xref: /openbmc/linux/drivers/isdn/hardware/mISDN/hfcmulti.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4  *
5  * Author	Andreas Eversberg (jolly@eversberg.eu)
6  * ported to mqueue mechanism:
7  *		Peter Sprenger (sprengermoving-bytes.de)
8  *
9  * inspired by existing hfc-pci driver:
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
12  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
13  *
14  * Thanks to Cologne Chip AG for this great controller!
15  */
16 
17 /*
18  * module parameters:
19  * type:
20  *	By default (0), the card is automatically detected.
21  *	Or use the following combinations:
22  *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
23  * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
24  * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
25  *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
26  *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
27  *	Bit 10    = spare
28  *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30  *	Bit 13	  = spare
31  *	Bit 14    = 0x04000 = Use external ram (128K)
32  *	Bit 15    = 0x08000 = Use external ram (512K)
33  *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
34  * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
35  *	Bit 18    = spare
36  *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37  * (all other bits are reserved and shall be 0)
38  *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39  *		 bus (PCM master)
40  *
41  * port: (optional or required for all ports on all installed cards)
42  *	HFC-4S/HFC-8S only bits:
43  *	Bit 0	  = 0x001 = Use master clock for this S/T interface
44  *			    (ony once per chip).
45  *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
46  *			    Don't use this unless you know what you are doing!
47  *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
48  *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49  *		 received from port 1
50  *
51  *	HFC-E1 only bits:
52  *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
53  *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
54  *	Bit 2     = 0x0004 = Report LOS
55  *	Bit 3     = 0x0008 = Report AIS
56  *	Bit 4     = 0x0010 = Report SLIP
57  *	Bit 5     = 0x0020 = Report RDI
58  *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59  *			     mode instead.
60  *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
61  * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
62  *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63  *			     (E1 only)
64  *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65  *			     for default.
66  * (all other bits are reserved and shall be 0)
67  *
68  * debug:
69  *	NOTE: only one debug value must be given for all cards
70  *	enable debugging (see hfc_multi.h for debug options)
71  *
72  * poll:
73  *	NOTE: only one poll value must be given for all cards
74  *	Give the number of samples for each fifo process.
75  *	By default 128 is used. Decrease to reduce delay, increase to
76  *	reduce cpu load. If unsure, don't mess with it!
77  *	Valid is 8, 16, 32, 64, 128, 256.
78  *
79  * pcm:
80  *	NOTE: only one pcm value must be given for every card.
81  *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82  *	By default (0), the PCM bus id is 100 for the card that is PCM master.
83  *	If multiple cards are PCM master (because they are not interconnected),
84  *	each card with PCM master will have increasing PCM id.
85  *	All PCM busses with the same ID are expected to be connected and have
86  *	common time slots slots.
87  *	Only one chip of the PCM bus must be master, the others slave.
88  *	-1 means no support of PCM bus not even.
89  *	Omit this value, if all cards are interconnected or none is connected.
90  *	If unsure, don't give this parameter.
91  *
92  * dmask and bmask:
93  *	NOTE: One dmask value must be given for every HFC-E1 card.
94  *	If omitted, the E1 card has D-channel on time slot 16, which is default.
95  *	dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96  *	If multiple bits are set, multiple virtual card fragments are created.
97  *	For each bit set, a bmask value must be given. Each bit on the bmask
98  *	value stands for a B-channel. The bmask may not overlap with dmask or
99  *	with other bmask values for that card.
100  *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101  *		This will create one fragment with D-channel on slot 1 with
102  *		B-channels on slots 2..15, and a second fragment with D-channel
103  *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104  *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105  *	not function.
106  *	Example: dmask=0x00000001 bmask=0xfffffffe
107  *		This will create a port with all 31 usable timeslots as
108  *		B-channels.
109  *	If no bits are set on bmask, no B-channel is created for that fragment.
110  *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111  *		This will create 31 ports with one D-channel only.
112  *	If you don't know how to use it, you don't need it!
113  *
114  * iomode:
115  *	NOTE: only one mode value must be given for every card.
116  *	-> See hfc_multi.h for HFC_IO_MODE_* values
117  *	By default, the IO mode is pci memory IO (MEMIO).
118  *	Some cards require specific IO mode, so it cannot be changed.
119  *	It may be useful to set IO mode to register io (REGIO) to solve
120  *	PCI bridge problems.
121  *	If unsure, don't give this parameter.
122  *
123  * clockdelay_nt:
124  *	NOTE: only one clockdelay_nt value must be given once for all cards.
125  *	Give the value of the clock control register (A_ST_CLK_DLY)
126  *	of the S/T interfaces in NT mode.
127  *	This register is needed for the TBR3 certification, so don't change it.
128  *
129  * clockdelay_te:
130  *	NOTE: only one clockdelay_te value must be given once
131  *	Give the value of the clock control register (A_ST_CLK_DLY)
132  *	of the S/T interfaces in TE mode.
133  *	This register is needed for the TBR3 certification, so don't change it.
134  *
135  * clock:
136  *	NOTE: only one clock value must be given once
137  *	Selects interface with clock source for mISDN and applications.
138  *	Set to card number starting with 1. Set to -1 to disable.
139  *	By default, the first card is used as clock source.
140  *
141  * hwid:
142  *	NOTE: only one hwid value must be given once
143  *	Enable special embedded devices with XHFC controllers.
144  */
145 
146 /*
147  * debug register access (never use this, it will flood your system log)
148  * #define HFC_REGISTER_DEBUG
149  */
150 
151 #define HFC_MULTI_VERSION	"2.03"
152 
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160 
161 /*
162   #define IRQCOUNT_DEBUG
163   #define IRQ_DEBUG
164 */
165 
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170 
171 #define	MAX_CARDS	8
172 #define	MAX_PORTS	(8 * MAX_CARDS)
173 #define	MAX_FRAGS	(32 * MAX_CARDS)
174 
175 static LIST_HEAD(HFClist);
176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177 
178 static void ph_state_change(struct dchannel *);
179 
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183 
184 #define	TYP_E1		1
185 #define	TYP_4S		4
186 #define TYP_8S		8
187 
188 static int poll_timer = 6;	/* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191 #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
192 #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
193 				   (0x60 MUST be included!) */
194 
195 #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
196 #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
197 #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
198 
199 /*
200  * module stuff
201  */
202 
203 static uint	type[MAX_CARDS];
204 static int	pcm[MAX_CARDS];
205 static uint	dmask[MAX_CARDS];
206 static uint	bmask[MAX_FRAGS];
207 static uint	iomode[MAX_CARDS];
208 static uint	port[MAX_PORTS];
209 static uint	debug;
210 static uint	poll;
211 static int	clock;
212 static uint	timer;
213 static uint	clockdelay_te = CLKDEL_TE;
214 static uint	clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE	0
216 #define HWID_MINIP4	1
217 #define HWID_MINIP8	2
218 #define HWID_MINIP16	3
219 static uint	hwid = HWID_NONE;
220 
221 static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222 
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239 
240 #ifdef HFC_REGISTER_DEBUG
241 #define HFC_outb(hc, reg, val)					\
242 	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243 #define HFC_outb_nodebug(hc, reg, val)					\
244 	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245 #define HFC_inb(hc, reg)				\
246 	(hc->HFC_inb(hc, reg, __func__, __LINE__))
247 #define HFC_inb_nodebug(hc, reg)				\
248 	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249 #define HFC_inw(hc, reg)				\
250 	(hc->HFC_inw(hc, reg, __func__, __LINE__))
251 #define HFC_inw_nodebug(hc, reg)				\
252 	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253 #define HFC_wait(hc)				\
254 	(hc->HFC_wait(hc, __func__, __LINE__))
255 #define HFC_wait_nodebug(hc)				\
256 	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257 #else
258 #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
259 #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
260 #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
261 #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
262 #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
263 #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
264 #define HFC_wait(hc)			(hc->HFC_wait(hc))
265 #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
266 #endif
267 
268 #ifdef CONFIG_MISDN_HFCMULTI_8xx
269 #include "hfc_multi_8xx.h"
270 #endif
271 
272 /* HFC_IO_MODE_PCIMEM */
273 static void
274 #ifdef HFC_REGISTER_DEBUG
275 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276 		const char *function, int line)
277 #else
278 	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279 #endif
280 {
281 	writeb(val, hc->pci_membase + reg);
282 }
283 static u_char
284 #ifdef HFC_REGISTER_DEBUG
285 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286 #else
287 	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288 #endif
289 {
290 	return readb(hc->pci_membase + reg);
291 }
292 static u_short
293 #ifdef HFC_REGISTER_DEBUG
294 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295 #else
296 	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297 #endif
298 {
299 	return readw(hc->pci_membase + reg);
300 }
301 static void
302 #ifdef HFC_REGISTER_DEBUG
303 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304 #else
305 	HFC_wait_pcimem(struct hfc_multi *hc)
306 #endif
307 {
308 	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309 		cpu_relax();
310 }
311 
312 /* HFC_IO_MODE_REGIO */
313 static void
314 #ifdef HFC_REGISTER_DEBUG
315 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316 	       const char *function, int line)
317 #else
318 	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319 #endif
320 {
321 	outb(reg, hc->pci_iobase + 4);
322 	outb(val, hc->pci_iobase);
323 }
324 static u_char
325 #ifdef HFC_REGISTER_DEBUG
326 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327 #else
328 	HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329 #endif
330 {
331 	outb(reg, hc->pci_iobase + 4);
332 	return inb(hc->pci_iobase);
333 }
334 static u_short
335 #ifdef HFC_REGISTER_DEBUG
336 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337 #else
338 	HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339 #endif
340 {
341 	outb(reg, hc->pci_iobase + 4);
342 	return inw(hc->pci_iobase);
343 }
344 static void
345 #ifdef HFC_REGISTER_DEBUG
346 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347 #else
348 	HFC_wait_regio(struct hfc_multi *hc)
349 #endif
350 {
351 	outb(R_STATUS, hc->pci_iobase + 4);
352 	while (inb(hc->pci_iobase) & V_BUSY)
353 		cpu_relax();
354 }
355 
356 #ifdef HFC_REGISTER_DEBUG
357 static void
358 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359 	       const char *function, int line)
360 {
361 	char regname[256] = "", bits[9] = "xxxxxxxx";
362 	int i;
363 
364 	i = -1;
365 	while (hfc_register_names[++i].name) {
366 		if (hfc_register_names[i].reg == reg)
367 			strcat(regname, hfc_register_names[i].name);
368 	}
369 	if (regname[0] == '\0')
370 		strcpy(regname, "register");
371 
372 	bits[7] = '0' + (!!(val & 1));
373 	bits[6] = '0' + (!!(val & 2));
374 	bits[5] = '0' + (!!(val & 4));
375 	bits[4] = '0' + (!!(val & 8));
376 	bits[3] = '0' + (!!(val & 16));
377 	bits[2] = '0' + (!!(val & 32));
378 	bits[1] = '0' + (!!(val & 64));
379 	bits[0] = '0' + (!!(val & 128));
380 	printk(KERN_DEBUG
381 	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382 	       hc->id, reg, regname, val, bits, function, line);
383 	HFC_outb_nodebug(hc, reg, val);
384 }
385 static u_char
386 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387 {
388 	char regname[256] = "", bits[9] = "xxxxxxxx";
389 	u_char val = HFC_inb_nodebug(hc, reg);
390 	int i;
391 
392 	i = 0;
393 	while (hfc_register_names[i++].name)
394 		;
395 	while (hfc_register_names[++i].name) {
396 		if (hfc_register_names[i].reg == reg)
397 			strcat(regname, hfc_register_names[i].name);
398 	}
399 	if (regname[0] == '\0')
400 		strcpy(regname, "register");
401 
402 	bits[7] = '0' + (!!(val & 1));
403 	bits[6] = '0' + (!!(val & 2));
404 	bits[5] = '0' + (!!(val & 4));
405 	bits[4] = '0' + (!!(val & 8));
406 	bits[3] = '0' + (!!(val & 16));
407 	bits[2] = '0' + (!!(val & 32));
408 	bits[1] = '0' + (!!(val & 64));
409 	bits[0] = '0' + (!!(val & 128));
410 	printk(KERN_DEBUG
411 	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412 	       hc->id, reg, regname, val, bits, function, line);
413 	return val;
414 }
415 static u_short
416 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417 {
418 	char regname[256] = "";
419 	u_short val = HFC_inw_nodebug(hc, reg);
420 	int i;
421 
422 	i = 0;
423 	while (hfc_register_names[i++].name)
424 		;
425 	while (hfc_register_names[++i].name) {
426 		if (hfc_register_names[i].reg == reg)
427 			strcat(regname, hfc_register_names[i].name);
428 	}
429 	if (regname[0] == '\0')
430 		strcpy(regname, "register");
431 
432 	printk(KERN_DEBUG
433 	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434 	       hc->id, reg, regname, val, function, line);
435 	return val;
436 }
437 static void
438 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439 {
440 	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441 	       hc->id, function, line);
442 	HFC_wait_nodebug(hc);
443 }
444 #endif
445 
446 /* write fifo data (REGIO) */
447 static void
448 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449 {
450 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451 	while (len >> 2) {
452 		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453 		data += 4;
454 		len -= 4;
455 	}
456 	while (len >> 1) {
457 		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458 		data += 2;
459 		len -= 2;
460 	}
461 	while (len) {
462 		outb(*data, hc->pci_iobase);
463 		data++;
464 		len--;
465 	}
466 }
467 /* write fifo data (PCIMEM) */
468 static void
469 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470 {
471 	while (len >> 2) {
472 		writel(cpu_to_le32(*(u32 *)data),
473 		       hc->pci_membase + A_FIFO_DATA0);
474 		data += 4;
475 		len -= 4;
476 	}
477 	while (len >> 1) {
478 		writew(cpu_to_le16(*(u16 *)data),
479 		       hc->pci_membase + A_FIFO_DATA0);
480 		data += 2;
481 		len -= 2;
482 	}
483 	while (len) {
484 		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485 		data++;
486 		len--;
487 	}
488 }
489 
490 /* read fifo data (REGIO) */
491 static void
492 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493 {
494 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495 	while (len >> 2) {
496 		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497 		data += 4;
498 		len -= 4;
499 	}
500 	while (len >> 1) {
501 		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502 		data += 2;
503 		len -= 2;
504 	}
505 	while (len) {
506 		*data = inb(hc->pci_iobase);
507 		data++;
508 		len--;
509 	}
510 }
511 
512 /* read fifo data (PCIMEM) */
513 static void
514 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515 {
516 	while (len >> 2) {
517 		*(u32 *)data =
518 			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519 		data += 4;
520 		len -= 4;
521 	}
522 	while (len >> 1) {
523 		*(u16 *)data =
524 			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525 		data += 2;
526 		len -= 2;
527 	}
528 	while (len) {
529 		*data = readb(hc->pci_membase + A_FIFO_DATA0);
530 		data++;
531 		len--;
532 	}
533 }
534 
535 static void
536 enable_hwirq(struct hfc_multi *hc)
537 {
538 	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540 }
541 
542 static void
543 disable_hwirq(struct hfc_multi *hc)
544 {
545 	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547 }
548 
549 #define	NUM_EC 2
550 #define	MAX_TDM_CHAN 32
551 
552 
553 static inline void
554 enablepcibridge(struct hfc_multi *c)
555 {
556 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557 }
558 
559 static inline void
560 disablepcibridge(struct hfc_multi *c)
561 {
562 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563 }
564 
565 static inline unsigned char
566 readpcibridge(struct hfc_multi *hc, unsigned char address)
567 {
568 	unsigned short cipv;
569 	unsigned char data;
570 
571 	if (!hc->pci_iobase)
572 		return 0;
573 
574 	/* slow down a PCI read access by 1 PCI clock cycle */
575 	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576 
577 	if (address == 0)
578 		cipv = 0x4000;
579 	else
580 		cipv = 0x5800;
581 
582 	/* select local bridge port address by writing to CIP port */
583 	/* data = HFC_inb(c, cipv); * was _io before */
584 	outw(cipv, hc->pci_iobase + 4);
585 	data = inb(hc->pci_iobase);
586 
587 	/* restore R_CTRL for normal PCI read cycle speed */
588 	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589 
590 	return data;
591 }
592 
593 static inline void
594 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595 {
596 	unsigned short cipv;
597 	unsigned int datav;
598 
599 	if (!hc->pci_iobase)
600 		return;
601 
602 	if (address == 0)
603 		cipv = 0x4000;
604 	else
605 		cipv = 0x5800;
606 
607 	/* select local bridge port address by writing to CIP port */
608 	outw(cipv, hc->pci_iobase + 4);
609 	/* define a 32 bit dword with 4 identical bytes for write sequence */
610 	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611 		((__u32) data << 24);
612 
613 	/*
614 	 * write this 32 bit dword to the bridge data port
615 	 * this will initiate a write sequence of up to 4 writes to the same
616 	 * address on the local bus interface the number of write accesses
617 	 * is undefined but >=1 and depends on the next PCI transaction
618 	 * during write sequence on the local bus
619 	 */
620 	outl(datav, hc->pci_iobase);
621 }
622 
623 static inline void
624 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626 	/* Do data pin read low byte */
627 	HFC_outb(hc, R_GPIO_OUT1, reg);
628 }
629 
630 static inline void
631 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632 {
633 	cpld_set_reg(hc, reg);
634 
635 	enablepcibridge(hc);
636 	writepcibridge(hc, 1, val);
637 	disablepcibridge(hc);
638 
639 	return;
640 }
641 
642 static inline unsigned char
643 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
644 {
645 	unsigned char bytein;
646 
647 	cpld_set_reg(hc, reg);
648 
649 	/* Do data pin read low byte */
650 	HFC_outb(hc, R_GPIO_OUT1, reg);
651 
652 	enablepcibridge(hc);
653 	bytein = readpcibridge(hc, 1);
654 	disablepcibridge(hc);
655 
656 	return bytein;
657 }
658 
659 static inline void
660 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
661 {
662 	cpld_write_reg(hc, 0, 0xff & addr);
663 	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
664 }
665 
666 static inline unsigned short
667 vpm_read_address(struct hfc_multi *c)
668 {
669 	unsigned short addr;
670 	unsigned short highbit;
671 
672 	addr = cpld_read_reg(c, 0);
673 	highbit = cpld_read_reg(c, 1);
674 
675 	addr = addr | (highbit << 8);
676 
677 	return addr & 0x1ff;
678 }
679 
680 static inline unsigned char
681 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
682 {
683 	unsigned char res;
684 
685 	vpm_write_address(c, addr);
686 
687 	if (!which)
688 		cpld_set_reg(c, 2);
689 	else
690 		cpld_set_reg(c, 3);
691 
692 	enablepcibridge(c);
693 	res = readpcibridge(c, 1);
694 	disablepcibridge(c);
695 
696 	cpld_set_reg(c, 0);
697 
698 	return res;
699 }
700 
701 static inline void
702 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
703 	unsigned char data)
704 {
705 	vpm_write_address(c, addr);
706 
707 	enablepcibridge(c);
708 
709 	if (!which)
710 		cpld_set_reg(c, 2);
711 	else
712 		cpld_set_reg(c, 3);
713 
714 	writepcibridge(c, 1, data);
715 
716 	cpld_set_reg(c, 0);
717 
718 	disablepcibridge(c);
719 
720 	{
721 		unsigned char regin;
722 		regin = vpm_in(c, which, addr);
723 		if (regin != data)
724 			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
725 			       "0x%x\n", data, addr, regin);
726 	}
727 
728 }
729 
730 
731 static void
732 vpm_init(struct hfc_multi *wc)
733 {
734 	unsigned char reg;
735 	unsigned int mask;
736 	unsigned int i, x, y;
737 	unsigned int ver;
738 
739 	for (x = 0; x < NUM_EC; x++) {
740 		/* Setup GPIO's */
741 		if (!x) {
742 			ver = vpm_in(wc, x, 0x1a0);
743 			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
744 		}
745 
746 		for (y = 0; y < 4; y++) {
747 			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
748 			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
749 			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
750 		}
751 
752 		/* Setup TDM path - sets fsync and tdm_clk as inputs */
753 		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
754 		vpm_out(wc, x, 0x1a3, reg & ~2);
755 
756 		/* Setup Echo length (256 taps) */
757 		vpm_out(wc, x, 0x022, 1);
758 		vpm_out(wc, x, 0x023, 0xff);
759 
760 		/* Setup timeslots */
761 		vpm_out(wc, x, 0x02f, 0x00);
762 		mask = 0x02020202 << (x * 4);
763 
764 		/* Setup the tdm channel masks for all chips */
765 		for (i = 0; i < 4; i++)
766 			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
767 
768 		/* Setup convergence rate */
769 		printk(KERN_DEBUG "VPM: A-law mode\n");
770 		reg = 0x00 | 0x10 | 0x01;
771 		vpm_out(wc, x, 0x20, reg);
772 		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
773 		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
774 
775 		vpm_out(wc, x, 0x24, 0x02);
776 		reg = vpm_in(wc, x, 0x24);
777 		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
778 
779 		/* Initialize echo cans */
780 		for (i = 0; i < MAX_TDM_CHAN; i++) {
781 			if (mask & (0x00000001 << i))
782 				vpm_out(wc, x, i, 0x00);
783 		}
784 
785 		/*
786 		 * ARM arch at least disallows a udelay of
787 		 * more than 2ms... it gives a fake "__bad_udelay"
788 		 * reference at link-time.
789 		 * long delays in kernel code are pretty sucky anyway
790 		 * for now work around it using 5 x 2ms instead of 1 x 10ms
791 		 */
792 
793 		udelay(2000);
794 		udelay(2000);
795 		udelay(2000);
796 		udelay(2000);
797 		udelay(2000);
798 
799 		/* Put in bypass mode */
800 		for (i = 0; i < MAX_TDM_CHAN; i++) {
801 			if (mask & (0x00000001 << i))
802 				vpm_out(wc, x, i, 0x01);
803 		}
804 
805 		/* Enable bypass */
806 		for (i = 0; i < MAX_TDM_CHAN; i++) {
807 			if (mask & (0x00000001 << i))
808 				vpm_out(wc, x, 0x78 + i, 0x01);
809 		}
810 
811 	}
812 }
813 
814 #ifdef UNUSED
815 static void
816 vpm_check(struct hfc_multi *hctmp)
817 {
818 	unsigned char gpi2;
819 
820 	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
821 
822 	if ((gpi2 & 0x3) != 0x3)
823 		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
824 }
825 #endif /* UNUSED */
826 
827 
828 /*
829  * Interface to enable/disable the HW Echocan
830  *
831  * these functions are called within a spin_lock_irqsave on
832  * the channel instance lock, so we are not disturbed by irqs
833  *
834  * we can later easily change the interface to make  other
835  * things configurable, for now we configure the taps
836  *
837  */
838 
839 static void
840 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
841 {
842 	unsigned int timeslot;
843 	unsigned int unit;
844 	struct bchannel *bch = hc->chan[ch].bch;
845 #ifdef TXADJ
846 	int txadj = -4;
847 	struct sk_buff *skb;
848 #endif
849 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
850 		return;
851 
852 	if (!bch)
853 		return;
854 
855 #ifdef TXADJ
856 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
857 			       sizeof(int), &txadj, GFP_ATOMIC);
858 	if (skb)
859 		recv_Bchannel_skb(bch, skb);
860 #endif
861 
862 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
863 	unit = ch % 4;
864 
865 	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
866 	       taps, timeslot);
867 
868 	vpm_out(hc, unit, timeslot, 0x7e);
869 }
870 
871 static void
872 vpm_echocan_off(struct hfc_multi *hc, int ch)
873 {
874 	unsigned int timeslot;
875 	unsigned int unit;
876 	struct bchannel *bch = hc->chan[ch].bch;
877 #ifdef TXADJ
878 	int txadj = 0;
879 	struct sk_buff *skb;
880 #endif
881 
882 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
883 		return;
884 
885 	if (!bch)
886 		return;
887 
888 #ifdef TXADJ
889 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
890 			       sizeof(int), &txadj, GFP_ATOMIC);
891 	if (skb)
892 		recv_Bchannel_skb(bch, skb);
893 #endif
894 
895 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
896 	unit = ch % 4;
897 
898 	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
899 	       timeslot);
900 	/* FILLME */
901 	vpm_out(hc, unit, timeslot, 0x01);
902 }
903 
904 
905 /*
906  * Speech Design resync feature
907  * NOTE: This is called sometimes outside interrupt handler.
