1 /*
2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3  *
4  * Author	Andreas Eversberg (jolly@eversberg.eu)
5  * ported to mqueue mechanism:
6  *		Peter Sprenger (sprengermoving-bytes.de)
7  *
8  * inspired by existing hfc-pci driver:
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * Thanks to Cologne Chip AG for this great controller!
29  */
30 
31 /*
32  * module parameters:
33  * type:
34  *	By default (0), the card is automatically detected.
35  *	Or use the following combinations:
36  *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37  * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38  * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39  *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
40  *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41  *	Bit 10    = spare
42  *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44  *	Bit 13	  = spare
45  *	Bit 14    = 0x04000 = Use external ram (128K)
46  *	Bit 15    = 0x08000 = Use external ram (512K)
47  *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48  * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49  *	Bit 18    = spare
50  *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51  * (all other bits are reserved and shall be 0)
52  *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53  *		 bus (PCM master)
54  *
55  * port: (optional or required for all ports on all installed cards)
56  *	HFC-4S/HFC-8S only bits:
57  *	Bit 0	  = 0x001 = Use master clock for this S/T interface
58  *			    (ony once per chip).
59  *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60  *			    Don't use this unless you know what you are doing!
61  *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62  *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63  *		 received from port 1
64  *
65  *	HFC-E1 only bits:
66  *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67  *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68  *	Bit 2     = 0x0004 = Report LOS
69  *	Bit 3     = 0x0008 = Report AIS
70  *	Bit 4     = 0x0010 = Report SLIP
71  *	Bit 5     = 0x0020 = Report RDI
72  *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73  *			     mode instead.
74  *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
75  * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
76  *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77  *			     (E1 only)
78  *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79  *			     for default.
80  * (all other bits are reserved and shall be 0)
81  *
82  * debug:
83  *	NOTE: only one debug value must be given for all cards
84  *	enable debugging (see hfc_multi.h for debug options)
85  *
86  * poll:
87  *	NOTE: only one poll value must be given for all cards
88  *	Give the number of samples for each fifo process.
89  *	By default 128 is used. Decrease to reduce delay, increase to
90  *	reduce cpu load. If unsure, don't mess with it!
91  *	Valid is 8, 16, 32, 64, 128, 256.
92  *
93  * pcm:
94  *	NOTE: only one pcm value must be given for every card.
95  *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96  *	By default (0), the PCM bus id is 100 for the card that is PCM master.
97  *	If multiple cards are PCM master (because they are not interconnected),
98  *	each card with PCM master will have increasing PCM id.
99  *	All PCM busses with the same ID are expected to be connected and have
100  *	common time slots slots.
101  *	Only one chip of the PCM bus must be master, the others slave.
102  *	-1 means no support of PCM bus not even.
103  *	Omit this value, if all cards are interconnected or none is connected.
104  *	If unsure, don't give this parameter.
105  *
106  * dslot:
107  *	NOTE: only one poll value must be given for every card.
108  *	Also this value must be given for non-E1 cards. If omitted, the E1
109  *	card has D-channel on time slot 16, which is default.
110  *	If 1..15 or 17..31, an alternate time slot is used for D-channel.
111  *	In this case, the application must be able to handle this.
112  *	If -1 is given, the D-channel is disabled and all 31 slots can be used
113  *	for B-channel. (only for specific applications)
114  *	If you don't know how to use it, you don't need it!
115  *
116  * iomode:
117  *	NOTE: only one mode value must be given for every card.
118  *	-> See hfc_multi.h for HFC_IO_MODE_* values
119  *	By default, the IO mode is pci memory IO (MEMIO).
120  *	Some cards requre specific IO mode, so it cannot be changed.
121  *	It may be usefull to set IO mode to register io (REGIO) to solve
122  *	PCI bridge problems.
123  *	If unsure, don't give this parameter.
124  *
125  * clockdelay_nt:
126  *	NOTE: only one clockdelay_nt value must be given once for all cards.
127  *	Give the value of the clock control register (A_ST_CLK_DLY)
128  *	of the S/T interfaces in NT mode.
129  *	This register is needed for the TBR3 certification, so don't change it.
130  *
131  * clockdelay_te:
132  *	NOTE: only one clockdelay_te value must be given once
133  *	Give the value of the clock control register (A_ST_CLK_DLY)
134  *	of the S/T interfaces in TE mode.
135  *	This register is needed for the TBR3 certification, so don't change it.
136  *
137  * clock:
138  *	NOTE: only one clock value must be given once
139  *	Selects interface with clock source for mISDN and applications.
140  *	Set to card number starting with 1. Set to -1 to disable.
141  *	By default, the first card is used as clock source.
142  */
143 
144 /*
145  * debug register access (never use this, it will flood your system log)
146  * #define HFC_REGISTER_DEBUG
147  */
148 
149 #define HFC_MULTI_VERSION	"2.03"
150 
151 #include <linux/module.h>
152 #include <linux/pci.h>
153 #include <linux/delay.h>
154 #include <linux/mISDNhw.h>
155 #include <linux/mISDNdsp.h>
156 
157 /*
158 #define IRQCOUNT_DEBUG
159 #define IRQ_DEBUG
160 */
161 
162 #include "hfc_multi.h"
163 #ifdef ECHOPREP
164 #include "gaintab.h"
165 #endif
166 
167 #define	MAX_CARDS	8
168 #define	MAX_PORTS	(8 * MAX_CARDS)
169 
170 static LIST_HEAD(HFClist);
171 static spinlock_t HFClock; /* global hfc list lock */
172 
173 static void ph_state_change(struct dchannel *);
174 
175 static struct hfc_multi *syncmaster;
176 static int plxsd_master; /* if we have a master card (yet) */
177 static spinlock_t plx_lock; /* may not acquire other lock inside */
178 
179 #define	TYP_E1		1
180 #define	TYP_4S		4
181 #define TYP_8S		8
182 
183 static int poll_timer = 6;	/* default = 128 samples = 16ms */
184 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
185 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
186 #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
187 #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
188 				   (0x60 MUST be included!) */
189 
190 #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
191 #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
192 #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
193 
194 /*
195  * module stuff
196  */
197 
198 static uint	type[MAX_CARDS];
199 static int	pcm[MAX_CARDS];
200 static int	dslot[MAX_CARDS];
201 static uint	iomode[MAX_CARDS];
202 static uint	port[MAX_PORTS];
203 static uint	debug;
204 static uint	poll;
205 static int	clock;
206 static uint	timer;
207 static uint	clockdelay_te = CLKDEL_TE;
208 static uint	clockdelay_nt = CLKDEL_NT;
209 
210 static int	HFC_cnt, Port_cnt, PCM_cnt = 99;
211 
212 MODULE_AUTHOR("Andreas Eversberg");
213 MODULE_LICENSE("GPL");
214 MODULE_VERSION(HFC_MULTI_VERSION);
215 module_param(debug, uint, S_IRUGO | S_IWUSR);
216 module_param(poll, uint, S_IRUGO | S_IWUSR);
217 module_param(clock, int, S_IRUGO | S_IWUSR);
218 module_param(timer, uint, S_IRUGO | S_IWUSR);
219 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
220 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
221 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
222 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
223 module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
224 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
225 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
226 
227 #ifdef HFC_REGISTER_DEBUG
228 #define HFC_outb(hc, reg, val) \
229 	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
230 #define HFC_outb_nodebug(hc, reg, val) \
231 	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
232 #define HFC_inb(hc, reg) \
233 	(hc->HFC_inb(hc, reg, __func__, __LINE__))
234 #define HFC_inb_nodebug(hc, reg) \
235 	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
236 #define HFC_inw(hc, reg) \
237 	(hc->HFC_inw(hc, reg, __func__, __LINE__))
238 #define HFC_inw_nodebug(hc, reg) \
239 	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
240 #define HFC_wait(hc) \
241 	(hc->HFC_wait(hc, __func__, __LINE__))
242 #define HFC_wait_nodebug(hc) \
243 	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
244 #else
245 #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
246 #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
247 #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
248 #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
249 #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
250 #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
251 #define HFC_wait(hc)			(hc->HFC_wait(hc))
252 #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
253 #endif
254 
255 /* HFC_IO_MODE_PCIMEM */
256 static void
257 #ifdef HFC_REGISTER_DEBUG
258 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
259 		const char *function, int line)
260 #else
261 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
262 #endif
263 {
264 	writeb(val, (hc->pci_membase)+reg);
265 }
266 static u_char
267 #ifdef HFC_REGISTER_DEBUG
268 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
269 #else
270 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
271 #endif
272 {
273 	return readb((hc->pci_membase)+reg);
274 }
275 static u_short
276 #ifdef HFC_REGISTER_DEBUG
277 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
278 #else
279 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
280 #endif
281 {
282 	return readw((hc->pci_membase)+reg);
283 }
284 static void
285 #ifdef HFC_REGISTER_DEBUG
286 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
287 #else
288 HFC_wait_pcimem(struct hfc_multi *hc)
289 #endif
290 {
291 	while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
292 }
293 
294 /* HFC_IO_MODE_REGIO */
295 static void
296 #ifdef HFC_REGISTER_DEBUG
297 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
298 	const char *function, int line)
299 #else
300 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
301 #endif
302 {
303 	outb(reg, (hc->pci_iobase)+4);
304 	outb(val, hc->pci_iobase);
305 }
306 static u_char
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313 	outb(reg, (hc->pci_iobase)+4);
314 	return inb(hc->pci_iobase);
315 }
316 static u_short
317 #ifdef HFC_REGISTER_DEBUG
318 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
319 #else
320 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
321 #endif
322 {
323 	outb(reg, (hc->pci_iobase)+4);
324 	return inw(hc->pci_iobase);
325 }
326 static void
327 #ifdef HFC_REGISTER_DEBUG
328 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
329 #else
330 HFC_wait_regio(struct hfc_multi *hc)
331 #endif
332 {
333 	outb(R_STATUS, (hc->pci_iobase)+4);
334 	while (inb(hc->pci_iobase) & V_BUSY);
335 }
336 
337 #ifdef HFC_REGISTER_DEBUG
338 static void
339 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
340 		const char *function, int line)
341 {
342 	char regname[256] = "", bits[9] = "xxxxxxxx";
343 	int i;
344 
345 	i = -1;
346 	while (hfc_register_names[++i].name) {
347 		if (hfc_register_names[i].reg == reg)
348 			strcat(regname, hfc_register_names[i].name);
349 	}
350 	if (regname[0] == '\0')
351 		strcpy(regname, "register");
352 
353 	bits[7] = '0'+(!!(val&1));
354 	bits[6] = '0'+(!!(val&2));
355 	bits[5] = '0'+(!!(val&4));
356 	bits[4] = '0'+(!!(val&8));
357 	bits[3] = '0'+(!!(val&16));
358 	bits[2] = '0'+(!!(val&32));
359 	bits[1] = '0'+(!!(val&64));
360 	bits[0] = '0'+(!!(val&128));
361 	printk(KERN_DEBUG
362 	    "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
363 	    hc->id, reg, regname, val, bits, function, line);
364 	HFC_outb_nodebug(hc, reg, val);
365 }
366 static u_char
367 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
368 {
369 	char regname[256] = "", bits[9] = "xxxxxxxx";
370 	u_char val = HFC_inb_nodebug(hc, reg);
371 	int i;
372 
373 	i = 0;
374 	while (hfc_register_names[i++].name)
375 		;
376 	while (hfc_register_names[++i].name) {
377 		if (hfc_register_names[i].reg == reg)
378 			strcat(regname, hfc_register_names[i].name);
379 	}
380 	if (regname[0] == '\0')
381 		strcpy(regname, "register");
382 
383 	bits[7] = '0'+(!!(val&1));
384 	bits[6] = '0'+(!!(val&2));
385 	bits[5] = '0'+(!!(val&4));
386 	bits[4] = '0'+(!!(val&8));
387 	bits[3] = '0'+(!!(val&16));
388 	bits[2] = '0'+(!!(val&32));
389 	bits[1] = '0'+(!!(val&64));
390 	bits[0] = '0'+(!!(val&128));
391 	printk(KERN_DEBUG
392 	    "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
393 	    hc->id, reg, regname, val, bits, function, line);
394 	return val;
395 }
396 static u_short
397 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
398 {
399 	char regname[256] = "";
400 	u_short val = HFC_inw_nodebug(hc, reg);
401 	int i;
402 
403 	i = 0;
404 	while (hfc_register_names[i++].name)
405 		;
406 	while (hfc_register_names[++i].name) {
407 		if (hfc_register_names[i].reg == reg)
408 			strcat(regname, hfc_register_names[i].name);
409 	}
410 	if (regname[0] == '\0')
411 		strcpy(regname, "register");
412 
413 	printk(KERN_DEBUG
414 	    "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
415 	    hc->id, reg, regname, val, function, line);
416 	return val;
417 }
418 static void
419 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
420 {
421 	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
422 	    hc->id, function, line);
423 	HFC_wait_nodebug(hc);
424 }
425 #endif
426 
427 /* write fifo data (REGIO) */
428 static void
429 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
430 {
431 	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
432 	while (len>>2) {
433 		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
434 		data += 4;
435 		len -= 4;
436 	}
437 	while (len>>1) {
438 		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
439 		data += 2;
440 		len -= 2;
441 	}
442 	while (len) {
443 		outb(*data, hc->pci_iobase);
444 		data++;
445 		len--;
446 	}
447 }
448 /* write fifo data (PCIMEM) */
449 static void
450 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
451 {
452 	while (len>>2) {
453 		writel(cpu_to_le32(*(u32 *)data),
454 			hc->pci_membase + A_FIFO_DATA0);
455 		data += 4;
456 		len -= 4;
457 	}
458 	while (len>>1) {
459 		writew(cpu_to_le16(*(u16 *)data),
460 			hc->pci_membase + A_FIFO_DATA0);
461 		data += 2;
462 		len -= 2;
463 	}
464 	while (len) {
465 		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
466 		data++;
467 		len--;
468 	}
469 }
470 /* read fifo data (REGIO) */
471 static void
472 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
473 {
474 	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
475 	while (len>>2) {
476 		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
477 		data += 4;
478 		len -= 4;
479 	}
480 	while (len>>1) {
481 		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
482 		data += 2;
483 		len -= 2;
484 	}
485 	while (len) {
486 		*data = inb(hc->pci_iobase);
487 		data++;
488 		len--;
489 	}
490 }
491 
492 /* read fifo data (PCIMEM) */
493 static void
494 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
495 {
496 	while (len>>2) {
497 		*(u32 *)data =
498 			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
499 		data += 4;
500 		len -= 4;
501 	}
502 	while (len>>1) {
503 		*(u16 *)data =
504 			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
505 		data += 2;
506 		len -= 2;
507 	}
508 	while (len) {
509 		*data = readb(hc->pci_membase + A_FIFO_DATA0);
510 		data++;
511 		len--;
512 	}
513 }
514 
515 
516 static void
517 enable_hwirq(struct hfc_multi *hc)
518 {
519 	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
520 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
521 }
522 
523 static void
524 disable_hwirq(struct hfc_multi *hc)
525 {
526 	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
527 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
528 }
529 
530 #define	NUM_EC 2
531 #define	MAX_TDM_CHAN 32
532 
533 
534 inline void
535 enablepcibridge(struct hfc_multi *c)
536 {
537 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
538 }
539 
540 inline void
541 disablepcibridge(struct hfc_multi *c)
542 {
543 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
544 }
545 
546 inline unsigned char
547 readpcibridge(struct hfc_multi *hc, unsigned char address)
548 {
549 	unsigned short cipv;
550 	unsigned char data;
551 
552 	if (!hc->pci_iobase)
553 		return 0;
554 
555 	/* slow down a PCI read access by 1 PCI clock cycle */
556 	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
557 
558 	if (address == 0)
559 		cipv = 0x4000;
560 	else
561 		cipv = 0x5800;
562 
563 	/* select local bridge port address by writing to CIP port */
564 	/* data = HFC_inb(c, cipv); * was _io before */
565 	outw(cipv, hc->pci_iobase + 4);
566 	data = inb(hc->pci_iobase);
567 
568 	/* restore R_CTRL for normal PCI read cycle speed */
569 	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
570 
571 	return data;
572 }
573 
574 inline void
575 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
576 {
577 	unsigned short cipv;
578 	unsigned int datav;
579 
580 	if (!hc->pci_iobase)
581 		return;
582 
583 	if (address == 0)
584 		cipv = 0x4000;
585 	else
586 		cipv = 0x5800;
587 
588 	/* select local bridge port address by writing to CIP port */
589 	outw(cipv, hc->pci_iobase + 4);
590 	/* define a 32 bit dword with 4 identical bytes for write sequence */
591 	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
592 	    ((__u32) data << 24);
593 
594 	/*
595 	 * write this 32 bit dword to the bridge data port
596 	 * this will initiate a write sequence of up to 4 writes to the same
597 	 * address on the local bus interface the number of write accesses
598 	 * is undefined but >=1 and depends on the next PCI transaction
599 	 * during write sequence on the local bus
600 	 */
601 	outl(datav, hc->pci_iobase);
602 }
603 
604 inline void
605 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
606 {
607 	/* Do data pin read low byte */
608 	HFC_outb(hc, R_GPIO_OUT1, reg);
609 }
610 
611 inline void
612 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
613 {
614 	cpld_set_reg(hc, reg);
615 
616 	enablepcibridge(hc);
617 	writepcibridge(hc, 1, val);
618 	disablepcibridge(hc);
619 
620 	return;
621 }
622 
623 inline unsigned char
624 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626 	unsigned char bytein;
627 
628 	cpld_set_reg(hc, reg);
629 
630 	/* Do data pin read low byte */
631 	HFC_outb(hc, R_GPIO_OUT1, reg);
632 
633 	enablepcibridge(hc);
634 	bytein = readpcibridge(hc, 1);
635 	disablepcibridge(hc);
636 
637 	return bytein;
638 }
639 
640 inline void
641 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
642 {
643 	cpld_write_reg(hc, 0, 0xff & addr);
644 	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
645 }
646 
647 inline unsigned short
648 vpm_read_address(struct hfc_multi *c)
649 {
650 	unsigned short addr;
651 	unsigned short highbit;
652 
653 	addr = cpld_read_reg(c, 0);
654 	highbit = cpld_read_reg(c, 1);
655 
656 	addr = addr | (highbit << 8);
657 
658 	return addr & 0x1ff;
659 }
660 
661 inline unsigned char
662 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
663 {
664 	unsigned char res;
665 
666 	vpm_write_address(c, addr);
667 
668 	if (!which)
669 		cpld_set_reg(c, 2);
670 	else
671 		cpld_set_reg(c, 3);
672 
673 	enablepcibridge(c);
674 	res = readpcibridge(c, 1);
675 	disablepcibridge(c);
676 
677 	cpld_set_reg(c, 0);
678 
679 	return res;
680 }
681 
682 inline void
683 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
684     unsigned char data)
685 {
686 	vpm_write_address(c, addr);
687 
688 	enablepcibridge(c);
689 
690 	if (!which)
691 		cpld_set_reg(c, 2);
692 	else
693 		cpld_set_reg(c, 3);
694 
695 	writepcibridge(c, 1, data);
696 
697 	cpld_set_reg(c, 0);
698 
699 	disablepcibridge(c);
700 
701 	{
702 	unsigned char regin;
703 	regin = vpm_in(c, which, addr);
704 	if (regin != data)
705 		printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
706 			"0x%x\n", data, addr, regin);
707 	}
708 
709 }
710 
711 
712 static void
713 vpm_init(struct hfc_multi *wc)
714 {
715 	unsigned char reg;
716 	unsigned int mask;
717 	unsigned int i, x, y;
718 	unsigned int ver;
719 
720 	for (x = 0; x < NUM_EC; x++) {
721 		/* Setup GPIO's */
722 		if (!x) {
723 			ver = vpm_in(wc, x, 0x1a0);
724 			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
725 		}
726 
727 		for (y = 0; y < 4; y++) {
728 			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
729 			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
730 			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
731 		}
732 
733 		/* Setup TDM path - sets fsync and tdm_clk as inputs */
734 		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
735 		vpm_out(wc, x, 0x1a3, reg & ~2);
736 
737 		/* Setup Echo length (256 taps) */
738 		vpm_out(wc, x, 0x022, 1);
739 		vpm_out(wc, x, 0x023, 0xff);
740 
741 		/* Setup timeslots */
742 		vpm_out(wc, x, 0x02f, 0x00);
743 		mask = 0x02020202 << (x * 4);
744 
745 		/* Setup the tdm channel masks for all chips */
746 		for (i = 0; i < 4; i++)
747 			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
748 
749 		/* Setup convergence rate */
750 		printk(KERN_DEBUG "VPM: A-law mode\n");
751 		reg = 0x00 | 0x10 | 0x01;
752 		vpm_out(wc, x, 0x20, reg);
753 		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
754 		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
755 
756 		vpm_out(wc, x, 0x24, 0x02);
757 		reg = vpm_in(wc, x, 0x24);
758 		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
759 
760 		/* Initialize echo cans */
761 		for (i = 0; i < MAX_TDM_CHAN; i++) {
762 			if (mask & (0x00000001 << i))
763 				vpm_out(wc, x, i, 0x00);
764 		}
765 
766 		/*
767 		 * ARM arch at least disallows a udelay of
768 		 * more than 2ms... it gives a fake "__bad_udelay"
769 		 * reference at link-time.
