1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 *
5 * Author Andreas Eversberg (jolly@eversberg.eu)
6 * ported to mqueue mechanism:
7 * Peter Sprenger (sprengermoving-bytes.de)
8 *
9 * inspired by existing hfc-pci driver:
10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
12 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 *
14 * Thanks to Cologne Chip AG for this great controller!
15 */
16
17 /*
18 * module parameters:
19 * type:
20 * By default (0), the card is automatically detected.
21 * Or use the following combinations:
22 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
23 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
24 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
25 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
26 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
27 * Bit 10 = spare
28 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30 * Bit 13 = spare
31 * Bit 14 = 0x04000 = Use external ram (128K)
32 * Bit 15 = 0x08000 = Use external ram (512K)
33 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
34 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
35 * Bit 18 = spare
36 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37 * (all other bits are reserved and shall be 0)
38 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39 * bus (PCM master)
40 *
41 * port: (optional or required for all ports on all installed cards)
42 * HFC-4S/HFC-8S only bits:
43 * Bit 0 = 0x001 = Use master clock for this S/T interface
44 * (ony once per chip).
45 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
46 * Don't use this unless you know what you are doing!
47 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
48 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49 * received from port 1
50 *
51 * HFC-E1 only bits:
52 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
53 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
54 * Bit 2 = 0x0004 = Report LOS
55 * Bit 3 = 0x0008 = Report AIS
56 * Bit 4 = 0x0010 = Report SLIP
57 * Bit 5 = 0x0020 = Report RDI
58 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59 * mode instead.
60 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
61 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
62 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63 * (E1 only)
64 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65 * for default.
66 * (all other bits are reserved and shall be 0)
67 *
68 * debug:
69 * NOTE: only one debug value must be given for all cards
70 * enable debugging (see hfc_multi.h for debug options)
71 *
72 * poll:
73 * NOTE: only one poll value must be given for all cards
74 * Give the number of samples for each fifo process.
75 * By default 128 is used. Decrease to reduce delay, increase to
76 * reduce cpu load. If unsure, don't mess with it!
77 * Valid is 8, 16, 32, 64, 128, 256.
78 *
79 * pcm:
80 * NOTE: only one pcm value must be given for every card.
81 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82 * By default (0), the PCM bus id is 100 for the card that is PCM master.
83 * If multiple cards are PCM master (because they are not interconnected),
84 * each card with PCM master will have increasing PCM id.
85 * All PCM busses with the same ID are expected to be connected and have
86 * common time slots slots.
87 * Only one chip of the PCM bus must be master, the others slave.
88 * -1 means no support of PCM bus not even.
89 * Omit this value, if all cards are interconnected or none is connected.
90 * If unsure, don't give this parameter.
91 *
92 * dmask and bmask:
93 * NOTE: One dmask value must be given for every HFC-E1 card.
94 * If omitted, the E1 card has D-channel on time slot 16, which is default.
95 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96 * If multiple bits are set, multiple virtual card fragments are created.
97 * For each bit set, a bmask value must be given. Each bit on the bmask
98 * value stands for a B-channel. The bmask may not overlap with dmask or
99 * with other bmask values for that card.
100 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101 * This will create one fragment with D-channel on slot 1 with
102 * B-channels on slots 2..15, and a second fragment with D-channel
103 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105 * not function.
106 * Example: dmask=0x00000001 bmask=0xfffffffe
107 * This will create a port with all 31 usable timeslots as
108 * B-channels.
109 * If no bits are set on bmask, no B-channel is created for that fragment.
110 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111 * This will create 31 ports with one D-channel only.
112 * If you don't know how to use it, you don't need it!
113 *
114 * iomode:
115 * NOTE: only one mode value must be given for every card.
116 * -> See hfc_multi.h for HFC_IO_MODE_* values
117 * By default, the IO mode is pci memory IO (MEMIO).
118 * Some cards require specific IO mode, so it cannot be changed.
119 * It may be useful to set IO mode to register io (REGIO) to solve
120 * PCI bridge problems.
121 * If unsure, don't give this parameter.
122 *
123 * clockdelay_nt:
124 * NOTE: only one clockdelay_nt value must be given once for all cards.
125 * Give the value of the clock control register (A_ST_CLK_DLY)
126 * of the S/T interfaces in NT mode.
127 * This register is needed for the TBR3 certification, so don't change it.
128 *
129 * clockdelay_te:
130 * NOTE: only one clockdelay_te value must be given once
131 * Give the value of the clock control register (A_ST_CLK_DLY)
132 * of the S/T interfaces in TE mode.
133 * This register is needed for the TBR3 certification, so don't change it.
134 *
135 * clock:
136 * NOTE: only one clock value must be given once
137 * Selects interface with clock source for mISDN and applications.
138 * Set to card number starting with 1. Set to -1 to disable.
139 * By default, the first card is used as clock source.
140 *
141 * hwid:
142 * NOTE: only one hwid value must be given once
143 * Enable special embedded devices with XHFC controllers.
144 */
145
146 /*
147 * debug register access (never use this, it will flood your system log)
148 * #define HFC_REGISTER_DEBUG
149 */
150
151 #define HFC_MULTI_VERSION "2.03"
152
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160
161 /*
162 #define IRQCOUNT_DEBUG
163 #define IRQ_DEBUG
164 */
165
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170
171 #define MAX_CARDS 8
172 #define MAX_PORTS (8 * MAX_CARDS)
173 #define MAX_FRAGS (32 * MAX_CARDS)
174
175 static LIST_HEAD(HFClist);
176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177
178 static void ph_state_change(struct dchannel *);
179
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183
184 #define TYP_E1 1
185 #define TYP_4S 4
186 #define TYP_8S 8
187
188 static int poll_timer = 6; /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
194
195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198
199 /*
200 * module stuff
201 */
202
203 static uint type[MAX_CARDS];
204 static int pcm[MAX_CARDS];
205 static uint dmask[MAX_CARDS];
206 static uint bmask[MAX_FRAGS];
207 static uint iomode[MAX_CARDS];
208 static uint port[MAX_PORTS];
209 static uint debug;
210 static uint poll;
211 static int clock;
212 static uint timer;
213 static uint clockdelay_te = CLKDEL_TE;
214 static uint clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE 0
216 #define HWID_MINIP4 1
217 #define HWID_MINIP8 2
218 #define HWID_MINIP16 3
219 static uint hwid = HWID_NONE;
220
221 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239
240 #ifdef HFC_REGISTER_DEBUG
241 #define HFC_outb(hc, reg, val) \
242 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243 #define HFC_outb_nodebug(hc, reg, val) \
244 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245 #define HFC_inb(hc, reg) \
246 (hc->HFC_inb(hc, reg, __func__, __LINE__))
247 #define HFC_inb_nodebug(hc, reg) \
248 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249 #define HFC_inw(hc, reg) \
250 (hc->HFC_inw(hc, reg, __func__, __LINE__))
251 #define HFC_inw_nodebug(hc, reg) \
252 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253 #define HFC_wait(hc) \
254 (hc->HFC_wait(hc, __func__, __LINE__))
255 #define HFC_wait_nodebug(hc) \
256 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257 #else
258 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
259 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
260 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
261 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
262 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
263 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
264 #define HFC_wait(hc) (hc->HFC_wait(hc))
265 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
266 #endif
267
268 #ifdef CONFIG_MISDN_HFCMULTI_8xx
269 #include "hfc_multi_8xx.h"
270 #endif
271
272 /* HFC_IO_MODE_PCIMEM */
273 static void
274 #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)275 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276 const char *function, int line)
277 #else
278 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279 #endif
280 {
281 writeb(val, hc->pci_membase + reg);
282 }
283 static u_char
284 #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)285 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286 #else
287 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288 #endif
289 {
290 return readb(hc->pci_membase + reg);
291 }
292 static u_short
293 #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)294 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295 #else
296 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297 #endif
298 {
299 return readw(hc->pci_membase + reg);
300 }
301 static void
302 #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)303 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304 #else
305 HFC_wait_pcimem(struct hfc_multi *hc)
306 #endif
307 {
308 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309 cpu_relax();
310 }
311
312 /* HFC_IO_MODE_REGIO */
313 static void
314 #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)315 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316 const char *function, int line)
317 #else
318 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319 #endif
320 {
321 outb(reg, hc->pci_iobase + 4);
322 outb(val, hc->pci_iobase);
323 }
324 static u_char
325 #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)326 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327 #else
328 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329 #endif
330 {
331 outb(reg, hc->pci_iobase + 4);
332 return inb(hc->pci_iobase);
333 }
334 static u_short
335 #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)336 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337 #else
338 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339 #endif
340 {
341 outb(reg, hc->pci_iobase + 4);
342 return inw(hc->pci_iobase);
343 }
344 static void
345 #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)346 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347 #else
348 HFC_wait_regio(struct hfc_multi *hc)
349 #endif
350 {
351 outb(R_STATUS, hc->pci_iobase + 4);
352 while (inb(hc->pci_iobase) & V_BUSY)
353 cpu_relax();
354 }
355
356 #ifdef HFC_REGISTER_DEBUG
357 static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)358 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359 const char *function, int line)
360 {
361 char regname[256] = "", bits[9] = "xxxxxxxx";
362 int i;
363
364 i = -1;
365 while (hfc_register_names[++i].name) {
366 if (hfc_register_names[i].reg == reg)
367 strcat(regname, hfc_register_names[i].name);
368 }
369 if (regname[0] == '\0')
370 strcpy(regname, "register");
371
372 bits[7] = '0' + (!!(val & 1));
373 bits[6] = '0' + (!!(val & 2));
374 bits[5] = '0' + (!!(val & 4));
375 bits[4] = '0' + (!!(val & 8));
376 bits[3] = '0' + (!!(val & 16));
377 bits[2] = '0' + (!!(val & 32));
378 bits[1] = '0' + (!!(val & 64));
379 bits[0] = '0' + (!!(val & 128));
380 printk(KERN_DEBUG
381 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382 hc->id, reg, regname, val, bits, function, line);
383 HFC_outb_nodebug(hc, reg, val);
384 }
385 static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)386 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387 {
388 char regname[256] = "", bits[9] = "xxxxxxxx";
389 u_char val = HFC_inb_nodebug(hc, reg);
390 int i;
391
392 i = 0;
393 while (hfc_register_names[i++].name)
394 ;
395 while (hfc_register_names[++i].name) {
396 if (hfc_register_names[i].reg == reg)
397 strcat(regname, hfc_register_names[i].name);
398 }
399 if (regname[0] == '\0')
400 strcpy(regname, "register");
401
402 bits[7] = '0' + (!!(val & 1));
403 bits[6] = '0' + (!!(val & 2));
404 bits[5] = '0' + (!!(val & 4));
405 bits[4] = '0' + (!!(val & 8));
406 bits[3] = '0' + (!!(val & 16));
407 bits[2] = '0' + (!!(val & 32));
408 bits[1] = '0' + (!!(val & 64));
409 bits[0] = '0' + (!!(val & 128));
410 printk(KERN_DEBUG
411 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412 hc->id, reg, regname, val, bits, function, line);
413 return val;
414 }
415 static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)416 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417 {
418 char regname[256] = "";
419 u_short val = HFC_inw_nodebug(hc, reg);
420 int i;
421
422 i = 0;
423 while (hfc_register_names[i++].name)
424 ;
425 while (hfc_register_names[++i].name) {
426 if (hfc_register_names[i].reg == reg)
427 strcat(regname, hfc_register_names[i].name);
428 }
429 if (regname[0] == '\0')
430 strcpy(regname, "register");
431
432 printk(KERN_DEBUG
433 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434 hc->id, reg, regname, val, function, line);
435 return val;
436 }
437 static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)438 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439 {
440 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441 hc->id, function, line);
442 HFC_wait_nodebug(hc);
443 }
444 #endif
445
446 /* write fifo data (REGIO) */
447 static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)448 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449 {
450 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451 while (len >> 2) {
452 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453 data += 4;
454 len -= 4;
455 }
456 while (len >> 1) {
457 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458 data += 2;
459 len -= 2;
460 }
461 while (len) {
462 outb(*data, hc->pci_iobase);
463 data++;
464 len--;
465 }
466 }
467 /* write fifo data (PCIMEM) */
468 static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)469 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470 {
471 while (len >> 2) {
472 writel(cpu_to_le32(*(u32 *)data),
473 hc->pci_membase + A_FIFO_DATA0);
474 data += 4;
475 len -= 4;
476 }
477 while (len >> 1) {
478 writew(cpu_to_le16(*(u16 *)data),
479 hc->pci_membase + A_FIFO_DATA0);
480 data += 2;
481 len -= 2;
482 }
483 while (len) {
484 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485 data++;
486 len--;
487 }
488 }
489
490 /* read fifo data (REGIO) */
491 static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)492 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493 {
494 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495 while (len >> 2) {
496 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497 data += 4;
498 len -= 4;
499 }
500 while (len >> 1) {
501 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502 data += 2;
503 len -= 2;
504 }
505 while (len) {
506 *data = inb(hc->pci_iobase);
507 data++;
508 len--;
509 }
510 }
511
512 /* read fifo data (PCIMEM) */
513 static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)514 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515 {
516 while (len >> 2) {
517 *(u32 *)data =
518 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519 data += 4;
520 len -= 4;
521 }
522 while (len >> 1) {
523 *(u16 *)data =
524 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525 data += 2;
526 len -= 2;
527 }
528 while (len) {
529 *data = readb(hc->pci_membase + A_FIFO_DATA0);
530 data++;
531 len--;
532 }
533 }
534
535 static void
enable_hwirq(struct hfc_multi * hc)536 enable_hwirq(struct hfc_multi *hc)
537 {
538 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540 }
541
542 static void
disable_hwirq(struct hfc_multi * hc)543 disable_hwirq(struct hfc_multi *hc)
544 {
545 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547 }
548
549 #define NUM_EC 2
550 #define MAX_TDM_CHAN 32
551
552
553 static inline void
enablepcibridge(struct hfc_multi * c)554 enablepcibridge(struct hfc_multi *c)
555 {
556 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557 }
558
559 static inline void
disablepcibridge(struct hfc_multi * c)560 disablepcibridge(struct hfc_multi *c)
561 {
562 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563 }
564
565 static inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)566 readpcibridge(struct hfc_multi *hc, unsigned char address)
567 {
568 unsigned short cipv;
569 unsigned char data;
570
571 if (!hc->pci_iobase)
572 return 0;
573
574 /* slow down a PCI read access by 1 PCI clock cycle */
575 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576
577 if (address == 0)
578 cipv = 0x4000;
579 else
580 cipv = 0x5800;
581
582 /* select local bridge port address by writing to CIP port */
583 /* data = HFC_inb(c, cipv); * was _io before */
584 outw(cipv, hc->pci_iobase + 4);
585 data = inb(hc->pci_iobase);
586
587 /* restore R_CTRL for normal PCI read cycle speed */
588 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589
590 return data;
591 }
592
593 static inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)594 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595 {
596 unsigned short cipv;
597 unsigned int datav;
598
599 if (!hc->pci_iobase)
600 return;
601
602 if (address == 0)
603 cipv = 0x4000;
604 else
605 cipv = 0x5800;
606
607 /* select local bridge port address by writing to CIP port */
608 outw(cipv, hc->pci_iobase + 4);
609 /* define a 32 bit dword with 4 identical bytes for write sequence */
610 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611 ((__u32) data << 24);
612
613 /*
614 * write this 32 bit dword to the bridge data port
615 * this will initiate a write sequence of up to 4 writes to the same
616 * address on the local bus interface the number of write accesses
617 * is undefined but >=1 and depends on the next PCI transaction
618 * during write sequence on the local bus
619 */
620 outl(datav, hc->pci_iobase);
621 }
622
623 static inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)624 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626 /* Do data pin read low byte */
627 HFC_outb(hc, R_GPIO_OUT1, reg);
628 }
629
630 static inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)631 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632 {
633 cpld_set_reg(hc, reg);
634
635 enablepcibridge(hc);
636 writepcibridge(hc, 1, val);
637 disablepcibridge(hc);
638
639 return;
640 }
641
642 static inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)643 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
644 {
645 cpld_write_reg(hc, 0, 0xff & addr);
646 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
647 }
648
649 static inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)650 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
651 {
652 unsigned char res;
653
654 vpm_write_address(c, addr);
655
656 if (!which)
657 cpld_set_reg(c, 2);
658 else
659 cpld_set_reg(c, 3);
660
661 enablepcibridge(c);
662 res = readpcibridge(c, 1);
663 disablepcibridge(c);
664
665 cpld_set_reg(c, 0);
666
667 return res;
668 }
669
670 static inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)671 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
672 unsigned char data)
673 {
674 vpm_write_address(c, addr);
675
676 enablepcibridge(c);
677
678 if (!which)
679 cpld_set_reg(c, 2);
680 else
681 cpld_set_reg(c, 3);
682
683 writepcibridge(c, 1, data);
684
685 cpld_set_reg(c, 0);
686
687 disablepcibridge(c);
688
689 {
690 unsigned char regin;
691 regin = vpm_in(c, which, addr);
692 if (regin != data)
693 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
694 "0x%x\n", data, addr, regin);
695 }
696
697 }
698
699
700 static void
vpm_init(struct hfc_multi * wc)701 vpm_init(struct hfc_multi *wc)
702 {
703 unsigned char reg;
704 unsigned int mask;
705 unsigned int i, x, y;
706 unsigned int ver;
707
708 for (x = 0; x < NUM_EC; x++) {
709 /* Setup GPIO's */
710 if (!x) {
711 ver = vpm_in(wc, x, 0x1a0);
712 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
713 }
714
715 for (y = 0; y < 4; y++) {
716 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
717 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
718 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
719 }
720
721 /* Setup TDM path - sets fsync and tdm_clk as inputs */
722 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
723 vpm_out(wc, x, 0x1a3, reg & ~2);
724
725 /* Setup Echo length (256 taps) */
726 vpm_out(wc, x, 0x022, 1);
727 vpm_out(wc, x, 0x023, 0xff);
728
729 /* Setup timeslots */
730 vpm_out(wc, x, 0x02f, 0x00);
731 mask = 0x02020202 << (x * 4);
732
733 /* Setup the tdm channel masks for all chips */
734 for (i = 0; i < 4; i++)
735 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
736
737 /* Setup convergence rate */
738 printk(KERN_DEBUG "VPM: A-law mode\n");
739 reg = 0x00 | 0x10 | 0x01;
740 vpm_out(wc, x, 0x20, reg);
741 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
742 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
743
744 vpm_out(wc, x, 0x24, 0x02);
745 reg = vpm_in(wc, x, 0x24);
746 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
747
748 /* Initialize echo cans */
749 for (i = 0; i < MAX_TDM_CHAN; i++) {
750 if (mask & (0x00000001 << i))
751 vpm_out(wc, x, i, 0x00);
752 }
753
754 /*
755 * ARM arch at least disallows a udelay of
756 * more than 2ms... it gives a fake "__bad_udelay"
757 * reference at link-time.
758 * long delays in kernel code are pretty sucky anyway
759 * for now work around it using 5 x 2ms instead of 1 x 10ms
760 */
761
762 udelay(2000);
763 udelay(2000);
764 udelay(2000);
765 udelay(2000);
766 udelay(2000);
767
768 /* Put in bypass mode */
769 for (i = 0; i < MAX_TDM_CHAN; i++) {
770 if (mask & (0x00000001 << i))
771 vpm_out(wc, x, i, 0x01);
772 }
773
774 /* Enable bypass */
775 for (i = 0; i < MAX_TDM_CHAN; i++) {
776 if (mask & (0x00000001 << i))
777 vpm_out(wc, x, 0x78 + i, 0x01);
778 }
779
780 }
781 }
782
783 #ifdef UNUSED
784 static void
vpm_check(struct hfc_multi * hctmp)785 vpm_check(struct hfc_multi *hctmp)
786 {
787 unsigned char gpi2;
788
789 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
790
791 if ((gpi2 & 0x3) != 0x3)
792 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
793 }
794 #endif /* UNUSED */
795
796
797 /*
798 * Interface to enable/disable the HW Echocan
799 *
800 * these functions are called within a spin_lock_irqsave on
801 * the channel instance lock, so we are not disturbed by irqs
802 *
803 * we can later easily change the interface to make other
804 * things configurable, for now we configure the taps
805 *
806 */
807
808 static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)809 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
810 {
811 unsigned int timeslot;
812 unsigned int unit;
813 struct bchannel *bch = hc->chan[ch].bch;
814 #ifdef TXADJ
815 int txadj = -4;
816 struct sk_buff *skb;
817 #endif
818 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
819 return;
820
821 if (!bch)
822 return;
823
824 #ifdef TXADJ
825 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
826 sizeof(int), &txadj, GFP_ATOMIC);
827 if (skb)
828 recv_Bchannel_skb(bch, skb);
829 #endif
830
831 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
832 unit = ch % 4;
833
834 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
835 taps, timeslot);
836
837 vpm_out(hc, unit, timeslot, 0x7e);
838 }
839
840 static void
vpm_echocan_off(struct hfc_multi * hc,int ch)841 vpm_echocan_off(struct hfc_multi *hc, int ch)
842 {
843 unsigned int timeslot;
844 unsigned int unit;
845 struct bchannel *bch = hc->chan[ch].bch;
846 #ifdef TXADJ
847 int txadj = 0;
848 struct sk_buff *skb;
849 #endif
850
851 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
852 return;
853
854 if (!bch)
855 return;
856
857 #ifdef TXADJ
858 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
859 sizeof(int), &txadj, GFP_ATOMIC);
860 if (skb)
861 recv_Bchannel_skb(bch, skb);
862 #endif
863
864 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
865 unit = ch % 4;
866
867 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
868 timeslot);
869 /* FILLME */
870 vpm_out(hc, unit, timeslot, 0x01);
871 }
872
873
874 /*
875 * Speech Design resync feature
876 * NOTE: This is called sometimes outside interrupt handler.