908  * We must lock irqsave, so no other interrupt (other card) will occur!
909  * Also multiple interrupts may nest, so must lock each access (lists, card)!
910  */
911 static inline void
912 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
913 {
914 	struct hfc_multi *hc, *next, *pcmmaster = NULL;
915 	void __iomem *plx_acc_32;
916 	u_int pv;
917 	u_long flags;
918 
919 	spin_lock_irqsave(&HFClock, flags);
920 	spin_lock(&plx_lock); /* must be locked inside other locks */
921 
922 	if (debug & DEBUG_HFCMULTI_PLXSD)
923 		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
924 		       __func__, syncmaster);
925 
926 	/* select new master */
927 	if (newmaster) {
928 		if (debug & DEBUG_HFCMULTI_PLXSD)
929 			printk(KERN_DEBUG "using provided controller\n");
930 	} else {
931 		list_for_each_entry_safe(hc, next, &HFClist, list) {
932 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
933 				if (hc->syncronized) {
934 					newmaster = hc;
935 					break;
936 				}
937 			}
938 		}
939 	}
940 
941 	/* Disable sync of all cards */
942 	list_for_each_entry_safe(hc, next, &HFClist, list) {
943 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
944 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
945 			pv = readl(plx_acc_32);
946 			pv &= ~PLX_SYNC_O_EN;
947 			writel(pv, plx_acc_32);
948 			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
949 				pcmmaster = hc;
950 				if (hc->ctype == HFC_TYPE_E1) {
951 					if (debug & DEBUG_HFCMULTI_PLXSD)
952 						printk(KERN_DEBUG
953 						       "Schedule SYNC_I\n");
954 					hc->e1_resync |= 1; /* get SYNC_I */
955 				}
956 			}
957 		}
958 	}
959 
960 	if (newmaster) {
961 		hc = newmaster;
962 		if (debug & DEBUG_HFCMULTI_PLXSD)
963 			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
964 			       "interface.\n", hc->id, hc);
965 		/* Enable new sync master */
966 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967 		pv = readl(plx_acc_32);
968 		pv |= PLX_SYNC_O_EN;
969 		writel(pv, plx_acc_32);
970 		/* switch to jatt PLL, if not disabled by RX_SYNC */
971 		if (hc->ctype == HFC_TYPE_E1
972 		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
973 			if (debug & DEBUG_HFCMULTI_PLXSD)
974 				printk(KERN_DEBUG "Schedule jatt PLL\n");
975 			hc->e1_resync |= 2; /* switch to jatt */
976 		}
977 	} else {
978 		if (pcmmaster) {
979 			hc = pcmmaster;
980 			if (debug & DEBUG_HFCMULTI_PLXSD)
981 				printk(KERN_DEBUG
982 				       "id=%d (0x%p) = PCM master syncronized "
983 				       "with QUARTZ\n", hc->id, hc);
984 			if (hc->ctype == HFC_TYPE_E1) {
985 				/* Use the crystal clock for the PCM
986 				   master card */
987 				if (debug & DEBUG_HFCMULTI_PLXSD)
988 					printk(KERN_DEBUG
989 					       "Schedule QUARTZ for HFC-E1\n");
990 				hc->e1_resync |= 4; /* switch quartz */
991 			} else {
992 				if (debug & DEBUG_HFCMULTI_PLXSD)
993 					printk(KERN_DEBUG
994 					       "QUARTZ is automatically "
995 					       "enabled by HFC-%dS\n", hc->ctype);
996 			}
997 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
998 			pv = readl(plx_acc_32);
999 			pv |= PLX_SYNC_O_EN;
1000 			writel(pv, plx_acc_32);
1001 		} else
1002 			if (!rm)
1003 				printk(KERN_ERR "%s no pcm master, this MUST "
1004 				       "not happen!\n", __func__);
1005 	}
1006 	syncmaster = newmaster;
1007 
1008 	spin_unlock(&plx_lock);
1009 	spin_unlock_irqrestore(&HFClock, flags);
1010 }
1011 
1012 /* This must be called AND hc must be locked irqsave!!! */
1013 static inline void
1014 plxsd_checksync(struct hfc_multi *hc, int rm)
1015 {
1016 	if (hc->syncronized) {
1017 		if (syncmaster == NULL) {
1018 			if (debug & DEBUG_HFCMULTI_PLXSD)
1019 				printk(KERN_DEBUG "%s: GOT sync on card %d"
1020 				       " (id=%d)\n", __func__, hc->id + 1,
1021 				       hc->id);
1022 			hfcmulti_resync(hc, hc, rm);
1023 		}
1024 	} else {
1025 		if (syncmaster == hc) {
1026 			if (debug & DEBUG_HFCMULTI_PLXSD)
1027 				printk(KERN_DEBUG "%s: LOST sync on card %d"
1028 				       " (id=%d)\n", __func__, hc->id + 1,
1029 				       hc->id);
1030 			hfcmulti_resync(hc, NULL, rm);
1031 		}
1032 	}
1033 }
1034 
1035 
1036 /*
1037  * free hardware resources used by driver
1038  */
1039 static void
1040 release_io_hfcmulti(struct hfc_multi *hc)
1041 {
1042 	void __iomem *plx_acc_32;
1043 	u_int	pv;
1044 	u_long	plx_flags;
1045 
1046 	if (debug & DEBUG_HFCMULTI_INIT)
1047 		printk(KERN_DEBUG "%s: entered\n", __func__);
1048 
1049 	/* soft reset also masks all interrupts */
1050 	hc->hw.r_cirm |= V_SRES;
1051 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1052 	udelay(1000);
1053 	hc->hw.r_cirm &= ~V_SRES;
1054 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1055 	udelay(1000); /* instead of 'wait' that may cause locking */
1056 
1057 	/* release Speech Design card, if PLX was initialized */
1058 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1059 		if (debug & DEBUG_HFCMULTI_PLXSD)
1060 			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1061 			       __func__, hc->id + 1);
1062 		spin_lock_irqsave(&plx_lock, plx_flags);
1063 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1064 		writel(PLX_GPIOC_INIT, plx_acc_32);
1065 		pv = readl(plx_acc_32);
1066 		/* Termination off */
1067 		pv &= ~PLX_TERM_ON;
1068 		/* Disconnect the PCM */
1069 		pv |= PLX_SLAVE_EN_N;
1070 		pv &= ~PLX_MASTER_EN;
1071 		pv &= ~PLX_SYNC_O_EN;
1072 		/* Put the DSP in Reset */
1073 		pv &= ~PLX_DSP_RES_N;
1074 		writel(pv, plx_acc_32);
1075 		if (debug & DEBUG_HFCMULTI_INIT)
1076 			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1077 			       __func__, pv);
1078 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1079 	}
1080 
1081 	/* disable memory mapped ports / io ports */
1082 	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1083 	if (hc->pci_dev)
1084 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1085 	if (hc->pci_membase)
1086 		iounmap(hc->pci_membase);
1087 	if (hc->plx_membase)
1088 		iounmap(hc->plx_membase);
1089 	if (hc->pci_iobase)
1090 		release_region(hc->pci_iobase, 8);
1091 	if (hc->xhfc_membase)
1092 		iounmap((void *)hc->xhfc_membase);
1093 
1094 	if (hc->pci_dev) {
1095 		pci_disable_device(hc->pci_dev);
1096 		pci_set_drvdata(hc->pci_dev, NULL);
1097 	}
1098 	if (debug & DEBUG_HFCMULTI_INIT)
1099 		printk(KERN_DEBUG "%s: done\n", __func__);
1100 }
1101 
1102 /*
1103  * function called to reset the HFC chip. A complete software reset of chip
1104  * and fifos is done. All configuration of the chip is done.
1105  */
1106 
1107 static int
1108 init_chip(struct hfc_multi *hc)
1109 {
1110 	u_long			flags, val, val2 = 0, rev;
1111 	int			i, err = 0;
1112 	u_char			r_conf_en, rval;
1113 	void __iomem		*plx_acc_32;
1114 	u_int			pv;
1115 	u_long			plx_flags, hfc_flags;
1116 	int			plx_count;
1117 	struct hfc_multi	*pos, *next, *plx_last_hc;
1118 
1119 	spin_lock_irqsave(&hc->lock, flags);
1120 	/* reset all registers */
1121 	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1122 
1123 	/* revision check */
1124 	if (debug & DEBUG_HFCMULTI_INIT)
1125 		printk(KERN_DEBUG "%s: entered\n", __func__);
1126 	val = HFC_inb(hc, R_CHIP_ID);
1127 	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1128 	    (val >> 1) != 0x31) {
1129 		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1130 		err = -EIO;
1131 		goto out;
1132 	}
1133 	rev = HFC_inb(hc, R_CHIP_RV);
1134 	printk(KERN_INFO
1135 	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1136 	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1137 	       " (old FIFO handling)" : "");
1138 	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1139 		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1140 		printk(KERN_WARNING
1141 		       "HFC_multi: NOTE: Your chip is revision 0, "
1142 		       "ask Cologne Chip for update. Newer chips "
1143 		       "have a better FIFO handling. Old chips "
1144 		       "still work but may have slightly lower "
1145 		       "HDLC transmit performance.\n");
1146 	}
1147 	if (rev > 1) {
1148 		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1149 		       "consider chip revision = %ld. The chip / "
1150 		       "bridge may not work.\n", rev);
1151 	}
1152 
1153 	/* set s-ram size */
1154 	hc->Flen = 0x10;
1155 	hc->Zmin = 0x80;
1156 	hc->Zlen = 384;
1157 	hc->DTMFbase = 0x1000;
1158 	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1159 		if (debug & DEBUG_HFCMULTI_INIT)
1160 			printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1161 			       __func__);
1162 		hc->hw.r_ctrl |= V_EXT_RAM;
1163 		hc->hw.r_ram_sz = 1;
1164 		hc->Flen = 0x20;
1165 		hc->Zmin = 0xc0;
1166 		hc->Zlen = 1856;
1167 		hc->DTMFbase = 0x2000;
1168 	}
1169 	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1170 		if (debug & DEBUG_HFCMULTI_INIT)
1171 			printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1172 			       __func__);
1173 		hc->hw.r_ctrl |= V_EXT_RAM;
1174 		hc->hw.r_ram_sz = 2;
1175 		hc->Flen = 0x20;
1176 		hc->Zmin = 0xc0;
1177 		hc->Zlen = 8000;
1178 		hc->DTMFbase = 0x2000;
1179 	}
1180 	if (hc->ctype == HFC_TYPE_XHFC) {
1181 		hc->Flen = 0x8;
1182 		hc->Zmin = 0x0;
1183 		hc->Zlen = 64;
1184 		hc->DTMFbase = 0x0;
1185 	}
1186 	hc->max_trans = poll << 1;
1187 	if (hc->max_trans > hc->Zlen)
1188 		hc->max_trans = hc->Zlen;
1189 
1190 	/* Speech Design PLX bridge */
1191 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1192 		if (debug & DEBUG_HFCMULTI_PLXSD)
1193 			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1194 			       __func__, hc->id + 1);
1195 		spin_lock_irqsave(&plx_lock, plx_flags);
1196 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1197 		writel(PLX_GPIOC_INIT, plx_acc_32);
1198 		pv = readl(plx_acc_32);
1199 		/* The first and the last cards are terminating the PCM bus */
1200 		pv |= PLX_TERM_ON; /* hc is currently the last */
1201 		/* Disconnect the PCM */
1202 		pv |= PLX_SLAVE_EN_N;
1203 		pv &= ~PLX_MASTER_EN;
1204 		pv &= ~PLX_SYNC_O_EN;
1205 		/* Put the DSP in Reset */
1206 		pv &= ~PLX_DSP_RES_N;
1207 		writel(pv, plx_acc_32);
1208 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1209 		if (debug & DEBUG_HFCMULTI_INIT)
1210 			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1211 			       __func__, pv);
1212 		/*
1213 		 * If we are the 3rd PLXSD card or higher, we must turn
1214 		 * termination of last PLXSD card off.
1215 		 */
1216 		spin_lock_irqsave(&HFClock, hfc_flags);
1217 		plx_count = 0;
1218 		plx_last_hc = NULL;
1219 		list_for_each_entry_safe(pos, next, &HFClist, list) {
1220 			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1221 				plx_count++;
1222 				if (pos != hc)
1223 					plx_last_hc = pos;
1224 			}
1225 		}
1226 		if (plx_count >= 3) {
1227 			if (debug & DEBUG_HFCMULTI_PLXSD)
1228 				printk(KERN_DEBUG "%s: card %d is between, so "
1229 				       "we disable termination\n",
1230 				       __func__, plx_last_hc->id + 1);
1231 			spin_lock_irqsave(&plx_lock, plx_flags);
1232 			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1233 			pv = readl(plx_acc_32);
1234 			pv &= ~PLX_TERM_ON;
1235 			writel(pv, plx_acc_32);
1236 			spin_unlock_irqrestore(&plx_lock, plx_flags);
1237 			if (debug & DEBUG_HFCMULTI_INIT)
1238 				printk(KERN_DEBUG
1239 				       "%s: term off: PLX_GPIO=%x\n",
1240 				       __func__, pv);
1241 		}
1242 		spin_unlock_irqrestore(&HFClock, hfc_flags);
1243 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1244 	}
1245 
1246 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1247 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1248 
1249 	/* we only want the real Z2 read-pointer for revision > 0 */
1250 	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1251 		hc->hw.r_ram_sz |= V_FZ_MD;
1252 
1253 	/* select pcm mode */
1254 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1255 		if (debug & DEBUG_HFCMULTI_INIT)
1256 			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1257 			       __func__);
1258 	} else
1259 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1260 			if (debug & DEBUG_HFCMULTI_INIT)
1261 				printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1262 				       __func__);
1263 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1264 		} else {
1265 			if (debug & DEBUG_HFCMULTI_INIT)
1266 				printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1267 				       __func__);
1268 		}
1269 
1270 	/* soft reset */
1271 	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1272 	if (hc->ctype == HFC_TYPE_XHFC)
1273 		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1274 			 0x11 /* 16 Bytes TX/RX */);
1275 	else
1276 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1277 	HFC_outb(hc, R_FIFO_MD, 0);
1278 	if (hc->ctype == HFC_TYPE_XHFC)
1279 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1280 	else
1281 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1282 			| V_RLD_EPR;
1283 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1284 	udelay(100);
1285 	hc->hw.r_cirm = 0;
1286 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1287 	udelay(100);
1288 	if (hc->ctype != HFC_TYPE_XHFC)
1289 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1290 
1291 	/* Speech Design PLX bridge pcm and sync mode */
1292 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1293 		spin_lock_irqsave(&plx_lock, plx_flags);
1294 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1295 		pv = readl(plx_acc_32);
1296 		/* Connect PCM */
1297 		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1298 			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1299 			pv |= PLX_SYNC_O_EN;
1300 			if (debug & DEBUG_HFCMULTI_INIT)
1301 				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1302 				       __func__, pv);
1303 		} else {
1304 			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1305 			pv &= ~PLX_SYNC_O_EN;
1306 			if (debug & DEBUG_HFCMULTI_INIT)
1307 				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1308 				       __func__, pv);
1309 		}
1310 		writel(pv, plx_acc_32);
1311 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1312 	}
1313 
1314 	/* PCM setup */
1315 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1316 	if (hc->slots == 32)
1317 		HFC_outb(hc, R_PCM_MD1, 0x00);
1318 	if (hc->slots == 64)
1319 		HFC_outb(hc, R_PCM_MD1, 0x10);
1320 	if (hc->slots == 128)
1321 		HFC_outb(hc, R_PCM_MD1, 0x20);
1322 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1323 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1324 		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1325 	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1326 		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1327 	else
1328 		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1329 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1330 	for (i = 0; i < 256; i++) {
1331 		HFC_outb_nodebug(hc, R_SLOT, i);
1332 		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1333 		if (hc->ctype != HFC_TYPE_XHFC)
1334 			HFC_outb_nodebug(hc, A_CONF, 0);
1335 		hc->slot_owner[i] = -1;
1336 	}
1337 
1338 	/* set clock speed */
1339 	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1340 		if (debug & DEBUG_HFCMULTI_INIT)
1341 			printk(KERN_DEBUG
1342 			       "%s: setting double clock\n", __func__);
1343 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1344 	}
1345 
1346 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1347 		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1348 
1349 	/* B410P GPIO */
1350 	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1351 		printk(KERN_NOTICE "Setting GPIOs\n");
1352 		HFC_outb(hc, R_GPIO_SEL, 0x30);
1353 		HFC_outb(hc, R_GPIO_EN1, 0x3);
1354 		udelay(1000);
1355 		printk(KERN_NOTICE "calling vpm_init\n");
1356 		vpm_init(hc);
1357 	}
1358 
1359 	/* check if R_F0_CNT counts (8 kHz frame count) */
1360 	val = HFC_inb(hc, R_F0_CNTL);
1361 	val += HFC_inb(hc, R_F0_CNTH) << 8;
1362 	if (debug & DEBUG_HFCMULTI_INIT)
1363 		printk(KERN_DEBUG
1364 		       "HFC_multi F0_CNT %ld after reset\n", val);
1365 	spin_unlock_irqrestore(&hc->lock, flags);
1366 	set_current_state(TASK_UNINTERRUPTIBLE);
1367 	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1368 	spin_lock_irqsave(&hc->lock, flags);
1369 	val2 = HFC_inb(hc, R_F0_CNTL);
1370 	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1371 	if (debug & DEBUG_HFCMULTI_INIT)
1372 		printk(KERN_DEBUG
1373 		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1374 		       val2);
1375 	if (val2 >= val + 8) { /* 1 ms */
1376 		/* it counts, so we keep the pcm mode */
1377 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1378 			printk(KERN_INFO "controller is PCM bus MASTER\n");
1379 		else
1380 			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1381 				printk(KERN_INFO "controller is PCM bus SLAVE\n");
1382 			else {
1383 				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1384 				printk(KERN_INFO "controller is PCM bus SLAVE "
1385 				       "(auto detected)\n");
1386 			}
1387 	} else {
1388 		/* does not count */
1389 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1390 		controller_fail:
1391 			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1392 			       "pulse. Seems that controller fails.\n");
1393 			err = -EIO;
1394 			goto out;
1395 		}
1396 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1397 			printk(KERN_INFO "controller is PCM bus SLAVE "
1398 			       "(ignoring missing PCM clock)\n");
1399 		} else {
1400 			/* only one pcm master */
1401 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1402 			    && plxsd_master) {
1403 				printk(KERN_ERR "HFC_multi ERROR, no clock "
1404 				       "on another Speech Design card found. "
1405 				       "Please be sure to connect PCM cable.\n");
1406 				err = -EIO;
1407 				goto out;
1408 			}
1409 			/* retry with master clock */
1410 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1411 				spin_lock_irqsave(&plx_lock, plx_flags);
1412 				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1413 				pv = readl(plx_acc_32);
1414 				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1415 				pv |= PLX_SYNC_O_EN;
1416 				writel(pv, plx_acc_32);
1417 				spin_unlock_irqrestore(&plx_lock, plx_flags);
1418 				if (debug & DEBUG_HFCMULTI_INIT)
1419 					printk(KERN_DEBUG "%s: master: "
1420 					       "PLX_GPIO=%x\n", __func__, pv);
1421 			}
1422 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1423 			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1424 			spin_unlock_irqrestore(&hc->lock, flags);
1425 			set_current_state(TASK_UNINTERRUPTIBLE);
1426 			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1427 			spin_lock_irqsave(&hc->lock, flags);
1428 			val2 = HFC_inb(hc, R_F0_CNTL);
1429 			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1430 			if (debug & DEBUG_HFCMULTI_INIT)
1431 				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1432 				       "10 ms (2nd try)\n", val2);
1433 			if (val2 >= val + 8) { /* 1 ms */
1434 				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1435 						 &hc->chip);
1436 				printk(KERN_INFO "controller is PCM bus MASTER "
1437 				       "(auto detected)\n");
1438 			} else
1439 				goto controller_fail;
1440 		}
1441 	}
1442 
1443 	/* Release the DSP Reset */
1444 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1445 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1446 			plxsd_master = 1;
1447 		spin_lock_irqsave(&plx_lock, plx_flags);
1448 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1449 		pv = readl(plx_acc_32);
1450 		pv |=  PLX_DSP_RES_N;
1451 		writel(pv, plx_acc_32);
1452 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1453 		if (debug & DEBUG_HFCMULTI_INIT)
1454 			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1455 			       __func__, pv);
1456 	}
1457 
1458 	/* pcm id */
1459 	if (hc->pcm)
1460 		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1461 		       hc->pcm);
1462 	else {
1463 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1464 		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1465 			PCM_cnt++; /* SD has proprietary bridging */
1466 		}
1467 		hc->pcm = PCM_cnt;
1468 		printk(KERN_INFO "controller has PCM BUS ID %d "
1469 		       "(auto selected)\n", hc->pcm);
1470 	}
1471 
1472 	/* set up timer */
1473 	HFC_outb(hc, R_TI_WD, poll_timer);
1474 	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1475 
1476 	/* set E1 state machine IRQ */
1477 	if (hc->ctype == HFC_TYPE_E1)
1478 		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1479 
1480 	/* set DTMF detection */
1481 	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1482 		if (debug & DEBUG_HFCMULTI_INIT)
1483 			printk(KERN_DEBUG "%s: enabling DTMF detection "
1484 			       "for all B-channel\n", __func__);
1485 		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1486 		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1487 			hc->hw.r_dtmf |= V_ULAW_SEL;
1488 		HFC_outb(hc, R_DTMF_N, 102 - 1);
1489 		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1490 	}
1491 
1492 	/* conference engine */
1493 	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1494 		r_conf_en = V_CONF_EN | V_ULAW;
1495 	else
1496 		r_conf_en = V_CONF_EN;
1497 	if (hc->ctype != HFC_TYPE_XHFC)
1498 		HFC_outb(hc, R_CONF_EN, r_conf_en);
