1 /*
2  * avm_fritz.c    low level stuff for AVM FRITZ!CARD PCI ISDN cards
3  *                Thanks to AVM, Berlin for informations
4  *
5  * Author       Karsten Keil <keil@isdn4linux.de>
6  *
7  * Copyright 2009  by Karsten Keil <keil@isdn4linux.de>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  */
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/mISDNhw.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
30 #include "ipac.h"
31 
32 
33 #define AVMFRITZ_REV	"2.3"
34 
35 static int AVM_cnt;
36 static int debug;
37 
38 enum {
39 	AVM_FRITZ_PCI,
40 	AVM_FRITZ_PCIV2,
41 };
42 
43 #define HDLC_FIFO		0x0
44 #define HDLC_STATUS		0x4
45 #define CHIP_WINDOW		0x10
46 
47 #define CHIP_INDEX		0x4
48 #define AVM_HDLC_1		0x00
49 #define AVM_HDLC_2		0x01
50 #define AVM_ISAC_FIFO		0x02
51 #define AVM_ISAC_REG_LOW	0x04
52 #define AVM_ISAC_REG_HIGH	0x06
53 
54 #define AVM_STATUS0_IRQ_ISAC	0x01
55 #define AVM_STATUS0_IRQ_HDLC	0x02
56 #define AVM_STATUS0_IRQ_TIMER	0x04
57 #define AVM_STATUS0_IRQ_MASK	0x07
58 
59 #define AVM_STATUS0_RESET	0x01
60 #define AVM_STATUS0_DIS_TIMER	0x02
61 #define AVM_STATUS0_RES_TIMER	0x04
62 #define AVM_STATUS0_ENA_IRQ	0x08
63 #define AVM_STATUS0_TESTBIT	0x10
64 
65 #define AVM_STATUS1_INT_SEL	0x0f
66 #define AVM_STATUS1_ENA_IOM	0x80
67 
68 #define HDLC_MODE_ITF_FLG	0x01
69 #define HDLC_MODE_TRANS		0x02
70 #define HDLC_MODE_CCR_7		0x04
71 #define HDLC_MODE_CCR_16	0x08
72 #define HDLC_FIFO_SIZE_128	0x20
73 #define HDLC_MODE_TESTLOOP	0x80
74 
75 #define HDLC_INT_XPR		0x80
76 #define HDLC_INT_XDU		0x40
77 #define HDLC_INT_RPR		0x20
78 #define HDLC_INT_MASK		0xE0
79 
80 #define HDLC_STAT_RME		0x01
81 #define HDLC_STAT_RDO		0x10
82 #define HDLC_STAT_CRCVFRRAB	0x0E
83 #define HDLC_STAT_CRCVFR	0x06
84 #define HDLC_STAT_RML_MASK_V1	0x3f00
85 #define HDLC_STAT_RML_MASK_V2	0x7f00
86 
87 #define HDLC_CMD_XRS		0x80
88 #define HDLC_CMD_XME		0x01
89 #define HDLC_CMD_RRS		0x20
90 #define HDLC_CMD_XML_MASK	0x3f00
91 
92 #define HDLC_FIFO_SIZE_V1	32
93 #define HDLC_FIFO_SIZE_V2	128
94 
95 /* Fritz PCI v2.0 */
96 
97 #define AVM_HDLC_FIFO_1		0x10
98 #define AVM_HDLC_FIFO_2		0x18
99 
100 #define AVM_HDLC_STATUS_1	0x14
101 #define AVM_HDLC_STATUS_2	0x1c
102 
103 #define AVM_ISACX_INDEX		0x04
104 #define AVM_ISACX_DATA		0x08
105 
106 /* data struct */
107 #define LOG_SIZE		63
108 
109 struct hdlc_stat_reg {
110 #ifdef __BIG_ENDIAN
111 	u8 fill;
112 	u8 mode;
113 	u8 xml;
114 	u8 cmd;
115 #else
116 	u8 cmd;
117 	u8 xml;
118 	u8 mode;
119 	u8 fill;
120 #endif
121 } __attribute__((packed));
122 
123 struct hdlc_hw {
124 	union {
125 		u32 ctrl;
126 		struct hdlc_stat_reg sr;
127 	} ctrl;
128 	u32 stat;
129 };
130 
131 struct fritzcard {
132 	struct list_head	list;
133 	struct pci_dev		*pdev;
134 	char			name[MISDN_MAX_IDLEN];
135 	u8			type;
136 	u8			ctrlreg;
137 	u16			irq;
138 	u32			irqcnt;
139 	u32			addr;
140 	spinlock_t		lock; /* hw lock */
141 	struct isac_hw		isac;
142 	struct hdlc_hw		hdlc[2];
143 	struct bchannel		bch[2];
144 	char			log[LOG_SIZE + 1];
145 };
146 
147 static LIST_HEAD(Cards);
148 static DEFINE_RWLOCK(card_lock); /* protect Cards */
149 
150 static void
151 _set_debug(struct fritzcard *card)
152 {
153 	card->isac.dch.debug = debug;
154 	card->bch[0].debug = debug;
155 	card->bch[1].debug = debug;
156 }
157 
158 static int
159 set_debug(const char *val, struct kernel_param *kp)
160 {
161 	int ret;
162 	struct fritzcard *card;
163 
164 	ret = param_set_uint(val, kp);
165 	if (!ret) {
166 		read_lock(&card_lock);
167 		list_for_each_entry(card, &Cards, list)
168 			_set_debug(card);
169 		read_unlock(&card_lock);
170 	}
171 	return ret;
172 }
173 
174 MODULE_AUTHOR("Karsten Keil");
175 MODULE_LICENSE("GPL v2");
176 MODULE_VERSION(AVMFRITZ_REV);
177 module_param_call(debug, set_debug, param_get_uint, &debug, S_IRUGO | S_IWUSR);
178 MODULE_PARM_DESC(debug, "avmfritz debug mask");
179 
