outb(hc, R_RAM_ADDR2, 0);
1496 	for (i = 0; i < 256; i++) {
1497 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1498 		HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1499 	}
1500 	for (i = 0; i < 256; i++) {
1501 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1502 		HFC_inb_nodebug(hc, R_RAM_DATA);
1503 		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1504 		if (rval != ((i * 3) & 0xff)) {
1505 			printk(KERN_DEBUG
1506 			    "addr:%x val:%x should:%x\n", i, rval,
1507 			    (i * 3) & 0xff);
1508 			err++;
1509 		}
1510 	}
1511 	if (err) {
1512 		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1513 		err = -EIO;
1514 		goto out;
1515 	}
1516 
1517 	if (debug & DEBUG_HFCMULTI_INIT)
1518 		printk(KERN_DEBUG "%s: done\n", __func__);
1519 out:
1520 	spin_unlock_irqrestore(&hc->lock, flags);
1521 	return err;
1522 }
1523 
1524 
1525 /*
1526  * control the watchdog
1527  */
1528 static void
1529 hfcmulti_watchdog(struct hfc_multi *hc)
1530 {
1531 	hc->wdcount++;
1532 
1533 	if (hc->wdcount > 10) {
1534 		hc->wdcount = 0;
1535 		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1536 		    V_GPIO_OUT3 : V_GPIO_OUT2;
1537 
1538 	/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1539 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1540 		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1541 	}
1542 }
1543 
1544 
1545 
1546 /*
1547  * output leds
1548  */
1549 static void
1550 hfcmulti_leds(struct hfc_multi *hc)
1551 {
1552 	unsigned long lled;
1553 	unsigned long leddw;
1554 	int i, state, active, leds;
1555 	struct dchannel *dch;
1556 	int led[4];
1557 
1558 	hc->ledcount += poll;
1559 	if (hc->ledcount > 4096) {
1560 		hc->ledcount -= 4096;
1561 		hc->ledstate = 0xAFFEAFFE;
1562 	}
1563 
1564 	switch (hc->leds) {
1565 	case 1: /* HFC-E1 OEM */
1566 		/* 2 red blinking: NT mode deactivate
1567 		 * 2 red steady:   TE mode deactivate
1568 		 * left green:     L1 active
1569 		 * left red:       frame sync, but no L1
1570 		 * right green:    L2 active
1571 		 */
1572 		if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1573 			if (hc->chan[hc->dslot].dch->dev.D.protocol
1574 				!= ISDN_P_NT_E1) {
1575 				led[0] = 1;
1576 				led[1] = 1;
1577 			} else if (hc->ledcount>>11) {
1578 				led[0] = 1;
1579 				led[1] = 1;
1580 			} else {
1581 				led[0] = 0;
1582 				led[1] = 0;
1583 			}
1584 			led[2] = 0;
1585 			led[3] = 0;
1586 		} else { /* with frame sync */
1587 			/* TODO make it work */
1588 			led[0] = 0;
1589 			led[1] = 0;
1590 			led[2] = 0;
1591 			led[3] = 1;
1592 		}
1593 		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1594 			/* leds are inverted */
1595 		if (leds != (int)hc->ledstate) {
1596 			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1597 			hc->ledstate = leds;
1598 		}
1599 		break;
1600 
1601 	case 2: /* HFC-4S OEM */
1602 		/* red blinking = PH_DEACTIVATE NT Mode
1603 		 * red steady   = PH_DEACTIVATE TE Mode
1604 		 * green steady = PH_ACTIVATE
1605 		 */
1606 		for (i = 0; i < 4; i++) {
1607 			state = 0;
1608 			active = -1;
1609 			dch = hc->chan[(i << 2) | 2].dch;
1610 			if (dch) {
1611 				state = dch->state;
1612 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1613 					active = 3;
1614 				else
1615 					active = 7;
1616 			}
1617 			if (state) {
1618 				if (state == active) {
1619 					led[i] = 1; /* led green */
1620 				} else
1621 					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1622 						/* TE mode: led red */
1623 						led[i] = 2;
1624 					else
1625 						if (hc->ledcount>>11)
1626 							/* led red */
1627 							led[i] = 2;
1628 						else
1629 							/* led off */
1630 							led[i] = 0;
1631 			} else
1632 				led[i] = 0; /* led off */
1633 		}
1634 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1635 			leds = 0;
1636 			for (i = 0; i < 4; i++) {
1637 				if (led[i] == 1) {
1638 					/*green*/
1639 					leds |= (0x2 << (i * 2));
1640 				} else if (led[i] == 2) {
1641 					/*red*/
1642 					leds |= (0x1 << (i * 2));
1643 				}
1644 			}
1645 			if (leds != (int)hc->ledstate) {
1646 				vpm_out(hc, 0, 0x1a8 + 3, leds);
1647 				hc->ledstate = leds;
1648 			}
1649 		} else {
1650 			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1651 			    ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1652 			    ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1653 			    ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1654 			if (leds != (int)hc->ledstate) {
1655 				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1656 				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1657 				hc->ledstate = leds;
1658 			}
1659 		}
1660 		break;
1661 
1662 	case 3: /* HFC 1S/2S Beronet */
1663 		/* red blinking = PH_DEACTIVATE NT Mode
1664 		 * red steady   = PH_DEACTIVATE TE Mode
1665 		 * green steady = PH_ACTIVATE
1666 		 */
1667 		for (i = 0; i < 2; i++) {
1668 			state = 0;
1669 			active = -1;
1670 			dch = hc->chan[(i << 2) | 2].dch;
1671 			if (dch) {
1672 				state = dch->state;
1673 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1674 					active = 3;
1675 				else
1676 					active = 7;
1677 			}
1678 			if (state) {
1679 				if (state == active) {
1680 					led[i] = 1; /* led green */
1681 				} else
1682 					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1683 						/* TE mode: led red */
1684 						led[i] = 2;
1685 					else
1686 						if (hc->ledcount >> 11)
1687 							/* led red */
1688 							led[i] = 2;
1689 						else
1690 							/* led off */
1691 							led[i] = 0;
1692 			} else
1693 				led[i] = 0; /* led off */
1694 		}
1695 
1696 
1697 		leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1698 			| ((led[1]&1)<<3);
1699 		if (leds != (int)hc->ledstate) {
1700 			HFC_outb_nodebug(hc, R_GPIO_EN1,
1701 			    ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1702 			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1703 			    ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1704 			hc->ledstate = leds;
1705 		}
1706 		break;
1707 	case 8: /* HFC 8S+ Beronet */
1708 		lled = 0;
1709 
1710 		for (i = 0; i < 8; i++) {
1711 			state = 0;
1712 			active = -1;
1713 			dch = hc->chan[(i << 2) | 2].dch;
1714 			if (dch) {
1715 				state = dch->state;
1716 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1717 					active = 3;
1718 				else
1719 					active = 7;
1720 			}
1721 			if (state) {
1722 				if (state == active) {
1723 					lled |= 0 << i;
1724 				} else
1725 					if (hc->ledcount >> 11)
1726 						lled |= 0 << i;
1727 					else
1728 						lled |= 1 << i;
1729 			} else
1730 				lled |= 1 << i;
1731 		}
1732 		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1733 		if (leddw != hc->ledstate) {
1734 			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1735 			HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1736 			/* was _io before */
1737 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1738 			outw(0x4000, hc->pci_iobase + 4);
1739 			outl(leddw, hc->pci_iobase);
1740 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1741 			hc->ledstate = leddw;
1742 		}
1743 		break;
1744 	}
1745 }
1746 /*
1747  * read dtmf coefficients
1748  */
1749 
1750 static void
1751 hfcmulti_dtmf(struct hfc_multi *hc)
1752 {
1753 	s32		*coeff;
1754 	u_int		mantissa;
1755 	int		co, ch;
1756 	struct bchannel	*bch = NULL;
1757 	u8		exponent;
1758 	int		dtmf = 0;
1759 	int		addr;
1760 	u16		w_float;
1761 	struct sk_buff	*skb;
1762 	struct mISDNhead *hh;
1763 
1764 	if (debug & DEBUG_HFCMULTI_DTMF)
1765 		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1766 	for (ch = 0; ch <= 31; ch++) {
1767 		/* only process enabled B-channels */
1768 		bch = hc->chan[ch].bch;
1769 		if (!bch)
1770 			continue;
1771 		if (!hc->created[hc->chan[ch].port])
1772 			continue;
1773 		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1774 			continue;
1775 		if (debug & DEBUG_HFCMULTI_DTMF)
1776 			printk(KERN_DEBUG "%s: dtmf channel %d:",
1777 				__func__, ch);
1778 		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1779 		dtmf = 1;
1780 		for (co = 0; co < 8; co++) {
1781 			/* read W(n-1) coefficient */
1782 			addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1783 			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1784 			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1785 			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1786 				| V_ADDR_INC);
1787 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1788 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1789 			if (debug & DEBUG_HFCMULTI_DTMF)
1790 				printk(" %04x", w_float);
1791 
1792 			/* decode float (see chip doc) */
1793 			mantissa = w_float & 0x0fff;
1794 			if (w_float & 0x8000)
1795 				mantissa |= 0xfffff000;
1796 			exponent = (w_float>>12) & 0x7;
1797 			if (exponent) {
1798 				mantissa ^= 0x1000;
1799 				mantissa <<= (exponent-1);
1800 			}
1801 
1802 			/* store coefficient */
1803 			coeff[co<<1] = mantissa;
1804 
1805 			/* read W(n) coefficient */
1806 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1807 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1808 			if (debug & DEBUG_HFCMULTI_DTMF)
1809 				printk(" %04x", w_float);
1810 
1811 			/* decode float (see chip doc) */
1812 			mantissa = w_float & 0x0fff;
1813 			if (w_float & 0x8000)
1814 				mantissa |= 0xfffff000;
1815 			exponent = (w_float>>12) & 0x7;
1816 			if (exponent) {
1817 				mantissa ^= 0x1000;
1818 				mantissa <<= (exponent-1);
1819 			}
1820 
1821 			/* store coefficient */
1822 			coeff[(co<<1)|1] = mantissa;
1823 		}
1824 		if (debug & DEBUG_HFCMULTI_DTMF)
1825 			printk("%s: DTMF ready %08x %08x %08x %08x "
1826 			    "%08x %08x %08x %08x\n", __func__,
1827 			    coeff[0], coeff[1], coeff[2], coeff[3],
1828 			    coeff[4], coeff[5], coeff[6], coeff[7]);
1829 		hc->chan[ch].coeff_count++;
1830 		if (hc->chan[ch].coeff_count == 8) {
1831 			hc->chan[ch].coeff_count = 0;
1832 			skb = mI_alloc_skb(512, GFP_ATOMIC);
1833 			if (!skb) {
1834 				printk(KERN_WARNING "%s: No memory for skb\n",
1835 				    __func__);
1836 				continue;
1837 			}
1838 			hh = mISDN_HEAD_P(skb);
1839 			hh->prim = PH_CONTROL_IND;
1840 			hh->id = DTMF_HFC_COEF;
1841 			memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1842 			recv_Bchannel_skb(bch, skb);
1843 		}
1844 	}
1845 
1846 	/* restart DTMF processing */
1847 	hc->dtmf = dtmf;
1848 	if (dtmf)
1849 		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1850 }
1851 
1852 
1853 /*
1854  * fill fifo as much as possible
1855  */
1856 
1857 static void
1858 hfcmulti_tx(struct hfc_multi *hc, int ch)
1859 {
1860 	int i, ii, temp, len = 0;
1861 	int Zspace, z1, z2; /* must be int for calculation */
1862 	int Fspace, f1, f2;
1863 	u_char *d;
1864 	int *txpending, slot_tx;
1865 	struct	bchannel *bch;
1866 	struct  dchannel *dch;
1867 	struct  sk_buff **sp = NULL;
1868 	int *idxp;
1869 
1870 	bch = hc->chan[ch].bch;
1871 	dch = hc->chan[ch].dch;
1872 	if ((!dch) && (!bch))
1873 		return;
1874 
1875 	txpending = &hc->chan[ch].txpending;
1876 	slot_tx = hc->chan[ch].slot_tx;
1877 	if (dch) {
1878 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1879 			return;
1880 		sp = &dch->tx_skb;
1881 		idxp = &dch->tx_idx;
1882 	} else {
1883 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1884 			return;
1885 		sp = &bch->tx_skb;
1886 		idxp = &bch->tx_idx;
1887 	}
1888 	if (*sp)
1889 		len = (*sp)->len;
1890 
1891 	if ((!len) && *txpending != 1)
1892 		return; /* no data */
1893 
1894 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1895 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1896 	    (hc->chan[ch].slot_rx < 0) &&
1897 	    (hc->chan[ch].slot_tx < 0))
1898 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1899 	else
1900 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1901 	HFC_wait_nodebug(hc);
1902 
1903 	if (*txpending == 2) {
1904 		/* reset fifo */
1905 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1906 		HFC_wait_nodebug(hc);
1907 		HFC_outb(hc, A_SUBCH_CFG, 0);
1908 		*txpending = 1;
1909 	}
1910 next_frame:
1911 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1912 		f1 = HFC_inb_nodebug(hc, A_F1);
1913 		f2 = HFC_inb_nodebug(hc, A_F2);
1914 		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1915 			if (debug & DEBUG_HFCMULTI_FIFO)
1916 				printk(KERN_DEBUG
1917 				    "%s(card %d): reread f2 because %d!=%d\n",
1918 				    __func__, hc->id + 1, temp, f2);
1919 			f2 = temp; /* repeat until F2 is equal */
1920 		}
1921 		Fspace = f2 - f1 - 1;
1922 		if (Fspace < 0)
1923 			Fspace += hc->Flen;
1924 		/*
1925 		 * Old FIFO handling doesn't give us the current Z2 read
1926 		 * pointer, so we cannot send the next frame before the fifo
1927 		 * is empty. It makes no difference except for a slightly
1928 		 * lower performance.
1929 		 */
1930 		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1931 			if (f1 != f2)
1932 				Fspace = 0;
1933 			else
1934 				Fspace = 1;
1935 		}
1936 		/* one frame only for ST D-channels, to allow resending */
1937 		if (hc->type != 1 && dch) {
1938 			if (f1 != f2)
1939 				Fspace = 0;
1940 		}
1941 		/* F-counter full condition */
1942 		if (Fspace == 0)
1943 			return;
1944 	}
1945 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1946 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1947 	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1948 		if (debug & DEBUG_HFCMULTI_FIFO)
1949 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1950 				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
1951 		z2 = temp; /* repeat unti Z2 is equal */
1952 	}
1953 	Zspace = z2 - z1;
1954 	if (Zspace <= 0)
1955 		Zspace += hc->Zlen;
1956 	Zspace -= 4; /* keep not too full, so pointers will not overrun */
1957 	/* fill transparent data only to maxinum transparent load (minus 4) */
1958 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1959 		Zspace = Zspace - hc->Zlen + hc->max_trans;
1960 	if (Zspace <= 0) /* no space of 4 bytes */
1961 		return;
1962 
1963 	/* if no data */
1964 	if (!len) {
1965 		if (z1 == z2) { /* empty */
1966 			/* if done with FIFO audio data during PCM connection */
1967 			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1968 			    *txpending && slot_tx >= 0) {
1969 				if (debug & DEBUG_HFCMULTI_MODE)
1970 					printk(KERN_DEBUG
1971 					    "%s: reconnecting PCM due to no "
1972 					    "more FIFO data: channel %d "
1973 					    "slot_tx %d\n",
1974 					    __func__, ch, slot_tx);
1975 				/* connect slot */
1976 				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1977 				    V_HDLC_TRP | V_IFF);
1978 				HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1979 				HFC_wait_nodebug(hc);
1980 				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1981 				    V_HDLC_TRP | V_IFF);
1982 				HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1983 				HFC_wait_nodebug(hc);
1984 			}
1985 			*txpending = 0;
1986 		}
1987 		return; /* no data */
1988 	}
1989 
1990 	/* if audio data and connected slot */
1991 	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1992 		&& slot_tx >= 0) {
1993 		if (debug & DEBUG_HFCMULTI_MODE)
1994 			printk(KERN_DEBUG "%s: disconnecting PCM due to "
1995 			    "FIFO data: channel %d slot_tx %d\n",
1996 			    __func__, ch, slot_tx);
1997 		/* disconnect slot */
1998 		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
1999 		HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2000 		HFC_wait_nodebug(hc);
2001 		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2002 		HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2003 		HFC_wait_nodebug(hc);
2004 	}
2005 	*txpending = 1;
2006 
2007 	/* show activity */
2008 	hc->activity[hc->chan[ch].port] = 1;
2009 
2010 	/* fill fifo to what we have left */
2011 	ii = len;
2012 	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2013 		temp = 1;
2014 	else
2015 		temp = 0;
2016 	i = *idxp;
2017 	d = (*sp)->data + i;
2018 	if (ii - i > Zspace)
2019 		ii = Zspace + i;
2020 	if (debug & DEBUG_HFCMULTI_FIFO)
2021 		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2022 		    "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2023 			__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2024 			temp ? "HDLC":"TRANS");
2025 
2026 
2027 	/* Have to prep the audio data */
2028 	hc->write_fifo(hc, d, ii - i);
2029 	*idxp = ii;
2030 
2031 	/* if not all data has been written */
2032 	if (ii != len) {
2033 		/* NOTE: fifo is started by the calling function */
2034 		return;
2035 	}
2036 
2037 	/* if all data has been written, terminate frame */
2038 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2039 		/* increment f-counter */
2040 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2041 		HFC_wait_nodebug(hc);
2042 	}
2043 
2044 	/* send confirm, since get_net_bframe will not do it with trans */
2045 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2046 		confirm_Bsend(bch);
2047 
2048 	/* check for next frame */
2049 	dev_kfree_skb(*sp);
2050 	if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2051 		len = (*sp)->len;
2052 		goto next_frame;
2053 	}
2054 	if (dch && get_next_dframe(dch)) {
2055 		len = (*sp)->len;
2056 		goto next_frame;
2057 	}
2058 
2059 	/*
2060 	 * now we have no more data, so in case of transparent,
2061 	 * we set the last byte in fifo to 'silence' in case we will get
2062 	 * no more data at all. this prevents sending an undefined value.