877 * We must lock irqsave, so no other interrupt (other card) will occur!
878 * Also multiple interrupts may nest, so must lock each access (lists, card)!
879 */
880 static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)881 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
882 {
883 struct hfc_multi *hc, *next, *pcmmaster = NULL;
884 void __iomem *plx_acc_32;
885 u_int pv;
886 u_long flags;
887
888 spin_lock_irqsave(&HFClock, flags);
889 spin_lock(&plx_lock); /* must be locked inside other locks */
890
891 if (debug & DEBUG_HFCMULTI_PLXSD)
892 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
893 __func__, syncmaster);
894
895 /* select new master */
896 if (newmaster) {
897 if (debug & DEBUG_HFCMULTI_PLXSD)
898 printk(KERN_DEBUG "using provided controller\n");
899 } else {
900 list_for_each_entry_safe(hc, next, &HFClist, list) {
901 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
902 if (hc->syncronized) {
903 newmaster = hc;
904 break;
905 }
906 }
907 }
908 }
909
910 /* Disable sync of all cards */
911 list_for_each_entry_safe(hc, next, &HFClist, list) {
912 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
913 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
914 pv = readl(plx_acc_32);
915 pv &= ~PLX_SYNC_O_EN;
916 writel(pv, plx_acc_32);
917 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
918 pcmmaster = hc;
919 if (hc->ctype == HFC_TYPE_E1) {
920 if (debug & DEBUG_HFCMULTI_PLXSD)
921 printk(KERN_DEBUG
922 "Schedule SYNC_I\n");
923 hc->e1_resync |= 1; /* get SYNC_I */
924 }
925 }
926 }
927 }
928
929 if (newmaster) {
930 hc = newmaster;
931 if (debug & DEBUG_HFCMULTI_PLXSD)
932 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
933 "interface.\n", hc->id, hc);
934 /* Enable new sync master */
935 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
936 pv = readl(plx_acc_32);
937 pv |= PLX_SYNC_O_EN;
938 writel(pv, plx_acc_32);
939 /* switch to jatt PLL, if not disabled by RX_SYNC */
940 if (hc->ctype == HFC_TYPE_E1
941 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
942 if (debug & DEBUG_HFCMULTI_PLXSD)
943 printk(KERN_DEBUG "Schedule jatt PLL\n");
944 hc->e1_resync |= 2; /* switch to jatt */
945 }
946 } else {
947 if (pcmmaster) {
948 hc = pcmmaster;
949 if (debug & DEBUG_HFCMULTI_PLXSD)
950 printk(KERN_DEBUG
951 "id=%d (0x%p) = PCM master syncronized "
952 "with QUARTZ\n", hc->id, hc);
953 if (hc->ctype == HFC_TYPE_E1) {
954 /* Use the crystal clock for the PCM
955 master card */
956 if (debug & DEBUG_HFCMULTI_PLXSD)
957 printk(KERN_DEBUG
958 "Schedule QUARTZ for HFC-E1\n");
959 hc->e1_resync |= 4; /* switch quartz */
960 } else {
961 if (debug & DEBUG_HFCMULTI_PLXSD)
962 printk(KERN_DEBUG
963 "QUARTZ is automatically "
964 "enabled by HFC-%dS\n", hc->ctype);
965 }
966 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967 pv = readl(plx_acc_32);
968 pv |= PLX_SYNC_O_EN;
969 writel(pv, plx_acc_32);
970 } else
971 if (!rm)
972 printk(KERN_ERR "%s no pcm master, this MUST "
973 "not happen!\n", __func__);
974 }
975 syncmaster = newmaster;
976
977 spin_unlock(&plx_lock);
978 spin_unlock_irqrestore(&HFClock, flags);
979 }
980
981 /* This must be called AND hc must be locked irqsave!!! */
982 static inline void
plxsd_checksync(struct hfc_multi * hc,int rm)983 plxsd_checksync(struct hfc_multi *hc, int rm)
984 {
985 if (hc->syncronized) {
986 if (syncmaster == NULL) {
987 if (debug & DEBUG_HFCMULTI_PLXSD)
988 printk(KERN_DEBUG "%s: GOT sync on card %d"
989 " (id=%d)\n", __func__, hc->id + 1,
990 hc->id);
991 hfcmulti_resync(hc, hc, rm);
992 }
993 } else {
994 if (syncmaster == hc) {
995 if (debug & DEBUG_HFCMULTI_PLXSD)
996 printk(KERN_DEBUG "%s: LOST sync on card %d"
997 " (id=%d)\n", __func__, hc->id + 1,
998 hc->id);
999 hfcmulti_resync(hc, NULL, rm);
1000 }
1001 }
1002 }
1003
1004
1005 /*
1006 * free hardware resources used by driver
1007 */
1008 static void
release_io_hfcmulti(struct hfc_multi * hc)1009 release_io_hfcmulti(struct hfc_multi *hc)
1010 {
1011 void __iomem *plx_acc_32;
1012 u_int pv;
1013 u_long plx_flags;
1014
1015 if (debug & DEBUG_HFCMULTI_INIT)
1016 printk(KERN_DEBUG "%s: entered\n", __func__);
1017
1018 /* soft reset also masks all interrupts */
1019 hc->hw.r_cirm |= V_SRES;
1020 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1021 udelay(1000);
1022 hc->hw.r_cirm &= ~V_SRES;
1023 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1024 udelay(1000); /* instead of 'wait' that may cause locking */
1025
1026 /* release Speech Design card, if PLX was initialized */
1027 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1028 if (debug & DEBUG_HFCMULTI_PLXSD)
1029 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1030 __func__, hc->id + 1);
1031 spin_lock_irqsave(&plx_lock, plx_flags);
1032 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1033 writel(PLX_GPIOC_INIT, plx_acc_32);
1034 pv = readl(plx_acc_32);
1035 /* Termination off */
1036 pv &= ~PLX_TERM_ON;
1037 /* Disconnect the PCM */
1038 pv |= PLX_SLAVE_EN_N;
1039 pv &= ~PLX_MASTER_EN;
1040 pv &= ~PLX_SYNC_O_EN;
1041 /* Put the DSP in Reset */
1042 pv &= ~PLX_DSP_RES_N;
1043 writel(pv, plx_acc_32);
1044 if (debug & DEBUG_HFCMULTI_INIT)
1045 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1046 __func__, pv);
1047 spin_unlock_irqrestore(&plx_lock, plx_flags);
1048 }
1049
1050 /* disable memory mapped ports / io ports */
1051 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1052 if (hc->pci_dev)
1053 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1054 if (hc->pci_membase)
1055 iounmap(hc->pci_membase);
1056 if (hc->plx_membase)
1057 iounmap(hc->plx_membase);
1058 if (hc->pci_iobase)
1059 release_region(hc->pci_iobase, 8);
1060 if (hc->xhfc_membase)
1061 iounmap((void *)hc->xhfc_membase);
1062
1063 if (hc->pci_dev) {
1064 pci_disable_device(hc->pci_dev);
1065 pci_set_drvdata(hc->pci_dev, NULL);
1066 }
1067 if (debug & DEBUG_HFCMULTI_INIT)
1068 printk(KERN_DEBUG "%s: done\n", __func__);
1069 }
1070
1071 /*
1072 * function called to reset the HFC chip. A complete software reset of chip
1073 * and fifos is done. All configuration of the chip is done.
1074 */
1075
1076 static int
init_chip(struct hfc_multi * hc)1077 init_chip(struct hfc_multi *hc)
1078 {
1079 u_long flags, val, val2 = 0, rev;
1080 int i, err = 0;
1081 u_char r_conf_en, rval;
1082 void __iomem *plx_acc_32;
1083 u_int pv;
1084 u_long plx_flags, hfc_flags;
1085 int plx_count;
1086 struct hfc_multi *pos, *next, *plx_last_hc;
1087
1088 spin_lock_irqsave(&hc->lock, flags);
1089 /* reset all registers */
1090 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1091
1092 /* revision check */
1093 if (debug & DEBUG_HFCMULTI_INIT)
1094 printk(KERN_DEBUG "%s: entered\n", __func__);
1095 val = HFC_inb(hc, R_CHIP_ID);
1096 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1097 (val >> 1) != 0x31) {
1098 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099 err = -EIO;
1100 goto out;
1101 }
1102 rev = HFC_inb(hc, R_CHIP_RV);
1103 printk(KERN_INFO
1104 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1106 " (old FIFO handling)" : "");
1107 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1108 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1109 printk(KERN_WARNING
1110 "HFC_multi: NOTE: Your chip is revision 0, "
1111 "ask Cologne Chip for update. Newer chips "
1112 "have a better FIFO handling. Old chips "
1113 "still work but may have slightly lower "
1114 "HDLC transmit performance.\n");
1115 }
1116 if (rev > 1) {
1117 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1118 "consider chip revision = %ld. The chip / "
1119 "bridge may not work.\n", rev);
1120 }
1121
1122 /* set s-ram size */
1123 hc->Flen = 0x10;
1124 hc->Zmin = 0x80;
1125 hc->Zlen = 384;
1126 hc->DTMFbase = 0x1000;
1127 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1128 if (debug & DEBUG_HFCMULTI_INIT)
1129 printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1130 __func__);
1131 hc->hw.r_ctrl |= V_EXT_RAM;
1132 hc->hw.r_ram_sz = 1;
1133 hc->Flen = 0x20;
1134 hc->Zmin = 0xc0;
1135 hc->Zlen = 1856;
1136 hc->DTMFbase = 0x2000;
1137 }
1138 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1139 if (debug & DEBUG_HFCMULTI_INIT)
1140 printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1141 __func__);
1142 hc->hw.r_ctrl |= V_EXT_RAM;
1143 hc->hw.r_ram_sz = 2;
1144 hc->Flen = 0x20;
1145 hc->Zmin = 0xc0;
1146 hc->Zlen = 8000;
1147 hc->DTMFbase = 0x2000;
1148 }
1149 if (hc->ctype == HFC_TYPE_XHFC) {
1150 hc->Flen = 0x8;
1151 hc->Zmin = 0x0;
1152 hc->Zlen = 64;
1153 hc->DTMFbase = 0x0;
1154 }
1155 hc->max_trans = poll << 1;
1156 if (hc->max_trans > hc->Zlen)
1157 hc->max_trans = hc->Zlen;
1158
1159 /* Speech Design PLX bridge */
1160 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161 if (debug & DEBUG_HFCMULTI_PLXSD)
1162 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163 __func__, hc->id + 1);
1164 spin_lock_irqsave(&plx_lock, plx_flags);
1165 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166 writel(PLX_GPIOC_INIT, plx_acc_32);
1167 pv = readl(plx_acc_32);
1168 /* The first and the last cards are terminating the PCM bus */
1169 pv |= PLX_TERM_ON; /* hc is currently the last */
1170 /* Disconnect the PCM */
1171 pv |= PLX_SLAVE_EN_N;
1172 pv &= ~PLX_MASTER_EN;
1173 pv &= ~PLX_SYNC_O_EN;
1174 /* Put the DSP in Reset */
1175 pv &= ~PLX_DSP_RES_N;
1176 writel(pv, plx_acc_32);
1177 spin_unlock_irqrestore(&plx_lock, plx_flags);
1178 if (debug & DEBUG_HFCMULTI_INIT)
1179 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1180 __func__, pv);
1181 /*
1182 * If we are the 3rd PLXSD card or higher, we must turn
1183 * termination of last PLXSD card off.
1184 */
1185 spin_lock_irqsave(&HFClock, hfc_flags);
1186 plx_count = 0;
1187 plx_last_hc = NULL;
1188 list_for_each_entry_safe(pos, next, &HFClist, list) {
1189 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190 plx_count++;
1191 if (pos != hc)
1192 plx_last_hc = pos;
1193 }
1194 }
1195 if (plx_count >= 3) {
1196 if (debug & DEBUG_HFCMULTI_PLXSD)
1197 printk(KERN_DEBUG "%s: card %d is between, so "
1198 "we disable termination\n",
1199 __func__, plx_last_hc->id + 1);
1200 spin_lock_irqsave(&plx_lock, plx_flags);
1201 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202 pv = readl(plx_acc_32);
1203 pv &= ~PLX_TERM_ON;
1204 writel(pv, plx_acc_32);
1205 spin_unlock_irqrestore(&plx_lock, plx_flags);
1206 if (debug & DEBUG_HFCMULTI_INIT)
1207 printk(KERN_DEBUG
1208 "%s: term off: PLX_GPIO=%x\n",
1209 __func__, pv);
1210 }
1211 spin_unlock_irqrestore(&HFClock, hfc_flags);
1212 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1213 }
1214
1215 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1216 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1217
1218 /* we only want the real Z2 read-pointer for revision > 0 */
1219 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1220 hc->hw.r_ram_sz |= V_FZ_MD;
1221
1222 /* select pcm mode */
1223 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1224 if (debug & DEBUG_HFCMULTI_INIT)
1225 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1226 __func__);
1227 } else
1228 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1229 if (debug & DEBUG_HFCMULTI_INIT)
1230 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1231 __func__);
1232 hc->hw.r_pcm_md0 |= V_PCM_MD;
1233 } else {
1234 if (debug & DEBUG_HFCMULTI_INIT)
1235 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1236 __func__);
1237 }
1238
1239 /* soft reset */
1240 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1241 if (hc->ctype == HFC_TYPE_XHFC)
1242 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1243 0x11 /* 16 Bytes TX/RX */);
1244 else
1245 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246 HFC_outb(hc, R_FIFO_MD, 0);
1247 if (hc->ctype == HFC_TYPE_XHFC)
1248 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1249 else
1250 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1251 | V_RLD_EPR;
1252 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1253 udelay(100);
1254 hc->hw.r_cirm = 0;
1255 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1256 udelay(100);
1257 if (hc->ctype != HFC_TYPE_XHFC)
1258 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1259
1260 /* Speech Design PLX bridge pcm and sync mode */
1261 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1262 spin_lock_irqsave(&plx_lock, plx_flags);
1263 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1264 pv = readl(plx_acc_32);
1265 /* Connect PCM */
1266 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1267 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1268 pv |= PLX_SYNC_O_EN;
1269 if (debug & DEBUG_HFCMULTI_INIT)
1270 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1271 __func__, pv);
1272 } else {
1273 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1274 pv &= ~PLX_SYNC_O_EN;
1275 if (debug & DEBUG_HFCMULTI_INIT)
1276 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1277 __func__, pv);
1278 }
1279 writel(pv, plx_acc_32);
1280 spin_unlock_irqrestore(&plx_lock, plx_flags);
1281 }
1282
1283 /* PCM setup */
1284 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1285 if (hc->slots == 32)
1286 HFC_outb(hc, R_PCM_MD1, 0x00);
1287 if (hc->slots == 64)
1288 HFC_outb(hc, R_PCM_MD1, 0x10);
1289 if (hc->slots == 128)
1290 HFC_outb(hc, R_PCM_MD1, 0x20);
1291 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1292 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1293 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1294 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1295 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1296 else
1297 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1298 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1299 for (i = 0; i < 256; i++) {
1300 HFC_outb_nodebug(hc, R_SLOT, i);
1301 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1302 if (hc->ctype != HFC_TYPE_XHFC)
1303 HFC_outb_nodebug(hc, A_CONF, 0);
1304 hc->slot_owner[i] = -1;
1305 }
1306
1307 /* set clock speed */
1308 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1309 if (debug & DEBUG_HFCMULTI_INIT)
1310 printk(KERN_DEBUG
1311 "%s: setting double clock\n", __func__);
1312 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1313 }
1314
1315 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1316 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1317
1318 /* B410P GPIO */
1319 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1320 printk(KERN_NOTICE "Setting GPIOs\n");
1321 HFC_outb(hc, R_GPIO_SEL, 0x30);
1322 HFC_outb(hc, R_GPIO_EN1, 0x3);
1323 udelay(1000);
1324 printk(KERN_NOTICE "calling vpm_init\n");
1325 vpm_init(hc);
1326 }
1327
1328 /* check if R_F0_CNT counts (8 kHz frame count) */
1329 val = HFC_inb(hc, R_F0_CNTL);
1330 val += HFC_inb(hc, R_F0_CNTH) << 8;
1331 if (debug & DEBUG_HFCMULTI_INIT)
1332 printk(KERN_DEBUG
1333 "HFC_multi F0_CNT %ld after reset\n", val);
1334 spin_unlock_irqrestore(&hc->lock, flags);
1335 set_current_state(TASK_UNINTERRUPTIBLE);
1336 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1337 spin_lock_irqsave(&hc->lock, flags);
1338 val2 = HFC_inb(hc, R_F0_CNTL);
1339 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1340 if (debug & DEBUG_HFCMULTI_INIT)
1341 printk(KERN_DEBUG
1342 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1343 val2);
1344 if (val2 >= val + 8) { /* 1 ms */
1345 /* it counts, so we keep the pcm mode */
1346 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1347 printk(KERN_INFO "controller is PCM bus MASTER\n");
1348 else
1349 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1350 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1351 else {
1352 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1353 printk(KERN_INFO "controller is PCM bus SLAVE "
1354 "(auto detected)\n");
1355 }
1356 } else {
1357 /* does not count */
1358 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1359 controller_fail:
1360 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1361 "pulse. Seems that controller fails.\n");
1362 err = -EIO;
1363 goto out;
1364 }
1365 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1366 printk(KERN_INFO "controller is PCM bus SLAVE "
1367 "(ignoring missing PCM clock)\n");
1368 } else {
1369 /* only one pcm master */
1370 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1371 && plxsd_master) {
1372 printk(KERN_ERR "HFC_multi ERROR, no clock "
1373 "on another Speech Design card found. "
1374 "Please be sure to connect PCM cable.\n");
1375 err = -EIO;
1376 goto out;
1377 }
1378 /* retry with master clock */
1379 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1380 spin_lock_irqsave(&plx_lock, plx_flags);
1381 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1382 pv = readl(plx_acc_32);
1383 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1384 pv |= PLX_SYNC_O_EN;
1385 writel(pv, plx_acc_32);
1386 spin_unlock_irqrestore(&plx_lock, plx_flags);
1387 if (debug & DEBUG_HFCMULTI_INIT)
1388 printk(KERN_DEBUG "%s: master: "
1389 "PLX_GPIO=%x\n", __func__, pv);
1390 }
1391 hc->hw.r_pcm_md0 |= V_PCM_MD;
1392 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1393 spin_unlock_irqrestore(&hc->lock, flags);
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1396 spin_lock_irqsave(&hc->lock, flags);
1397 val2 = HFC_inb(hc, R_F0_CNTL);
1398 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1399 if (debug & DEBUG_HFCMULTI_INIT)
1400 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1401 "10 ms (2nd try)\n", val2);
1402 if (val2 >= val + 8) { /* 1 ms */
1403 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1404 &hc->chip);
1405 printk(KERN_INFO "controller is PCM bus MASTER "
1406 "(auto detected)\n");
1407 } else
1408 goto controller_fail;
1409 }
1410 }
1411
1412 /* Release the DSP Reset */
1413 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1414 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1415 plxsd_master = 1;
1416 spin_lock_irqsave(&plx_lock, plx_flags);
1417 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1418 pv = readl(plx_acc_32);
1419 pv |= PLX_DSP_RES_N;
1420 writel(pv, plx_acc_32);
1421 spin_unlock_irqrestore(&plx_lock, plx_flags);
1422 if (debug & DEBUG_HFCMULTI_INIT)
1423 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1424 __func__, pv);
1425 }
1426
1427 /* pcm id */
1428 if (hc->pcm)
1429 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1430 hc->pcm);
1431 else {
1432 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1433 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1434 PCM_cnt++; /* SD has proprietary bridging */
1435 }
1436 hc->pcm = PCM_cnt;
1437 printk(KERN_INFO "controller has PCM BUS ID %d "
1438 "(auto selected)\n", hc->pcm);
1439 }
1440
1441 /* set up timer */
1442 HFC_outb(hc, R_TI_WD, poll_timer);
1443 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1444
1445 /* set E1 state machine IRQ */
1446 if (hc->ctype == HFC_TYPE_E1)
1447 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1448
1449 /* set DTMF detection */
1450 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1451 if (debug & DEBUG_HFCMULTI_INIT)
1452 printk(KERN_DEBUG "%s: enabling DTMF detection "
1453 "for all B-channel\n", __func__);
1454 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1455 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1456 hc->hw.r_dtmf |= V_ULAW_SEL;
1457 HFC_outb(hc, R_DTMF_N, 102 - 1);
1458 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1459 }
1460
1461 /* conference engine */
1462 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1463 r_conf_en = V_CONF_EN | V_ULAW;
1464 else
1465 r_conf_en = V_CONF_EN;
1466 if (hc->ctype != HFC_TYPE_XHFC)
1467 HFC_outb(hc, R_CONF_EN, r_conf_en);