180 /* Interface functions */
181 
182 static u8
183 ReadISAC_V1(void *p, u8 offset)
184 {
185 	struct fritzcard *fc = p;
186 	u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
187 
188 	outb(idx, fc->addr + CHIP_INDEX);
189 	return inb(fc->addr + CHIP_WINDOW + (offset & 0xf));
190 }
191 
192 static void
193 WriteISAC_V1(void *p, u8 offset, u8 value)
194 {
195 	struct fritzcard *fc = p;
196 	u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
197 
198 	outb(idx, fc->addr + CHIP_INDEX);
199 	outb(value, fc->addr + CHIP_WINDOW + (offset & 0xf));
200 }
201 
202 static void
203 ReadFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
204 {
205 	struct fritzcard *fc = p;
206 
207 	outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
208 	insb(fc->addr + CHIP_WINDOW, data, size);
209 }
210 
211 static void
212 WriteFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
213 {
214 	struct fritzcard *fc = p;
215 
216 	outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
217 	outsb(fc->addr + CHIP_WINDOW, data, size);
218 }
219 
220 static u8
221 ReadISAC_V2(void *p, u8 offset)
222 {
223 	struct fritzcard *fc = p;
224 
225 	outl(offset, fc->addr + AVM_ISACX_INDEX);
226 	return 0xff & inl(fc->addr + AVM_ISACX_DATA);
227 }
228 
229 static void
230 WriteISAC_V2(void *p, u8 offset, u8 value)
231 {
232 	struct fritzcard *fc = p;
233 
234 	outl(offset, fc->addr + AVM_ISACX_INDEX);
235 	outl(value, fc->addr + AVM_ISACX_DATA);
236 }
237 
238 static void
239 ReadFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
240 {
241 	struct fritzcard *fc = p;
242 	int i;
243 
244 	outl(off, fc->addr + AVM_ISACX_INDEX);
245 	for (i = 0; i < size; i++)
246 		data[i] = 0xff & inl(fc->addr + AVM_ISACX_DATA);
247 }
248 
249 static void
250 WriteFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
251 {
252 	struct fritzcard *fc = p;
253 	int i;
254 
255 	outl(off, fc->addr + AVM_ISACX_INDEX);
256 	for (i = 0; i < size; i++)
257 		outl(data[i], fc->addr + AVM_ISACX_DATA);
258 }
259 
260 static struct bchannel *
261 Sel_BCS(struct fritzcard *fc, u32 channel)
262 {
263 	if (test_bit(FLG_ACTIVE, &fc->bch[0].Flags) &&
264 	    (fc->bch[0].nr & channel))
265 		return &fc->bch[0];
266 	else if (test_bit(FLG_ACTIVE, &fc->bch[1].Flags) &&
267 		 (fc->bch[1].nr & channel))
268 		return &fc->bch[1];
269 	else
270 		return NULL;
271 }
272 
273 static inline void
274 __write_ctrl_pci(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
275 	u32 idx = channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1;
276 
277 	outl(idx, fc->addr + CHIP_INDEX);
278 	outl(hdlc->ctrl.ctrl, fc->addr + CHIP_WINDOW + HDLC_STATUS);
279 }
280 
281 static inline void
282 __write_ctrl_pciv2(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
283 	outl(hdlc->ctrl.ctrl, fc->addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
284 					  AVM_HDLC_STATUS_1));
285 }
286 
287 void
288 write_ctrl(struct bchannel *bch, int which) {
289 	struct fritzcard *fc = bch->hw;
290 	struct hdlc_hw *hdlc;
291 
292 	hdlc = &fc->hdlc[(bch->nr - 1) & 1];
293 	pr_debug("%s: hdlc %c wr%x ctrl %x\n", fc->name, '@' + bch->nr,
294 		 which, hdlc->ctrl.ctrl);
295 	switch (fc->type) {
296 	case AVM_FRITZ_PCIV2:
297 		__write_ctrl_pciv2(fc, hdlc, bch->nr);
298 		break;
299 	case AVM_FRITZ_PCI:
300 		__write_ctrl_pci(fc, hdlc, bch->nr);
301 		break;
302 	}
303 }
304 
305 
306 static inline u32
307 __read_status_pci(u_long addr, u32 channel)
308 {
309 	outl(channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1, addr + CHIP_INDEX);
310 	return inl(addr + CHIP_WINDOW + HDLC_STATUS);
311 }
312 
313 static inline u32
314 __read_status_pciv2(u_long addr, u32 channel)
315 {
316 	return inl(addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
317 			   AVM_HDLC_STATUS_1));
318 }
319 
320 
321 static u32
322 read_status(struct fritzcard *fc, u32 channel)
323 {
324 	switch (fc->type) {