2063 	 */
2064 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2065 		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2066 }
2067 
2068 
2069 /* NOTE: only called if E1 card is in active state */
2070 static void
2071 hfcmulti_rx(struct hfc_multi *hc, int ch)
2072 {
2073 	int temp;
2074 	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2075 	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2076 	int again = 0;
2077 	struct	bchannel *bch;
2078 	struct  dchannel *dch;
2079 	struct sk_buff	*skb, **sp = NULL;
2080 	int	maxlen;
2081 
2082 	bch = hc->chan[ch].bch;
2083 	dch = hc->chan[ch].dch;
2084 	if ((!dch) && (!bch))
2085 		return;
2086 	if (dch) {
2087 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2088 			return;
2089 		sp = &dch->rx_skb;
2090 		maxlen = dch->maxlen;
2091 	} else {
2092 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2093 			return;
2094 		sp = &bch->rx_skb;
2095 		maxlen = bch->maxlen;
2096 	}
2097 next_frame:
2098 	/* on first AND before getting next valid frame, R_FIFO must be written
2099 	   to. */
2100 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2101 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2102 	    (hc->chan[ch].slot_rx < 0) &&
2103 	    (hc->chan[ch].slot_tx < 0))
2104 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2105 	else
2106 		HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2107 	HFC_wait_nodebug(hc);
2108 
2109 	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2110 	if (hc->chan[ch].rx_off)
2111 		return;
2112 
2113 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2114 		f1 = HFC_inb_nodebug(hc, A_F1);
2115 		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2116 			if (debug & DEBUG_HFCMULTI_FIFO)
2117 				printk(KERN_DEBUG
2118 				    "%s(card %d): reread f1 because %d!=%d\n",
2119 				    __func__, hc->id + 1, temp, f1);
2120 			f1 = temp; /* repeat until F1 is equal */
2121 		}
2122 		f2 = HFC_inb_nodebug(hc, A_F2);
2123 	}
2124 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2125 	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2126 		if (debug & DEBUG_HFCMULTI_FIFO)
2127 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2128 				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
2129 		z1 = temp; /* repeat until Z1 is equal */
2130 	}
2131 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2132 	Zsize = z1 - z2;
2133 	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2134 		/* complete hdlc frame */
2135 		Zsize++;
2136 	if (Zsize < 0)
2137 		Zsize += hc->Zlen;
2138 	/* if buffer is empty */
2139 	if (Zsize <= 0)
2140 		return;
2141 
2142 	if (*sp == NULL) {
2143 		*sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2144 		if (*sp == NULL) {
2145 			printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2146 			    __func__);
2147 			return;
2148 		}
2149 	}
2150 	/* show activity */
2151 	hc->activity[hc->chan[ch].port] = 1;
2152 
2153 	/* empty fifo with what we have */
2154 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2155 		if (debug & DEBUG_HFCMULTI_FIFO)
2156 			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2157 			    "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2158 			    "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2159 			    Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2160 			    f1, f2, Zsize + (*sp)->len, again);
2161 		/* HDLC */
2162 		if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2163 			if (debug & DEBUG_HFCMULTI_FIFO)
2164 				printk(KERN_DEBUG
2165 				    "%s(card %d): hdlc-frame too large.\n",
2166 				    __func__, hc->id + 1);
2167 			skb_trim(*sp, 0);
2168 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2169 			HFC_wait_nodebug(hc);
2170 			return;
2171 		}
2172 
2173 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2174 
2175 		if (f1 != f2) {
2176 			/* increment Z2,F2-counter */
2177 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2178 			HFC_wait_nodebug(hc);
2179 			/* check size */
2180 			if ((*sp)->len < 4) {
2181 				if (debug & DEBUG_HFCMULTI_FIFO)
2182 					printk(KERN_DEBUG
2183 					    "%s(card %d): Frame below minimum "
2184 					    "size\n", __func__, hc->id + 1);
2185 				skb_trim(*sp, 0);
2186 				goto next_frame;
2187 			}
2188 			/* there is at least one complete frame, check crc */
2189 			if ((*sp)->data[(*sp)->len - 1]) {
2190 				if (debug & DEBUG_HFCMULTI_CRC)
2191 					printk(KERN_DEBUG
2192 					    "%s: CRC-error\n", __func__);
2193 				skb_trim(*sp, 0);
2194 				goto next_frame;
2195 			}
2196 			skb_trim(*sp, (*sp)->len - 3);
2197 			if ((*sp)->len < MISDN_COPY_SIZE) {
2198 				skb = *sp;
2199 				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2200 				if (*sp) {
2201 					memcpy(skb_put(*sp, skb->len),
2202 					    skb->data, skb->len);
2203 					skb_trim(skb, 0);
2204 				} else {
2205 					printk(KERN_DEBUG "%s: No mem\n",
2206 					    __func__);
2207 					*sp = skb;
2208 					skb = NULL;
2209 				}
2210 			} else {
2211 				skb = NULL;
2212 			}
2213 			if (debug & DEBUG_HFCMULTI_FIFO) {
2214 				printk(KERN_DEBUG "%s(card %d):",
2215 					__func__, hc->id + 1);
2216 				temp = 0;
2217 				while (temp < (*sp)->len)
2218 					printk(" %02x", (*sp)->data[temp++]);
2219 				printk("\n");
2220 			}
2221 			if (dch)
2222 				recv_Dchannel(dch);
2223 			else
2224 				recv_Bchannel(bch);
2225 			*sp = skb;
2226 			again++;
2227 			goto next_frame;
2228 		}
2229 		/* there is an incomplete frame */
2230 	} else {
2231 		/* transparent */
2232 		if (Zsize > skb_tailroom(*sp))
2233 			Zsize = skb_tailroom(*sp);
2234 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2235 		if (((*sp)->len) < MISDN_COPY_SIZE) {
2236 			skb = *sp;
2237 			*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2238 			if (*sp) {
2239 				memcpy(skb_put(*sp, skb->len),
2240 				    skb->data, skb->len);
2241 				skb_trim(skb, 0);
2242 			} else {
2243 				printk(KERN_DEBUG "%s: No mem\n", __func__);
2244 				*sp = skb;
2245 				skb = NULL;
2246 			}
2247 		} else {
2248 			skb = NULL;
2249 		}
2250 		if (debug & DEBUG_HFCMULTI_FIFO)
2251 			printk(KERN_DEBUG
2252 			    "%s(card %d): fifo(%d) reading %d bytes "
2253 			    "(z1=%04x, z2=%04x) TRANS\n",
2254 				__func__, hc->id + 1, ch, Zsize, z1, z2);
2255 		/* only bch is transparent */
2256 		recv_Bchannel(bch);
2257 		*sp = skb;
2258 	}
2259 }
2260 
2261 
2262 /*
2263  * Interrupt handler
2264  */
2265 static void
2266 signal_state_up(struct dchannel *dch, int info, char *msg)
2267 {
2268 	struct sk_buff	*skb;
2269 	int		id, data = info;
2270 
2271 	if (debug & DEBUG_HFCMULTI_STATE)
2272 		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2273 
2274 	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2275 
2276 	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2277 		GFP_ATOMIC);
2278 	if (!skb)
2279 		return;
2280 	recv_Dchannel_skb(dch, skb);
2281 }
2282 
2283 static inline void
2284 handle_timer_irq(struct hfc_multi *hc)
2285 {
2286 	int		ch, temp;
2287 	struct dchannel	*dch;
2288 	u_long		flags;
2289 
2290 	/* process queued resync jobs */
2291 	if (hc->e1_resync) {
2292 		/* lock, so e1_resync gets not changed */
2293 		spin_lock_irqsave(&HFClock, flags);
2294 		if (hc->e1_resync & 1) {
2295 			if (debug & DEBUG_HFCMULTI_PLXSD)
2296 				printk(KERN_DEBUG "Enable SYNC_I\n");
2297 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2298 			/* disable JATT, if RX_SYNC is set */
2299 			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2300 				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2301 		}
2302 		if (hc->e1_resync & 2) {
2303 			if (debug & DEBUG_HFCMULTI_PLXSD)
2304 				printk(KERN_DEBUG "Enable jatt PLL\n");
2305 			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2306 		}
2307 		if (hc->e1_resync & 4) {
2308 			if (debug & DEBUG_HFCMULTI_PLXSD)
2309 				printk(KERN_DEBUG
2310 				    "Enable QUARTZ for HFC-E1\n");
2311 			/* set jatt to quartz */
2312 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2313 				| V_JATT_OFF);
2314 			/* switch to JATT, in case it is not already */
2315 			HFC_outb(hc, R_SYNC_OUT, 0);
2316 		}
2317 		hc->e1_resync = 0;
2318 		spin_unlock_irqrestore(&HFClock, flags);
2319 	}
2320 
2321 	if (hc->type != 1 || hc->e1_state == 1)
2322 		for (ch = 0; ch <= 31; ch++) {
2323 			if (hc->created[hc->chan[ch].port]) {
2324 				hfcmulti_tx(hc, ch);
2325 				/* fifo is started when switching to rx-fifo */
2326 				hfcmulti_rx(hc, ch);
2327 				if (hc->chan[ch].dch &&
2328 				    hc->chan[ch].nt_timer > -1) {
2329 					dch = hc->chan[ch].dch;
2330 					if (!(--hc->chan[ch].nt_timer)) {
2331 						schedule_event(dch,
2332 						    FLG_PHCHANGE);
2333 						if (debug &
2334 						    DEBUG_HFCMULTI_STATE)
2335 							printk(KERN_DEBUG
2336 							    "%s: nt_timer at "
2337 							    "state %x\n",
2338 							    __func__,
2339 							    dch->state);
2340 					}
2341 				}
2342 			}
2343 		}
2344 	if (hc->type == 1 && hc->created[0]) {
2345 		dch = hc->chan[hc->dslot].dch;
2346 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2347 			/* LOS */
2348 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2349 			if (!temp && hc->chan[hc->dslot].los)
2350 				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2351 				    "LOS detected");
2352 			if (temp && !hc->chan[hc->dslot].los)
2353 				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2354 				    "LOS gone");
2355 			hc->chan[hc->dslot].los = temp;
2356 		}
2357 		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2358 			/* AIS */
2359 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2360 			if (!temp && hc->chan[hc->dslot].ais)
2361 				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2362 				    "AIS detected");
2363 			if (temp && !hc->chan[hc->dslot].ais)
2364 				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2365 				    "AIS gone");
2366 			hc->chan[hc->dslot].ais = temp;
2367 		}
2368 		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2369 			/* SLIP */
2370 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2371 			if (!temp && hc->chan[hc->dslot].slip_rx)
2372 				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2373 				    " bit SLIP detected RX");
2374 			hc->chan[hc->dslot].slip_rx = temp;
2375 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2376 			if (!temp && hc->chan[hc->dslot].slip_tx)
2377 				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2378 				    " bit SLIP detected TX");
2379 			hc->chan[hc->dslot].slip_tx = temp;
2380 		}
2381 		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2382 			/* RDI */
2383 			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2384 			if (!temp && hc->chan[hc->dslot].rdi)
2385 				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2386 				    "RDI detected");
2387 			if (temp && !hc->chan[hc->dslot].rdi)
2388 				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2389 				    "RDI gone");
2390 			hc->chan[hc->dslot].rdi = temp;
2391 		}
2392 		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2393 		switch (hc->chan[hc->dslot].sync) {
2394 		case 0:
2395 			if ((temp & 0x60) == 0x60) {
2396 				if (debug & DEBUG_HFCMULTI_SYNC)
2397 					printk(KERN_DEBUG
2398 					    "%s: (id=%d) E1 now "
2399 					    "in clock sync\n",
2400 					    __func__, hc->id);
2401 				HFC_outb(hc, R_RX_OFF,
2402 				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2403 				HFC_outb(hc, R_TX_OFF,
2404 				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2405 				hc->chan[hc->dslot].sync = 1;
2406 				goto check_framesync;
2407 			}
2408 			break;
2409 		case 1:
2410 			if ((temp & 0x60) != 0x60) {
2411 				if (debug & DEBUG_HFCMULTI_SYNC)
2412 					printk(KERN_DEBUG
2413 					    "%s: (id=%d) E1 "
2414 					    "lost clock sync\n",
2415 					    __func__, hc->id);
2416 				hc->chan[hc->dslot].sync = 0;
2417 				break;
2418 			}
2419 check_framesync:
2420 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2421 			if (temp == 0x27) {
2422 				if (debug & DEBUG_HFCMULTI_SYNC)
2423 					printk(KERN_DEBUG
2424 					    "%s: (id=%d) E1 "
2425 					    "now in frame sync\n",
2426 					    __func__, hc->id);
2427 				hc->chan[hc->dslot].sync = 2;
2428 			}
2429 			break;
2430 		case 2:
2431 			if ((temp & 0x60) != 0x60) {
2432 				if (debug & DEBUG_HFCMULTI_SYNC)
2433 					printk(KERN_DEBUG
2434 					    "%s: (id=%d) E1 lost "
2435 					    "clock & frame sync\n",
2436 					    __func__, hc->id);
2437 				hc->chan[hc->dslot].sync = 0;
2438 				break;
2439 			}
2440 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2441 			if (temp != 0x27) {
2442 				if (debug & DEBUG_HFCMULTI_SYNC)
2443 					printk(KERN_DEBUG
2444 					    "%s: (id=%d) E1 "
2445 					    "lost frame sync\n",
2446 					    __func__, hc->id);
2447 				hc->chan[hc->dslot].sync = 1;
2448 			}
2449 			break;
2450 		}
2451 	}
2452 
2453 	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2454 		hfcmulti_watchdog(hc);
2455 
2456 	if (hc->leds)
2457 		hfcmulti_leds(hc);
2458 }
2459 
2460 static void
2461 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2462 {
2463 	struct dchannel	*dch;
2464 	int		ch;
2465 	int		active;
2466 	u_char		st_status, temp;
2467 
2468 	/* state machine */
2469 	for (ch = 0; ch <= 31; ch++) {
2470 		if (hc->chan[ch].dch) {
2471 			dch = hc->chan[ch].dch;
2472 			if (r_irq_statech & 1) {
2473 				HFC_outb_nodebug(hc, R_ST_SEL,
2474 					hc->chan[ch].port);
2475 				/* undocumented: delay after R_ST_SEL */
2476 				udelay(1);
2477 				/* undocumented: status changes during read */
2478 				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2479 				while (st_status != (temp =
2480 					HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2481 					if (debug & DEBUG_HFCMULTI_STATE)
2482 						printk(KERN_DEBUG "%s: reread "
2483 						    "STATE because %d!=%d\n",
2484 						    __func__, temp,
2485 						    st_status);
2486 					st_status = temp; /* repeat */
2487 				}
2488 
2489 				/* Speech Design TE-sync indication */
2490 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2491 					dch->dev.D.protocol == ISDN_P_TE_S0) {
2492 					if (st_status & V_FR_SYNC_ST)
2493 						hc->syncronized |=
2494 						    (1 << hc->chan[ch].port);
2495 					else
2496 						hc->syncronized &=
2497 						   ~(1 << hc->chan[ch].port);
2498 				}
2499 				dch->state = st_status & 0x0f;
2500 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2501 					active = 3;
2502 				else
2503 					active = 7;
2504 				if (dch->state == active) {
2505 					HFC_outb_nodebug(hc, R_FIFO,
2506 						(ch << 1) | 1);
2507 					HFC_wait_nodebug(hc);
2508 					HFC_outb_nodebug(hc,
2509 						R_INC_RES_FIFO, V_RES_F);
2510 					HFC_wait_nodebug(hc);
2511 					dch->tx_idx = 0;
2512 				}
2513 				schedule_event(dch, FLG_PHCHANGE);
2514 				if (debug & DEBUG_HFCMULTI_STATE)
2515 					printk(KERN_DEBUG
2516 					    "%s: S/T newstate %x port %d\n",
2517 					    __func__, dch->state,
2518 					    hc->chan[ch].port);
2519 			}
2520 			r_irq_statech >>= 1;
2521 		}
2522 	}
2523 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2524 		plxsd_checksync(hc, 0);
2525 }
2526 
2527 static void
2528 fifo_irq(struct hfc_multi *hc, int block)
2529 {
2530 	int	ch, j;
2531 	struct dchannel	*dch;
2532 	struct bchannel	*bch;
2533 	u_char r_irq_fifo_bl;
2534 
2535 	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2536 	j = 0;