770 		 * long delays in kernel code are pretty sucky anyway
771 		 * for now work around it using 5 x 2ms instead of 1 x 10ms
772 		 */
773 
774 		udelay(2000);
775 		udelay(2000);
776 		udelay(2000);
777 		udelay(2000);
778 		udelay(2000);
779 
780 		/* Put in bypass mode */
781 		for (i = 0; i < MAX_TDM_CHAN; i++) {
782 			if (mask & (0x00000001 << i))
783 				vpm_out(wc, x, i, 0x01);
784 		}
785 
786 		/* Enable bypass */
787 		for (i = 0; i < MAX_TDM_CHAN; i++) {
788 			if (mask & (0x00000001 << i))
789 				vpm_out(wc, x, 0x78 + i, 0x01);
790 		}
791 
792 	}
793 }
794 
795 #ifdef UNUSED
796 static void
797 vpm_check(struct hfc_multi *hctmp)
798 {
799 	unsigned char gpi2;
800 
801 	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
802 
803 	if ((gpi2 & 0x3) != 0x3)
804 		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
805 }
806 #endif /* UNUSED */
807 
808 
809 /*
810  * Interface to enable/disable the HW Echocan
811  *
812  * these functions are called within a spin_lock_irqsave on
813  * the channel instance lock, so we are not disturbed by irqs
814  *
815  * we can later easily change the interface to make  other
816  * things configurable, for now we configure the taps
817  *
818  */
819 
820 static void
821 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
822 {
823 	unsigned int timeslot;
824 	unsigned int unit;
825 	struct bchannel *bch = hc->chan[ch].bch;
826 #ifdef TXADJ
827 	int txadj = -4;
828 	struct sk_buff *skb;
829 #endif
830 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
831 		return;
832 
833 	if (!bch)
834 		return;
835 
836 #ifdef TXADJ
837 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
838 		sizeof(int), &txadj, GFP_ATOMIC);
839 	if (skb)
840 		recv_Bchannel_skb(bch, skb);
841 #endif
842 
843 	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
844 	unit = ch % 4;
845 
846 	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
847 	    taps, timeslot);
848 
849 	vpm_out(hc, unit, timeslot, 0x7e);
850 }
851 
852 static void
853 vpm_echocan_off(struct hfc_multi *hc, int ch)
854 {
855 	unsigned int timeslot;
856 	unsigned int unit;
857 	struct bchannel *bch = hc->chan[ch].bch;
858 #ifdef TXADJ
859 	int txadj = 0;
860 	struct sk_buff *skb;
861 #endif
862 
863 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864 		return;
865 
866 	if (!bch)
867 		return;
868 
869 #ifdef TXADJ
870 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871 		sizeof(int), &txadj, GFP_ATOMIC);
872 	if (skb)
873 		recv_Bchannel_skb(bch, skb);
874 #endif
875 
876 	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
877 	unit = ch % 4;
878 
879 	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
880 	    timeslot);
881 	/* FILLME */
882 	vpm_out(hc, unit, timeslot, 0x01);
883 }
884 
885 
886 /*
887  * Speech Design resync feature
888  * NOTE: This is called sometimes outside interrupt handler.
889  * We must lock irqsave, so no other interrupt (other card) will occurr!
890  * Also multiple interrupts may nest, so must lock each access (lists, card)!
891  */
892 static inline void
893 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
894 {
895 	struct hfc_multi *hc, *next, *pcmmaster = NULL;
896 	void __iomem *plx_acc_32;
897 	u_int pv;
898 	u_long flags;
899 
900 	spin_lock_irqsave(&HFClock, flags);
901 	spin_lock(&plx_lock); /* must be locked inside other locks */
902 
903 	if (debug & DEBUG_HFCMULTI_PLXSD)
904 		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
905 			__func__, syncmaster);
906 
907 	/* select new master */
908 	if (newmaster) {
909 		if (debug & DEBUG_HFCMULTI_PLXSD)
910 			printk(KERN_DEBUG "using provided controller\n");
911 	} else {
912 		list_for_each_entry_safe(hc, next, &HFClist, list) {
913 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
914 				if (hc->syncronized) {
915 					newmaster = hc;
916 					break;
917 				}
918 			}
919 		}
920 	}
921 
922 	/* Disable sync of all cards */
923 	list_for_each_entry_safe(hc, next, &HFClist, list) {
924 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
925 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
926 			pv = readl(plx_acc_32);
927 			pv &= ~PLX_SYNC_O_EN;
928 			writel(pv, plx_acc_32);
929 			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
930 				pcmmaster = hc;
931 				if (hc->type == 1) {
932 					if (debug & DEBUG_HFCMULTI_PLXSD)
933 						printk(KERN_DEBUG
934 							"Schedule SYNC_I\n");
935 					hc->e1_resync |= 1; /* get SYNC_I */
936 				}
937 			}
938 		}
939 	}
940 
941 	if (newmaster) {
942 		hc = newmaster;
943 		if (debug & DEBUG_HFCMULTI_PLXSD)
944 			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
945 				"interface.\n", hc->id, hc);
946 		/* Enable new sync master */
947 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
948 		pv = readl(plx_acc_32);
949 		pv |= PLX_SYNC_O_EN;
950 		writel(pv, plx_acc_32);
951 		/* switch to jatt PLL, if not disabled by RX_SYNC */
952 		if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
953 			if (debug & DEBUG_HFCMULTI_PLXSD)
954 				printk(KERN_DEBUG "Schedule jatt PLL\n");
955 			hc->e1_resync |= 2; /* switch to jatt */
956 		}
957 	} else {
958 		if (pcmmaster) {
959 			hc = pcmmaster;
960 			if (debug & DEBUG_HFCMULTI_PLXSD)
961 				printk(KERN_DEBUG
962 					"id=%d (0x%p) = PCM master syncronized "
963 					"with QUARTZ\n", hc->id, hc);
964 			if (hc->type == 1) {
965 				/* Use the crystal clock for the PCM
966 				   master card */
967 				if (debug & DEBUG_HFCMULTI_PLXSD)
968 					printk(KERN_DEBUG
969 					    "Schedule QUARTZ for HFC-E1\n");
970 				hc->e1_resync |= 4; /* switch quartz */
971 			} else {
972 				if (debug & DEBUG_HFCMULTI_PLXSD)
973 					printk(KERN_DEBUG
974 					    "QUARTZ is automatically "
975 					    "enabled by HFC-%dS\n", hc->type);
976 			}
977 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
978 			pv = readl(plx_acc_32);
979 			pv |= PLX_SYNC_O_EN;
980 			writel(pv, plx_acc_32);
981 		} else
982 			if (!rm)
983 				printk(KERN_ERR "%s no pcm master, this MUST "
984 					"not happen!\n", __func__);
985 	}
986 	syncmaster = newmaster;
987 
988 	spin_unlock(&plx_lock);
989 	spin_unlock_irqrestore(&HFClock, flags);
990 }
991 
992 /* This must be called AND hc must be locked irqsave!!! */
993 inline void
994 plxsd_checksync(struct hfc_multi *hc, int rm)
995 {
996 	if (hc->syncronized) {
997 		if (syncmaster == NULL) {
998 			if (debug & DEBUG_HFCMULTI_PLXSD)
999 				printk(KERN_WARNING "%s: GOT sync on card %d"
1000 					" (id=%d)\n", __func__, hc->id + 1,
1001 					hc->id);
1002 			hfcmulti_resync(hc, hc, rm);
1003 		}
1004 	} else {
1005 		if (syncmaster == hc) {
1006 			if (debug & DEBUG_HFCMULTI_PLXSD)
1007 				printk(KERN_WARNING "%s: LOST sync on card %d"
1008 					" (id=%d)\n", __func__, hc->id + 1,
1009 					hc->id);
1010 			hfcmulti_resync(hc, NULL, rm);
1011 		}
1012 	}
1013 }
1014 
1015 
1016 /*
1017  * free hardware resources used by driver
1018  */
1019 static void
1020 release_io_hfcmulti(struct hfc_multi *hc)
1021 {
1022 	void __iomem *plx_acc_32;
1023 	u_int	pv;
1024 	u_long	plx_flags;
1025 
1026 	if (debug & DEBUG_HFCMULTI_INIT)
1027 		printk(KERN_DEBUG "%s: entered\n", __func__);
1028 
1029 	/* soft reset also masks all interrupts */
1030 	hc->hw.r_cirm |= V_SRES;
1031 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1032 	udelay(1000);
1033 	hc->hw.r_cirm &= ~V_SRES;
1034 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1035 	udelay(1000); /* instead of 'wait' that may cause locking */
1036 
1037 	/* release Speech Design card, if PLX was initialized */
1038 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1039 		if (debug & DEBUG_HFCMULTI_PLXSD)
1040 			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1041 			    __func__, hc->id + 1);
1042 		spin_lock_irqsave(&plx_lock, plx_flags);
1043 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1044 		writel(PLX_GPIOC_INIT, plx_acc_32);
1045 		pv = readl(plx_acc_32);
1046 		/* Termination off */
1047 		pv &= ~PLX_TERM_ON;
1048 		/* Disconnect the PCM */
1049 		pv |= PLX_SLAVE_EN_N;
1050 		pv &= ~PLX_MASTER_EN;
1051 		pv &= ~PLX_SYNC_O_EN;
1052 		/* Put the DSP in Reset */
1053 		pv &= ~PLX_DSP_RES_N;
1054 		writel(pv, plx_acc_32);
1055 		if (debug & DEBUG_HFCMULTI_INIT)
1056 			printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1057 				__func__, pv);
1058 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1059 	}
1060 
1061 	/* disable memory mapped ports / io ports */
1062 	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1063 	pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1064 	if (hc->pci_membase)
1065 		iounmap(hc->pci_membase);
1066 	if (hc->plx_membase)
1067 		iounmap(hc->plx_membase);
1068 	if (hc->pci_iobase)
1069 		release_region(hc->pci_iobase, 8);
1070 
1071 	if (hc->pci_dev) {
1072 		pci_disable_device(hc->pci_dev);
1073 		pci_set_drvdata(hc->pci_dev, NULL);
1074 	}
1075 	if (debug & DEBUG_HFCMULTI_INIT)
1076 		printk(KERN_DEBUG "%s: done\n", __func__);
1077 }
1078 
1079 /*
1080  * function called to reset the HFC chip. A complete software reset of chip
1081  * and fifos is done. All configuration of the chip is done.
1082  */
1083 
1084 static int
1085 init_chip(struct hfc_multi *hc)
1086 {
1087 	u_long			flags, val, val2 = 0, rev;
1088 	int			i, err = 0;
1089 	u_char			r_conf_en, rval;
1090 	void __iomem		*plx_acc_32;
1091 	u_int			pv;
1092 	u_long			plx_flags, hfc_flags;
1093 	int			plx_count;
1094 	struct hfc_multi	*pos, *next, *plx_last_hc;
1095 
1096 	spin_lock_irqsave(&hc->lock, flags);
1097 	/* reset all registers */
1098 	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1099 
1100 	/* revision check */
1101 	if (debug & DEBUG_HFCMULTI_INIT)
1102 		printk(KERN_DEBUG "%s: entered\n", __func__);
1103 	val = HFC_inb(hc, R_CHIP_ID)>>4;
1104 	if (val != 0x8 && val != 0xc && val != 0xe) {
1105 		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1106 		err = -EIO;
1107 		goto out;
1108 	}
1109 	rev = HFC_inb(hc, R_CHIP_RV);
1110 	printk(KERN_INFO
1111 	    "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1112 	    val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1113 	if (rev == 0) {
1114 		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1115 		printk(KERN_WARNING
1116 		    "HFC_multi: NOTE: Your chip is revision 0, "
1117 		    "ask Cologne Chip for update. Newer chips "
1118 		    "have a better FIFO handling. Old chips "
1119 		    "still work but may have slightly lower "
1120 		    "HDLC transmit performance.\n");
1121 	}
1122 	if (rev > 1) {
1123 		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1124 		    "consider chip revision = %ld. The chip / "
1125 		    "bridge may not work.\n", rev);
1126 	}
1127 
1128 	/* set s-ram size */
1129 	hc->Flen = 0x10;
1130 	hc->Zmin = 0x80;
1131 	hc->Zlen = 384;
1132 	hc->DTMFbase = 0x1000;
1133 	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1134 		if (debug & DEBUG_HFCMULTI_INIT)
1135 			printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1136 			    __func__);
1137 		hc->hw.r_ctrl |= V_EXT_RAM;
1138 		hc->hw.r_ram_sz = 1;
1139 		hc->Flen = 0x20;
1140 		hc->Zmin = 0xc0;
1141 		hc->Zlen = 1856;
1142 		hc->DTMFbase = 0x2000;
1143 	}
1144 	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1145 		if (debug & DEBUG_HFCMULTI_INIT)
1146 			printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1147 			    __func__);
1148 		hc->hw.r_ctrl |= V_EXT_RAM;
1149 		hc->hw.r_ram_sz = 2;
1150 		hc->Flen = 0x20;
1151 		hc->Zmin = 0xc0;
1152 		hc->Zlen = 8000;
1153 		hc->DTMFbase = 0x2000;
1154 	}
1155 	hc->max_trans = poll << 1;
1156 	if (hc->max_trans > hc->Zlen)
1157 		hc->max_trans = hc->Zlen;
1158 
1159 	/* Speech Design PLX bridge */
1160 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161 		if (debug & DEBUG_HFCMULTI_PLXSD)
1162 			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163 			    __func__, hc->id + 1);
1164 		spin_lock_irqsave(&plx_lock, plx_flags);
1165 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166 		writel(PLX_GPIOC_INIT, plx_acc_32);
1167 		pv = readl(plx_acc_32);
1168 		/* The first and the last cards are terminating the PCM bus */
1169 		pv |= PLX_TERM_ON; /* hc is currently the last */
1170 		/* Disconnect the PCM */
1171 		pv |= PLX_SLAVE_EN_N;
1172 		pv &= ~PLX_MASTER_EN;
1173 		pv &= ~PLX_SYNC_O_EN;
1174 		/* Put the DSP in Reset */
1175 		pv &= ~PLX_DSP_RES_N;
1176 		writel(pv, plx_acc_32);
1177 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1178 		if (debug & DEBUG_HFCMULTI_INIT)
1179 			printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1180 				__func__, pv);
1181 		/*
1182 		 * If we are the 3rd PLXSD card or higher, we must turn
1183 		 * termination of last PLXSD card off.
1184 		 */
1185 		spin_lock_irqsave(&HFClock, hfc_flags);
1186 		plx_count = 0;
1187 		plx_last_hc = NULL;
1188 		list_for_each_entry_safe(pos, next, &HFClist, list) {
1189 			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190 				plx_count++;
1191 				if (pos != hc)
1192 					plx_last_hc = pos;
1193 			}
1194 		}
1195 		if (plx_count >= 3) {
1196 			if (debug & DEBUG_HFCMULTI_PLXSD)
1197 				printk(KERN_DEBUG "%s: card %d is between, so "
1198 					"we disable termination\n",
1199 				    __func__, plx_last_hc->id + 1);
1200 			spin_lock_irqsave(&plx_lock, plx_flags);
1201 			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202 			pv = readl(plx_acc_32);
1203 			pv &= ~PLX_TERM_ON;
1204 			writel(pv, plx_acc_32);
1205 			spin_unlock_irqrestore(&plx_lock, plx_flags);
1206 			if (debug & DEBUG_HFCMULTI_INIT)
1207 			    printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1208 					__func__, pv);
1209 		}
1210 		spin_unlock_irqrestore(&HFClock, hfc_flags);
1211 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1212 	}
1213 
1214 	/* we only want the real Z2 read-pointer for revision > 0 */
1215 	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1216 		hc->hw.r_ram_sz |= V_FZ_MD;
1217 
1218 	/* select pcm mode */
1219 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1220 		if (debug & DEBUG_HFCMULTI_INIT)
1221 			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1222 			    __func__);
1223 	} else
1224 	if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1225 		if (debug & DEBUG_HFCMULTI_INIT)
1226 			printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1227 			    __func__);
1228 		hc->hw.r_pcm_md0 |= V_PCM_MD;
1229 	} else {
1230 		if (debug & DEBUG_HFCMULTI_INIT)
1231 			printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1232 			    __func__);
1233 	}
1234 
1235 	/* soft reset */
1236 	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1237 	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1238 	HFC_outb(hc, R_FIFO_MD, 0);
1239 	hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1240 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1241 	udelay(100);
1242 	hc->hw.r_cirm = 0;
1243 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1244 	udelay(100);
1245 	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246 
1247 	/* Speech Design PLX bridge pcm and sync mode */
1248 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1249 		spin_lock_irqsave(&plx_lock, plx_flags);
1250 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1251 		pv = readl(plx_acc_32);
1252 		/* Connect PCM */
1253 		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1254 			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1255 			pv |= PLX_SYNC_O_EN;
1256 			if (debug & DEBUG_HFCMULTI_INIT)
1257 				printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1258 					__func__, pv);
1259 		} else {
1260 			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1261 			pv &= ~PLX_SYNC_O_EN;
1262 			if (debug & DEBUG_HFCMULTI_INIT)
1263 				printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1264 					__func__, pv);
1265 		}
1266 		writel(pv, plx_acc_32);
1267 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1268 	}
1269 
1270 	/* PCM setup */
1271 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1272 	if (hc->slots == 32)
1273 		HFC_outb(hc, R_PCM_MD1, 0x00);
1274 	if (hc->slots == 64)
1275 		HFC_outb(hc, R_PCM_MD1, 0x10);
1276 	if (hc->slots == 128)
1277 		HFC_outb(hc, R_PCM_MD1, 0x20);
1278 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1279 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1280 		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1281 	else
1282 		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1283 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1284 	for (i = 0; i < 256; i++) {
1285 		HFC_outb_nodebug(hc, R_SLOT, i);
1286 		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1287 		HFC_outb_nodebug(hc, A_CONF, 0);
1288 		hc->slot_owner[i] = -1;
1289 	}
1290 
1291 	/* set clock speed */
1292 	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1293 		if (debug & DEBUG_HFCMULTI_INIT)
1294 			printk(KERN_DEBUG
1295 			    "%s: setting double clock\n", __func__);
1296 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1297 	}
1298 
1299 	/* B410P GPIO */
1300 	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1301 		printk(KERN_NOTICE "Setting GPIOs\n");
1302 		HFC_outb(hc, R_GPIO_SEL, 0x30);
1303 		HFC_outb(hc, R_GPIO_EN1, 0x3);
1304 		udelay(1000);
1305 		printk(KERN_NOTICE "calling vpm_init\n");
1306 		vpm_init(hc);
1307 	}
1308 
1309 	/* check if R_F0_CNT counts (8 kHz frame count) */
1310 	val = HFC_inb(hc, R_F0_CNTL);
1311 	val += HFC_inb(hc, R_F0_CNTH) << 8;
1312 	if (debug & DEBUG_HFCMULTI_INIT)
1313 		printk(KERN_DEBUG
1314 		    "HFC_multi F0_CNT %ld after reset\n", val);
1315 	spin_unlock_irqrestore(&hc->lock, flags);
1316 	set_current_state(TASK_UNINTERRUPTIBLE);
1317 	schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1318 	spin_lock_irqsave(&hc->lock, flags);
1319 	val2 = HFC_inb(hc, R_F0_CNTL);
1320 	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1321 	if (debug & DEBUG_HFCMULTI_INIT)
1322 		printk(KERN_DEBUG
1323 			"HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1324 		    val2);
1325 	if (val2 >= val+8) { /* 1 ms */
1326 		/* it counts, so we keep the pcm mode */
1327 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1328 			printk(KERN_INFO "controller is PCM bus MASTER\n");
1329 		else
1330 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1331 			printk(KERN_INFO "controller is PCM bus SLAVE\n");
1332 		else {
1333 			test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1334 			printk(KERN_INFO "controller is PCM bus SLAVE "
1335 				"(auto detected)\n");
1336 		}
1337 	} else {
1338 		/* does not count */
1339 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1340 controller_fail:
1341 			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1342 			    "pulse. Seems that controller fails.\n");
1343 			err = -EIO;
1344 			goto out;
1345 		}
1346 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1347 			printk(KERN_INFO "controller is PCM bus SLAVE "
1348 				"(ignoring missing PCM clock)\n");
1349 		} else {
1350 			/* only one pcm master */
1351 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1352 				&& plxsd_master) {
1353 				printk(KERN_ERR "HFC_multi ERROR, no clock "
1354 				    "on another Speech Design card found. "
1355 				    "Please be sure to connect PCM cable.\n");
1356 				err = -EIO;
1357 				goto out;
1358 			}
1359 			/* retry with master clock */
1360 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1361 				spin_lock_irqsave(&plx_lock, plx_flags);
1362 				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1363 				pv = readl(plx_acc_32);
1364 				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1365 				pv |= PLX_SYNC_O_EN;
1366 				writel(pv, plx_acc_32);
1367 				spin_unlock_irqrestore(&plx_lock, plx_flags);
1368 				if (debug & DEBUG_HFCMULTI_INIT)
1369 				    printk(KERN_WARNING "%s: master: PLX_GPIO"
1370 					"=%x\n", __func__, pv);
1371 			}
1372 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1373 			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1374 			spin_unlock_irqrestore(&hc->lock, flags);
1375 			set_current_state(TASK_UNINTERRUPTIBLE);
1376 			schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1377 			spin_lock_irqsave(&hc->lock, flags);
1378 			val2 = HFC_inb(hc, R_F0_CNTL);
1379 			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1380 			if (debug & DEBUG_HFCMULTI_INIT)
1381 				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1382 					"10 ms (2nd try)\n", val2);
1383 			if (val2 >= val+8) { /* 1 ms */
1384 				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1385 					&hc->chip);
1386 				printk(KERN_INFO "controller is PCM bus MASTER "
1387 					"(auto detected)\n");
1388 			} else
1389 				goto controller_fail;
1390 		}
1391 	}
1392 
1393 	/* Release the DSP Reset */
1394 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1395 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1396 			plxsd_master = 1;
1397 		spin_lock_irqsave(&plx_lock, plx_flags);