325 	case AVM_FRITZ_PCIV2:
326 		return __read_status_pciv2(fc->addr, channel);
327 	case AVM_FRITZ_PCI:
328 		return __read_status_pci(fc->addr, channel);
329 	}
330 	/* dummy */
331 	return 0;
332 }
333 
334 static void
335 enable_hwirq(struct fritzcard *fc)
336 {
337 	fc->ctrlreg |= AVM_STATUS0_ENA_IRQ;
338 	outb(fc->ctrlreg, fc->addr + 2);
339 }
340 
341 static void
342 disable_hwirq(struct fritzcard *fc)
343 {
344 	fc->ctrlreg &= ~AVM_STATUS0_ENA_IRQ;
345 	outb(fc->ctrlreg, fc->addr + 2);
346 }
347 
348 static int
349 modehdlc(struct bchannel *bch, int protocol)
350 {
351 	struct fritzcard *fc = bch->hw;
352 	struct hdlc_hw *hdlc;
353 	u8 mode;
354 
355 	hdlc = &fc->hdlc[(bch->nr - 1) & 1];
356 	pr_debug("%s: hdlc %c protocol %x-->%x ch %d\n", fc->name,
357 		 '@' + bch->nr, bch->state, protocol, bch->nr);
358 	hdlc->ctrl.ctrl = 0;
359 	mode = (fc->type == AVM_FRITZ_PCIV2) ? HDLC_FIFO_SIZE_128 : 0;
360 
361 	switch (protocol) {
362 	case -1: /* used for init */
363 		bch->state = -1;
364 	case ISDN_P_NONE:
365 		if (bch->state == ISDN_P_NONE)
366 			break;
367 		hdlc->ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
368 		hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
369 		write_ctrl(bch, 5);
370 		bch->state = ISDN_P_NONE;
371 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
372 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
373 		break;
374 	case ISDN_P_B_RAW:
375 		bch->state = protocol;
376 		hdlc->ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
377 		hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
378 		write_ctrl(bch, 5);
379 		hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
380 		write_ctrl(bch, 1);
381 		hdlc->ctrl.sr.cmd = 0;
382 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
383 		break;
384 	case ISDN_P_B_HDLC:
385 		bch->state = protocol;
386 		hdlc->ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
387 		hdlc->ctrl.sr.mode = mode | HDLC_MODE_ITF_FLG;
388 		write_ctrl(bch, 5);
389 		hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
390 		write_ctrl(bch, 1);
391 		hdlc->ctrl.sr.cmd = 0;
392 		test_and_set_bit(FLG_HDLC, &bch->Flags);
393 		break;
394 	default:
395 		pr_info("%s: protocol not known %x\n", fc->name, protocol);
396 		return -ENOPROTOOPT;
397 	}
398 	return 0;
399 }
400 
401 static void
402 hdlc_empty_fifo(struct bchannel *bch, int count)
403 {
404 	u32 *ptr;
405 	u8 *p;
406 	u32  val, addr;
407 	int cnt;
408 	struct fritzcard *fc = bch->hw;
409 
410 	pr_debug("%s: %s %d\n", fc->name, __func__, count);
411 	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
412 		p = NULL;
413 		bch->dropcnt += count;
414 	} else {
415 		cnt = bchannel_get_rxbuf(bch, count);
416 		if (cnt < 0) {
417 			pr_warning("%s.B%d: No bufferspace for %d bytes\n",
418 				   fc->name, bch->nr, count);
419 			return;
420 		}
421 		p = skb_put(bch->rx_skb, count);
422 	}
423 	ptr = (u32 *)p;
424 	if (fc->type == AVM_FRITZ_PCIV2)
425 		addr = fc->addr + (bch->nr == 2 ?
426 				   AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
427 	else {
428 		addr = fc->addr + CHIP_WINDOW;
429 		outl(bch->nr == 2 ? AVM_HDLC_2 : AVM_HDLC_1, fc->addr);
430 	}
431 	cnt = 0;
432 	while (cnt < count) {
433 		val = le32_to_cpu(inl(addr));
434 		if (p) {
435 			put_unaligned(val, ptr);
436 			ptr++;
437 		}
438 		cnt += 4;
439 	}
440 	if (p && (debug & DEBUG_HW_BFIFO)) {
441 		snprintf(fc->log, LOG_SIZE, "B%1d-recv %s %d ",
442 			 bch->nr, fc->name, count);
443 		print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
444 	}
445 }
446 
447 static void
448 hdlc_fill_fifo(struct bchannel *bch)
449 {
450 	struct fritzcard *fc = bch->hw;
451 	struct hdlc_hw *hdlc;
452 	int count, fs, cnt = 0, idx;
453 	bool fillempty = false;
454 	u8 *p;
455 	u32 *ptr, val, addr;
456 
457 	idx = (bch->nr - 1) & 1;
458 	hdlc = &fc->hdlc[idx];
459 	fs = (fc->type == AVM_FRITZ_PCIV2) ?