1499 
1500 	/* setting leds */
1501 	switch (hc->leds) {
1502 	case 1: /* HFC-E1 OEM */
1503 		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1504 			HFC_outb(hc, R_GPIO_SEL, 0x32);
1505 		else
1506 			HFC_outb(hc, R_GPIO_SEL, 0x30);
1507 
1508 		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1509 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1510 
1511 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1512 		break;
1513 
1514 	case 2: /* HFC-4S OEM */
1515 	case 3:
1516 		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1517 		HFC_outb(hc, R_GPIO_EN1, 0xff);
1518 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1519 		break;
1520 	}
1521 
1522 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1523 		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1524 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1525 	}
1526 
1527 	/* set master clock */
1528 	if (hc->masterclk >= 0) {
1529 		if (debug & DEBUG_HFCMULTI_INIT)
1530 			printk(KERN_DEBUG "%s: setting ST master clock "
1531 			       "to port %d (0..%d)\n",
1532 			       __func__, hc->masterclk, hc->ports - 1);
1533 		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1534 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1535 	}
1536 
1537 
1538 
1539 	/* setting misc irq */
1540 	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1541 	if (debug & DEBUG_HFCMULTI_INIT)
1542 		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1543 		       hc->hw.r_irqmsk_misc);
1544 
1545 	/* RAM access test */
1546 	HFC_outb(hc, R_RAM_ADDR0, 0);
1547 	HFC_outb(hc, R_RAM_ADDR1, 0);
1548 	HFC_outb(hc, R_RAM_ADDR2, 0);
1549 	for (i = 0; i < 256; i++) {
1550 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1551 		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1552 	}
1553 	for (i = 0; i < 256; i++) {
1554 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1555 		HFC_inb_nodebug(hc, R_RAM_DATA);
1556 		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1557 		if (rval != ((i * 3) & 0xff)) {
1558 			printk(KERN_DEBUG
1559 			       "addr:%x val:%x should:%x\n", i, rval,
1560 			       (i * 3) & 0xff);
1561 			err++;
1562 		}
1563 	}
1564 	if (err) {
1565 		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1566 		err = -EIO;
1567 		goto out;
1568 	}
1569 
1570 	if (debug & DEBUG_HFCMULTI_INIT)
1571 		printk(KERN_DEBUG "%s: done\n", __func__);
1572 out:
1573 	spin_unlock_irqrestore(&hc->lock, flags);
1574 	return err;
1575 }
1576 
1577 
1578 /*
1579  * control the watchdog
1580  */
1581 static void
1582 hfcmulti_watchdog(struct hfc_multi *hc)
1583 {
1584 	hc->wdcount++;
1585 
1586 	if (hc->wdcount > 10) {
1587 		hc->wdcount = 0;
1588 		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1589 			V_GPIO_OUT3 : V_GPIO_OUT2;
1590 
1591 		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1592 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1593 		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1594 	}
1595 }
1596 
1597 
1598 
1599 /*
1600  * output leds
1601  */
1602 static void
1603 hfcmulti_leds(struct hfc_multi *hc)
1604 {
1605 	unsigned long lled;
1606 	unsigned long leddw;
1607 	int i, state, active, leds;
1608 	struct dchannel *dch;
1609 	int led[4];
1610 
1611 	switch (hc->leds) {
1612 	case 1: /* HFC-E1 OEM */
1613 		/* 2 red steady:       LOS
1614 		 * 1 red steady:       L1 not active
1615 		 * 2 green steady:     L1 active
1616 		 * 1st green flashing: activity on TX
1617 		 * 2nd green flashing: activity on RX
1618 		 */
1619 		led[0] = 0;
1620 		led[1] = 0;
1621 		led[2] = 0;
1622 		led[3] = 0;
1623 		dch = hc->chan[hc->dnum[0]].dch;
1624 		if (dch) {
1625 			if (hc->chan[hc->dnum[0]].los)
1626 				led[1] = 1;
1627 			if (hc->e1_state != 1) {
1628 				led[0] = 1;
1629 				hc->flash[2] = 0;
1630 				hc->flash[3] = 0;
1631 			} else {
1632 				led[2] = 1;
1633 				led[3] = 1;
1634 				if (!hc->flash[2] && hc->activity_tx)
1635 					hc->flash[2] = poll;
1636 				if (!hc->flash[3] && hc->activity_rx)
1637 					hc->flash[3] = poll;
1638 				if (hc->flash[2] && hc->flash[2] < 1024)
1639 					led[2] = 0;
1640 				if (hc->flash[3] && hc->flash[3] < 1024)
1641 					led[3] = 0;
1642 				if (hc->flash[2] >= 2048)
1643 					hc->flash[2] = 0;
1644 				if (hc->flash[3] >= 2048)
1645 					hc->flash[3] = 0;
1646 				if (hc->flash[2])
1647 					hc->flash[2] += poll;
1648 				if (hc->flash[3])
1649 					hc->flash[3] += poll;
1650 			}
1651 		}
1652 		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1653 		/* leds are inverted */
1654 		if (leds != (int)hc->ledstate) {
1655 			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1656 			hc->ledstate = leds;
1657 		}
1658 		break;
1659 
1660 	case 2: /* HFC-4S OEM */
1661 		/* red steady:     PH_DEACTIVATE
1662 		 * green steady:   PH_ACTIVATE
1663 		 * green flashing: activity on TX
1664 		 */
1665 		for (i = 0; i < 4; i++) {
1666 			state = 0;
1667 			active = -1;
1668 			dch = hc->chan[(i << 2) | 2].dch;
1669 			if (dch) {
1670 				state = dch->state;
1671 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1672 					active = 3;
1673 				else
1674 					active = 7;
1675 			}
1676 			if (state) {
1677 				if (state == active) {
1678 					led[i] = 1; /* led green */
1679 					hc->activity_tx |= hc->activity_rx;
1680 					if (!hc->flash[i] &&
1681 						(hc->activity_tx & (1 << i)))
1682 							hc->flash[i] = poll;
1683 					if (hc->flash[i] && hc->flash[i] < 1024)
1684 						led[i] = 0; /* led off */
1685 					if (hc->flash[i] >= 2048)
1686 						hc->flash[i] = 0;
1687 					if (hc->flash[i])
1688 						hc->flash[i] += poll;
1689 				} else {
1690 					led[i] = 2; /* led red */
1691 					hc->flash[i] = 0;
1692 				}
1693 			} else
1694 				led[i] = 0; /* led off */
1695 		}
1696 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1697 			leds = 0;
1698 			for (i = 0; i < 4; i++) {
1699 				if (led[i] == 1) {
1700 					/*green*/
1701 					leds |= (0x2 << (i * 2));
1702 				} else if (led[i] == 2) {
1703 					/*red*/
1704 					leds |= (0x1 << (i * 2));
1705 				}
1706 			}
1707 			if (leds != (int)hc->ledstate) {
1708 				vpm_out(hc, 0, 0x1a8 + 3, leds);
1709 				hc->ledstate = leds;
1710 			}
1711 		} else {
1712 			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1713 				((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1714 				((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1715 				((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1716 			if (leds != (int)hc->ledstate) {
1717 				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1718 				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1719 				hc->ledstate = leds;
1720 			}
1721 		}
1722 		break;
1723 
1724 	case 3: /* HFC 1S/2S Beronet */
1725 		/* red steady:     PH_DEACTIVATE
1726 		 * green steady:   PH_ACTIVATE
1727 		 * green flashing: activity on TX
1728 		 */
1729 		for (i = 0; i < 2; i++) {
1730 			state = 0;
1731 			active = -1;
1732 			dch = hc->chan[(i << 2) | 2].dch;
1733 			if (dch) {
1734 				state = dch->state;
1735 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1736 					active = 3;
1737 				else
1738 					active = 7;
1739 			}
1740 			if (state) {
1741 				if (state == active) {
1742 					led[i] = 1; /* led green */
1743 					hc->activity_tx |= hc->activity_rx;
1744 					if (!hc->flash[i] &&
1745 						(hc->activity_tx & (1 << i)))
1746 							hc->flash[i] = poll;
1747 					if (hc->flash[i] < 1024)
1748 						led[i] = 0; /* led off */
1749 					if (hc->flash[i] >= 2048)
1750 						hc->flash[i] = 0;
1751 					if (hc->flash[i])
1752 						hc->flash[i] += poll;
1753 				} else {
1754 					led[i] = 2; /* led red */
1755 					hc->flash[i] = 0;
1756 				}
1757 			} else
1758 				led[i] = 0; /* led off */
1759 		}
1760 		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1761 			| ((led[1]&1) << 3);
1762 		if (leds != (int)hc->ledstate) {
1763 			HFC_outb_nodebug(hc, R_GPIO_EN1,
1764 					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1765 			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1766 					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1767 			hc->ledstate = leds;
1768 		}
1769 		break;
1770 	case 8: /* HFC 8S+ Beronet */
1771 		/* off:      PH_DEACTIVATE
1772 		 * steady:   PH_ACTIVATE
1773 		 * flashing: activity on TX
1774 		 */
1775 		lled = 0xff; /* leds off */
1776 		for (i = 0; i < 8; i++) {
1777 			state = 0;
1778 			active = -1;
1779 			dch = hc->chan[(i << 2) | 2].dch;
1780 			if (dch) {
1781 				state = dch->state;
1782 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1783 					active = 3;
1784 				else
1785 					active = 7;
1786 			}
1787 			if (state) {
1788 				if (state == active) {
1789 					lled &= ~(1 << i); /* led on */
1790 					hc->activity_tx |= hc->activity_rx;
1791 					if (!hc->flash[i] &&
1792 						(hc->activity_tx & (1 << i)))
1793 							hc->flash[i] = poll;
1794 					if (hc->flash[i] < 1024)
1795 						lled |= 1 << i; /* led off */
1796 					if (hc->flash[i] >= 2048)
1797 						hc->flash[i] = 0;
1798 					if (hc->flash[i])
1799 						hc->flash[i] += poll;
1800 				} else
1801 					hc->flash[i] = 0;
1802 			}
1803 		}
1804 		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1805 		if (leddw != hc->ledstate) {
1806 			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1807 			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1808 			/* was _io before */
1809 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1810 			outw(0x4000, hc->pci_iobase + 4);
1811 			outl(leddw, hc->pci_iobase);
1812 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1813 			hc->ledstate = leddw;
1814 		}
1815 		break;
1816 	}
1817 	hc->activity_tx = 0;
1818 	hc->activity_rx = 0;
1819 }
1820 /*
1821  * read dtmf coefficients
1822  */
1823 
1824 static void
1825 hfcmulti_dtmf(struct hfc_multi *hc)
1826 {
1827 	s32		*coeff;
1828 	u_int		mantissa;
1829 	int		co, ch;
1830 	struct bchannel	*bch = NULL;
1831 	u8		exponent;
1832 	int		dtmf = 0;
1833 	int		addr;
1834 	u16		w_float;
1835 	struct sk_buff	*skb;
1836 	struct mISDNhead *hh;
1837 
1838 	if (debug & DEBUG_HFCMULTI_DTMF)
1839 		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1840 	for (ch = 0; ch <= 31; ch++) {
1841 		/* only process enabled B-channels */
1842 		bch = hc->chan[ch].bch;
1843 		if (!bch)
1844 			continue;
1845 		if (!hc->created[hc->chan[ch].port])
1846 			continue;
1847 		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1848 			continue;
1849 		if (debug & DEBUG_HFCMULTI_DTMF)
1850 			printk(KERN_DEBUG "%s: dtmf channel %d:",
1851 			       __func__, ch);
1852 		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1853 		dtmf = 1;
1854 		for (co = 0; co < 8; co++) {
1855 			/* read W(n-1) coefficient */
1856 			addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1857 			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1858 			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1859 			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1860 					 | V_ADDR_INC);
1861 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1862 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1863 			if (debug & DEBUG_HFCMULTI_DTMF)
1864 				printk(" %04x", w_float);
1865 
1866 			/* decode float (see chip doc) */
1867 			mantissa = w_float & 0x0fff;
1868 			if (w_float & 0x8000)
1869 				mantissa |= 0xfffff000;
1870 			exponent = (w_float >> 12) & 0x7;
1871 			if (exponent) {
1872 				mantissa ^= 0x1000;
1873 				mantissa <<= (exponent - 1);
1874 			}
1875 
1876 			/* store coefficient */
1877 			coeff[co << 1] = mantissa;
1878 
1879 			/* read W(n) coefficient */
1880 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1881 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1882 			if (debug & DEBUG_HFCMULTI_DTMF)
1883 				printk(" %04x", w_float);
1884 
1885 			/* decode float (see chip doc) */
1886 			mantissa = w_float & 0x0fff;
1887 			if (w_float & 0x8000)
1888 				mantissa |= 0xfffff000;
1889 			exponent = (w_float >> 12) & 0x7;
1890 			if (exponent) {
1891 				mantissa ^= 0x1000;
1892 				mantissa <<= (exponent - 1);
1893 			}
1894 
1895 			/* store coefficient */
1896 			coeff[(co << 1) | 1] = mantissa;
1897 		}
1898 		if (debug & DEBUG_HFCMULTI_DTMF)
1899 			printk(" DTMF ready %08x %08x %08x %08x "
1900 			       "%08x %08x %08x %08x\n",
1901 			       coeff[0], coeff[1], coeff[2], coeff[3],
1902 			       coeff[4], coeff[5], coeff[6], coeff[7]);
1903 		hc->chan[ch].coeff_count++;
1904 		if (hc->chan[ch].coeff_count == 8) {
1905 			hc->chan[ch].coeff_count = 0;
1906 			skb = mI_alloc_skb(512, GFP_ATOMIC);
1907 			if (!skb) {
1908 				printk(KERN_DEBUG "%s: No memory for skb\n",
1909 				       __func__);
1910 				continue;
1911 			}
1912 			hh = mISDN_HEAD_P(skb);
1913 			hh->prim = PH_CONTROL_IND;
1914 			hh->id = DTMF_HFC_COEF;
1915 			skb_put_data(skb, hc->chan[ch].coeff, 512);
1916 			recv_Bchannel_skb(bch, skb);
1917 		}
1918 	}
1919 
1920 	/* restart DTMF processing */
1921 	hc->dtmf = dtmf;
1922 	if (dtmf)
1923 		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1924 }
1925 
1926 
1927 /*
1928  * fill fifo as much as possible
1929  */
1930 
1931 static void
1932 hfcmulti_tx(struct hfc_multi *hc, int ch)
1933 {
1934 	int i, ii, temp, len = 0;
1935 	int Zspace, z1, z2; /* must be int for calculation */
1936 	int Fspace, f1, f2;
1937 	u_char *d;
1938 	int *txpending, slot_tx;
1939 	struct	bchannel *bch;
1940 	struct  dchannel *dch;
1941 	struct  sk_buff **sp = NULL;
1942 	int *idxp;
1943 
1944 	bch = hc->chan[ch].bch;
1945 	dch = hc->chan[ch].dch;
1946 	if ((!dch) && (!bch))
1947 		return;
1948 
1949 	txpending = &hc->chan[ch].txpending;
1950 	slot_tx = hc->chan[ch].slot_tx;
1951 	if (dch) {
1952 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1953 			return;
1954 		sp = &dch->tx_skb;
1955 		idxp = &dch->tx_idx;
1956 	} else {
1957 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1958 			return;
1959 		sp = &bch->tx_skb;
1960 		idxp = &bch->tx_idx;
1961 	}
1962 	if (*sp)
1963 		len = (*sp)->len;
1964 
1965 	if ((!len) && *txpending != 1)
1966 		return; /* no data */
1967 
1968 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1969 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1970 	    (hc->chan[ch].slot_rx < 0) &&
1971 	    (hc->chan[ch].slot_tx < 0))
1972 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1973 	else
1974 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1975 	HFC_wait_nodebug(hc);
1976 
1977 	if (*txpending == 2) {
1978 		/* reset fifo */
1979 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1980 		HFC_wait_nodebug(hc);
1981 		HFC_outb(hc, A_SUBCH_CFG, 0);
1982 		*txpending = 1;
1983 	}
1984 next_frame:
1985 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1986 		f1 = HFC_inb_nodebug(hc, A_F1);
1987 		f2 = HFC_inb_nodebug(hc, A_F2);
1988 		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1989 			if (debug & DEBUG_HFCMULTI_FIFO)
1990 				printk(KERN_DEBUG
1991 				       "%s(card %d): reread f2 because %d!=%d\n",
1992 				       __func__, hc->id + 1, temp, f2);
1993 			f2 = temp; /* repeat until F2 is equal */
1994 		}
1995 		Fspace = f2 - f1 - 1;
1996 		if (Fspace < 0)
1997 			Fspace += hc->Flen;
1998 		/*
1999 		 * Old FIFO handling doesn't give us the current Z2 read
2000 		 * pointer, so we cannot send the next frame before the fifo
2001 		 * is empty. It makes no difference except for a slightly
2002 		 * lower performance.
2003 		 */
2004 		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2005 			if (f1 != f2)
2006 				Fspace = 0;
2007 			else
2008 				Fspace = 1;
2009 		}
2010 		/* one frame only for ST D-channels, to allow resending */
2011 		if (hc->ctype != HFC_TYPE_E1 && dch) {
2012 			if (f1 != f2)
2013 				Fspace = 0;
2014 		}
2015 		/* F-counter full condition */
2016 		if (Fspace == 0)
2017 			return;
2018 	}
2019 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2020 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2021 	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2022 		if (debug & DEBUG_HFCMULTI_FIFO)
2023 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2024 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2025 		z2 = temp; /* repeat unti Z2 is equal */
2026 	}
2027 	hc->chan[ch].Zfill = z1 - z2;
2028 	if (hc->chan[ch].Zfill < 0)
2029 		hc->chan[ch].Zfill += hc->Zlen;
2030 	Zspace = z2 - z1;
2031 	if (Zspace <= 0)
2032 		Zspace += hc->Zlen;
2033 	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2034 	/* fill transparent data only to maxinum transparent load (minus 4) */
2035 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2036 		Zspace = Zspace - hc->Zlen + hc->max_trans;
2037 	if (Zspace <= 0) /* no space of 4 bytes */
2038 		return;
2039 
2040 	/* if no data */
2041 	if (!len) {
2042 		if (z1 == z2) { /* empty */
2043 			/* if done with FIFO audio data during PCM connection */
2044 			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2045 			    *txpending && slot_tx >= 0) {
2046 				if (debug & DEBUG_HFCMULTI_MODE)
2047 					printk(KERN_DEBUG
2048 					       "%s: reconnecting PCM due to no "
2049 					       "more FIFO data: channel %d "
2050 					       "slot_tx %d\n",
2051 					       __func__, ch, slot_tx);
2052 				/* connect slot */
2053 				if (hc->ctype == HFC_TYPE_XHFC)
2054 					HFC_outb(hc, A_CON_HDLC, 0xc0
2055 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2056 				/* Enable FIFO, no interrupt */
2057 				else
2058 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2059 						 V_HDLC_TRP | V_IFF);
2060 				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2061 				HFC_wait_nodebug(hc);
2062 				if (hc->ctype == HFC_TYPE_XHFC)
2063 					HFC_outb(hc, A_CON_HDLC, 0xc0
2064 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2065 				/* Enable FIFO, no interrupt */
2066 				else
2067 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2068 						 V_HDLC_TRP | V_IFF);
2069 				HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2070 				HFC_wait_nodebug(hc);
2071 			}
2072 			*txpending = 0;
2073 		}
2074 		return; /* no data */
2075 	}
2076 
2077 	/* "fill fifo if empty" feature */
2078 	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2079 	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2080 		if (debug & DEBUG_HFCMULTI_FILL)
2081 			printk(KERN_DEBUG "%s: buffer empty, so we have "
2082 			       "underrun\n", __func__);
2083 		/* fill buffer, to prevent future underrun */
2084 		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2085 		Zspace -= (poll >> 1);
2086 	}
2087 
2088 	/* if audio data and connected slot */
2089 	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2090 	    && slot_tx >= 0) {
2091 		if (debug & DEBUG_HFCMULTI_MODE)
2092 			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2093 			       "FIFO data: channel %d slot_tx %d\n",
2094 			       __func__, ch, slot_tx);
2095 		/* disconnect slot */
2096 		if (hc->ctype == HFC_TYPE_XHFC)
2097 			HFC_outb(hc, A_CON_HDLC, 0x80
2098 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2099 		/* Enable FIFO, no interrupt */
2100 		else
2101 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2102 				 V_HDLC_TRP | V_IFF);
2103 		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2104 		HFC_wait_nodebug(hc);
2105 		if (hc->ctype == HFC_TYPE_XHFC)
2106 			HFC_outb(hc, A_CON_HDLC, 0x80
2107 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2108 		/* Enable FIFO, no interrupt */
2109 		else
2110 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2111 				 V_HDLC_TRP | V_IFF);
2112 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2113 		HFC_wait_nodebug(hc);
2114 	}
2115 	*txpending = 1;
2116 
2117 	/* show activity */
2118 	if (dch)
2119 		hc->activity_tx |= 1 << hc->chan[ch].port;
2120 
2121 	/* fill fifo to what we have left */
2122 	ii = len;
2123 	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2124 		temp = 1;
2125 	else
2126 		temp = 0;
2127 	i = *idxp;
2128 	d = (*sp)->data + i;
2129 	if (ii - i > Zspace)
2130 		ii = Zspace + i;
2131 	if (debug & DEBUG_HFCMULTI_FIFO)
2132 		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2133 		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2134 		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2135 		       temp ? "HDLC" : "TRANS");
2136 
2137 	/* Have to prep the audio data */
2138 	hc->write_fifo(hc, d, ii - i);
2139 	hc->chan[ch].Zfill += ii - i;
2140 	*idxp = ii;
2141 
2142 	/* if not all data has been written */
2143 	if (ii != len) {
2144 		/* NOTE: fifo is started by the calling function */
2145 		return;
2146 	}
2147 
2148 	/* if all data has been written, terminate frame */
2149 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2150 		/* increment f-counter */
2151 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2152 		HFC_wait_nodebug(hc);
2153 	}
2154 
2155 	dev_kfree_skb(*sp);
2156 	/* check for next frame */
2157 	if (bch && get_next_bframe(bch)) {
2158 		len = (*sp)->len;
2159 		goto next_frame;
2160 	}
2161 	if (dch && get_next_dframe(dch)) {
2162 		len = (*sp)->len;
2163 		goto next_frame;
2164 	}
2165 
2166 	/*
2167 	 * now we have no more data, so in case of transparent,
2168 	 * we set the last byte in fifo to 'silence' in case we will get
2169 	 * no more data at all. this prevents sending an undefined value.