1398 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1399 		pv = readl(plx_acc_32);
1400 		pv |=  PLX_DSP_RES_N;
1401 		writel(pv, plx_acc_32);
1402 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1403 		if (debug & DEBUG_HFCMULTI_INIT)
1404 			printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1405 				__func__, pv);
1406 	}
1407 
1408 	/* pcm id */
1409 	if (hc->pcm)
1410 		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1411 			hc->pcm);
1412 	else {
1413 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1414 		 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1415 			PCM_cnt++; /* SD has proprietary bridging */
1416 		}
1417 		hc->pcm = PCM_cnt;
1418 		printk(KERN_INFO "controller has PCM BUS ID %d "
1419 			"(auto selected)\n", hc->pcm);
1420 	}
1421 
1422 	/* set up timer */
1423 	HFC_outb(hc, R_TI_WD, poll_timer);
1424 	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1425 
1426 	/* set E1 state machine IRQ */
1427 	if (hc->type == 1)
1428 		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1429 
1430 	/* set DTMF detection */
1431 	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1432 		if (debug & DEBUG_HFCMULTI_INIT)
1433 			printk(KERN_DEBUG "%s: enabling DTMF detection "
1434 			    "for all B-channel\n", __func__);
1435 		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1436 		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1437 			hc->hw.r_dtmf |= V_ULAW_SEL;
1438 		HFC_outb(hc, R_DTMF_N, 102 - 1);
1439 		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1440 	}
1441 
1442 	/* conference engine */
1443 	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1444 		r_conf_en = V_CONF_EN | V_ULAW;
1445 	else
1446 		r_conf_en = V_CONF_EN;
1447 	HFC_outb(hc, R_CONF_EN, r_conf_en);
1448 
1449 	/* setting leds */
1450 	switch (hc->leds) {
1451 	case 1: /* HFC-E1 OEM */
1452 		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1453 			HFC_outb(hc, R_GPIO_SEL, 0x32);
1454 		else
1455 			HFC_outb(hc, R_GPIO_SEL, 0x30);
1456 
1457 		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1458 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1459 
1460 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1461 		break;
1462 
1463 	case 2: /* HFC-4S OEM */
1464 	case 3:
1465 		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1466 		HFC_outb(hc, R_GPIO_EN1, 0xff);
1467 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1468 		break;
1469 	}
1470 
1471 	/* set master clock */
1472 	if (hc->masterclk >= 0) {
1473 		if (debug & DEBUG_HFCMULTI_INIT)
1474 			printk(KERN_DEBUG "%s: setting ST master clock "
1475 			    "to port %d (0..%d)\n",
1476 			    __func__, hc->masterclk, hc->ports-1);
1477 		hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1478 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1479 	}
1480 
1481 	/* setting misc irq */
1482 	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1483 	if (debug & DEBUG_HFCMULTI_INIT)
1484 		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1485 		    hc->hw.r_irqmsk_misc);
1486 
1487 	/* RAM access test */
1488 	HFC_outb(hc, R_RAM_ADDR0, 0);
1489 	HFC_outb(hc, R_RAM_ADDR1, 0);
1490 	HFC_outb(hc, R_RAM_ADDR2, 0);
1491 	for (i = 0; i < 256; i++) {
1492 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1493 		HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1494 	}
1495 	for (i = 0; i < 256; i++) {
1496 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1497 		HFC_inb_nodebug(hc, R_RAM_DATA);
1498 		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1499 		if (rval != ((i * 3) & 0xff)) {
1500 			printk(KERN_DEBUG
1501 			    "addr:%x val:%x should:%x\n", i, rval,
1502 			    (i * 3) & 0xff);
1503 			err++;
1504 		}
1505 	}
1506 	if (err) {
1507 		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1508 		err = -EIO;
1509 		goto out;
1510 	}
1511 
1512 	if (debug & DEBUG_HFCMULTI_INIT)
1513 		printk(KERN_DEBUG "%s: done\n", __func__);
1514 out:
1515 	spin_unlock_irqrestore(&hc->lock, flags);
1516 	return err;
1517 }
1518 
1519 
1520 /*
1521  * control the watchdog
1522  */
1523 static void
1524 hfcmulti_watchdog(struct hfc_multi *hc)
1525 {
1526 	hc->wdcount++;
1527 
1528 	if (hc->wdcount > 10) {
1529 		hc->wdcount = 0;
1530 		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1531 		    V_GPIO_OUT3 : V_GPIO_OUT2;
1532 
1533 	/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1534 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1535 		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1536 	}
1537 }
1538 
1539 
1540 
1541 /*
1542  * output leds
1543  */
1544 static void
1545 hfcmulti_leds(struct hfc_multi *hc)
1546 {
1547 	unsigned long lled;
1548 	unsigned long leddw;
1549 	int i, state, active, leds;
1550 	struct dchannel *dch;
1551 	int led[4];
1552 
1553 	hc->ledcount += poll;
1554 	if (hc->ledcount > 4096) {
1555 		hc->ledcount -= 4096;
1556 		hc->ledstate = 0xAFFEAFFE;
1557 	}
1558 
1559 	switch (hc->leds) {
1560 	case 1: /* HFC-E1 OEM */
1561 		/* 2 red blinking: NT mode deactivate
1562 		 * 2 red steady:   TE mode deactivate
1563 		 * left green:     L1 active
1564 		 * left red:       frame sync, but no L1
1565 		 * right green:    L2 active
1566 		 */
1567 		if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1568 			if (hc->chan[hc->dslot].dch->dev.D.protocol
1569 				!= ISDN_P_NT_E1) {
1570 				led[0] = 1;
1571 				led[1] = 1;
1572 			} else if (hc->ledcount>>11) {
1573 				led[0] = 1;
1574 				led[1] = 1;
1575 			} else {
1576 				led[0] = 0;
1577 				led[1] = 0;
1578 			}
1579 			led[2] = 0;
1580 			led[3] = 0;
1581 		} else { /* with frame sync */
1582 			/* TODO make it work */
1583 			led[0] = 0;
1584 			led[1] = 0;
1585 			led[2] = 0;
1586 			led[3] = 1;
1587 		}
1588 		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1589 			/* leds are inverted */
1590 		if (leds != (int)hc->ledstate) {
1591 			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1592 			hc->ledstate = leds;
1593 		}
1594 		break;
1595 
1596 	case 2: /* HFC-4S OEM */
1597 		/* red blinking = PH_DEACTIVATE NT Mode
1598 		 * red steady   = PH_DEACTIVATE TE Mode
1599 		 * green steady = PH_ACTIVATE
1600 		 */
1601 		for (i = 0; i < 4; i++) {
1602 			state = 0;
1603 			active = -1;
1604 			dch = hc->chan[(i << 2) | 2].dch;
1605 			if (dch) {
1606 				state = dch->state;
1607 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1608 					active = 3;
1609 				else
1610 					active = 7;
1611 			}
1612 			if (state) {
1613 				if (state == active) {
1614 					led[i] = 1; /* led green */
1615 				} else
1616 					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1617 						/* TE mode: led red */
1618 						led[i] = 2;
1619 					else
1620 						if (hc->ledcount>>11)
1621 							/* led red */
1622 							led[i] = 2;
1623 						else
1624 							/* led off */
1625 							led[i] = 0;
1626 			} else
1627 				led[i] = 0; /* led off */
1628 		}
1629 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1630 			leds = 0;
1631 			for (i = 0; i < 4; i++) {
1632 				if (led[i] == 1) {
1633 					/*green*/
1634 					leds |= (0x2 << (i * 2));
1635 				} else if (led[i] == 2) {
1636 					/*red*/
1637 					leds |= (0x1 << (i * 2));
1638 				}
1639 			}
1640 			if (leds != (int)hc->ledstate) {
1641 				vpm_out(hc, 0, 0x1a8 + 3, leds);
1642 				hc->ledstate = leds;
1643 			}
1644 		} else {
1645 			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1646 			    ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1647 			    ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1648 			    ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1649 			if (leds != (int)hc->ledstate) {
1650 				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1651 				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1652 				hc->ledstate = leds;
1653 			}
1654 		}
1655 		break;
1656 
1657 	case 3: /* HFC 1S/2S Beronet */
1658 		/* red blinking = PH_DEACTIVATE NT Mode
1659 		 * red steady   = PH_DEACTIVATE TE Mode
1660 		 * green steady = PH_ACTIVATE
1661 		 */
1662 		for (i = 0; i < 2; i++) {
1663 			state = 0;
1664 			active = -1;
1665 			dch = hc->chan[(i << 2) | 2].dch;
1666 			if (dch) {
1667 				state = dch->state;
1668 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1669 					active = 3;
1670 				else
1671 					active = 7;
1672 			}
1673 			if (state) {
1674 				if (state == active) {
1675 					led[i] = 1; /* led green */
1676 				} else
1677 					if (dch->dev.D.protocol == ISDN_P_TE_S0)
1678 						/* TE mode: led red */
1679 						led[i] = 2;
1680 					else
1681 						if (hc->ledcount >> 11)
1682 							/* led red */
1683 							led[i] = 2;
1684 						else
1685 							/* led off */
1686 							led[i] = 0;
1687 			} else
1688 				led[i] = 0; /* led off */
1689 		}
1690 
1691 
1692 		leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1693 			| ((led[1]&1)<<3);
1694 		if (leds != (int)hc->ledstate) {
1695 			HFC_outb_nodebug(hc, R_GPIO_EN1,
1696 			    ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1697 			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1698 			    ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1699 			hc->ledstate = leds;
1700 		}
1701 		break;
1702 	case 8: /* HFC 8S+ Beronet */
1703 		lled = 0;
1704 
1705 		for (i = 0; i < 8; i++) {
1706 			state = 0;
1707 			active = -1;
1708 			dch = hc->chan[(i << 2) | 2].dch;
1709 			if (dch) {
1710 				state = dch->state;
1711 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1712 					active = 3;
1713 				else
1714 					active = 7;
1715 			}
1716 			if (state) {
1717 				if (state == active) {
1718 					lled |= 0 << i;
1719 				} else
1720 					if (hc->ledcount >> 11)
1721 						lled |= 0 << i;
1722 					else
1723 						lled |= 1 << i;
1724 			} else
1725 				lled |= 1 << i;
1726 		}
1727 		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1728 		if (leddw != hc->ledstate) {
1729 			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1730 			HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1731 			/* was _io before */
1732 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1733 			outw(0x4000, hc->pci_iobase + 4);
1734 			outl(leddw, hc->pci_iobase);
1735 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1736 			hc->ledstate = leddw;
1737 		}
1738 		break;
1739 	}
1740 }
1741 /*
1742  * read dtmf coefficients
1743  */
1744 
1745 static void
1746 hfcmulti_dtmf(struct hfc_multi *hc)
1747 {
1748 	s32		*coeff;
1749 	u_int		mantissa;
1750 	int		co, ch;
1751 	struct bchannel	*bch = NULL;
1752 	u8		exponent;
1753 	int		dtmf = 0;
1754 	int		addr;
1755 	u16		w_float;
1756 	struct sk_buff	*skb;
1757 	struct mISDNhead *hh;
1758 
1759 	if (debug & DEBUG_HFCMULTI_DTMF)
1760 		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1761 	for (ch = 0; ch <= 31; ch++) {
1762 		/* only process enabled B-channels */
1763 		bch = hc->chan[ch].bch;
1764 		if (!bch)
1765 			continue;
1766 		if (!hc->created[hc->chan[ch].port])
1767 			continue;
1768 		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1769 			continue;
1770 		if (debug & DEBUG_HFCMULTI_DTMF)
1771 			printk(KERN_DEBUG "%s: dtmf channel %d:",
1772 				__func__, ch);
1773 		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1774 		dtmf = 1;
1775 		for (co = 0; co < 8; co++) {
1776 			/* read W(n-1) coefficient */
1777 			addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1778 			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1779 			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1780 			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1781 				| V_ADDR_INC);
1782 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1783 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1784 			if (debug & DEBUG_HFCMULTI_DTMF)
1785 				printk(" %04x", w_float);
1786 
1787 			/* decode float (see chip doc) */
1788 			mantissa = w_float & 0x0fff;
1789 			if (w_float & 0x8000)
1790 				mantissa |= 0xfffff000;
1791 			exponent = (w_float>>12) & 0x7;
1792 			if (exponent) {
1793 				mantissa ^= 0x1000;
1794 				mantissa <<= (exponent-1);
1795 			}
1796 
1797 			/* store coefficient */
1798 			coeff[co<<1] = mantissa;
1799 
1800 			/* read W(n) coefficient */
1801 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1802 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1803 			if (debug & DEBUG_HFCMULTI_DTMF)
1804 				printk(" %04x", w_float);
1805 
1806 			/* decode float (see chip doc) */
1807 			mantissa = w_float & 0x0fff;
1808 			if (w_float & 0x8000)
1809 				mantissa |= 0xfffff000;
1810 			exponent = (w_float>>12) & 0x7;
1811 			if (exponent) {
1812 				mantissa ^= 0x1000;
1813 				mantissa <<= (exponent-1);
1814 			}
1815 
1816 			/* store coefficient */
1817 			coeff[(co<<1)|1] = mantissa;
1818 		}
1819 		if (debug & DEBUG_HFCMULTI_DTMF)
1820 			printk("%s: DTMF ready %08x %08x %08x %08x "
1821 			    "%08x %08x %08x %08x\n", __func__,
1822 			    coeff[0], coeff[1], coeff[2], coeff[3],
1823 			    coeff[4], coeff[5], coeff[6], coeff[7]);
1824 		hc->chan[ch].coeff_count++;
1825 		if (hc->chan[ch].coeff_count == 8) {
1826 			hc->chan[ch].coeff_count = 0;
1827 			skb = mI_alloc_skb(512, GFP_ATOMIC);
1828 			if (!skb) {
1829 				printk(KERN_WARNING "%s: No memory for skb\n",
1830 				    __func__);
1831 				continue;
1832 			}
1833 			hh = mISDN_HEAD_P(skb);
1834 			hh->prim = PH_CONTROL_IND;
1835 			hh->id = DTMF_HFC_COEF;
1836 			memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1837 			recv_Bchannel_skb(bch, skb);
1838 		}
1839 	}
1840 
1841 	/* restart DTMF processing */
1842 	hc->dtmf = dtmf;
1843 	if (dtmf)
1844 		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1845 }
1846 
1847 
1848 /*
1849  * fill fifo as much as possible
1850  */
1851 
1852 static void
1853 hfcmulti_tx(struct hfc_multi *hc, int ch)
1854 {
1855 	int i, ii, temp, len = 0;
1856 	int Zspace, z1, z2; /* must be int for calculation */
1857 	int Fspace, f1, f2;
1858 	u_char *d;
1859 	int *txpending, slot_tx;
1860 	struct	bchannel *bch;
1861 	struct  dchannel *dch;
1862 	struct  sk_buff **sp = NULL;
1863 	int *idxp;
1864 
1865 	bch = hc->chan[ch].bch;
1866 	dch = hc->chan[ch].dch;
1867 	if ((!dch) && (!bch))
1868 		return;
1869 
1870 	txpending = &hc->chan[ch].txpending;
1871 	slot_tx = hc->chan[ch].slot_tx;
1872 	if (dch) {
1873 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1874 			return;
1875 		sp = &dch->tx_skb;
1876 		idxp = &dch->tx_idx;
1877 	} else {
1878 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1879 			return;
1880 		sp = &bch->tx_skb;
1881 		idxp = &bch->tx_idx;
1882 	}
1883 	if (*sp)
1884 		len = (*sp)->len;
1885 
1886 	if ((!len) && *txpending != 1)
1887 		return; /* no data */
1888 
1889 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1890 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1891 	    (hc->chan[ch].slot_rx < 0) &&
1892 	    (hc->chan[ch].slot_tx < 0))
1893 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1894 	else
1895 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1896 	HFC_wait_nodebug(hc);
1897 
1898 	if (*txpending == 2) {
1899 		/* reset fifo */
1900 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1901 		HFC_wait_nodebug(hc);
1902 		HFC_outb(hc, A_SUBCH_CFG, 0);
1903 		*txpending = 1;
1904 	}
1905 next_frame:
1906 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1907 		f1 = HFC_inb_nodebug(hc, A_F1);
1908 		f2 = HFC_inb_nodebug(hc, A_F2);
1909 		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1910 			if (debug & DEBUG_HFCMULTI_FIFO)
1911 				printk(KERN_DEBUG
1912 				    "%s(card %d): reread f2 because %d!=%d\n",
1913 				    __func__, hc->id + 1, temp, f2);
1914 			f2 = temp; /* repeat until F2 is equal */
1915 		}
1916 		Fspace = f2 - f1 - 1;
1917 		if (Fspace < 0)
1918 			Fspace += hc->Flen;
1919 		/*
1920 		 * Old FIFO handling doesn't give us the current Z2 read
1921 		 * pointer, so we cannot send the next frame before the fifo
1922 		 * is empty. It makes no difference except for a slightly
1923 		 * lower performance.
1924 		 */
1925 		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1926 			if (f1 != f2)
1927 				Fspace = 0;
1928 			else
1929 				Fspace = 1;
1930 		}
1931 		/* one frame only for ST D-channels, to allow resending */
1932 		if (hc->type != 1 && dch) {
1933 			if (f1 != f2)
1934 				Fspace = 0;
1935 		}
1936 		/* F-counter full condition */
1937 		if (Fspace == 0)
1938 			return;
1939 	}
1940 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1941 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1942 	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1943 		if (debug & DEBUG_HFCMULTI_FIFO)
1944 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1945 				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
1946 		z2 = temp; /* repeat unti Z2 is equal */
1947 	}
1948 	Zspace = z2 - z1;
1949 	if (Zspace <= 0)
1950 		Zspace += hc->Zlen;
1951 	Zspace -= 4; /* keep not too full, so pointers will not overrun */
1952 	/* fill transparent data only to maxinum transparent load (minus 4) */
1953 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1954 		Zspace = Zspace - hc->Zlen + hc->max_trans;
1955 	if (Zspace <= 0) /* no space of 4 bytes */
1956 		return;
1957 
1958 	/* if no data */
1959 	if (!len) {
1960 		if (z1 == z2) { /* empty */
1961 			/* if done with FIFO audio data during PCM connection */
1962 			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1963 			    *txpending && slot_tx >= 0) {
1964 				if (debug & DEBUG_HFCMULTI_MODE)
1965 					printk(KERN_DEBUG
1966 					    "%s: reconnecting PCM due to no "
1967 					    "more FIFO data: channel %d "
1968 					    "slot_tx %d\n",
1969 					    __func__, ch, slot_tx);
1970 				/* connect slot */
1971 				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1972 				    V_HDLC_TRP | V_IFF);
1973 				HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1974 				HFC_wait_nodebug(hc);
1975 				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1976 				    V_HDLC_TRP | V_IFF);
1977 				HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1978 				HFC_wait_nodebug(hc);
1979 			}
1980 			*txpending = 0;
1981 		}
1982 		return; /* no data */
1983 	}
1984 
1985 	/* "fill fifo if empty" feature */
1986 	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
1987 		&& !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
1988 		if (debug & DEBUG_HFCMULTI_FILL)
1989 			printk(KERN_DEBUG "%s: buffer empty, so we have "
1990 				"underrun\n", __func__);
1991 		/* fill buffer, to prevent future underrun */
1992 		hc->write_fifo(hc, hc->silence_data, poll >> 1);
1993 		Zspace -= (poll >> 1);
1994 	}
1995 
1996 	/* if audio data and connected slot */
1997 	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1998 		&& slot_tx >= 0) {
1999 		if (debug & DEBUG_HFCMULTI_MODE)
2000 			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2001 			    "FIFO data: channel %d slot_tx %d\n",
2002 			    __func__, ch, slot_tx);
2003 		/* disconnect slot */
2004 		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2005 		HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2006 		HFC_wait_nodebug(hc);
2007 		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2008 		HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2009 		HFC_wait_nodebug(hc);
2010 	}
2011 	*txpending = 1;
2012 
2013 	/* show activity */
2014 	hc->activity[hc->chan[ch].port] = 1;
2015 
2016 	/* fill fifo to what we have left */
2017 	ii = len;
2018 	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2019 		temp = 1;
2020 	else
2021 		temp = 0;
2022 	i = *idxp;
2023 	d = (*sp)->data + i;
2024 	if (ii - i > Zspace)
2025 		ii = Zspace + i;
2026 	if (debug & DEBUG_HFCMULTI_FIFO)
2027 		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2028 		    "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2029 			__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2030 			temp ? "HDLC":"TRANS");
2031 
2032 	/* Have to prep the audio data */
2033 	hc->write_fifo(hc, d, ii - i);
2034 	*idxp = ii;
2035 
2036 	/* if not all data has been written */
2037 	if (ii != len) {
2038 		/* NOTE: fifo is started by the calling function */
2039 		return;
2040 	}
2041 
2042 	/* if all data has been written, terminate frame */
2043 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2044 		/* increment f-counter */
2045 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2046 		HFC_wait_nodebug(hc);
2047 	}
2048 
2049 	/* send confirm, since get_net_bframe will not do it with trans */
2050 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2051 		confirm_Bsend(bch);
2052 
2053 	/* check for next frame */
2054 	dev_kfree_skb(*sp);
2055 	if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2056 		len = (*sp)->len;
2057 		goto next_frame;
2058 	}
2059 	if (dch && get_next_dframe(dch)) {
2060 		len = (*sp)->len;
2061 		goto next_frame;
2062 	}
2063 
2064 	/*
2065 	 * now we have no more data, so in case of transparent,
2066 	 * we set the last byte in fifo to 'silence' in case we will get
2067 	 * no more data at all. this prevents sending an undefined value.