1468
1469 /* setting leds */
1470 switch (hc->leds) {
1471 case 1: /* HFC-E1 OEM */
1472 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1473 HFC_outb(hc, R_GPIO_SEL, 0x32);
1474 else
1475 HFC_outb(hc, R_GPIO_SEL, 0x30);
1476
1477 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1478 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1479
1480 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1481 break;
1482
1483 case 2: /* HFC-4S OEM */
1484 case 3:
1485 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1486 HFC_outb(hc, R_GPIO_EN1, 0xff);
1487 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1488 break;
1489 }
1490
1491 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1492 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1493 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1494 }
1495
1496 /* set master clock */
1497 if (hc->masterclk >= 0) {
1498 if (debug & DEBUG_HFCMULTI_INIT)
1499 printk(KERN_DEBUG "%s: setting ST master clock "
1500 "to port %d (0..%d)\n",
1501 __func__, hc->masterclk, hc->ports - 1);
1502 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1503 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1504 }
1505
1506
1507
1508 /* setting misc irq */
1509 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1510 if (debug & DEBUG_HFCMULTI_INIT)
1511 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1512 hc->hw.r_irqmsk_misc);
1513
1514 /* RAM access test */
1515 HFC_outb(hc, R_RAM_ADDR0, 0);
1516 HFC_outb(hc, R_RAM_ADDR1, 0);
1517 HFC_outb(hc, R_RAM_ADDR2, 0);
1518 for (i = 0; i < 256; i++) {
1519 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1520 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1521 }
1522 for (i = 0; i < 256; i++) {
1523 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1524 HFC_inb_nodebug(hc, R_RAM_DATA);
1525 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1526 if (rval != ((i * 3) & 0xff)) {
1527 printk(KERN_DEBUG
1528 "addr:%x val:%x should:%x\n", i, rval,
1529 (i * 3) & 0xff);
1530 err++;
1531 }
1532 }
1533 if (err) {
1534 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1535 err = -EIO;
1536 goto out;
1537 }
1538
1539 if (debug & DEBUG_HFCMULTI_INIT)
1540 printk(KERN_DEBUG "%s: done\n", __func__);
1541 out:
1542 spin_unlock_irqrestore(&hc->lock, flags);
1543 return err;
1544 }
1545
1546
1547 /*
1548 * control the watchdog
1549 */
1550 static void
hfcmulti_watchdog(struct hfc_multi * hc)1551 hfcmulti_watchdog(struct hfc_multi *hc)
1552 {
1553 hc->wdcount++;
1554
1555 if (hc->wdcount > 10) {
1556 hc->wdcount = 0;
1557 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1558 V_GPIO_OUT3 : V_GPIO_OUT2;
1559
1560 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1561 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1562 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1563 }
1564 }
1565
1566
1567
1568 /*
1569 * output leds
1570 */
1571 static void
hfcmulti_leds(struct hfc_multi * hc)1572 hfcmulti_leds(struct hfc_multi *hc)
1573 {
1574 unsigned long lled;
1575 unsigned long leddw;
1576 int i, state, active, leds;
1577 struct dchannel *dch;
1578 int led[4];
1579
1580 switch (hc->leds) {
1581 case 1: /* HFC-E1 OEM */
1582 /* 2 red steady: LOS
1583 * 1 red steady: L1 not active
1584 * 2 green steady: L1 active
1585 * 1st green flashing: activity on TX
1586 * 2nd green flashing: activity on RX
1587 */
1588 led[0] = 0;
1589 led[1] = 0;
1590 led[2] = 0;
1591 led[3] = 0;
1592 dch = hc->chan[hc->dnum[0]].dch;
1593 if (dch) {
1594 if (hc->chan[hc->dnum[0]].los)
1595 led[1] = 1;
1596 if (hc->e1_state != 1) {
1597 led[0] = 1;
1598 hc->flash[2] = 0;
1599 hc->flash[3] = 0;
1600 } else {
1601 led[2] = 1;
1602 led[3] = 1;
1603 if (!hc->flash[2] && hc->activity_tx)
1604 hc->flash[2] = poll;
1605 if (!hc->flash[3] && hc->activity_rx)
1606 hc->flash[3] = poll;
1607 if (hc->flash[2] && hc->flash[2] < 1024)
1608 led[2] = 0;
1609 if (hc->flash[3] && hc->flash[3] < 1024)
1610 led[3] = 0;
1611 if (hc->flash[2] >= 2048)
1612 hc->flash[2] = 0;
1613 if (hc->flash[3] >= 2048)
1614 hc->flash[3] = 0;
1615 if (hc->flash[2])
1616 hc->flash[2] += poll;
1617 if (hc->flash[3])
1618 hc->flash[3] += poll;
1619 }
1620 }
1621 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1622 /* leds are inverted */
1623 if (leds != (int)hc->ledstate) {
1624 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1625 hc->ledstate = leds;
1626 }
1627 break;
1628
1629 case 2: /* HFC-4S OEM */
1630 /* red steady: PH_DEACTIVATE
1631 * green steady: PH_ACTIVATE
1632 * green flashing: activity on TX
1633 */
1634 for (i = 0; i < 4; i++) {
1635 state = 0;
1636 active = -1;
1637 dch = hc->chan[(i << 2) | 2].dch;
1638 if (dch) {
1639 state = dch->state;
1640 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1641 active = 3;
1642 else
1643 active = 7;
1644 }
1645 if (state) {
1646 if (state == active) {
1647 led[i] = 1; /* led green */
1648 hc->activity_tx |= hc->activity_rx;
1649 if (!hc->flash[i] &&
1650 (hc->activity_tx & (1 << i)))
1651 hc->flash[i] = poll;
1652 if (hc->flash[i] && hc->flash[i] < 1024)
1653 led[i] = 0; /* led off */
1654 if (hc->flash[i] >= 2048)
1655 hc->flash[i] = 0;
1656 if (hc->flash[i])
1657 hc->flash[i] += poll;
1658 } else {
1659 led[i] = 2; /* led red */
1660 hc->flash[i] = 0;
1661 }
1662 } else
1663 led[i] = 0; /* led off */
1664 }
1665 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1666 leds = 0;
1667 for (i = 0; i < 4; i++) {
1668 if (led[i] == 1) {
1669 /*green*/
1670 leds |= (0x2 << (i * 2));
1671 } else if (led[i] == 2) {
1672 /*red*/
1673 leds |= (0x1 << (i * 2));
1674 }
1675 }
1676 if (leds != (int)hc->ledstate) {
1677 vpm_out(hc, 0, 0x1a8 + 3, leds);
1678 hc->ledstate = leds;
1679 }
1680 } else {
1681 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1682 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1683 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1684 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1685 if (leds != (int)hc->ledstate) {
1686 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1687 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1688 hc->ledstate = leds;
1689 }
1690 }
1691 break;
1692
1693 case 3: /* HFC 1S/2S Beronet */
1694 /* red steady: PH_DEACTIVATE
1695 * green steady: PH_ACTIVATE
1696 * green flashing: activity on TX
1697 */
1698 for (i = 0; i < 2; i++) {
1699 state = 0;
1700 active = -1;
1701 dch = hc->chan[(i << 2) | 2].dch;
1702 if (dch) {
1703 state = dch->state;
1704 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1705 active = 3;
1706 else
1707 active = 7;
1708 }
1709 if (state) {
1710 if (state == active) {
1711 led[i] = 1; /* led green */
1712 hc->activity_tx |= hc->activity_rx;
1713 if (!hc->flash[i] &&
1714 (hc->activity_tx & (1 << i)))
1715 hc->flash[i] = poll;
1716 if (hc->flash[i] < 1024)
1717 led[i] = 0; /* led off */
1718 if (hc->flash[i] >= 2048)
1719 hc->flash[i] = 0;
1720 if (hc->flash[i])
1721 hc->flash[i] += poll;
1722 } else {
1723 led[i] = 2; /* led red */
1724 hc->flash[i] = 0;
1725 }
1726 } else
1727 led[i] = 0; /* led off */
1728 }
1729 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1730 | ((led[1]&1) << 3);
1731 if (leds != (int)hc->ledstate) {
1732 HFC_outb_nodebug(hc, R_GPIO_EN1,
1733 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1734 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1735 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1736 hc->ledstate = leds;
1737 }
1738 break;
1739 case 8: /* HFC 8S+ Beronet */
1740 /* off: PH_DEACTIVATE
1741 * steady: PH_ACTIVATE
1742 * flashing: activity on TX
1743 */
1744 lled = 0xff; /* leds off */
1745 for (i = 0; i < 8; i++) {
1746 state = 0;
1747 active = -1;
1748 dch = hc->chan[(i << 2) | 2].dch;
1749 if (dch) {
1750 state = dch->state;
1751 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1752 active = 3;
1753 else
1754 active = 7;
1755 }
1756 if (state) {
1757 if (state == active) {
1758 lled &= ~(1 << i); /* led on */
1759 hc->activity_tx |= hc->activity_rx;
1760 if (!hc->flash[i] &&
1761 (hc->activity_tx & (1 << i)))
1762 hc->flash[i] = poll;
1763 if (hc->flash[i] < 1024)
1764 lled |= 1 << i; /* led off */
1765 if (hc->flash[i] >= 2048)
1766 hc->flash[i] = 0;
1767 if (hc->flash[i])
1768 hc->flash[i] += poll;
1769 } else
1770 hc->flash[i] = 0;
1771 }
1772 }
1773 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1774 if (leddw != hc->ledstate) {
1775 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1776 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1777 /* was _io before */
1778 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1779 outw(0x4000, hc->pci_iobase + 4);
1780 outl(leddw, hc->pci_iobase);
1781 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1782 hc->ledstate = leddw;
1783 }
1784 break;
1785 }
1786 hc->activity_tx = 0;
1787 hc->activity_rx = 0;
1788 }
1789 /*
1790 * read dtmf coefficients
1791 */
1792
1793 static void
hfcmulti_dtmf(struct hfc_multi * hc)1794 hfcmulti_dtmf(struct hfc_multi *hc)
1795 {
1796 s32 *coeff;
1797 u_int mantissa;
1798 int co, ch;
1799 struct bchannel *bch = NULL;
1800 u8 exponent;
1801 int dtmf = 0;
1802 int addr;
1803 u16 w_float;
1804 struct sk_buff *skb;
1805 struct mISDNhead *hh;
1806
1807 if (debug & DEBUG_HFCMULTI_DTMF)
1808 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1809 for (ch = 0; ch <= 31; ch++) {
1810 /* only process enabled B-channels */
1811 bch = hc->chan[ch].bch;
1812 if (!bch)
1813 continue;
1814 if (!hc->created[hc->chan[ch].port])
1815 continue;
1816 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1817 continue;
1818 if (debug & DEBUG_HFCMULTI_DTMF)
1819 printk(KERN_DEBUG "%s: dtmf channel %d:",
1820 __func__, ch);
1821 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1822 dtmf = 1;
1823 for (co = 0; co < 8; co++) {
1824 /* read W(n-1) coefficient */
1825 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1826 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1827 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1828 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1829 | V_ADDR_INC);
1830 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1831 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1832 if (debug & DEBUG_HFCMULTI_DTMF)
1833 printk(" %04x", w_float);
1834
1835 /* decode float (see chip doc) */
1836 mantissa = w_float & 0x0fff;
1837 if (w_float & 0x8000)
1838 mantissa |= 0xfffff000;
1839 exponent = (w_float >> 12) & 0x7;
1840 if (exponent) {
1841 mantissa ^= 0x1000;
1842 mantissa <<= (exponent - 1);
1843 }
1844
1845 /* store coefficient */
1846 coeff[co << 1] = mantissa;
1847
1848 /* read W(n) coefficient */
1849 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1850 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1851 if (debug & DEBUG_HFCMULTI_DTMF)
1852 printk(" %04x", w_float);
1853
1854 /* decode float (see chip doc) */
1855 mantissa = w_float & 0x0fff;
1856 if (w_float & 0x8000)
1857 mantissa |= 0xfffff000;
1858 exponent = (w_float >> 12) & 0x7;
1859 if (exponent) {
1860 mantissa ^= 0x1000;
1861 mantissa <<= (exponent - 1);
1862 }
1863
1864 /* store coefficient */
1865 coeff[(co << 1) | 1] = mantissa;
1866 }
1867 if (debug & DEBUG_HFCMULTI_DTMF)
1868 printk(" DTMF ready %08x %08x %08x %08x "
1869 "%08x %08x %08x %08x\n",
1870 coeff[0], coeff[1], coeff[2], coeff[3],
1871 coeff[4], coeff[5], coeff[6], coeff[7]);
1872 hc->chan[ch].coeff_count++;
1873 if (hc->chan[ch].coeff_count == 8) {
1874 hc->chan[ch].coeff_count = 0;
1875 skb = mI_alloc_skb(512, GFP_ATOMIC);
1876 if (!skb) {
1877 printk(KERN_DEBUG "%s: No memory for skb\n",
1878 __func__);
1879 continue;
1880 }
1881 hh = mISDN_HEAD_P(skb);
1882 hh->prim = PH_CONTROL_IND;
1883 hh->id = DTMF_HFC_COEF;
1884 skb_put_data(skb, hc->chan[ch].coeff, 512);
1885 recv_Bchannel_skb(bch, skb);
1886 }
1887 }
1888
1889 /* restart DTMF processing */
1890 hc->dtmf = dtmf;
1891 if (dtmf)
1892 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1893 }
1894
1895
1896 /*
1897 * fill fifo as much as possible
1898 */
1899
1900 static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1901 hfcmulti_tx(struct hfc_multi *hc, int ch)
1902 {
1903 int i, ii, temp, tmp_len, len = 0;
1904 int Zspace, z1, z2; /* must be int for calculation */
1905 int Fspace, f1, f2;
1906 u_char *d;
1907 int *txpending, slot_tx;
1908 struct bchannel *bch;
1909 struct dchannel *dch;
1910 struct sk_buff **sp = NULL;
1911 int *idxp;
1912
1913 bch = hc->chan[ch].bch;
1914 dch = hc->chan[ch].dch;
1915 if ((!dch) && (!bch))
1916 return;
1917
1918 txpending = &hc->chan[ch].txpending;
1919 slot_tx = hc->chan[ch].slot_tx;
1920 if (dch) {
1921 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1922 return;
1923 sp = &dch->tx_skb;
1924 idxp = &dch->tx_idx;
1925 } else {
1926 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1927 return;
1928 sp = &bch->tx_skb;
1929 idxp = &bch->tx_idx;
1930 }
1931 if (*sp)
1932 len = (*sp)->len;
1933
1934 if ((!len) && *txpending != 1)
1935 return; /* no data */
1936
1937 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1938 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1939 (hc->chan[ch].slot_rx < 0) &&
1940 (hc->chan[ch].slot_tx < 0))
1941 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1942 else
1943 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1944 HFC_wait_nodebug(hc);
1945
1946 if (*txpending == 2) {
1947 /* reset fifo */
1948 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1949 HFC_wait_nodebug(hc);
1950 HFC_outb(hc, A_SUBCH_CFG, 0);
1951 *txpending = 1;
1952 }
1953 next_frame:
1954 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1955 f1 = HFC_inb_nodebug(hc, A_F1);
1956 f2 = HFC_inb_nodebug(hc, A_F2);
1957 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1958 if (debug & DEBUG_HFCMULTI_FIFO)
1959 printk(KERN_DEBUG
1960 "%s(card %d): reread f2 because %d!=%d\n",
1961 __func__, hc->id + 1, temp, f2);
1962 f2 = temp; /* repeat until F2 is equal */
1963 }
1964 Fspace = f2 - f1 - 1;
1965 if (Fspace < 0)
1966 Fspace += hc->Flen;
1967 /*
1968 * Old FIFO handling doesn't give us the current Z2 read
1969 * pointer, so we cannot send the next frame before the fifo
1970 * is empty. It makes no difference except for a slightly
1971 * lower performance.
1972 */
1973 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1974 if (f1 != f2)
1975 Fspace = 0;
1976 else
1977 Fspace = 1;
1978 }
1979 /* one frame only for ST D-channels, to allow resending */
1980 if (hc->ctype != HFC_TYPE_E1 && dch) {
1981 if (f1 != f2)
1982 Fspace = 0;
1983 }
1984 /* F-counter full condition */
1985 if (Fspace == 0)
1986 return;
1987 }
1988 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1989 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1990 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1991 if (debug & DEBUG_HFCMULTI_FIFO)
1992 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1993 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1994 z2 = temp; /* repeat unti Z2 is equal */
1995 }
1996 hc->chan[ch].Zfill = z1 - z2;
1997 if (hc->chan[ch].Zfill < 0)
1998 hc->chan[ch].Zfill += hc->Zlen;
1999 Zspace = z2 - z1;
2000 if (Zspace <= 0)
2001 Zspace += hc->Zlen;
2002 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2003 /* fill transparent data only to maxinum transparent load (minus 4) */
2004 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2005 Zspace = Zspace - hc->Zlen + hc->max_trans;
2006 if (Zspace <= 0) /* no space of 4 bytes */
2007 return;
2008
2009 /* if no data */
2010 if (!len) {
2011 if (z1 == z2) { /* empty */
2012 /* if done with FIFO audio data during PCM connection */
2013 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2014 *txpending && slot_tx >= 0) {
2015 if (debug & DEBUG_HFCMULTI_MODE)
2016 printk(KERN_DEBUG
2017 "%s: reconnecting PCM due to no "
2018 "more FIFO data: channel %d "
2019 "slot_tx %d\n",
2020 __func__, ch, slot_tx);
2021 /* connect slot */
2022 if (hc->ctype == HFC_TYPE_XHFC)
2023 HFC_outb(hc, A_CON_HDLC, 0xc0
2024 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2025 /* Enable FIFO, no interrupt */
2026 else
2027 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2028 V_HDLC_TRP | V_IFF);
2029 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2030 HFC_wait_nodebug(hc);
2031 if (hc->ctype == HFC_TYPE_XHFC)
2032 HFC_outb(hc, A_CON_HDLC, 0xc0
2033 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034 /* Enable FIFO, no interrupt */
2035 else
2036 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037 V_HDLC_TRP | V_IFF);
2038 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2039 HFC_wait_nodebug(hc);
2040 }
2041 *txpending = 0;
2042 }
2043 return; /* no data */
2044 }
2045
2046 /* "fill fifo if empty" feature */
2047 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2048 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2049 if (debug & DEBUG_HFCMULTI_FILL)
2050 printk(KERN_DEBUG "%s: buffer empty, so we have "
2051 "underrun\n", __func__);
2052 /* fill buffer, to prevent future underrun */
2053 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2054 Zspace -= (poll >> 1);
2055 }
2056
2057 /* if audio data and connected slot */
2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2059 && slot_tx >= 0) {
2060 if (debug & DEBUG_HFCMULTI_MODE)
2061 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2062 "FIFO data: channel %d slot_tx %d\n",
2063 __func__, ch, slot_tx);
2064 /* disconnect slot */
2065 if (hc->ctype == HFC_TYPE_XHFC)
2066 HFC_outb(hc, A_CON_HDLC, 0x80
2067 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2068 /* Enable FIFO, no interrupt */
2069 else
2070 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2071 V_HDLC_TRP | V_IFF);
2072 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2073 HFC_wait_nodebug(hc);
2074 if (hc->ctype == HFC_TYPE_XHFC)
2075 HFC_outb(hc, A_CON_HDLC, 0x80
2076 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077 /* Enable FIFO, no interrupt */
2078 else
2079 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080 V_HDLC_TRP | V_IFF);
2081 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2082 HFC_wait_nodebug(hc);
2083 }
2084 *txpending = 1;
2085
2086 /* show activity */
2087 if (dch)
2088 hc->activity_tx |= 1 << hc->chan[ch].port;
2089
2090 /* fill fifo to what we have left */
2091 ii = len;
2092 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2093 temp = 1;
2094 else
2095 temp = 0;
2096 i = *idxp;
2097 d = (*sp)->data + i;
2098 if (ii - i > Zspace)
2099 ii = Zspace + i;
2100 if (debug & DEBUG_HFCMULTI_FIFO)
2101 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2102 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2103 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2104 temp ? "HDLC" : "TRANS");
2105
2106 /* Have to prep the audio data */
2107 hc->write_fifo(hc, d, ii - i);
2108 hc->chan[ch].Zfill += ii - i;
2109 *idxp = ii;
2110
2111 /* if not all data has been written */
2112 if (ii != len) {
2113 /* NOTE: fifo is started by the calling function */
2114 return;
2115 }
2116
2117 /* if all data has been written, terminate frame */
2118 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119 /* increment f-counter */
2120 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2121 HFC_wait_nodebug(hc);
2122 }
2123
2124 tmp_len = (*sp)->len;
2125 dev_kfree_skb(*sp);
2126 /* check for next frame */
2127 if (bch && get_next_bframe(bch)) {
2128 len = tmp_len;
2129 goto next_frame;
2130 }
2131 if (dch && get_next_dframe(dch)) {
2132 len = tmp_len;
2133 goto next_frame;
2134 }
2135
2136 /*
2137 * now we have no more data, so in case of transparent,
2138 * we set the last byte in fifo to 'silence' in case we will get
2139 * no more data at all. this prevents sending an undefined value.