460 		HDLC_FIFO_SIZE_V2 : HDLC_FIFO_SIZE_V1;
461 	if (!bch->tx_skb) {
462 		if (!test_bit(FLG_TX_EMPTY, &bch->Flags))
463 			return;
464 		count = fs;
465 		p = bch->fill;
466 		fillempty = true;
467 	} else {
468 		count = bch->tx_skb->len - bch->tx_idx;
469 		if (count <= 0)
470 			return;
471 		p = bch->tx_skb->data + bch->tx_idx;
472 	}
473 	hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XME;
474 	if (count > fs) {
475 		count = fs;
476 	} else {
477 		if (test_bit(FLG_HDLC, &bch->Flags))
478 			hdlc->ctrl.sr.cmd |= HDLC_CMD_XME;
479 	}
480 	ptr = (u32 *)p;
481 	if (!fillempty) {
482 		pr_debug("%s.B%d: %d/%d/%d", fc->name, bch->nr, count,
483 			 bch->tx_idx, bch->tx_skb->len);
484 		bch->tx_idx += count;
485 	} else {
486 		pr_debug("%s.B%d: fillempty %d\n", fc->name, bch->nr, count);
487 	}
488 	hdlc->ctrl.sr.xml = ((count == fs) ? 0 : count);
489 	if (fc->type == AVM_FRITZ_PCIV2) {
490 		__write_ctrl_pciv2(fc, hdlc, bch->nr);
491 		addr = fc->addr + (bch->nr == 2 ?
492 				   AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
493 	} else {
494 		__write_ctrl_pci(fc, hdlc, bch->nr);
495 		addr = fc->addr + CHIP_WINDOW;
496 	}
497 	if (fillempty) {
498 		while (cnt < count) {
499 			/* all bytes the same - no worry about endian */
500 			outl(*ptr, addr);
501 			cnt += 4;
502 		}
503 	} else {
504 		while (cnt < count) {
505 			val = get_unaligned(ptr);
506 			outl(cpu_to_le32(val), addr);
507 			ptr++;
508 			cnt += 4;
509 		}
510 	}
511 	if ((debug & DEBUG_HW_BFIFO) && !fillempty) {
512 		snprintf(fc->log, LOG_SIZE, "B%1d-send %s %d ",
513 			 bch->nr, fc->name, count);
514 		print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
515 	}
516 }
517 
518 static void
519 HDLC_irq_xpr(struct bchannel *bch)
520 {
521 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) {
522 		hdlc_fill_fifo(bch);
523 	} else {
524 		if (bch->tx_skb)
525 			dev_kfree_skb(bch->tx_skb);
526 		if (get_next_bframe(bch)) {
527 			hdlc_fill_fifo(bch);
528 			test_and_clear_bit(FLG_TX_EMPTY, &bch->Flags);
529 		} else if (test_bit(FLG_TX_EMPTY, &bch->Flags)) {
530 			hdlc_fill_fifo(bch);
531 		}
532 	}
533 }
534 
535 static void
536 HDLC_irq(struct bchannel *bch, u32 stat)
537 {
538 	struct fritzcard *fc = bch->hw;
539 	int		len, fs;
540 	u32		rmlMask;
541 	struct hdlc_hw	*hdlc;
542 
543 	hdlc = &fc->hdlc[(bch->nr - 1) & 1];
544 	pr_debug("%s: ch%d stat %#x\n", fc->name, bch->nr, stat);
545 	if (fc->type == AVM_FRITZ_PCIV2) {
546 		rmlMask = HDLC_STAT_RML_MASK_V2;
547 		fs = HDLC_FIFO_SIZE_V2;
548 	} else {
549 		rmlMask = HDLC_STAT_RML_MASK_V1;
550 		fs = HDLC_FIFO_SIZE_V1;
551 	}
552 	if (stat & HDLC_INT_RPR) {
553 		if (stat & HDLC_STAT_RDO) {
554 			pr_warning("%s: ch%d stat %x RDO\n",
555 				   fc->name, bch->nr, stat);
556 			hdlc->ctrl.sr.xml = 0;
557 			hdlc->ctrl.sr.cmd |= HDLC_CMD_RRS;
558 			write_ctrl(bch, 1);
559 			hdlc->ctrl.sr.cmd &= ~HDLC_CMD_RRS;
560 			write_ctrl(bch, 1);
561 			if (bch->rx_skb)
562 				skb_trim(bch->rx_skb, 0);
563 		} else {
564 			len = (stat & rmlMask) >> 8;
565 			if (!len)
566 				len = fs;
567 			hdlc_empty_fifo(bch, len);
568 			if (!bch->rx_skb)
569 				goto handle_tx;
570 			if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
571 				recv_Bchannel(bch, 0, false);
572 			} else if (stat & HDLC_STAT_RME) {
573 				if ((stat & HDLC_STAT_CRCVFRRAB) ==
574 				    HDLC_STAT_CRCVFR) {
575 					recv_Bchannel(bch, 0, false);
576 				} else {
577 					pr_warning("%s: got invalid frame\n",
578 						   fc->name);
579 					skb_trim(bch->rx_skb, 0);
580 				}
581 			}
582 		}
583 	}
584 handle_tx:
585 	if (stat & HDLC_INT_XDU) {
586 		/* Here we lost an TX interrupt, so
587 		 * restart transmitting the whole frame on HDLC
588 		 * in transparent mode we send the next data
589 		 */
590 		pr_warning("%s: ch%d stat %x XDU %s\n", fc->name, bch->nr,
591 			   stat, bch->tx_skb ? "tx_skb" : "no tx_skb");