2068 	 */
2069 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2070 		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2071 }
2072 
2073 
2074 /* NOTE: only called if E1 card is in active state */
2075 static void
2076 hfcmulti_rx(struct hfc_multi *hc, int ch)
2077 {
2078 	int temp;
2079 	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2080 	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2081 	int again = 0;
2082 	struct	bchannel *bch;
2083 	struct  dchannel *dch;
2084 	struct sk_buff	*skb, **sp = NULL;
2085 	int	maxlen;
2086 
2087 	bch = hc->chan[ch].bch;
2088 	dch = hc->chan[ch].dch;
2089 	if ((!dch) && (!bch))
2090 		return;
2091 	if (dch) {
2092 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2093 			return;
2094 		sp = &dch->rx_skb;
2095 		maxlen = dch->maxlen;
2096 	} else {
2097 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2098 			return;
2099 		sp = &bch->rx_skb;
2100 		maxlen = bch->maxlen;
2101 	}
2102 next_frame:
2103 	/* on first AND before getting next valid frame, R_FIFO must be written
2104 	   to. */
2105 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2106 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2107 	    (hc->chan[ch].slot_rx < 0) &&
2108 	    (hc->chan[ch].slot_tx < 0))
2109 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2110 	else
2111 		HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2112 	HFC_wait_nodebug(hc);
2113 
2114 	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2115 	if (hc->chan[ch].rx_off)
2116 		return;
2117 
2118 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119 		f1 = HFC_inb_nodebug(hc, A_F1);
2120 		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2121 			if (debug & DEBUG_HFCMULTI_FIFO)
2122 				printk(KERN_DEBUG
2123 				    "%s(card %d): reread f1 because %d!=%d\n",
2124 				    __func__, hc->id + 1, temp, f1);
2125 			f1 = temp; /* repeat until F1 is equal */
2126 		}
2127 		f2 = HFC_inb_nodebug(hc, A_F2);
2128 	}
2129 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2130 	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2131 		if (debug & DEBUG_HFCMULTI_FIFO)
2132 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2133 				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
2134 		z1 = temp; /* repeat until Z1 is equal */
2135 	}
2136 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2137 	Zsize = z1 - z2;
2138 	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2139 		/* complete hdlc frame */
2140 		Zsize++;
2141 	if (Zsize < 0)
2142 		Zsize += hc->Zlen;
2143 	/* if buffer is empty */
2144 	if (Zsize <= 0)
2145 		return;
2146 
2147 	if (*sp == NULL) {
2148 		*sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2149 		if (*sp == NULL) {
2150 			printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2151 			    __func__);
2152 			return;
2153 		}
2154 	}
2155 	/* show activity */
2156 	hc->activity[hc->chan[ch].port] = 1;
2157 
2158 	/* empty fifo with what we have */
2159 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2160 		if (debug & DEBUG_HFCMULTI_FIFO)
2161 			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2162 			    "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2163 			    "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2164 			    Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2165 			    f1, f2, Zsize + (*sp)->len, again);
2166 		/* HDLC */
2167 		if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2168 			if (debug & DEBUG_HFCMULTI_FIFO)
2169 				printk(KERN_DEBUG
2170 				    "%s(card %d): hdlc-frame too large.\n",
2171 				    __func__, hc->id + 1);
2172 			skb_trim(*sp, 0);
2173 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2174 			HFC_wait_nodebug(hc);
2175 			return;
2176 		}
2177 
2178 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2179 
2180 		if (f1 != f2) {
2181 			/* increment Z2,F2-counter */
2182 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2183 			HFC_wait_nodebug(hc);
2184 			/* check size */
2185 			if ((*sp)->len < 4) {
2186 				if (debug & DEBUG_HFCMULTI_FIFO)
2187 					printk(KERN_DEBUG
2188 					    "%s(card %d): Frame below minimum "
2189 					    "size\n", __func__, hc->id + 1);
2190 				skb_trim(*sp, 0);
2191 				goto next_frame;
2192 			}
2193 			/* there is at least one complete frame, check crc */
2194 			if ((*sp)->data[(*sp)->len - 1]) {
2195 				if (debug & DEBUG_HFCMULTI_CRC)
2196 					printk(KERN_DEBUG
2197 					    "%s: CRC-error\n", __func__);
2198 				skb_trim(*sp, 0);
2199 				goto next_frame;
2200 			}
2201 			skb_trim(*sp, (*sp)->len - 3);
2202 			if ((*sp)->len < MISDN_COPY_SIZE) {
2203 				skb = *sp;
2204 				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2205 				if (*sp) {
2206 					memcpy(skb_put(*sp, skb->len),
2207 					    skb->data, skb->len);
2208 					skb_trim(skb, 0);
2209 				} else {
2210 					printk(KERN_DEBUG "%s: No mem\n",
2211 					    __func__);
2212 					*sp = skb;
2213 					skb = NULL;
2214 				}
2215 			} else {
2216 				skb = NULL;
2217 			}
2218 			if (debug & DEBUG_HFCMULTI_FIFO) {
2219 				printk(KERN_DEBUG "%s(card %d):",
2220 					__func__, hc->id + 1);
2221 				temp = 0;
2222 				while (temp < (*sp)->len)
2223 					printk(" %02x", (*sp)->data[temp++]);
2224 				printk("\n");
2225 			}
2226 			if (dch)
2227 				recv_Dchannel(dch);
2228 			else
2229 				recv_Bchannel(bch);
2230 			*sp = skb;
2231 			again++;
2232 			goto next_frame;
2233 		}
2234 		/* there is an incomplete frame */
2235 	} else {
2236 		/* transparent */
2237 		if (Zsize > skb_tailroom(*sp))
2238 			Zsize = skb_tailroom(*sp);
2239 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2240 		if (((*sp)->len) < MISDN_COPY_SIZE) {
2241 			skb = *sp;
2242 			*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2243 			if (*sp) {
2244 				memcpy(skb_put(*sp, skb->len),
2245 				    skb->data, skb->len);
2246 				skb_trim(skb, 0);
2247 			} else {
2248 				printk(KERN_DEBUG "%s: No mem\n", __func__);
2249 				*sp = skb;
2250 				skb = NULL;
2251 			}
2252 		} else {
2253 			skb = NULL;
2254 		}
2255 		if (debug & DEBUG_HFCMULTI_FIFO)
2256 			printk(KERN_DEBUG
2257 			    "%s(card %d): fifo(%d) reading %d bytes "
2258 			    "(z1=%04x, z2=%04x) TRANS\n",
2259 				__func__, hc->id + 1, ch, Zsize, z1, z2);
2260 		/* only bch is transparent */
2261 		recv_Bchannel(bch);
2262 		*sp = skb;
2263 	}
2264 }
2265 
2266 
2267 /*
2268  * Interrupt handler
2269  */
2270 static void
2271 signal_state_up(struct dchannel *dch, int info, char *msg)
2272 {
2273 	struct sk_buff	*skb;
2274 	int		id, data = info;
2275 
2276 	if (debug & DEBUG_HFCMULTI_STATE)
2277 		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2278 
2279 	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2280 
2281 	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2282 		GFP_ATOMIC);
2283 	if (!skb)
2284 		return;
2285 	recv_Dchannel_skb(dch, skb);
2286 }
2287 
2288 static inline void
2289 handle_timer_irq(struct hfc_multi *hc)
2290 {
2291 	int		ch, temp;
2292 	struct dchannel	*dch;
2293 	u_long		flags;
2294 
2295 	/* process queued resync jobs */
2296 	if (hc->e1_resync) {
2297 		/* lock, so e1_resync gets not changed */
2298 		spin_lock_irqsave(&HFClock, flags);
2299 		if (hc->e1_resync & 1) {
2300 			if (debug & DEBUG_HFCMULTI_PLXSD)
2301 				printk(KERN_DEBUG "Enable SYNC_I\n");
2302 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2303 			/* disable JATT, if RX_SYNC is set */
2304 			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2305 				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2306 		}
2307 		if (hc->e1_resync & 2) {
2308 			if (debug & DEBUG_HFCMULTI_PLXSD)
2309 				printk(KERN_DEBUG "Enable jatt PLL\n");
2310 			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2311 		}
2312 		if (hc->e1_resync & 4) {
2313 			if (debug & DEBUG_HFCMULTI_PLXSD)
2314 				printk(KERN_DEBUG
2315 				    "Enable QUARTZ for HFC-E1\n");
2316 			/* set jatt to quartz */
2317 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2318 				| V_JATT_OFF);
2319 			/* switch to JATT, in case it is not already */
2320 			HFC_outb(hc, R_SYNC_OUT, 0);
2321 		}
2322 		hc->e1_resync = 0;
2323 		spin_unlock_irqrestore(&HFClock, flags);
2324 	}
2325 
2326 	if (hc->type != 1 || hc->e1_state == 1)
2327 		for (ch = 0; ch <= 31; ch++) {
2328 			if (hc->created[hc->chan[ch].port]) {
2329 				hfcmulti_tx(hc, ch);
2330 				/* fifo is started when switching to rx-fifo */
2331 				hfcmulti_rx(hc, ch);
2332 				if (hc->chan[ch].dch &&
2333 				    hc->chan[ch].nt_timer > -1) {
2334 					dch = hc->chan[ch].dch;
2335 					if (!(--hc->chan[ch].nt_timer)) {
2336 						schedule_event(dch,
2337 						    FLG_PHCHANGE);
2338 						if (debug &
2339 						    DEBUG_HFCMULTI_STATE)
2340 							printk(KERN_DEBUG
2341 							    "%s: nt_timer at "
2342 							    "state %x\n",
2343 							    __func__,
2344 							    dch->state);
2345 					}
2346 				}
2347 			}
2348 		}
2349 	if (hc->type == 1 && hc->created[0]) {
2350 		dch = hc->chan[hc->dslot].dch;
2351 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2352 			/* LOS */
2353 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2354 			if (!temp && hc->chan[hc->dslot].los)
2355 				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2356 				    "LOS detected");
2357 			if (temp && !hc->chan[hc->dslot].los)
2358 				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2359 				    "LOS gone");
2360 			hc->chan[hc->dslot].los = temp;
2361 		}
2362 		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2363 			/* AIS */
2364 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2365 			if (!temp && hc->chan[hc->dslot].ais)
2366 				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2367 				    "AIS detected");
2368 			if (temp && !hc->chan[hc->dslot].ais)
2369 				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2370 				    "AIS gone");
2371 			hc->chan[hc->dslot].ais = temp;
2372 		}
2373 		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2374 			/* SLIP */
2375 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2376 			if (!temp && hc->chan[hc->dslot].slip_rx)
2377 				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2378 				    " bit SLIP detected RX");
2379 			hc->chan[hc->dslot].slip_rx = temp;
2380 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2381 			if (!temp && hc->chan[hc->dslot].slip_tx)
2382 				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2383 				    " bit SLIP detected TX");
2384 			hc->chan[hc->dslot].slip_tx = temp;
2385 		}
2386 		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2387 			/* RDI */
2388 			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2389 			if (!temp && hc->chan[hc->dslot].rdi)
2390 				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2391 				    "RDI detected");
2392 			if (temp && !hc->chan[hc->dslot].rdi)
2393 				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2394 				    "RDI gone");
2395 			hc->chan[hc->dslot].rdi = temp;
2396 		}
2397 		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2398 		switch (hc->chan[hc->dslot].sync) {
2399 		case 0:
2400 			if ((temp & 0x60) == 0x60) {
2401 				if (debug & DEBUG_HFCMULTI_SYNC)
2402 					printk(KERN_DEBUG
2403 					    "%s: (id=%d) E1 now "
2404 					    "in clock sync\n",
2405 					    __func__, hc->id);
2406 				HFC_outb(hc, R_RX_OFF,
2407 				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2408 				HFC_outb(hc, R_TX_OFF,
2409 				    hc->chan[hc->dslot].jitter | V_RX_INIT);
2410 				hc->chan[hc->dslot].sync = 1;
2411 				goto check_framesync;
2412 			}
2413 			break;
2414 		case 1:
2415 			if ((temp & 0x60) != 0x60) {
2416 				if (debug & DEBUG_HFCMULTI_SYNC)
2417 					printk(KERN_DEBUG
2418 					    "%s: (id=%d) E1 "
2419 					    "lost clock sync\n",
2420 					    __func__, hc->id);
2421 				hc->chan[hc->dslot].sync = 0;
2422 				break;
2423 			}
2424 check_framesync:
2425 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2426 			if (temp == 0x27) {
2427 				if (debug & DEBUG_HFCMULTI_SYNC)
2428 					printk(KERN_DEBUG
2429 					    "%s: (id=%d) E1 "
2430 					    "now in frame sync\n",
2431 					    __func__, hc->id);
2432 				hc->chan[hc->dslot].sync = 2;
2433 			}
2434 			break;
2435 		case 2:
2436 			if ((temp & 0x60) != 0x60) {
2437 				if (debug & DEBUG_HFCMULTI_SYNC)
2438 					printk(KERN_DEBUG
2439 					    "%s: (id=%d) E1 lost "
2440 					    "clock & frame sync\n",
2441 					    __func__, hc->id);
2442 				hc->chan[hc->dslot].sync = 0;
2443 				break;
2444 			}
2445 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2446 			if (temp != 0x27) {
2447 				if (debug & DEBUG_HFCMULTI_SYNC)
2448 					printk(KERN_DEBUG
2449 					    "%s: (id=%d) E1 "
2450 					    "lost frame sync\n",
2451 					    __func__, hc->id);
2452 				hc->chan[hc->dslot].sync = 1;
2453 			}
2454 			break;
2455 		}
2456 	}
2457 
2458 	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2459 		hfcmulti_watchdog(hc);
2460 
2461 	if (hc->leds)
2462 		hfcmulti_leds(hc);
2463 }
2464 
2465 static void
2466 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2467 {
2468 	struct dchannel	*dch;
2469 	int		ch;
2470 	int		active;
2471 	u_char		st_status, temp;
2472 
2473 	/* state machine */
2474 	for (ch = 0; ch <= 31; ch++) {
2475 		if (hc->chan[ch].dch) {
2476 			dch = hc->chan[ch].dch;
2477 			if (r_irq_statech & 1) {
2478 				HFC_outb_nodebug(hc, R_ST_SEL,
2479 					hc->chan[ch].port);
2480 				/* undocumented: delay after R_ST_SEL */
2481 				udelay(1);
2482 				/* undocumented: status changes during read */
2483 				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2484 				while (st_status != (temp =
2485 					HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2486 					if (debug & DEBUG_HFCMULTI_STATE)
2487 						printk(KERN_DEBUG "%s: reread "
2488 						    "STATE because %d!=%d\n",
2489 						    __func__, temp,
2490 						    st_status);
2491 					st_status = temp; /* repeat */
2492 				}
2493 
2494 				/* Speech Design TE-sync indication */
2495 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2496 					dch->dev.D.protocol == ISDN_P_TE_S0) {
2497 					if (st_status & V_FR_SYNC_ST)
2498 						hc->syncronized |=
2499 						    (1 << hc->chan[ch].port);
2500 					else
2501 						hc->syncronized &=
2502 						   ~(1 << hc->chan[ch].port);
2503 				}
2504 				dch->state = st_status & 0x0f;
2505 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2506 					active = 3;
2507 				else
2508 					active = 7;
2509 				if (dch->state == active) {
2510 					HFC_outb_nodebug(hc, R_FIFO,
2511 						(ch << 1) | 1);
2512 					HFC_wait_nodebug(hc);
2513 					HFC_outb_nodebug(hc,
2514 						R_INC_RES_FIFO, V_RES_F);
2515 					HFC_wait_nodebug(hc);
2516 					dch->tx_idx = 0;
2517 				}
2518 				schedule_event(dch, FLG_PHCHANGE);
2519 				if (debug & DEBUG_HFCMULTI_STATE)
2520 					printk(KERN_DEBUG
2521 					    "%s: S/T newstate %x port %d\n",
2522 					    __func__, dch->state,
2523 					    hc->chan[ch].port);
2524 			}
2525 			r_irq_statech >>= 1;
2526 		}
2527 	}
2528 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2529 		plxsd_checksync(hc, 0);
2530 }
2531 
2532 static void
2533 fifo_irq(struct hfc_multi *hc, int block)
2534 {
2535 	int	ch, j;
2536 	struct dchannel	*dch;
2537 	struct bchannel	*bch;
2538 	u_char r_irq_fifo_bl;
2539 
2540 	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2541 	j = 0;
2542 	while (j < 8) {
2543 		ch = (block << 2) + (j >> 1);
2544 		dch = hc->chan[ch].dch;
2545 		bch = hc->chan[ch].bch;
2546 		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2547 			j += 2;
2548 			continue;
2549 		}
2550 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2551 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2552 			hfcmulti_tx(hc, ch);
2553 			/* start fifo */
2554 			HFC_outb_nodebug(hc, R_FIFO, 0);
2555 			HFC_wait_nodebug(hc);
2556 		}
2557 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2558 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2559 			hfcmulti_tx(hc, ch);
2560 			/* start fifo */
2561 			HFC_outb_nodebug(hc, R_FIFO, 0);
2562 			HFC_wait_nodebug(hc);
2563 		}
2564 		j++;
2565 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2566 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2567 			hfcmulti_rx(hc, ch);
2568 		}
2569 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2570 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2571 			hfcmulti_rx(hc, ch);
2572 		}
2573 		j++;
2574 	}
2575 }
2576 
2577 #ifdef IRQ_DEBUG
2578 int irqsem;
2579 #endif
2580 static irqreturn_t
2581 hfcmulti_interrupt(int intno, void *dev_id)
2582 {
2583 #ifdef IRQCOUNT_DEBUG
2584 	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2585 	    iq5 = 0, iq6 = 0, iqcnt = 0;
2586 #endif
2587 	struct hfc_multi	*hc = dev_id;
2588 	struct dchannel		*dch;
2589 	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2590 	int			i;
2591 	void __iomem		*plx_acc;
2592 	u_short			wval;
2593 	u_char			e1_syncsta, temp;
2594 	u_long			flags;
2595 
2596 	if (!hc) {
2597 		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2598 		return IRQ_NONE;
2599 	}
2600 
2601 	spin_lock(&hc->lock);
2602 
2603 #ifdef IRQ_DEBUG
2604 	if (irqsem)
2605 		printk(KERN_ERR "irq for card %d during irq from "
2606 		"card %d, this is no bug.\n", hc->id + 1, irqsem);
2607 	irqsem = hc->id + 1;
2608 #endif
2609 
2610 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2611 		spin_lock_irqsave(&plx_lock, flags);
2612 		plx_acc = hc->plx_membase + PLX_INTCSR;
2613 		wval = readw(plx_acc);
2614 		spin_unlock_irqrestore(&plx_lock, flags);
2615 		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2616 			goto irq_notforus;
2617 	}
2618 
2619 	status = HFC_inb_nodebug(hc, R_STATUS);
2620 	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2621 #ifdef IRQCOUNT_DEBUG
2622 	if (r_irq_statech)
2623 		iq1++;
2624 	if (status & V_DTMF_STA)
2625 		iq2++;
2626 	if (status & V_LOST_STA)
2627 		iq3++;
2628 	if (status & V_EXT_IRQSTA)
2629 		iq4++;
2630 	if (status & V_MISC_IRQSTA)
2631 		iq5++;
2632 	if (status & V_FR_IRQSTA)
2633 		iq6++;
2634 	if (iqcnt++ > 5000) {
2635 		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2636 		    iq1, iq2, iq3, iq4, iq5, iq6);
2637 		iqcnt = 0;
2638 	}
2639 #endif
2640 
2641 	if (!r_irq_statech &&
2642 	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2643 	    V_MISC_IRQSTA | V_FR_IRQSTA))) {
2644 		/* irq is not for us */
2645 		goto irq_notforus;
2646 	}
2647 	hc->irqcnt++;
2648 	if (r_irq_statech) {
2649 		if (hc->type != 1)
2650 			ph_state_irq(hc, r_irq_statech);
2651 	}
2652 	if (status & V_EXT_IRQSTA)
2653 		; /* external IRQ */
2654 	if (status & V_LOST_STA) {
2655 		/* LOST IRQ */
2656 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2657 	}
2658 	if (status & V_MISC_IRQSTA) {
2659 		/* misc IRQ */
2660 		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2661 		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2662 		if (r_irq_misc & V_STA_IRQ) {
2663 			if (hc->type == 1) {
2664 				/* state machine */
2665 				dch = hc->chan[hc->dslot].dch;
2666 				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2667 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2668 				 && hc->e1_getclock) {
2669 					if (e1_syncsta & V_FR_SYNC_E1)
2670 						hc->syncronized = 1;
2671 					else
2672 						hc->syncronized = 0;
2673 				}
2674 				/* undocumented: status changes during read */
2675 				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2676 				while (dch->state != (temp =
2677 					HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2678 					if (debug & DEBUG_HFCMULTI_STATE)
2679 						printk(KERN_DEBUG "%s: reread "
2680 						    "STATE because %d!=%d\n",
2681 						    __func__, temp,
2682 						    dch->state);
2683 					dch->state = temp; /* repeat */
2684 				}
2685 				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2686 					& 0x7;
2687 				schedule_event(dch, FLG_PHCHANGE);
2688 				if (debug & DEBUG_HFCMULTI_STATE)
2689 					printk(KERN_DEBUG
2690 					    "%s: E1 (id=%d) newstate %x\n",
2691 					    __func__, hc->id, dch->state);
2692 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2693 					plxsd_checksync(hc, 0);
2694 			}
2695 		}
2696 		if (r_irq_misc & V_TI_IRQ) {
2697 			if (hc->iclock_on)
2698 				mISDN_clock_update(hc->iclock, poll, NULL);
2699 			handle_timer_irq(hc);
2700 		}
2701 
2702 		if (r_irq_misc & V_DTMF_IRQ) {
2703 			hfcmulti_dtmf(hc);
2704 		}
2705 		if (r_irq_misc & V_IRQ_PROC) {
2706 			static int irq_proc_cnt;
2707 			if (!irq_proc_cnt++)
2708 				printk(KERN_WARNING "%s: got V_IRQ_PROC -"
2709 				    " this should not happen\n", __func__);
2710 		}
2711 
2712 	}
2713 	if (status & V_FR_IRQSTA) {
2714 		/* FIFO IRQ */
2715 		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2716 		for (i = 0; i < 8; i++) {
2717 			if (r_irq_oview & (1 << i))
2718 				fifo_irq(hc, i);
2719 		}
2720 	}
2721 
2722 #ifdef IRQ_DEBUG
2723 	irqsem = 0;
2724 #endif
2725 	spin_unlock(&hc->lock);
2726 	return IRQ_HANDLED;
2727 
2728 irq_notforus:
2729 #ifdef IRQ_DEBUG
2730 	irqsem = 0;
2731 #endif
2732 	spin_unlock(&hc->lock);
2733 	return IRQ_NONE;
2734 }
2735 
2736 
2737 /*
2738  * timer callback for D-chan busy resolution. Currently no function
2739  */
2740 
2741 static void
2742 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2743 {
2744 }
2745 
2746 
2747 /*
2748  * activate/deactivate hardware for selected channels and mode
2749  *
2750  * configure B-channel with the given protocol
2751  * ch eqals to the HFC-channel (0-31)
2752  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2753  * for S/T, 1-31 for E1)
2754  * the hdlc interrupts will be set/unset
2755  */
2756 static int
2757 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2758     int bank_tx, int slot_rx, int bank_rx)
2759 {
2760 	int flow_tx = 0, flow_rx = 0, routing = 0;
2761 	int oslot_tx, oslot_rx;
2762 	int conf;
2763 
2764 	if (ch < 0 || ch > 31)
2765 		return EINVAL;
2766 	oslot_tx = hc->chan[ch].slot_tx;
2767 	oslot_rx = hc->chan[ch].slot_rx;
2768 	conf = hc->chan[ch].conf;
2769 
2770 	if (debug & DEBUG_HFCMULTI_MODE)
2771 		printk(KERN_DEBUG
2772 		    "%s: card %d channel %d protocol %x slot old=%d new=%d "