2537 	while (j < 8) {
2538 		ch = (block << 2) + (j >> 1);
2539 		dch = hc->chan[ch].dch;
2540 		bch = hc->chan[ch].bch;
2541 		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2542 			j += 2;
2543 			continue;
2544 		}
2545 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2546 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2547 			hfcmulti_tx(hc, ch);
2548 			/* start fifo */
2549 			HFC_outb_nodebug(hc, R_FIFO, 0);
2550 			HFC_wait_nodebug(hc);
2551 		}
2552 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2553 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2554 			hfcmulti_tx(hc, ch);
2555 			/* start fifo */
2556 			HFC_outb_nodebug(hc, R_FIFO, 0);
2557 			HFC_wait_nodebug(hc);
2558 		}
2559 		j++;
2560 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2561 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2562 			hfcmulti_rx(hc, ch);
2563 		}
2564 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2565 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2566 			hfcmulti_rx(hc, ch);
2567 		}
2568 		j++;
2569 	}
2570 }
2571 
2572 #ifdef IRQ_DEBUG
2573 int irqsem;
2574 #endif
2575 static irqreturn_t
2576 hfcmulti_interrupt(int intno, void *dev_id)
2577 {
2578 #ifdef IRQCOUNT_DEBUG
2579 	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2580 	    iq5 = 0, iq6 = 0, iqcnt = 0;
2581 #endif
2582 	static int		count;
2583 	struct hfc_multi	*hc = dev_id;
2584 	struct dchannel		*dch;
2585 	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2586 	int			i;
2587 	u_short			*plx_acc, wval;
2588 	u_char			e1_syncsta, temp;
2589 	u_long			flags;
2590 
2591 	if (!hc) {
2592 		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2593 		return IRQ_NONE;
2594 	}
2595 
2596 	spin_lock(&hc->lock);
2597 
2598 #ifdef IRQ_DEBUG
2599 	if (irqsem)
2600 		printk(KERN_ERR "irq for card %d during irq from "
2601 		"card %d, this is no bug.\n", hc->id + 1, irqsem);
2602 	irqsem = hc->id + 1;
2603 #endif
2604 
2605 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2606 		spin_lock_irqsave(&plx_lock, flags);
2607 		plx_acc = (u_short *)(hc->plx_membase + PLX_INTCSR);
2608 		wval = readw(plx_acc);
2609 		spin_unlock_irqrestore(&plx_lock, flags);
2610 		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2611 			goto irq_notforus;
2612 	}
2613 
2614 	status = HFC_inb_nodebug(hc, R_STATUS);
2615 	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2616 #ifdef IRQCOUNT_DEBUG
2617 	if (r_irq_statech)
2618 		iq1++;
2619 	if (status & V_DTMF_STA)
2620 		iq2++;
2621 	if (status & V_LOST_STA)
2622 		iq3++;
2623 	if (status & V_EXT_IRQSTA)
2624 		iq4++;
2625 	if (status & V_MISC_IRQSTA)
2626 		iq5++;
2627 	if (status & V_FR_IRQSTA)
2628 		iq6++;
2629 	if (iqcnt++ > 5000) {
2630 		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2631 		    iq1, iq2, iq3, iq4, iq5, iq6);
2632 		iqcnt = 0;
2633 	}
2634 #endif
2635 	if (!r_irq_statech &&
2636 	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2637 	    V_MISC_IRQSTA | V_FR_IRQSTA))) {
2638 		/* irq is not for us */
2639 		goto irq_notforus;
2640 	}
2641 	hc->irqcnt++;
2642 	if (r_irq_statech) {
2643 		if (hc->type != 1)
2644 			ph_state_irq(hc, r_irq_statech);
2645 	}
2646 	if (status & V_EXT_IRQSTA)
2647 		; /* external IRQ */
2648 	if (status & V_LOST_STA) {
2649 		/* LOST IRQ */
2650 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2651 	}
2652 	if (status & V_MISC_IRQSTA) {
2653 		/* misc IRQ */
2654 		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2655 		if (r_irq_misc & V_STA_IRQ) {
2656 			if (hc->type == 1) {
2657 				/* state machine */
2658 				dch = hc->chan[hc->dslot].dch;
2659 				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2660 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2661 				 && hc->e1_getclock) {
2662 					if (e1_syncsta & V_FR_SYNC_E1)
2663 						hc->syncronized = 1;
2664 					else
2665 						hc->syncronized = 0;
2666 				}
2667 				/* undocumented: status changes during read */
2668 				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2669 				while (dch->state != (temp =
2670 					HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2671 					if (debug & DEBUG_HFCMULTI_STATE)
2672 						printk(KERN_DEBUG "%s: reread "
2673 						    "STATE because %d!=%d\n",
2674 						    __func__, temp,
2675 						    dch->state);
2676 					dch->state = temp; /* repeat */
2677 				}
2678 				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2679 					& 0x7;
2680 				schedule_event(dch, FLG_PHCHANGE);
2681 				if (debug & DEBUG_HFCMULTI_STATE)
2682 					printk(KERN_DEBUG
2683 					    "%s: E1 (id=%d) newstate %x\n",
2684 					    __func__, hc->id, dch->state);
2685 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2686 					plxsd_checksync(hc, 0);
2687 			}
2688 		}
2689 		if (r_irq_misc & V_TI_IRQ)
2690 			handle_timer_irq(hc);
2691 
2692 		if (r_irq_misc & V_DTMF_IRQ) {
2693 			/* -> DTMF IRQ */
2694 			hfcmulti_dtmf(hc);
2695 		}
2696 		/* TODO: REPLACE !!!! 125 us Interrupts are not acceptable  */
2697 		if (r_irq_misc & V_IRQ_PROC) {
2698 			/* IRQ every 125us */
2699 			count++;
2700 			/* generate 1kHz signal */
2701 			if (count == 8) {
2702 				if (hfc_interrupt)
2703 					hfc_interrupt();
2704 				count = 0;
2705 			}
2706 		}
2707 
2708 	}
2709 	if (status & V_FR_IRQSTA) {
2710 		/* FIFO IRQ */
2711 		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2712 		for (i = 0; i < 8; i++) {
2713 			if (r_irq_oview & (1 << i))
2714 				fifo_irq(hc, i);
2715 		}
2716 	}
2717 
2718 #ifdef IRQ_DEBUG
2719 	irqsem = 0;
2720 #endif
2721 	spin_unlock(&hc->lock);
2722 	return IRQ_HANDLED;
2723 
2724 irq_notforus:
2725 #ifdef IRQ_DEBUG
2726 	irqsem = 0;
2727 #endif
2728 	spin_unlock(&hc->lock);
2729 	return IRQ_NONE;
2730 }
2731 
2732 
2733 /*
2734  * timer callback for D-chan busy resolution. Currently no function
2735  */
2736 
2737 static void
2738 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2739 {
2740 }
2741 
2742 
2743 /*
2744  * activate/deactivate hardware for selected channels and mode
2745  *
2746  * configure B-channel with the given protocol
2747  * ch eqals to the HFC-channel (0-31)
2748  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2749  * for S/T, 1-31 for E1)
2750  * the hdlc interrupts will be set/unset
2751  */
2752 static int
2753 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2754     int bank_tx, int slot_rx, int bank_rx)
2755 {
2756 	int flow_tx = 0, flow_rx = 0, routing = 0;
2757 	int oslot_tx, oslot_rx;
2758 	int conf;
2759 
2760 	if (ch < 0 || ch > 31)
2761 		return EINVAL;
2762 	oslot_tx = hc->chan[ch].slot_tx;
2763 	oslot_rx = hc->chan[ch].slot_rx;
2764 	conf = hc->chan[ch].conf;
2765 
2766 	if (debug & DEBUG_HFCMULTI_MODE)
2767 		printk(KERN_DEBUG
2768 		    "%s: card %d channel %d protocol %x slot old=%d new=%d "
2769 		    "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2770 		    __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2771 		    bank_tx, oslot_rx, slot_rx, bank_rx);
2772 
2773 	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2774 		/* remove from slot */
2775 		if (debug & DEBUG_HFCMULTI_MODE)
2776 			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2777 			    __func__, oslot_tx);
2778 		if (hc->slot_owner[oslot_tx<<1] == ch) {
2779 			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2780 			HFC_outb(hc, A_SL_CFG, 0);
2781 			HFC_outb(hc, A_CONF, 0);
2782 			hc->slot_owner[oslot_tx<<1] = -1;
2783 		} else {
2784 			if (debug & DEBUG_HFCMULTI_MODE)
2785 				printk(KERN_DEBUG
2786 				    "%s: we are not owner of this tx slot "
2787 				    "anymore, channel %d is.\n",
2788 				    __func__, hc->slot_owner[oslot_tx<<1]);
2789 		}
2790 	}
2791 
2792 	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2793 		/* remove from slot */
2794 		if (debug & DEBUG_HFCMULTI_MODE)
2795 			printk(KERN_DEBUG
2796 			    "%s: remove from slot %d (RX)\n",
2797 			    __func__, oslot_rx);
2798 		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2799 			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2800 			HFC_outb(hc, A_SL_CFG, 0);
2801 			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2802 		} else {
2803 			if (debug & DEBUG_HFCMULTI_MODE)
2804 				printk(KERN_DEBUG
2805 				    "%s: we are not owner of this rx slot "
2806 				    "anymore, channel %d is.\n",
2807 				    __func__,
2808 				    hc->slot_owner[(oslot_rx << 1) | 1]);
2809 		}
2810 	}
2811 
2812 	if (slot_tx < 0) {
2813 		flow_tx = 0x80; /* FIFO->ST */
2814 		/* disable pcm slot */
2815 		hc->chan[ch].slot_tx = -1;
2816 		hc->chan[ch].bank_tx = 0;
2817 	} else {
2818 		/* set pcm slot */
2819 		if (hc->chan[ch].txpending)
2820 			flow_tx = 0x80; /* FIFO->ST */
2821 		else
2822 			flow_tx = 0xc0; /* PCM->ST */
2823 		/* put on slot */
2824 		routing = bank_tx ? 0xc0 : 0x80;
2825 		if (conf >= 0 || bank_tx > 1)
2826 			routing = 0x40; /* loop */
2827 		if (debug & DEBUG_HFCMULTI_MODE)
2828 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2829 			    " %d flow %02x routing %02x conf %d (TX)\n",
2830 			    __func__, ch, slot_tx, bank_tx,
2831 			    flow_tx, routing, conf);
2832 		HFC_outb(hc, R_SLOT, slot_tx << 1);
2833 		HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2834 		HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2835 		hc->slot_owner[slot_tx << 1] = ch;
2836 		hc->chan[ch].slot_tx = slot_tx;
2837 		hc->chan[ch].bank_tx = bank_tx;
2838 	}
2839 	if (slot_rx < 0) {
2840 		/* disable pcm slot */
2841 		flow_rx = 0x80; /* ST->FIFO */
2842 		hc->chan[ch].slot_rx = -1;
2843 		hc->chan[ch].bank_rx = 0;
2844 	} else {
2845 		/* set pcm slot */
2846 		if (hc->chan[ch].txpending)
2847 			flow_rx = 0x80; /* ST->FIFO */
2848 		else
2849 			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2850 		/* put on slot */
2851 		routing = bank_rx?0x80:0xc0; /* reversed */
2852 		if (conf >= 0 || bank_rx > 1)
2853 			routing = 0x40; /* loop */
2854 		if (debug & DEBUG_HFCMULTI_MODE)
2855 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2856 			    " %d flow %02x routing %02x conf %d (RX)\n",
2857 			    __func__, ch, slot_rx, bank_rx,
2858 			    flow_rx, routing, conf);
2859 		HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2860 		HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2861 		hc->slot_owner[(slot_rx<<1)|1] = ch;
2862 		hc->chan[ch].slot_rx = slot_rx;
2863 		hc->chan[ch].bank_rx = bank_rx;
2864 	}
2865 
2866 	switch (protocol) {
2867 	case (ISDN_P_NONE):
2868 		/* disable TX fifo */
2869 		HFC_outb(hc, R_FIFO, ch << 1);
2870 		HFC_wait(hc);
2871 		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2872 		HFC_outb(hc, A_SUBCH_CFG, 0);
2873 		HFC_outb(hc, A_IRQ_MSK, 0);
2874 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2875 		HFC_wait(hc);
2876 		/* disable RX fifo */
2877 		HFC_outb(hc, R_FIFO, (ch<<1)|1);
2878 		HFC_wait(hc);
2879 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2880 		HFC_outb(hc, A_SUBCH_CFG, 0);
2881 		HFC_outb(hc, A_IRQ_MSK, 0);
2882 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2883 		HFC_wait(hc);
2884 		if (hc->chan[ch].bch && hc->type != 1) {
2885 			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2886 			    ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2887 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2888 			/* undocumented: delay after R_ST_SEL */
2889 			udelay(1);
2890 			HFC_outb(hc, A_ST_CTRL0,
2891 			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2892 		}
2893 		if (hc->chan[ch].bch) {
2894 			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2895 			test_and_clear_bit(FLG_TRANSPARENT,
2896 			    &hc->chan[ch].bch->Flags);
2897 		}
2898 		break;
2899 	case (ISDN_P_B_RAW): /* B-channel */
2900 
2901 		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2902 		    (hc->chan[ch].slot_rx < 0) &&
2903 		    (hc->chan[ch].slot_tx < 0)) {
2904 
2905 			printk(KERN_DEBUG
2906 			    "Setting B-channel %d to echo cancelable "
2907 			    "state on PCM slot %d\n", ch,
2908 			    ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2909 			printk(KERN_DEBUG
2910 			    "Enabling pass through for channel\n");
2911 			vpm_out(hc, ch, ((ch / 4) * 8) +
2912 			    ((ch % 4) * 4) + 1, 0x01);
2913 			/* rx path */
2914 			/* S/T -> PCM */
2915 			HFC_outb(hc, R_FIFO, (ch << 1));
2916 			HFC_wait(hc);
2917 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2918 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2919 			    ((ch % 4) * 4) + 1) << 1);
2920 			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2921 
2922 			/* PCM -> FIFO */
2923 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2924 			HFC_wait(hc);
2925 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2926 			HFC_outb(hc, A_SUBCH_CFG, 0);
2927 			HFC_outb(hc, A_IRQ_MSK, 0);
2928 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2929 			HFC_wait(hc);
2930 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2931 			    ((ch % 4) * 4) + 1) << 1) | 1);
2932 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2933 
2934 			/* tx path */
2935 			/* PCM -> S/T */
2936 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2937 			HFC_wait(hc);
2938 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2939 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2940 			    ((ch % 4) * 4)) << 1) | 1);
2941 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2942 
2943 			/* FIFO -> PCM */
2944 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2945 			HFC_wait(hc);
2946 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2947 			HFC_outb(hc, A_SUBCH_CFG, 0);
2948 			HFC_outb(hc, A_IRQ_MSK, 0);
2949 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2950 			HFC_wait(hc);
2951 			/* tx silence */
2952 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2953 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2954 			    ((ch % 4) * 4)) << 1);
2955 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2956 		} else {
2957 			/* enable TX fifo */
2958 			HFC_outb(hc, R_FIFO, ch << 1);
2959 			HFC_wait(hc);
2960 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2961 			    V_HDLC_TRP | V_IFF);
2962 			HFC_outb(hc, A_SUBCH_CFG, 0);
2963 			HFC_outb(hc, A_IRQ_MSK, 0);
2964 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2965 			HFC_wait(hc);
2966 			/* tx silence */
2967 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2968 			/* enable RX fifo */
2969 			HFC_outb(hc, R_FIFO, (ch<<1)|1);
2970 			HFC_wait(hc);
2971 			HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2972 			HFC_outb(hc, A_SUBCH_CFG, 0);
2973 			HFC_outb(hc, A_IRQ_MSK, 0);
2974 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2975 			HFC_wait(hc);
2976 		}
2977 		if (hc->type != 1) {
2978 			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2979 			    ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2980 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2981 			/* undocumented: delay after R_ST_SEL */
2982 			udelay(1);
2983 			HFC_outb(hc, A_ST_CTRL0,
2984 			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2985 		}
2986 		if (hc->chan[ch].bch)
2987 			test_and_set_bit(FLG_TRANSPARENT,
2988 			    &hc->chan[ch].bch->Flags);
2989 		break;
2990 	case (ISDN_P_B_HDLC): /* B-channel */
2991 	case (ISDN_P_TE_S0): /* D-channel */
2992 	case (ISDN_P_NT_S0):
2993 	case (ISDN_P_TE_E1):
2994 	case (ISDN_P_NT_E1):
2995 		/* enable TX fifo */