592 		if (bch->tx_skb && bch->tx_skb->len) {
593 			if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
594 				bch->tx_idx = 0;
595 		} else if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
596 			test_and_set_bit(FLG_TX_EMPTY, &bch->Flags);
597 		}
598 		hdlc->ctrl.sr.xml = 0;
599 		hdlc->ctrl.sr.cmd |= HDLC_CMD_XRS;
600 		write_ctrl(bch, 1);
601 		hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XRS;
602 		HDLC_irq_xpr(bch);
603 		return;
604 	} else if (stat & HDLC_INT_XPR)
605 		HDLC_irq_xpr(bch);
606 }
607 
608 static inline void
609 HDLC_irq_main(struct fritzcard *fc)
610 {
611 	u32 stat;
612 	struct bchannel *bch;
613 
614 	stat = read_status(fc, 1);
615 	if (stat & HDLC_INT_MASK) {
616 		bch = Sel_BCS(fc, 1);
617 		if (bch)
618 			HDLC_irq(bch, stat);
619 		else
620 			pr_debug("%s: spurious ch1 IRQ\n", fc->name);
621 	}
622 	stat = read_status(fc, 2);
623 	if (stat & HDLC_INT_MASK) {
624 		bch = Sel_BCS(fc, 2);
625 		if (bch)
626 			HDLC_irq(bch, stat);
627 		else
628 			pr_debug("%s: spurious ch2 IRQ\n", fc->name);
629 	}
630 }
631 
632 static irqreturn_t
633 avm_fritz_interrupt(int intno, void *dev_id)
634 {
635 	struct fritzcard *fc = dev_id;
636 	u8 val;
637 	u8 sval;
638 
639 	spin_lock(&fc->lock);
640 	sval = inb(fc->addr + 2);
641 	pr_debug("%s: irq stat0 %x\n", fc->name, sval);
642 	if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
643 		/* shared  IRQ from other HW */
644 		spin_unlock(&fc->lock);
645 		return IRQ_NONE;
646 	}
647 	fc->irqcnt++;
648 
649 	if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
650 		val = ReadISAC_V1(fc, ISAC_ISTA);
651 		mISDNisac_irq(&fc->isac, val);
652 	}
653 	if (!(sval & AVM_STATUS0_IRQ_HDLC))
654 		HDLC_irq_main(fc);
655 	spin_unlock(&fc->lock);
656 	return IRQ_HANDLED;
657 }
658 
659 static irqreturn_t
660 avm_fritzv2_interrupt(int intno, void *dev_id)
661 {
662 	struct fritzcard *fc = dev_id;
663 	u8 val;
664 	u8 sval;
665 
666 	spin_lock(&fc->lock);
667 	sval = inb(fc->addr + 2);
668 	pr_debug("%s: irq stat0 %x\n", fc->name, sval);
669 	if (!(sval & AVM_STATUS0_IRQ_MASK)) {
670 		/* shared  IRQ from other HW */
671 		spin_unlock(&fc->lock);
672 		return IRQ_NONE;
673 	}
674 	fc->irqcnt++;
675 
676 	if (sval & AVM_STATUS0_IRQ_HDLC)
677 		HDLC_irq_main(fc);
678 	if (sval & AVM_STATUS0_IRQ_ISAC) {
679 		val = ReadISAC_V2(fc, ISACX_ISTA);
680 		mISDNisac_irq(&fc->isac, val);
681 	}
682 	if (sval & AVM_STATUS0_IRQ_TIMER) {
683 		pr_debug("%s: timer irq\n", fc->name);
684 		outb(fc->ctrlreg | AVM_STATUS0_RES_TIMER, fc->addr + 2);
685 		udelay(1);
686 		outb(fc->ctrlreg, fc->addr + 2);
687 	}
688 	spin_unlock(&fc->lock);
689 	return IRQ_HANDLED;
690 }
691 
692 static int
693 avm_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
694 {
695 	struct bchannel *bch = container_of(ch, struct bchannel, ch);
696 	struct fritzcard *fc = bch->hw;
697 	int ret = -EINVAL;
698 	struct mISDNhead *hh = mISDN_HEAD_P(skb);
699 	unsigned long flags;
700 
701 	switch (hh->prim) {
702 	case PH_DATA_REQ:
703 		spin_lock_irqsave(&fc->lock, flags);
704 		ret = bchannel_senddata(bch, skb);
705 		if (ret > 0) { /* direct TX */
706 			hdlc_fill_fifo(bch);
707 			ret = 0;
708 		}
709 		spin_unlock_irqrestore(&fc->lock, flags);
710 		return ret;
711 	case PH_ACTIVATE_REQ:
712 		spin_lock_irqsave(&fc->lock, flags);
713 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
714 			ret = modehdlc(bch, ch->protocol);
715 		else
716 			ret = 0;
717 		spin_unlock_irqrestore(&fc->lock, flags);
718 		if (!ret)
719 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
720 				    NULL, GFP_KERNEL);
721 		break;
722 	case PH_DEACTIVATE_REQ:
723 		spin_lock_irqsave(&fc->lock, flags);
724 		mISDN_clear_bchannel(bch);
725 		modehdlc(bch, ISDN_P_NONE);
726 		spin_unlock_irqrestore(&fc->lock, flags);
727 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
728 			    NULL, GFP_KERNEL);