2773 		    "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2774 		    __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2775 		    bank_tx, oslot_rx, slot_rx, bank_rx);
2776 
2777 	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2778 		/* remove from slot */
2779 		if (debug & DEBUG_HFCMULTI_MODE)
2780 			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2781 			    __func__, oslot_tx);
2782 		if (hc->slot_owner[oslot_tx<<1] == ch) {
2783 			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2784 			HFC_outb(hc, A_SL_CFG, 0);
2785 			HFC_outb(hc, A_CONF, 0);
2786 			hc->slot_owner[oslot_tx<<1] = -1;
2787 		} else {
2788 			if (debug & DEBUG_HFCMULTI_MODE)
2789 				printk(KERN_DEBUG
2790 				    "%s: we are not owner of this tx slot "
2791 				    "anymore, channel %d is.\n",
2792 				    __func__, hc->slot_owner[oslot_tx<<1]);
2793 		}
2794 	}
2795 
2796 	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2797 		/* remove from slot */
2798 		if (debug & DEBUG_HFCMULTI_MODE)
2799 			printk(KERN_DEBUG
2800 			    "%s: remove from slot %d (RX)\n",
2801 			    __func__, oslot_rx);
2802 		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2803 			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2804 			HFC_outb(hc, A_SL_CFG, 0);
2805 			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2806 		} else {
2807 			if (debug & DEBUG_HFCMULTI_MODE)
2808 				printk(KERN_DEBUG
2809 				    "%s: we are not owner of this rx slot "
2810 				    "anymore, channel %d is.\n",
2811 				    __func__,
2812 				    hc->slot_owner[(oslot_rx << 1) | 1]);
2813 		}
2814 	}
2815 
2816 	if (slot_tx < 0) {
2817 		flow_tx = 0x80; /* FIFO->ST */
2818 		/* disable pcm slot */
2819 		hc->chan[ch].slot_tx = -1;
2820 		hc->chan[ch].bank_tx = 0;
2821 	} else {
2822 		/* set pcm slot */
2823 		if (hc->chan[ch].txpending)
2824 			flow_tx = 0x80; /* FIFO->ST */
2825 		else
2826 			flow_tx = 0xc0; /* PCM->ST */
2827 		/* put on slot */
2828 		routing = bank_tx ? 0xc0 : 0x80;
2829 		if (conf >= 0 || bank_tx > 1)
2830 			routing = 0x40; /* loop */
2831 		if (debug & DEBUG_HFCMULTI_MODE)
2832 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2833 			    " %d flow %02x routing %02x conf %d (TX)\n",
2834 			    __func__, ch, slot_tx, bank_tx,
2835 			    flow_tx, routing, conf);
2836 		HFC_outb(hc, R_SLOT, slot_tx << 1);
2837 		HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2838 		HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2839 		hc->slot_owner[slot_tx << 1] = ch;
2840 		hc->chan[ch].slot_tx = slot_tx;
2841 		hc->chan[ch].bank_tx = bank_tx;
2842 	}
2843 	if (slot_rx < 0) {
2844 		/* disable pcm slot */
2845 		flow_rx = 0x80; /* ST->FIFO */
2846 		hc->chan[ch].slot_rx = -1;
2847 		hc->chan[ch].bank_rx = 0;
2848 	} else {
2849 		/* set pcm slot */
2850 		if (hc->chan[ch].txpending)
2851 			flow_rx = 0x80; /* ST->FIFO */
2852 		else
2853 			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2854 		/* put on slot */
2855 		routing = bank_rx?0x80:0xc0; /* reversed */
2856 		if (conf >= 0 || bank_rx > 1)
2857 			routing = 0x40; /* loop */
2858 		if (debug & DEBUG_HFCMULTI_MODE)
2859 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2860 			    " %d flow %02x routing %02x conf %d (RX)\n",
2861 			    __func__, ch, slot_rx, bank_rx,
2862 			    flow_rx, routing, conf);
2863 		HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2864 		HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2865 		hc->slot_owner[(slot_rx<<1)|1] = ch;
2866 		hc->chan[ch].slot_rx = slot_rx;
2867 		hc->chan[ch].bank_rx = bank_rx;
2868 	}
2869 
2870 	switch (protocol) {
2871 	case (ISDN_P_NONE):
2872 		/* disable TX fifo */
2873 		HFC_outb(hc, R_FIFO, ch << 1);
2874 		HFC_wait(hc);
2875 		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2876 		HFC_outb(hc, A_SUBCH_CFG, 0);
2877 		HFC_outb(hc, A_IRQ_MSK, 0);
2878 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2879 		HFC_wait(hc);
2880 		/* disable RX fifo */
2881 		HFC_outb(hc, R_FIFO, (ch<<1)|1);
2882 		HFC_wait(hc);
2883 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2884 		HFC_outb(hc, A_SUBCH_CFG, 0);
2885 		HFC_outb(hc, A_IRQ_MSK, 0);
2886 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2887 		HFC_wait(hc);
2888 		if (hc->chan[ch].bch && hc->type != 1) {
2889 			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2890 			    ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2891 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2892 			/* undocumented: delay after R_ST_SEL */
2893 			udelay(1);
2894 			HFC_outb(hc, A_ST_CTRL0,
2895 			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2896 		}
2897 		if (hc->chan[ch].bch) {
2898 			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2899 			test_and_clear_bit(FLG_TRANSPARENT,
2900 			    &hc->chan[ch].bch->Flags);
2901 		}
2902 		break;
2903 	case (ISDN_P_B_RAW): /* B-channel */
2904 
2905 		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2906 		    (hc->chan[ch].slot_rx < 0) &&
2907 		    (hc->chan[ch].slot_tx < 0)) {
2908 
2909 			printk(KERN_DEBUG
2910 			    "Setting B-channel %d to echo cancelable "
2911 			    "state on PCM slot %d\n", ch,
2912 			    ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2913 			printk(KERN_DEBUG
2914 			    "Enabling pass through for channel\n");
2915 			vpm_out(hc, ch, ((ch / 4) * 8) +
2916 			    ((ch % 4) * 4) + 1, 0x01);
2917 			/* rx path */
2918 			/* S/T -> PCM */
2919 			HFC_outb(hc, R_FIFO, (ch << 1));
2920 			HFC_wait(hc);
2921 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2922 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2923 			    ((ch % 4) * 4) + 1) << 1);
2924 			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2925 
2926 			/* PCM -> FIFO */
2927 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2928 			HFC_wait(hc);
2929 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2930 			HFC_outb(hc, A_SUBCH_CFG, 0);
2931 			HFC_outb(hc, A_IRQ_MSK, 0);
2932 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2933 			HFC_wait(hc);
2934 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2935 			    ((ch % 4) * 4) + 1) << 1) | 1);
2936 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2937 
2938 			/* tx path */
2939 			/* PCM -> S/T */
2940 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2941 			HFC_wait(hc);
2942 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2943 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2944 			    ((ch % 4) * 4)) << 1) | 1);
2945 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2946 
2947 			/* FIFO -> PCM */
2948 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2949 			HFC_wait(hc);
2950 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2951 			HFC_outb(hc, A_SUBCH_CFG, 0);
2952 			HFC_outb(hc, A_IRQ_MSK, 0);
2953 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2954 			HFC_wait(hc);
2955 			/* tx silence */
2956 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2957 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2958 			    ((ch % 4) * 4)) << 1);
2959 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2960 		} else {
2961 			/* enable TX fifo */
2962 			HFC_outb(hc, R_FIFO, ch << 1);
2963 			HFC_wait(hc);
2964 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2965 			    V_HDLC_TRP | V_IFF);
2966 			HFC_outb(hc, A_SUBCH_CFG, 0);
2967 			HFC_outb(hc, A_IRQ_MSK, 0);
2968 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2969 			HFC_wait(hc);
2970 			/* tx silence */
2971 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2972 			/* enable RX fifo */
2973 			HFC_outb(hc, R_FIFO, (ch<<1)|1);
2974 			HFC_wait(hc);
2975 			HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2976 			HFC_outb(hc, A_SUBCH_CFG, 0);
2977 			HFC_outb(hc, A_IRQ_MSK, 0);
2978 			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2979 			HFC_wait(hc);
2980 		}
2981 		if (hc->type != 1) {
2982 			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2983 			    ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2984 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2985 			/* undocumented: delay after R_ST_SEL */
2986 			udelay(1);
2987 			HFC_outb(hc, A_ST_CTRL0,
2988 			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2989 		}
2990 		if (hc->chan[ch].bch)
2991 			test_and_set_bit(FLG_TRANSPARENT,
2992 			    &hc->chan[ch].bch->Flags);
2993 		break;
2994 	case (ISDN_P_B_HDLC): /* B-channel */
2995 	case (ISDN_P_TE_S0): /* D-channel */
2996 	case (ISDN_P_NT_S0):
2997 	case (ISDN_P_TE_E1):
2998 	case (ISDN_P_NT_E1):
2999 		/* enable TX fifo */
3000 		HFC_outb(hc, R_FIFO, ch<<1);
3001 		HFC_wait(hc);
3002 		if (hc->type == 1 || hc->chan[ch].bch) {
3003 			/* E1 or B-channel */
3004 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3005 			HFC_outb(hc, A_SUBCH_CFG, 0);
3006 		} else {
3007 			/* D-Channel without HDLC fill flags */
3008 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3009 			HFC_outb(hc, A_SUBCH_CFG, 2);
3010 		}
3011 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3012 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3013 		HFC_wait(hc);
3014 		/* enable RX fifo */
3015 		HFC_outb(hc, R_FIFO, (ch<<1)|1);
3016 		HFC_wait(hc);
3017 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3018 		if (hc->type == 1 || hc->chan[ch].bch)
3019 			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3020 		else
3021 			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3022 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3023 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3024 		HFC_wait(hc);
3025 		if (hc->chan[ch].bch) {
3026 			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3027 			if (hc->type != 1) {
3028 				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3029 				  ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3030 				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3031 				/* undocumented: delay after R_ST_SEL */
3032 				udelay(1);
3033 				HFC_outb(hc, A_ST_CTRL0,
3034 				  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3035 			}
3036 		}
3037 		break;
3038 	default:
3039 		printk(KERN_DEBUG "%s: protocol not known %x\n",
3040 		    __func__, protocol);
3041 		hc->chan[ch].protocol = ISDN_P_NONE;
3042 		return -ENOPROTOOPT;
3043 	}
3044 	hc->chan[ch].protocol = protocol;
3045 	return 0;
3046 }
3047 
3048 
3049 /*
3050  * connect/disconnect PCM
3051  */
3052 
3053 static void
3054 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3055     int slot_rx, int bank_rx)
3056 {
3057 	if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3058 		/* disable PCM */
3059 		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3060 		return;
3061 	}
3062 
3063 	/* enable pcm */
3064 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3065 		slot_rx, bank_rx);
3066 }
3067 
3068 /*
3069  * set/disable conference
3070  */
3071 
3072 static void
3073 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3074 {
3075 	if (num >= 0 && num <= 7)
3076 		hc->chan[ch].conf = num;
3077 	else
3078 		hc->chan[ch].conf = -1;
3079 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3080 	    hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3081 	    hc->chan[ch].bank_rx);
3082 }
3083 
3084 
3085 /*
3086  * set/disable sample loop
3087  */
3088 
3089 /* NOTE: this function is experimental and therefore disabled */
3090 
3091 /*
3092  * Layer 1 callback function
3093  */
3094 static int
3095 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3096 {
3097 	struct hfc_multi	*hc = dch->hw;
3098 	u_long	flags;
3099 
3100 	switch (cmd) {
3101 	case INFO3_P8:
3102 	case INFO3_P10:
3103 		break;
3104 	case HW_RESET_REQ:
3105 		/* start activation */
3106 		spin_lock_irqsave(&hc->lock, flags);
3107 		if (hc->type == 1) {
3108 			if (debug & DEBUG_HFCMULTI_MSG)
3109 				printk(KERN_DEBUG
3110 				    "%s: HW_RESET_REQ no BRI\n",
3111 				    __func__);
3112 		} else {
3113 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3114 			/* undocumented: delay after R_ST_SEL */
3115 			udelay(1);
3116 			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3117 			udelay(6); /* wait at least 5,21us */
3118 			HFC_outb(hc, A_ST_WR_STATE, 3);
3119 			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3120 				/* activate */
3121 		}
3122 		spin_unlock_irqrestore(&hc->lock, flags);
3123 		l1_event(dch->l1, HW_POWERUP_IND);
3124 		break;
3125 	case HW_DEACT_REQ:
3126 		/* start deactivation */
3127 		spin_lock_irqsave(&hc->lock, flags);
3128 		if (hc->type == 1) {
3129 			if (debug & DEBUG_HFCMULTI_MSG)
3130 				printk(KERN_DEBUG
3131 				    "%s: HW_DEACT_REQ no BRI\n",
3132 				    __func__);
3133 		} else {
3134 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3135 			/* undocumented: delay after R_ST_SEL */
3136 			udelay(1);
3137 			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3138 				/* deactivate */
3139 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3140 				hc->syncronized &=
3141 				   ~(1 << hc->chan[dch->slot].port);
3142 				plxsd_checksync(hc, 0);
3143 			}
3144 		}
3145 		skb_queue_purge(&dch->squeue);
3146 		if (dch->tx_skb) {
3147 			dev_kfree_skb(dch->tx_skb);
3148 			dch->tx_skb = NULL;
3149 		}
3150 		dch->tx_idx = 0;
3151 		if (dch->rx_skb) {
3152 			dev_kfree_skb(dch->rx_skb);
3153 			dch->rx_skb = NULL;
3154 		}
3155 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3156 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3157 			del_timer(&dch->timer);
3158 		spin_unlock_irqrestore(&hc->lock, flags);
3159 		break;
3160 	case HW_POWERUP_REQ:
3161 		spin_lock_irqsave(&hc->lock, flags);
3162 		if (hc->type == 1) {
3163 			if (debug & DEBUG_HFCMULTI_MSG)
3164 				printk(KERN_DEBUG
3165 				    "%s: HW_POWERUP_REQ no BRI\n",
3166 				    __func__);
3167 		} else {
3168 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3169 			/* undocumented: delay after R_ST_SEL */
3170 			udelay(1);
3171 			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3172 			udelay(6); /* wait at least 5,21us */
3173 			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3174 		}
3175 		spin_unlock_irqrestore(&hc->lock, flags);
3176 		break;
3177 	case PH_ACTIVATE_IND:
3178 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3179 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3180 			GFP_ATOMIC);
3181 		break;
3182 	case PH_DEACTIVATE_IND:
3183 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3184 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3185 			GFP_ATOMIC);
3186 		break;
3187 	default:
3188 		if (dch->debug & DEBUG_HW)
3189 			printk(KERN_DEBUG "%s: unknown command %x\n",
3190 			    __func__, cmd);
3191 		return -1;
3192 	}
3193 	return 0;
3194 }
3195 
3196 /*
3197  * Layer2 -> Layer 1 Transfer
3198  */
3199 
3200 static int
3201 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3202 {
3203 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3204 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3205 	struct hfc_multi	*hc = dch->hw;
3206 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3207 	int			ret = -EINVAL;
3208 	unsigned int		id;
3209 	u_long			flags;
3210 
3211 	switch (hh->prim) {
3212 	case PH_DATA_REQ:
3213 		if (skb->len < 1)
3214 			break;
3215 		spin_lock_irqsave(&hc->lock, flags);
3216 		ret = dchannel_senddata(dch, skb);
3217 		if (ret > 0) { /* direct TX */
3218 			id = hh->id; /* skb can be freed */
3219 			hfcmulti_tx(hc, dch->slot);
3220 			ret = 0;
3221 			/* start fifo */
3222 			HFC_outb(hc, R_FIFO, 0);
3223 			HFC_wait(hc);
3224 			spin_unlock_irqrestore(&hc->lock, flags);
3225 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3226 		} else
3227 			spin_unlock_irqrestore(&hc->lock, flags);
3228 		return ret;
3229 	case PH_ACTIVATE_REQ:
3230 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3231 			spin_lock_irqsave(&hc->lock, flags);
3232 			ret = 0;
3233 			if (debug & DEBUG_HFCMULTI_MSG)
3234 				printk(KERN_DEBUG
3235 				    "%s: PH_ACTIVATE port %d (0..%d)\n",
3236 				    __func__, hc->chan[dch->slot].port,
3237 				    hc->ports-1);
3238 			/* start activation */
3239 			if (hc->type == 1) {
3240 				ph_state_change(dch);
3241 				if (debug & DEBUG_HFCMULTI_STATE)
3242 					printk(KERN_DEBUG
3243 					    "%s: E1 report state %x \n",
3244 					    __func__, dch->state);
3245 			} else {
3246 				HFC_outb(hc, R_ST_SEL,
3247 				    hc->chan[dch->slot].port);
3248 				/* undocumented: delay after R_ST_SEL */
3249 				udelay(1);
3250 				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3251 				    /* G1 */
3252 				udelay(6); /* wait at least 5,21us */
3253 				HFC_outb(hc, A_ST_WR_STATE, 1);
3254 				HFC_outb(hc, A_ST_WR_STATE, 1 |
3255 				    (V_ST_ACT*3)); /* activate */
3256 				dch->state = 1;
3257 			}
3258 			spin_unlock_irqrestore(&hc->lock, flags);
3259 		} else
3260 			ret = l1_event(dch->l1, hh->prim);
3261 		break;
3262 	case PH_DEACTIVATE_REQ:
3263 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3264 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3265 			spin_lock_irqsave(&hc->lock, flags);
3266 			if (debug & DEBUG_HFCMULTI_MSG)
3267 				printk(KERN_DEBUG
3268 				    "%s: PH_DEACTIVATE port %d (0..%d)\n",
3269 				    __func__, hc->chan[dch->slot].port,
3270 				    hc->ports-1);
3271 			/* start deactivation */
3272 			if (hc->type == 1) {
3273 				if (debug & DEBUG_HFCMULTI_MSG)
3274 					printk(KERN_DEBUG
3275 					    "%s: PH_DEACTIVATE no BRI\n",
3276 					    __func__);
3277 			} else {
3278 				HFC_outb(hc, R_ST_SEL,
3279 				    hc->chan[dch->slot].port);
3280 				/* undocumented: delay after R_ST_SEL */
3281 				udelay(1);
3282 				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3283 				    /* deactivate */
3284 				dch->state = 1;
3285 			}
3286 			skb_queue_purge(&dch->squeue);
3287 			if (dch->tx_skb) {
3288 				dev_kfree_skb(dch->tx_skb);
3289 				dch->tx_skb = NULL;
3290 			}
3291 			dch->tx_idx = 0;
3292 			if (dch->rx_skb) {
3293 				dev_kfree_skb(dch->rx_skb);
3294 				dch->rx_skb = NULL;
3295 			}
3296 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3297 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3298 				del_timer(&dch->timer);
3299 #ifdef FIXME
3300 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3301 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3302 #endif
3303 			ret = 0;
3304 			spin_unlock_irqrestore(&hc->lock, flags);
3305 		} else
3306 			ret = l1_event(dch->l1, hh->prim);
3307 		break;
3308 	}
3309 	if (!ret)
3310 		dev_kfree_skb(skb);
3311 	return ret;
3312 }
3313 
3314 static void
3315 deactivate_bchannel(struct bchannel *bch)
3316 {
3317 	struct hfc_multi	*hc = bch->hw;
3318 	u_long			flags;
3319 
3320 	spin_lock_irqsave(&hc->lock, flags);
3321 	if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3322 		dev_kfree_skb(bch->next_skb);
3323 		bch->next_skb = NULL;
3324 	}
3325 	if (bch->tx_skb) {
3326 		dev_kfree_skb(bch->tx_skb);
3327 		bch->tx_skb = NULL;
3328 	}
3329 	bch->tx_idx = 0;
3330 	if (bch->rx_skb) {
3331 		dev_kfree_skb(bch->rx_skb);
3332 		bch->rx_skb = NULL;
3333 	}
3334 	hc->chan[bch->slot].coeff_count = 0;
3335 	test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3336 	test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3337 	hc->chan[bch->slot].rx_off = 0;
3338 	hc->chan[bch->slot].conf = -1;
3339 	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3340 	spin_unlock_irqrestore(&hc->lock, flags);
3341 }
3342 
3343 static int
3344 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3345 {
3346 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3347 	struct hfc_multi	*hc = bch->hw;
3348 	int			ret = -EINVAL;
3349 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3350 	unsigned int		id;
3351 	u_long			flags;
3352 
3353 	switch (hh->prim) {
3354 	case PH_DATA_REQ:
3355 		if (!skb->len)
3356 			break;
3357 		spin_lock_irqsave(&hc->lock, flags);
3358 		ret = bchannel_senddata(bch, skb);
3359 		if (ret > 0) { /* direct TX */
3360 			id = hh->id; /* skb can be freed */
3361 			hfcmulti_tx(hc, bch->slot);
3362 			ret = 0;
3363 			/* start fifo */
3364 			HFC_outb_nodebug(hc, R_FIFO, 0);
3365 			HFC_wait_nodebug(hc);
3366 			if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3367 				spin_unlock_irqrestore(&hc->lock, flags);
3368 				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3369 			} else
3370 				spin_unlock_irqrestore(&hc->lock, flags);
3371 		} else
3372 			spin_unlock_irqrestore(&hc->lock, flags);
3373 		return ret;
3374 	case PH_ACTIVATE_REQ:
3375 		if (debug & DEBUG_HFCMULTI_MSG)
3376 			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3377 				__func__, bch->slot);
3378 		spin_lock_irqsave(&hc->lock, flags);
3379 		/* activate B-channel if not already activated */
3380 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3381 			hc->chan[bch->slot].txpending = 0;
3382 			ret = mode_hfcmulti(hc, bch->slot,
3383 				ch->protocol,
3384 				hc->chan[bch->slot].slot_tx,
3385 				hc->chan[bch->slot].bank_tx,
3386 				hc->chan[bch->slot].slot_rx,
3387 				hc->chan[bch->slot].bank_rx);
3388 			if (!ret) {
3389 				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3390 					&& test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3391 					/* start decoder */
3392 					hc->dtmf = 1;
3393 					if (debug & DEBUG_HFCMULTI_DTMF)
3394 						printk(KERN_DEBUG
3395 						    "%s: start dtmf decoder\n",
3396 							__func__);
3397 					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3398 					    V_RST_DTMF);
3399 				}
3400 			}
3401 		} else
3402 			ret = 0;
3403 		spin_unlock_irqrestore(&hc->lock, flags);
3404 		if (!ret)
3405 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3406 				GFP_KERNEL);
3407 		break;
3408 	case PH_CONTROL_REQ:
3409 		spin_lock_irqsave(&hc->lock, flags);
3410 		switch (hh->id) {
3411 		case HFC_SPL_LOOP_ON: /* set sample loop */
3412 			if (debug & DEBUG_HFCMULTI_MSG)
3413 			printk(KERN_DEBUG
3414 			    "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3415 			    __func__, skb->len);
3416 			ret = 0;
3417 			break;
3418 		case HFC_SPL_LOOP_OFF: /* set silence */
3419 			if (debug & DEBUG_HFCMULTI_MSG)
3420 				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3421 				    __func__);
3422 			ret = 0;
3423 			break;