2996 		HFC_outb(hc, R_FIFO, ch<<1);
2997 		HFC_wait(hc);
2998 		if (hc->type == 1 || hc->chan[ch].bch) {
2999 			/* E1 or B-channel */
3000 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3001 			HFC_outb(hc, A_SUBCH_CFG, 0);
3002 		} else {
3003 			/* D-Channel without HDLC fill flags */
3004 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3005 			HFC_outb(hc, A_SUBCH_CFG, 2);
3006 		}
3007 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3008 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3009 		HFC_wait(hc);
3010 		/* enable RX fifo */
3011 		HFC_outb(hc, R_FIFO, (ch<<1)|1);
3012 		HFC_wait(hc);
3013 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3014 		if (hc->type == 1 || hc->chan[ch].bch)
3015 			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3016 		else
3017 			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3018 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3019 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3020 		HFC_wait(hc);
3021 		if (hc->chan[ch].bch) {
3022 			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3023 			if (hc->type != 1) {
3024 				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3025 				  ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3026 				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3027 				/* undocumented: delay after R_ST_SEL */
3028 				udelay(1);
3029 				HFC_outb(hc, A_ST_CTRL0,
3030 				  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3031 			}
3032 		}
3033 		break;
3034 	default:
3035 		printk(KERN_DEBUG "%s: protocol not known %x\n",
3036 		    __func__, protocol);
3037 		hc->chan[ch].protocol = ISDN_P_NONE;
3038 		return -ENOPROTOOPT;
3039 	}
3040 	hc->chan[ch].protocol = protocol;
3041 	return 0;
3042 }
3043 
3044 
3045 /*
3046  * connect/disconnect PCM
3047  */
3048 
3049 static void
3050 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3051     int slot_rx, int bank_rx)
3052 {
3053 	if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3054 		/* disable PCM */
3055 		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3056 		return;
3057 	}
3058 
3059 	/* enable pcm */
3060 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3061 		slot_rx, bank_rx);
3062 }
3063 
3064 /*
3065  * set/disable conference
3066  */
3067 
3068 static void
3069 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3070 {
3071 	if (num >= 0 && num <= 7)
3072 		hc->chan[ch].conf = num;
3073 	else
3074 		hc->chan[ch].conf = -1;
3075 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3076 	    hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3077 	    hc->chan[ch].bank_rx);
3078 }
3079 
3080 
3081 /*
3082  * set/disable sample loop
3083  */
3084 
3085 /* NOTE: this function is experimental and therefore disabled */
3086 
3087 /*
3088  * Layer 1 callback function
3089  */
3090 static int
3091 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3092 {
3093 	struct hfc_multi	*hc = dch->hw;
3094 	u_long	flags;
3095 
3096 	switch (cmd) {
3097 	case INFO3_P8:
3098 	case INFO3_P10:
3099 		break;
3100 	case HW_RESET_REQ:
3101 		/* start activation */
3102 		spin_lock_irqsave(&hc->lock, flags);
3103 		if (hc->type == 1) {
3104 			if (debug & DEBUG_HFCMULTI_MSG)
3105 				printk(KERN_DEBUG
3106 				    "%s: HW_RESET_REQ no BRI\n",
3107 				    __func__);
3108 		} else {
3109 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3110 			/* undocumented: delay after R_ST_SEL */
3111 			udelay(1);
3112 			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3113 			udelay(6); /* wait at least 5,21us */
3114 			HFC_outb(hc, A_ST_WR_STATE, 3);
3115 			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3116 				/* activate */
3117 		}
3118 		spin_unlock_irqrestore(&hc->lock, flags);
3119 		l1_event(dch->l1, HW_POWERUP_IND);
3120 		break;
3121 	case HW_DEACT_REQ:
3122 		/* start deactivation */
3123 		spin_lock_irqsave(&hc->lock, flags);
3124 		if (hc->type == 1) {
3125 			if (debug & DEBUG_HFCMULTI_MSG)
3126 				printk(KERN_DEBUG
3127 				    "%s: HW_DEACT_REQ no BRI\n",
3128 				    __func__);
3129 		} else {
3130 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3131 			/* undocumented: delay after R_ST_SEL */
3132 			udelay(1);
3133 			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3134 				/* deactivate */
3135 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3136 				hc->syncronized &=
3137 				   ~(1 << hc->chan[dch->slot].port);
3138 				plxsd_checksync(hc, 0);
3139 			}
3140 		}
3141 		skb_queue_purge(&dch->squeue);
3142 		if (dch->tx_skb) {
3143 			dev_kfree_skb(dch->tx_skb);
3144 			dch->tx_skb = NULL;
3145 		}
3146 		dch->tx_idx = 0;
3147 		if (dch->rx_skb) {
3148 			dev_kfree_skb(dch->rx_skb);
3149 			dch->rx_skb = NULL;
3150 		}
3151 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3152 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3153 			del_timer(&dch->timer);
3154 		spin_unlock_irqrestore(&hc->lock, flags);
3155 		break;
3156 	case HW_POWERUP_REQ:
3157 		spin_lock_irqsave(&hc->lock, flags);
3158 		if (hc->type == 1) {
3159 			if (debug & DEBUG_HFCMULTI_MSG)
3160 				printk(KERN_DEBUG
3161 				    "%s: HW_POWERUP_REQ no BRI\n",
3162 				    __func__);
3163 		} else {
3164 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3165 			/* undocumented: delay after R_ST_SEL */
3166 			udelay(1);
3167 			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3168 			udelay(6); /* wait at least 5,21us */
3169 			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3170 		}
3171 		spin_unlock_irqrestore(&hc->lock, flags);
3172 		break;
3173 	case PH_ACTIVATE_IND:
3174 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3175 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3176 			GFP_ATOMIC);
3177 		break;
3178 	case PH_DEACTIVATE_IND:
3179 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3180 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3181 			GFP_ATOMIC);
3182 		break;
3183 	default:
3184 		if (dch->debug & DEBUG_HW)
3185 			printk(KERN_DEBUG "%s: unknown command %x\n",
3186 			    __func__, cmd);
3187 		return -1;
3188 	}
3189 	return 0;
3190 }
3191 
3192 /*
3193  * Layer2 -> Layer 1 Transfer
3194  */
3195 
3196 static int
3197 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3198 {
3199 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3200 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3201 	struct hfc_multi	*hc = dch->hw;
3202 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3203 	int			ret = -EINVAL;
3204 	unsigned int		id;
3205 	u_long			flags;
3206 
3207 	switch (hh->prim) {
3208 	case PH_DATA_REQ:
3209 		if (skb->len < 1)
3210 			break;
3211 		spin_lock_irqsave(&hc->lock, flags);
3212 		ret = dchannel_senddata(dch, skb);
3213 		if (ret > 0) { /* direct TX */
3214 			id = hh->id; /* skb can be freed */
3215 			hfcmulti_tx(hc, dch->slot);
3216 			ret = 0;
3217 			/* start fifo */
3218 			HFC_outb(hc, R_FIFO, 0);
3219 			HFC_wait(hc);
3220 			spin_unlock_irqrestore(&hc->lock, flags);
3221 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3222 		} else
3223 			spin_unlock_irqrestore(&hc->lock, flags);
3224 		return ret;
3225 	case PH_ACTIVATE_REQ:
3226 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3227 			spin_lock_irqsave(&hc->lock, flags);
3228 			ret = 0;
3229 			if (debug & DEBUG_HFCMULTI_MSG)
3230 				printk(KERN_DEBUG
3231 				    "%s: PH_ACTIVATE port %d (0..%d)\n",
3232 				    __func__, hc->chan[dch->slot].port,
3233 				    hc->ports-1);
3234 			/* start activation */
3235 			if (hc->type == 1) {
3236 				ph_state_change(dch);
3237 				if (debug & DEBUG_HFCMULTI_STATE)
3238 					printk(KERN_DEBUG
3239 					    "%s: E1 report state %x \n",
3240 					    __func__, dch->state);
3241 			} else {
3242 				HFC_outb(hc, R_ST_SEL,
3243 				    hc->chan[dch->slot].port);
3244 				/* undocumented: delay after R_ST_SEL */
3245 				udelay(1);
3246 				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3247 				    /* G1 */
3248 				udelay(6); /* wait at least 5,21us */
3249 				HFC_outb(hc, A_ST_WR_STATE, 1);
3250 				HFC_outb(hc, A_ST_WR_STATE, 1 |
3251 				    (V_ST_ACT*3)); /* activate */
3252 				dch->state = 1;
3253 			}
3254 			spin_unlock_irqrestore(&hc->lock, flags);
3255 		} else
3256 			ret = l1_event(dch->l1, hh->prim);
3257 		break;
3258 	case PH_DEACTIVATE_REQ:
3259 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3260 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3261 			spin_lock_irqsave(&hc->lock, flags);
3262 			if (debug & DEBUG_HFCMULTI_MSG)
3263 				printk(KERN_DEBUG
3264 				    "%s: PH_DEACTIVATE port %d (0..%d)\n",
3265 				    __func__, hc->chan[dch->slot].port,
3266 				    hc->ports-1);
3267 			/* start deactivation */
3268 			if (hc->type == 1) {
3269 				if (debug & DEBUG_HFCMULTI_MSG)
3270 					printk(KERN_DEBUG
3271 					    "%s: PH_DEACTIVATE no BRI\n",
3272 					    __func__);
3273 			} else {
3274 				HFC_outb(hc, R_ST_SEL,
3275 				    hc->chan[dch->slot].port);
3276 				/* undocumented: delay after R_ST_SEL */
3277 				udelay(1);
3278 				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3279 				    /* deactivate */
3280 				dch->state = 1;
3281 			}
3282 			skb_queue_purge(&dch->squeue);
3283 			if (dch->tx_skb) {
3284 				dev_kfree_skb(dch->tx_skb);
3285 				dch->tx_skb = NULL;
3286 			}
3287 			dch->tx_idx = 0;
3288 			if (dch->rx_skb) {
3289 				dev_kfree_skb(dch->rx_skb);
3290 				dch->rx_skb = NULL;
3291 			}
3292 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3293 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3294 				del_timer(&dch->timer);
3295 #ifdef FIXME
3296 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3297 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3298 #endif
3299 			ret = 0;
3300 			spin_unlock_irqrestore(&hc->lock, flags);
3301 		} else
3302 			ret = l1_event(dch->l1, hh->prim);
3303 		break;
3304 	}
3305 	if (!ret)
3306 		dev_kfree_skb(skb);
3307 	return ret;
3308 }
3309 
3310 static void
3311 deactivate_bchannel(struct bchannel *bch)
3312 {
3313 	struct hfc_multi	*hc = bch->hw;
3314 	u_long			flags;
3315 
3316 	spin_lock_irqsave(&hc->lock, flags);
3317 	if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3318 		dev_kfree_skb(bch->next_skb);
3319 		bch->next_skb = NULL;
3320 	}
3321 	if (bch->tx_skb) {
3322 		dev_kfree_skb(bch->tx_skb);
3323 		bch->tx_skb = NULL;
3324 	}
3325 	bch->tx_idx = 0;
3326 	if (bch->rx_skb) {
3327 		dev_kfree_skb(bch->rx_skb);
3328 		bch->rx_skb = NULL;
3329 	}
3330 	hc->chan[bch->slot].coeff_count = 0;
3331 	test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3332 	test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3333 	hc->chan[bch->slot].rx_off = 0;
3334 	hc->chan[bch->slot].conf = -1;
3335 	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3336 	spin_unlock_irqrestore(&hc->lock, flags);
3337 }
3338 
3339 static int
3340 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3341 {
3342 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3343 	struct hfc_multi	*hc = bch->hw;
3344 	int			ret = -EINVAL;
3345 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3346 	unsigned int		id;
3347 	u_long			flags;
3348 
3349 	switch (hh->prim) {
3350 	case PH_DATA_REQ:
3351 		if (!skb->len)
3352 			break;
3353 		spin_lock_irqsave(&hc->lock, flags);
3354 		ret = bchannel_senddata(bch, skb);
3355 		if (ret > 0) { /* direct TX */
3356 			id = hh->id; /* skb can be freed */
3357 			hfcmulti_tx(hc, bch->slot);
3358 			ret = 0;
3359 			/* start fifo */
3360 			HFC_outb_nodebug(hc, R_FIFO, 0);
3361 			HFC_wait_nodebug(hc);
3362 			if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3363 				spin_unlock_irqrestore(&hc->lock, flags);
3364 				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3365 			} else
3366 				spin_unlock_irqrestore(&hc->lock, flags);
3367 		} else
3368 			spin_unlock_irqrestore(&hc->lock, flags);
3369 		return ret;
3370 	case PH_ACTIVATE_REQ:
3371 		if (debug & DEBUG_HFCMULTI_MSG)
3372 			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3373 				__func__, bch->slot);
3374 		spin_lock_irqsave(&hc->lock, flags);
3375 		/* activate B-channel if not already activated */
3376 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3377 			hc->chan[bch->slot].txpending = 0;
3378 			ret = mode_hfcmulti(hc, bch->slot,
3379 				ch->protocol,
3380 				hc->chan[bch->slot].slot_tx,
3381 				hc->chan[bch->slot].bank_tx,
3382 				hc->chan[bch->slot].slot_rx,
3383 				hc->chan[bch->slot].bank_rx);
3384 			if (!ret) {
3385 				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3386 					&& test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3387 					/* start decoder */
3388 					hc->dtmf = 1;
3389 					if (debug & DEBUG_HFCMULTI_DTMF)
3390 						printk(KERN_DEBUG
3391 						    "%s: start dtmf decoder\n",
3392 							__func__);
3393 					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3394 					    V_RST_DTMF);
3395 				}
3396 			}
3397 		} else
3398 			ret = 0;
3399 		spin_unlock_irqrestore(&hc->lock, flags);
3400 		if (!ret)
3401 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3402 				GFP_KERNEL);
3403 		break;
3404 	case PH_CONTROL_REQ:
3405 		spin_lock_irqsave(&hc->lock, flags);
3406 		switch (hh->id) {
3407 		case HFC_SPL_LOOP_ON: /* set sample loop */
3408 			if (debug & DEBUG_HFCMULTI_MSG)
3409 			printk(KERN_DEBUG
3410 			    "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3411 			    __func__, skb->len);
3412 			ret = 0;
3413 			break;
3414 		case HFC_SPL_LOOP_OFF: /* set silence */
3415 			if (debug & DEBUG_HFCMULTI_MSG)
3416 				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3417 				    __func__);
3418 			ret = 0;
3419 			break;
3420 		default:
3421 			printk(KERN_ERR
3422 			     "%s: unknown PH_CONTROL_REQ info %x\n",
3423 			     __func__, hh->id);
3424 			ret = -EINVAL;
3425 		}
3426 		spin_unlock_irqrestore(&hc->lock, flags);
3427 		break;
3428 	case PH_DEACTIVATE_REQ:
3429 		deactivate_bchannel(bch); /* locked there */
3430 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3431 			GFP_KERNEL);
3432 		ret = 0;
3433 		break;
3434 	}
3435 	if (!ret)
3436 		dev_kfree_skb(skb);
3437 	return ret;
3438 }
3439 
3440 /*
3441  * bchannel control function
3442  */
3443 static int
3444 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3445 {
3446 	int			ret = 0;
3447 	struct dsp_features	*features =
3448 		(struct dsp_features *)(*((u_long *)&cq->p1));
3449 	struct hfc_multi	*hc = bch->hw;
3450 	int			slot_tx;
3451 	int			bank_tx;
3452 	int			slot_rx;
3453 	int			bank_rx;
3454 	int			num;
3455 
3456 	switch (cq->op) {
3457 	case MISDN_CTRL_GETOP:
3458 		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3459 			| MISDN_CTRL_RX_OFF;
3460 		break;
3461 	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3462 		hc->chan[bch->slot].rx_off = !!cq->p1;
3463 		if (!hc->chan[bch->slot].rx_off) {
3464 			/* reset fifo on rx on */
3465 			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3466 			HFC_wait_nodebug(hc);
3467 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3468 			HFC_wait_nodebug(hc);
3469 		}
3470 		if (debug & DEBUG_HFCMULTI_MSG)
3471 			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3472 			    __func__, bch->nr, hc->chan[bch->slot].rx_off);
3473 		break;
3474 	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3475 		if (debug & DEBUG_HFCMULTI_MSG)