2140 */
2141 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2142 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2143 }
2144
2145
2146 /* NOTE: only called if E1 card is in active state */
2147 static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2148 hfcmulti_rx(struct hfc_multi *hc, int ch)
2149 {
2150 int temp;
2151 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2152 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2153 int again = 0;
2154 struct bchannel *bch;
2155 struct dchannel *dch = NULL;
2156 struct sk_buff *skb, **sp = NULL;
2157 int maxlen;
2158
2159 bch = hc->chan[ch].bch;
2160 if (bch) {
2161 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2162 return;
2163 } else if (hc->chan[ch].dch) {
2164 dch = hc->chan[ch].dch;
2165 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2166 return;
2167 } else {
2168 return;
2169 }
2170 next_frame:
2171 /* on first AND before getting next valid frame, R_FIFO must be written
2172 to. */
2173 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2174 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2175 (hc->chan[ch].slot_rx < 0) &&
2176 (hc->chan[ch].slot_tx < 0))
2177 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2178 else
2179 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2180 HFC_wait_nodebug(hc);
2181
2182 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2183 if (hc->chan[ch].rx_off) {
2184 if (bch)
2185 bch->dropcnt += poll; /* not exact but fair enough */
2186 return;
2187 }
2188
2189 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2190 f1 = HFC_inb_nodebug(hc, A_F1);
2191 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2192 if (debug & DEBUG_HFCMULTI_FIFO)
2193 printk(KERN_DEBUG
2194 "%s(card %d): reread f1 because %d!=%d\n",
2195 __func__, hc->id + 1, temp, f1);
2196 f1 = temp; /* repeat until F1 is equal */
2197 }
2198 f2 = HFC_inb_nodebug(hc, A_F2);
2199 }
2200 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2201 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2202 if (debug & DEBUG_HFCMULTI_FIFO)
2203 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2204 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2205 z1 = temp; /* repeat until Z1 is equal */
2206 }
2207 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2208 Zsize = z1 - z2;
2209 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2210 /* complete hdlc frame */
2211 Zsize++;
2212 if (Zsize < 0)
2213 Zsize += hc->Zlen;
2214 /* if buffer is empty */
2215 if (Zsize <= 0)
2216 return;
2217
2218 if (bch) {
2219 maxlen = bchannel_get_rxbuf(bch, Zsize);
2220 if (maxlen < 0) {
2221 pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2222 hc->id + 1, bch->nr, Zsize);
2223 return;
2224 }
2225 sp = &bch->rx_skb;
2226 maxlen = bch->maxlen;
2227 } else { /* Dchannel */
2228 sp = &dch->rx_skb;
2229 maxlen = dch->maxlen + 3;
2230 if (*sp == NULL) {
2231 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2232 if (*sp == NULL) {
2233 pr_warn("card%d: No mem for dch rx_skb\n",
2234 hc->id + 1);
2235 return;
2236 }
2237 }
2238 }
2239 /* show activity */
2240 if (dch)
2241 hc->activity_rx |= 1 << hc->chan[ch].port;
2242
2243 /* empty fifo with what we have */
2244 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2245 if (debug & DEBUG_HFCMULTI_FIFO)
2246 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2247 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2248 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2249 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2250 f1, f2, Zsize + (*sp)->len, again);
2251 /* HDLC */
2252 if ((Zsize + (*sp)->len) > maxlen) {
2253 if (debug & DEBUG_HFCMULTI_FIFO)
2254 printk(KERN_DEBUG
2255 "%s(card %d): hdlc-frame too large.\n",
2256 __func__, hc->id + 1);
2257 skb_trim(*sp, 0);
2258 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2259 HFC_wait_nodebug(hc);
2260 return;
2261 }
2262
2263 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2264
2265 if (f1 != f2) {
2266 /* increment Z2,F2-counter */
2267 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2268 HFC_wait_nodebug(hc);
2269 /* check size */
2270 if ((*sp)->len < 4) {
2271 if (debug & DEBUG_HFCMULTI_FIFO)
2272 printk(KERN_DEBUG
2273 "%s(card %d): Frame below minimum "
2274 "size\n", __func__, hc->id + 1);
2275 skb_trim(*sp, 0);
2276 goto next_frame;
2277 }
2278 /* there is at least one complete frame, check crc */
2279 if ((*sp)->data[(*sp)->len - 1]) {
2280 if (debug & DEBUG_HFCMULTI_CRC)
2281 printk(KERN_DEBUG
2282 "%s: CRC-error\n", __func__);
2283 skb_trim(*sp, 0);
2284 goto next_frame;
2285 }
2286 skb_trim(*sp, (*sp)->len - 3);
2287 if ((*sp)->len < MISDN_COPY_SIZE) {
2288 skb = *sp;
2289 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2290 if (*sp) {
2291 skb_put_data(*sp, skb->data, skb->len);
2292 skb_trim(skb, 0);
2293 } else {
2294 printk(KERN_DEBUG "%s: No mem\n",
2295 __func__);
2296 *sp = skb;
2297 skb = NULL;
2298 }
2299 } else {
2300 skb = NULL;
2301 }
2302 if (debug & DEBUG_HFCMULTI_FIFO) {
2303 printk(KERN_DEBUG "%s(card %d):",
2304 __func__, hc->id + 1);
2305 temp = 0;
2306 while (temp < (*sp)->len)
2307 printk(" %02x", (*sp)->data[temp++]);
2308 printk("\n");
2309 }
2310 if (dch)
2311 recv_Dchannel(dch);
2312 else
2313 recv_Bchannel(bch, MISDN_ID_ANY, false);
2314 *sp = skb;
2315 again++;
2316 goto next_frame;
2317 }
2318 /* there is an incomplete frame */
2319 } else {
2320 /* transparent */
2321 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2322 if (debug & DEBUG_HFCMULTI_FIFO)
2323 printk(KERN_DEBUG
2324 "%s(card %d): fifo(%d) reading %d bytes "
2325 "(z1=%04x, z2=%04x) TRANS\n",
2326 __func__, hc->id + 1, ch, Zsize, z1, z2);
2327 /* only bch is transparent */
2328 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2329 }
2330 }
2331
2332
2333 /*
2334 * Interrupt handler
2335 */
2336 static void
signal_state_up(struct dchannel * dch,int info,char * msg)2337 signal_state_up(struct dchannel *dch, int info, char *msg)
2338 {
2339 struct sk_buff *skb;
2340 int id, data = info;
2341
2342 if (debug & DEBUG_HFCMULTI_STATE)
2343 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2344
2345 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2346
2347 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2348 GFP_ATOMIC);
2349 if (!skb)
2350 return;
2351 recv_Dchannel_skb(dch, skb);
2352 }
2353
2354 static inline void
handle_timer_irq(struct hfc_multi * hc)2355 handle_timer_irq(struct hfc_multi *hc)
2356 {
2357 int ch, temp;
2358 struct dchannel *dch;
2359 u_long flags;
2360
2361 /* process queued resync jobs */
2362 if (hc->e1_resync) {
2363 /* lock, so e1_resync gets not changed */
2364 spin_lock_irqsave(&HFClock, flags);
2365 if (hc->e1_resync & 1) {
2366 if (debug & DEBUG_HFCMULTI_PLXSD)
2367 printk(KERN_DEBUG "Enable SYNC_I\n");
2368 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2369 /* disable JATT, if RX_SYNC is set */
2370 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2371 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2372 }
2373 if (hc->e1_resync & 2) {
2374 if (debug & DEBUG_HFCMULTI_PLXSD)
2375 printk(KERN_DEBUG "Enable jatt PLL\n");
2376 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2377 }
2378 if (hc->e1_resync & 4) {
2379 if (debug & DEBUG_HFCMULTI_PLXSD)
2380 printk(KERN_DEBUG
2381 "Enable QUARTZ for HFC-E1\n");
2382 /* set jatt to quartz */
2383 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2384 | V_JATT_OFF);
2385 /* switch to JATT, in case it is not already */
2386 HFC_outb(hc, R_SYNC_OUT, 0);
2387 }
2388 hc->e1_resync = 0;
2389 spin_unlock_irqrestore(&HFClock, flags);
2390 }
2391
2392 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2393 for (ch = 0; ch <= 31; ch++) {
2394 if (hc->created[hc->chan[ch].port]) {
2395 hfcmulti_tx(hc, ch);
2396 /* fifo is started when switching to rx-fifo */
2397 hfcmulti_rx(hc, ch);
2398 if (hc->chan[ch].dch &&
2399 hc->chan[ch].nt_timer > -1) {
2400 dch = hc->chan[ch].dch;
2401 if (!(--hc->chan[ch].nt_timer)) {
2402 schedule_event(dch,
2403 FLG_PHCHANGE);
2404 if (debug &
2405 DEBUG_HFCMULTI_STATE)
2406 printk(KERN_DEBUG
2407 "%s: nt_timer at "
2408 "state %x\n",
2409 __func__,
2410 dch->state);
2411 }
2412 }
2413 }
2414 }
2415 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2416 dch = hc->chan[hc->dnum[0]].dch;
2417 /* LOS */
2418 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2419 hc->chan[hc->dnum[0]].los = temp;
2420 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2421 if (!temp && hc->chan[hc->dnum[0]].los)
2422 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2423 "LOS detected");
2424 if (temp && !hc->chan[hc->dnum[0]].los)
2425 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2426 "LOS gone");
2427 }
2428 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2429 /* AIS */
2430 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2431 if (!temp && hc->chan[hc->dnum[0]].ais)
2432 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2433 "AIS detected");
2434 if (temp && !hc->chan[hc->dnum[0]].ais)
2435 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2436 "AIS gone");
2437 hc->chan[hc->dnum[0]].ais = temp;
2438 }
2439 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2440 /* SLIP */
2441 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2442 if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2443 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2444 " bit SLIP detected RX");
2445 hc->chan[hc->dnum[0]].slip_rx = temp;
2446 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2447 if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2448 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2449 " bit SLIP detected TX");
2450 hc->chan[hc->dnum[0]].slip_tx = temp;
2451 }
2452 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2453 /* RDI */
2454 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2455 if (!temp && hc->chan[hc->dnum[0]].rdi)
2456 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2457 "RDI detected");
2458 if (temp && !hc->chan[hc->dnum[0]].rdi)
2459 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2460 "RDI gone");
2461 hc->chan[hc->dnum[0]].rdi = temp;
2462 }
2463 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2464 switch (hc->chan[hc->dnum[0]].sync) {
2465 case 0:
2466 if ((temp & 0x60) == 0x60) {
2467 if (debug & DEBUG_HFCMULTI_SYNC)
2468 printk(KERN_DEBUG
2469 "%s: (id=%d) E1 now "
2470 "in clock sync\n",
2471 __func__, hc->id);
2472 HFC_outb(hc, R_RX_OFF,
2473 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2474 HFC_outb(hc, R_TX_OFF,
2475 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2476 hc->chan[hc->dnum[0]].sync = 1;
2477 goto check_framesync;
2478 }
2479 break;
2480 case 1:
2481 if ((temp & 0x60) != 0x60) {
2482 if (debug & DEBUG_HFCMULTI_SYNC)
2483 printk(KERN_DEBUG
2484 "%s: (id=%d) E1 "
2485 "lost clock sync\n",
2486 __func__, hc->id);
2487 hc->chan[hc->dnum[0]].sync = 0;
2488 break;
2489 }
2490 check_framesync:
2491 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2492 if (temp == 0x27) {
2493 if (debug & DEBUG_HFCMULTI_SYNC)
2494 printk(KERN_DEBUG
2495 "%s: (id=%d) E1 "
2496 "now in frame sync\n",
2497 __func__, hc->id);
2498 hc->chan[hc->dnum[0]].sync = 2;
2499 }
2500 break;
2501 case 2:
2502 if ((temp & 0x60) != 0x60) {
2503 if (debug & DEBUG_HFCMULTI_SYNC)
2504 printk(KERN_DEBUG
2505 "%s: (id=%d) E1 lost "
2506 "clock & frame sync\n",
2507 __func__, hc->id);
2508 hc->chan[hc->dnum[0]].sync = 0;
2509 break;
2510 }
2511 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2512 if (temp != 0x27) {
2513 if (debug & DEBUG_HFCMULTI_SYNC)
2514 printk(KERN_DEBUG
2515 "%s: (id=%d) E1 "
2516 "lost frame sync\n",
2517 __func__, hc->id);
2518 hc->chan[hc->dnum[0]].sync = 1;
2519 }
2520 break;
2521 }
2522 }
2523
2524 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2525 hfcmulti_watchdog(hc);
2526
2527 if (hc->leds)
2528 hfcmulti_leds(hc);
2529 }
2530
2531 static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2532 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2533 {
2534 struct dchannel *dch;
2535 int ch;
2536 int active;
2537 u_char st_status, temp;
2538
2539 /* state machine */
2540 for (ch = 0; ch <= 31; ch++) {
2541 if (hc->chan[ch].dch) {
2542 dch = hc->chan[ch].dch;
2543 if (r_irq_statech & 1) {
2544 HFC_outb_nodebug(hc, R_ST_SEL,
2545 hc->chan[ch].port);
2546 /* undocumented: delay after R_ST_SEL */
2547 udelay(1);
2548 /* undocumented: status changes during read */
2549 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2550 while (st_status != (temp =
2551 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2552 if (debug & DEBUG_HFCMULTI_STATE)
2553 printk(KERN_DEBUG "%s: reread "
2554 "STATE because %d!=%d\n",
2555 __func__, temp,
2556 st_status);
2557 st_status = temp; /* repeat */
2558 }
2559
2560 /* Speech Design TE-sync indication */
2561 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2562 dch->dev.D.protocol == ISDN_P_TE_S0) {
2563 if (st_status & V_FR_SYNC_ST)
2564 hc->syncronized |=
2565 (1 << hc->chan[ch].port);
2566 else
2567 hc->syncronized &=
2568 ~(1 << hc->chan[ch].port);
2569 }
2570 dch->state = st_status & 0x0f;
2571 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2572 active = 3;
2573 else
2574 active = 7;
2575 if (dch->state == active) {
2576 HFC_outb_nodebug(hc, R_FIFO,
2577 (ch << 1) | 1);
2578 HFC_wait_nodebug(hc);
2579 HFC_outb_nodebug(hc,
2580 R_INC_RES_FIFO, V_RES_F);
2581 HFC_wait_nodebug(hc);
2582 dch->tx_idx = 0;
2583 }
2584 schedule_event(dch, FLG_PHCHANGE);
2585 if (debug & DEBUG_HFCMULTI_STATE)
2586 printk(KERN_DEBUG
2587 "%s: S/T newstate %x port %d\n",
2588 __func__, dch->state,
2589 hc->chan[ch].port);
2590 }
2591 r_irq_statech >>= 1;
2592 }
2593 }
2594 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2595 plxsd_checksync(hc, 0);
2596 }
2597
2598 static void
fifo_irq(struct hfc_multi * hc,int block)2599 fifo_irq(struct hfc_multi *hc, int block)
2600 {
2601 int ch, j;
2602 struct dchannel *dch;
2603 struct bchannel *bch;
2604 u_char r_irq_fifo_bl;
2605
2606 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2607 j = 0;
2608 while (j < 8) {
2609 ch = (block << 2) + (j >> 1);
2610 dch = hc->chan[ch].dch;
2611 bch = hc->chan[ch].bch;
2612 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2613 j += 2;
2614 continue;
2615 }
2616 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2617 test_bit(FLG_ACTIVE, &dch->Flags)) {
2618 hfcmulti_tx(hc, ch);
2619 /* start fifo */
2620 HFC_outb_nodebug(hc, R_FIFO, 0);
2621 HFC_wait_nodebug(hc);
2622 }
2623 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2624 test_bit(FLG_ACTIVE, &bch->Flags)) {
2625 hfcmulti_tx(hc, ch);
2626 /* start fifo */
2627 HFC_outb_nodebug(hc, R_FIFO, 0);
2628 HFC_wait_nodebug(hc);
2629 }
2630 j++;
2631 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2632 test_bit(FLG_ACTIVE, &dch->Flags)) {
2633 hfcmulti_rx(hc, ch);
2634 }
2635 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2636 test_bit(FLG_ACTIVE, &bch->Flags)) {
2637 hfcmulti_rx(hc, ch);
2638 }
2639 j++;
2640 }
2641 }
2642
2643 #ifdef IRQ_DEBUG
2644 int irqsem;
2645 #endif
2646 static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2647 hfcmulti_interrupt(int intno, void *dev_id)
2648 {
2649 #ifdef IRQCOUNT_DEBUG
2650 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2651 iq5 = 0, iq6 = 0, iqcnt = 0;
2652 #endif
2653 struct hfc_multi *hc = dev_id;
2654 struct dchannel *dch;
2655 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2656 int i;
2657 void __iomem *plx_acc;
2658 u_short wval;
2659 u_char e1_syncsta, temp, temp2;
2660 u_long flags;
2661
2662 if (!hc) {
2663 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2664 return IRQ_NONE;
2665 }
2666
2667 spin_lock(&hc->lock);
2668
2669 #ifdef IRQ_DEBUG
2670 if (irqsem)
2671 printk(KERN_ERR "irq for card %d during irq from "
2672 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2673 irqsem = hc->id + 1;
2674 #endif
2675 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2676 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2677 goto irq_notforus;
2678 #endif
2679 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2680 spin_lock_irqsave(&plx_lock, flags);
2681 plx_acc = hc->plx_membase + PLX_INTCSR;
2682 wval = readw(plx_acc);
2683 spin_unlock_irqrestore(&plx_lock, flags);
2684 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2685 goto irq_notforus;
2686 }
2687
2688 status = HFC_inb_nodebug(hc, R_STATUS);
2689 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2690 #ifdef IRQCOUNT_DEBUG
2691 if (r_irq_statech)
2692 iq1++;
2693 if (status & V_DTMF_STA)
2694 iq2++;
2695 if (status & V_LOST_STA)
2696 iq3++;
2697 if (status & V_EXT_IRQSTA)
2698 iq4++;
2699 if (status & V_MISC_IRQSTA)
2700 iq5++;
2701 if (status & V_FR_IRQSTA)
2702 iq6++;
2703 if (iqcnt++ > 5000) {
2704 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2705 iq1, iq2, iq3, iq4, iq5, iq6);
2706 iqcnt = 0;
2707 }
2708 #endif
2709
2710 if (!r_irq_statech &&
2711 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2712 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2713 /* irq is not for us */
2714 goto irq_notforus;
2715 }
2716 hc->irqcnt++;
2717 if (r_irq_statech) {
2718 if (hc->ctype != HFC_TYPE_E1)
2719 ph_state_irq(hc, r_irq_statech);
2720 }
2721 if (status & V_LOST_STA) {
2722 /* LOST IRQ */
2723 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2724 }
2725 if (status & V_MISC_IRQSTA) {
2726 /* misc IRQ */
2727 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2728 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2729 if (r_irq_misc & V_STA_IRQ) {
2730 if (hc->ctype == HFC_TYPE_E1) {
2731 /* state machine */
2732 dch = hc->chan[hc->dnum[0]].dch;
2733 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2734 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2735 && hc->e1_getclock) {
2736 if (e1_syncsta & V_FR_SYNC_E1)
2737 hc->syncronized = 1;
2738 else
2739 hc->syncronized = 0;
2740 }
2741 /* undocumented: status changes during read */
2742 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2743 while (temp != (temp2 =
2744 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2745 if (debug & DEBUG_HFCMULTI_STATE)
2746 printk(KERN_DEBUG "%s: reread "
2747 "STATE because %d!=%d\n",
2748 __func__, temp, temp2);
2749 temp = temp2; /* repeat */
2750 }
2751 /* broadcast state change to all fragments */
2752 if (debug & DEBUG_HFCMULTI_STATE)
2753 printk(KERN_DEBUG
2754 "%s: E1 (id=%d) newstate %x\n",
2755 __func__, hc->id, temp & 0x7);
2756 for (i = 0; i < hc->ports; i++) {
2757 dch = hc->chan[hc->dnum[i]].dch;
2758 dch->state = temp & 0x7;
2759 schedule_event(dch, FLG_PHCHANGE);
2760 }
2761
2762 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2763 plxsd_checksync(hc, 0);
2764 }
2765 }
2766 if (r_irq_misc & V_TI_IRQ) {
2767 if (hc->iclock_on)
2768 mISDN_clock_update(hc->iclock, poll, NULL);
2769 handle_timer_irq(hc);
2770 }
2771
2772 if (r_irq_misc & V_DTMF_IRQ)
2773 hfcmulti_dtmf(hc);
2774
2775 if (r_irq_misc & V_IRQ_PROC) {
2776 static int irq_proc_cnt;
2777 if (!irq_proc_cnt++)
2778 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2779 " this should not happen\n", __func__);
2780 }
2781
2782 }
2783 if (status & V_FR_IRQSTA) {
2784 /* FIFO IRQ */
2785 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2786 for (i = 0; i < 8; i++) {
2787 if (r_irq_oview & (1 << i))
2788 fifo_irq(hc, i);
2789 }
2790 }
2791
2792 #ifdef IRQ_DEBUG
2793 irqsem = 0;
2794 #endif
2795 spin_unlock(&hc->lock);
2796 return IRQ_HANDLED;
2797
2798 irq_notforus:
2799 #ifdef IRQ_DEBUG
2800 irqsem = 0;
2801 #endif
2802 spin_unlock(&hc->lock);
2803 return IRQ_NONE;
2804 }
2805
2806
2807 /*
2808 * timer callback for D-chan busy resolution. Currently no function
2809 */
2810
2811 static void
hfcmulti_dbusy_timer(struct timer_list * t)2812 hfcmulti_dbusy_timer(struct timer_list *t)
2813 {
2814 }
2815
2816
2817 /*
2818 * activate/deactivate hardware for selected channels and mode
2819 *
2820 * configure B-channel with the given protocol
2821 * ch eqals to the HFC-channel (0-31)
2822 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2823 * for S/T, 1-31 for E1)
2824 * the hdlc interrupts will be set/unset
2825 */
2826 static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2827 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2828 int bank_tx, int slot_rx, int bank_rx)
2829 {
2830 int flow_tx = 0, flow_rx = 0, routing = 0;
2831 int oslot_tx, oslot_rx;
2832 int conf;
2833
2834 if (ch < 0 || ch > 31)
2835 return -EINVAL;
2836 oslot_tx = hc->chan[ch].slot_tx;
2837 oslot_rx = hc->chan[ch].slot_rx;
2838 conf = hc->chan[ch].conf;
2839
2840 if (debug & DEBUG_HFCMULTI_MODE)
2841 printk(KERN_DEBUG
2842 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2843 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2844 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2845 bank_tx, oslot_rx, slot_rx, bank_rx);
2846
2847 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2848 /* remove from slot */
2849 if (debug & DEBUG_HFCMULTI_MODE)
2850 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2851 __func__, oslot_tx);
2852 if (hc->slot_owner[oslot_tx << 1] == ch) {
2853 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2854 HFC_outb(hc, A_SL_CFG, 0);
2855 if (hc->ctype != HFC_TYPE_XHFC)
2856 HFC_outb(hc, A_CONF, 0);
2857 hc->slot_owner[oslot_tx << 1] = -1;
2858 } else {
2859 if (debug & DEBUG_HFCMULTI_MODE)
2860 printk(KERN_DEBUG
2861 "%s: we are not owner of this tx slot "