3424 		default:
3425 			printk(KERN_ERR
3426 			     "%s: unknown PH_CONTROL_REQ info %x\n",
3427 			     __func__, hh->id);
3428 			ret = -EINVAL;
3429 		}
3430 		spin_unlock_irqrestore(&hc->lock, flags);
3431 		break;
3432 	case PH_DEACTIVATE_REQ:
3433 		deactivate_bchannel(bch); /* locked there */
3434 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3435 			GFP_KERNEL);
3436 		ret = 0;
3437 		break;
3438 	}
3439 	if (!ret)
3440 		dev_kfree_skb(skb);
3441 	return ret;
3442 }
3443 
3444 /*
3445  * bchannel control function
3446  */
3447 static int
3448 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3449 {
3450 	int			ret = 0;
3451 	struct dsp_features	*features =
3452 		(struct dsp_features *)(*((u_long *)&cq->p1));
3453 	struct hfc_multi	*hc = bch->hw;
3454 	int			slot_tx;
3455 	int			bank_tx;
3456 	int			slot_rx;
3457 	int			bank_rx;
3458 	int			num;
3459 
3460 	switch (cq->op) {
3461 	case MISDN_CTRL_GETOP:
3462 		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3463 			| MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3464 		break;
3465 	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3466 		hc->chan[bch->slot].rx_off = !!cq->p1;
3467 		if (!hc->chan[bch->slot].rx_off) {
3468 			/* reset fifo on rx on */
3469 			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3470 			HFC_wait_nodebug(hc);
3471 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3472 			HFC_wait_nodebug(hc);
3473 		}
3474 		if (debug & DEBUG_HFCMULTI_MSG)
3475 			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3476 			    __func__, bch->nr, hc->chan[bch->slot].rx_off);
3477 		break;
3478 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3479 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3480 		if (debug & DEBUG_HFCMULTI_MSG)
3481 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3482 				"off=%d)\n", __func__, bch->nr, !!cq->p1);
3483 		break;
3484 	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3485 		if (debug & DEBUG_HFCMULTI_MSG)
3486 			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3487 			    __func__);
3488 		/* create confirm */
3489 		features->hfc_id = hc->id;
3490 		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3491 			features->hfc_dtmf = 1;
3492 		features->hfc_loops = 0;
3493 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3494 			features->hfc_echocanhw = 1;
3495 		} else {
3496 			features->pcm_id = hc->pcm;
3497 			features->pcm_slots = hc->slots;
3498 			features->pcm_banks = 2;
3499 		}
3500 		break;
3501 	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3502 		slot_tx = cq->p1 & 0xff;
3503 		bank_tx = cq->p1 >> 8;
3504 		slot_rx = cq->p2 & 0xff;
3505 		bank_rx = cq->p2 >> 8;
3506 		if (debug & DEBUG_HFCMULTI_MSG)
3507 			printk(KERN_DEBUG
3508 			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3509 			    "slot %d bank %d (RX)\n",
3510 			    __func__, slot_tx, bank_tx,
3511 			    slot_rx, bank_rx);
3512 		if (slot_tx < hc->slots && bank_tx <= 2 &&
3513 		    slot_rx < hc->slots && bank_rx <= 2)
3514 			hfcmulti_pcm(hc, bch->slot,
3515 			    slot_tx, bank_tx, slot_rx, bank_rx);
3516 		else {
3517 			printk(KERN_WARNING
3518 			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3519 			    "slot %d bank %d (RX) out of range\n",
3520 			    __func__, slot_tx, bank_tx,
3521 			    slot_rx, bank_rx);
3522 			ret = -EINVAL;
3523 		}
3524 		break;
3525 	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3526 		if (debug & DEBUG_HFCMULTI_MSG)
3527 			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3528 			    __func__);
3529 		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3530 		break;
3531 	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3532 		num = cq->p1 & 0xff;
3533 		if (debug & DEBUG_HFCMULTI_MSG)
3534 			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3535 			    __func__, num);
3536 		if (num <= 7)
3537 			hfcmulti_conf(hc, bch->slot, num);
3538 		else {
3539 			printk(KERN_WARNING
3540 			    "%s: HW_CONF_JOIN conf %d out of range\n",
3541 			    __func__, num);
3542 			ret = -EINVAL;
3543 		}
3544 		break;
3545 	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3546 		if (debug & DEBUG_HFCMULTI_MSG)
3547 			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3548 		hfcmulti_conf(hc, bch->slot, -1);
3549 		break;
3550 	case MISDN_CTRL_HFC_ECHOCAN_ON:
3551 		if (debug & DEBUG_HFCMULTI_MSG)
3552 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3553 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3554 			vpm_echocan_on(hc, bch->slot, cq->p1);
3555 		else
3556 			ret = -EINVAL;
3557 		break;
3558 
3559 	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3560 		if (debug & DEBUG_HFCMULTI_MSG)
3561 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3562 				__func__);
3563 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3564 			vpm_echocan_off(hc, bch->slot);
3565 		else
3566 			ret = -EINVAL;
3567 		break;
3568 	default:
3569 		printk(KERN_WARNING "%s: unknown Op %x\n",
3570 		    __func__, cq->op);
3571 		ret = -EINVAL;
3572 		break;
3573 	}
3574 	return ret;
3575 }
3576 
3577 static int
3578 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3579 {
3580 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3581 	struct hfc_multi	*hc = bch->hw;
3582 	int			err = -EINVAL;
3583 	u_long	flags;
3584 
3585 	if (bch->debug & DEBUG_HW)
3586 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3587 		    __func__, cmd, arg);
3588 	switch (cmd) {
3589 	case CLOSE_CHANNEL:
3590 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3591 		if (test_bit(FLG_ACTIVE, &bch->Flags))
3592 			deactivate_bchannel(bch); /* locked there */
3593 		ch->protocol = ISDN_P_NONE;
3594 		ch->peer = NULL;
3595 		module_put(THIS_MODULE);
3596 		err = 0;
3597 		break;
3598 	case CONTROL_CHANNEL:
3599 		spin_lock_irqsave(&hc->lock, flags);
3600 		err = channel_bctrl(bch, arg);
3601 		spin_unlock_irqrestore(&hc->lock, flags);
3602 		break;
3603 	default:
3604 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3605 			__func__, cmd);
3606 	}
3607 	return err;
3608 }
3609 
3610 /*
3611  * handle D-channel events
3612  *
3613  * handle state change event
3614  */
3615 static void
3616 ph_state_change(struct dchannel *dch)
3617 {
3618 	struct hfc_multi *hc;
3619 	int ch, i;
3620 
3621 	if (!dch) {
3622 		printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3623 		    __func__);
3624 		return;
3625 	}
3626 	hc = dch->hw;
3627 	ch = dch->slot;
3628 
3629 	if (hc->type == 1) {
3630 		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3631 			if (debug & DEBUG_HFCMULTI_STATE)
3632 				printk(KERN_DEBUG
3633 				    "%s: E1 TE (id=%d) newstate %x\n",
3634 				    __func__, hc->id, dch->state);
3635 		} else {
3636 			if (debug & DEBUG_HFCMULTI_STATE)
3637 				printk(KERN_DEBUG
3638 				    "%s: E1 NT (id=%d) newstate %x\n",
3639 				    __func__, hc->id, dch->state);
3640 		}
3641 		switch (dch->state) {
3642 		case (1):
3643 			if (hc->e1_state != 1) {
3644 			    for (i = 1; i <= 31; i++) {
3645 				/* reset fifos on e1 activation */
3646 				HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3647 				HFC_wait_nodebug(hc);
3648 				HFC_outb_nodebug(hc,
3649 					R_INC_RES_FIFO, V_RES_F);
3650 				HFC_wait_nodebug(hc);
3651 			    }
3652 			}
3653 			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3654 			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3655 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3656 			break;
3657 
3658 		default:
3659 			if (hc->e1_state != 1)
3660 				return;
3661 			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3662 			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3663 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3664 		}
3665 		hc->e1_state = dch->state;
3666 	} else {
3667 		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3668 			if (debug & DEBUG_HFCMULTI_STATE)
3669 				printk(KERN_DEBUG
3670 				    "%s: S/T TE newstate %x\n",
3671 				    __func__, dch->state);
3672 			switch (dch->state) {
3673 			case (0):
3674 				l1_event(dch->l1, HW_RESET_IND);
3675 				break;
3676 			case (3):
3677 				l1_event(dch->l1, HW_DEACT_IND);
3678 				break;
3679 			case (5):
3680 			case (8):
3681 				l1_event(dch->l1, ANYSIGNAL);
3682 				break;
3683 			case (6):
3684 				l1_event(dch->l1, INFO2);
3685 				break;
3686 			case (7):
3687 				l1_event(dch->l1, INFO4_P8);
3688 				break;
3689 			}
3690 		} else {
3691 			if (debug & DEBUG_HFCMULTI_STATE)
3692 				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3693 				    __func__, dch->state);
3694 			switch (dch->state) {
3695 			case (2):
3696 				if (hc->chan[ch].nt_timer == 0) {
3697 					hc->chan[ch].nt_timer = -1;
3698 					HFC_outb(hc, R_ST_SEL,
3699 					    hc->chan[ch].port);
3700 					/* undocumented: delay after R_ST_SEL */
3701 					udelay(1);
3702 					HFC_outb(hc, A_ST_WR_STATE, 4 |
3703 					    V_ST_LD_STA); /* G4 */
3704 					udelay(6); /* wait at least 5,21us */
3705 					HFC_outb(hc, A_ST_WR_STATE, 4);
3706 					dch->state = 4;
3707 				} else {
3708 					/* one extra count for the next event */
3709 					hc->chan[ch].nt_timer =
3710 					    nt_t1_count[poll_timer] + 1;
3711 					HFC_outb(hc, R_ST_SEL,
3712 					    hc->chan[ch].port);
3713 					/* undocumented: delay after R_ST_SEL */
3714 					udelay(1);
3715 					/* allow G2 -> G3 transition */
3716 					HFC_outb(hc, A_ST_WR_STATE, 2 |
3717 					    V_SET_G2_G3);
3718 				}
3719 				break;
3720 			case (1):
3721 				hc->chan[ch].nt_timer = -1;
3722 				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3723 				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3724 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3725 				break;
3726 			case (4):
3727 				hc->chan[ch].nt_timer = -1;
3728 				break;
3729 			case (3):
3730 				hc->chan[ch].nt_timer = -1;
3731 				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3732 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3733 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3734 				break;
3735 			}
3736 		}
3737 	}
3738 }
3739 
3740 /*
3741  * called for card mode init message
3742  */
3743 
3744 static void
3745 hfcmulti_initmode(struct dchannel *dch)
3746 {
3747 	struct hfc_multi *hc = dch->hw;
3748 	u_char		a_st_wr_state, r_e1_wr_sta;
3749 	int		i, pt;
3750 
3751 	if (debug & DEBUG_HFCMULTI_INIT)
3752 		printk(KERN_DEBUG "%s: entered\n", __func__);
3753 
3754 	if (hc->type == 1) {
3755 		hc->chan[hc->dslot].slot_tx = -1;
3756 		hc->chan[hc->dslot].slot_rx = -1;
3757 		hc->chan[hc->dslot].conf = -1;
3758 		if (hc->dslot) {
3759 			mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3760 				-1, 0, -1, 0);
3761 			dch->timer.function = (void *) hfcmulti_dbusy_timer;
3762 			dch->timer.data = (long) dch;
3763 			init_timer(&dch->timer);
3764 		}
3765 		for (i = 1; i <= 31; i++) {
3766 			if (i == hc->dslot)
3767 				continue;
3768 			hc->chan[i].slot_tx = -1;
3769 			hc->chan[i].slot_rx = -1;
3770 			hc->chan[i].conf = -1;
3771 			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3772 		}
3773 		/* E1 */
3774 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3775 			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3776 			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3777 		}
3778 		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3779 			HFC_outb(hc, R_RX0, 0);
3780 			hc->hw.r_tx0 = 0 | V_OUT_EN;
3781 		} else {
3782 			HFC_outb(hc, R_RX0, 1);
3783 			hc->hw.r_tx0 = 1 | V_OUT_EN;
3784 		}
3785 		hc->hw.r_tx1 = V_ATX | V_NTRI;
3786 		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3787 		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3788 		HFC_outb(hc, R_TX_FR0, 0x00);
3789 		HFC_outb(hc, R_TX_FR1, 0xf8);
3790 
3791 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3792 			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3793 
3794 		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3795 
3796 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3797 			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3798 
3799 		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3800 			if (debug & DEBUG_HFCMULTI_INIT)
3801 				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3802 				    __func__);
3803 			r_e1_wr_sta = 0; /* G0 */
3804 			hc->e1_getclock = 0;
3805 		} else {
3806 			if (debug & DEBUG_HFCMULTI_INIT)
3807 				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3808 				    __func__);
3809 			r_e1_wr_sta = 0; /* F0 */
3810 			hc->e1_getclock = 1;
3811 		}
3812 		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3813 			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3814 		else
3815 			HFC_outb(hc, R_SYNC_OUT, 0);
3816 		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3817 			hc->e1_getclock = 1;
3818 		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3819 			hc->e1_getclock = 0;
3820 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3821 			/* SLAVE (clock master) */
3822 			if (debug & DEBUG_HFCMULTI_INIT)
3823 				printk(KERN_DEBUG
3824 				    "%s: E1 port is clock master "
3825 				    "(clock from PCM)\n", __func__);
3826 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3827 		} else {
3828 			if (hc->e1_getclock) {
3829 				/* MASTER (clock slave) */
3830 				if (debug & DEBUG_HFCMULTI_INIT)
3831 					printk(KERN_DEBUG
3832 					    "%s: E1 port is clock slave "
3833 					    "(clock to PCM)\n", __func__);
3834 				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3835 			} else {
3836 				/* MASTER (clock master) */
3837 				if (debug & DEBUG_HFCMULTI_INIT)
3838 					printk(KERN_DEBUG "%s: E1 port is "
3839 					    "clock master "
3840 					    "(clock from QUARTZ)\n",
3841 					    __func__);
3842 				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3843 				    V_PCM_SYNC | V_JATT_OFF);
3844 				HFC_outb(hc, R_SYNC_OUT, 0);
3845 			}
3846 		}
3847 		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3848 		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3849 		HFC_outb(hc, R_PWM0, 0x50);
3850 		HFC_outb(hc, R_PWM1, 0xff);
3851 		/* state machine setup */
3852 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3853 		udelay(6); /* wait at least 5,21us */
3854 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3855 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3856 			hc->syncronized = 0;
3857 			plxsd_checksync(hc, 0);
3858 		}
3859 	} else {
3860 		i = dch->slot;
3861 		hc->chan[i].slot_tx = -1;
3862 		hc->chan[i].slot_rx = -1;
3863 		hc->chan[i].conf = -1;
3864 		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3865 		dch->timer.function = (void *)hfcmulti_dbusy_timer;
3866 		dch->timer.data = (long) dch;
3867 		init_timer(&dch->timer);
3868 		hc->chan[i - 2].slot_tx = -1;
3869 		hc->chan[i - 2].slot_rx = -1;
3870 		hc->chan[i - 2].conf = -1;
3871 		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3872 		hc->chan[i - 1].slot_tx = -1;
3873 		hc->chan[i - 1].slot_rx = -1;
3874 		hc->chan[i - 1].conf = -1;
3875 		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3876 		/* ST */
3877 		pt = hc->chan[i].port;
3878 		/* select interface */
3879 		HFC_outb(hc, R_ST_SEL, pt);
3880 		/* undocumented: delay after R_ST_SEL */
3881 		udelay(1);
3882 		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3883 			if (debug & DEBUG_HFCMULTI_INIT)
3884 				printk(KERN_DEBUG
3885 				    "%s: ST port %d is NT-mode\n",
3886 				    __func__, pt);
3887 			/* clock delay */
3888 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3889 			a_st_wr_state = 1; /* G1 */
3890 			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3891 		} else {
3892 			if (debug & DEBUG_HFCMULTI_INIT)
3893 				printk(KERN_DEBUG
3894 				    "%s: ST port %d is TE-mode\n",
3895 				    __func__, pt);
3896 			/* clock delay */
3897 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3898 			a_st_wr_state = 2; /* F2 */
3899 			hc->hw.a_st_ctrl0[pt] = 0;
3900 		}
3901 		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3902 			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3903 		/* line setup */
3904 		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3905 		/* disable E-channel */
3906 		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3907 		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3908 			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3909 		else
3910 			HFC_outb(hc, A_ST_CTRL1, 0);
3911 		/* enable B-channel receive */
3912 		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3913 		/* state machine setup */
3914 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3915 		udelay(6); /* wait at least 5,21us */
3916 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3917 		hc->hw.r_sci_msk |= 1 << pt;
3918 		/* state machine interrupts */
3919 		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3920 		/* unset sync on port */
3921 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3922 			hc->syncronized &=
3923 			   ~(1 << hc->chan[dch->slot].port);
3924 			plxsd_checksync(hc, 0);
3925 		}
3926 	}
3927 	if (debug & DEBUG_HFCMULTI_INIT)
3928 		printk("%s: done\n", __func__);
3929 }
3930 
3931 
3932 static int
3933 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3934     struct channel_req *rq)
3935 {
3936 	int	err = 0;
3937 	u_long	flags;
3938 
3939 	if (debug & DEBUG_HW_OPEN)
3940 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3941 		    dch->dev.id, __builtin_return_address(0));
3942 	if (rq->protocol == ISDN_P_NONE)
3943 		return -EINVAL;
3944 	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3945 	    (dch->dev.D.protocol != rq->protocol)) {
3946 	    if (debug & DEBUG_HFCMULTI_MODE)
3947 		printk(KERN_WARNING "%s: change protocol %x to %x\n",
3948 		    __func__, dch->dev.D.protocol, rq->protocol);
3949 	}
3950 	if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3951 	 && (rq->protocol != ISDN_P_TE_S0))
3952 		l1_event(dch->l1, CLOSE_CHANNEL);
3953 	if (dch->dev.D.protocol != rq->protocol) {
3954 		if (rq->protocol == ISDN_P_TE_S0) {
3955 			err = create_l1(dch, hfcm_l1callback);
3956 			if (err)
3957 				return err;
3958 		}
3959 		dch->dev.D.protocol = rq->protocol;
3960 		spin_lock_irqsave(&hc->lock, flags);
3961 		hfcmulti_initmode(dch);
3962 		spin_unlock_irqrestore(&hc->lock, flags);
3963 	}
3964 
3965 	if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3966 	    ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3967 	    ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3968 	    ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3969 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3970 		    0, NULL, GFP_KERNEL);
3971 	}
3972 	rq->ch = &dch->dev.D;
3973 	if (!try_module_get(THIS_MODULE))
3974 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
3975 	return 0;
3976 }
3977 
3978 static int
3979 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3980     struct channel_req *rq)
3981 {
3982 	struct bchannel	*bch;
3983 	int		ch;
3984 
3985 	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3986 		return -EINVAL;
3987 	if (rq->protocol == ISDN_P_NONE)
3988 		return -EINVAL;
3989 	if (hc->type == 1)
3990 		ch = rq->adr.channel;
3991 	else
3992 		ch = (rq->adr.channel - 1) + (dch->slot - 2);
3993 	bch = hc->chan[ch].bch;
3994 	if (!bch) {
3995 		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3996 		    __func__, ch);
3997 		return -EINVAL;
3998 	}
3999 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4000 		return -EBUSY; /* b-channel can be only open once */
4001 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4002 	bch->ch.protocol = rq->protocol;
4003 	hc->chan[ch].rx_off = 0;
4004 	rq->ch = &bch->ch;
4005 	if (!try_module_get(THIS_MODULE))
4006 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4007 	return 0;
4008 }
4009 
4010 /*
4011  * device control function
4012  */
4013 static int
4014 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4015 {
4016 	int	ret = 0;
4017 
4018 	switch (cq->op) {
4019 	case MISDN_CTRL_GETOP:
4020 		cq->op = 0;
4021 		break;
4022 	default:
4023 		printk(KERN_WARNING "%s: unknown Op %x\n",
4024 		    __func__, cq->op);
4025 		ret = -EINVAL;
4026 		break;
4027 	}
4028 	return ret;
4029 }
4030 
4031 static int
4032 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4033 {
4034 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4035 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4036 	struct hfc_multi	*hc = dch->hw;
4037 	struct channel_req	*rq;
4038 	int			err = 0;
4039 	u_long			flags;
4040 
4041 	if (dch->debug & DEBUG_HW)
4042 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4043 		    __func__, cmd, arg);
4044 	switch (cmd) {
4045 	case OPEN_CHANNEL:
4046 		rq = arg;
4047 		switch (rq->protocol) {
4048 		case ISDN_P_TE_S0:
4049 		case ISDN_P_NT_S0:
4050 			if (hc->type == 1) {
4051 				err = -EINVAL;
4052 				break;
4053 			}
4054 			err = open_dchannel(hc, dch, rq); /* locked there */
4055 			break;
4056 		case ISDN_P_TE_E1:
4057 		case ISDN_P_NT_E1:
4058 			if (hc->type != 1) {
4059 				err = -EINVAL;
4060 				break;
4061 			}
4062 			err = open_dchannel(hc, dch, rq); /* locked there */
4063 			break;
4064 		default:
4065 			spin_lock_irqsave(&hc->lock, flags);
4066 			err = open_bchannel(hc, dch, rq);
4067 			spin_unlock_irqrestore(&hc->lock, flags);
4068 		}
4069 		break;
4070 	case CLOSE_CHANNEL:
4071 		if (debug & DEBUG_HW_OPEN)
4072 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4073 			    __func__, dch->dev.id,
4074 			    __builtin_return_address(0));
4075 		module_put(THIS_MODULE);
4076 		break;
4077 	case CONTROL_CHANNEL:
4078 		spin_lock_irqsave(&hc->lock, flags);
4079 		err = channel_dctrl(dch, arg);
4080 		spin_unlock_irqrestore(&hc->lock, flags);
4081 		break;
4082 	default:
4083 		if (dch->debug & DEBUG_HW)
4084 			printk(KERN_DEBUG "%s: unknown command %x\n",
4085 			    __func__, cmd);
4086 		err = -EINVAL;
4087 	}
4088 	return err;
4089 }
4090 
4091 static int
4092 clockctl(void *priv, int enable)
4093 {
4094 	struct hfc_multi *hc = priv;
4095 
4096 	hc->iclock_on = enable;
4097 	return 0;
4098 }
4099 
4100 /*
4101  * initialize the card
4102  */
4103 
4104 /*
4105  * start timer irq, wait some time and check if we have interrupts.