2170 	 */
2171 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2172 		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2173 }
2174 
2175 
2176 /* NOTE: only called if E1 card is in active state */
2177 static void
2178 hfcmulti_rx(struct hfc_multi *hc, int ch)
2179 {
2180 	int temp;
2181 	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2182 	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2183 	int again = 0;
2184 	struct	bchannel *bch;
2185 	struct  dchannel *dch = NULL;
2186 	struct sk_buff	*skb, **sp = NULL;
2187 	int	maxlen;
2188 
2189 	bch = hc->chan[ch].bch;
2190 	if (bch) {
2191 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2192 			return;
2193 	} else if (hc->chan[ch].dch) {
2194 		dch = hc->chan[ch].dch;
2195 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2196 			return;
2197 	} else {
2198 		return;
2199 	}
2200 next_frame:
2201 	/* on first AND before getting next valid frame, R_FIFO must be written
2202 	   to. */
2203 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2204 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2205 	    (hc->chan[ch].slot_rx < 0) &&
2206 	    (hc->chan[ch].slot_tx < 0))
2207 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2208 	else
2209 		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2210 	HFC_wait_nodebug(hc);
2211 
2212 	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2213 	if (hc->chan[ch].rx_off) {
2214 		if (bch)
2215 			bch->dropcnt += poll; /* not exact but fair enough */
2216 		return;
2217 	}
2218 
2219 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2220 		f1 = HFC_inb_nodebug(hc, A_F1);
2221 		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2222 			if (debug & DEBUG_HFCMULTI_FIFO)
2223 				printk(KERN_DEBUG
2224 				       "%s(card %d): reread f1 because %d!=%d\n",
2225 				       __func__, hc->id + 1, temp, f1);
2226 			f1 = temp; /* repeat until F1 is equal */
2227 		}
2228 		f2 = HFC_inb_nodebug(hc, A_F2);
2229 	}
2230 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2231 	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2232 		if (debug & DEBUG_HFCMULTI_FIFO)
2233 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2234 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2235 		z1 = temp; /* repeat until Z1 is equal */
2236 	}
2237 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2238 	Zsize = z1 - z2;
2239 	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2240 		/* complete hdlc frame */
2241 		Zsize++;
2242 	if (Zsize < 0)
2243 		Zsize += hc->Zlen;
2244 	/* if buffer is empty */
2245 	if (Zsize <= 0)
2246 		return;
2247 
2248 	if (bch) {
2249 		maxlen = bchannel_get_rxbuf(bch, Zsize);
2250 		if (maxlen < 0) {
2251 			pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2252 				hc->id + 1, bch->nr, Zsize);
2253 			return;
2254 		}
2255 		sp = &bch->rx_skb;
2256 		maxlen = bch->maxlen;
2257 	} else { /* Dchannel */
2258 		sp = &dch->rx_skb;
2259 		maxlen = dch->maxlen + 3;
2260 		if (*sp == NULL) {
2261 			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2262 			if (*sp == NULL) {
2263 				pr_warn("card%d: No mem for dch rx_skb\n",
2264 					hc->id + 1);
2265 				return;
2266 			}
2267 		}
2268 	}
2269 	/* show activity */
2270 	if (dch)
2271 		hc->activity_rx |= 1 << hc->chan[ch].port;
2272 
2273 	/* empty fifo with what we have */
2274 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2275 		if (debug & DEBUG_HFCMULTI_FIFO)
2276 			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2277 			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2278 			       "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2279 			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2280 			       f1, f2, Zsize + (*sp)->len, again);
2281 		/* HDLC */
2282 		if ((Zsize + (*sp)->len) > maxlen) {
2283 			if (debug & DEBUG_HFCMULTI_FIFO)
2284 				printk(KERN_DEBUG
2285 				       "%s(card %d): hdlc-frame too large.\n",
2286 				       __func__, hc->id + 1);
2287 			skb_trim(*sp, 0);
2288 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2289 			HFC_wait_nodebug(hc);
2290 			return;
2291 		}
2292 
2293 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2294 
2295 		if (f1 != f2) {
2296 			/* increment Z2,F2-counter */
2297 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2298 			HFC_wait_nodebug(hc);
2299 			/* check size */
2300 			if ((*sp)->len < 4) {
2301 				if (debug & DEBUG_HFCMULTI_FIFO)
2302 					printk(KERN_DEBUG
2303 					       "%s(card %d): Frame below minimum "
2304 					       "size\n", __func__, hc->id + 1);
2305 				skb_trim(*sp, 0);
2306 				goto next_frame;
2307 			}
2308 			/* there is at least one complete frame, check crc */
2309 			if ((*sp)->data[(*sp)->len - 1]) {
2310 				if (debug & DEBUG_HFCMULTI_CRC)
2311 					printk(KERN_DEBUG
2312 					       "%s: CRC-error\n", __func__);
2313 				skb_trim(*sp, 0);
2314 				goto next_frame;
2315 			}
2316 			skb_trim(*sp, (*sp)->len - 3);
2317 			if ((*sp)->len < MISDN_COPY_SIZE) {
2318 				skb = *sp;
2319 				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2320 				if (*sp) {
2321 					skb_put_data(*sp, skb->data, skb->len);
2322 					skb_trim(skb, 0);
2323 				} else {
2324 					printk(KERN_DEBUG "%s: No mem\n",
2325 					       __func__);
2326 					*sp = skb;
2327 					skb = NULL;
2328 				}
2329 			} else {
2330 				skb = NULL;
2331 			}
2332 			if (debug & DEBUG_HFCMULTI_FIFO) {
2333 				printk(KERN_DEBUG "%s(card %d):",
2334 				       __func__, hc->id + 1);
2335 				temp = 0;
2336 				while (temp < (*sp)->len)
2337 					printk(" %02x", (*sp)->data[temp++]);
2338 				printk("\n");
2339 			}
2340 			if (dch)
2341 				recv_Dchannel(dch);
2342 			else
2343 				recv_Bchannel(bch, MISDN_ID_ANY, false);
2344 			*sp = skb;
2345 			again++;
2346 			goto next_frame;
2347 		}
2348 		/* there is an incomplete frame */
2349 	} else {
2350 		/* transparent */
2351 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2352 		if (debug & DEBUG_HFCMULTI_FIFO)
2353 			printk(KERN_DEBUG
2354 			       "%s(card %d): fifo(%d) reading %d bytes "
2355 			       "(z1=%04x, z2=%04x) TRANS\n",
2356 			       __func__, hc->id + 1, ch, Zsize, z1, z2);
2357 		/* only bch is transparent */
2358 		recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2359 	}
2360 }
2361 
2362 
2363 /*
2364  * Interrupt handler
2365  */
2366 static void
2367 signal_state_up(struct dchannel *dch, int info, char *msg)
2368 {
2369 	struct sk_buff	*skb;
2370 	int		id, data = info;
2371 
2372 	if (debug & DEBUG_HFCMULTI_STATE)
2373 		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2374 
2375 	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2376 
2377 	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2378 			       GFP_ATOMIC);
2379 	if (!skb)
2380 		return;
2381 	recv_Dchannel_skb(dch, skb);
2382 }
2383 
2384 static inline void
2385 handle_timer_irq(struct hfc_multi *hc)
2386 {
2387 	int		ch, temp;
2388 	struct dchannel	*dch;
2389 	u_long		flags;
2390 
2391 	/* process queued resync jobs */
2392 	if (hc->e1_resync) {
2393 		/* lock, so e1_resync gets not changed */
2394 		spin_lock_irqsave(&HFClock, flags);
2395 		if (hc->e1_resync & 1) {
2396 			if (debug & DEBUG_HFCMULTI_PLXSD)
2397 				printk(KERN_DEBUG "Enable SYNC_I\n");
2398 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2399 			/* disable JATT, if RX_SYNC is set */
2400 			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2401 				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2402 		}
2403 		if (hc->e1_resync & 2) {
2404 			if (debug & DEBUG_HFCMULTI_PLXSD)
2405 				printk(KERN_DEBUG "Enable jatt PLL\n");
2406 			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2407 		}
2408 		if (hc->e1_resync & 4) {
2409 			if (debug & DEBUG_HFCMULTI_PLXSD)
2410 				printk(KERN_DEBUG
2411 				       "Enable QUARTZ for HFC-E1\n");
2412 			/* set jatt to quartz */
2413 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2414 				 | V_JATT_OFF);
2415 			/* switch to JATT, in case it is not already */
2416 			HFC_outb(hc, R_SYNC_OUT, 0);
2417 		}
2418 		hc->e1_resync = 0;
2419 		spin_unlock_irqrestore(&HFClock, flags);
2420 	}
2421 
2422 	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2423 		for (ch = 0; ch <= 31; ch++) {
2424 			if (hc->created[hc->chan[ch].port]) {
2425 				hfcmulti_tx(hc, ch);
2426 				/* fifo is started when switching to rx-fifo */
2427 				hfcmulti_rx(hc, ch);
2428 				if (hc->chan[ch].dch &&
2429 				    hc->chan[ch].nt_timer > -1) {
2430 					dch = hc->chan[ch].dch;
2431 					if (!(--hc->chan[ch].nt_timer)) {
2432 						schedule_event(dch,
2433 							       FLG_PHCHANGE);
2434 						if (debug &
2435 						    DEBUG_HFCMULTI_STATE)
2436 							printk(KERN_DEBUG
2437 							       "%s: nt_timer at "
2438 							       "state %x\n",
2439 							       __func__,
2440 							       dch->state);
2441 					}
2442 				}
2443 			}
2444 		}
2445 	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2446 		dch = hc->chan[hc->dnum[0]].dch;
2447 		/* LOS */
2448 		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2449 		hc->chan[hc->dnum[0]].los = temp;
2450 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2451 			if (!temp && hc->chan[hc->dnum[0]].los)
2452 				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2453 						"LOS detected");
2454 			if (temp && !hc->chan[hc->dnum[0]].los)
2455 				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2456 						"LOS gone");
2457 		}
2458 		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2459 			/* AIS */
2460 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2461 			if (!temp && hc->chan[hc->dnum[0]].ais)
2462 				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2463 						"AIS detected");
2464 			if (temp && !hc->chan[hc->dnum[0]].ais)
2465 				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2466 						"AIS gone");
2467 			hc->chan[hc->dnum[0]].ais = temp;
2468 		}
2469 		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2470 			/* SLIP */
2471 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2472 			if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2473 				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2474 						" bit SLIP detected RX");
2475 			hc->chan[hc->dnum[0]].slip_rx = temp;
2476 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2477 			if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2478 				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2479 						" bit SLIP detected TX");
2480 			hc->chan[hc->dnum[0]].slip_tx = temp;
2481 		}
2482 		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2483 			/* RDI */
2484 			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2485 			if (!temp && hc->chan[hc->dnum[0]].rdi)
2486 				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2487 						"RDI detected");
2488 			if (temp && !hc->chan[hc->dnum[0]].rdi)
2489 				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2490 						"RDI gone");
2491 			hc->chan[hc->dnum[0]].rdi = temp;
2492 		}
2493 		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2494 		switch (hc->chan[hc->dnum[0]].sync) {
2495 		case 0:
2496 			if ((temp & 0x60) == 0x60) {
2497 				if (debug & DEBUG_HFCMULTI_SYNC)
2498 					printk(KERN_DEBUG
2499 					       "%s: (id=%d) E1 now "
2500 					       "in clock sync\n",
2501 					       __func__, hc->id);
2502 				HFC_outb(hc, R_RX_OFF,
2503 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2504 				HFC_outb(hc, R_TX_OFF,
2505 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2506 				hc->chan[hc->dnum[0]].sync = 1;
2507 				goto check_framesync;
2508 			}
2509 			break;
2510 		case 1:
2511 			if ((temp & 0x60) != 0x60) {
2512 				if (debug & DEBUG_HFCMULTI_SYNC)
2513 					printk(KERN_DEBUG
2514 					       "%s: (id=%d) E1 "
2515 					       "lost clock sync\n",
2516 					       __func__, hc->id);
2517 				hc->chan[hc->dnum[0]].sync = 0;
2518 				break;
2519 			}
2520 		check_framesync:
2521 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2522 			if (temp == 0x27) {
2523 				if (debug & DEBUG_HFCMULTI_SYNC)
2524 					printk(KERN_DEBUG
2525 					       "%s: (id=%d) E1 "
2526 					       "now in frame sync\n",
2527 					       __func__, hc->id);
2528 				hc->chan[hc->dnum[0]].sync = 2;
2529 			}
2530 			break;
2531 		case 2:
2532 			if ((temp & 0x60) != 0x60) {
2533 				if (debug & DEBUG_HFCMULTI_SYNC)
2534 					printk(KERN_DEBUG
2535 					       "%s: (id=%d) E1 lost "
2536 					       "clock & frame sync\n",
2537 					       __func__, hc->id);
2538 				hc->chan[hc->dnum[0]].sync = 0;
2539 				break;
2540 			}
2541 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2542 			if (temp != 0x27) {
2543 				if (debug & DEBUG_HFCMULTI_SYNC)
2544 					printk(KERN_DEBUG
2545 					       "%s: (id=%d) E1 "
2546 					       "lost frame sync\n",
2547 					       __func__, hc->id);
2548 				hc->chan[hc->dnum[0]].sync = 1;
2549 			}
2550 			break;
2551 		}
2552 	}
2553 
2554 	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2555 		hfcmulti_watchdog(hc);
2556 
2557 	if (hc->leds)
2558 		hfcmulti_leds(hc);
2559 }
2560 
2561 static void
2562 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2563 {
2564 	struct dchannel	*dch;
2565 	int		ch;
2566 	int		active;
2567 	u_char		st_status, temp;
2568 
2569 	/* state machine */
2570 	for (ch = 0; ch <= 31; ch++) {
2571 		if (hc->chan[ch].dch) {
2572 			dch = hc->chan[ch].dch;
2573 			if (r_irq_statech & 1) {
2574 				HFC_outb_nodebug(hc, R_ST_SEL,
2575 						 hc->chan[ch].port);
2576 				/* undocumented: delay after R_ST_SEL */
2577 				udelay(1);
2578 				/* undocumented: status changes during read */
2579 				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2580 				while (st_status != (temp =
2581 						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2582 					if (debug & DEBUG_HFCMULTI_STATE)
2583 						printk(KERN_DEBUG "%s: reread "
2584 						       "STATE because %d!=%d\n",
2585 						       __func__, temp,
2586 						       st_status);
2587 					st_status = temp; /* repeat */
2588 				}
2589 
2590 				/* Speech Design TE-sync indication */
2591 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2592 				    dch->dev.D.protocol == ISDN_P_TE_S0) {
2593 					if (st_status & V_FR_SYNC_ST)
2594 						hc->syncronized |=
2595 							(1 << hc->chan[ch].port);
2596 					else
2597 						hc->syncronized &=
2598 							~(1 << hc->chan[ch].port);
2599 				}
2600 				dch->state = st_status & 0x0f;
2601 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2602 					active = 3;
2603 				else
2604 					active = 7;
2605 				if (dch->state == active) {
2606 					HFC_outb_nodebug(hc, R_FIFO,
2607 							 (ch << 1) | 1);
2608 					HFC_wait_nodebug(hc);
2609 					HFC_outb_nodebug(hc,
2610 							 R_INC_RES_FIFO, V_RES_F);
2611 					HFC_wait_nodebug(hc);
2612 					dch->tx_idx = 0;
2613 				}
2614 				schedule_event(dch, FLG_PHCHANGE);
2615 				if (debug & DEBUG_HFCMULTI_STATE)
2616 					printk(KERN_DEBUG
2617 					       "%s: S/T newstate %x port %d\n",
2618 					       __func__, dch->state,
2619 					       hc->chan[ch].port);
2620 			}
2621 			r_irq_statech >>= 1;
2622 		}
2623 	}
2624 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2625 		plxsd_checksync(hc, 0);
2626 }
2627 
2628 static void
2629 fifo_irq(struct hfc_multi *hc, int block)
2630 {
2631 	int	ch, j;
2632 	struct dchannel	*dch;
2633 	struct bchannel	*bch;
2634 	u_char r_irq_fifo_bl;
2635 
2636 	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2637 	j = 0;
2638 	while (j < 8) {
2639 		ch = (block << 2) + (j >> 1);
2640 		dch = hc->chan[ch].dch;
2641 		bch = hc->chan[ch].bch;
2642 		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2643 			j += 2;
2644 			continue;
2645 		}
2646 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2647 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2648 			hfcmulti_tx(hc, ch);
2649 			/* start fifo */
2650 			HFC_outb_nodebug(hc, R_FIFO, 0);
2651 			HFC_wait_nodebug(hc);
2652 		}
2653 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2654 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2655 			hfcmulti_tx(hc, ch);
2656 			/* start fifo */
2657 			HFC_outb_nodebug(hc, R_FIFO, 0);
2658 			HFC_wait_nodebug(hc);
2659 		}
2660 		j++;
2661 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2662 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2663 			hfcmulti_rx(hc, ch);
2664 		}
2665 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2666 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2667 			hfcmulti_rx(hc, ch);
2668 		}
2669 		j++;
2670 	}
2671 }
2672 
2673 #ifdef IRQ_DEBUG
2674 int irqsem;
2675 #endif
2676 static irqreturn_t
2677 hfcmulti_interrupt(int intno, void *dev_id)
2678 {
2679 #ifdef IRQCOUNT_DEBUG
2680 	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2681 		iq5 = 0, iq6 = 0, iqcnt = 0;
2682 #endif
2683 	struct hfc_multi	*hc = dev_id;
2684 	struct dchannel		*dch;
2685 	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2686 	int			i;
2687 	void __iomem		*plx_acc;
2688 	u_short			wval;
2689 	u_char			e1_syncsta, temp, temp2;
2690 	u_long			flags;
2691 
2692 	if (!hc) {
2693 		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2694 		return IRQ_NONE;
2695 	}
2696 
2697 	spin_lock(&hc->lock);
2698 
2699 #ifdef IRQ_DEBUG
2700 	if (irqsem)
2701 		printk(KERN_ERR "irq for card %d during irq from "
2702 		       "card %d, this is no bug.\n", hc->id + 1, irqsem);
2703 	irqsem = hc->id + 1;
2704 #endif
2705 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2706 	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2707 		goto irq_notforus;
2708 #endif
2709 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2710 		spin_lock_irqsave(&plx_lock, flags);
2711 		plx_acc = hc->plx_membase + PLX_INTCSR;
2712 		wval = readw(plx_acc);
2713 		spin_unlock_irqrestore(&plx_lock, flags);
2714 		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2715 			goto irq_notforus;
2716 	}
2717 
2718 	status = HFC_inb_nodebug(hc, R_STATUS);
2719 	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2720 #ifdef IRQCOUNT_DEBUG
2721 	if (r_irq_statech)
2722 		iq1++;
2723 	if (status & V_DTMF_STA)
2724 		iq2++;
2725 	if (status & V_LOST_STA)
2726 		iq3++;
2727 	if (status & V_EXT_IRQSTA)
2728 		iq4++;
2729 	if (status & V_MISC_IRQSTA)
2730 		iq5++;
2731 	if (status & V_FR_IRQSTA)
2732 		iq6++;
2733 	if (iqcnt++ > 5000) {
2734 		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2735 		       iq1, iq2, iq3, iq4, iq5, iq6);
2736 		iqcnt = 0;
2737 	}
2738 #endif
2739 
2740 	if (!r_irq_statech &&
2741 	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2742 			V_MISC_IRQSTA | V_FR_IRQSTA))) {
2743 		/* irq is not for us */
2744 		goto irq_notforus;
2745 	}
2746 	hc->irqcnt++;
2747 	if (r_irq_statech) {
2748 		if (hc->ctype != HFC_TYPE_E1)
2749 			ph_state_irq(hc, r_irq_statech);
2750 	}
2751 	if (status & V_LOST_STA) {
2752 		/* LOST IRQ */
2753 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2754 	}
2755 	if (status & V_MISC_IRQSTA) {
2756 		/* misc IRQ */
2757 		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2758 		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2759 		if (r_irq_misc & V_STA_IRQ) {
2760 			if (hc->ctype == HFC_TYPE_E1) {
2761 				/* state machine */
2762 				dch = hc->chan[hc->dnum[0]].dch;
2763 				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2764 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2765 				    && hc->e1_getclock) {
2766 					if (e1_syncsta & V_FR_SYNC_E1)
2767 						hc->syncronized = 1;
2768 					else
2769 						hc->syncronized = 0;
2770 				}
2771 				/* undocumented: status changes during read */
2772 				temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2773 				while (temp != (temp2 =
2774 						      HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2775 					if (debug & DEBUG_HFCMULTI_STATE)
2776 						printk(KERN_DEBUG "%s: reread "
2777 						       "STATE because %d!=%d\n",
2778 						    __func__, temp, temp2);
2779 					temp = temp2; /* repeat */
2780 				}
2781 				/* broadcast state change to all fragments */
2782 				if (debug & DEBUG_HFCMULTI_STATE)
2783 					printk(KERN_DEBUG
2784 					       "%s: E1 (id=%d) newstate %x\n",
2785 					    __func__, hc->id, temp & 0x7);
2786 				for (i = 0; i < hc->ports; i++) {
2787 					dch = hc->chan[hc->dnum[i]].dch;
2788 					dch->state = temp & 0x7;
2789 					schedule_event(dch, FLG_PHCHANGE);
2790 				}
2791 
2792 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2793 					plxsd_checksync(hc, 0);
2794 			}
2795 		}
2796 		if (r_irq_misc & V_TI_IRQ) {
2797 			if (hc->iclock_on)
2798 				mISDN_clock_update(hc->iclock, poll, NULL);
2799 			handle_timer_irq(hc);
2800 		}
2801 
2802 		if (r_irq_misc & V_DTMF_IRQ)
2803 			hfcmulti_dtmf(hc);
2804 
2805 		if (r_irq_misc & V_IRQ_PROC) {
2806 			static int irq_proc_cnt;
2807 			if (!irq_proc_cnt++)
2808 				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2809 				       " this should not happen\n", __func__);
2810 		}
2811 
2812 	}
2813 	if (status & V_FR_IRQSTA) {
2814 		/* FIFO IRQ */
2815 		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2816 		for (i = 0; i < 8; i++) {
2817 			if (r_irq_oview & (1 << i))
2818 				fifo_irq(hc, i);
2819 		}
2820 	}
2821 
2822 #ifdef IRQ_DEBUG
2823 	irqsem = 0;
2824 #endif
2825 	spin_unlock(&hc->lock);
2826 	return IRQ_HANDLED;
2827 
2828 irq_notforus:
2829 #ifdef IRQ_DEBUG
2830 	irqsem = 0;
2831 #endif
2832 	spin_unlock(&hc->lock);
2833 	return IRQ_NONE;
2834 }
2835 
2836 
2837 /*
2838  * timer callback for D-chan busy resolution. Currently no function
2839  */
2840 
2841 static void
2842 hfcmulti_dbusy_timer(struct timer_list *t)
2843 {
2844 }
2845 
2846 
2847 /*
2848  * activate/deactivate hardware for selected channels and mode
2849  *
2850  * configure B-channel with the given protocol
2851  * ch eqals to the HFC-channel (0-31)
2852  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2853  * for S/T, 1-31 for E1)
2854  * the hdlc interrupts will be set/unset
2855  */
2856 static int
2857 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2858 	      int bank_tx, int slot_rx, int bank_rx)
2859 {
2860 	int flow_tx = 0, flow_rx = 0, routing = 0;
2861 	int oslot_tx, oslot_rx;
2862 	int conf;
2863 
2864 	if (ch < 0 || ch > 31)
2865 		return -EINVAL;
2866 	oslot_tx = hc->chan[ch].slot_tx;
2867 	oslot_rx = hc->chan[ch].slot_rx;
2868 	conf = hc->chan[ch].conf;
2869 
2870 	if (debug & DEBUG_HFCMULTI_MODE)
2871 		printk(KERN_DEBUG
2872 		       "%s: card %d channel %d protocol %x slot old=%d new=%d "
2873 		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2874 		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2875 		       bank_tx, oslot_rx, slot_rx, bank_rx);
2876 
2877 	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2878 		/* remove from slot */
2879 		if (debug & DEBUG_HFCMULTI_MODE)
2880 			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2881 			       __func__, oslot_tx);
2882 		if (hc->slot_owner[oslot_tx << 1] == ch) {
2883 			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2884 			HFC_outb(hc, A_SL_CFG, 0);