3476 			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3477 			    __func__);
3478 		/* create confirm */
3479 		features->hfc_id = hc->id;
3480 		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3481 			features->hfc_dtmf = 1;
3482 		features->hfc_loops = 0;
3483 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3484 			features->hfc_echocanhw = 1;
3485 		} else {
3486 			features->pcm_id = hc->pcm;
3487 			features->pcm_slots = hc->slots;
3488 			features->pcm_banks = 2;
3489 		}
3490 		break;
3491 	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3492 		slot_tx = cq->p1 & 0xff;
3493 		bank_tx = cq->p1 >> 8;
3494 		slot_rx = cq->p2 & 0xff;
3495 		bank_rx = cq->p2 >> 8;
3496 		if (debug & DEBUG_HFCMULTI_MSG)
3497 			printk(KERN_DEBUG
3498 			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3499 			    "slot %d bank %d (RX)\n",
3500 			    __func__, slot_tx, bank_tx,
3501 			    slot_rx, bank_rx);
3502 		if (slot_tx < hc->slots && bank_tx <= 2 &&
3503 		    slot_rx < hc->slots && bank_rx <= 2)
3504 			hfcmulti_pcm(hc, bch->slot,
3505 			    slot_tx, bank_tx, slot_rx, bank_rx);
3506 		else {
3507 			printk(KERN_WARNING
3508 			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3509 			    "slot %d bank %d (RX) out of range\n",
3510 			    __func__, slot_tx, bank_tx,
3511 			    slot_rx, bank_rx);
3512 			ret = -EINVAL;
3513 		}
3514 		break;
3515 	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3516 		if (debug & DEBUG_HFCMULTI_MSG)
3517 			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3518 			    __func__);
3519 		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3520 		break;
3521 	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3522 		num = cq->p1 & 0xff;
3523 		if (debug & DEBUG_HFCMULTI_MSG)
3524 			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3525 			    __func__, num);
3526 		if (num <= 7)
3527 			hfcmulti_conf(hc, bch->slot, num);
3528 		else {
3529 			printk(KERN_WARNING
3530 			    "%s: HW_CONF_JOIN conf %d out of range\n",
3531 			    __func__, num);
3532 			ret = -EINVAL;
3533 		}
3534 		break;
3535 	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3536 		if (debug & DEBUG_HFCMULTI_MSG)
3537 			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3538 		hfcmulti_conf(hc, bch->slot, -1);
3539 		break;
3540 	case MISDN_CTRL_HFC_ECHOCAN_ON:
3541 		if (debug & DEBUG_HFCMULTI_MSG)
3542 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3543 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3544 			vpm_echocan_on(hc, bch->slot, cq->p1);
3545 		else
3546 			ret = -EINVAL;
3547 		break;
3548 
3549 	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3550 		if (debug & DEBUG_HFCMULTI_MSG)
3551 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3552 				__func__);
3553 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3554 			vpm_echocan_off(hc, bch->slot);
3555 		else
3556 			ret = -EINVAL;
3557 		break;
3558 	default:
3559 		printk(KERN_WARNING "%s: unknown Op %x\n",
3560 		    __func__, cq->op);
3561 		ret = -EINVAL;
3562 		break;
3563 	}
3564 	return ret;
3565 }
3566 
3567 static int
3568 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3569 {
3570 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3571 	struct hfc_multi	*hc = bch->hw;
3572 	int			err = -EINVAL;
3573 	u_long	flags;
3574 
3575 	if (bch->debug & DEBUG_HW)
3576 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3577 		    __func__, cmd, arg);
3578 	switch (cmd) {
3579 	case CLOSE_CHANNEL:
3580 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3581 		if (test_bit(FLG_ACTIVE, &bch->Flags))
3582 			deactivate_bchannel(bch); /* locked there */
3583 		ch->protocol = ISDN_P_NONE;
3584 		ch->peer = NULL;
3585 		module_put(THIS_MODULE);
3586 		err = 0;
3587 		break;
3588 	case CONTROL_CHANNEL:
3589 		spin_lock_irqsave(&hc->lock, flags);
3590 		err = channel_bctrl(bch, arg);
3591 		spin_unlock_irqrestore(&hc->lock, flags);
3592 		break;
3593 	default:
3594 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3595 			__func__, cmd);
3596 	}
3597 	return err;
3598 }
3599 
3600 /*
3601  * handle D-channel events
3602  *
3603  * handle state change event
3604  */
3605 static void
3606 ph_state_change(struct dchannel *dch)
3607 {
3608 	struct hfc_multi *hc = dch->hw;
3609 	int ch, i;
3610 
3611 	if (!dch) {
3612 		printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3613 		    __func__);
3614 		return;
3615 	}
3616 	ch = dch->slot;
3617 
3618 	if (hc->type == 1) {
3619 		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3620 			if (debug & DEBUG_HFCMULTI_STATE)
3621 				printk(KERN_DEBUG
3622 				    "%s: E1 TE (id=%d) newstate %x\n",
3623 				    __func__, hc->id, dch->state);
3624 		} else {
3625 			if (debug & DEBUG_HFCMULTI_STATE)
3626 				printk(KERN_DEBUG
3627 				    "%s: E1 NT (id=%d) newstate %x\n",
3628 				    __func__, hc->id, dch->state);
3629 		}
3630 		switch (dch->state) {
3631 		case (1):
3632 			if (hc->e1_state != 1) {
3633 			    for (i = 1; i <= 31; i++) {
3634 				/* reset fifos on e1 activation */
3635 				HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3636 				HFC_wait_nodebug(hc);
3637 				HFC_outb_nodebug(hc,
3638 					R_INC_RES_FIFO, V_RES_F);
3639 				HFC_wait_nodebug(hc);
3640 			    }
3641 			}
3642 			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3643 			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3644 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3645 			break;
3646 
3647 		default:
3648 			if (hc->e1_state != 1)
3649 				return;
3650 			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3651 			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3652 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3653 		}
3654 		hc->e1_state = dch->state;
3655 	} else {
3656 		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3657 			if (debug & DEBUG_HFCMULTI_STATE)
3658 				printk(KERN_DEBUG
3659 				    "%s: S/T TE newstate %x\n",
3660 				    __func__, dch->state);
3661 			switch (dch->state) {
3662 			case (0):
3663 				l1_event(dch->l1, HW_RESET_IND);
3664 				break;
3665 			case (3):
3666 				l1_event(dch->l1, HW_DEACT_IND);
3667 				break;
3668 			case (5):
3669 			case (8):
3670 				l1_event(dch->l1, ANYSIGNAL);
3671 				break;
3672 			case (6):
3673 				l1_event(dch->l1, INFO2);
3674 				break;
3675 			case (7):
3676 				l1_event(dch->l1, INFO4_P8);
3677 				break;
3678 			}
3679 		} else {
3680 			if (debug & DEBUG_HFCMULTI_STATE)
3681 				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3682 				    __func__, dch->state);
3683 			switch (dch->state) {
3684 			case (2):
3685 				if (hc->chan[ch].nt_timer == 0) {
3686 					hc->chan[ch].nt_timer = -1;
3687 					HFC_outb(hc, R_ST_SEL,
3688 					    hc->chan[ch].port);
3689 					/* undocumented: delay after R_ST_SEL */
3690 					udelay(1);
3691 					HFC_outb(hc, A_ST_WR_STATE, 4 |
3692 					    V_ST_LD_STA); /* G4 */
3693 					udelay(6); /* wait at least 5,21us */
3694 					HFC_outb(hc, A_ST_WR_STATE, 4);
3695 					dch->state = 4;
3696 				} else {
3697 					/* one extra count for the next event */
3698 					hc->chan[ch].nt_timer =
3699 					    nt_t1_count[poll_timer] + 1;
3700 					HFC_outb(hc, R_ST_SEL,
3701 					    hc->chan[ch].port);
3702 					/* undocumented: delay after R_ST_SEL */
3703 					udelay(1);
3704 					/* allow G2 -> G3 transition */
3705 					HFC_outb(hc, A_ST_WR_STATE, 2 |
3706 					    V_SET_G2_G3);
3707 				}
3708 				break;
3709 			case (1):
3710 				hc->chan[ch].nt_timer = -1;
3711 				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3712 				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3713 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3714 				break;
3715 			case (4):
3716 				hc->chan[ch].nt_timer = -1;
3717 				break;
3718 			case (3):
3719 				hc->chan[ch].nt_timer = -1;
3720 				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3721 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3722 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3723 				break;
3724 			}
3725 		}
3726 	}
3727 }
3728 
3729 /*
3730  * called for card mode init message
3731  */
3732 
3733 static void
3734 hfcmulti_initmode(struct dchannel *dch)
3735 {
3736 	struct hfc_multi *hc = dch->hw;
3737 	u_char		a_st_wr_state, r_e1_wr_sta;
3738 	int		i, pt;
3739 
3740 	if (debug & DEBUG_HFCMULTI_INIT)
3741 		printk(KERN_DEBUG "%s: entered\n", __func__);
3742 
3743 	if (hc->type == 1) {
3744 		hc->chan[hc->dslot].slot_tx = -1;
3745 		hc->chan[hc->dslot].slot_rx = -1;
3746 		hc->chan[hc->dslot].conf = -1;
3747 		if (hc->dslot) {
3748 			mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3749 				-1, 0, -1, 0);
3750 			dch->timer.function = (void *) hfcmulti_dbusy_timer;
3751 			dch->timer.data = (long) dch;
3752 			init_timer(&dch->timer);
3753 		}
3754 		for (i = 1; i <= 31; i++) {
3755 			if (i == hc->dslot)
3756 				continue;
3757 			hc->chan[i].slot_tx = -1;
3758 			hc->chan[i].slot_rx = -1;
3759 			hc->chan[i].conf = -1;
3760 			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3761 		}
3762 		/* E1 */
3763 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3764 			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3765 			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3766 		}
3767 		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3768 			HFC_outb(hc, R_RX0, 0);
3769 			hc->hw.r_tx0 = 0 | V_OUT_EN;
3770 		} else {
3771 			HFC_outb(hc, R_RX0, 1);
3772 			hc->hw.r_tx0 = 1 | V_OUT_EN;
3773 		}
3774 		hc->hw.r_tx1 = V_ATX | V_NTRI;
3775 		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3776 		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3777 		HFC_outb(hc, R_TX_FR0, 0x00);
3778 		HFC_outb(hc, R_TX_FR1, 0xf8);
3779 
3780 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3781 			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3782 
3783 		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3784 
3785 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3786 			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3787 
3788 		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3789 			if (debug & DEBUG_HFCMULTI_INIT)
3790 				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3791 				    __func__);
3792 			r_e1_wr_sta = 0; /* G0 */
3793 			hc->e1_getclock = 0;
3794 		} else {
3795 			if (debug & DEBUG_HFCMULTI_INIT)
3796 				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3797 				    __func__);
3798 			r_e1_wr_sta = 0; /* F0 */
3799 			hc->e1_getclock = 1;
3800 		}
3801 		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3802 			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3803 		else
3804 			HFC_outb(hc, R_SYNC_OUT, 0);
3805 		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3806 			hc->e1_getclock = 1;
3807 		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3808 			hc->e1_getclock = 0;
3809 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3810 			/* SLAVE (clock master) */
3811 			if (debug & DEBUG_HFCMULTI_INIT)
3812 				printk(KERN_DEBUG
3813 				    "%s: E1 port is clock master "
3814 				    "(clock from PCM)\n", __func__);
3815 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3816 		} else {
3817 			if (hc->e1_getclock) {
3818 				/* MASTER (clock slave) */
3819 				if (debug & DEBUG_HFCMULTI_INIT)
3820 					printk(KERN_DEBUG
3821 					    "%s: E1 port is clock slave "
3822 					    "(clock to PCM)\n", __func__);
3823 				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3824 			} else {
3825 				/* MASTER (clock master) */
3826 				if (debug & DEBUG_HFCMULTI_INIT)
3827 					printk(KERN_DEBUG "%s: E1 port is "
3828 					    "clock master "
3829 					    "(clock from QUARTZ)\n",
3830 					    __func__);
3831 				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3832 				    V_PCM_SYNC | V_JATT_OFF);
3833 				HFC_outb(hc, R_SYNC_OUT, 0);
3834 			}
3835 		}
3836 		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3837 		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3838 		HFC_outb(hc, R_PWM0, 0x50);
3839 		HFC_outb(hc, R_PWM1, 0xff);
3840 		/* state machine setup */
3841 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3842 		udelay(6); /* wait at least 5,21us */
3843 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3844 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3845 			hc->syncronized = 0;
3846 			plxsd_checksync(hc, 0);
3847 		}
3848 	} else {
3849 		i = dch->slot;
3850 		hc->chan[i].slot_tx = -1;
3851 		hc->chan[i].slot_rx = -1;
3852 		hc->chan[i].conf = -1;
3853 		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3854 		dch->timer.function = (void *)hfcmulti_dbusy_timer;
3855 		dch->timer.data = (long) dch;
3856 		init_timer(&dch->timer);
3857 		hc->chan[i - 2].slot_tx = -1;
3858 		hc->chan[i - 2].slot_rx = -1;
3859 		hc->chan[i - 2].conf = -1;
3860 		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3861 		hc->chan[i - 1].slot_tx = -1;
3862 		hc->chan[i - 1].slot_rx = -1;
3863 		hc->chan[i - 1].conf = -1;
3864 		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3865 		/* ST */
3866 		pt = hc->chan[i].port;
3867 		/* select interface */
3868 		HFC_outb(hc, R_ST_SEL, pt);
3869 		/* undocumented: delay after R_ST_SEL */
3870 		udelay(1);
3871 		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3872 			if (debug & DEBUG_HFCMULTI_INIT)
3873 				printk(KERN_DEBUG
3874 				    "%s: ST port %d is NT-mode\n",
3875 				    __func__, pt);
3876 			/* clock delay */
3877 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3878 			a_st_wr_state = 1; /* G1 */
3879 			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3880 		} else {
3881 			if (debug & DEBUG_HFCMULTI_INIT)
3882 				printk(KERN_DEBUG
3883 				    "%s: ST port %d is TE-mode\n",
3884 				    __func__, pt);
3885 			/* clock delay */
3886 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3887 			a_st_wr_state = 2; /* F2 */
3888 			hc->hw.a_st_ctrl0[pt] = 0;
3889 		}
3890 		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3891 			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3892 		/* line setup */
3893 		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3894 		/* disable E-channel */
3895 		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3896 		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3897 			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3898 		else
3899 			HFC_outb(hc, A_ST_CTRL1, 0);
3900 		/* enable B-channel receive */
3901 		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3902 		/* state machine setup */
3903 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3904 		udelay(6); /* wait at least 5,21us */
3905 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3906 		hc->hw.r_sci_msk |= 1 << pt;
3907 		/* state machine interrupts */
3908 		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3909 		/* unset sync on port */
3910 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3911 			hc->syncronized &=
3912 			   ~(1 << hc->chan[dch->slot].port);
3913 			plxsd_checksync(hc, 0);
3914 		}
3915 	}
3916 	if (debug & DEBUG_HFCMULTI_INIT)
3917 		printk("%s: done\n", __func__);
3918 }
3919 
3920 
3921 static int
3922 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3923     struct channel_req *rq)
3924 {
3925 	int	err = 0;
3926 	u_long	flags;
3927 
3928 	if (debug & DEBUG_HW_OPEN)
3929 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3930 		    dch->dev.id, __builtin_return_address(0));