729 		ret = 0;
730 		break;
731 	}
732 	if (!ret)
733 		dev_kfree_skb(skb);
734 	return ret;
735 }
736 
737 static void
738 inithdlc(struct fritzcard *fc)
739 {
740 	modehdlc(&fc->bch[0], -1);
741 	modehdlc(&fc->bch[1], -1);
742 }
743 
744 void
745 clear_pending_hdlc_ints(struct fritzcard *fc)
746 {
747 	u32 val;
748 
749 	val = read_status(fc, 1);
750 	pr_debug("%s: HDLC 1 STA %x\n", fc->name, val);
751 	val = read_status(fc, 2);
752 	pr_debug("%s: HDLC 2 STA %x\n", fc->name, val);
753 }
754 
755 static void
756 reset_avm(struct fritzcard *fc)
757 {
758 	switch (fc->type) {
759 	case AVM_FRITZ_PCI:
760 		fc->ctrlreg = AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER;
761 		break;
762 	case AVM_FRITZ_PCIV2:
763 		fc->ctrlreg = AVM_STATUS0_RESET;
764 		break;
765 	}
766 	if (debug & DEBUG_HW)
767 		pr_notice("%s: reset\n", fc->name);
768 	disable_hwirq(fc);
769 	mdelay(5);
770 	switch (fc->type) {
771 	case AVM_FRITZ_PCI:
772 		fc->ctrlreg = AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER;
773 		disable_hwirq(fc);
774 		outb(AVM_STATUS1_ENA_IOM, fc->addr + 3);
775 		break;
776 	case AVM_FRITZ_PCIV2:
777 		fc->ctrlreg = 0;
778 		disable_hwirq(fc);
779 		break;
780 	}
781 	mdelay(1);
782 	if (debug & DEBUG_HW)
783 		pr_notice("%s: S0/S1 %x/%x\n", fc->name,
784 			  inb(fc->addr + 2), inb(fc->addr + 3));
785 }
786 
787 static int
788 init_card(struct fritzcard *fc)
789 {
790 	int		ret, cnt = 3;
791 	u_long		flags;
792 
793 	reset_avm(fc); /* disable IRQ */
794 	if (fc->type == AVM_FRITZ_PCIV2)
795 		ret = request_irq(fc->irq, avm_fritzv2_interrupt,
796 				  IRQF_SHARED, fc->name, fc);
797 	else
798 		ret = request_irq(fc->irq, avm_fritz_interrupt,
799 				  IRQF_SHARED, fc->name, fc);
800 	if (ret) {
801 		pr_info("%s: couldn't get interrupt %d\n",
802 			fc->name, fc->irq);
803 		return ret;
804 	}
805 	while (cnt--) {
806 		spin_lock_irqsave(&fc->lock, flags);
807 		ret = fc->isac.init(&fc->isac);
808 		if (ret) {
809 			spin_unlock_irqrestore(&fc->lock, flags);
810 			pr_info("%s: ISAC init failed with %d\n",
811 				fc->name, ret);
812 			break;
813 		}
814 		clear_pending_hdlc_ints(fc);
815 		inithdlc(fc);
816 		enable_hwirq(fc);
817 		/* RESET Receiver and Transmitter */
818 		if (fc->type == AVM_FRITZ_PCIV2) {
819 			WriteISAC_V2(fc, ISACX_MASK, 0);
820 			WriteISAC_V2(fc, ISACX_CMDRD, 0x41);
821 		} else {
822 			WriteISAC_V1(fc, ISAC_MASK, 0);
823 			WriteISAC_V1(fc, ISAC_CMDR, 0x41);
824 		}
825 		spin_unlock_irqrestore(&fc->lock, flags);
826 		/* Timeout 10ms */
827 		msleep_interruptible(10);
828 		if (debug & DEBUG_HW)
829 			pr_notice("%s: IRQ %d count %d\n", fc->name,
830 				  fc->irq, fc->irqcnt);
831 		if (!fc->irqcnt) {
832 			pr_info("%s: IRQ(%d) getting no IRQs during init %d\n",
833 				fc->name, fc->irq, 3 - cnt);
834 			reset_avm(fc);
835 		} else
836 			return 0;
837 	}
838 	free_irq(fc->irq, fc);
839 	return -EIO;
840 }
841 
842 static int
843 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
844 {
845 	return mISDN_ctrl_bchannel(bch, cq);
846 }
847 
848 static int
849 avm_bctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
850 {
851 	struct bchannel *bch = container_of(ch, struct bchannel, ch);
852 	struct fritzcard *fc = bch->hw;
853 	int ret = -EINVAL;
854 	u_long flags;
855 
856 	pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
857 	switch (cmd) {
858 	case CLOSE_CHANNEL:
859 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
860 		cancel_work_sync(&bch->workq);
861 		spin_lock_irqsave(&fc->lock, flags);
862 		mISDN_clear_bchannel(bch);
863 		modehdlc(bch, ISDN_P_NONE);
864 		spin_unlock_irqrestore(&fc->lock, flags);
865 		ch->protocol = ISDN_P_NONE;
866 		ch->peer = NULL;
867 		module_put(THIS_MODULE);
868 		ret = 0;
869 		break;
870 	case CONTROL_CHANNEL:
871 		ret = channel_bctrl(bch, arg);
872 		break;
873 	default:
874 		pr_info("%s: %s unknown prim(%x)\n", fc->name, __func__, cmd);