2885 			if (hc->ctype != HFC_TYPE_XHFC)
2886 				HFC_outb(hc, A_CONF, 0);
2887 			hc->slot_owner[oslot_tx << 1] = -1;
2888 		} else {
2889 			if (debug & DEBUG_HFCMULTI_MODE)
2890 				printk(KERN_DEBUG
2891 				       "%s: we are not owner of this tx slot "
2892 				       "anymore, channel %d is.\n",
2893 				       __func__, hc->slot_owner[oslot_tx << 1]);
2894 		}
2895 	}
2896 
2897 	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2898 		/* remove from slot */
2899 		if (debug & DEBUG_HFCMULTI_MODE)
2900 			printk(KERN_DEBUG
2901 			       "%s: remove from slot %d (RX)\n",
2902 			       __func__, oslot_rx);
2903 		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2904 			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2905 			HFC_outb(hc, A_SL_CFG, 0);
2906 			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2907 		} else {
2908 			if (debug & DEBUG_HFCMULTI_MODE)
2909 				printk(KERN_DEBUG
2910 				       "%s: we are not owner of this rx slot "
2911 				       "anymore, channel %d is.\n",
2912 				       __func__,
2913 				       hc->slot_owner[(oslot_rx << 1) | 1]);
2914 		}
2915 	}
2916 
2917 	if (slot_tx < 0) {
2918 		flow_tx = 0x80; /* FIFO->ST */
2919 		/* disable pcm slot */
2920 		hc->chan[ch].slot_tx = -1;
2921 		hc->chan[ch].bank_tx = 0;
2922 	} else {
2923 		/* set pcm slot */
2924 		if (hc->chan[ch].txpending)
2925 			flow_tx = 0x80; /* FIFO->ST */
2926 		else
2927 			flow_tx = 0xc0; /* PCM->ST */
2928 		/* put on slot */
2929 		routing = bank_tx ? 0xc0 : 0x80;
2930 		if (conf >= 0 || bank_tx > 1)
2931 			routing = 0x40; /* loop */
2932 		if (debug & DEBUG_HFCMULTI_MODE)
2933 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2934 			       " %d flow %02x routing %02x conf %d (TX)\n",
2935 			       __func__, ch, slot_tx, bank_tx,
2936 			       flow_tx, routing, conf);
2937 		HFC_outb(hc, R_SLOT, slot_tx << 1);
2938 		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2939 		if (hc->ctype != HFC_TYPE_XHFC)
2940 			HFC_outb(hc, A_CONF,
2941 				 (conf < 0) ? 0 : (conf | V_CONF_SL));
2942 		hc->slot_owner[slot_tx << 1] = ch;
2943 		hc->chan[ch].slot_tx = slot_tx;
2944 		hc->chan[ch].bank_tx = bank_tx;
2945 	}
2946 	if (slot_rx < 0) {
2947 		/* disable pcm slot */
2948 		flow_rx = 0x80; /* ST->FIFO */
2949 		hc->chan[ch].slot_rx = -1;
2950 		hc->chan[ch].bank_rx = 0;
2951 	} else {
2952 		/* set pcm slot */
2953 		if (hc->chan[ch].txpending)
2954 			flow_rx = 0x80; /* ST->FIFO */
2955 		else
2956 			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2957 		/* put on slot */
2958 		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2959 		if (conf >= 0 || bank_rx > 1)
2960 			routing = 0x40; /* loop */
2961 		if (debug & DEBUG_HFCMULTI_MODE)
2962 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2963 			       " %d flow %02x routing %02x conf %d (RX)\n",
2964 			       __func__, ch, slot_rx, bank_rx,
2965 			       flow_rx, routing, conf);
2966 		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2967 		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2968 		hc->slot_owner[(slot_rx << 1) | 1] = ch;
2969 		hc->chan[ch].slot_rx = slot_rx;
2970 		hc->chan[ch].bank_rx = bank_rx;
2971 	}
2972 
2973 	switch (protocol) {
2974 	case (ISDN_P_NONE):
2975 		/* disable TX fifo */
2976 		HFC_outb(hc, R_FIFO, ch << 1);
2977 		HFC_wait(hc);
2978 		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2979 		HFC_outb(hc, A_SUBCH_CFG, 0);
2980 		HFC_outb(hc, A_IRQ_MSK, 0);
2981 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2982 		HFC_wait(hc);
2983 		/* disable RX fifo */
2984 		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2985 		HFC_wait(hc);
2986 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2987 		HFC_outb(hc, A_SUBCH_CFG, 0);
2988 		HFC_outb(hc, A_IRQ_MSK, 0);
2989 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2990 		HFC_wait(hc);
2991 		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2992 			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2993 				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2994 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2995 			/* undocumented: delay after R_ST_SEL */
2996 			udelay(1);
2997 			HFC_outb(hc, A_ST_CTRL0,
2998 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2999 		}
3000 		if (hc->chan[ch].bch) {
3001 			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3002 			test_and_clear_bit(FLG_TRANSPARENT,
3003 					   &hc->chan[ch].bch->Flags);
3004 		}
3005 		break;
3006 	case (ISDN_P_B_RAW): /* B-channel */
3007 
3008 		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3009 		    (hc->chan[ch].slot_rx < 0) &&
3010 		    (hc->chan[ch].slot_tx < 0)) {
3011 
3012 			printk(KERN_DEBUG
3013 			       "Setting B-channel %d to echo cancelable "
3014 			       "state on PCM slot %d\n", ch,
3015 			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3016 			printk(KERN_DEBUG
3017 			       "Enabling pass through for channel\n");
3018 			vpm_out(hc, ch, ((ch / 4) * 8) +
3019 				((ch % 4) * 4) + 1, 0x01);
3020 			/* rx path */
3021 			/* S/T -> PCM */
3022 			HFC_outb(hc, R_FIFO, (ch << 1));
3023 			HFC_wait(hc);
3024 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3025 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3026 					      ((ch % 4) * 4) + 1) << 1);
3027 			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3028 
3029 			/* PCM -> FIFO */
3030 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3031 			HFC_wait(hc);
3032 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3033 			HFC_outb(hc, A_SUBCH_CFG, 0);
3034 			HFC_outb(hc, A_IRQ_MSK, 0);
3035 			if (hc->chan[ch].protocol != protocol) {
3036 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3037 				HFC_wait(hc);
3038 			}
3039 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3040 					       ((ch % 4) * 4) + 1) << 1) | 1);
3041 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3042 
3043 			/* tx path */
3044 			/* PCM -> S/T */
3045 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3046 			HFC_wait(hc);
3047 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3048 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3049 					       ((ch % 4) * 4)) << 1) | 1);
3050 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3051 
3052 			/* FIFO -> PCM */
3053 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3054 			HFC_wait(hc);
3055 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3056 			HFC_outb(hc, A_SUBCH_CFG, 0);
3057 			HFC_outb(hc, A_IRQ_MSK, 0);
3058 			if (hc->chan[ch].protocol != protocol) {
3059 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3060 				HFC_wait(hc);
3061 			}
3062 			/* tx silence */
3063 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3064 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3065 					      ((ch % 4) * 4)) << 1);
3066 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3067 		} else {
3068 			/* enable TX fifo */
3069 			HFC_outb(hc, R_FIFO, ch << 1);
3070 			HFC_wait(hc);
3071 			if (hc->ctype == HFC_TYPE_XHFC)
3072 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3073 					 V_HDLC_TRP | V_IFF);
3074 			/* Enable FIFO, no interrupt */
3075 			else
3076 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3077 					 V_HDLC_TRP | V_IFF);
3078 			HFC_outb(hc, A_SUBCH_CFG, 0);
3079 			HFC_outb(hc, A_IRQ_MSK, 0);
3080 			if (hc->chan[ch].protocol != protocol) {
3081 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3082 				HFC_wait(hc);
3083 			}
3084 			/* tx silence */
3085 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3086 			/* enable RX fifo */
3087 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3088 			HFC_wait(hc);
3089 			if (hc->ctype == HFC_TYPE_XHFC)
3090 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3091 					 V_HDLC_TRP);
3092 			/* Enable FIFO, no interrupt*/
3093 			else
3094 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3095 					 V_HDLC_TRP);
3096 			HFC_outb(hc, A_SUBCH_CFG, 0);
3097 			HFC_outb(hc, A_IRQ_MSK, 0);
3098 			if (hc->chan[ch].protocol != protocol) {
3099 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3100 				HFC_wait(hc);
3101 			}
3102 		}
3103 		if (hc->ctype != HFC_TYPE_E1) {
3104 			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3105 				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3106 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3107 			/* undocumented: delay after R_ST_SEL */
3108 			udelay(1);
3109 			HFC_outb(hc, A_ST_CTRL0,
3110 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3111 		}
3112 		if (hc->chan[ch].bch)
3113 			test_and_set_bit(FLG_TRANSPARENT,
3114 					 &hc->chan[ch].bch->Flags);
3115 		break;
3116 	case (ISDN_P_B_HDLC): /* B-channel */
3117 	case (ISDN_P_TE_S0): /* D-channel */
3118 	case (ISDN_P_NT_S0):
3119 	case (ISDN_P_TE_E1):
3120 	case (ISDN_P_NT_E1):
3121 		/* enable TX fifo */
3122 		HFC_outb(hc, R_FIFO, ch << 1);
3123 		HFC_wait(hc);
3124 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3125 			/* E1 or B-channel */
3126 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3127 			HFC_outb(hc, A_SUBCH_CFG, 0);
3128 		} else {
3129 			/* D-Channel without HDLC fill flags */
3130 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3131 			HFC_outb(hc, A_SUBCH_CFG, 2);
3132 		}
3133 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3134 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3135 		HFC_wait(hc);
3136 		/* enable RX fifo */
3137 		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3138 		HFC_wait(hc);
3139 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3140 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3141 			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3142 		else
3143 			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3144 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3145 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3146 		HFC_wait(hc);
3147 		if (hc->chan[ch].bch) {
3148 			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3149 			if (hc->ctype != HFC_TYPE_E1) {
3150 				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3151 					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3152 				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3153 				/* undocumented: delay after R_ST_SEL */
3154 				udelay(1);
3155 				HFC_outb(hc, A_ST_CTRL0,
3156 					 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3157 			}
3158 		}
3159 		break;
3160 	default:
3161 		printk(KERN_DEBUG "%s: protocol not known %x\n",
3162 		       __func__, protocol);
3163 		hc->chan[ch].protocol = ISDN_P_NONE;
3164 		return -ENOPROTOOPT;
3165 	}
3166 	hc->chan[ch].protocol = protocol;
3167 	return 0;
3168 }
3169 
3170 
3171 /*
3172  * connect/disconnect PCM
3173  */
3174 
3175 static void
3176 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3177 	     int slot_rx, int bank_rx)
3178 {
3179 	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3180 		/* disable PCM */
3181 		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3182 		return;
3183 	}
3184 
3185 	/* enable pcm */
3186 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3187 		      slot_rx, bank_rx);
3188 }
3189 
3190 /*
3191  * set/disable conference
3192  */
3193 
3194 static void
3195 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3196 {
3197 	if (num >= 0 && num <= 7)
3198 		hc->chan[ch].conf = num;
3199 	else
3200 		hc->chan[ch].conf = -1;
3201 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3202 		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3203 		      hc->chan[ch].bank_rx);
3204 }
3205 
3206 
3207 /*
3208  * set/disable sample loop
3209  */
3210 
3211 /* NOTE: this function is experimental and therefore disabled */
3212 
3213 /*
3214  * Layer 1 callback function
3215  */
3216 static int
3217 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3218 {
3219 	struct hfc_multi	*hc = dch->hw;
3220 	struct sk_buff_head	free_queue;
3221 	u_long	flags;
3222 
3223 	switch (cmd) {
3224 	case INFO3_P8:
3225 	case INFO3_P10:
3226 		break;
3227 	case HW_RESET_REQ:
3228 		/* start activation */
3229 		spin_lock_irqsave(&hc->lock, flags);
3230 		if (hc->ctype == HFC_TYPE_E1) {
3231 			if (debug & DEBUG_HFCMULTI_MSG)
3232 				printk(KERN_DEBUG
3233 				       "%s: HW_RESET_REQ no BRI\n",
3234 				       __func__);
3235 		} else {
3236 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3237 			/* undocumented: delay after R_ST_SEL */
3238 			udelay(1);
3239 			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3240 			udelay(6); /* wait at least 5,21us */
3241 			HFC_outb(hc, A_ST_WR_STATE, 3);
3242 			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3243 			/* activate */
3244 		}
3245 		spin_unlock_irqrestore(&hc->lock, flags);
3246 		l1_event(dch->l1, HW_POWERUP_IND);
3247 		break;
3248 	case HW_DEACT_REQ:
3249 		__skb_queue_head_init(&free_queue);
3250 		/* start deactivation */
3251 		spin_lock_irqsave(&hc->lock, flags);
3252 		if (hc->ctype == HFC_TYPE_E1) {
3253 			if (debug & DEBUG_HFCMULTI_MSG)
3254 				printk(KERN_DEBUG
3255 				       "%s: HW_DEACT_REQ no BRI\n",
3256 				       __func__);
3257 		} else {
3258 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3259 			/* undocumented: delay after R_ST_SEL */
3260 			udelay(1);
3261 			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3262 			/* deactivate */
3263 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3264 				hc->syncronized &=
3265 					~(1 << hc->chan[dch->slot].port);
3266 				plxsd_checksync(hc, 0);
3267 			}
3268 		}
3269 		skb_queue_splice_init(&dch->squeue, &free_queue);
3270 		if (dch->tx_skb) {
3271 			__skb_queue_tail(&free_queue, dch->tx_skb);
3272 			dch->tx_skb = NULL;
3273 		}
3274 		dch->tx_idx = 0;
3275 		if (dch->rx_skb) {
3276 			__skb_queue_tail(&free_queue, dch->rx_skb);
3277 			dch->rx_skb = NULL;
3278 		}
3279 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3280 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3281 			del_timer(&dch->timer);
3282 		spin_unlock_irqrestore(&hc->lock, flags);
3283 		__skb_queue_purge(&free_queue);
3284 		break;
3285 	case HW_POWERUP_REQ:
3286 		spin_lock_irqsave(&hc->lock, flags);
3287 		if (hc->ctype == HFC_TYPE_E1) {
3288 			if (debug & DEBUG_HFCMULTI_MSG)
3289 				printk(KERN_DEBUG
3290 				       "%s: HW_POWERUP_REQ no BRI\n",
3291 				       __func__);
3292 		} else {
3293 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3294 			/* undocumented: delay after R_ST_SEL */
3295 			udelay(1);
3296 			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3297 			udelay(6); /* wait at least 5,21us */
3298 			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3299 		}
3300 		spin_unlock_irqrestore(&hc->lock, flags);
3301 		break;
3302 	case PH_ACTIVATE_IND:
3303 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3304 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3305 			    GFP_ATOMIC);
3306 		break;
3307 	case PH_DEACTIVATE_IND:
3308 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3309 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3310 			    GFP_ATOMIC);
3311 		break;
3312 	default:
3313 		if (dch->debug & DEBUG_HW)
3314 			printk(KERN_DEBUG "%s: unknown command %x\n",
3315 			       __func__, cmd);
3316 		return -1;
3317 	}
3318 	return 0;
3319 }
3320 
3321 /*
3322  * Layer2 -> Layer 1 Transfer
3323  */
3324 
3325 static int
3326 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3327 {
3328 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3329 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3330 	struct hfc_multi	*hc = dch->hw;
3331 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3332 	int			ret = -EINVAL;
3333 	unsigned int		id;
3334 	u_long			flags;
3335 
3336 	switch (hh->prim) {
3337 	case PH_DATA_REQ:
3338 		if (skb->len < 1)
3339 			break;
3340 		spin_lock_irqsave(&hc->lock, flags);
3341 		ret = dchannel_senddata(dch, skb);
3342 		if (ret > 0) { /* direct TX */
3343 			id = hh->id; /* skb can be freed */
3344 			hfcmulti_tx(hc, dch->slot);
3345 			ret = 0;
3346 			/* start fifo */
3347 			HFC_outb(hc, R_FIFO, 0);
3348 			HFC_wait(hc);
3349 			spin_unlock_irqrestore(&hc->lock, flags);
3350 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3351 		} else
3352 			spin_unlock_irqrestore(&hc->lock, flags);
3353 		return ret;
3354 	case PH_ACTIVATE_REQ:
3355 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3356 			spin_lock_irqsave(&hc->lock, flags);
3357 			ret = 0;
3358 			if (debug & DEBUG_HFCMULTI_MSG)
3359 				printk(KERN_DEBUG
3360 				       "%s: PH_ACTIVATE port %d (0..%d)\n",
3361 				       __func__, hc->chan[dch->slot].port,
3362 				       hc->ports - 1);
3363 			/* start activation */
3364 			if (hc->ctype == HFC_TYPE_E1) {
3365 				ph_state_change(dch);
3366 				if (debug & DEBUG_HFCMULTI_STATE)
3367 					printk(KERN_DEBUG
3368 					       "%s: E1 report state %x \n",
3369 					       __func__, dch->state);
3370 			} else {
3371 				HFC_outb(hc, R_ST_SEL,
3372 					 hc->chan[dch->slot].port);
3373 				/* undocumented: delay after R_ST_SEL */
3374 				udelay(1);
3375 				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3376 				/* G1 */
3377 				udelay(6); /* wait at least 5,21us */
3378 				HFC_outb(hc, A_ST_WR_STATE, 1);
3379 				HFC_outb(hc, A_ST_WR_STATE, 1 |
3380 					 (V_ST_ACT * 3)); /* activate */
3381 				dch->state = 1;
3382 			}
3383 			spin_unlock_irqrestore(&hc->lock, flags);
3384 		} else
3385 			ret = l1_event(dch->l1, hh->prim);
3386 		break;
3387 	case PH_DEACTIVATE_REQ:
3388 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3389 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3390 			struct sk_buff_head free_queue;
3391 
3392 			__skb_queue_head_init(&free_queue);
3393 			spin_lock_irqsave(&hc->lock, flags);
3394 			if (debug & DEBUG_HFCMULTI_MSG)
3395 				printk(KERN_DEBUG
3396 				       "%s: PH_DEACTIVATE port %d (0..%d)\n",
3397 				       __func__, hc->chan[dch->slot].port,
3398 				       hc->ports - 1);
3399 			/* start deactivation */
3400 			if (hc->ctype == HFC_TYPE_E1) {
3401 				if (debug & DEBUG_HFCMULTI_MSG)
3402 					printk(KERN_DEBUG
3403 					       "%s: PH_DEACTIVATE no BRI\n",
3404 					       __func__);
3405 			} else {
3406 				HFC_outb(hc, R_ST_SEL,
3407 					 hc->chan[dch->slot].port);
3408 				/* undocumented: delay after R_ST_SEL */
3409 				udelay(1);
3410 				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3411 				/* deactivate */
3412 				dch->state = 1;
3413 			}
3414 			skb_queue_splice_init(&dch->squeue, &free_queue);
3415 			if (dch->tx_skb) {
3416 				__skb_queue_tail(&free_queue, dch->tx_skb);
3417 				dch->tx_skb = NULL;
3418 			}
3419 			dch->tx_idx = 0;
3420 			if (dch->rx_skb) {
3421 				__skb_queue_tail(&free_queue, dch->rx_skb);
3422 				dch->rx_skb = NULL;
3423 			}
3424 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3425 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3426 				del_timer(&dch->timer);
3427 #ifdef FIXME
3428 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3429 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3430 #endif
3431 			ret = 0;
3432 			spin_unlock_irqrestore(&hc->lock, flags);
3433 			__skb_queue_purge(&free_queue);
3434 		} else
3435 			ret = l1_event(dch->l1, hh->prim);
3436 		break;
3437 	}
3438 	if (!ret)
3439 		dev_kfree_skb(skb);
3440 	return ret;
3441 }
3442 
3443 static void
3444 deactivate_bchannel(struct bchannel *bch)
3445 {
3446 	struct hfc_multi	*hc = bch->hw;
3447 	u_long			flags;
3448 
3449 	spin_lock_irqsave(&hc->lock, flags);
3450 	mISDN_clear_bchannel(bch);
3451 	hc->chan[bch->slot].coeff_count = 0;
3452 	hc->chan[bch->slot].rx_off = 0;
3453 	hc->chan[bch->slot].conf = -1;
3454 	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3455 	spin_unlock_irqrestore(&hc->lock, flags);
3456 }
3457 
3458 static int
3459 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3460 {
3461 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3462 	struct hfc_multi	*hc = bch->hw;
3463 	int			ret = -EINVAL;
3464 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3465 	unsigned long		flags;
3466 
3467 	switch (hh->prim) {
3468 	case PH_DATA_REQ:
3469 		if (!skb->len)
3470 			break;
3471 		spin_lock_irqsave(&hc->lock, flags);
3472 		ret = bchannel_senddata(bch, skb);
3473 		if (ret > 0) { /* direct TX */
3474 			hfcmulti_tx(hc, bch->slot);
3475 			ret = 0;
3476 			/* start fifo */
3477 			HFC_outb_nodebug(hc, R_FIFO, 0);
3478 			HFC_wait_nodebug(hc);
3479 		}
3480 		spin_unlock_irqrestore(&hc->lock, flags);
3481 		return ret;
3482 	case PH_ACTIVATE_REQ:
3483 		if (debug & DEBUG_HFCMULTI_MSG)
3484 			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3485 			       __func__, bch->slot);
3486 		spin_lock_irqsave(&hc->lock, flags);
3487 		/* activate B-channel if not already activated */
3488 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3489 			hc->chan[bch->slot].txpending = 0;
3490 			ret = mode_hfcmulti(hc, bch->slot,
3491 					    ch->protocol,
3492 					    hc->chan[bch->slot].slot_tx,
3493 					    hc->chan[bch->slot].bank_tx,
3494 					    hc->chan[bch->slot].slot_rx,
3495 					    hc->chan[bch->slot].bank_rx);
3496 			if (!ret) {
3497 				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3498 				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3499 					/* start decoder */
3500 					hc->dtmf = 1;
3501 					if (debug & DEBUG_HFCMULTI_DTMF)
3502 						printk(KERN_DEBUG
3503 						       "%s: start dtmf decoder\n",
3504 						       __func__);
3505 					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3506 						 V_RST_DTMF);
3507 				}
3508 			}
3509 		} else
3510 			ret = 0;
3511 		spin_unlock_irqrestore(&hc->lock, flags);
3512 		if (!ret)
3513 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3514 				    GFP_KERNEL);
3515 		break;
3516 	case PH_CONTROL_REQ:
3517 		spin_lock_irqsave(&hc->lock, flags);
3518 		switch (hh->id) {
3519 		case HFC_SPL_LOOP_ON: /* set sample loop */
3520 			if (debug & DEBUG_HFCMULTI_MSG)
3521 				printk(KERN_DEBUG
3522 				       "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3523 				       __func__, skb->len);
3524 			ret = 0;
3525 			break;
3526 		case HFC_SPL_LOOP_OFF: /* set silence */
3527 			if (debug & DEBUG_HFCMULTI_MSG)
3528 				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3529 				       __func__);
3530 			ret = 0;
3531 			break;
3532 		default:
3533 			printk(KERN_ERR
3534 			       "%s: unknown PH_CONTROL_REQ info %x\n",
3535 			       __func__, hh->id);
3536 			ret = -EINVAL;
3537 		}
3538 		spin_unlock_irqrestore(&hc->lock, flags);
3539 		break;
3540 	case PH_DEACTIVATE_REQ:
3541 		deactivate_bchannel(bch); /* locked there */
3542 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3543 			    GFP_KERNEL);
3544 		ret = 0;
3545 		break;
3546 	}
3547 	if (!ret)
3548 		dev_kfree_skb(skb);
3549 	return ret;
3550 }
3551 
3552 /*
3553  * bchannel control function
3554  */
3555 static int
3556 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3557 {
3558 	int			ret = 0;
3559 	struct dsp_features	*features =
3560 		(struct dsp_features *)(*((u_long *)&cq->p1));
3561 	struct hfc_multi	*hc = bch->hw;