3931 	if (rq->protocol == ISDN_P_NONE)
3932 		return -EINVAL;
3933 	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3934 	    (dch->dev.D.protocol != rq->protocol)) {
3935 	    if (debug & DEBUG_HFCMULTI_MODE)
3936 		printk(KERN_WARNING "%s: change protocol %x to %x\n",
3937 		    __func__, dch->dev.D.protocol, rq->protocol);
3938 	}
3939 	if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3940 	 && (rq->protocol != ISDN_P_TE_S0))
3941 		l1_event(dch->l1, CLOSE_CHANNEL);
3942 	if (dch->dev.D.protocol != rq->protocol) {
3943 		if (rq->protocol == ISDN_P_TE_S0) {
3944 			err = create_l1(dch, hfcm_l1callback);
3945 			if (err)
3946 				return err;
3947 		}
3948 		dch->dev.D.protocol = rq->protocol;
3949 		spin_lock_irqsave(&hc->lock, flags);
3950 		hfcmulti_initmode(dch);
3951 		spin_unlock_irqrestore(&hc->lock, flags);
3952 	}
3953 
3954 	if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3955 	    ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3956 	    ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3957 	    ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3958 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3959 		    0, NULL, GFP_KERNEL);
3960 	}
3961 	rq->ch = &dch->dev.D;
3962 	if (!try_module_get(THIS_MODULE))
3963 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
3964 	return 0;
3965 }
3966 
3967 static int
3968 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3969     struct channel_req *rq)
3970 {
3971 	struct bchannel	*bch;
3972 	int		ch;
3973 
3974 	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3975 		return -EINVAL;
3976 	if (rq->protocol == ISDN_P_NONE)
3977 		return -EINVAL;
3978 	if (hc->type == 1)
3979 		ch = rq->adr.channel;
3980 	else
3981 		ch = (rq->adr.channel - 1) + (dch->slot - 2);
3982 	bch = hc->chan[ch].bch;
3983 	if (!bch) {
3984 		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3985 		    __func__, ch);
3986 		return -EINVAL;
3987 	}
3988 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
3989 		return -EBUSY; /* b-channel can be only open once */
3990 	bch->ch.protocol = rq->protocol;
3991 	hc->chan[ch].rx_off = 0;
3992 	rq->ch = &bch->ch;
3993 	if (!try_module_get(THIS_MODULE))
3994 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
3995 	return 0;
3996 }
3997 
3998 /*
3999  * device control function
4000  */
4001 static int
4002 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4003 {
4004 	int	ret = 0;
4005 
4006 	switch (cq->op) {
4007 	case MISDN_CTRL_GETOP:
4008 		cq->op = 0;
4009 		break;
4010 	default:
4011 		printk(KERN_WARNING "%s: unknown Op %x\n",
4012 		    __func__, cq->op);
4013 		ret = -EINVAL;
4014 		break;
4015 	}
4016 	return ret;
4017 }
4018 
4019 static int
4020 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4021 {
4022 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4023 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4024 	struct hfc_multi	*hc = dch->hw;
4025 	struct channel_req	*rq;
4026 	int			err = 0;
4027 	u_long			flags;
4028 
4029 	if (dch->debug & DEBUG_HW)
4030 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4031 		    __func__, cmd, arg);
4032 	switch (cmd) {
4033 	case OPEN_CHANNEL:
4034 		rq = arg;
4035 		switch (rq->protocol) {
4036 		case ISDN_P_TE_S0:
4037 		case ISDN_P_NT_S0:
4038 			if (hc->type == 1) {
4039 				err = -EINVAL;
4040 				break;
4041 			}
4042 			err = open_dchannel(hc, dch, rq); /* locked there */
4043 			break;
4044 		case ISDN_P_TE_E1:
4045 		case ISDN_P_NT_E1:
4046 			if (hc->type != 1) {
4047 				err = -EINVAL;
4048 				break;
4049 			}
4050 			err = open_dchannel(hc, dch, rq); /* locked there */
4051 			break;
4052 		default:
4053 			spin_lock_irqsave(&hc->lock, flags);
4054 			err = open_bchannel(hc, dch, rq);
4055 			spin_unlock_irqrestore(&hc->lock, flags);
4056 		}
4057 		break;
4058 	case CLOSE_CHANNEL:
4059 		if (debug & DEBUG_HW_OPEN)
4060 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4061 			    __func__, dch->dev.id,
4062 			    __builtin_return_address(0));
4063 		module_put(THIS_MODULE);
4064 		break;
4065 	case CONTROL_CHANNEL:
4066 		spin_lock_irqsave(&hc->lock, flags);
4067 		err = channel_dctrl(dch, arg);
4068 		spin_unlock_irqrestore(&hc->lock, flags);
4069 		break;
4070 	default:
4071 		if (dch->debug & DEBUG_HW)
4072 			printk(KERN_DEBUG "%s: unknown command %x\n",
4073 			    __func__, cmd);
4074 		err = -EINVAL;
4075 	}
4076 	return err;
4077 }
4078 
4079 /*
4080  * initialize the card
4081  */
4082 
4083 /*
4084  * start timer irq, wait some time and check if we have interrupts.
4085  * if not, reset chip and try again.
4086  */
4087 static int
4088 init_card(struct hfc_multi *hc)
4089 {
4090 	int	err = -EIO;
4091 	u_long	flags;
4092 	u_short	*plx_acc;
4093 	u_long	plx_flags;
4094 
4095 	if (debug & DEBUG_HFCMULTI_INIT)
4096 		printk(KERN_DEBUG "%s: entered\n", __func__);
4097 
4098 	spin_lock_irqsave(&hc->lock, flags);
4099 	/* set interrupts but leave global interrupt disabled */
4100 	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4101 	disable_hwirq(hc);
4102 	spin_unlock_irqrestore(&hc->lock, flags);
4103 
4104 	if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4105 	    "HFC-multi", hc)) {
4106 		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4107 		    hc->pci_dev->irq);
4108 		return -EIO;
4109 	}
4110 	hc->irq = hc->pci_dev->irq;
4111 
4112 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4113 		spin_lock_irqsave(&plx_lock, plx_flags);
4114 		plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4115 		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4116 			plx_acc); /* enable PCI & LINT1 irq */
4117 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4118 	}
4119 
4120 	if (debug & DEBUG_HFCMULTI_INIT)
4121 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4122 		    __func__, hc->irq, hc->irqcnt);
4123 	err = init_chip(hc);
4124 	if (err)
4125 		goto error;
4126 	/*
4127 	 * Finally enable IRQ output
4128 	 * this is only allowed, if an IRQ routine is allready
4129 	 * established for this HFC, so don't do that earlier
4130 	 */
4131 	spin_lock_irqsave(&hc->lock, flags);
4132 	enable_hwirq(hc);
4133 	spin_unlock_irqrestore(&hc->lock, flags);
4134 	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4135 	set_current_state(TASK_UNINTERRUPTIBLE);
4136 	schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4137 	/* turn IRQ off until chip is completely initialized */
4138 	spin_lock_irqsave(&hc->lock, flags);
4139 	disable_hwirq(hc);
4140 	spin_unlock_irqrestore(&hc->lock, flags);
4141 	if (debug & DEBUG_HFCMULTI_INIT)
4142 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4143 		    __func__, hc->irq, hc->irqcnt);
4144 	if (hc->irqcnt) {
4145 		if (debug & DEBUG_HFCMULTI_INIT)
4146 			printk(KERN_DEBUG "%s: done\n", __func__);
4147 
4148 		return 0;
4149 	}
4150 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4151 		printk(KERN_INFO "ignoring missing interrupts\n");
4152 		return 0;
4153 	}
4154 
4155 	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4156 		hc->irq);
4157 
4158 	err = -EIO;
4159 
4160 error:
4161 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4162 		spin_lock_irqsave(&plx_lock, plx_flags);
4163 		plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4164 		writew(0x00, plx_acc); /*disable IRQs*/
4165 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4166 	}
4167 
4168 	if (debug & DEBUG_HFCMULTI_INIT)
4169 		printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4170 	if (hc->irq) {
4171 		free_irq(hc->irq, hc);
4172 		hc->irq = 0;
4173 	}
4174 
4175 	if (debug & DEBUG_HFCMULTI_INIT)
4176 		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4177 	return err;
4178 }
4179 
4180 /*
4181  * find pci device and set it up
4182  */
4183 
4184 static int
4185 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4186 		const struct pci_device_id *ent)
4187 {
4188 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4189 
4190 	printk(KERN_INFO
4191 	    "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4192 	    m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4193 
4194 	hc->pci_dev = pdev;
4195 	if (m->clock2)
4196 		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4197 
4198 	if (ent->device == 0xB410) {
4199 		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4200 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4201 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4202 		hc->slots = 32;
4203 	}
4204 
4205 	if (hc->pci_dev->irq <= 0) {
4206 		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4207 		return -EIO;
4208 	}
4209 	if (pci_enable_device(hc->pci_dev)) {
4210 		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4211 		return -EIO;
4212 	}
4213 	hc->leds = m->leds;
4214 	hc->ledstate = 0xAFFEAFFE;
4215 	hc->opticalsupport = m->opticalsupport;
4216 
4217 	/* set memory access methods */
4218 	if (m->io_mode) /* use mode from card config */
4219 		hc->io_mode = m->io_mode;
4220 	switch (hc->io_mode) {
4221 	case HFC_IO_MODE_PLXSD:
4222 		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4223 		hc->slots = 128; /* required */
4224 		/* fall through */
4225 	case HFC_IO_MODE_PCIMEM:
4226 		hc->HFC_outb = HFC_outb_pcimem;
4227 		hc->HFC_inb = HFC_inb_pcimem;
4228 		hc->HFC_inw = HFC_inw_pcimem;
4229 		hc->HFC_wait = HFC_wait_pcimem;
4230 		hc->read_fifo = read_fifo_pcimem;
4231 		hc->write_fifo = write_fifo_pcimem;
4232 		break;
4233 	case HFC_IO_MODE_REGIO:
4234 		hc->HFC_outb = HFC_outb_regio;
4235 		hc->HFC_inb = HFC_inb_regio;
4236 		hc->HFC_inw = HFC_inw_regio;
4237 		hc->HFC_wait = HFC_wait_regio;
4238 		hc->read_fifo = read_fifo_regio;
4239 		hc->write_fifo = write_fifo_regio;
4240 		break;
4241 	default:
4242 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4243 		pci_disable_device(hc->pci_dev);
4244 		return -EIO;
4245 	}
4246 	hc->HFC_outb_nodebug = hc->HFC_outb;
4247 	hc->HFC_inb_nodebug = hc->HFC_inb;
4248 	hc->HFC_inw_nodebug = hc->HFC_inw;
4249 	hc->HFC_wait_nodebug = hc->HFC_wait;
4250 #ifdef HFC_REGISTER_DEBUG
4251 	hc->HFC_outb = HFC_outb_debug;
4252 	hc->HFC_inb = HFC_inb_debug;
4253 	hc->HFC_inw = HFC_inw_debug;
4254 	hc->HFC_wait = HFC_wait_debug;
4255 #endif
4256 	hc->pci_iobase = 0;
4257 	hc->pci_membase = NULL;
4258 	hc->plx_membase = NULL;
4259 
4260 	switch (hc->io_mode) {
4261 	case HFC_IO_MODE_PLXSD:
4262 		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4263 		/* MEMBASE 1 is PLX PCI Bridge */
4264 
4265 		if (!hc->plx_origmembase) {
4266 			printk(KERN_WARNING
4267 			  "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4268 			pci_disable_device(hc->pci_dev);
4269 			return -EIO;
4270 		}
4271 
4272 		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4273 		if (!hc->plx_membase) {
4274 			printk(KERN_WARNING
4275 			    "HFC-multi: failed to remap plx address space. "
4276 			    "(internal error)\n");
4277 			pci_disable_device(hc->pci_dev);
4278 			return -EIO;
4279 		}
4280 		printk(KERN_INFO
4281 		    "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4282 		    (u_long)hc->plx_membase, hc->plx_origmembase);
4283 
4284 		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4285 		    /* MEMBASE 1 is PLX PCI Bridge */
4286 		if (!hc->pci_origmembase) {
4287 			printk(KERN_WARNING
4288 			    "HFC-multi: No IO-Memory for PCI card found\n");
4289 			pci_disable_device(hc->pci_dev);
4290 			return -EIO;
4291 		}
4292 
4293 		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4294 		if (!hc->pci_membase) {
4295 			printk(KERN_WARNING "HFC-multi: failed to remap io "
4296 			    "address space. (internal error)\n");
4297 			pci_disable_device(hc->pci_dev);
4298 			return -EIO;
4299 		}
4300 
4301 		printk(KERN_INFO
4302 		    "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4303 		    "leds-type %d\n",
4304 		    hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4305 		    hc->pci_dev->irq, HZ, hc->leds);
4306 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4307 		break;
4308 	case HFC_IO_MODE_PCIMEM:
4309 		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4310 		if (!hc->pci_origmembase) {
4311 			printk(KERN_WARNING
4312 			    "HFC-multi: No IO-Memory for PCI card found\n");
4313 			pci_disable_device(hc->pci_dev);
4314 			return -EIO;
4315 		}
4316 
4317 		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4318 		if (!hc->pci_membase) {
4319 			printk(KERN_WARNING
4320 			    "HFC-multi: failed to remap io address space. "
4321 			    "(internal error)\n");
4322 			pci_disable_device(hc->pci_dev);
4323 			return -EIO;
4324 		}
4325 		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4326 		    "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4327 		    hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4328 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4329 		break;
4330 	case HFC_IO_MODE_REGIO:
4331 		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4332 		if (!hc->pci_iobase) {
4333 			printk(KERN_WARNING
4334 				"HFC-multi: No IO for PCI card found\n");
4335 			pci_disable_device(hc->pci_dev);
4336 			return -EIO;
4337 		}
4338 
4339 		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4340 			printk(KERN_WARNING "HFC-multi: failed to request "
4341 			    "address space at 0x%08lx (internal error)\n",
4342 			    hc->pci_iobase);
4343 			pci_disable_device(hc->pci_dev);
4344 			return -EIO;
4345 		}
4346 
4347 		printk(KERN_INFO
4348 		    "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4349 		    m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4350 		    hc->pci_dev->irq, HZ, hc->leds);
4351 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4352 		break;
4353 	default:
4354 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4355 		pci_disable_device(hc->pci_dev);
4356 		return -EIO;
4357 	}
4358 
4359 	pci_set_drvdata(hc->pci_dev, hc);
4360 
4361 	/* At this point the needed PCI config is done */
4362 	/* fifos are still not enabled */
4363 	return 0;
4364 }
4365 
4366 
4367 /*
4368  * remove port
4369  */
4370 
4371 static void
4372 release_port(struct hfc_multi *hc, struct dchannel *dch)
4373 {
4374 	int	pt, ci, i = 0;
4375 	u_long	flags;
4376 	struct bchannel *pb;
4377 
4378 	ci = dch->slot;
4379 	pt = hc->chan[ci].port;
4380 
4381 	if (debug & DEBUG_HFCMULTI_INIT)
4382 		printk(KERN_DEBUG "%s: entered for port %d\n",
4383 			__func__, pt + 1);
4384 
4385 	if (pt >= hc->ports) {
4386 		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4387 		     __func__, pt + 1);
4388 		return;
4389 	}
4390 
4391 	if (debug & DEBUG_HFCMULTI_INIT)
4392 		printk(KERN_DEBUG "%s: releasing port=%d\n",
4393 		    __func__, pt + 1);
4394 
4395 	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4396 		l1_event(dch->l1, CLOSE_CHANNEL);
4397 
4398 	hc->chan[ci].dch = NULL;
4399 
4400 	if (hc->created[pt]) {
4401 		hc->created[pt] = 0;
4402 		mISDN_unregister_device(&dch->dev);
4403 	}
4404 
4405 	spin_lock_irqsave(&hc->lock, flags);
4406 
4407 	if (dch->timer.function) {
4408 		del_timer(&dch->timer);
4409 		dch->timer.function = NULL;
4410 	}
4411 
4412 	if (hc->type == 1) { /* E1 */
4413 		/* remove sync */
4414 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4415 			hc->syncronized = 0;
4416 			plxsd_checksync(hc, 1);
4417 		}
4418 		/* free channels */
4419 		for (i = 0; i <= 31; i++) {
4420 			if (hc->chan[i].bch) {