875 	}
876 	return ret;
877 }
878 
879 static int
880 channel_ctrl(struct fritzcard  *fc, struct mISDN_ctrl_req *cq)
881 {
882 	int	ret = 0;
883 
884 	switch (cq->op) {
885 	case MISDN_CTRL_GETOP:
886 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_L1_TIMER3;
887 		break;
888 	case MISDN_CTRL_LOOP:
889 		/* cq->channel: 0 disable, 1 B1 loop 2 B2 loop, 3 both */
890 		if (cq->channel < 0 || cq->channel > 3) {
891 			ret = -EINVAL;
892 			break;
893 		}
894 		ret = fc->isac.ctrl(&fc->isac, HW_TESTLOOP, cq->channel);
895 		break;
896 	case MISDN_CTRL_L1_TIMER3:
897 		ret = fc->isac.ctrl(&fc->isac, HW_TIMER3_VALUE, cq->p1);
898 		break;
899 	default:
900 		pr_info("%s: %s unknown Op %x\n", fc->name, __func__, cq->op);
901 		ret = -EINVAL;
902 		break;
903 	}
904 	return ret;
905 }
906 
907 static int
908 open_bchannel(struct fritzcard *fc, struct channel_req *rq)
909 {
910 	struct bchannel		*bch;
911 
912 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
913 		return -EINVAL;
914 	if (rq->protocol == ISDN_P_NONE)
915 		return -EINVAL;
916 	bch = &fc->bch[rq->adr.channel - 1];
917 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
918 		return -EBUSY; /* b-channel can be only open once */
919 	bch->ch.protocol = rq->protocol;
920 	rq->ch = &bch->ch;
921 	return 0;
922 }
923 
924 /*
925  * device control function
926  */
927 static int
928 avm_dctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
929 {
930 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
931 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
932 	struct fritzcard	*fc = dch->hw;
933 	struct channel_req	*rq;
934 	int			err = 0;
935 
936 	pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
937 	switch (cmd) {
938 	case OPEN_CHANNEL:
939 		rq = arg;
940 		if (rq->protocol == ISDN_P_TE_S0)
941 			err = fc->isac.open(&fc->isac, rq);
942 		else
943 			err = open_bchannel(fc, rq);
944 		if (err)
945 			break;
946 		if (!try_module_get(THIS_MODULE))
947 			pr_info("%s: cannot get module\n", fc->name);
948 		break;
949 	case CLOSE_CHANNEL:
950 		pr_debug("%s: dev(%d) close from %p\n", fc->name, dch->dev.id,
951 			 __builtin_return_address(0));
952 		module_put(THIS_MODULE);
953 		break;
954 	case CONTROL_CHANNEL:
955 		err = channel_ctrl(fc, arg);
956 		break;
957 	default:
958 		pr_debug("%s: %s unknown command %x\n",
959 			 fc->name, __func__, cmd);
960 		return -EINVAL;
961 	}
962 	return err;
963 }
964 
965 int
966 setup_fritz(struct fritzcard *fc)
967 {
968 	u32 val, ver;
969 
970 	if (!request_region(fc->addr, 32, fc->name)) {
971 		pr_info("%s: AVM config port %x-%x already in use\n",
972 			fc->name, fc->addr, fc->addr + 31);
973 		return -EIO;
974 	}
975 	switch (fc->type) {
976 	case AVM_FRITZ_PCI:
977 		val = inl(fc->addr);
978 		outl(AVM_HDLC_1, fc->addr + CHIP_INDEX);
979 		ver = inl(fc->addr + CHIP_WINDOW + HDLC_STATUS) >> 24;
980 		if (debug & DEBUG_HW) {
981 			pr_notice("%s: PCI stat %#x\n", fc->name, val);
982 			pr_notice("%s: PCI Class %X Rev %d\n", fc->name,
983 				  val & 0xff, (val >> 8) & 0xff);
984 			pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
985 		}
986 		ASSIGN_FUNC(V1, ISAC, fc->isac);
987 		fc->isac.type = IPAC_TYPE_ISAC;
988 		break;
989 	case AVM_FRITZ_PCIV2:
990 		val = inl(fc->addr);
991 		ver = inl(fc->addr + AVM_HDLC_STATUS_1) >> 24;
992 		if (debug & DEBUG_HW) {
993 			pr_notice("%s: PCI V2 stat %#x\n", fc->name, val);
994 			pr_notice("%s: PCI V2 Class %X Rev %d\n", fc->name,
995 				  val & 0xff, (val >> 8) & 0xff);
996 			pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
997 		}
998 		ASSIGN_FUNC(V2, ISAC, fc->isac);
999 		fc->isac.type = IPAC_TYPE_ISACX;
1000 		break;
1001 	default:
1002 		release_region(fc->addr, 32);
1003 		pr_info("%s: AVM unknown type %d\n", fc->name, fc->type);
1004 		return -ENODEV;
1005 	}
1006 	pr_notice("%s: %s config irq:%d base:0x%X\n", fc->name,