3562 	int			slot_tx;
3563 	int			bank_tx;
3564 	int			slot_rx;
3565 	int			bank_rx;
3566 	int			num;
3567 
3568 	switch (cq->op) {
3569 	case MISDN_CTRL_GETOP:
3570 		ret = mISDN_ctrl_bchannel(bch, cq);
3571 		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3572 		break;
3573 	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3574 		ret = mISDN_ctrl_bchannel(bch, cq);
3575 		hc->chan[bch->slot].rx_off = !!cq->p1;
3576 		if (!hc->chan[bch->slot].rx_off) {
3577 			/* reset fifo on rx on */
3578 			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3579 			HFC_wait_nodebug(hc);
3580 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3581 			HFC_wait_nodebug(hc);
3582 		}
3583 		if (debug & DEBUG_HFCMULTI_MSG)
3584 			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3585 			       __func__, bch->nr, hc->chan[bch->slot].rx_off);
3586 		break;
3587 	case MISDN_CTRL_FILL_EMPTY:
3588 		ret = mISDN_ctrl_bchannel(bch, cq);
3589 		hc->silence = bch->fill[0];
3590 		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3591 		break;
3592 	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3593 		if (debug & DEBUG_HFCMULTI_MSG)
3594 			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3595 			       __func__);
3596 		/* create confirm */
3597 		features->hfc_id = hc->id;
3598 		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3599 			features->hfc_dtmf = 1;
3600 		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3601 			features->hfc_conf = 1;
3602 		features->hfc_loops = 0;
3603 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3604 			features->hfc_echocanhw = 1;
3605 		} else {
3606 			features->pcm_id = hc->pcm;
3607 			features->pcm_slots = hc->slots;
3608 			features->pcm_banks = 2;
3609 		}
3610 		break;
3611 	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3612 		slot_tx = cq->p1 & 0xff;
3613 		bank_tx = cq->p1 >> 8;
3614 		slot_rx = cq->p2 & 0xff;
3615 		bank_rx = cq->p2 >> 8;
3616 		if (debug & DEBUG_HFCMULTI_MSG)
3617 			printk(KERN_DEBUG
3618 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3619 			       "slot %d bank %d (RX)\n",
3620 			       __func__, slot_tx, bank_tx,
3621 			       slot_rx, bank_rx);
3622 		if (slot_tx < hc->slots && bank_tx <= 2 &&
3623 		    slot_rx < hc->slots && bank_rx <= 2)
3624 			hfcmulti_pcm(hc, bch->slot,
3625 				     slot_tx, bank_tx, slot_rx, bank_rx);
3626 		else {
3627 			printk(KERN_WARNING
3628 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3629 			       "slot %d bank %d (RX) out of range\n",
3630 			       __func__, slot_tx, bank_tx,
3631 			       slot_rx, bank_rx);
3632 			ret = -EINVAL;
3633 		}
3634 		break;
3635 	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3636 		if (debug & DEBUG_HFCMULTI_MSG)
3637 			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3638 			       __func__);
3639 		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3640 		break;
3641 	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3642 		num = cq->p1 & 0xff;
3643 		if (debug & DEBUG_HFCMULTI_MSG)
3644 			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3645 			       __func__, num);
3646 		if (num <= 7)
3647 			hfcmulti_conf(hc, bch->slot, num);
3648 		else {
3649 			printk(KERN_WARNING
3650 			       "%s: HW_CONF_JOIN conf %d out of range\n",
3651 			       __func__, num);
3652 			ret = -EINVAL;
3653 		}
3654 		break;
3655 	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3656 		if (debug & DEBUG_HFCMULTI_MSG)
3657 			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3658 		hfcmulti_conf(hc, bch->slot, -1);
3659 		break;
3660 	case MISDN_CTRL_HFC_ECHOCAN_ON:
3661 		if (debug & DEBUG_HFCMULTI_MSG)
3662 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3663 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3664 			vpm_echocan_on(hc, bch->slot, cq->p1);
3665 		else
3666 			ret = -EINVAL;
3667 		break;
3668 
3669 	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3670 		if (debug & DEBUG_HFCMULTI_MSG)
3671 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3672 			       __func__);
3673 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3674 			vpm_echocan_off(hc, bch->slot);
3675 		else
3676 			ret = -EINVAL;
3677 		break;
3678 	default:
3679 		ret = mISDN_ctrl_bchannel(bch, cq);
3680 		break;
3681 	}
3682 	return ret;
3683 }
3684 
3685 static int
3686 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3687 {
3688 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3689 	struct hfc_multi	*hc = bch->hw;
3690 	int			err = -EINVAL;
3691 	u_long	flags;
3692 
3693 	if (bch->debug & DEBUG_HW)
3694 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3695 		       __func__, cmd, arg);
3696 	switch (cmd) {
3697 	case CLOSE_CHANNEL:
3698 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3699 		deactivate_bchannel(bch); /* locked there */
3700 		ch->protocol = ISDN_P_NONE;
3701 		ch->peer = NULL;
3702 		module_put(THIS_MODULE);
3703 		err = 0;
3704 		break;
3705 	case CONTROL_CHANNEL:
3706 		spin_lock_irqsave(&hc->lock, flags);
3707 		err = channel_bctrl(bch, arg);
3708 		spin_unlock_irqrestore(&hc->lock, flags);
3709 		break;
3710 	default:
3711 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3712 		       __func__, cmd);
3713 	}
3714 	return err;
3715 }
3716 
3717 /*
3718  * handle D-channel events
3719  *
3720  * handle state change event
3721  */
3722 static void
3723 ph_state_change(struct dchannel *dch)
3724 {
3725 	struct hfc_multi *hc;
3726 	int ch, i;
3727 
3728 	if (!dch) {
3729 		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3730 		return;
3731 	}
3732 	hc = dch->hw;
3733 	ch = dch->slot;
3734 
3735 	if (hc->ctype == HFC_TYPE_E1) {
3736 		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3737 			if (debug & DEBUG_HFCMULTI_STATE)
3738 				printk(KERN_DEBUG
3739 				       "%s: E1 TE (id=%d) newstate %x\n",
3740 				       __func__, hc->id, dch->state);
3741 		} else {
3742 			if (debug & DEBUG_HFCMULTI_STATE)
3743 				printk(KERN_DEBUG
3744 				       "%s: E1 NT (id=%d) newstate %x\n",
3745 				       __func__, hc->id, dch->state);
3746 		}
3747 		switch (dch->state) {
3748 		case (1):
3749 			if (hc->e1_state != 1) {
3750 				for (i = 1; i <= 31; i++) {
3751 					/* reset fifos on e1 activation */
3752 					HFC_outb_nodebug(hc, R_FIFO,
3753 							 (i << 1) | 1);
3754 					HFC_wait_nodebug(hc);
3755 					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3756 							 V_RES_F);
3757 					HFC_wait_nodebug(hc);
3758 				}
3759 			}
3760 			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3761 			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3762 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3763 			break;
3764 
3765 		default:
3766 			if (hc->e1_state != 1)
3767 				return;
3768 			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3769 			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3770 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3771 		}
3772 		hc->e1_state = dch->state;
3773 	} else {
3774 		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3775 			if (debug & DEBUG_HFCMULTI_STATE)
3776 				printk(KERN_DEBUG
3777 				       "%s: S/T TE newstate %x\n",
3778 				       __func__, dch->state);
3779 			switch (dch->state) {
3780 			case (0):
3781 				l1_event(dch->l1, HW_RESET_IND);
3782 				break;
3783 			case (3):
3784 				l1_event(dch->l1, HW_DEACT_IND);
3785 				break;
3786 			case (5):
3787 			case (8):
3788 				l1_event(dch->l1, ANYSIGNAL);
3789 				break;
3790 			case (6):
3791 				l1_event(dch->l1, INFO2);
3792 				break;
3793 			case (7):
3794 				l1_event(dch->l1, INFO4_P8);
3795 				break;
3796 			}
3797 		} else {
3798 			if (debug & DEBUG_HFCMULTI_STATE)
3799 				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3800 				       __func__, dch->state);
3801 			switch (dch->state) {
3802 			case (2):
3803 				if (hc->chan[ch].nt_timer == 0) {
3804 					hc->chan[ch].nt_timer = -1;
3805 					HFC_outb(hc, R_ST_SEL,
3806 						 hc->chan[ch].port);
3807 					/* undocumented: delay after R_ST_SEL */
3808 					udelay(1);
3809 					HFC_outb(hc, A_ST_WR_STATE, 4 |
3810 						 V_ST_LD_STA); /* G4 */
3811 					udelay(6); /* wait at least 5,21us */
3812 					HFC_outb(hc, A_ST_WR_STATE, 4);
3813 					dch->state = 4;
3814 				} else {
3815 					/* one extra count for the next event */
3816 					hc->chan[ch].nt_timer =
3817 						nt_t1_count[poll_timer] + 1;
3818 					HFC_outb(hc, R_ST_SEL,
3819 						 hc->chan[ch].port);
3820 					/* undocumented: delay after R_ST_SEL */
3821 					udelay(1);
3822 					/* allow G2 -> G3 transition */
3823 					HFC_outb(hc, A_ST_WR_STATE, 2 |
3824 						 V_SET_G2_G3);
3825 				}
3826 				break;
3827 			case (1):
3828 				hc->chan[ch].nt_timer = -1;
3829 				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3830 				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3831 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3832 				break;
3833 			case (4):
3834 				hc->chan[ch].nt_timer = -1;
3835 				break;
3836 			case (3):
3837 				hc->chan[ch].nt_timer = -1;
3838 				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3839 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3840 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3841 				break;
3842 			}
3843 		}
3844 	}
3845 }
3846 
3847 /*
3848  * called for card mode init message
3849  */
3850 
3851 static void
3852 hfcmulti_initmode(struct dchannel *dch)
3853 {
3854 	struct hfc_multi *hc = dch->hw;
3855 	u_char		a_st_wr_state, r_e1_wr_sta;
3856 	int		i, pt;
3857 
3858 	if (debug & DEBUG_HFCMULTI_INIT)
3859 		printk(KERN_DEBUG "%s: entered\n", __func__);
3860 
3861 	i = dch->slot;
3862 	pt = hc->chan[i].port;
3863 	if (hc->ctype == HFC_TYPE_E1) {
3864 		/* E1 */
3865 		hc->chan[hc->dnum[pt]].slot_tx = -1;
3866 		hc->chan[hc->dnum[pt]].slot_rx = -1;
3867 		hc->chan[hc->dnum[pt]].conf = -1;
3868 		if (hc->dnum[pt]) {
3869 			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3870 				      -1, 0, -1, 0);
3871 			timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3872 		}
3873 		for (i = 1; i <= 31; i++) {
3874 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3875 				continue;
3876 			hc->chan[i].slot_tx = -1;
3877 			hc->chan[i].slot_rx = -1;
3878 			hc->chan[i].conf = -1;
3879 			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3880 		}
3881 	}
3882 	if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3883 		/* E1, port 0 */
3884 		dch = hc->chan[hc->dnum[0]].dch;
3885 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3886 			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3887 			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3888 		}
3889 		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3890 			HFC_outb(hc, R_RX0, 0);
3891 			hc->hw.r_tx0 = 0 | V_OUT_EN;
3892 		} else {
3893 			HFC_outb(hc, R_RX0, 1);
3894 			hc->hw.r_tx0 = 1 | V_OUT_EN;
3895 		}
3896 		hc->hw.r_tx1 = V_ATX | V_NTRI;
3897 		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3898 		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3899 		HFC_outb(hc, R_TX_FR0, 0x00);
3900 		HFC_outb(hc, R_TX_FR1, 0xf8);
3901 
3902 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3903 			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3904 
3905 		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3906 
3907 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3908 			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3909 
3910 		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3911 			if (debug & DEBUG_HFCMULTI_INIT)
3912 				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3913 				       __func__);
3914 			r_e1_wr_sta = 0; /* G0 */
3915 			hc->e1_getclock = 0;
3916 		} else {
3917 			if (debug & DEBUG_HFCMULTI_INIT)
3918 				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3919 				       __func__);
3920 			r_e1_wr_sta = 0; /* F0 */
3921 			hc->e1_getclock = 1;
3922 		}
3923 		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3924 			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3925 		else
3926 			HFC_outb(hc, R_SYNC_OUT, 0);
3927 		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3928 			hc->e1_getclock = 1;
3929 		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3930 			hc->e1_getclock = 0;
3931 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3932 			/* SLAVE (clock master) */
3933 			if (debug & DEBUG_HFCMULTI_INIT)
3934 				printk(KERN_DEBUG
3935 				       "%s: E1 port is clock master "
3936 				       "(clock from PCM)\n", __func__);
3937 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3938 		} else {
3939 			if (hc->e1_getclock) {
3940 				/* MASTER (clock slave) */
3941 				if (debug & DEBUG_HFCMULTI_INIT)
3942 					printk(KERN_DEBUG
3943 					       "%s: E1 port is clock slave "
3944 					       "(clock to PCM)\n", __func__);
3945 				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3946 			} else {
3947 				/* MASTER (clock master) */
3948 				if (debug & DEBUG_HFCMULTI_INIT)
3949 					printk(KERN_DEBUG "%s: E1 port is "
3950 					       "clock master "
3951 					       "(clock from QUARTZ)\n",
3952 					       __func__);
3953 				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3954 					 V_PCM_SYNC | V_JATT_OFF);
3955 				HFC_outb(hc, R_SYNC_OUT, 0);
3956 			}
3957 		}
3958 		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3959 		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3960 		HFC_outb(hc, R_PWM0, 0x50);
3961 		HFC_outb(hc, R_PWM1, 0xff);
3962 		/* state machine setup */
3963 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3964 		udelay(6); /* wait at least 5,21us */
3965 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3966 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3967 			hc->syncronized = 0;
3968 			plxsd_checksync(hc, 0);
3969 		}
3970 	}
3971 	if (hc->ctype != HFC_TYPE_E1) {
3972 		/* ST */
3973 		hc->chan[i].slot_tx = -1;
3974 		hc->chan[i].slot_rx = -1;
3975 		hc->chan[i].conf = -1;
3976 		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3977 		timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3978 		hc->chan[i - 2].slot_tx = -1;
3979 		hc->chan[i - 2].slot_rx = -1;
3980 		hc->chan[i - 2].conf = -1;
3981 		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3982 		hc->chan[i - 1].slot_tx = -1;
3983 		hc->chan[i - 1].slot_rx = -1;
3984 		hc->chan[i - 1].conf = -1;
3985 		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3986 		/* select interface */
3987 		HFC_outb(hc, R_ST_SEL, pt);
3988 		/* undocumented: delay after R_ST_SEL */
3989 		udelay(1);
3990 		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3991 			if (debug & DEBUG_HFCMULTI_INIT)
3992 				printk(KERN_DEBUG
3993 				       "%s: ST port %d is NT-mode\n",
3994 				       __func__, pt);
3995 			/* clock delay */
3996 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3997 			a_st_wr_state = 1; /* G1 */
3998 			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3999 		} else {
4000 			if (debug & DEBUG_HFCMULTI_INIT)
4001 				printk(KERN_DEBUG
4002 				       "%s: ST port %d is TE-mode\n",
4003 				       __func__, pt);
4004 			/* clock delay */
4005 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4006 			a_st_wr_state = 2; /* F2 */
4007 			hc->hw.a_st_ctrl0[pt] = 0;
4008 		}
4009 		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4010 			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4011 		if (hc->ctype == HFC_TYPE_XHFC) {
4012 			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4013 			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4014 				 0x7c << 1 /* V_ST_PULSE */);
4015 		}
4016 		/* line setup */
4017 		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
4018 		/* disable E-channel */
4019 		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4020 		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4021 			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4022 		else
4023 			HFC_outb(hc, A_ST_CTRL1, 0);
4024 		/* enable B-channel receive */
4025 		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
4026 		/* state machine setup */
4027 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4028 		udelay(6); /* wait at least 5,21us */
4029 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4030 		hc->hw.r_sci_msk |= 1 << pt;
4031 		/* state machine interrupts */
4032 		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4033 		/* unset sync on port */
4034 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4035 			hc->syncronized &=
4036 				~(1 << hc->chan[dch->slot].port);
4037 			plxsd_checksync(hc, 0);
4038 		}
4039 	}
4040 	if (debug & DEBUG_HFCMULTI_INIT)
4041 		printk("%s: done\n", __func__);
4042 }
4043 
4044 
4045 static int
4046 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4047 	      struct channel_req *rq)
4048 {
4049 	int	err = 0;
4050 	u_long	flags;
4051 
4052 	if (debug & DEBUG_HW_OPEN)
4053 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4054 		       dch->dev.id, __builtin_return_address(0));
4055 	if (rq->protocol == ISDN_P_NONE)
4056 		return -EINVAL;
4057 	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4058 	    (dch->dev.D.protocol != rq->protocol)) {
4059 		if (debug & DEBUG_HFCMULTI_MODE)
4060 			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4061 			       __func__, dch->dev.D.protocol, rq->protocol);
4062 	}
4063 	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4064 	    (rq->protocol != ISDN_P_TE_S0))
4065 		l1_event(dch->l1, CLOSE_CHANNEL);
4066 	if (dch->dev.D.protocol != rq->protocol) {
4067 		if (rq->protocol == ISDN_P_TE_S0) {
4068 			err = create_l1(dch, hfcm_l1callback);
4069 			if (err)
4070 				return err;
4071 		}
4072 		dch->dev.D.protocol = rq->protocol;
4073 		spin_lock_irqsave(&hc->lock, flags);
4074 		hfcmulti_initmode(dch);
4075 		spin_unlock_irqrestore(&hc->lock, flags);
4076 	}
4077 	if (test_bit(FLG_ACTIVE, &dch->Flags))
4078 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4079 			    0, NULL, GFP_KERNEL);
4080 	rq->ch = &dch->dev.D;
4081 	if (!try_module_get(THIS_MODULE))
4082 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4083 	return 0;
4084 }
4085 
4086 static int
4087 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4088 	      struct channel_req *rq)
4089 {
4090 	struct bchannel	*bch;
4091 	int		ch;
4092 
4093 	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4094 		return -EINVAL;
4095 	if (rq->protocol == ISDN_P_NONE)
4096 		return -EINVAL;
4097 	if (hc->ctype == HFC_TYPE_E1)
4098 		ch = rq->adr.channel;
4099 	else
4100 		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4101 	bch = hc->chan[ch].bch;
4102 	if (!bch) {
4103 		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4104 		       __func__, ch);
4105 		return -EINVAL;
4106 	}
4107 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4108 		return -EBUSY; /* b-channel can be only open once */
4109 	bch->ch.protocol = rq->protocol;
4110 	hc->chan[ch].rx_off = 0;
4111 	rq->ch = &bch->ch;
4112 	if (!try_module_get(THIS_MODULE))
4113 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4114 	return 0;
4115 }
4116 
4117 /*
4118  * device control function
4119  */
4120 static int
4121 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4122 {
4123 	struct hfc_multi	*hc = dch->hw;
4124 	int	ret = 0;
4125 	int	wd_mode, wd_cnt;
4126 
4127 	switch (cq->op) {
4128 	case MISDN_CTRL_GETOP:
4129 		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4130 		break;
4131 	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4132 		wd_cnt = cq->p1 & 0xf;
4133 		wd_mode = !!(cq->p1 >> 4);
4134 		if (debug & DEBUG_HFCMULTI_MSG)
4135 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4136 			       ", counter 0x%x\n", __func__,
4137 			       wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4138 		/* set the watchdog timer */
4139 		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4140 		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4141 		if (hc->ctype == HFC_TYPE_XHFC)
4142 			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4143 		/* init the watchdog register and reset the counter */
4144 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4145 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4146 			/* enable the watchdog output for Speech-Design */
4147 			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4148 			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4149 			HFC_outb(hc, R_GPIO_OUT1, 0);
4150 			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4151 		}
4152 		break;
4153 	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4154 		if (debug & DEBUG_HFCMULTI_MSG)
4155 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4156 			       __func__);
4157 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4158 		break;
4159 	case MISDN_CTRL_L1_TIMER3:
4160 		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4161 		break;
4162 	default:
4163 		printk(KERN_WARNING "%s: unknown Op %x\n",
4164 		       __func__, cq->op);
4165 		ret = -EINVAL;
4166 		break;
4167 	}
4168 	return ret;
4169 }
4170 
4171 static int
4172 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4173 {
4174 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4175 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4176 	struct hfc_multi	*hc = dch->hw;
4177 	struct channel_req	*rq;
4178 	int			err = 0;
4179 	u_long			flags;
4180 
4181 	if (dch->debug & DEBUG_HW)
4182 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4183 		       __func__, cmd, arg);
4184 	switch (cmd) {
4185 	case OPEN_CHANNEL:
4186 		rq = arg;
4187 		switch (rq->protocol) {
4188 		case ISDN_P_TE_S0:
4189 		case ISDN_P_NT_S0:
4190 			if (hc->ctype == HFC_TYPE_E1) {
4191 				err = -EINVAL;
4192 				break;
4193 			}
4194 			err = open_dchannel(hc, dch, rq); /* locked there */
4195 			break;
4196 		case ISDN_P_TE_E1:
4197 		case ISDN_P_NT_E1:
4198 			if (hc->ctype != HFC_TYPE_E1) {
4199 				err = -EINVAL;
4200 				break;
4201 			}
4202 			err = open_dchannel(hc, dch, rq); /* locked there */
4203 			break;
4204 		default:
4205 			spin_lock_irqsave(&hc->lock, flags);
4206 			err = open_bchannel(hc, dch, rq);
4207 			spin_unlock_irqrestore(&hc->lock, flags);
4208 		}
4209 		break;
4210 	case CLOSE_CHANNEL:
4211 		if (debug & DEBUG_HW_OPEN)
4212 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4213 			       __func__, dch->dev.id,
4214 			       __builtin_return_address(0));
4215 		module_put(THIS_MODULE);
4216 		break;
4217 	case CONTROL_CHANNEL:
4218 		spin_lock_irqsave(&hc->lock, flags);
4219 		err = channel_dctrl(dch, arg);
4220 		spin_unlock_irqrestore(&hc->lock, flags);
4221 		break;
4222 	default:
4223 		if (dch->debug & DEBUG_HW)
4224 			printk(KERN_DEBUG "%s: unknown command %x\n",
4225 			       __func__, cmd);
4226 		err = -EINVAL;
4227 	}
4228 	return err;
4229 }
4230 
4231 static int
4232 clockctl(void *priv, int enable)
4233 {
4234 	struct hfc_multi *hc = priv;
4235 
4236 	hc->iclock_on = enable;
4237 	return 0;
4238 }
4239 
4240 /*
4241  * initialize the card
4242  */
4243 
4244 /*
4245  * start timer irq, wait some time and check if we have interrupts.