4421 				if (debug & DEBUG_HFCMULTI_INIT)
4422 					printk(KERN_DEBUG
4423 					    "%s: free port %d channel %d\n",
4424 					    __func__, hc->chan[i].port+1, i);
4425 				pb = hc->chan[i].bch;
4426 				hc->chan[i].bch = NULL;
4427 				spin_unlock_irqrestore(&hc->lock, flags);
4428 				mISDN_freebchannel(pb);
4429 				kfree(pb);
4430 				kfree(hc->chan[i].coeff);
4431 				spin_lock_irqsave(&hc->lock, flags);
4432 			}
4433 		}
4434 	} else {
4435 		/* remove sync */
4436 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4437 			hc->syncronized &=
4438 			   ~(1 << hc->chan[ci].port);
4439 			plxsd_checksync(hc, 1);
4440 		}
4441 		/* free channels */
4442 		if (hc->chan[ci - 2].bch) {
4443 			if (debug & DEBUG_HFCMULTI_INIT)
4444 				printk(KERN_DEBUG
4445 				    "%s: free port %d channel %d\n",
4446 				    __func__, hc->chan[ci - 2].port+1,
4447 				    ci - 2);
4448 			pb = hc->chan[ci - 2].bch;
4449 			hc->chan[ci - 2].bch = NULL;
4450 			spin_unlock_irqrestore(&hc->lock, flags);
4451 			mISDN_freebchannel(pb);
4452 			kfree(pb);
4453 			kfree(hc->chan[ci - 2].coeff);
4454 			spin_lock_irqsave(&hc->lock, flags);
4455 		}
4456 		if (hc->chan[ci - 1].bch) {
4457 			if (debug & DEBUG_HFCMULTI_INIT)
4458 				printk(KERN_DEBUG
4459 				    "%s: free port %d channel %d\n",
4460 				    __func__, hc->chan[ci - 1].port+1,
4461 				    ci - 1);
4462 			pb = hc->chan[ci - 1].bch;
4463 			hc->chan[ci - 1].bch = NULL;
4464 			spin_unlock_irqrestore(&hc->lock, flags);
4465 			mISDN_freebchannel(pb);
4466 			kfree(pb);
4467 			kfree(hc->chan[ci - 1].coeff);
4468 			spin_lock_irqsave(&hc->lock, flags);
4469 		}
4470 	}
4471 
4472 	spin_unlock_irqrestore(&hc->lock, flags);
4473 
4474 	if (debug & DEBUG_HFCMULTI_INIT)
4475 		printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4476 	mISDN_freedchannel(dch);
4477 	kfree(dch);
4478 
4479 	if (debug & DEBUG_HFCMULTI_INIT)
4480 		printk(KERN_DEBUG "%s: done!\n", __func__);
4481 }
4482 
4483 static void
4484 release_card(struct hfc_multi *hc)
4485 {
4486 	u_long	flags;
4487 	int	ch;
4488 
4489 	if (debug & DEBUG_HFCMULTI_INIT)
4490 		printk(KERN_WARNING "%s: release card (%d) entered\n",
4491 		    __func__, hc->id);
4492 
4493 	spin_lock_irqsave(&hc->lock, flags);
4494 	disable_hwirq(hc);
4495 	spin_unlock_irqrestore(&hc->lock, flags);
4496 
4497 	udelay(1000);
4498 
4499 	/* dimm leds */
4500 	if (hc->leds)
4501 		hfcmulti_leds(hc);
4502 
4503 	/* disable D-channels & B-channels */
4504 	if (debug & DEBUG_HFCMULTI_INIT)
4505 		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4506 		    __func__);
4507 	for (ch = 0; ch <= 31; ch++) {
4508 		if (hc->chan[ch].dch)
4509 			release_port(hc, hc->chan[ch].dch);
4510 	}
4511 
4512 	/* release hardware & irq */
4513 	if (hc->irq) {
4514 		if (debug & DEBUG_HFCMULTI_INIT)
4515 			printk(KERN_WARNING "%s: free irq %d\n",
4516 			    __func__, hc->irq);
4517 		free_irq(hc->irq, hc);
4518 		hc->irq = 0;
4519 
4520 	}
4521 	release_io_hfcmulti(hc);
4522 
4523 	if (debug & DEBUG_HFCMULTI_INIT)
4524 		printk(KERN_WARNING "%s: remove instance from list\n",
4525 		     __func__);
4526 	list_del(&hc->list);
4527 
4528 	if (debug & DEBUG_HFCMULTI_INIT)
4529 		printk(KERN_WARNING "%s: delete instance\n", __func__);
4530 	if (hc == syncmaster)
4531 		syncmaster = NULL;
4532 	kfree(hc);
4533 	if (debug & DEBUG_HFCMULTI_INIT)
4534 		printk(KERN_WARNING "%s: card successfully removed\n",
4535 		    __func__);
4536 }
4537 
4538 static int
4539 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4540 {
4541 	struct dchannel	*dch;
4542 	struct bchannel	*bch;
4543 	int		ch, ret = 0;
4544 	char		name[MISDN_MAX_IDLEN];
4545 
4546 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4547 	if (!dch)
4548 		return -ENOMEM;
4549 	dch->debug = debug;
4550 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4551 	dch->hw = hc;
4552 	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4553 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4554 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4555 	dch->dev.D.send = handle_dmsg;
4556 	dch->dev.D.ctrl = hfcm_dctrl;
4557 	dch->dev.nrbchan = (hc->dslot)?30:31;
4558 	dch->slot = hc->dslot;
4559 	hc->chan[hc->dslot].dch = dch;
4560 	hc->chan[hc->dslot].port = 0;
4561 	hc->chan[hc->dslot].nt_timer = -1;
4562 	for (ch = 1; ch <= 31; ch++) {
4563 		if (ch == hc->dslot) /* skip dchannel */
4564 			continue;
4565 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4566 		if (!bch) {
4567 			printk(KERN_ERR "%s: no memory for bchannel\n",
4568 			    __func__);
4569 			ret = -ENOMEM;
4570 			goto free_chan;
4571 		}
4572 		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4573 		if (!hc->chan[ch].coeff) {
4574 			printk(KERN_ERR "%s: no memory for coeffs\n",
4575 			    __func__);
4576 			ret = -ENOMEM;
4577 			goto free_chan;
4578 		}
4579 		bch->nr = ch;
4580 		bch->slot = ch;
4581 		bch->debug = debug;
4582 		mISDN_initbchannel(bch, MAX_DATA_MEM);
4583 		bch->hw = hc;
4584 		bch->ch.send = handle_bmsg;
4585 		bch->ch.ctrl = hfcm_bctrl;
4586 		bch->ch.nr = ch;
4587 		list_add(&bch->ch.list, &dch->dev.bchannels);
4588 		hc->chan[ch].bch = bch;
4589 		hc->chan[ch].port = 0;
4590 		set_channelmap(bch->nr, dch->dev.channelmap);
4591 	}
4592 	/* set optical line type */
4593 	if (port[Port_cnt] & 0x001) {
4594 		if (!m->opticalsupport)  {
4595 			printk(KERN_INFO
4596 			    "This board has no optical "
4597 			    "support\n");
4598 		} else {
4599 			if (debug & DEBUG_HFCMULTI_INIT)
4600 				printk(KERN_DEBUG
4601 				    "%s: PORT set optical "
4602 				    "interfacs: card(%d) "
4603 				    "port(%d)\n",
4604 				    __func__,
4605 				    HFC_cnt + 1, 1);
4606 			test_and_set_bit(HFC_CFG_OPTICAL,
4607 			    &hc->chan[hc->dslot].cfg);
4608 		}
4609 	}
4610 	/* set LOS report */
4611 	if (port[Port_cnt] & 0x004) {
4612 		if (debug & DEBUG_HFCMULTI_INIT)
4613 			printk(KERN_DEBUG "%s: PORT set "
4614 			    "LOS report: card(%d) port(%d)\n",
4615 			    __func__, HFC_cnt + 1, 1);
4616 		test_and_set_bit(HFC_CFG_REPORT_LOS,
4617 		    &hc->chan[hc->dslot].cfg);
4618 	}
4619 	/* set AIS report */
4620 	if (port[Port_cnt] & 0x008) {
4621 		if (debug & DEBUG_HFCMULTI_INIT)
4622 			printk(KERN_DEBUG "%s: PORT set "
4623 			    "AIS report: card(%d) port(%d)\n",
4624 			    __func__, HFC_cnt + 1, 1);
4625 		test_and_set_bit(HFC_CFG_REPORT_AIS,
4626 		    &hc->chan[hc->dslot].cfg);
4627 	}
4628 	/* set SLIP report */
4629 	if (port[Port_cnt] & 0x010) {
4630 		if (debug & DEBUG_HFCMULTI_INIT)
4631 			printk(KERN_DEBUG
4632 			    "%s: PORT set SLIP report: "
4633 			    "card(%d) port(%d)\n",
4634 			    __func__, HFC_cnt + 1, 1);
4635 		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4636 		    &hc->chan[hc->dslot].cfg);
4637 	}
4638 	/* set RDI report */
4639 	if (port[Port_cnt] & 0x020) {
4640 		if (debug & DEBUG_HFCMULTI_INIT)
4641 			printk(KERN_DEBUG
4642 			    "%s: PORT set RDI report: "
4643 			    "card(%d) port(%d)\n",
4644 			    __func__, HFC_cnt + 1, 1);
4645 		test_and_set_bit(HFC_CFG_REPORT_RDI,
4646 		    &hc->chan[hc->dslot].cfg);
4647 	}
4648 	/* set CRC-4 Mode */
4649 	if (!(port[Port_cnt] & 0x100)) {
4650 		if (debug & DEBUG_HFCMULTI_INIT)
4651 			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4652 				" card(%d) port(%d)\n",
4653 				__func__, HFC_cnt + 1, 1);
4654 		test_and_set_bit(HFC_CFG_CRC4,
4655 		    &hc->chan[hc->dslot].cfg);
4656 	} else {
4657 		if (debug & DEBUG_HFCMULTI_INIT)
4658 			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4659 				" report: card(%d) port(%d)\n",
4660 				__func__, HFC_cnt + 1, 1);
4661 	}
4662 	/* set forced clock */
4663 	if (port[Port_cnt] & 0x0200) {
4664 		if (debug & DEBUG_HFCMULTI_INIT)
4665 			printk(KERN_DEBUG "%s: PORT force getting clock from "
4666 				"E1: card(%d) port(%d)\n",
4667 				__func__, HFC_cnt + 1, 1);
4668 		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4669 	} else
4670 	if (port[Port_cnt] & 0x0400) {
4671 		if (debug & DEBUG_HFCMULTI_INIT)
4672 			printk(KERN_DEBUG "%s: PORT force putting clock to "
4673 				"E1: card(%d) port(%d)\n",
4674 				__func__, HFC_cnt + 1, 1);
4675 		test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4676 	}
4677 	/* set JATT PLL */
4678 	if (port[Port_cnt] & 0x0800) {
4679 		if (debug & DEBUG_HFCMULTI_INIT)
4680 			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4681 				"E1: card(%d) port(%d)\n",
4682 				__func__, HFC_cnt + 1, 1);
4683 		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4684 	}
4685 	/* set elastic jitter buffer */
4686 	if (port[Port_cnt] & 0x3000) {
4687 		hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4688 		if (debug & DEBUG_HFCMULTI_INIT)
4689 			printk(KERN_DEBUG
4690 			    "%s: PORT set elastic "
4691 			    "buffer to %d: card(%d) port(%d)\n",
4692 			    __func__, hc->chan[hc->dslot].jitter,
4693 			    HFC_cnt + 1, 1);
4694 	} else
4695 		hc->chan[hc->dslot].jitter = 2; /* default */
4696 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4697 	ret = mISDN_register_device(&dch->dev, name);
4698 	if (ret)
4699 		goto free_chan;
4700 	hc->created[0] = 1;
4701 	return ret;
4702 free_chan:
4703 	release_port(hc, dch);
4704 	return ret;
4705 }
4706 
4707 static int
4708 init_multi_port(struct hfc_multi *hc, int pt)
4709 {
4710 	struct dchannel	*dch;
4711 	struct bchannel	*bch;
4712 	int		ch, i, ret = 0;
4713 	char		name[MISDN_MAX_IDLEN];
4714 
4715 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4716 	if (!dch)
4717 		return -ENOMEM;
4718 	dch->debug = debug;
4719 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4720 	dch->hw = hc;
4721 	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4722 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4723 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4724 	dch->dev.D.send = handle_dmsg;
4725 	dch->dev.D.ctrl = hfcm_dctrl;
4726 	dch->dev.nrbchan = 2;
4727 	i = pt << 2;
4728 	dch->slot = i + 2;
4729 	hc->chan[i + 2].dch = dch;
4730 	hc->chan[i + 2].port = pt;
4731 	hc->chan[i + 2].nt_timer = -1;
4732 	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4733 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4734 		if (!bch) {
4735 			printk(KERN_ERR "%s: no memory for bchannel\n",
4736 			    __func__);
4737 			ret = -ENOMEM;
4738 			goto free_chan;
4739 		}
4740 		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4741 		if (!hc->chan[i + ch].coeff) {
4742 			printk(KERN_ERR "%s: no memory for coeffs\n",
4743 			    __func__);
4744 			ret = -ENOMEM;
4745 			goto free_chan;
4746 		}
4747 		bch->nr = ch + 1;
4748 		bch->slot = i + ch;
4749 		bch->debug = debug;
4750 		mISDN_initbchannel(bch, MAX_DATA_MEM);
4751 		bch->hw = hc;
4752 		bch->ch.send = handle_bmsg;
4753 		bch->ch.ctrl = hfcm_bctrl;
4754 		bch->ch.nr = ch + 1;
4755 		list_add(&bch->ch.list, &dch->dev.bchannels);
4756 		hc->chan[i + ch].bch = bch;
4757 		hc->chan[i + ch].port = pt;
4758 		set_channelmap(bch->nr, dch->dev.channelmap);
4759 	}
4760 	/* set master clock */
4761 	if (port[Port_cnt] & 0x001) {
4762 		if (debug & DEBUG_HFCMULTI_INIT)
4763 			printk(KERN_DEBUG
4764 			    "%s: PROTOCOL set master clock: "
4765 			    "card(%d) port(%d)\n",
4766 			    __func__, HFC_cnt + 1, pt + 1);
4767 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4768 			printk(KERN_ERR "Error: Master clock "
4769 			    "for port(%d) of card(%d) is only"
4770 			    " possible with TE-mode\n",
4771 			    pt + 1, HFC_cnt + 1);
4772 			ret = -EINVAL;
4773 			goto free_chan;
4774 		}
4775 		if (hc->masterclk >= 0) {
4776 			printk(KERN_ERR "Error: Master clock "
4777 			    "for port(%d) of card(%d) already "
4778 			    "defined for port(%d)\n",
4779 			    pt + 1, HFC_cnt + 1, hc->masterclk+1);
4780 			ret = -EINVAL;
4781 			goto free_chan;
4782 		}
4783 		hc->masterclk = pt;
4784 	}
4785 	/* set transmitter line to non capacitive */
4786 	if (port[Port_cnt] & 0x002) {
4787 		if (debug & DEBUG_HFCMULTI_INIT)
4788 			printk(KERN_DEBUG
4789 			    "%s: PROTOCOL set non capacitive "
4790 			    "transmitter: card(%d) port(%d)\n",
4791 			    __func__, HFC_cnt + 1, pt + 1);
4792 		test_and_set_bit(HFC_CFG_NONCAP_TX,
4793 		    &hc->chan[i + 2].cfg);
4794 	}
4795 	/* disable E-channel */
4796 	if (port[Port_cnt] & 0x004) {
4797 	if (debug & DEBUG_HFCMULTI_INIT)
4798 			printk(KERN_DEBUG
4799 			    "%s: PROTOCOL disable E-channel: "
4800 			    "card(%d) port(%d)\n",
4801 			    __func__, HFC_cnt + 1, pt + 1);
4802 		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4803 		    &hc->chan[i + 2].cfg);
4804 	}
4805 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d",
4806 		hc->type, HFC_cnt + 1, pt + 1);
4807 	ret = mISDN_register_device(&dch->dev, name);
4808 	if (ret)
4809 		goto free_chan;
4810 	hc->created[pt] = 1;
4811 	return ret;
4812 free_chan:
4813 	release_port(hc, dch);
4814 	return ret;
4815 }
4816 
4817 static int
4818 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4819 {
4820 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4821 	int		ret_err = 0;
4822 	int		pt;
4823 	struct hfc_multi	*hc;
4824 	u_long		flags;
4825 	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4826 
4827 	if (HFC_cnt >= MAX_CARDS) {
4828 		printk(KERN_ERR "too many cards (max=%d).\n",
4829 			MAX_CARDS);
4830 		return -EINVAL;
4831 	}
4832 	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4833 		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4834 		    "type[%d] %d was supplied as module parameter\n",
4835 		    m->vendor_name, m->card_name, m->type, HFC_cnt,
4836 		    type[HFC_cnt] & 0xff);
4837 		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4838 			"first, to see cards and their types.");
4839 		return -EINVAL;
4840 	}
4841 	if (debug & DEBUG_HFCMULTI_INIT)
4842 		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4843 		    __func__, m->vendor_name, m->card_name, m->type,
4844 		    type[HFC_cnt]);
4845 
4846 	/* allocate card+fifo structure */
4847 	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4848 	if (!hc) {
4849 		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4850 		return -ENOMEM;
4851 	}
4852 	spin_lock_init(&hc->lock);
4853 	hc->mtyp = m;
4854 	hc->type =  m->type;
4855 	hc->ports = m->ports;
4856 	hc->id = HFC_cnt;
4857 	hc->pcm = pcm[HFC_cnt];
4858 	hc->io_mode = iomode[HFC_cnt];
4859 	if (dslot[HFC_cnt] < 0) {
4860 		hc->dslot = 0;
4861 		printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4862 			"31 B-channels\n");
4863 	} if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) {
4864 		hc->dslot = dslot[HFC_cnt];
4865 		printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4866 			"time slot %d\n", dslot[HFC_cnt]);
4867 	} else
4868 		hc->dslot = 16;
4869 
4870 	/* set chip specific features */
4871 	hc->masterclk = -1;
4872 	if (type[HFC_cnt] & 0x100) {
4873 		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4874 		silence = 0xff; /* ulaw silence */
4875 	} else
4876 		silence = 0x2a; /* alaw silence */
4877 	if (!(type[HFC_cnt] & 0x200))
4878 		test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4879 
4880 	if (type[HFC_cnt] & 0x800)
4881 		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4882 	if (type[HFC_cnt] & 0x1000) {
4883 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4884 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4885 	}
4886 	if (type[HFC_cnt] & 0x4000)