2862 "anymore, channel %d is.\n",
2863 __func__, hc->slot_owner[oslot_tx << 1]);
2864 }
2865 }
2866
2867 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2868 /* remove from slot */
2869 if (debug & DEBUG_HFCMULTI_MODE)
2870 printk(KERN_DEBUG
2871 "%s: remove from slot %d (RX)\n",
2872 __func__, oslot_rx);
2873 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2874 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2875 HFC_outb(hc, A_SL_CFG, 0);
2876 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2877 } else {
2878 if (debug & DEBUG_HFCMULTI_MODE)
2879 printk(KERN_DEBUG
2880 "%s: we are not owner of this rx slot "
2881 "anymore, channel %d is.\n",
2882 __func__,
2883 hc->slot_owner[(oslot_rx << 1) | 1]);
2884 }
2885 }
2886
2887 if (slot_tx < 0) {
2888 flow_tx = 0x80; /* FIFO->ST */
2889 /* disable pcm slot */
2890 hc->chan[ch].slot_tx = -1;
2891 hc->chan[ch].bank_tx = 0;
2892 } else {
2893 /* set pcm slot */
2894 if (hc->chan[ch].txpending)
2895 flow_tx = 0x80; /* FIFO->ST */
2896 else
2897 flow_tx = 0xc0; /* PCM->ST */
2898 /* put on slot */
2899 routing = bank_tx ? 0xc0 : 0x80;
2900 if (conf >= 0 || bank_tx > 1)
2901 routing = 0x40; /* loop */
2902 if (debug & DEBUG_HFCMULTI_MODE)
2903 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2904 " %d flow %02x routing %02x conf %d (TX)\n",
2905 __func__, ch, slot_tx, bank_tx,
2906 flow_tx, routing, conf);
2907 HFC_outb(hc, R_SLOT, slot_tx << 1);
2908 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2909 if (hc->ctype != HFC_TYPE_XHFC)
2910 HFC_outb(hc, A_CONF,
2911 (conf < 0) ? 0 : (conf | V_CONF_SL));
2912 hc->slot_owner[slot_tx << 1] = ch;
2913 hc->chan[ch].slot_tx = slot_tx;
2914 hc->chan[ch].bank_tx = bank_tx;
2915 }
2916 if (slot_rx < 0) {
2917 /* disable pcm slot */
2918 flow_rx = 0x80; /* ST->FIFO */
2919 hc->chan[ch].slot_rx = -1;
2920 hc->chan[ch].bank_rx = 0;
2921 } else {
2922 /* set pcm slot */
2923 if (hc->chan[ch].txpending)
2924 flow_rx = 0x80; /* ST->FIFO */
2925 else
2926 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2927 /* put on slot */
2928 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2929 if (conf >= 0 || bank_rx > 1)
2930 routing = 0x40; /* loop */
2931 if (debug & DEBUG_HFCMULTI_MODE)
2932 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2933 " %d flow %02x routing %02x conf %d (RX)\n",
2934 __func__, ch, slot_rx, bank_rx,
2935 flow_rx, routing, conf);
2936 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2937 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2938 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2939 hc->chan[ch].slot_rx = slot_rx;
2940 hc->chan[ch].bank_rx = bank_rx;
2941 }
2942
2943 switch (protocol) {
2944 case (ISDN_P_NONE):
2945 /* disable TX fifo */
2946 HFC_outb(hc, R_FIFO, ch << 1);
2947 HFC_wait(hc);
2948 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2949 HFC_outb(hc, A_SUBCH_CFG, 0);
2950 HFC_outb(hc, A_IRQ_MSK, 0);
2951 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2952 HFC_wait(hc);
2953 /* disable RX fifo */
2954 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2955 HFC_wait(hc);
2956 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2957 HFC_outb(hc, A_SUBCH_CFG, 0);
2958 HFC_outb(hc, A_IRQ_MSK, 0);
2959 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2960 HFC_wait(hc);
2961 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2962 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2963 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2964 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2965 /* undocumented: delay after R_ST_SEL */
2966 udelay(1);
2967 HFC_outb(hc, A_ST_CTRL0,
2968 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2969 }
2970 if (hc->chan[ch].bch) {
2971 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2972 test_and_clear_bit(FLG_TRANSPARENT,
2973 &hc->chan[ch].bch->Flags);
2974 }
2975 break;
2976 case (ISDN_P_B_RAW): /* B-channel */
2977
2978 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2979 (hc->chan[ch].slot_rx < 0) &&
2980 (hc->chan[ch].slot_tx < 0)) {
2981
2982 printk(KERN_DEBUG
2983 "Setting B-channel %d to echo cancelable "
2984 "state on PCM slot %d\n", ch,
2985 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2986 printk(KERN_DEBUG
2987 "Enabling pass through for channel\n");
2988 vpm_out(hc, ch, ((ch / 4) * 8) +
2989 ((ch % 4) * 4) + 1, 0x01);
2990 /* rx path */
2991 /* S/T -> PCM */
2992 HFC_outb(hc, R_FIFO, (ch << 1));
2993 HFC_wait(hc);
2994 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2995 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2996 ((ch % 4) * 4) + 1) << 1);
2997 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2998
2999 /* PCM -> FIFO */
3000 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3001 HFC_wait(hc);
3002 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3003 HFC_outb(hc, A_SUBCH_CFG, 0);
3004 HFC_outb(hc, A_IRQ_MSK, 0);
3005 if (hc->chan[ch].protocol != protocol) {
3006 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3007 HFC_wait(hc);
3008 }
3009 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3010 ((ch % 4) * 4) + 1) << 1) | 1);
3011 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3012
3013 /* tx path */
3014 /* PCM -> S/T */
3015 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3016 HFC_wait(hc);
3017 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3018 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3019 ((ch % 4) * 4)) << 1) | 1);
3020 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3021
3022 /* FIFO -> PCM */
3023 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3024 HFC_wait(hc);
3025 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3026 HFC_outb(hc, A_SUBCH_CFG, 0);
3027 HFC_outb(hc, A_IRQ_MSK, 0);
3028 if (hc->chan[ch].protocol != protocol) {
3029 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3030 HFC_wait(hc);
3031 }
3032 /* tx silence */
3033 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3034 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3035 ((ch % 4) * 4)) << 1);
3036 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3037 } else {
3038 /* enable TX fifo */
3039 HFC_outb(hc, R_FIFO, ch << 1);
3040 HFC_wait(hc);
3041 if (hc->ctype == HFC_TYPE_XHFC)
3042 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3043 V_HDLC_TRP | V_IFF);
3044 /* Enable FIFO, no interrupt */
3045 else
3046 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3047 V_HDLC_TRP | V_IFF);
3048 HFC_outb(hc, A_SUBCH_CFG, 0);
3049 HFC_outb(hc, A_IRQ_MSK, 0);
3050 if (hc->chan[ch].protocol != protocol) {
3051 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3052 HFC_wait(hc);
3053 }
3054 /* tx silence */
3055 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3056 /* enable RX fifo */
3057 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3058 HFC_wait(hc);
3059 if (hc->ctype == HFC_TYPE_XHFC)
3060 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3061 V_HDLC_TRP);
3062 /* Enable FIFO, no interrupt*/
3063 else
3064 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3065 V_HDLC_TRP);
3066 HFC_outb(hc, A_SUBCH_CFG, 0);
3067 HFC_outb(hc, A_IRQ_MSK, 0);
3068 if (hc->chan[ch].protocol != protocol) {
3069 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3070 HFC_wait(hc);
3071 }
3072 }
3073 if (hc->ctype != HFC_TYPE_E1) {
3074 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3075 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3076 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3077 /* undocumented: delay after R_ST_SEL */
3078 udelay(1);
3079 HFC_outb(hc, A_ST_CTRL0,
3080 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3081 }
3082 if (hc->chan[ch].bch)
3083 test_and_set_bit(FLG_TRANSPARENT,
3084 &hc->chan[ch].bch->Flags);
3085 break;
3086 case (ISDN_P_B_HDLC): /* B-channel */
3087 case (ISDN_P_TE_S0): /* D-channel */
3088 case (ISDN_P_NT_S0):
3089 case (ISDN_P_TE_E1):
3090 case (ISDN_P_NT_E1):
3091 /* enable TX fifo */
3092 HFC_outb(hc, R_FIFO, ch << 1);
3093 HFC_wait(hc);
3094 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3095 /* E1 or B-channel */
3096 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3097 HFC_outb(hc, A_SUBCH_CFG, 0);
3098 } else {
3099 /* D-Channel without HDLC fill flags */
3100 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3101 HFC_outb(hc, A_SUBCH_CFG, 2);
3102 }
3103 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3104 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3105 HFC_wait(hc);
3106 /* enable RX fifo */
3107 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3108 HFC_wait(hc);
3109 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3110 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3111 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3112 else
3113 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3114 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3115 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3116 HFC_wait(hc);
3117 if (hc->chan[ch].bch) {
3118 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3119 if (hc->ctype != HFC_TYPE_E1) {
3120 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3121 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3122 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3123 /* undocumented: delay after R_ST_SEL */
3124 udelay(1);
3125 HFC_outb(hc, A_ST_CTRL0,
3126 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3127 }
3128 }
3129 break;
3130 default:
3131 printk(KERN_DEBUG "%s: protocol not known %x\n",
3132 __func__, protocol);
3133 hc->chan[ch].protocol = ISDN_P_NONE;
3134 return -ENOPROTOOPT;
3135 }
3136 hc->chan[ch].protocol = protocol;
3137 return 0;
3138 }
3139
3140
3141 /*
3142 * connect/disconnect PCM
3143 */
3144
3145 static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3146 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3147 int slot_rx, int bank_rx)
3148 {
3149 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3150 /* disable PCM */
3151 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3152 return;
3153 }
3154
3155 /* enable pcm */
3156 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3157 slot_rx, bank_rx);
3158 }
3159
3160 /*
3161 * set/disable conference
3162 */
3163
3164 static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3165 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3166 {
3167 if (num >= 0 && num <= 7)
3168 hc->chan[ch].conf = num;
3169 else
3170 hc->chan[ch].conf = -1;
3171 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3172 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3173 hc->chan[ch].bank_rx);
3174 }
3175
3176
3177 /*
3178 * set/disable sample loop
3179 */
3180
3181 /* NOTE: this function is experimental and therefore disabled */
3182
3183 /*
3184 * Layer 1 callback function
3185 */
3186 static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3187 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3188 {
3189 struct hfc_multi *hc = dch->hw;
3190 struct sk_buff_head free_queue;
3191 u_long flags;
3192
3193 switch (cmd) {
3194 case INFO3_P8:
3195 case INFO3_P10:
3196 break;
3197 case HW_RESET_REQ:
3198 /* start activation */
3199 spin_lock_irqsave(&hc->lock, flags);
3200 if (hc->ctype == HFC_TYPE_E1) {
3201 if (debug & DEBUG_HFCMULTI_MSG)
3202 printk(KERN_DEBUG
3203 "%s: HW_RESET_REQ no BRI\n",
3204 __func__);
3205 } else {
3206 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3207 /* undocumented: delay after R_ST_SEL */
3208 udelay(1);
3209 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3210 udelay(6); /* wait at least 5,21us */
3211 HFC_outb(hc, A_ST_WR_STATE, 3);
3212 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3213 /* activate */
3214 }
3215 spin_unlock_irqrestore(&hc->lock, flags);
3216 l1_event(dch->l1, HW_POWERUP_IND);
3217 break;
3218 case HW_DEACT_REQ:
3219 __skb_queue_head_init(&free_queue);
3220 /* start deactivation */
3221 spin_lock_irqsave(&hc->lock, flags);
3222 if (hc->ctype == HFC_TYPE_E1) {
3223 if (debug & DEBUG_HFCMULTI_MSG)
3224 printk(KERN_DEBUG
3225 "%s: HW_DEACT_REQ no BRI\n",
3226 __func__);
3227 } else {
3228 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3229 /* undocumented: delay after R_ST_SEL */
3230 udelay(1);
3231 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3232 /* deactivate */
3233 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3234 hc->syncronized &=
3235 ~(1 << hc->chan[dch->slot].port);
3236 plxsd_checksync(hc, 0);
3237 }
3238 }
3239 skb_queue_splice_init(&dch->squeue, &free_queue);
3240 if (dch->tx_skb) {
3241 __skb_queue_tail(&free_queue, dch->tx_skb);
3242 dch->tx_skb = NULL;
3243 }
3244 dch->tx_idx = 0;
3245 if (dch->rx_skb) {
3246 __skb_queue_tail(&free_queue, dch->rx_skb);
3247 dch->rx_skb = NULL;
3248 }
3249 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3250 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3251 del_timer(&dch->timer);
3252 spin_unlock_irqrestore(&hc->lock, flags);
3253 __skb_queue_purge(&free_queue);
3254 break;
3255 case HW_POWERUP_REQ:
3256 spin_lock_irqsave(&hc->lock, flags);
3257 if (hc->ctype == HFC_TYPE_E1) {
3258 if (debug & DEBUG_HFCMULTI_MSG)
3259 printk(KERN_DEBUG
3260 "%s: HW_POWERUP_REQ no BRI\n",
3261 __func__);
3262 } else {
3263 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3264 /* undocumented: delay after R_ST_SEL */
3265 udelay(1);
3266 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3267 udelay(6); /* wait at least 5,21us */
3268 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3269 }
3270 spin_unlock_irqrestore(&hc->lock, flags);
3271 break;
3272 case PH_ACTIVATE_IND:
3273 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3274 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3275 GFP_ATOMIC);
3276 break;
3277 case PH_DEACTIVATE_IND:
3278 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3279 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3280 GFP_ATOMIC);
3281 break;
3282 default:
3283 if (dch->debug & DEBUG_HW)
3284 printk(KERN_DEBUG "%s: unknown command %x\n",
3285 __func__, cmd);
3286 return -1;
3287 }
3288 return 0;
3289 }
3290
3291 /*
3292 * Layer2 -> Layer 1 Transfer
3293 */
3294
3295 static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3296 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3297 {
3298 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3299 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3300 struct hfc_multi *hc = dch->hw;
3301 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3302 int ret = -EINVAL;
3303 unsigned int id;
3304 u_long flags;
3305
3306 switch (hh->prim) {
3307 case PH_DATA_REQ:
3308 if (skb->len < 1)
3309 break;
3310 spin_lock_irqsave(&hc->lock, flags);
3311 ret = dchannel_senddata(dch, skb);
3312 if (ret > 0) { /* direct TX */
3313 id = hh->id; /* skb can be freed */
3314 hfcmulti_tx(hc, dch->slot);
3315 ret = 0;
3316 /* start fifo */
3317 HFC_outb(hc, R_FIFO, 0);
3318 HFC_wait(hc);
3319 spin_unlock_irqrestore(&hc->lock, flags);
3320 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3321 } else
3322 spin_unlock_irqrestore(&hc->lock, flags);
3323 return ret;
3324 case PH_ACTIVATE_REQ:
3325 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3326 spin_lock_irqsave(&hc->lock, flags);
3327 ret = 0;
3328 if (debug & DEBUG_HFCMULTI_MSG)
3329 printk(KERN_DEBUG
3330 "%s: PH_ACTIVATE port %d (0..%d)\n",
3331 __func__, hc->chan[dch->slot].port,
3332 hc->ports - 1);
3333 /* start activation */
3334 if (hc->ctype == HFC_TYPE_E1) {
3335 ph_state_change(dch);
3336 if (debug & DEBUG_HFCMULTI_STATE)
3337 printk(KERN_DEBUG
3338 "%s: E1 report state %x \n",
3339 __func__, dch->state);
3340 } else {
3341 HFC_outb(hc, R_ST_SEL,
3342 hc->chan[dch->slot].port);
3343 /* undocumented: delay after R_ST_SEL */
3344 udelay(1);
3345 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3346 /* G1 */
3347 udelay(6); /* wait at least 5,21us */
3348 HFC_outb(hc, A_ST_WR_STATE, 1);
3349 HFC_outb(hc, A_ST_WR_STATE, 1 |
3350 (V_ST_ACT * 3)); /* activate */
3351 dch->state = 1;
3352 }
3353 spin_unlock_irqrestore(&hc->lock, flags);
3354 } else
3355 ret = l1_event(dch->l1, hh->prim);
3356 break;
3357 case PH_DEACTIVATE_REQ:
3358 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3359 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3360 struct sk_buff_head free_queue;
3361
3362 __skb_queue_head_init(&free_queue);
3363 spin_lock_irqsave(&hc->lock, flags);
3364 if (debug & DEBUG_HFCMULTI_MSG)
3365 printk(KERN_DEBUG
3366 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3367 __func__, hc->chan[dch->slot].port,
3368 hc->ports - 1);
3369 /* start deactivation */
3370 if (hc->ctype == HFC_TYPE_E1) {
3371 if (debug & DEBUG_HFCMULTI_MSG)
3372 printk(KERN_DEBUG
3373 "%s: PH_DEACTIVATE no BRI\n",
3374 __func__);
3375 } else {
3376 HFC_outb(hc, R_ST_SEL,
3377 hc->chan[dch->slot].port);
3378 /* undocumented: delay after R_ST_SEL */
3379 udelay(1);
3380 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3381 /* deactivate */
3382 dch->state = 1;
3383 }
3384 skb_queue_splice_init(&dch->squeue, &free_queue);
3385 if (dch->tx_skb) {
3386 __skb_queue_tail(&free_queue, dch->tx_skb);
3387 dch->tx_skb = NULL;
3388 }
3389 dch->tx_idx = 0;
3390 if (dch->rx_skb) {
3391 __skb_queue_tail(&free_queue, dch->rx_skb);
3392 dch->rx_skb = NULL;
3393 }
3394 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3395 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3396 del_timer(&dch->timer);
3397 #ifdef FIXME
3398 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3399 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3400 #endif
3401 ret = 0;
3402 spin_unlock_irqrestore(&hc->lock, flags);
3403 __skb_queue_purge(&free_queue);
3404 } else
3405 ret = l1_event(dch->l1, hh->prim);
3406 break;
3407 }
3408 if (!ret)
3409 dev_kfree_skb(skb);
3410 return ret;
3411 }
3412
3413 static void
deactivate_bchannel(struct bchannel * bch)3414 deactivate_bchannel(struct bchannel *bch)
3415 {
3416 struct hfc_multi *hc = bch->hw;
3417 u_long flags;
3418
3419 spin_lock_irqsave(&hc->lock, flags);
3420 mISDN_clear_bchannel(bch);
3421 hc->chan[bch->slot].coeff_count = 0;
3422 hc->chan[bch->slot].rx_off = 0;
3423 hc->chan[bch->slot].conf = -1;
3424 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3425 spin_unlock_irqrestore(&hc->lock, flags);
3426 }
3427
3428 static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3429 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3430 {
3431 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3432 struct hfc_multi *hc = bch->hw;
3433 int ret = -EINVAL;
3434 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3435 unsigned long flags;
3436
3437 switch (hh->prim) {
3438 case PH_DATA_REQ:
3439 if (!skb->len)
3440 break;
3441 spin_lock_irqsave(&hc->lock, flags);
3442 ret = bchannel_senddata(bch, skb);
3443 if (ret > 0) { /* direct TX */
3444 hfcmulti_tx(hc, bch->slot);
3445 ret = 0;
3446 /* start fifo */
3447 HFC_outb_nodebug(hc, R_FIFO, 0);
3448 HFC_wait_nodebug(hc);
3449 }
3450 spin_unlock_irqrestore(&hc->lock, flags);
3451 return ret;
3452 case PH_ACTIVATE_REQ:
3453 if (debug & DEBUG_HFCMULTI_MSG)
3454 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3455 __func__, bch->slot);
3456 spin_lock_irqsave(&hc->lock, flags);
3457 /* activate B-channel if not already activated */
3458 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3459 hc->chan[bch->slot].txpending = 0;
3460 ret = mode_hfcmulti(hc, bch->slot,
3461 ch->protocol,
3462 hc->chan[bch->slot].slot_tx,
3463 hc->chan[bch->slot].bank_tx,
3464 hc->chan[bch->slot].slot_rx,
3465 hc->chan[bch->slot].bank_rx);
3466 if (!ret) {
3467 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3468 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3469 /* start decoder */
3470 hc->dtmf = 1;
3471 if (debug & DEBUG_HFCMULTI_DTMF)
3472 printk(KERN_DEBUG
3473 "%s: start dtmf decoder\n",
3474 __func__);
3475 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3476 V_RST_DTMF);
3477 }
3478 }
3479 } else
3480 ret = 0;
3481 spin_unlock_irqrestore(&hc->lock, flags);
3482 if (!ret)
3483 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3484 GFP_KERNEL);
3485 break;
3486 case PH_CONTROL_REQ:
3487 spin_lock_irqsave(&hc->lock, flags);
3488 switch (hh->id) {
3489 case HFC_SPL_LOOP_ON: /* set sample loop */
3490 if (debug & DEBUG_HFCMULTI_MSG)
3491 printk(KERN_DEBUG
3492 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3493 __func__, skb->len);
3494 ret = 0;
3495 break;
3496 case HFC_SPL_LOOP_OFF: /* set silence */
3497 if (debug & DEBUG_HFCMULTI_MSG)
3498 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3499 __func__);
3500 ret = 0;
3501 break;
3502 default:
3503 printk(KERN_ERR
3504 "%s: unknown PH_CONTROL_REQ info %x\n",
3505 __func__, hh->id);
3506 ret = -EINVAL;
3507 }
3508 spin_unlock_irqrestore(&hc->lock, flags);
3509 break;
3510 case PH_DEACTIVATE_REQ:
3511 deactivate_bchannel(bch); /* locked there */
3512 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3513 GFP_KERNEL);
3514 ret = 0;
3515 break;
3516 }
3517 if (!ret)
3518 dev_kfree_skb(skb);
3519 return ret;
3520 }
3521
3522 /*
3523 * bchannel control function
3524 */
3525 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3526 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3527 {
3528 int ret = 0;
3529 struct dsp_features *features =
3530 (struct dsp_features *)(*((u_long *)&cq->p1));
3531 struct hfc_multi *hc = bch->hw;
3532 int slot_tx;
3533 int bank_tx;
3534 int slot_rx;
3535 int bank_rx;
3536 int num;
3537
3538 switch (cq->op) {