4246  * if not, reset chip and try again.
4247  */
4248 static int
4249 init_card(struct hfc_multi *hc)
4250 {
4251 	int	err = -EIO;
4252 	u_long	flags;
4253 	void	__iomem *plx_acc;
4254 	u_long	plx_flags;
4255 
4256 	if (debug & DEBUG_HFCMULTI_INIT)
4257 		printk(KERN_DEBUG "%s: entered\n", __func__);
4258 
4259 	spin_lock_irqsave(&hc->lock, flags);
4260 	/* set interrupts but leave global interrupt disabled */
4261 	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4262 	disable_hwirq(hc);
4263 	spin_unlock_irqrestore(&hc->lock, flags);
4264 
4265 	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4266 			"HFC-multi", hc)) {
4267 		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4268 		       hc->irq);
4269 		hc->irq = 0;
4270 		return -EIO;
4271 	}
4272 
4273 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4274 		spin_lock_irqsave(&plx_lock, plx_flags);
4275 		plx_acc = hc->plx_membase + PLX_INTCSR;
4276 		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4277 		       plx_acc); /* enable PCI & LINT1 irq */
4278 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4279 	}
4280 
4281 	if (debug & DEBUG_HFCMULTI_INIT)
4282 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4283 		       __func__, hc->irq, hc->irqcnt);
4284 	err = init_chip(hc);
4285 	if (err)
4286 		goto error;
4287 	/*
4288 	 * Finally enable IRQ output
4289 	 * this is only allowed, if an IRQ routine is already
4290 	 * established for this HFC, so don't do that earlier
4291 	 */
4292 	spin_lock_irqsave(&hc->lock, flags);
4293 	enable_hwirq(hc);
4294 	spin_unlock_irqrestore(&hc->lock, flags);
4295 	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4296 	set_current_state(TASK_UNINTERRUPTIBLE);
4297 	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4298 	/* turn IRQ off until chip is completely initialized */
4299 	spin_lock_irqsave(&hc->lock, flags);
4300 	disable_hwirq(hc);
4301 	spin_unlock_irqrestore(&hc->lock, flags);
4302 	if (debug & DEBUG_HFCMULTI_INIT)
4303 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4304 		       __func__, hc->irq, hc->irqcnt);
4305 	if (hc->irqcnt) {
4306 		if (debug & DEBUG_HFCMULTI_INIT)
4307 			printk(KERN_DEBUG "%s: done\n", __func__);
4308 
4309 		return 0;
4310 	}
4311 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4312 		printk(KERN_INFO "ignoring missing interrupts\n");
4313 		return 0;
4314 	}
4315 
4316 	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4317 	       hc->irq);
4318 
4319 	err = -EIO;
4320 
4321 error:
4322 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4323 		spin_lock_irqsave(&plx_lock, plx_flags);
4324 		plx_acc = hc->plx_membase + PLX_INTCSR;
4325 		writew(0x00, plx_acc); /*disable IRQs*/
4326 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4327 	}
4328 
4329 	if (debug & DEBUG_HFCMULTI_INIT)
4330 		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4331 	if (hc->irq) {
4332 		free_irq(hc->irq, hc);
4333 		hc->irq = 0;
4334 	}
4335 
4336 	if (debug & DEBUG_HFCMULTI_INIT)
4337 		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4338 	return err;
4339 }
4340 
4341 /*
4342  * find pci device and set it up
4343  */
4344 
4345 static int
4346 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4347 	  const struct pci_device_id *ent)
4348 {
4349 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4350 
4351 	printk(KERN_INFO
4352 	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4353 	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4354 
4355 	hc->pci_dev = pdev;
4356 	if (m->clock2)
4357 		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4358 
4359 	if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4360 	    ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4361 		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4362 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4363 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4364 		hc->slots = 32;
4365 	}
4366 
4367 	if (hc->pci_dev->irq <= 0) {
4368 		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4369 		return -EIO;
4370 	}
4371 	if (pci_enable_device(hc->pci_dev)) {
4372 		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4373 		return -EIO;
4374 	}
4375 	hc->leds = m->leds;
4376 	hc->ledstate = 0xAFFEAFFE;
4377 	hc->opticalsupport = m->opticalsupport;
4378 
4379 	hc->pci_iobase = 0;
4380 	hc->pci_membase = NULL;
4381 	hc->plx_membase = NULL;
4382 
4383 	/* set memory access methods */
4384 	if (m->io_mode) /* use mode from card config */
4385 		hc->io_mode = m->io_mode;
4386 	switch (hc->io_mode) {
4387 	case HFC_IO_MODE_PLXSD:
4388 		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4389 		hc->slots = 128; /* required */
4390 		hc->HFC_outb = HFC_outb_pcimem;
4391 		hc->HFC_inb = HFC_inb_pcimem;
4392 		hc->HFC_inw = HFC_inw_pcimem;
4393 		hc->HFC_wait = HFC_wait_pcimem;
4394 		hc->read_fifo = read_fifo_pcimem;
4395 		hc->write_fifo = write_fifo_pcimem;
4396 		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4397 		/* MEMBASE 1 is PLX PCI Bridge */
4398 
4399 		if (!hc->plx_origmembase) {
4400 			printk(KERN_WARNING
4401 			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4402 			pci_disable_device(hc->pci_dev);
4403 			return -EIO;
4404 		}
4405 
4406 		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4407 		if (!hc->plx_membase) {
4408 			printk(KERN_WARNING
4409 			       "HFC-multi: failed to remap plx address space. "
4410 			       "(internal error)\n");
4411 			pci_disable_device(hc->pci_dev);
4412 			return -EIO;
4413 		}
4414 		printk(KERN_INFO
4415 		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4416 		       (u_long)hc->plx_membase, hc->plx_origmembase);
4417 
4418 		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4419 		/* MEMBASE 1 is PLX PCI Bridge */
4420 		if (!hc->pci_origmembase) {
4421 			printk(KERN_WARNING
4422 			       "HFC-multi: No IO-Memory for PCI card found\n");
4423 			pci_disable_device(hc->pci_dev);
4424 			return -EIO;
4425 		}
4426 
4427 		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4428 		if (!hc->pci_membase) {
4429 			printk(KERN_WARNING "HFC-multi: failed to remap io "
4430 			       "address space. (internal error)\n");
4431 			pci_disable_device(hc->pci_dev);
4432 			return -EIO;
4433 		}
4434 
4435 		printk(KERN_INFO
4436 		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4437 		       "leds-type %d\n",
4438 		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4439 		       hc->pci_dev->irq, HZ, hc->leds);
4440 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4441 		break;
4442 	case HFC_IO_MODE_PCIMEM:
4443 		hc->HFC_outb = HFC_outb_pcimem;
4444 		hc->HFC_inb = HFC_inb_pcimem;
4445 		hc->HFC_inw = HFC_inw_pcimem;
4446 		hc->HFC_wait = HFC_wait_pcimem;
4447 		hc->read_fifo = read_fifo_pcimem;
4448 		hc->write_fifo = write_fifo_pcimem;
4449 		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4450 		if (!hc->pci_origmembase) {
4451 			printk(KERN_WARNING
4452 			       "HFC-multi: No IO-Memory for PCI card found\n");
4453 			pci_disable_device(hc->pci_dev);
4454 			return -EIO;
4455 		}
4456 
4457 		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4458 		if (!hc->pci_membase) {
4459 			printk(KERN_WARNING
4460 			       "HFC-multi: failed to remap io address space. "
4461 			       "(internal error)\n");
4462 			pci_disable_device(hc->pci_dev);
4463 			return -EIO;
4464 		}
4465 		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4466 		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4467 		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4468 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4469 		break;
4470 	case HFC_IO_MODE_REGIO:
4471 		hc->HFC_outb = HFC_outb_regio;
4472 		hc->HFC_inb = HFC_inb_regio;
4473 		hc->HFC_inw = HFC_inw_regio;
4474 		hc->HFC_wait = HFC_wait_regio;
4475 		hc->read_fifo = read_fifo_regio;
4476 		hc->write_fifo = write_fifo_regio;
4477 		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4478 		if (!hc->pci_iobase) {
4479 			printk(KERN_WARNING
4480 			       "HFC-multi: No IO for PCI card found\n");
4481 			pci_disable_device(hc->pci_dev);
4482 			return -EIO;
4483 		}
4484 
4485 		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4486 			printk(KERN_WARNING "HFC-multi: failed to request "
4487 			       "address space at 0x%08lx (internal error)\n",
4488 			       hc->pci_iobase);
4489 			pci_disable_device(hc->pci_dev);
4490 			return -EIO;
4491 		}
4492 
4493 		printk(KERN_INFO
4494 		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4495 		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4496 		       hc->pci_dev->irq, HZ, hc->leds);
4497 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4498 		break;
4499 	default:
4500 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4501 		pci_disable_device(hc->pci_dev);
4502 		return -EIO;
4503 	}
4504 
4505 	pci_set_drvdata(hc->pci_dev, hc);
4506 
4507 	/* At this point the needed PCI config is done */
4508 	/* fifos are still not enabled */
4509 	return 0;
4510 }
4511 
4512 
4513 /*
4514  * remove port
4515  */
4516 
4517 static void
4518 release_port(struct hfc_multi *hc, struct dchannel *dch)
4519 {
4520 	int	pt, ci, i = 0;
4521 	u_long	flags;
4522 	struct bchannel *pb;
4523 
4524 	ci = dch->slot;
4525 	pt = hc->chan[ci].port;
4526 
4527 	if (debug & DEBUG_HFCMULTI_INIT)
4528 		printk(KERN_DEBUG "%s: entered for port %d\n",
4529 		       __func__, pt + 1);
4530 
4531 	if (pt >= hc->ports) {
4532 		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4533 		       __func__, pt + 1);
4534 		return;
4535 	}
4536 
4537 	if (debug & DEBUG_HFCMULTI_INIT)
4538 		printk(KERN_DEBUG "%s: releasing port=%d\n",
4539 		       __func__, pt + 1);
4540 
4541 	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4542 		l1_event(dch->l1, CLOSE_CHANNEL);
4543 
4544 	hc->chan[ci].dch = NULL;
4545 
4546 	if (hc->created[pt]) {
4547 		hc->created[pt] = 0;
4548 		mISDN_unregister_device(&dch->dev);
4549 	}
4550 
4551 	spin_lock_irqsave(&hc->lock, flags);
4552 
4553 	if (dch->timer.function) {
4554 		del_timer(&dch->timer);
4555 		dch->timer.function = NULL;
4556 	}
4557 
4558 	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4559 		/* remove sync */
4560 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4561 			hc->syncronized = 0;
4562 			plxsd_checksync(hc, 1);
4563 		}
4564 		/* free channels */
4565 		for (i = 0; i <= 31; i++) {
4566 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4567 				continue;
4568 			if (hc->chan[i].bch) {
4569 				if (debug & DEBUG_HFCMULTI_INIT)
4570 					printk(KERN_DEBUG
4571 					       "%s: free port %d channel %d\n",
4572 					       __func__, hc->chan[i].port + 1, i);
4573 				pb = hc->chan[i].bch;
4574 				hc->chan[i].bch = NULL;
4575 				spin_unlock_irqrestore(&hc->lock, flags);
4576 				mISDN_freebchannel(pb);
4577 				kfree(pb);
4578 				kfree(hc->chan[i].coeff);
4579 				spin_lock_irqsave(&hc->lock, flags);
4580 			}
4581 		}
4582 	} else {
4583 		/* remove sync */
4584 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4585 			hc->syncronized &=
4586 				~(1 << hc->chan[ci].port);
4587 			plxsd_checksync(hc, 1);
4588 		}
4589 		/* free channels */
4590 		if (hc->chan[ci - 2].bch) {
4591 			if (debug & DEBUG_HFCMULTI_INIT)
4592 				printk(KERN_DEBUG
4593 				       "%s: free port %d channel %d\n",
4594 				       __func__, hc->chan[ci - 2].port + 1,
4595 				       ci - 2);
4596 			pb = hc->chan[ci - 2].bch;
4597 			hc->chan[ci - 2].bch = NULL;
4598 			spin_unlock_irqrestore(&hc->lock, flags);
4599 			mISDN_freebchannel(pb);
4600 			kfree(pb);
4601 			kfree(hc->chan[ci - 2].coeff);
4602 			spin_lock_irqsave(&hc->lock, flags);
4603 		}
4604 		if (hc->chan[ci - 1].bch) {
4605 			if (debug & DEBUG_HFCMULTI_INIT)
4606 				printk(KERN_DEBUG
4607 				       "%s: free port %d channel %d\n",
4608 				       __func__, hc->chan[ci - 1].port + 1,
4609 				       ci - 1);
4610 			pb = hc->chan[ci - 1].bch;
4611 			hc->chan[ci - 1].bch = NULL;
4612 			spin_unlock_irqrestore(&hc->lock, flags);
4613 			mISDN_freebchannel(pb);
4614 			kfree(pb);
4615 			kfree(hc->chan[ci - 1].coeff);
4616 			spin_lock_irqsave(&hc->lock, flags);
4617 		}
4618 	}
4619 
4620 	spin_unlock_irqrestore(&hc->lock, flags);
4621 
4622 	if (debug & DEBUG_HFCMULTI_INIT)
4623 		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4624 			pt+1, ci);
4625 	mISDN_freedchannel(dch);
4626 	kfree(dch);
4627 
4628 	if (debug & DEBUG_HFCMULTI_INIT)
4629 		printk(KERN_DEBUG "%s: done!\n", __func__);
4630 }
4631 
4632 static void
4633 release_card(struct hfc_multi *hc)
4634 {
4635 	u_long	flags;
4636 	int	ch;
4637 
4638 	if (debug & DEBUG_HFCMULTI_INIT)
4639 		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4640 		       __func__, hc->id);
4641 
4642 	/* unregister clock source */
4643 	if (hc->iclock)
4644 		mISDN_unregister_clock(hc->iclock);
4645 
4646 	/* disable and free irq */
4647 	spin_lock_irqsave(&hc->lock, flags);
4648 	disable_hwirq(hc);
4649 	spin_unlock_irqrestore(&hc->lock, flags);
4650 	udelay(1000);
4651 	if (hc->irq) {
4652 		if (debug & DEBUG_HFCMULTI_INIT)
4653 			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4654 			    __func__, hc->irq, hc);
4655 		free_irq(hc->irq, hc);
4656 		hc->irq = 0;
4657 
4658 	}
4659 
4660 	/* disable D-channels & B-channels */
4661 	if (debug & DEBUG_HFCMULTI_INIT)
4662 		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4663 		       __func__);
4664 	for (ch = 0; ch <= 31; ch++) {
4665 		if (hc->chan[ch].dch)
4666 			release_port(hc, hc->chan[ch].dch);
4667 	}
4668 
4669 	/* dimm leds */
4670 	if (hc->leds)
4671 		hfcmulti_leds(hc);
4672 
4673 	/* release hardware */
4674 	release_io_hfcmulti(hc);
4675 
4676 	if (debug & DEBUG_HFCMULTI_INIT)
4677 		printk(KERN_DEBUG "%s: remove instance from list\n",
4678 		       __func__);
4679 	list_del(&hc->list);
4680 
4681 	if (debug & DEBUG_HFCMULTI_INIT)
4682 		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4683 	if (hc == syncmaster)
4684 		syncmaster = NULL;
4685 	kfree(hc);
4686 	if (debug & DEBUG_HFCMULTI_INIT)
4687 		printk(KERN_DEBUG "%s: card successfully removed\n",
4688 		       __func__);
4689 }
4690 
4691 static void
4692 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4693 {
4694 	/* set optical line type */
4695 	if (port[Port_cnt] & 0x001) {
4696 		if (!m->opticalsupport)  {
4697 			printk(KERN_INFO
4698 			       "This board has no optical "
4699 			       "support\n");
4700 		} else {
4701 			if (debug & DEBUG_HFCMULTI_INIT)
4702 				printk(KERN_DEBUG
4703 				       "%s: PORT set optical "
4704 				       "interfacs: card(%d) "
4705 				       "port(%d)\n",
4706 				       __func__,
4707 				       HFC_cnt + 1, 1);
4708 			test_and_set_bit(HFC_CFG_OPTICAL,
4709 			    &hc->chan[hc->dnum[0]].cfg);
4710 		}
4711 	}
4712 	/* set LOS report */
4713 	if (port[Port_cnt] & 0x004) {
4714 		if (debug & DEBUG_HFCMULTI_INIT)
4715 			printk(KERN_DEBUG "%s: PORT set "
4716 			       "LOS report: card(%d) port(%d)\n",
4717 			       __func__, HFC_cnt + 1, 1);
4718 		test_and_set_bit(HFC_CFG_REPORT_LOS,
4719 		    &hc->chan[hc->dnum[0]].cfg);
4720 	}
4721 	/* set AIS report */
4722 	if (port[Port_cnt] & 0x008) {
4723 		if (debug & DEBUG_HFCMULTI_INIT)
4724 			printk(KERN_DEBUG "%s: PORT set "
4725 			       "AIS report: card(%d) port(%d)\n",
4726 			       __func__, HFC_cnt + 1, 1);
4727 		test_and_set_bit(HFC_CFG_REPORT_AIS,
4728 		    &hc->chan[hc->dnum[0]].cfg);
4729 	}
4730 	/* set SLIP report */
4731 	if (port[Port_cnt] & 0x010) {
4732 		if (debug & DEBUG_HFCMULTI_INIT)
4733 			printk(KERN_DEBUG
4734 			       "%s: PORT set SLIP report: "
4735 			       "card(%d) port(%d)\n",
4736 			       __func__, HFC_cnt + 1, 1);
4737 		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4738 		    &hc->chan[hc->dnum[0]].cfg);
4739 	}
4740 	/* set RDI report */
4741 	if (port[Port_cnt] & 0x020) {
4742 		if (debug & DEBUG_HFCMULTI_INIT)
4743 			printk(KERN_DEBUG
4744 			       "%s: PORT set RDI report: "
4745 			       "card(%d) port(%d)\n",
4746 			       __func__, HFC_cnt + 1, 1);
4747 		test_and_set_bit(HFC_CFG_REPORT_RDI,
4748 		    &hc->chan[hc->dnum[0]].cfg);
4749 	}
4750 	/* set CRC-4 Mode */
4751 	if (!(port[Port_cnt] & 0x100)) {
4752 		if (debug & DEBUG_HFCMULTI_INIT)
4753 			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4754 			       " card(%d) port(%d)\n",
4755 			       __func__, HFC_cnt + 1, 1);
4756 		test_and_set_bit(HFC_CFG_CRC4,
4757 		    &hc->chan[hc->dnum[0]].cfg);
4758 	} else {
4759 		if (debug & DEBUG_HFCMULTI_INIT)
4760 			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4761 			       " report: card(%d) port(%d)\n",
4762 			       __func__, HFC_cnt + 1, 1);
4763 	}
4764 	/* set forced clock */
4765 	if (port[Port_cnt] & 0x0200) {
4766 		if (debug & DEBUG_HFCMULTI_INIT)
4767 			printk(KERN_DEBUG "%s: PORT force getting clock from "
4768 			       "E1: card(%d) port(%d)\n",
4769 			       __func__, HFC_cnt + 1, 1);
4770 		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4771 	} else
4772 		if (port[Port_cnt] & 0x0400) {
4773 			if (debug & DEBUG_HFCMULTI_INIT)
4774 				printk(KERN_DEBUG "%s: PORT force putting clock to "
4775 				       "E1: card(%d) port(%d)\n",
4776 				       __func__, HFC_cnt + 1, 1);
4777 			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4778 		}
4779 	/* set JATT PLL */
4780 	if (port[Port_cnt] & 0x0800) {
4781 		if (debug & DEBUG_HFCMULTI_INIT)
4782 			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4783 			       "E1: card(%d) port(%d)\n",
4784 			       __func__, HFC_cnt + 1, 1);
4785 		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4786 	}
4787 	/* set elastic jitter buffer */
4788 	if (port[Port_cnt] & 0x3000) {
4789 		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4790 		if (debug & DEBUG_HFCMULTI_INIT)
4791 			printk(KERN_DEBUG
4792 			       "%s: PORT set elastic "
4793 			       "buffer to %d: card(%d) port(%d)\n",
4794 			    __func__, hc->chan[hc->dnum[0]].jitter,
4795 			       HFC_cnt + 1, 1);
4796 	} else
4797 		hc->chan[hc->dnum[0]].jitter = 2; /* default */
4798 }
4799 
4800 static int
4801 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4802 {
4803 	struct dchannel	*dch;
4804 	struct bchannel	*bch;
4805 	int		ch, ret = 0;
4806 	char		name[MISDN_MAX_IDLEN];
4807 	int		bcount = 0;
4808 
4809 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4810 	if (!dch)
4811 		return -ENOMEM;
4812 	dch->debug = debug;
4813 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4814 	dch->hw = hc;
4815 	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4816 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4817 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4818 	dch->dev.D.send = handle_dmsg;
4819 	dch->dev.D.ctrl = hfcm_dctrl;
4820 	dch->slot = hc->dnum[pt];
4821 	hc->chan[hc->dnum[pt]].dch = dch;
4822 	hc->chan[hc->dnum[pt]].port = pt;
4823 	hc->chan[hc->dnum[pt]].nt_timer = -1;
4824 	for (ch = 1; ch <= 31; ch++) {
4825 		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4826 			continue;
4827 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4828 		if (!bch) {
4829 			printk(KERN_ERR "%s: no memory for bchannel\n",
4830 			    __func__);
4831 			ret = -ENOMEM;
4832 			goto free_chan;
4833 		}
4834 		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4835 		if (!hc->chan[ch].coeff) {
4836 			printk(KERN_ERR "%s: no memory for coeffs\n",
4837 			    __func__);
4838 			ret = -ENOMEM;
4839 			kfree(bch);
4840 			goto free_chan;
4841 		}
4842 		bch->nr = ch;
4843 		bch->slot = ch;
4844 		bch->debug = debug;
4845 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4846 		bch->hw = hc;
4847 		bch->ch.send = handle_bmsg;
4848 		bch->ch.ctrl = hfcm_bctrl;
4849 		bch->ch.nr = ch;
4850 		list_add(&bch->ch.list, &dch->dev.bchannels);
4851 		hc->chan[ch].bch = bch;
4852 		hc->chan[ch].port = pt;
4853 		set_channelmap(bch->nr, dch->dev.channelmap);
4854 		bcount++;
4855 	}
4856 	dch->dev.nrbchan = bcount;
4857 	if (pt == 0)
4858 		init_e1_port_hw(hc, m);
4859 	if (hc->ports > 1)
4860 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4861 				HFC_cnt + 1, pt+1);
4862 	else
4863 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4864 	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4865 	if (ret)
4866 		goto free_chan;
4867 	hc->created[pt] = 1;
4868 	return ret;
4869 free_chan:
4870 	release_port(hc, dch);
4871 	return ret;
4872 }
4873 
4874 static int
4875 init_multi_port(struct hfc_multi *hc, int pt)
4876 {
4877 	struct dchannel	*dch;
4878 	struct bchannel	*bch;
4879 	int		ch, i, ret = 0;
4880 	char		name[MISDN_MAX_IDLEN];
4881 
4882 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4883 	if (!dch)
4884 		return -ENOMEM;
4885 	dch->debug = debug;
4886 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4887 	dch->hw = hc;
4888 	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4889 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4890 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4891 	dch->dev.D.send = handle_dmsg;
4892 	dch->dev.D.ctrl = hfcm_dctrl;
4893 	dch->dev.nrbchan = 2;
4894 	i = pt << 2;
4895 	dch->slot = i + 2;
4896 	hc->chan[i + 2].dch = dch;
4897 	hc->chan[i + 2].port = pt;
4898 	hc->chan[i + 2].nt_timer = -1;
4899 	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4900 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4901 		if (!bch) {
4902 			printk(KERN_ERR "%s: no memory for bchannel\n",
4903 			       __func__);
4904 			ret = -ENOMEM;
4905 			goto free_chan;
4906 		}
4907 		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4908 		if (!hc->chan[i + ch].coeff) {
4909 			printk(KERN_ERR "%s: no memory for coeffs\n",
4910 			       __func__);
4911 			ret = -ENOMEM;
4912 			kfree(bch);
4913 			goto free_chan;
4914 		}
4915 		bch->nr = ch + 1;
4916 		bch->slot = i + ch;
4917 		bch->debug = debug;
4918 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4919 		bch->hw = hc;
4920 		bch->ch.send = handle_bmsg;
4921 		bch->ch.ctrl = hfcm_bctrl;
4922 		bch->ch.nr = ch + 1;
4923 		list_add(&bch->ch.list, &dch->dev.bchannels);
4924 		hc->chan[i + ch].bch = bch;
4925 		hc->chan[i + ch].port = pt;
4926 		set_channelmap(bch->nr, dch->dev.channelmap);
4927 	}
4928 	/* set master clock */