4887 		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4888 	if (type[HFC_cnt] & 0x8000)
4889 		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4890 	hc->slots = 32;
4891 	if (type[HFC_cnt] & 0x10000)
4892 		hc->slots = 64;
4893 	if (type[HFC_cnt] & 0x20000)
4894 		hc->slots = 128;
4895 	if (type[HFC_cnt] & 0x80000) {
4896 		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4897 		hc->wdcount = 0;
4898 		hc->wdbyte = V_GPIO_OUT2;
4899 		printk(KERN_NOTICE "Watchdog enabled\n");
4900 	}
4901 
4902 	/* setup pci, hc->slots may change due to PLXSD */
4903 	ret_err = setup_pci(hc, pdev, ent);
4904 	if (ret_err) {
4905 		if (hc == syncmaster)
4906 			syncmaster = NULL;
4907 		kfree(hc);
4908 		return ret_err;
4909 	}
4910 
4911 	/* crate channels */
4912 	for (pt = 0; pt < hc->ports; pt++) {
4913 		if (Port_cnt >= MAX_PORTS) {
4914 			printk(KERN_ERR "too many ports (max=%d).\n",
4915 				MAX_PORTS);
4916 			ret_err = -EINVAL;
4917 			goto free_card;
4918 		}
4919 		if (hc->type == 1)
4920 			ret_err = init_e1_port(hc, m);
4921 		else
4922 			ret_err = init_multi_port(hc, pt);
4923 		if (debug & DEBUG_HFCMULTI_INIT)
4924 			printk(KERN_DEBUG
4925 			    "%s: Registering D-channel, card(%d) port(%d)"
4926 			    "result %d\n",
4927 			    __func__, HFC_cnt + 1, pt, ret_err);
4928 
4929 		if (ret_err) {
4930 			while (pt) { /* release already registered ports */
4931 				pt--;
4932 				release_port(hc, hc->chan[(pt << 2) + 2].dch);
4933 			}
4934 			goto free_card;
4935 		}
4936 		Port_cnt++;
4937 	}
4938 
4939 	/* disp switches */
4940 	switch (m->dip_type) {
4941 	case DIP_4S:
4942 		/*
4943 		 * get DIP Setting for beroNet 1S/2S/4S cards
4944 		 *  check if Port Jumper config matches
4945 		 * module param 'protocol'
4946 		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4947 		 * GPI 19/23 (R_GPI_IN2))
4948 		 */
4949 		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4950 			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4951 			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
4952 
4953 		/* Port mode (TE/NT) jumpers */
4954 		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
4955 
4956 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
4957 			pmj = ~pmj & 0xf;
4958 
4959 		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4960 			m->vendor_name, m->card_name, dips, pmj);
4961 		break;
4962 	case DIP_8S:
4963 		/*
4964 		 * get DIP Setting for beroNet 8S0+ cards
4965 		 *
4966 		 * enable PCI auxbridge function
4967 		 */
4968 		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
4969 		/* prepare access to auxport */
4970 		outw(0x4000, hc->pci_iobase + 4);
4971 		/*
4972 		 * some dummy reads are required to
4973 		 * read valid DIP switch data
4974 		 */
4975 		dips = inb(hc->pci_iobase);
4976 		dips = inb(hc->pci_iobase);
4977 		dips = inb(hc->pci_iobase);
4978 		dips = ~inb(hc->pci_iobase) & 0x3F;
4979 		outw(0x0, hc->pci_iobase + 4);
4980 		/* disable PCI auxbridge function */
4981 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
4982 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4983 		    m->vendor_name, m->card_name, dips);
4984 		break;
4985 	case DIP_E1:
4986 		/*
4987 		 * get DIP Setting for beroNet E1 cards
4988 		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
4989 		 */
4990 		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
4991 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4992 		    m->vendor_name, m->card_name, dips);
4993 		break;
4994 	}
4995 
4996 	/* add to list */
4997 	spin_lock_irqsave(&HFClock, flags);
4998 	list_add_tail(&hc->list, &HFClist);
4999 	spin_unlock_irqrestore(&HFClock, flags);
5000 
5001 	/* initialize hardware */
5002 	ret_err = init_card(hc);
5003 	if (ret_err) {
5004 		printk(KERN_ERR "init card returns %d\n", ret_err);
5005 		release_card(hc);
5006 		return ret_err;
5007 	}
5008 
5009 	/* start IRQ and return */
5010 	spin_lock_irqsave(&hc->lock, flags);
5011 	enable_hwirq(hc);
5012 	spin_unlock_irqrestore(&hc->lock, flags);
5013 	return 0;
5014 
5015 free_card:
5016 	release_io_hfcmulti(hc);
5017 	if (hc == syncmaster)
5018 		syncmaster = NULL;
5019 	kfree(hc);
5020 	return ret_err;
5021 }
5022 
5023 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5024 {
5025 	struct hfc_multi	*card = pci_get_drvdata(pdev);
5026 	u_long			flags;
5027 
5028 	if (debug)
5029 		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5030 		    "device:%x subvendor:%x subdevice:%x\n",
5031 		    pdev->vendor, pdev->device,
5032 		    pdev->subsystem_vendor, pdev->subsystem_device);
5033 
5034 	if (card) {
5035 		spin_lock_irqsave(&HFClock, flags);
5036 		release_card(card);
5037 		spin_unlock_irqrestore(&HFClock, flags);
5038 	}  else {
5039 		if (debug)
5040 			printk(KERN_WARNING "%s: drvdata allready removed\n",
5041 			    __func__);
5042 	}
5043 }
5044 
5045 #define	VENDOR_CCD	"Cologne Chip AG"
5046 #define	VENDOR_BN	"beroNet GmbH"
5047 #define	VENDOR_DIG	"Digium Inc."
5048 #define VENDOR_JH	"Junghanns.NET GmbH"
5049 #define VENDOR_PRIM	"PrimuX"
5050 
5051 static const struct hm_map hfcm_map[] = {
5052 /*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5053 /*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S},
5054 /*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5055 /*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5056 /*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5057 /*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5058 /*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, 0, 0},
5059 /*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5060 /*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5061 /*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5062 /*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5063 /*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5064 
5065 /*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5066 /*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5067 		HFC_IO_MODE_REGIO},
5068 /*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5069 /*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5070 
5071 /*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5072 /*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5073 /*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5074 
5075 /*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5076 /*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5077 /*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5078 /*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5079 
5080 /*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5081 /*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5082 /*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5083 
5084 /*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5085 		HFC_IO_MODE_PLXSD},
5086 /*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5087 		HFC_IO_MODE_PLXSD},
5088 /*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5089 /*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5090 /*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5091 };
5092 
5093 #undef H
5094 #define H(x)	((unsigned long)&hfcm_map[x])
5095 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5096 
5097 	/* Cards with HFC-4S Chip */
5098 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5099 		PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5100 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5101 		PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5102 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5103 		PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5104 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5105 		PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5106 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5107 		PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5108 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5109 		PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5110 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5111 		PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5112 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5113 		PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5114 	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5115 		PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5116 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5117 		PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5118 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5119 		PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5120 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5121 		PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5122 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5123 		PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5124 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5125 		PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5126 
5127 	/* Cards with HFC-8S Chip */
5128 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5129 	PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5130 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5131 	PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5132 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5133 	PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5134 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5135 	PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)},
5136 	    /* IOB8ST Recording */
5137 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5138 		PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5139 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5140 		PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5141 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5142 		PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5143 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5144 		PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5145 
5146 
5147 	/* Cards with HFC-E1 Chip */
5148 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5149 		PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5150 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5151 		PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5152 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5153 		PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5154 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5155 		PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5156 
5157 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5158 		PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5159 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5160 		PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5161 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5162 		PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5163 
5164 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5165 		PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5166 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5167 		PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5168 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5169 		0, 0, 0},
5170 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5171 		0, 0, 0},
5172 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5173 		0, 0, 0},
5174 	{0, }
5175 };
5176 #undef H
5177 
5178 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5179 
5180 static int
5181 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5182 {
5183 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5184 	int		ret;
5185 
5186 	if (m == NULL) {
5187 		if (ent->vendor == PCI_VENDOR_ID_CCD)
5188 			if (ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5189 			    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5190 			    ent->device == PCI_DEVICE_ID_CCD_HFCE1)
5191 				printk(KERN_ERR
5192 				    "unknown HFC multiport controller "
5193 				    "(vendor:%x device:%x subvendor:%x "
5194 				    "subdevice:%x) Please contact the "
5195 				    "driver maintainer for support.\n",
5196 				    ent->vendor, ent->device,
5197 				    ent->subvendor, ent->subdevice);
5198 		return -ENODEV;
5199 	}
5200 	ret = hfcmulti_init(pdev, ent);
5201 	if (ret)
5202 		return ret;
5203 	HFC_cnt++;
5204 	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5205 	return 0;
5206 }
5207 
5208 static struct pci_driver hfcmultipci_driver = {
5209 	.name		= "hfc_multi",
5210 	.probe		= hfcmulti_probe,
5211 	.remove		= __devexit_p(hfc_remove_pci),
5212 	.id_table	= hfmultipci_ids,
5213 };
5214 
5215 static void __exit
5216 HFCmulti_cleanup(void)
5217 {
5218 	struct hfc_multi *card, *next;
5219 
5220 	/* unload interrupt function symbol */
5221 	if (hfc_interrupt)
5222 		symbol_put(ztdummy_extern_interrupt);
5223 	if (register_interrupt)
5224 		symbol_put(ztdummy_register_interrupt);
5225 	if (unregister_interrupt) {
5226 		if (interrupt_registered) {
5227 			interrupt_registered = 0;
5228 			unregister_interrupt();
5229 		}
5230 		symbol_put(ztdummy_unregister_interrupt);
5231 	}
5232 
5233 	list_for_each_entry_safe(card, next, &HFClist, list)
5234 		release_card(card);
5235 	/* get rid of all devices of this driver */
5236 	pci_unregister_driver(&hfcmultipci_driver);
5237 }
5238 
5239 static int __init
5240 HFCmulti_init(void)
5241 {
5242 	int err;
5243 
5244 #ifdef IRQ_DEBUG
5245 	printk(KERN_ERR "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5246 #endif
5247 
5248 	spin_lock_init(&HFClock);
5249 	spin_lock_init(&plx_lock);
5250 
5251 	if (debug & DEBUG_HFCMULTI_INIT)
5252 		printk(KERN_DEBUG "%s: init entered\n", __func__);
5253 
5254 #ifdef __BIG_ENDIAN
5255 #error "not running on big endian machines now"
5256 #endif
5257 	hfc_interrupt = symbol_get(ztdummy_extern_interrupt);
5258 	register_interrupt = symbol_get(ztdummy_register_interrupt);
5259 	unregister_interrupt = symbol_get(ztdummy_unregister_interrupt);
5260 	printk(KERN_INFO "mISDN: HFC-multi driver %s\n",
5261 	    hfcmulti_revision);
5262 
5263 	switch (poll) {
5264 	case 0:
5265 		poll_timer = 6;
5266 		poll = 128;
5267 		break;
5268 		/*
5269 		 * wenn dieses break nochmal verschwindet,
5270 		 * gibt es heisse ohren :-)
5271 		 * "without the break you will get hot ears ???"
5272 		 */
5273 	case 8:
5274 		poll_timer = 2;
5275 		break;
5276 	case 16:
5277 		poll_timer = 3;
5278 		break;
5279 	case 32:
5280 		poll_timer = 4;
5281 		break;
5282 	case 64:
5283 		poll_timer = 5;
5284 		break;
5285 	case 128:
5286 		poll_timer = 6;
5287 		break;
5288 	case 256:
5289 		poll_timer = 7;
5290 		break;
5291 	default:
5292 		printk(KERN_ERR
5293 		    "%s: Wrong poll value (%d).\n", __func__, poll);
5294 		err = -EINVAL;
5295 		return err;
5296 
5297 	}
5298 
5299 	err = pci_register_driver(&hfcmultipci_driver);
5300 	if (err < 0) {
5301 		printk(KERN_ERR "error registering pci driver: %x\n", err);
5302 		if (hfc_interrupt)
5303 			symbol_put(ztdummy_extern_interrupt);
5304 		if (register_interrupt)
5305 			symbol_put(ztdummy_register_interrupt);
5306 		if (unregister_interrupt) {
5307 			if (interrupt_registered) {
5308 				interrupt_registered = 0;
5309 				unregister_interrupt();
5310 			}
5311 			symbol_put(ztdummy_unregister_interrupt);
5312 		}
5313 		return err;
5314 	}
5315 	return 0;
5316 }
5317 
5318 
5319 module_init(HFCmulti_init);
5320 module_exit(HFCmulti_cleanup);
5321