3539 case MISDN_CTRL_GETOP:
3540 ret = mISDN_ctrl_bchannel(bch, cq);
3541 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3542 break;
3543 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3544 ret = mISDN_ctrl_bchannel(bch, cq);
3545 hc->chan[bch->slot].rx_off = !!cq->p1;
3546 if (!hc->chan[bch->slot].rx_off) {
3547 /* reset fifo on rx on */
3548 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3549 HFC_wait_nodebug(hc);
3550 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3551 HFC_wait_nodebug(hc);
3552 }
3553 if (debug & DEBUG_HFCMULTI_MSG)
3554 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3555 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3556 break;
3557 case MISDN_CTRL_FILL_EMPTY:
3558 ret = mISDN_ctrl_bchannel(bch, cq);
3559 hc->silence = bch->fill[0];
3560 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3561 break;
3562 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3563 if (debug & DEBUG_HFCMULTI_MSG)
3564 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3565 __func__);
3566 /* create confirm */
3567 features->hfc_id = hc->id;
3568 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3569 features->hfc_dtmf = 1;
3570 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3571 features->hfc_conf = 1;
3572 features->hfc_loops = 0;
3573 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3574 features->hfc_echocanhw = 1;
3575 } else {
3576 features->pcm_id = hc->pcm;
3577 features->pcm_slots = hc->slots;
3578 features->pcm_banks = 2;
3579 }
3580 break;
3581 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3582 slot_tx = cq->p1 & 0xff;
3583 bank_tx = cq->p1 >> 8;
3584 slot_rx = cq->p2 & 0xff;
3585 bank_rx = cq->p2 >> 8;
3586 if (debug & DEBUG_HFCMULTI_MSG)
3587 printk(KERN_DEBUG
3588 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3589 "slot %d bank %d (RX)\n",
3590 __func__, slot_tx, bank_tx,
3591 slot_rx, bank_rx);
3592 if (slot_tx < hc->slots && bank_tx <= 2 &&
3593 slot_rx < hc->slots && bank_rx <= 2)
3594 hfcmulti_pcm(hc, bch->slot,
3595 slot_tx, bank_tx, slot_rx, bank_rx);
3596 else {
3597 printk(KERN_WARNING
3598 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3599 "slot %d bank %d (RX) out of range\n",
3600 __func__, slot_tx, bank_tx,
3601 slot_rx, bank_rx);
3602 ret = -EINVAL;
3603 }
3604 break;
3605 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3606 if (debug & DEBUG_HFCMULTI_MSG)
3607 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3608 __func__);
3609 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3610 break;
3611 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3612 num = cq->p1 & 0xff;
3613 if (debug & DEBUG_HFCMULTI_MSG)
3614 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3615 __func__, num);
3616 if (num <= 7)
3617 hfcmulti_conf(hc, bch->slot, num);
3618 else {
3619 printk(KERN_WARNING
3620 "%s: HW_CONF_JOIN conf %d out of range\n",
3621 __func__, num);
3622 ret = -EINVAL;
3623 }
3624 break;
3625 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3626 if (debug & DEBUG_HFCMULTI_MSG)
3627 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3628 hfcmulti_conf(hc, bch->slot, -1);
3629 break;
3630 case MISDN_CTRL_HFC_ECHOCAN_ON:
3631 if (debug & DEBUG_HFCMULTI_MSG)
3632 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3633 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3634 vpm_echocan_on(hc, bch->slot, cq->p1);
3635 else
3636 ret = -EINVAL;
3637 break;
3638
3639 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3640 if (debug & DEBUG_HFCMULTI_MSG)
3641 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3642 __func__);
3643 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3644 vpm_echocan_off(hc, bch->slot);
3645 else
3646 ret = -EINVAL;
3647 break;
3648 default:
3649 ret = mISDN_ctrl_bchannel(bch, cq);
3650 break;
3651 }
3652 return ret;
3653 }
3654
3655 static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3656 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3657 {
3658 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3659 struct hfc_multi *hc = bch->hw;
3660 int err = -EINVAL;
3661 u_long flags;
3662
3663 if (bch->debug & DEBUG_HW)
3664 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3665 __func__, cmd, arg);
3666 switch (cmd) {
3667 case CLOSE_CHANNEL:
3668 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3669 deactivate_bchannel(bch); /* locked there */
3670 ch->protocol = ISDN_P_NONE;
3671 ch->peer = NULL;
3672 module_put(THIS_MODULE);
3673 err = 0;
3674 break;
3675 case CONTROL_CHANNEL:
3676 spin_lock_irqsave(&hc->lock, flags);
3677 err = channel_bctrl(bch, arg);
3678 spin_unlock_irqrestore(&hc->lock, flags);
3679 break;
3680 default:
3681 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3682 __func__, cmd);
3683 }
3684 return err;
3685 }
3686
3687 /*
3688 * handle D-channel events
3689 *
3690 * handle state change event
3691 */
3692 static void
ph_state_change(struct dchannel * dch)3693 ph_state_change(struct dchannel *dch)
3694 {
3695 struct hfc_multi *hc;
3696 int ch, i;
3697
3698 if (!dch) {
3699 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3700 return;
3701 }
3702 hc = dch->hw;
3703 ch = dch->slot;
3704
3705 if (hc->ctype == HFC_TYPE_E1) {
3706 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3707 if (debug & DEBUG_HFCMULTI_STATE)
3708 printk(KERN_DEBUG
3709 "%s: E1 TE (id=%d) newstate %x\n",
3710 __func__, hc->id, dch->state);
3711 } else {
3712 if (debug & DEBUG_HFCMULTI_STATE)
3713 printk(KERN_DEBUG
3714 "%s: E1 NT (id=%d) newstate %x\n",
3715 __func__, hc->id, dch->state);
3716 }
3717 switch (dch->state) {
3718 case (1):
3719 if (hc->e1_state != 1) {
3720 for (i = 1; i <= 31; i++) {
3721 /* reset fifos on e1 activation */
3722 HFC_outb_nodebug(hc, R_FIFO,
3723 (i << 1) | 1);
3724 HFC_wait_nodebug(hc);
3725 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3726 V_RES_F);
3727 HFC_wait_nodebug(hc);
3728 }
3729 }
3730 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3731 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3732 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3733 break;
3734
3735 default:
3736 if (hc->e1_state != 1)
3737 return;
3738 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3739 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3740 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3741 }
3742 hc->e1_state = dch->state;
3743 } else {
3744 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3745 if (debug & DEBUG_HFCMULTI_STATE)
3746 printk(KERN_DEBUG
3747 "%s: S/T TE newstate %x\n",
3748 __func__, dch->state);
3749 switch (dch->state) {
3750 case (0):
3751 l1_event(dch->l1, HW_RESET_IND);
3752 break;
3753 case (3):
3754 l1_event(dch->l1, HW_DEACT_IND);
3755 break;
3756 case (5):
3757 case (8):
3758 l1_event(dch->l1, ANYSIGNAL);
3759 break;
3760 case (6):
3761 l1_event(dch->l1, INFO2);
3762 break;
3763 case (7):
3764 l1_event(dch->l1, INFO4_P8);
3765 break;
3766 }
3767 } else {
3768 if (debug & DEBUG_HFCMULTI_STATE)
3769 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3770 __func__, dch->state);
3771 switch (dch->state) {
3772 case (2):
3773 if (hc->chan[ch].nt_timer == 0) {
3774 hc->chan[ch].nt_timer = -1;
3775 HFC_outb(hc, R_ST_SEL,
3776 hc->chan[ch].port);
3777 /* undocumented: delay after R_ST_SEL */
3778 udelay(1);
3779 HFC_outb(hc, A_ST_WR_STATE, 4 |
3780 V_ST_LD_STA); /* G4 */
3781 udelay(6); /* wait at least 5,21us */
3782 HFC_outb(hc, A_ST_WR_STATE, 4);
3783 dch->state = 4;
3784 } else {
3785 /* one extra count for the next event */
3786 hc->chan[ch].nt_timer =
3787 nt_t1_count[poll_timer] + 1;
3788 HFC_outb(hc, R_ST_SEL,
3789 hc->chan[ch].port);
3790 /* undocumented: delay after R_ST_SEL */
3791 udelay(1);
3792 /* allow G2 -> G3 transition */
3793 HFC_outb(hc, A_ST_WR_STATE, 2 |
3794 V_SET_G2_G3);
3795 }
3796 break;
3797 case (1):
3798 hc->chan[ch].nt_timer = -1;
3799 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3800 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3801 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3802 break;
3803 case (4):
3804 hc->chan[ch].nt_timer = -1;
3805 break;
3806 case (3):
3807 hc->chan[ch].nt_timer = -1;
3808 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3809 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3810 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3811 break;
3812 }
3813 }
3814 }
3815 }
3816
3817 /*
3818 * called for card mode init message
3819 */
3820
3821 static void
hfcmulti_initmode(struct dchannel * dch)3822 hfcmulti_initmode(struct dchannel *dch)
3823 {
3824 struct hfc_multi *hc = dch->hw;
3825 u_char a_st_wr_state, r_e1_wr_sta;
3826 int i, pt;
3827
3828 if (debug & DEBUG_HFCMULTI_INIT)
3829 printk(KERN_DEBUG "%s: entered\n", __func__);
3830
3831 i = dch->slot;
3832 pt = hc->chan[i].port;
3833 if (hc->ctype == HFC_TYPE_E1) {
3834 /* E1 */
3835 hc->chan[hc->dnum[pt]].slot_tx = -1;
3836 hc->chan[hc->dnum[pt]].slot_rx = -1;
3837 hc->chan[hc->dnum[pt]].conf = -1;
3838 if (hc->dnum[pt]) {
3839 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3840 -1, 0, -1, 0);
3841 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3842 }
3843 for (i = 1; i <= 31; i++) {
3844 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3845 continue;
3846 hc->chan[i].slot_tx = -1;
3847 hc->chan[i].slot_rx = -1;
3848 hc->chan[i].conf = -1;
3849 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3850 }
3851 }
3852 if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3853 /* E1, port 0 */
3854 dch = hc->chan[hc->dnum[0]].dch;
3855 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3856 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3857 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3858 }
3859 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3860 HFC_outb(hc, R_RX0, 0);
3861 hc->hw.r_tx0 = 0 | V_OUT_EN;
3862 } else {
3863 HFC_outb(hc, R_RX0, 1);
3864 hc->hw.r_tx0 = 1 | V_OUT_EN;
3865 }
3866 hc->hw.r_tx1 = V_ATX | V_NTRI;
3867 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3868 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3869 HFC_outb(hc, R_TX_FR0, 0x00);
3870 HFC_outb(hc, R_TX_FR1, 0xf8);
3871
3872 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3873 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3874
3875 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3876
3877 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3878 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3879
3880 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3881 if (debug & DEBUG_HFCMULTI_INIT)
3882 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3883 __func__);
3884 r_e1_wr_sta = 0; /* G0 */
3885 hc->e1_getclock = 0;
3886 } else {
3887 if (debug & DEBUG_HFCMULTI_INIT)
3888 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3889 __func__);
3890 r_e1_wr_sta = 0; /* F0 */
3891 hc->e1_getclock = 1;
3892 }
3893 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3894 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3895 else
3896 HFC_outb(hc, R_SYNC_OUT, 0);
3897 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3898 hc->e1_getclock = 1;
3899 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3900 hc->e1_getclock = 0;
3901 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3902 /* SLAVE (clock master) */
3903 if (debug & DEBUG_HFCMULTI_INIT)
3904 printk(KERN_DEBUG
3905 "%s: E1 port is clock master "
3906 "(clock from PCM)\n", __func__);
3907 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3908 } else {
3909 if (hc->e1_getclock) {
3910 /* MASTER (clock slave) */
3911 if (debug & DEBUG_HFCMULTI_INIT)
3912 printk(KERN_DEBUG
3913 "%s: E1 port is clock slave "
3914 "(clock to PCM)\n", __func__);
3915 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3916 } else {
3917 /* MASTER (clock master) */
3918 if (debug & DEBUG_HFCMULTI_INIT)
3919 printk(KERN_DEBUG "%s: E1 port is "
3920 "clock master "
3921 "(clock from QUARTZ)\n",
3922 __func__);
3923 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3924 V_PCM_SYNC | V_JATT_OFF);
3925 HFC_outb(hc, R_SYNC_OUT, 0);
3926 }
3927 }
3928 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3929 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3930 HFC_outb(hc, R_PWM0, 0x50);
3931 HFC_outb(hc, R_PWM1, 0xff);
3932 /* state machine setup */
3933 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3934 udelay(6); /* wait at least 5,21us */
3935 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3936 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3937 hc->syncronized = 0;
3938 plxsd_checksync(hc, 0);
3939 }
3940 }
3941 if (hc->ctype != HFC_TYPE_E1) {
3942 /* ST */
3943 hc->chan[i].slot_tx = -1;
3944 hc->chan[i].slot_rx = -1;
3945 hc->chan[i].conf = -1;
3946 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3947 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3948 hc->chan[i - 2].slot_tx = -1;
3949 hc->chan[i - 2].slot_rx = -1;
3950 hc->chan[i - 2].conf = -1;
3951 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3952 hc->chan[i - 1].slot_tx = -1;
3953 hc->chan[i - 1].slot_rx = -1;
3954 hc->chan[i - 1].conf = -1;
3955 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3956 /* select interface */
3957 HFC_outb(hc, R_ST_SEL, pt);
3958 /* undocumented: delay after R_ST_SEL */
3959 udelay(1);
3960 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3961 if (debug & DEBUG_HFCMULTI_INIT)
3962 printk(KERN_DEBUG
3963 "%s: ST port %d is NT-mode\n",
3964 __func__, pt);
3965 /* clock delay */
3966 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3967 a_st_wr_state = 1; /* G1 */
3968 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3969 } else {
3970 if (debug & DEBUG_HFCMULTI_INIT)
3971 printk(KERN_DEBUG
3972 "%s: ST port %d is TE-mode\n",
3973 __func__, pt);
3974 /* clock delay */
3975 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3976 a_st_wr_state = 2; /* F2 */
3977 hc->hw.a_st_ctrl0[pt] = 0;
3978 }
3979 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3980 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3981 if (hc->ctype == HFC_TYPE_XHFC) {
3982 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3983 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3984 0x7c << 1 /* V_ST_PULSE */);
3985 }
3986 /* line setup */
3987 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3988 /* disable E-channel */
3989 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3990 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3991 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3992 else
3993 HFC_outb(hc, A_ST_CTRL1, 0);
3994 /* enable B-channel receive */
3995 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3996 /* state machine setup */
3997 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3998 udelay(6); /* wait at least 5,21us */
3999 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4000 hc->hw.r_sci_msk |= 1 << pt;
4001 /* state machine interrupts */
4002 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4003 /* unset sync on port */
4004 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4005 hc->syncronized &=
4006 ~(1 << hc->chan[dch->slot].port);
4007 plxsd_checksync(hc, 0);
4008 }
4009 }
4010 if (debug & DEBUG_HFCMULTI_INIT)
4011 printk("%s: done\n", __func__);
4012 }
4013
4014
4015 static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4016 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4017 struct channel_req *rq)
4018 {
4019 int err = 0;
4020 u_long flags;
4021
4022 if (debug & DEBUG_HW_OPEN)
4023 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4024 dch->dev.id, __builtin_return_address(0));
4025 if (rq->protocol == ISDN_P_NONE)
4026 return -EINVAL;
4027 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4028 (dch->dev.D.protocol != rq->protocol)) {
4029 if (debug & DEBUG_HFCMULTI_MODE)
4030 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4031 __func__, dch->dev.D.protocol, rq->protocol);
4032 }
4033 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4034 (rq->protocol != ISDN_P_TE_S0))
4035 l1_event(dch->l1, CLOSE_CHANNEL);
4036 if (dch->dev.D.protocol != rq->protocol) {
4037 if (rq->protocol == ISDN_P_TE_S0) {
4038 err = create_l1(dch, hfcm_l1callback);
4039 if (err)
4040 return err;
4041 }
4042 dch->dev.D.protocol = rq->protocol;
4043 spin_lock_irqsave(&hc->lock, flags);
4044 hfcmulti_initmode(dch);
4045 spin_unlock_irqrestore(&hc->lock, flags);
4046 }
4047 if (test_bit(FLG_ACTIVE, &dch->Flags))
4048 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4049 0, NULL, GFP_KERNEL);
4050 rq->ch = &dch->dev.D;
4051 if (!try_module_get(THIS_MODULE))
4052 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4053 return 0;
4054 }
4055
4056 static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4057 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4058 struct channel_req *rq)
4059 {
4060 struct bchannel *bch;
4061 int ch;
4062
4063 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4064 return -EINVAL;
4065 if (rq->protocol == ISDN_P_NONE)
4066 return -EINVAL;
4067 if (hc->ctype == HFC_TYPE_E1)
4068 ch = rq->adr.channel;
4069 else
4070 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4071 bch = hc->chan[ch].bch;
4072 if (!bch) {
4073 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4074 __func__, ch);
4075 return -EINVAL;
4076 }
4077 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4078 return -EBUSY; /* b-channel can be only open once */
4079 bch->ch.protocol = rq->protocol;
4080 hc->chan[ch].rx_off = 0;
4081 rq->ch = &bch->ch;
4082 if (!try_module_get(THIS_MODULE))
4083 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4084 return 0;
4085 }
4086
4087 /*
4088 * device control function
4089 */
4090 static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4091 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4092 {
4093 struct hfc_multi *hc = dch->hw;
4094 int ret = 0;
4095 int wd_mode, wd_cnt;
4096
4097 switch (cq->op) {
4098 case MISDN_CTRL_GETOP:
4099 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4100 break;
4101 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4102 wd_cnt = cq->p1 & 0xf;
4103 wd_mode = !!(cq->p1 >> 4);
4104 if (debug & DEBUG_HFCMULTI_MSG)
4105 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4106 ", counter 0x%x\n", __func__,
4107 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4108 /* set the watchdog timer */
4109 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4110 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4111 if (hc->ctype == HFC_TYPE_XHFC)
4112 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4113 /* init the watchdog register and reset the counter */
4114 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4115 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4116 /* enable the watchdog output for Speech-Design */
4117 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4118 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4119 HFC_outb(hc, R_GPIO_OUT1, 0);
4120 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4121 }
4122 break;
4123 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4124 if (debug & DEBUG_HFCMULTI_MSG)
4125 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4126 __func__);
4127 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4128 break;
4129 case MISDN_CTRL_L1_TIMER3:
4130 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4131 break;
4132 default:
4133 printk(KERN_WARNING "%s: unknown Op %x\n",
4134 __func__, cq->op);
4135 ret = -EINVAL;
4136 break;
4137 }
4138 return ret;
4139 }
4140
4141 static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4142 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4143 {
4144 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4145 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4146 struct hfc_multi *hc = dch->hw;
4147 struct channel_req *rq;
4148 int err = 0;
4149 u_long flags;
4150
4151 if (dch->debug & DEBUG_HW)
4152 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4153 __func__, cmd, arg);
4154 switch (cmd) {
4155 case OPEN_CHANNEL:
4156 rq = arg;
4157 switch (rq->protocol) {
4158 case ISDN_P_TE_S0:
4159 case ISDN_P_NT_S0:
4160 if (hc->ctype == HFC_TYPE_E1) {
4161 err = -EINVAL;
4162 break;
4163 }
4164 err = open_dchannel(hc, dch, rq); /* locked there */
4165 break;
4166 case ISDN_P_TE_E1:
4167 case ISDN_P_NT_E1:
4168 if (hc->ctype != HFC_TYPE_E1) {
4169 err = -EINVAL;
4170 break;
4171 }
4172 err = open_dchannel(hc, dch, rq); /* locked there */
4173 break;
4174 default:
4175 spin_lock_irqsave(&hc->lock, flags);
4176 err = open_bchannel(hc, dch, rq);
4177 spin_unlock_irqrestore(&hc->lock, flags);
4178 }
4179 break;
4180 case CLOSE_CHANNEL:
4181 if (debug & DEBUG_HW_OPEN)
4182 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4183 __func__, dch->dev.id,
4184 __builtin_return_address(0));
4185 module_put(THIS_MODULE);
4186 break;
4187 case CONTROL_CHANNEL:
4188 spin_lock_irqsave(&hc->lock, flags);
4189 err = channel_dctrl(dch, arg);
4190 spin_unlock_irqrestore(&hc->lock, flags);
4191 break;
4192 default:
4193 if (dch->debug & DEBUG_HW)
4194 printk(KERN_DEBUG "%s: unknown command %x\n",
4195 __func__, cmd);
4196 err = -EINVAL;
4197 }
4198 return err;
4199 }
4200
4201 static int
clockctl(void * priv,int enable)4202 clockctl(void *priv, int enable)
4203 {
4204 struct hfc_multi *hc = priv;
4205
4206 hc->iclock_on = enable;
4207 return 0;
4208 }
4209
4210 /*
4211 * initialize the card
4212 */
4213
4214 /*
4215 * start timer irq, wait some time and check if we have interrupts.