4929 	if (port[Port_cnt] & 0x001) {
4930 		if (debug & DEBUG_HFCMULTI_INIT)
4931 			printk(KERN_DEBUG
4932 			       "%s: PROTOCOL set master clock: "
4933 			       "card(%d) port(%d)\n",
4934 			       __func__, HFC_cnt + 1, pt + 1);
4935 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4936 			printk(KERN_ERR "Error: Master clock "
4937 			       "for port(%d) of card(%d) is only"
4938 			       " possible with TE-mode\n",
4939 			       pt + 1, HFC_cnt + 1);
4940 			ret = -EINVAL;
4941 			goto free_chan;
4942 		}
4943 		if (hc->masterclk >= 0) {
4944 			printk(KERN_ERR "Error: Master clock "
4945 			       "for port(%d) of card(%d) already "
4946 			       "defined for port(%d)\n",
4947 			       pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4948 			ret = -EINVAL;
4949 			goto free_chan;
4950 		}
4951 		hc->masterclk = pt;
4952 	}
4953 	/* set transmitter line to non capacitive */
4954 	if (port[Port_cnt] & 0x002) {
4955 		if (debug & DEBUG_HFCMULTI_INIT)
4956 			printk(KERN_DEBUG
4957 			       "%s: PROTOCOL set non capacitive "
4958 			       "transmitter: card(%d) port(%d)\n",
4959 			       __func__, HFC_cnt + 1, pt + 1);
4960 		test_and_set_bit(HFC_CFG_NONCAP_TX,
4961 				 &hc->chan[i + 2].cfg);
4962 	}
4963 	/* disable E-channel */
4964 	if (port[Port_cnt] & 0x004) {
4965 		if (debug & DEBUG_HFCMULTI_INIT)
4966 			printk(KERN_DEBUG
4967 			       "%s: PROTOCOL disable E-channel: "
4968 			       "card(%d) port(%d)\n",
4969 			       __func__, HFC_cnt + 1, pt + 1);
4970 		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4971 				 &hc->chan[i + 2].cfg);
4972 	}
4973 	if (hc->ctype == HFC_TYPE_XHFC) {
4974 		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4975 			 HFC_cnt + 1, pt + 1);
4976 		ret = mISDN_register_device(&dch->dev, NULL, name);
4977 	} else {
4978 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4979 			 hc->ctype, HFC_cnt + 1, pt + 1);
4980 		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4981 	}
4982 	if (ret)
4983 		goto free_chan;
4984 	hc->created[pt] = 1;
4985 	return ret;
4986 free_chan:
4987 	release_port(hc, dch);
4988 	return ret;
4989 }
4990 
4991 static int
4992 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4993 	      const struct pci_device_id *ent)
4994 {
4995 	int		ret_err = 0;
4996 	int		pt;
4997 	struct hfc_multi	*hc;
4998 	u_long		flags;
4999 	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5000 	int		i, ch;
5001 	u_int		maskcheck;
5002 
5003 	if (HFC_cnt >= MAX_CARDS) {
5004 		printk(KERN_ERR "too many cards (max=%d).\n",
5005 		       MAX_CARDS);
5006 		return -EINVAL;
5007 	}
5008 	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5009 		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5010 		       "type[%d] %d was supplied as module parameter\n",
5011 		       m->vendor_name, m->card_name, m->type, HFC_cnt,
5012 		       type[HFC_cnt] & 0xff);
5013 		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5014 		       "first, to see cards and their types.");
5015 		return -EINVAL;
5016 	}
5017 	if (debug & DEBUG_HFCMULTI_INIT)
5018 		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5019 		       __func__, m->vendor_name, m->card_name, m->type,
5020 		       type[HFC_cnt]);
5021 
5022 	/* allocate card+fifo structure */
5023 	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5024 	if (!hc) {
5025 		printk(KERN_ERR "No kmem for HFC-Multi card\n");
5026 		return -ENOMEM;
5027 	}
5028 	spin_lock_init(&hc->lock);
5029 	hc->mtyp = m;
5030 	hc->ctype =  m->type;
5031 	hc->ports = m->ports;
5032 	hc->id = HFC_cnt;
5033 	hc->pcm = pcm[HFC_cnt];
5034 	hc->io_mode = iomode[HFC_cnt];
5035 	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5036 		/* fragment card */
5037 		pt = 0;
5038 		maskcheck = 0;
5039 		for (ch = 0; ch <= 31; ch++) {
5040 			if (!((1 << ch) & dmask[E1_cnt]))
5041 				continue;
5042 			hc->dnum[pt] = ch;
5043 			hc->bmask[pt] = bmask[bmask_cnt++];
5044 			if ((maskcheck & hc->bmask[pt])
5045 			 || (dmask[E1_cnt] & hc->bmask[pt])) {
5046 				printk(KERN_INFO
5047 				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5048 				       E1_cnt + 1, pt);
5049 				kfree(hc);
5050 				return -EINVAL;
5051 			}
5052 			maskcheck |= hc->bmask[pt];
5053 			printk(KERN_INFO
5054 			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5055 				E1_cnt + 1, ch, hc->bmask[pt]);
5056 			pt++;
5057 		}
5058 		hc->ports = pt;
5059 	}
5060 	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5061 		/* default card layout */
5062 		hc->dnum[0] = 16;
5063 		hc->bmask[0] = 0xfffefffe;
5064 		hc->ports = 1;
5065 	}
5066 
5067 	/* set chip specific features */
5068 	hc->masterclk = -1;
5069 	if (type[HFC_cnt] & 0x100) {
5070 		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5071 		hc->silence = 0xff; /* ulaw silence */
5072 	} else
5073 		hc->silence = 0x2a; /* alaw silence */
5074 	if ((poll >> 1) > sizeof(hc->silence_data)) {
5075 		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5076 		       "please fix\n");
5077 		kfree(hc);
5078 		return -EINVAL;
5079 	}
5080 	for (i = 0; i < (poll >> 1); i++)
5081 		hc->silence_data[i] = hc->silence;
5082 
5083 	if (hc->ctype != HFC_TYPE_XHFC) {
5084 		if (!(type[HFC_cnt] & 0x200))
5085 			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5086 		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5087 	}
5088 
5089 	if (type[HFC_cnt] & 0x800)
5090 		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5091 	if (type[HFC_cnt] & 0x1000) {
5092 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5093 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5094 	}
5095 	if (type[HFC_cnt] & 0x4000)
5096 		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5097 	if (type[HFC_cnt] & 0x8000)
5098 		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5099 	hc->slots = 32;
5100 	if (type[HFC_cnt] & 0x10000)
5101 		hc->slots = 64;
5102 	if (type[HFC_cnt] & 0x20000)
5103 		hc->slots = 128;
5104 	if (type[HFC_cnt] & 0x80000) {
5105 		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5106 		hc->wdcount = 0;
5107 		hc->wdbyte = V_GPIO_OUT2;
5108 		printk(KERN_NOTICE "Watchdog enabled\n");
5109 	}
5110 
5111 	if (pdev && ent)
5112 		/* setup pci, hc->slots may change due to PLXSD */
5113 		ret_err = setup_pci(hc, pdev, ent);
5114 	else
5115 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5116 		ret_err = setup_embedded(hc, m);
5117 #else
5118 	{
5119 		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5120 		ret_err = -EIO;
5121 	}
5122 #endif
5123 	if (ret_err) {
5124 		if (hc == syncmaster)
5125 			syncmaster = NULL;
5126 		kfree(hc);
5127 		return ret_err;
5128 	}
5129 
5130 	hc->HFC_outb_nodebug = hc->HFC_outb;
5131 	hc->HFC_inb_nodebug = hc->HFC_inb;
5132 	hc->HFC_inw_nodebug = hc->HFC_inw;
5133 	hc->HFC_wait_nodebug = hc->HFC_wait;
5134 #ifdef HFC_REGISTER_DEBUG
5135 	hc->HFC_outb = HFC_outb_debug;
5136 	hc->HFC_inb = HFC_inb_debug;
5137 	hc->HFC_inw = HFC_inw_debug;
5138 	hc->HFC_wait = HFC_wait_debug;
5139 #endif
5140 	/* create channels */
5141 	for (pt = 0; pt < hc->ports; pt++) {
5142 		if (Port_cnt >= MAX_PORTS) {
5143 			printk(KERN_ERR "too many ports (max=%d).\n",
5144 			       MAX_PORTS);
5145 			ret_err = -EINVAL;
5146 			goto free_card;
5147 		}
5148 		if (hc->ctype == HFC_TYPE_E1)
5149 			ret_err = init_e1_port(hc, m, pt);
5150 		else
5151 			ret_err = init_multi_port(hc, pt);
5152 		if (debug & DEBUG_HFCMULTI_INIT)
5153 			printk(KERN_DEBUG
5154 			    "%s: Registering D-channel, card(%d) port(%d) "
5155 			       "result %d\n",
5156 			    __func__, HFC_cnt + 1, pt + 1, ret_err);
5157 
5158 		if (ret_err) {
5159 			while (pt) { /* release already registered ports */
5160 				pt--;
5161 				if (hc->ctype == HFC_TYPE_E1)
5162 					release_port(hc,
5163 						hc->chan[hc->dnum[pt]].dch);
5164 				else
5165 					release_port(hc,
5166 						hc->chan[(pt << 2) + 2].dch);
5167 			}
5168 			goto free_card;
5169 		}
5170 		if (hc->ctype != HFC_TYPE_E1)
5171 			Port_cnt++; /* for each S0 port */
5172 	}
5173 	if (hc->ctype == HFC_TYPE_E1) {
5174 		Port_cnt++; /* for each E1 port */
5175 		E1_cnt++;
5176 	}
5177 
5178 	/* disp switches */
5179 	switch (m->dip_type) {
5180 	case DIP_4S:
5181 		/*
5182 		 * Get DIP setting for beroNet 1S/2S/4S cards
5183 		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5184 		 * GPI 19/23 (R_GPI_IN2))
5185 		 */
5186 		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5187 			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5188 			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5189 
5190 		/* Port mode (TE/NT) jumpers */
5191 		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5192 
5193 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5194 			pmj = ~pmj & 0xf;
5195 
5196 		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5197 		       m->vendor_name, m->card_name, dips, pmj);
5198 		break;
5199 	case DIP_8S:
5200 		/*
5201 		 * Get DIP Setting for beroNet 8S0+ cards
5202 		 * Enable PCI auxbridge function
5203 		 */
5204 		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5205 		/* prepare access to auxport */
5206 		outw(0x4000, hc->pci_iobase + 4);
5207 		/*
5208 		 * some dummy reads are required to
5209 		 * read valid DIP switch data
5210 		 */
5211 		dips = inb(hc->pci_iobase);
5212 		dips = inb(hc->pci_iobase);
5213 		dips = inb(hc->pci_iobase);
5214 		dips = ~inb(hc->pci_iobase) & 0x3F;
5215 		outw(0x0, hc->pci_iobase + 4);
5216 		/* disable PCI auxbridge function */
5217 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5218 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5219 		       m->vendor_name, m->card_name, dips);
5220 		break;
5221 	case DIP_E1:
5222 		/*
5223 		 * get DIP Setting for beroNet E1 cards
5224 		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5225 		 */
5226 		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5227 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5228 		       m->vendor_name, m->card_name, dips);
5229 		break;
5230 	}
5231 
5232 	/* add to list */
5233 	spin_lock_irqsave(&HFClock, flags);
5234 	list_add_tail(&hc->list, &HFClist);
5235 	spin_unlock_irqrestore(&HFClock, flags);
5236 
5237 	/* use as clock source */
5238 	if (clock == HFC_cnt + 1)
5239 		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5240 
5241 	/* initialize hardware */
5242 	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5243 	ret_err = init_card(hc);
5244 	if (ret_err) {
5245 		printk(KERN_ERR "init card returns %d\n", ret_err);
5246 		release_card(hc);
5247 		return ret_err;
5248 	}
5249 
5250 	/* start IRQ and return */
5251 	spin_lock_irqsave(&hc->lock, flags);
5252 	enable_hwirq(hc);
5253 	spin_unlock_irqrestore(&hc->lock, flags);
5254 	return 0;
5255 
5256 free_card:
5257 	release_io_hfcmulti(hc);
5258 	if (hc == syncmaster)
5259 		syncmaster = NULL;
5260 	kfree(hc);
5261 	return ret_err;
5262 }
5263 
5264 static void hfc_remove_pci(struct pci_dev *pdev)
5265 {
5266 	struct hfc_multi	*card = pci_get_drvdata(pdev);
5267 	u_long			flags;
5268 
5269 	if (debug)
5270 		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5271 		       "device:%x subvendor:%x subdevice:%x\n",
5272 		       pdev->vendor, pdev->device,
5273 		       pdev->subsystem_vendor, pdev->subsystem_device);
5274 
5275 	if (card) {
5276 		spin_lock_irqsave(&HFClock, flags);
5277 		release_card(card);
5278 		spin_unlock_irqrestore(&HFClock, flags);
5279 	}  else {
5280 		if (debug)
5281 			printk(KERN_DEBUG "%s: drvdata already removed\n",
5282 			       __func__);
5283 	}
5284 }
5285 
5286 #define	VENDOR_CCD	"Cologne Chip AG"
5287 #define	VENDOR_BN	"beroNet GmbH"
5288 #define	VENDOR_DIG	"Digium Inc."
5289 #define VENDOR_JH	"Junghanns.NET GmbH"
5290 #define VENDOR_PRIM	"PrimuX"
5291 
5292 static const struct hm_map hfcm_map[] = {
5293 	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5294 	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5295 	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5296 	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5297 	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5298 	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5299 	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5300 	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5301 	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5302 	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5303 	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5304 	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5305 
5306 	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5307 	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5308 		 HFC_IO_MODE_REGIO, 0},
5309 	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5310 	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5311 
5312 	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5313 	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5314 	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5315 
5316 	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5317 	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5318 	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5319 	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5320 
5321 	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5322 	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5323 	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5324 
5325 	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5326 		 HFC_IO_MODE_PLXSD, 0},
5327 	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5328 		 HFC_IO_MODE_PLXSD, 0},
5329 	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5330 	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5331 	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5332 	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5333 		 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5334 	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5335 	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5336 	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5337 };
5338 
5339 #undef H
5340 #define H(x)	((unsigned long)&hfcm_map[x])
5341 static const struct pci_device_id hfmultipci_ids[] = {
5342 
5343 	/* Cards with HFC-4S Chip */
5344 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5345 	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5346 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5347 	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5348 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5349 	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5350 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5351 	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5352 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5353 	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5354 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5355 	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5356 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5357 	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5358 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5359 	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5360 	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5361 	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5362 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5363 	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5364 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5365 	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5366 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5367 	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5368 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5369 	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5370 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5371 	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5372 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5373 	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5374 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5375 	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5376 
5377 	/* Cards with HFC-8S Chip */
5378 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5379 	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5380 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5381 	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5382 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5383 	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5384 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5385 	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5386 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5387 	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5388 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5389 	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5390 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5391 	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5392 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5393 	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5394 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5395 	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5396 
5397 
5398 	/* Cards with HFC-E1 Chip */
5399 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5400 	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5401 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5402 	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5403 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5404 	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5405 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5406 	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5407 
5408 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5409 	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5410 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5411 	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5412 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5413 	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5414 
5415 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5416 	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5417 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5418 	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5419 
5420 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5421 	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5422 
5423 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5424 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5425 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5426 	{0, }
5427 };
5428 #undef H
5429 
5430 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5431 
5432 static int
5433 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5434 {
5435 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5436 	int		ret;
5437 
5438 	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5439 		    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5440 		    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5441 		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5442 		printk(KERN_ERR
5443 		       "Unknown HFC multiport controller (vendor:%04x device:%04x "
5444 		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5445 		       pdev->device, pdev->subsystem_vendor,
5446 		       pdev->subsystem_device);
5447 		printk(KERN_ERR
5448 		       "Please contact the driver maintainer for support.\n");
5449 		return -ENODEV;
5450 	}
5451 	ret = hfcmulti_init(m, pdev, ent);
5452 	if (ret)
5453 		return ret;
5454 	HFC_cnt++;
5455 	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5456 	return 0;
5457 }
5458 
5459 static struct pci_driver hfcmultipci_driver = {
5460 	.name		= "hfc_multi",
5461 	.probe		= hfcmulti_probe,
5462 	.remove		= hfc_remove_pci,
5463 	.id_table	= hfmultipci_ids,
5464 };
5465 
5466 static void __exit
5467 HFCmulti_cleanup(void)
5468 {
5469 	struct hfc_multi *card, *next;
5470 
5471 	/* get rid of all devices of this driver */
5472 	list_for_each_entry_safe(card, next, &HFClist, list)
5473 		release_card(card);
5474 	pci_unregister_driver(&hfcmultipci_driver);
5475 }
5476 
5477 static int __init
5478 HFCmulti_init(void)
5479 {
5480 	int err;
5481 	int i, xhfc = 0;
5482 	struct hm_map m;
5483 
5484 	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5485 
5486 #ifdef IRQ_DEBUG
5487 	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5488 #endif
5489 
5490 	if (debug & DEBUG_HFCMULTI_INIT)
5491 		printk(KERN_DEBUG "%s: init entered\n", __func__);
5492 
5493 	switch (poll) {
5494 	case 0:
5495 		poll_timer = 6;
5496 		poll = 128;
5497 		break;
5498 	case 8:
5499 		poll_timer = 2;
5500 		break;
5501 	case 16:
5502 		poll_timer = 3;
5503 		break;
5504 	case 32:
5505 		poll_timer = 4;
5506 		break;
5507 	case 64:
5508 		poll_timer = 5;
5509 		break;
5510 	case 128:
5511 		poll_timer = 6;
5512 		break;
5513 	case 256:
5514 		poll_timer = 7;
5515 		break;
5516 	default:
5517 		printk(KERN_ERR
5518 		       "%s: Wrong poll value (%d).\n", __func__, poll);
5519 		err = -EINVAL;
5520 		return err;
5521 
5522 	}
5523 
5524 	if (!clock)
5525 		clock = 1;
5526 
5527 	/* Register the embedded devices.
5528 	 * This should be done before the PCI cards registration */
5529 	switch (hwid) {
5530 	case HWID_MINIP4:
5531 		xhfc = 1;
5532 		m = hfcm_map[31];
5533 		break;
5534 	case HWID_MINIP8:
5535 		xhfc = 2;
5536 		m = hfcm_map[31];
5537 		break;
5538 	case HWID_MINIP16:
5539 		xhfc = 4;
5540 		m = hfcm_map[31];
5541 		break;
5542 	default:
5543 		xhfc = 0;
5544 	}
5545 
5546 	for (i = 0; i < xhfc; ++i) {
5547 		err = hfcmulti_init(&m, NULL, NULL);
5548 		if (err) {
5549 			printk(KERN_ERR "error registering embedded driver: "
5550 			       "%x\n", err);
5551 			return err;
5552 		}
5553 		HFC_cnt++;
5554 		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5555 	}
5556 
5557 	/* Register the PCI cards */
5558 	err = pci_register_driver(&hfcmultipci_driver);
5559 	if (err < 0) {
5560 		printk(KERN_ERR "error registering pci driver: %x\n", err);
5561 		return err;
5562 	}
5563 
5564 	return 0;
5565 }
5566 
5567 
5568 module_init(HFCmulti_init);
5569 module_exit(HFCmulti_cleanup);
5570