4106  * if not, reset chip and try again.
4107  */
4108 static int
4109 init_card(struct hfc_multi *hc)
4110 {
4111 	int	err = -EIO;
4112 	u_long	flags;
4113 	void	__iomem *plx_acc;
4114 	u_long	plx_flags;
4115 
4116 	if (debug & DEBUG_HFCMULTI_INIT)
4117 		printk(KERN_DEBUG "%s: entered\n", __func__);
4118 
4119 	spin_lock_irqsave(&hc->lock, flags);
4120 	/* set interrupts but leave global interrupt disabled */
4121 	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4122 	disable_hwirq(hc);
4123 	spin_unlock_irqrestore(&hc->lock, flags);
4124 
4125 	if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4126 	    "HFC-multi", hc)) {
4127 		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4128 		    hc->pci_dev->irq);
4129 		return -EIO;
4130 	}
4131 	hc->irq = hc->pci_dev->irq;
4132 
4133 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4134 		spin_lock_irqsave(&plx_lock, plx_flags);
4135 		plx_acc = hc->plx_membase + PLX_INTCSR;
4136 		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4137 			plx_acc); /* enable PCI & LINT1 irq */
4138 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4139 	}
4140 
4141 	if (debug & DEBUG_HFCMULTI_INIT)
4142 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4143 		    __func__, hc->irq, hc->irqcnt);
4144 	err = init_chip(hc);
4145 	if (err)
4146 		goto error;
4147 	/*
4148 	 * Finally enable IRQ output
4149 	 * this is only allowed, if an IRQ routine is allready
4150 	 * established for this HFC, so don't do that earlier
4151 	 */
4152 	spin_lock_irqsave(&hc->lock, flags);
4153 	enable_hwirq(hc);
4154 	spin_unlock_irqrestore(&hc->lock, flags);
4155 	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4156 	set_current_state(TASK_UNINTERRUPTIBLE);
4157 	schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4158 	/* turn IRQ off until chip is completely initialized */
4159 	spin_lock_irqsave(&hc->lock, flags);
4160 	disable_hwirq(hc);
4161 	spin_unlock_irqrestore(&hc->lock, flags);
4162 	if (debug & DEBUG_HFCMULTI_INIT)
4163 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4164 		    __func__, hc->irq, hc->irqcnt);
4165 	if (hc->irqcnt) {
4166 		if (debug & DEBUG_HFCMULTI_INIT)
4167 			printk(KERN_DEBUG "%s: done\n", __func__);
4168 
4169 		return 0;
4170 	}
4171 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4172 		printk(KERN_INFO "ignoring missing interrupts\n");
4173 		return 0;
4174 	}
4175 
4176 	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4177 		hc->irq);
4178 
4179 	err = -EIO;
4180 
4181 error:
4182 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4183 		spin_lock_irqsave(&plx_lock, plx_flags);
4184 		plx_acc = hc->plx_membase + PLX_INTCSR;
4185 		writew(0x00, plx_acc); /*disable IRQs*/
4186 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4187 	}
4188 
4189 	if (debug & DEBUG_HFCMULTI_INIT)
4190 		printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4191 	if (hc->irq) {
4192 		free_irq(hc->irq, hc);
4193 		hc->irq = 0;
4194 	}
4195 
4196 	if (debug & DEBUG_HFCMULTI_INIT)
4197 		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4198 	return err;
4199 }
4200 
4201 /*
4202  * find pci device and set it up
4203  */
4204 
4205 static int
4206 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4207 		const struct pci_device_id *ent)
4208 {
4209 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4210 
4211 	printk(KERN_INFO
4212 	    "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4213 	    m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4214 
4215 	hc->pci_dev = pdev;
4216 	if (m->clock2)
4217 		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4218 
4219 	if (ent->device == 0xB410) {
4220 		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4221 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4222 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4223 		hc->slots = 32;
4224 	}
4225 
4226 	if (hc->pci_dev->irq <= 0) {
4227 		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4228 		return -EIO;
4229 	}
4230 	if (pci_enable_device(hc->pci_dev)) {
4231 		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4232 		return -EIO;
4233 	}
4234 	hc->leds = m->leds;
4235 	hc->ledstate = 0xAFFEAFFE;
4236 	hc->opticalsupport = m->opticalsupport;
4237 
4238 	/* set memory access methods */
4239 	if (m->io_mode) /* use mode from card config */
4240 		hc->io_mode = m->io_mode;
4241 	switch (hc->io_mode) {
4242 	case HFC_IO_MODE_PLXSD:
4243 		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4244 		hc->slots = 128; /* required */
4245 		/* fall through */
4246 	case HFC_IO_MODE_PCIMEM:
4247 		hc->HFC_outb = HFC_outb_pcimem;
4248 		hc->HFC_inb = HFC_inb_pcimem;
4249 		hc->HFC_inw = HFC_inw_pcimem;
4250 		hc->HFC_wait = HFC_wait_pcimem;
4251 		hc->read_fifo = read_fifo_pcimem;
4252 		hc->write_fifo = write_fifo_pcimem;
4253 		break;
4254 	case HFC_IO_MODE_REGIO:
4255 		hc->HFC_outb = HFC_outb_regio;
4256 		hc->HFC_inb = HFC_inb_regio;
4257 		hc->HFC_inw = HFC_inw_regio;
4258 		hc->HFC_wait = HFC_wait_regio;
4259 		hc->read_fifo = read_fifo_regio;
4260 		hc->write_fifo = write_fifo_regio;
4261 		break;
4262 	default:
4263 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4264 		pci_disable_device(hc->pci_dev);
4265 		return -EIO;
4266 	}
4267 	hc->HFC_outb_nodebug = hc->HFC_outb;
4268 	hc->HFC_inb_nodebug = hc->HFC_inb;
4269 	hc->HFC_inw_nodebug = hc->HFC_inw;
4270 	hc->HFC_wait_nodebug = hc->HFC_wait;
4271 #ifdef HFC_REGISTER_DEBUG
4272 	hc->HFC_outb = HFC_outb_debug;
4273 	hc->HFC_inb = HFC_inb_debug;
4274 	hc->HFC_inw = HFC_inw_debug;
4275 	hc->HFC_wait = HFC_wait_debug;
4276 #endif
4277 	hc->pci_iobase = 0;
4278 	hc->pci_membase = NULL;
4279 	hc->plx_membase = NULL;
4280 
4281 	switch (hc->io_mode) {
4282 	case HFC_IO_MODE_PLXSD:
4283 		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4284 		/* MEMBASE 1 is PLX PCI Bridge */
4285 
4286 		if (!hc->plx_origmembase) {
4287 			printk(KERN_WARNING
4288 			  "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4289 			pci_disable_device(hc->pci_dev);
4290 			return -EIO;
4291 		}
4292 
4293 		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4294 		if (!hc->plx_membase) {
4295 			printk(KERN_WARNING
4296 			    "HFC-multi: failed to remap plx address space. "
4297 			    "(internal error)\n");
4298 			pci_disable_device(hc->pci_dev);
4299 			return -EIO;
4300 		}
4301 		printk(KERN_INFO
4302 		    "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4303 		    (u_long)hc->plx_membase, hc->plx_origmembase);
4304 
4305 		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4306 		    /* MEMBASE 1 is PLX PCI Bridge */
4307 		if (!hc->pci_origmembase) {
4308 			printk(KERN_WARNING
4309 			    "HFC-multi: No IO-Memory for PCI card found\n");
4310 			pci_disable_device(hc->pci_dev);
4311 			return -EIO;
4312 		}
4313 
4314 		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4315 		if (!hc->pci_membase) {
4316 			printk(KERN_WARNING "HFC-multi: failed to remap io "
4317 			    "address space. (internal error)\n");
4318 			pci_disable_device(hc->pci_dev);
4319 			return -EIO;
4320 		}
4321 
4322 		printk(KERN_INFO
4323 		    "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4324 		    "leds-type %d\n",
4325 		    hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4326 		    hc->pci_dev->irq, HZ, hc->leds);
4327 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4328 		break;
4329 	case HFC_IO_MODE_PCIMEM:
4330 		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4331 		if (!hc->pci_origmembase) {
4332 			printk(KERN_WARNING
4333 			    "HFC-multi: No IO-Memory for PCI card found\n");
4334 			pci_disable_device(hc->pci_dev);
4335 			return -EIO;
4336 		}
4337 
4338 		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4339 		if (!hc->pci_membase) {
4340 			printk(KERN_WARNING
4341 			    "HFC-multi: failed to remap io address space. "
4342 			    "(internal error)\n");
4343 			pci_disable_device(hc->pci_dev);
4344 			return -EIO;
4345 		}
4346 		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4347 		    "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4348 		    hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4349 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4350 		break;
4351 	case HFC_IO_MODE_REGIO:
4352 		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4353 		if (!hc->pci_iobase) {
4354 			printk(KERN_WARNING
4355 				"HFC-multi: No IO for PCI card found\n");
4356 			pci_disable_device(hc->pci_dev);
4357 			return -EIO;
4358 		}
4359 
4360 		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4361 			printk(KERN_WARNING "HFC-multi: failed to request "
4362 			    "address space at 0x%08lx (internal error)\n",
4363 			    hc->pci_iobase);
4364 			pci_disable_device(hc->pci_dev);
4365 			return -EIO;
4366 		}
4367 
4368 		printk(KERN_INFO
4369 		    "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4370 		    m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4371 		    hc->pci_dev->irq, HZ, hc->leds);
4372 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4373 		break;
4374 	default:
4375 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4376 		pci_disable_device(hc->pci_dev);
4377 		return -EIO;
4378 	}
4379 
4380 	pci_set_drvdata(hc->pci_dev, hc);
4381 
4382 	/* At this point the needed PCI config is done */
4383 	/* fifos are still not enabled */
4384 	return 0;
4385 }
4386 
4387 
4388 /*
4389  * remove port
4390  */
4391 
4392 static void
4393 release_port(struct hfc_multi *hc, struct dchannel *dch)
4394 {
4395 	int	pt, ci, i = 0;
4396 	u_long	flags;
4397 	struct bchannel *pb;
4398 
4399 	ci = dch->slot;
4400 	pt = hc->chan[ci].port;
4401 
4402 	if (debug & DEBUG_HFCMULTI_INIT)
4403 		printk(KERN_DEBUG "%s: entered for port %d\n",
4404 			__func__, pt + 1);
4405 
4406 	if (pt >= hc->ports) {
4407 		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4408 		     __func__, pt + 1);
4409 		return;
4410 	}
4411 
4412 	if (debug & DEBUG_HFCMULTI_INIT)
4413 		printk(KERN_DEBUG "%s: releasing port=%d\n",
4414 		    __func__, pt + 1);
4415 
4416 	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4417 		l1_event(dch->l1, CLOSE_CHANNEL);
4418 
4419 	hc->chan[ci].dch = NULL;
4420 
4421 	if (hc->created[pt]) {
4422 		hc->created[pt] = 0;
4423 		mISDN_unregister_device(&dch->dev);
4424 	}
4425 
4426 	spin_lock_irqsave(&hc->lock, flags);
4427 
4428 	if (dch->timer.function) {
4429 		del_timer(&dch->timer);
4430 		dch->timer.function = NULL;
4431 	}
4432 
4433 	if (hc->type == 1) { /* E1 */
4434 		/* remove sync */
4435 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4436 			hc->syncronized = 0;
4437 			plxsd_checksync(hc, 1);
4438 		}
4439 		/* free channels */
4440 		for (i = 0; i <= 31; i++) {
4441 			if (hc->chan[i].bch) {
4442 				if (debug & DEBUG_HFCMULTI_INIT)
4443 					printk(KERN_DEBUG
4444 					    "%s: free port %d channel %d\n",
4445 					    __func__, hc->chan[i].port+1, i);
4446 				pb = hc->chan[i].bch;
4447 				hc->chan[i].bch = NULL;
4448 				spin_unlock_irqrestore(&hc->lock, flags);
4449 				mISDN_freebchannel(pb);
4450 				kfree(pb);
4451 				kfree(hc->chan[i].coeff);
4452 				spin_lock_irqsave(&hc->lock, flags);
4453 			}
4454 		}
4455 	} else {
4456 		/* remove sync */
4457 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4458 			hc->syncronized &=
4459 			   ~(1 << hc->chan[ci].port);
4460 			plxsd_checksync(hc, 1);
4461 		}
4462 		/* free channels */
4463 		if (hc->chan[ci - 2].bch) {
4464 			if (debug & DEBUG_HFCMULTI_INIT)
4465 				printk(KERN_DEBUG
4466 				    "%s: free port %d channel %d\n",
4467 				    __func__, hc->chan[ci - 2].port+1,
4468 				    ci - 2);
4469 			pb = hc->chan[ci - 2].bch;
4470 			hc->chan[ci - 2].bch = NULL;
4471 			spin_unlock_irqrestore(&hc->lock, flags);
4472 			mISDN_freebchannel(pb);
4473 			kfree(pb);
4474 			kfree(hc->chan[ci - 2].coeff);
4475 			spin_lock_irqsave(&hc->lock, flags);
4476 		}
4477 		if (hc->chan[ci - 1].bch) {
4478 			if (debug & DEBUG_HFCMULTI_INIT)
4479 				printk(KERN_DEBUG
4480 				    "%s: free port %d channel %d\n",
4481 				    __func__, hc->chan[ci - 1].port+1,
4482 				    ci - 1);
4483 			pb = hc->chan[ci - 1].bch;
4484 			hc->chan[ci - 1].bch = NULL;
4485 			spin_unlock_irqrestore(&hc->lock, flags);
4486 			mISDN_freebchannel(pb);
4487 			kfree(pb);
4488 			kfree(hc->chan[ci - 1].coeff);
4489 			spin_lock_irqsave(&hc->lock, flags);
4490 		}
4491 	}
4492 
4493 	spin_unlock_irqrestore(&hc->lock, flags);
4494 
4495 	if (debug & DEBUG_HFCMULTI_INIT)
4496 		printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4497 	mISDN_freedchannel(dch);
4498 	kfree(dch);
4499 
4500 	if (debug & DEBUG_HFCMULTI_INIT)
4501 		printk(KERN_DEBUG "%s: done!\n", __func__);
4502 }
4503 
4504 static void
4505 release_card(struct hfc_multi *hc)
4506 {
4507 	u_long	flags;
4508 	int	ch;
4509 
4510 	if (debug & DEBUG_HFCMULTI_INIT)
4511 		printk(KERN_WARNING "%s: release card (%d) entered\n",
4512 		    __func__, hc->id);
4513 
4514 	/* unregister clock source */
4515 	if (hc->iclock)
4516 		mISDN_unregister_clock(hc->iclock);
4517 
4518 	/* disable irq */
4519 	spin_lock_irqsave(&hc->lock, flags);
4520 	disable_hwirq(hc);
4521 	spin_unlock_irqrestore(&hc->lock, flags);
4522 	udelay(1000);
4523 
4524 	/* dimm leds */
4525 	if (hc->leds)
4526 		hfcmulti_leds(hc);
4527 
4528 	/* disable D-channels & B-channels */
4529 	if (debug & DEBUG_HFCMULTI_INIT)
4530 		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4531 		    __func__);
4532 	for (ch = 0; ch <= 31; ch++) {
4533 		if (hc->chan[ch].dch)
4534 			release_port(hc, hc->chan[ch].dch);
4535 	}
4536 
4537 	/* release hardware & irq */
4538 	if (hc->irq) {
4539 		if (debug & DEBUG_HFCMULTI_INIT)
4540 			printk(KERN_WARNING "%s: free irq %d\n",
4541 			    __func__, hc->irq);
4542 		free_irq(hc->irq, hc);
4543 		hc->irq = 0;
4544 
4545 	}
4546 	release_io_hfcmulti(hc);
4547 
4548 	if (debug & DEBUG_HFCMULTI_INIT)
4549 		printk(KERN_WARNING "%s: remove instance from list\n",
4550 		     __func__);
4551 	list_del(&hc->list);
4552 
4553 	if (debug & DEBUG_HFCMULTI_INIT)
4554 		printk(KERN_WARNING "%s: delete instance\n", __func__);
4555 	if (hc == syncmaster)
4556 		syncmaster = NULL;
4557 	kfree(hc);
4558 	if (debug & DEBUG_HFCMULTI_INIT)
4559 		printk(KERN_WARNING "%s: card successfully removed\n",
4560 		    __func__);
4561 }
4562 
4563 static int
4564 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4565 {
4566 	struct dchannel	*dch;
4567 	struct bchannel	*bch;
4568 	int		ch, ret = 0;
4569 	char		name[MISDN_MAX_IDLEN];
4570 
4571 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4572 	if (!dch)
4573 		return -ENOMEM;
4574 	dch->debug = debug;
4575 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4576 	dch->hw = hc;
4577 	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4578 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4579 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4580 	dch->dev.D.send = handle_dmsg;
4581 	dch->dev.D.ctrl = hfcm_dctrl;
4582 	dch->dev.nrbchan = (hc->dslot)?30:31;
4583 	dch->slot = hc->dslot;
4584 	hc->chan[hc->dslot].dch = dch;
4585 	hc->chan[hc->dslot].port = 0;
4586 	hc->chan[hc->dslot].nt_timer = -1;
4587 	for (ch = 1; ch <= 31; ch++) {
4588 		if (ch == hc->dslot) /* skip dchannel */
4589 			continue;
4590 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4591 		if (!bch) {
4592 			printk(KERN_ERR "%s: no memory for bchannel\n",
4593 			    __func__);
4594 			ret = -ENOMEM;
4595 			goto free_chan;
4596 		}
4597 		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4598 		if (!hc->chan[ch].coeff) {
4599 			printk(KERN_ERR "%s: no memory for coeffs\n",
4600 			    __func__);
4601 			ret = -ENOMEM;
4602 			kfree(bch);
4603 			goto free_chan;
4604 		}
4605 		bch->nr = ch;
4606 		bch->slot = ch;
4607 		bch->debug = debug;
4608 		mISDN_initbchannel(bch, MAX_DATA_MEM);
4609 		bch->hw = hc;
4610 		bch->ch.send = handle_bmsg;
4611 		bch->ch.ctrl = hfcm_bctrl;
4612 		bch->ch.nr = ch;
4613 		list_add(&bch->ch.list, &dch->dev.bchannels);
4614 		hc->chan[ch].bch = bch;
4615 		hc->chan[ch].port = 0;
4616 		set_channelmap(bch->nr, dch->dev.channelmap);
4617 	}
4618 	/* set optical line type */
4619 	if (port[Port_cnt] & 0x001) {
4620 		if (!m->opticalsupport)  {
4621 			printk(KERN_INFO
4622 			    "This board has no optical "
4623 			    "support\n");
4624 		} else {
4625 			if (debug & DEBUG_HFCMULTI_INIT)
4626 				printk(KERN_DEBUG
4627 				    "%s: PORT set optical "
4628 				    "interfacs: card(%d) "
4629 				    "port(%d)\n",
4630 				    __func__,
4631 				    HFC_cnt + 1, 1);
4632 			test_and_set_bit(HFC_CFG_OPTICAL,
4633 			    &hc->chan[hc->dslot].cfg);
4634 		}
4635 	}
4636 	/* set LOS report */
4637 	if (port[Port_cnt] & 0x004) {
4638 		if (debug & DEBUG_HFCMULTI_INIT)
4639 			printk(KERN_DEBUG "%s: PORT set "
4640 			    "LOS report: card(%d) port(%d)\n",
4641 			    __func__, HFC_cnt + 1, 1);
4642 		test_and_set_bit(HFC_CFG_REPORT_LOS,
4643 		    &hc->chan[hc->dslot].cfg);
4644 	}
4645 	/* set AIS report */
4646 	if (port[Port_cnt] & 0x008) {
4647 		if (debug & DEBUG_HFCMULTI_INIT)
4648 			printk(KERN_DEBUG "%s: PORT set "
4649 			    "AIS report: card(%d) port(%d)\n",
4650 			    __func__, HFC_cnt + 1, 1);
4651 		test_and_set_bit(HFC_CFG_REPORT_AIS,
4652 		    &hc->chan[hc->dslot].cfg);
4653 	}
4654 	/* set SLIP report */
4655 	if (port[Port_cnt] & 0x010) {
4656 		if (debug & DEBUG_HFCMULTI_INIT)
4657 			printk(KERN_DEBUG
4658 			    "%s: PORT set SLIP report: "
4659 			    "card(%d) port(%d)\n",
4660 			    __func__, HFC_cnt + 1, 1);
4661 		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4662 		    &hc->chan[hc->dslot].cfg);
4663 	}
4664 	/* set RDI report */
4665 	if (port[Port_cnt] & 0x020) {
4666 		if (debug & DEBUG_HFCMULTI_INIT)
4667 			printk(KERN_DEBUG
4668 			    "%s: PORT set RDI report: "
4669 			    "card(%d) port(%d)\n",
4670 			    __func__, HFC_cnt + 1, 1);
4671 		test_and_set_bit(HFC_CFG_REPORT_RDI,
4672 		    &hc->chan[hc->dslot].cfg);
4673 	}
4674 	/* set CRC-4 Mode */
4675 	if (!(port[Port_cnt] & 0x100)) {
4676 		if (debug & DEBUG_HFCMULTI_INIT)
4677 			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4678 				" card(%d) port(%d)\n",
4679 				__func__, HFC_cnt + 1, 1);
4680 		test_and_set_bit(HFC_CFG_CRC4,
4681 		    &hc->chan[hc->dslot].cfg);
4682 	} else {
4683 		if (debug & DEBUG_HFCMULTI_INIT)
4684 			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4685 				" report: card(%d) port(%d)\n",
4686 				__func__, HFC_cnt + 1, 1);
4687 	}
4688 	/* set forced clock */
4689 	if (port[Port_cnt] & 0x0200) {
4690 		if (debug & DEBUG_HFCMULTI_INIT)
4691 			printk(KERN_DEBUG "%s: PORT force getting clock from "
4692 				"E1: card(%d) port(%d)\n",
4693 				__func__, HFC_cnt + 1, 1);
4694 		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4695 	} else
4696 	if (port[Port_cnt] & 0x0400) {
4697 		if (debug & DEBUG_HFCMULTI_INIT)
4698 			printk(KERN_DEBUG "%s: PORT force putting clock to "
4699 				"E1: card(%d) port(%d)\n",
4700 				__func__, HFC_cnt + 1, 1);
4701 		test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4702 	}
4703 	/* set JATT PLL */
4704 	if (port[Port_cnt] & 0x0800) {
4705 		if (debug & DEBUG_HFCMULTI_INIT)
4706 			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4707 				"E1: card(%d) port(%d)\n",
4708 				__func__, HFC_cnt + 1, 1);
4709 		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4710 	}
4711 	/* set elastic jitter buffer */
4712 	if (port[Port_cnt] & 0x3000) {
4713 		hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4714 		if (debug & DEBUG_HFCMULTI_INIT)
4715 			printk(KERN_DEBUG
4716 			    "%s: PORT set elastic "
4717 			    "buffer to %d: card(%d) port(%d)\n",
4718 			    __func__, hc->chan[hc->dslot].jitter,
4719 			    HFC_cnt + 1, 1);
4720 	} else
4721 		hc->chan[hc->dslot].jitter = 2; /* default */
4722 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4723 	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4724 	if (ret)
4725 		goto free_chan;
4726 	hc->created[0] = 1;
4727 	return ret;
4728 free_chan:
4729 	release_port(hc, dch);
4730 	return ret;
4731 }
4732 
4733 static int
4734 init_multi_port(struct hfc_multi *hc, int pt)
4735 {
4736 	struct dchannel	*dch;
4737 	struct bchannel	*bch;
4738 	int		ch, i, ret = 0;
4739 	char		name[MISDN_MAX_IDLEN];
4740 