4216 * if not, reset chip and try again.
4217 */
4218 static int
init_card(struct hfc_multi * hc)4219 init_card(struct hfc_multi *hc)
4220 {
4221 int err = -EIO;
4222 u_long flags;
4223 void __iomem *plx_acc;
4224 u_long plx_flags;
4225
4226 if (debug & DEBUG_HFCMULTI_INIT)
4227 printk(KERN_DEBUG "%s: entered\n", __func__);
4228
4229 spin_lock_irqsave(&hc->lock, flags);
4230 /* set interrupts but leave global interrupt disabled */
4231 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4232 disable_hwirq(hc);
4233 spin_unlock_irqrestore(&hc->lock, flags);
4234
4235 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4236 "HFC-multi", hc)) {
4237 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4238 hc->irq);
4239 hc->irq = 0;
4240 return -EIO;
4241 }
4242
4243 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4244 spin_lock_irqsave(&plx_lock, plx_flags);
4245 plx_acc = hc->plx_membase + PLX_INTCSR;
4246 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4247 plx_acc); /* enable PCI & LINT1 irq */
4248 spin_unlock_irqrestore(&plx_lock, plx_flags);
4249 }
4250
4251 if (debug & DEBUG_HFCMULTI_INIT)
4252 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4253 __func__, hc->irq, hc->irqcnt);
4254 err = init_chip(hc);
4255 if (err)
4256 goto error;
4257 /*
4258 * Finally enable IRQ output
4259 * this is only allowed, if an IRQ routine is already
4260 * established for this HFC, so don't do that earlier
4261 */
4262 spin_lock_irqsave(&hc->lock, flags);
4263 enable_hwirq(hc);
4264 spin_unlock_irqrestore(&hc->lock, flags);
4265 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4266 set_current_state(TASK_UNINTERRUPTIBLE);
4267 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4268 /* turn IRQ off until chip is completely initialized */
4269 spin_lock_irqsave(&hc->lock, flags);
4270 disable_hwirq(hc);
4271 spin_unlock_irqrestore(&hc->lock, flags);
4272 if (debug & DEBUG_HFCMULTI_INIT)
4273 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4274 __func__, hc->irq, hc->irqcnt);
4275 if (hc->irqcnt) {
4276 if (debug & DEBUG_HFCMULTI_INIT)
4277 printk(KERN_DEBUG "%s: done\n", __func__);
4278
4279 return 0;
4280 }
4281 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4282 printk(KERN_INFO "ignoring missing interrupts\n");
4283 return 0;
4284 }
4285
4286 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4287 hc->irq);
4288
4289 err = -EIO;
4290
4291 error:
4292 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4293 spin_lock_irqsave(&plx_lock, plx_flags);
4294 plx_acc = hc->plx_membase + PLX_INTCSR;
4295 writew(0x00, plx_acc); /*disable IRQs*/
4296 spin_unlock_irqrestore(&plx_lock, plx_flags);
4297 }
4298
4299 if (debug & DEBUG_HFCMULTI_INIT)
4300 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4301 if (hc->irq) {
4302 free_irq(hc->irq, hc);
4303 hc->irq = 0;
4304 }
4305
4306 if (debug & DEBUG_HFCMULTI_INIT)
4307 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4308 return err;
4309 }
4310
4311 /*
4312 * find pci device and set it up
4313 */
4314
4315 static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4316 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4317 const struct pci_device_id *ent)
4318 {
4319 struct hm_map *m = (struct hm_map *)ent->driver_data;
4320
4321 printk(KERN_INFO
4322 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4323 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4324
4325 hc->pci_dev = pdev;
4326 if (m->clock2)
4327 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4328
4329 if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4330 ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4331 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4332 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4333 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4334 hc->slots = 32;
4335 }
4336
4337 if (hc->pci_dev->irq <= 0) {
4338 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4339 return -EIO;
4340 }
4341 if (pci_enable_device(hc->pci_dev)) {
4342 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4343 return -EIO;
4344 }
4345 hc->leds = m->leds;
4346 hc->ledstate = 0xAFFEAFFE;
4347 hc->opticalsupport = m->opticalsupport;
4348
4349 hc->pci_iobase = 0;
4350 hc->pci_membase = NULL;
4351 hc->plx_membase = NULL;
4352
4353 /* set memory access methods */
4354 if (m->io_mode) /* use mode from card config */
4355 hc->io_mode = m->io_mode;
4356 switch (hc->io_mode) {
4357 case HFC_IO_MODE_PLXSD:
4358 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4359 hc->slots = 128; /* required */
4360 hc->HFC_outb = HFC_outb_pcimem;
4361 hc->HFC_inb = HFC_inb_pcimem;
4362 hc->HFC_inw = HFC_inw_pcimem;
4363 hc->HFC_wait = HFC_wait_pcimem;
4364 hc->read_fifo = read_fifo_pcimem;
4365 hc->write_fifo = write_fifo_pcimem;
4366 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4367 /* MEMBASE 1 is PLX PCI Bridge */
4368
4369 if (!hc->plx_origmembase) {
4370 printk(KERN_WARNING
4371 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4372 pci_disable_device(hc->pci_dev);
4373 return -EIO;
4374 }
4375
4376 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4377 if (!hc->plx_membase) {
4378 printk(KERN_WARNING
4379 "HFC-multi: failed to remap plx address space. "
4380 "(internal error)\n");
4381 pci_disable_device(hc->pci_dev);
4382 return -EIO;
4383 }
4384 printk(KERN_INFO
4385 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4386 (u_long)hc->plx_membase, hc->plx_origmembase);
4387
4388 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4389 /* MEMBASE 1 is PLX PCI Bridge */
4390 if (!hc->pci_origmembase) {
4391 printk(KERN_WARNING
4392 "HFC-multi: No IO-Memory for PCI card found\n");
4393 pci_disable_device(hc->pci_dev);
4394 return -EIO;
4395 }
4396
4397 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4398 if (!hc->pci_membase) {
4399 printk(KERN_WARNING "HFC-multi: failed to remap io "
4400 "address space. (internal error)\n");
4401 pci_disable_device(hc->pci_dev);
4402 return -EIO;
4403 }
4404
4405 printk(KERN_INFO
4406 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4407 "leds-type %d\n",
4408 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4409 hc->pci_dev->irq, HZ, hc->leds);
4410 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4411 break;
4412 case HFC_IO_MODE_PCIMEM:
4413 hc->HFC_outb = HFC_outb_pcimem;
4414 hc->HFC_inb = HFC_inb_pcimem;
4415 hc->HFC_inw = HFC_inw_pcimem;
4416 hc->HFC_wait = HFC_wait_pcimem;
4417 hc->read_fifo = read_fifo_pcimem;
4418 hc->write_fifo = write_fifo_pcimem;
4419 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4420 if (!hc->pci_origmembase) {
4421 printk(KERN_WARNING
4422 "HFC-multi: No IO-Memory for PCI card found\n");
4423 pci_disable_device(hc->pci_dev);
4424 return -EIO;
4425 }
4426
4427 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4428 if (!hc->pci_membase) {
4429 printk(KERN_WARNING
4430 "HFC-multi: failed to remap io address space. "
4431 "(internal error)\n");
4432 pci_disable_device(hc->pci_dev);
4433 return -EIO;
4434 }
4435 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4436 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4437 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4438 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4439 break;
4440 case HFC_IO_MODE_REGIO:
4441 hc->HFC_outb = HFC_outb_regio;
4442 hc->HFC_inb = HFC_inb_regio;
4443 hc->HFC_inw = HFC_inw_regio;
4444 hc->HFC_wait = HFC_wait_regio;
4445 hc->read_fifo = read_fifo_regio;
4446 hc->write_fifo = write_fifo_regio;
4447 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4448 if (!hc->pci_iobase) {
4449 printk(KERN_WARNING
4450 "HFC-multi: No IO for PCI card found\n");
4451 pci_disable_device(hc->pci_dev);
4452 return -EIO;
4453 }
4454
4455 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4456 printk(KERN_WARNING "HFC-multi: failed to request "
4457 "address space at 0x%08lx (internal error)\n",
4458 hc->pci_iobase);
4459 pci_disable_device(hc->pci_dev);
4460 return -EIO;
4461 }
4462
4463 printk(KERN_INFO
4464 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4465 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4466 hc->pci_dev->irq, HZ, hc->leds);
4467 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4468 break;
4469 default:
4470 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4471 pci_disable_device(hc->pci_dev);
4472 return -EIO;
4473 }
4474
4475 pci_set_drvdata(hc->pci_dev, hc);
4476
4477 /* At this point the needed PCI config is done */
4478 /* fifos are still not enabled */
4479 return 0;
4480 }
4481
4482
4483 /*
4484 * remove port
4485 */
4486
4487 static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4488 release_port(struct hfc_multi *hc, struct dchannel *dch)
4489 {
4490 int pt, ci, i = 0;
4491 u_long flags;
4492 struct bchannel *pb;
4493
4494 ci = dch->slot;
4495 pt = hc->chan[ci].port;
4496
4497 if (debug & DEBUG_HFCMULTI_INIT)
4498 printk(KERN_DEBUG "%s: entered for port %d\n",
4499 __func__, pt + 1);
4500
4501 if (pt >= hc->ports) {
4502 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4503 __func__, pt + 1);
4504 return;
4505 }
4506
4507 if (debug & DEBUG_HFCMULTI_INIT)
4508 printk(KERN_DEBUG "%s: releasing port=%d\n",
4509 __func__, pt + 1);
4510
4511 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4512 l1_event(dch->l1, CLOSE_CHANNEL);
4513
4514 hc->chan[ci].dch = NULL;
4515
4516 if (hc->created[pt]) {
4517 hc->created[pt] = 0;
4518 mISDN_unregister_device(&dch->dev);
4519 }
4520
4521 spin_lock_irqsave(&hc->lock, flags);
4522
4523 if (dch->timer.function) {
4524 del_timer(&dch->timer);
4525 dch->timer.function = NULL;
4526 }
4527
4528 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4529 /* remove sync */
4530 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4531 hc->syncronized = 0;
4532 plxsd_checksync(hc, 1);
4533 }
4534 /* free channels */
4535 for (i = 0; i <= 31; i++) {
4536 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4537 continue;
4538 if (hc->chan[i].bch) {
4539 if (debug & DEBUG_HFCMULTI_INIT)
4540 printk(KERN_DEBUG
4541 "%s: free port %d channel %d\n",
4542 __func__, hc->chan[i].port + 1, i);
4543 pb = hc->chan[i].bch;
4544 hc->chan[i].bch = NULL;
4545 spin_unlock_irqrestore(&hc->lock, flags);
4546 mISDN_freebchannel(pb);
4547 kfree(pb);
4548 kfree(hc->chan[i].coeff);
4549 spin_lock_irqsave(&hc->lock, flags);
4550 }
4551 }
4552 } else {
4553 /* remove sync */
4554 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4555 hc->syncronized &=
4556 ~(1 << hc->chan[ci].port);
4557 plxsd_checksync(hc, 1);
4558 }
4559 /* free channels */
4560 if (hc->chan[ci - 2].bch) {
4561 if (debug & DEBUG_HFCMULTI_INIT)
4562 printk(KERN_DEBUG
4563 "%s: free port %d channel %d\n",
4564 __func__, hc->chan[ci - 2].port + 1,
4565 ci - 2);
4566 pb = hc->chan[ci - 2].bch;
4567 hc->chan[ci - 2].bch = NULL;
4568 spin_unlock_irqrestore(&hc->lock, flags);
4569 mISDN_freebchannel(pb);
4570 kfree(pb);
4571 kfree(hc->chan[ci - 2].coeff);
4572 spin_lock_irqsave(&hc->lock, flags);
4573 }
4574 if (hc->chan[ci - 1].bch) {
4575 if (debug & DEBUG_HFCMULTI_INIT)
4576 printk(KERN_DEBUG
4577 "%s: free port %d channel %d\n",
4578 __func__, hc->chan[ci - 1].port + 1,
4579 ci - 1);
4580 pb = hc->chan[ci - 1].bch;
4581 hc->chan[ci - 1].bch = NULL;
4582 spin_unlock_irqrestore(&hc->lock, flags);
4583 mISDN_freebchannel(pb);
4584 kfree(pb);
4585 kfree(hc->chan[ci - 1].coeff);
4586 spin_lock_irqsave(&hc->lock, flags);
4587 }
4588 }
4589
4590 spin_unlock_irqrestore(&hc->lock, flags);
4591
4592 if (debug & DEBUG_HFCMULTI_INIT)
4593 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4594 pt+1, ci);
4595 mISDN_freedchannel(dch);
4596 kfree(dch);
4597
4598 if (debug & DEBUG_HFCMULTI_INIT)
4599 printk(KERN_DEBUG "%s: done!\n", __func__);
4600 }
4601
4602 static void
release_card(struct hfc_multi * hc)4603 release_card(struct hfc_multi *hc)
4604 {
4605 u_long flags;
4606 int ch;
4607
4608 if (debug & DEBUG_HFCMULTI_INIT)
4609 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4610 __func__, hc->id);
4611
4612 /* unregister clock source */
4613 if (hc->iclock)
4614 mISDN_unregister_clock(hc->iclock);
4615
4616 /* disable and free irq */
4617 spin_lock_irqsave(&hc->lock, flags);
4618 disable_hwirq(hc);
4619 spin_unlock_irqrestore(&hc->lock, flags);
4620 udelay(1000);
4621 if (hc->irq) {
4622 if (debug & DEBUG_HFCMULTI_INIT)
4623 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4624 __func__, hc->irq, hc);
4625 free_irq(hc->irq, hc);
4626 hc->irq = 0;
4627
4628 }
4629
4630 /* disable D-channels & B-channels */
4631 if (debug & DEBUG_HFCMULTI_INIT)
4632 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4633 __func__);
4634 for (ch = 0; ch <= 31; ch++) {
4635 if (hc->chan[ch].dch)
4636 release_port(hc, hc->chan[ch].dch);
4637 }
4638
4639 /* dimm leds */
4640 if (hc->leds)
4641 hfcmulti_leds(hc);
4642
4643 /* release hardware */
4644 release_io_hfcmulti(hc);
4645
4646 if (debug & DEBUG_HFCMULTI_INIT)
4647 printk(KERN_DEBUG "%s: remove instance from list\n",
4648 __func__);
4649 list_del(&hc->list);
4650
4651 if (debug & DEBUG_HFCMULTI_INIT)
4652 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4653 if (hc == syncmaster)
4654 syncmaster = NULL;
4655 kfree(hc);
4656 if (debug & DEBUG_HFCMULTI_INIT)
4657 printk(KERN_DEBUG "%s: card successfully removed\n",
4658 __func__);
4659 }
4660
4661 static void
init_e1_port_hw(struct hfc_multi * hc,struct hm_map * m)4662 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4663 {
4664 /* set optical line type */
4665 if (port[Port_cnt] & 0x001) {
4666 if (!m->opticalsupport) {
4667 printk(KERN_INFO
4668 "This board has no optical "
4669 "support\n");
4670 } else {
4671 if (debug & DEBUG_HFCMULTI_INIT)
4672 printk(KERN_DEBUG
4673 "%s: PORT set optical "
4674 "interfacs: card(%d) "
4675 "port(%d)\n",
4676 __func__,
4677 HFC_cnt + 1, 1);
4678 test_and_set_bit(HFC_CFG_OPTICAL,
4679 &hc->chan[hc->dnum[0]].cfg);
4680 }
4681 }
4682 /* set LOS report */
4683 if (port[Port_cnt] & 0x004) {
4684 if (debug & DEBUG_HFCMULTI_INIT)
4685 printk(KERN_DEBUG "%s: PORT set "
4686 "LOS report: card(%d) port(%d)\n",
4687 __func__, HFC_cnt + 1, 1);
4688 test_and_set_bit(HFC_CFG_REPORT_LOS,
4689 &hc->chan[hc->dnum[0]].cfg);
4690 }
4691 /* set AIS report */
4692 if (port[Port_cnt] & 0x008) {
4693 if (debug & DEBUG_HFCMULTI_INIT)
4694 printk(KERN_DEBUG "%s: PORT set "
4695 "AIS report: card(%d) port(%d)\n",
4696 __func__, HFC_cnt + 1, 1);
4697 test_and_set_bit(HFC_CFG_REPORT_AIS,
4698 &hc->chan[hc->dnum[0]].cfg);
4699 }
4700 /* set SLIP report */
4701 if (port[Port_cnt] & 0x010) {
4702 if (debug & DEBUG_HFCMULTI_INIT)
4703 printk(KERN_DEBUG
4704 "%s: PORT set SLIP report: "
4705 "card(%d) port(%d)\n",
4706 __func__, HFC_cnt + 1, 1);
4707 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4708 &hc->chan[hc->dnum[0]].cfg);
4709 }
4710 /* set RDI report */
4711 if (port[Port_cnt] & 0x020) {
4712 if (debug & DEBUG_HFCMULTI_INIT)
4713 printk(KERN_DEBUG
4714 "%s: PORT set RDI report: "
4715 "card(%d) port(%d)\n",
4716 __func__, HFC_cnt + 1, 1);
4717 test_and_set_bit(HFC_CFG_REPORT_RDI,
4718 &hc->chan[hc->dnum[0]].cfg);
4719 }
4720 /* set CRC-4 Mode */
4721 if (!(port[Port_cnt] & 0x100)) {
4722 if (debug & DEBUG_HFCMULTI_INIT)
4723 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4724 " card(%d) port(%d)\n",
4725 __func__, HFC_cnt + 1, 1);
4726 test_and_set_bit(HFC_CFG_CRC4,
4727 &hc->chan[hc->dnum[0]].cfg);
4728 } else {
4729 if (debug & DEBUG_HFCMULTI_INIT)
4730 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4731 " report: card(%d) port(%d)\n",
4732 __func__, HFC_cnt + 1, 1);
4733 }
4734 /* set forced clock */
4735 if (port[Port_cnt] & 0x0200) {
4736 if (debug & DEBUG_HFCMULTI_INIT)
4737 printk(KERN_DEBUG "%s: PORT force getting clock from "
4738 "E1: card(%d) port(%d)\n",
4739 __func__, HFC_cnt + 1, 1);
4740 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4741 } else
4742 if (port[Port_cnt] & 0x0400) {
4743 if (debug & DEBUG_HFCMULTI_INIT)
4744 printk(KERN_DEBUG "%s: PORT force putting clock to "
4745 "E1: card(%d) port(%d)\n",
4746 __func__, HFC_cnt + 1, 1);
4747 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4748 }
4749 /* set JATT PLL */
4750 if (port[Port_cnt] & 0x0800) {
4751 if (debug & DEBUG_HFCMULTI_INIT)
4752 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4753 "E1: card(%d) port(%d)\n",
4754 __func__, HFC_cnt + 1, 1);
4755 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4756 }
4757 /* set elastic jitter buffer */
4758 if (port[Port_cnt] & 0x3000) {
4759 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4760 if (debug & DEBUG_HFCMULTI_INIT)
4761 printk(KERN_DEBUG
4762 "%s: PORT set elastic "
4763 "buffer to %d: card(%d) port(%d)\n",
4764 __func__, hc->chan[hc->dnum[0]].jitter,
4765 HFC_cnt + 1, 1);
4766 } else
4767 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4768 }
4769
4770 static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m,int pt)4771 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4772 {
4773 struct dchannel *dch;
4774 struct bchannel *bch;
4775 int ch, ret = 0;
4776 char name[MISDN_MAX_IDLEN];
4777 int bcount = 0;
4778
4779 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4780 if (!dch)
4781 return -ENOMEM;
4782 dch->debug = debug;
4783 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4784 dch->hw = hc;
4785 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4786 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4787 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4788 dch->dev.D.send = handle_dmsg;
4789 dch->dev.D.ctrl = hfcm_dctrl;
4790 dch->slot = hc->dnum[pt];
4791 hc->chan[hc->dnum[pt]].dch = dch;
4792 hc->chan[hc->dnum[pt]].port = pt;
4793 hc->chan[hc->dnum[pt]].nt_timer = -1;
4794 for (ch = 1; ch <= 31; ch++) {
4795 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4796 continue;
4797 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4798 if (!bch) {
4799 printk(KERN_ERR "%s: no memory for bchannel\n",
4800 __func__);
4801 ret = -ENOMEM;
4802 goto free_chan;
4803 }
4804 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4805 if (!hc->chan[ch].coeff) {
4806 printk(KERN_ERR "%s: no memory for coeffs\n",
4807 __func__);
4808 ret = -ENOMEM;
4809 kfree(bch);
4810 goto free_chan;
4811 }
4812 bch->nr = ch;
4813 bch->slot = ch;
4814 bch->debug = debug;
4815 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4816 bch->hw = hc;
4817 bch->ch.send = handle_bmsg;
4818 bch->ch.ctrl = hfcm_bctrl;
4819 bch->ch.nr = ch;
4820 list_add(&bch->ch.list, &dch->dev.bchannels);
4821 hc->chan[ch].bch = bch;
4822 hc->chan[ch].port = pt;
4823 set_channelmap(bch->nr, dch->dev.channelmap);
4824 bcount++;
4825 }
4826 dch->dev.nrbchan = bcount;
4827 if (pt == 0)
4828 init_e1_port_hw(hc, m);
4829 if (hc->ports > 1)
4830 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4831 HFC_cnt + 1, pt+1);
4832 else
4833 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4834 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4835 if (ret)
4836 goto free_chan;
4837 hc->created[pt] = 1;
4838 return ret;
4839 free_chan:
4840 release_port(hc, dch);
4841 return ret;
4842 }
4843
4844 static int
init_multi_port(struct hfc_multi * hc,int pt)4845 init_multi_port(struct hfc_multi *hc, int pt)
4846 {
4847 struct dchannel *dch;
4848 struct bchannel *bch;
4849 int ch, i, ret = 0;
4850 char name[MISDN_MAX_IDLEN];
4851
4852 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4853 if (!dch)
4854 return -ENOMEM;
4855 dch->debug = debug;
4856 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4857 dch->hw = hc;
4858 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4859 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4860 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4861 dch->dev.D.send = handle_dmsg;
4862 dch->dev.D.ctrl = hfcm_dctrl;
4863 dch->dev.nrbchan = 2;
4864 i = pt << 2;
4865 dch->slot = i + 2;
4866 hc->chan[i + 2].dch = dch;
4867 hc->chan[i + 2].port = pt;
4868 hc->chan[i + 2].nt_timer = -1;
4869 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4870 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4871 if (!bch) {
4872 printk(KERN_ERR "%s: no memory for bchannel\n",
4873 __func__);
4874 ret = -ENOMEM;
4875 goto free_chan;
4876 }
4877 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4878 if (!hc->chan[i + ch].coeff) {
4879 printk(KERN_ERR "%s: no memory for coeffs\n",
4880 __func__);
4881 ret = -ENOMEM;
4882 kfree(bch);
4883 goto free_chan;
4884 }
4885 bch->nr = ch + 1;
4886 bch->slot = i + ch;
4887 bch->debug = debug;
4888 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4889 bch->hw = hc;
4890 bch->ch.send = handle_bmsg;
4891 bch->ch.ctrl = hfcm_bctrl;
4892 bch->ch.nr = ch + 1;
4893 list_add(&bch->ch.list, &dch->dev.bchannels);
4894 hc->chan[i + ch].bch = bch;
4895 hc->chan[i + ch].port = pt;
4896 set_channelmap(bch->nr, dch->dev.channelmap);
4897 }
4898 /* set master clock */
4899 if (port[Port_cnt] & 0x001) {
4900 if (debug & DEBUG_HFCMULTI_INIT)
4901 printk(KERN_DEBUG
4902 "%s: PROTOCOL set master clock: "