4741 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4742 	if (!dch)
4743 		return -ENOMEM;
4744 	dch->debug = debug;
4745 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4746 	dch->hw = hc;
4747 	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4748 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4749 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4750 	dch->dev.D.send = handle_dmsg;
4751 	dch->dev.D.ctrl = hfcm_dctrl;
4752 	dch->dev.nrbchan = 2;
4753 	i = pt << 2;
4754 	dch->slot = i + 2;
4755 	hc->chan[i + 2].dch = dch;
4756 	hc->chan[i + 2].port = pt;
4757 	hc->chan[i + 2].nt_timer = -1;
4758 	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4759 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4760 		if (!bch) {
4761 			printk(KERN_ERR "%s: no memory for bchannel\n",
4762 			    __func__);
4763 			ret = -ENOMEM;
4764 			goto free_chan;
4765 		}
4766 		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4767 		if (!hc->chan[i + ch].coeff) {
4768 			printk(KERN_ERR "%s: no memory for coeffs\n",
4769 			    __func__);
4770 			ret = -ENOMEM;
4771 			kfree(bch);
4772 			goto free_chan;
4773 		}
4774 		bch->nr = ch + 1;
4775 		bch->slot = i + ch;
4776 		bch->debug = debug;
4777 		mISDN_initbchannel(bch, MAX_DATA_MEM);
4778 		bch->hw = hc;
4779 		bch->ch.send = handle_bmsg;
4780 		bch->ch.ctrl = hfcm_bctrl;
4781 		bch->ch.nr = ch + 1;
4782 		list_add(&bch->ch.list, &dch->dev.bchannels);
4783 		hc->chan[i + ch].bch = bch;
4784 		hc->chan[i + ch].port = pt;
4785 		set_channelmap(bch->nr, dch->dev.channelmap);
4786 	}
4787 	/* set master clock */
4788 	if (port[Port_cnt] & 0x001) {
4789 		if (debug & DEBUG_HFCMULTI_INIT)
4790 			printk(KERN_DEBUG
4791 			    "%s: PROTOCOL set master clock: "
4792 			    "card(%d) port(%d)\n",
4793 			    __func__, HFC_cnt + 1, pt + 1);
4794 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4795 			printk(KERN_ERR "Error: Master clock "
4796 			    "for port(%d) of card(%d) is only"
4797 			    " possible with TE-mode\n",
4798 			    pt + 1, HFC_cnt + 1);
4799 			ret = -EINVAL;
4800 			goto free_chan;
4801 		}
4802 		if (hc->masterclk >= 0) {
4803 			printk(KERN_ERR "Error: Master clock "
4804 			    "for port(%d) of card(%d) already "
4805 			    "defined for port(%d)\n",
4806 			    pt + 1, HFC_cnt + 1, hc->masterclk+1);
4807 			ret = -EINVAL;
4808 			goto free_chan;
4809 		}
4810 		hc->masterclk = pt;
4811 	}
4812 	/* set transmitter line to non capacitive */
4813 	if (port[Port_cnt] & 0x002) {
4814 		if (debug & DEBUG_HFCMULTI_INIT)
4815 			printk(KERN_DEBUG
4816 			    "%s: PROTOCOL set non capacitive "
4817 			    "transmitter: card(%d) port(%d)\n",
4818 			    __func__, HFC_cnt + 1, pt + 1);
4819 		test_and_set_bit(HFC_CFG_NONCAP_TX,
4820 		    &hc->chan[i + 2].cfg);
4821 	}
4822 	/* disable E-channel */
4823 	if (port[Port_cnt] & 0x004) {
4824 	if (debug & DEBUG_HFCMULTI_INIT)
4825 			printk(KERN_DEBUG
4826 			    "%s: PROTOCOL disable E-channel: "
4827 			    "card(%d) port(%d)\n",
4828 			    __func__, HFC_cnt + 1, pt + 1);
4829 		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4830 		    &hc->chan[i + 2].cfg);
4831 	}
4832 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4833 		hc->type, HFC_cnt + 1, pt + 1);
4834 	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4835 	if (ret)
4836 		goto free_chan;
4837 	hc->created[pt] = 1;
4838 	return ret;
4839 free_chan:
4840 	release_port(hc, dch);
4841 	return ret;
4842 }
4843 
4844 static int
4845 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4846 {
4847 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4848 	int		ret_err = 0;
4849 	int		pt;
4850 	struct hfc_multi	*hc;
4851 	u_long		flags;
4852 	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4853 	int		i;
4854 
4855 	if (HFC_cnt >= MAX_CARDS) {
4856 		printk(KERN_ERR "too many cards (max=%d).\n",
4857 			MAX_CARDS);
4858 		return -EINVAL;
4859 	}
4860 	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4861 		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4862 		    "type[%d] %d was supplied as module parameter\n",
4863 		    m->vendor_name, m->card_name, m->type, HFC_cnt,
4864 		    type[HFC_cnt] & 0xff);
4865 		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4866 			"first, to see cards and their types.");
4867 		return -EINVAL;
4868 	}
4869 	if (debug & DEBUG_HFCMULTI_INIT)
4870 		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4871 		    __func__, m->vendor_name, m->card_name, m->type,
4872 		    type[HFC_cnt]);
4873 
4874 	/* allocate card+fifo structure */
4875 	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4876 	if (!hc) {
4877 		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4878 		return -ENOMEM;
4879 	}
4880 	spin_lock_init(&hc->lock);
4881 	hc->mtyp = m;
4882 	hc->type =  m->type;
4883 	hc->ports = m->ports;
4884 	hc->id = HFC_cnt;
4885 	hc->pcm = pcm[HFC_cnt];
4886 	hc->io_mode = iomode[HFC_cnt];
4887 	if (dslot[HFC_cnt] < 0 && hc->type == 1) {
4888 		hc->dslot = 0;
4889 		printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4890 			"31 B-channels\n");
4891 	} if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32 && hc->type == 1) {
4892 		hc->dslot = dslot[HFC_cnt];
4893 		printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4894 			"time slot %d\n", dslot[HFC_cnt]);
4895 	} else
4896 		hc->dslot = 16;
4897 
4898 	/* set chip specific features */
4899 	hc->masterclk = -1;
4900 	if (type[HFC_cnt] & 0x100) {
4901 		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4902 		hc->silence = 0xff; /* ulaw silence */
4903 	} else
4904 		hc->silence = 0x2a; /* alaw silence */
4905 	if ((poll >> 1) > sizeof(hc->silence_data)) {
4906 		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
4907 			"please fix\n");
4908 		return -EINVAL;
4909 	}
4910 	for (i = 0; i < (poll >> 1); i++)
4911 		hc->silence_data[i] = hc->silence;
4912 
4913 	if (!(type[HFC_cnt] & 0x200))
4914 		test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4915 
4916 	if (type[HFC_cnt] & 0x800)
4917 		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4918 	if (type[HFC_cnt] & 0x1000) {
4919 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4920 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4921 	}
4922 	if (type[HFC_cnt] & 0x4000)
4923 		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4924 	if (type[HFC_cnt] & 0x8000)
4925 		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4926 	hc->slots = 32;
4927 	if (type[HFC_cnt] & 0x10000)
4928 		hc->slots = 64;
4929 	if (type[HFC_cnt] & 0x20000)
4930 		hc->slots = 128;
4931 	if (type[HFC_cnt] & 0x80000) {
4932 		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4933 		hc->wdcount = 0;
4934 		hc->wdbyte = V_GPIO_OUT2;
4935 		printk(KERN_NOTICE "Watchdog enabled\n");
4936 	}
4937 
4938 	/* setup pci, hc->slots may change due to PLXSD */
4939 	ret_err = setup_pci(hc, pdev, ent);
4940 	if (ret_err) {
4941 		if (hc == syncmaster)
4942 			syncmaster = NULL;
4943 		kfree(hc);
4944 		return ret_err;
4945 	}
4946 
4947 	/* crate channels */
4948 	for (pt = 0; pt < hc->ports; pt++) {
4949 		if (Port_cnt >= MAX_PORTS) {
4950 			printk(KERN_ERR "too many ports (max=%d).\n",
4951 				MAX_PORTS);
4952 			ret_err = -EINVAL;
4953 			goto free_card;
4954 		}
4955 		if (hc->type == 1)
4956 			ret_err = init_e1_port(hc, m);
4957 		else
4958 			ret_err = init_multi_port(hc, pt);
4959 		if (debug & DEBUG_HFCMULTI_INIT)
4960 			printk(KERN_DEBUG
4961 			    "%s: Registering D-channel, card(%d) port(%d)"
4962 			    "result %d\n",
4963 			    __func__, HFC_cnt + 1, pt, ret_err);
4964 
4965 		if (ret_err) {
4966 			while (pt) { /* release already registered ports */
4967 				pt--;
4968 				release_port(hc, hc->chan[(pt << 2) + 2].dch);
4969 			}
4970 			goto free_card;
4971 		}
4972 		Port_cnt++;
4973 	}
4974 
4975 	/* disp switches */
4976 	switch (m->dip_type) {
4977 	case DIP_4S:
4978 		/*
4979 		 * Get DIP setting for beroNet 1S/2S/4S cards
4980 		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4981 		 * GPI 19/23 (R_GPI_IN2))
4982 		 */
4983 		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4984 			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4985 			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
4986 
4987 		/* Port mode (TE/NT) jumpers */
4988 		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
4989 
4990 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
4991 			pmj = ~pmj & 0xf;
4992 
4993 		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4994 			m->vendor_name, m->card_name, dips, pmj);
4995 		break;
4996 	case DIP_8S:
4997 		/*
4998 		 * Get DIP Setting for beroNet 8S0+ cards
4999 		 * Enable PCI auxbridge function
5000 		 */
5001 		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5002 		/* prepare access to auxport */
5003 		outw(0x4000, hc->pci_iobase + 4);
5004 		/*
5005 		 * some dummy reads are required to
5006 		 * read valid DIP switch data
5007 		 */
5008 		dips = inb(hc->pci_iobase);
5009 		dips = inb(hc->pci_iobase);
5010 		dips = inb(hc->pci_iobase);
5011 		dips = ~inb(hc->pci_iobase) & 0x3F;
5012 		outw(0x0, hc->pci_iobase + 4);
5013 		/* disable PCI auxbridge function */
5014 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5015 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5016 		    m->vendor_name, m->card_name, dips);
5017 		break;
5018 	case DIP_E1:
5019 		/*
5020 		 * get DIP Setting for beroNet E1 cards
5021 		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5022 		 */
5023 		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5024 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5025 		    m->vendor_name, m->card_name, dips);
5026 		break;
5027 	}
5028 
5029 	/* add to list */
5030 	spin_lock_irqsave(&HFClock, flags);
5031 	list_add_tail(&hc->list, &HFClist);
5032 	spin_unlock_irqrestore(&HFClock, flags);
5033 
5034 	/* use as clock source */
5035 	if (clock == HFC_cnt + 1)
5036 		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5037 
5038 	/* initialize hardware */
5039 	ret_err = init_card(hc);
5040 	if (ret_err) {
5041 		printk(KERN_ERR "init card returns %d\n", ret_err);
5042 		release_card(hc);
5043 		return ret_err;
5044 	}
5045 
5046 	/* start IRQ and return */
5047 	spin_lock_irqsave(&hc->lock, flags);
5048 	enable_hwirq(hc);
5049 	spin_unlock_irqrestore(&hc->lock, flags);
5050 	return 0;
5051 
5052 free_card:
5053 	release_io_hfcmulti(hc);
5054 	if (hc == syncmaster)
5055 		syncmaster = NULL;
5056 	kfree(hc);
5057 	return ret_err;
5058 }
5059 
5060 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5061 {
5062 	struct hfc_multi	*card = pci_get_drvdata(pdev);
5063 	u_long			flags;
5064 
5065 	if (debug)
5066 		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5067 		    "device:%x subvendor:%x subdevice:%x\n",
5068 		    pdev->vendor, pdev->device,
5069 		    pdev->subsystem_vendor, pdev->subsystem_device);
5070 
5071 	if (card) {
5072 		spin_lock_irqsave(&HFClock, flags);
5073 		release_card(card);
5074 		spin_unlock_irqrestore(&HFClock, flags);
5075 	}  else {
5076 		if (debug)
5077 			printk(KERN_WARNING "%s: drvdata allready removed\n",
5078 			    __func__);
5079 	}
5080 }
5081 
5082 #define	VENDOR_CCD	"Cologne Chip AG"
5083 #define	VENDOR_BN	"beroNet GmbH"
5084 #define	VENDOR_DIG	"Digium Inc."
5085 #define VENDOR_JH	"Junghanns.NET GmbH"
5086 #define VENDOR_PRIM	"PrimuX"
5087 
5088 static const struct hm_map hfcm_map[] = {
5089 /*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5090 /*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
5091 /*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5092 /*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5093 /*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5094 /*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5095 /*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
5096 /*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5097 /*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5098 /*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5099 /*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5100 /*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5101 
5102 /*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5103 /*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5104 		HFC_IO_MODE_REGIO},
5105 /*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5106 /*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5107 
5108 /*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5109 /*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5110 /*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5111 
5112 /*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5113 /*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5114 /*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5115 /*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5116 
5117 /*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5118 /*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5119 /*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5120 
5121 /*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5122 		HFC_IO_MODE_PLXSD},
5123 /*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5124 		HFC_IO_MODE_PLXSD},
5125 /*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5126 /*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5127 /*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5128 };
5129 
5130 #undef H
5131 #define H(x)	((unsigned long)&hfcm_map[x])
5132 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5133 
5134 	/* Cards with HFC-4S Chip */
5135 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5136 		PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5137 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5138 		PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5139 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5140 		PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5141 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5142 		PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5143 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5144 		PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5145 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5146 		PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5147 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5148 		PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5149 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5150 		PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5151 	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5152 		PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5153 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5154 		PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5155 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5156 		PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5157 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5158 		PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5159 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5160 		PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5161 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5162 		PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5163 
5164 	/* Cards with HFC-8S Chip */
5165 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5166 	PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5167 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5168 	PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5169 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5170 	PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5171 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5172 	PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5173 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5174 		PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5175 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5176 		PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5177 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5178 		PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5179 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5180 		PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5181 
5182 
5183 	/* Cards with HFC-E1 Chip */
5184 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5185 		PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5186 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5187 		PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5188 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5189 		PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5190 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5191 		PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5192 
5193 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5194 		PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5195 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5196 		PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5197 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5198 		PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5199 
5200 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5201 		PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5202 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5203 		PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5204 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5205 		0, 0, 0},
5206 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5207 		0, 0, 0},
5208 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5209 		0, 0, 0},
5210 	{0, }
5211 };
5212 #undef H
5213 
5214 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5215 
5216 static int
5217 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5218 {
5219 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5220 	int		ret;
5221 
5222 	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5223 	    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5224 	    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5225 	    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5226 		printk(KERN_ERR
5227 		    "Unknown HFC multiport controller (vendor:%x device:%x "
5228 		    "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
5229 		    ent->subvendor, ent->subdevice);
5230 		printk(KERN_ERR
5231 		    "Please contact the driver maintainer for support.\n");
5232 		return -ENODEV;
5233 	}
5234 	ret = hfcmulti_init(pdev, ent);
5235 	if (ret)
5236 		return ret;
5237 	HFC_cnt++;
5238 	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5239 	return 0;
5240 }
5241 
5242 static struct pci_driver hfcmultipci_driver = {
5243 	.name		= "hfc_multi",
5244 	.probe		= hfcmulti_probe,
5245 	.remove		= __devexit_p(hfc_remove_pci),
5246 	.id_table	= hfmultipci_ids,
5247 };
5248 
5249 static void __exit
5250 HFCmulti_cleanup(void)
5251 {
5252 	struct hfc_multi *card, *next;
5253 
5254 	/* get rid of all devices of this driver */
5255 	list_for_each_entry_safe(card, next, &HFClist, list)
5256 		release_card(card);
5257 	pci_unregister_driver(&hfcmultipci_driver);
5258 }
5259 
5260 static int __init
5261 HFCmulti_init(void)
5262 {
5263 	int err;
5264 
5265 	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5266 
5267 #ifdef IRQ_DEBUG
5268 	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5269 #endif
5270 
5271 	spin_lock_init(&HFClock);
5272 	spin_lock_init(&plx_lock);
5273 
5274 	if (debug & DEBUG_HFCMULTI_INIT)
5275 		printk(KERN_DEBUG "%s: init entered\n", __func__);
5276 
5277 	switch (poll) {
5278 	case 0:
5279 		poll_timer = 6;
5280 		poll = 128;
5281 		break;
5282 	case 8:
5283 		poll_timer = 2;
5284 		break;
5285 	case 16:
5286 		poll_timer = 3;
5287 		break;
5288 	case 32:
5289 		poll_timer = 4;
5290 		break;
5291 	case 64:
5292 		poll_timer = 5;
5293 		break;
5294 	case 128:
5295 		poll_timer = 6;
5296 		break;
5297 	case 256:
5298 		poll_timer = 7;
5299 		break;
5300 	default:
5301 		printk(KERN_ERR
5302 		    "%s: Wrong poll value (%d).\n", __func__, poll);
5303 		err = -EINVAL;
5304 		return err;
5305 
5306 	}
5307 
5308 	if (!clock)
5309 		clock = 1;
5310 
5311 	err = pci_register_driver(&hfcmultipci_driver);
5312 	if (err < 0) {
5313 		printk(KERN_ERR "error registering pci driver: %x\n", err);
5314 		return err;
5315 	}
5316 	return 0;
5317 }
5318 
5319 
5320 module_init(HFCmulti_init);
5321 module_exit(HFCmulti_cleanup);
5322