4903 "card(%d) port(%d)\n",
4904 __func__, HFC_cnt + 1, pt + 1);
4905 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4906 printk(KERN_ERR "Error: Master clock "
4907 "for port(%d) of card(%d) is only"
4908 " possible with TE-mode\n",
4909 pt + 1, HFC_cnt + 1);
4910 ret = -EINVAL;
4911 goto free_chan;
4912 }
4913 if (hc->masterclk >= 0) {
4914 printk(KERN_ERR "Error: Master clock "
4915 "for port(%d) of card(%d) already "
4916 "defined for port(%d)\n",
4917 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4918 ret = -EINVAL;
4919 goto free_chan;
4920 }
4921 hc->masterclk = pt;
4922 }
4923 /* set transmitter line to non capacitive */
4924 if (port[Port_cnt] & 0x002) {
4925 if (debug & DEBUG_HFCMULTI_INIT)
4926 printk(KERN_DEBUG
4927 "%s: PROTOCOL set non capacitive "
4928 "transmitter: card(%d) port(%d)\n",
4929 __func__, HFC_cnt + 1, pt + 1);
4930 test_and_set_bit(HFC_CFG_NONCAP_TX,
4931 &hc->chan[i + 2].cfg);
4932 }
4933 /* disable E-channel */
4934 if (port[Port_cnt] & 0x004) {
4935 if (debug & DEBUG_HFCMULTI_INIT)
4936 printk(KERN_DEBUG
4937 "%s: PROTOCOL disable E-channel: "
4938 "card(%d) port(%d)\n",
4939 __func__, HFC_cnt + 1, pt + 1);
4940 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4941 &hc->chan[i + 2].cfg);
4942 }
4943 if (hc->ctype == HFC_TYPE_XHFC) {
4944 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4945 HFC_cnt + 1, pt + 1);
4946 ret = mISDN_register_device(&dch->dev, NULL, name);
4947 } else {
4948 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4949 hc->ctype, HFC_cnt + 1, pt + 1);
4950 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4951 }
4952 if (ret)
4953 goto free_chan;
4954 hc->created[pt] = 1;
4955 return ret;
4956 free_chan:
4957 release_port(hc, dch);
4958 return ret;
4959 }
4960
4961 static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4962 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4963 const struct pci_device_id *ent)
4964 {
4965 int ret_err = 0;
4966 int pt;
4967 struct hfc_multi *hc;
4968 u_long flags;
4969 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4970 int i, ch;
4971 u_int maskcheck;
4972
4973 if (HFC_cnt >= MAX_CARDS) {
4974 printk(KERN_ERR "too many cards (max=%d).\n",
4975 MAX_CARDS);
4976 return -EINVAL;
4977 }
4978 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4979 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4980 "type[%d] %d was supplied as module parameter\n",
4981 m->vendor_name, m->card_name, m->type, HFC_cnt,
4982 type[HFC_cnt] & 0xff);
4983 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4984 "first, to see cards and their types.");
4985 return -EINVAL;
4986 }
4987 if (debug & DEBUG_HFCMULTI_INIT)
4988 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4989 __func__, m->vendor_name, m->card_name, m->type,
4990 type[HFC_cnt]);
4991
4992 /* allocate card+fifo structure */
4993 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4994 if (!hc) {
4995 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4996 return -ENOMEM;
4997 }
4998 spin_lock_init(&hc->lock);
4999 hc->mtyp = m;
5000 hc->ctype = m->type;
5001 hc->ports = m->ports;
5002 hc->id = HFC_cnt;
5003 hc->pcm = pcm[HFC_cnt];
5004 hc->io_mode = iomode[HFC_cnt];
5005 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5006 /* fragment card */
5007 pt = 0;
5008 maskcheck = 0;
5009 for (ch = 0; ch <= 31; ch++) {
5010 if (!((1 << ch) & dmask[E1_cnt]))
5011 continue;
5012 hc->dnum[pt] = ch;
5013 hc->bmask[pt] = bmask[bmask_cnt++];
5014 if ((maskcheck & hc->bmask[pt])
5015 || (dmask[E1_cnt] & hc->bmask[pt])) {
5016 printk(KERN_INFO
5017 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5018 E1_cnt + 1, pt);
5019 kfree(hc);
5020 return -EINVAL;
5021 }
5022 maskcheck |= hc->bmask[pt];
5023 printk(KERN_INFO
5024 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5025 E1_cnt + 1, ch, hc->bmask[pt]);
5026 pt++;
5027 }
5028 hc->ports = pt;
5029 }
5030 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5031 /* default card layout */
5032 hc->dnum[0] = 16;
5033 hc->bmask[0] = 0xfffefffe;
5034 hc->ports = 1;
5035 }
5036
5037 /* set chip specific features */
5038 hc->masterclk = -1;
5039 if (type[HFC_cnt] & 0x100) {
5040 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5041 hc->silence = 0xff; /* ulaw silence */
5042 } else
5043 hc->silence = 0x2a; /* alaw silence */
5044 if ((poll >> 1) > sizeof(hc->silence_data)) {
5045 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5046 "please fix\n");
5047 kfree(hc);
5048 return -EINVAL;
5049 }
5050 for (i = 0; i < (poll >> 1); i++)
5051 hc->silence_data[i] = hc->silence;
5052
5053 if (hc->ctype != HFC_TYPE_XHFC) {
5054 if (!(type[HFC_cnt] & 0x200))
5055 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5056 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5057 }
5058
5059 if (type[HFC_cnt] & 0x800)
5060 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5061 if (type[HFC_cnt] & 0x1000) {
5062 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5063 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5064 }
5065 if (type[HFC_cnt] & 0x4000)
5066 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5067 if (type[HFC_cnt] & 0x8000)
5068 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5069 hc->slots = 32;
5070 if (type[HFC_cnt] & 0x10000)
5071 hc->slots = 64;
5072 if (type[HFC_cnt] & 0x20000)
5073 hc->slots = 128;
5074 if (type[HFC_cnt] & 0x80000) {
5075 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5076 hc->wdcount = 0;
5077 hc->wdbyte = V_GPIO_OUT2;
5078 printk(KERN_NOTICE "Watchdog enabled\n");
5079 }
5080
5081 if (pdev && ent)
5082 /* setup pci, hc->slots may change due to PLXSD */
5083 ret_err = setup_pci(hc, pdev, ent);
5084 else
5085 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5086 ret_err = setup_embedded(hc, m);
5087 #else
5088 {
5089 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5090 ret_err = -EIO;
5091 }
5092 #endif
5093 if (ret_err) {
5094 if (hc == syncmaster)
5095 syncmaster = NULL;
5096 kfree(hc);
5097 return ret_err;
5098 }
5099
5100 hc->HFC_outb_nodebug = hc->HFC_outb;
5101 hc->HFC_inb_nodebug = hc->HFC_inb;
5102 hc->HFC_inw_nodebug = hc->HFC_inw;
5103 hc->HFC_wait_nodebug = hc->HFC_wait;
5104 #ifdef HFC_REGISTER_DEBUG
5105 hc->HFC_outb = HFC_outb_debug;
5106 hc->HFC_inb = HFC_inb_debug;
5107 hc->HFC_inw = HFC_inw_debug;
5108 hc->HFC_wait = HFC_wait_debug;
5109 #endif
5110 /* create channels */
5111 for (pt = 0; pt < hc->ports; pt++) {
5112 if (Port_cnt >= MAX_PORTS) {
5113 printk(KERN_ERR "too many ports (max=%d).\n",
5114 MAX_PORTS);
5115 ret_err = -EINVAL;
5116 goto free_card;
5117 }
5118 if (hc->ctype == HFC_TYPE_E1)
5119 ret_err = init_e1_port(hc, m, pt);
5120 else
5121 ret_err = init_multi_port(hc, pt);
5122 if (debug & DEBUG_HFCMULTI_INIT)
5123 printk(KERN_DEBUG
5124 "%s: Registering D-channel, card(%d) port(%d) "
5125 "result %d\n",
5126 __func__, HFC_cnt + 1, pt + 1, ret_err);
5127
5128 if (ret_err) {
5129 while (pt) { /* release already registered ports */
5130 pt--;
5131 if (hc->ctype == HFC_TYPE_E1)
5132 release_port(hc,
5133 hc->chan[hc->dnum[pt]].dch);
5134 else
5135 release_port(hc,
5136 hc->chan[(pt << 2) + 2].dch);
5137 }
5138 goto free_card;
5139 }
5140 if (hc->ctype != HFC_TYPE_E1)
5141 Port_cnt++; /* for each S0 port */
5142 }
5143 if (hc->ctype == HFC_TYPE_E1) {
5144 Port_cnt++; /* for each E1 port */
5145 E1_cnt++;
5146 }
5147
5148 /* disp switches */
5149 switch (m->dip_type) {
5150 case DIP_4S:
5151 /*
5152 * Get DIP setting for beroNet 1S/2S/4S cards
5153 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5154 * GPI 19/23 (R_GPI_IN2))
5155 */
5156 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5157 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5158 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5159
5160 /* Port mode (TE/NT) jumpers */
5161 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5162
5163 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5164 pmj = ~pmj & 0xf;
5165
5166 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5167 m->vendor_name, m->card_name, dips, pmj);
5168 break;
5169 case DIP_8S:
5170 /*
5171 * Get DIP Setting for beroNet 8S0+ cards
5172 * Enable PCI auxbridge function
5173 */
5174 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5175 /* prepare access to auxport */
5176 outw(0x4000, hc->pci_iobase + 4);
5177 /*
5178 * some dummy reads are required to
5179 * read valid DIP switch data
5180 */
5181 dips = inb(hc->pci_iobase);
5182 dips = inb(hc->pci_iobase);
5183 dips = inb(hc->pci_iobase);
5184 dips = ~inb(hc->pci_iobase) & 0x3F;
5185 outw(0x0, hc->pci_iobase + 4);
5186 /* disable PCI auxbridge function */
5187 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5188 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5189 m->vendor_name, m->card_name, dips);
5190 break;
5191 case DIP_E1:
5192 /*
5193 * get DIP Setting for beroNet E1 cards
5194 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5195 */
5196 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5197 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5198 m->vendor_name, m->card_name, dips);
5199 break;
5200 }
5201
5202 /* add to list */
5203 spin_lock_irqsave(&HFClock, flags);
5204 list_add_tail(&hc->list, &HFClist);
5205 spin_unlock_irqrestore(&HFClock, flags);
5206
5207 /* use as clock source */
5208 if (clock == HFC_cnt + 1)
5209 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5210
5211 /* initialize hardware */
5212 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5213 ret_err = init_card(hc);
5214 if (ret_err) {
5215 printk(KERN_ERR "init card returns %d\n", ret_err);
5216 release_card(hc);
5217 return ret_err;
5218 }
5219
5220 /* start IRQ and return */
5221 spin_lock_irqsave(&hc->lock, flags);
5222 enable_hwirq(hc);
5223 spin_unlock_irqrestore(&hc->lock, flags);
5224 return 0;
5225
5226 free_card:
5227 release_io_hfcmulti(hc);
5228 if (hc == syncmaster)
5229 syncmaster = NULL;
5230 kfree(hc);
5231 return ret_err;
5232 }
5233
hfc_remove_pci(struct pci_dev * pdev)5234 static void hfc_remove_pci(struct pci_dev *pdev)
5235 {
5236 struct hfc_multi *card = pci_get_drvdata(pdev);
5237 u_long flags;
5238
5239 if (debug)
5240 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5241 "device:%x subvendor:%x subdevice:%x\n",
5242 pdev->vendor, pdev->device,
5243 pdev->subsystem_vendor, pdev->subsystem_device);
5244
5245 if (card) {
5246 spin_lock_irqsave(&HFClock, flags);
5247 release_card(card);
5248 spin_unlock_irqrestore(&HFClock, flags);
5249 } else {
5250 if (debug)
5251 printk(KERN_DEBUG "%s: drvdata already removed\n",
5252 __func__);
5253 }
5254 }
5255
5256 #define VENDOR_CCD "Cologne Chip AG"
5257 #define VENDOR_BN "beroNet GmbH"
5258 #define VENDOR_DIG "Digium Inc."
5259 #define VENDOR_JH "Junghanns.NET GmbH"
5260 #define VENDOR_PRIM "PrimuX"
5261
5262 static const struct hm_map hfcm_map[] = {
5263 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5264 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5265 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5266 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5267 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5268 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5269 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5270 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5271 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5272 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5273 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5274 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5275
5276 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5277 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5278 HFC_IO_MODE_REGIO, 0},
5279 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5280 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5281
5282 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5283 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5284 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5285
5286 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5287 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5288 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5289 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5290
5291 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5292 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5293 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5294
5295 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5296 HFC_IO_MODE_PLXSD, 0},
5297 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5298 HFC_IO_MODE_PLXSD, 0},
5299 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5300 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5301 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5302 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5303 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5304 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5305 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5306 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5307 };
5308
5309 #undef H
5310 #define H(x) ((unsigned long)&hfcm_map[x])
5311 static const struct pci_device_id hfmultipci_ids[] = {
5312
5313 /* Cards with HFC-4S Chip */
5314 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5315 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5316 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5317 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5318 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5319 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5320 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5321 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5322 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5323 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5324 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5325 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5326 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5327 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5328 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5329 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5330 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5331 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5332 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5333 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5334 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5335 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5336 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5337 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5338 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5339 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5340 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5341 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5342 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5343 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5344 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5345 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5346
5347 /* Cards with HFC-8S Chip */
5348 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5349 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5350 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5351 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5352 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5353 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5354 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5355 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5356 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5357 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5358 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5359 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5360 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5361 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5362 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5363 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5364 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5365 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5366
5367
5368 /* Cards with HFC-E1 Chip */
5369 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5370 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5371 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5372 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5373 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5374 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5375 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5376 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5377
5378 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5379 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5380 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5381 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5382 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5383 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5384
5385 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5386 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5387 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5388 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5389
5390 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5391 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5392
5393 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5394 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5395 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5396 {0, }
5397 };
5398 #undef H
5399
5400 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5401
5402 static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5403 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5404 {
5405 struct hm_map *m = (struct hm_map *)ent->driver_data;
5406 int ret;
5407
5408 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5409 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5410 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5411 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5412 printk(KERN_ERR
5413 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5414 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5415 pdev->device, pdev->subsystem_vendor,
5416 pdev->subsystem_device);
5417 printk(KERN_ERR
5418 "Please contact the driver maintainer for support.\n");
5419 return -ENODEV;
5420 }
5421 ret = hfcmulti_init(m, pdev, ent);
5422 if (ret)
5423 return ret;
5424 HFC_cnt++;
5425 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5426 return 0;
5427 }
5428
5429 static struct pci_driver hfcmultipci_driver = {
5430 .name = "hfc_multi",
5431 .probe = hfcmulti_probe,
5432 .remove = hfc_remove_pci,
5433 .id_table = hfmultipci_ids,
5434 };
5435
5436 static void __exit
HFCmulti_cleanup(void)5437 HFCmulti_cleanup(void)
5438 {
5439 struct hfc_multi *card, *next;
5440
5441 /* get rid of all devices of this driver */
5442 list_for_each_entry_safe(card, next, &HFClist, list)
5443 release_card(card);
5444 pci_unregister_driver(&hfcmultipci_driver);
5445 }
5446
5447 static int __init
HFCmulti_init(void)5448 HFCmulti_init(void)
5449 {
5450 int err;
5451 int i, xhfc = 0;
5452 struct hm_map m;
5453
5454 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5455
5456 #ifdef IRQ_DEBUG
5457 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5458 #endif
5459
5460 if (debug & DEBUG_HFCMULTI_INIT)
5461 printk(KERN_DEBUG "%s: init entered\n", __func__);
5462
5463 switch (poll) {
5464 case 0:
5465 poll_timer = 6;
5466 poll = 128;
5467 break;
5468 case 8:
5469 poll_timer = 2;
5470 break;
5471 case 16:
5472 poll_timer = 3;
5473 break;
5474 case 32:
5475 poll_timer = 4;
5476 break;
5477 case 64:
5478 poll_timer = 5;
5479 break;
5480 case 128:
5481 poll_timer = 6;
5482 break;
5483 case 256:
5484 poll_timer = 7;
5485 break;
5486 default:
5487 printk(KERN_ERR
5488 "%s: Wrong poll value (%d).\n", __func__, poll);
5489 err = -EINVAL;
5490 return err;
5491
5492 }
5493
5494 if (!clock)
5495 clock = 1;
5496
5497 /* Register the embedded devices.
5498 * This should be done before the PCI cards registration */
5499 switch (hwid) {
5500 case HWID_MINIP4:
5501 xhfc = 1;
5502 m = hfcm_map[31];
5503 break;
5504 case HWID_MINIP8:
5505 xhfc = 2;
5506 m = hfcm_map[31];
5507 break;
5508 case HWID_MINIP16:
5509 xhfc = 4;
5510 m = hfcm_map[31];
5511 break;
5512 default:
5513 xhfc = 0;
5514 }
5515
5516 for (i = 0; i < xhfc; ++i) {
5517 err = hfcmulti_init(&m, NULL, NULL);
5518 if (err) {
5519 printk(KERN_ERR "error registering embedded driver: "
5520 "%x\n", err);
5521 return err;
5522 }
5523 HFC_cnt++;
5524 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5525 }
5526
5527 /* Register the PCI cards */
5528 err = pci_register_driver(&hfcmultipci_driver);
5529 if (err < 0) {
5530 printk(KERN_ERR "error registering pci driver: %x\n", err);
5531 return err;
5532 }
5533
5534 return 0;
5535 }
5536
5537
5538 module_init(HFCmulti_init);
5539 module_exit(HFCmulti_cleanup);
5540