1007 		  (fc->type == AVM_FRITZ_PCI) ? "AVM Fritz!CARD PCI" :
1008 		  "AVM Fritz!CARD PCIv2", fc->irq, fc->addr);
1009 	return 0;
1010 }
1011 
1012 static void
1013 release_card(struct fritzcard *card)
1014 {
1015 	u_long flags;
1016 
1017 	disable_hwirq(card);
1018 	spin_lock_irqsave(&card->lock, flags);
1019 	modehdlc(&card->bch[0], ISDN_P_NONE);
1020 	modehdlc(&card->bch[1], ISDN_P_NONE);
1021 	spin_unlock_irqrestore(&card->lock, flags);
1022 	card->isac.release(&card->isac);
1023 	free_irq(card->irq, card);
1024 	mISDN_freebchannel(&card->bch[1]);
1025 	mISDN_freebchannel(&card->bch[0]);
1026 	mISDN_unregister_device(&card->isac.dch.dev);
1027 	release_region(card->addr, 32);
1028 	pci_disable_device(card->pdev);
1029 	pci_set_drvdata(card->pdev, NULL);
1030 	write_lock_irqsave(&card_lock, flags);
1031 	list_del(&card->list);
1032 	write_unlock_irqrestore(&card_lock, flags);
1033 	kfree(card);
1034 	AVM_cnt--;
1035 }
1036 
1037 static int __devinit
1038 setup_instance(struct fritzcard *card)
1039 {
1040 	int i, err;
1041 	unsigned short minsize;
1042 	u_long flags;
1043 
1044 	snprintf(card->name, MISDN_MAX_IDLEN - 1, "AVM.%d", AVM_cnt + 1);
1045 	write_lock_irqsave(&card_lock, flags);
1046 	list_add_tail(&card->list, &Cards);
1047 	write_unlock_irqrestore(&card_lock, flags);
1048 
1049 	_set_debug(card);
1050 	card->isac.name = card->name;
1051 	spin_lock_init(&card->lock);
1052 	card->isac.hwlock = &card->lock;
1053 	mISDNisac_init(&card->isac, card);
1054 
1055 	card->isac.dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1056 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1057 	card->isac.dch.dev.D.ctrl = avm_dctrl;
1058 	for (i = 0; i < 2; i++) {
1059 		card->bch[i].nr = i + 1;
1060 		set_channelmap(i + 1, card->isac.dch.dev.channelmap);
1061 		if (AVM_FRITZ_PCIV2 == card->type)
1062 			minsize = HDLC_FIFO_SIZE_V2;
1063 		else
1064 			minsize = HDLC_FIFO_SIZE_V1;
1065 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, minsize);
1066 		card->bch[i].hw = card;
1067 		card->bch[i].ch.send = avm_l2l1B;
1068 		card->bch[i].ch.ctrl = avm_bctrl;
1069 		card->bch[i].ch.nr = i + 1;
1070 		list_add(&card->bch[i].ch.list, &card->isac.dch.dev.bchannels);
1071 	}
1072 	err = setup_fritz(card);
1073 	if (err)
1074 		goto error;
1075 	err = mISDN_register_device(&card->isac.dch.dev, &card->pdev->dev,
1076 				    card->name);
1077 	if (err)
1078 		goto error_reg;
1079 	err = init_card(card);
1080 	if (!err)  {
1081 		AVM_cnt++;
1082 		pr_notice("AVM %d cards installed DEBUG\n", AVM_cnt);
1083 		return 0;
1084 	}
1085 	mISDN_unregister_device(&card->isac.dch.dev);
1086 error_reg:
1087 	release_region(card->addr, 32);
1088 error:
1089 	card->isac.release(&card->isac);
1090 	mISDN_freebchannel(&card->bch[1]);
1091 	mISDN_freebchannel(&card->bch[0]);
1092 	write_lock_irqsave(&card_lock, flags);
1093 	list_del(&card->list);
1094 	write_unlock_irqrestore(&card_lock, flags);
1095 	kfree(card);
1096 	return err;
1097 }
1098 
1099 static int __devinit
1100 fritzpci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1101 {
1102 	int err = -ENOMEM;
1103 	struct fritzcard *card;
1104 
1105 	card = kzalloc(sizeof(struct fritzcard), GFP_KERNEL);
1106 	if (!card) {
1107 		pr_info("No kmem for fritzcard\n");
1108 		return err;
1109 	}
1110 	if (pdev->device == PCI_DEVICE_ID_AVM_A1_V2)
1111 		card->type = AVM_FRITZ_PCIV2;
1112 	else
1113 		card->type = AVM_FRITZ_PCI;
1114 	card->pdev = pdev;
1115 	err = pci_enable_device(pdev);
1116 	if (err) {
1117 		kfree(card);
1118 		return err;
1119 	}
1120 
1121 	pr_notice("mISDN: found adapter %s at %s\n",
1122 		  (char *) ent->driver_data, pci_name(pdev));
1123 
1124 	card->addr = pci_resource_start(pdev, 1);
1125 	card->irq = pdev->irq;
1126 	pci_set_drvdata(pdev, card);
1127 	err = setup_instance(card);
1128 	if (err)
1129 		pci_set_drvdata(pdev, NULL);
1130 	return err;
1131 }
1132 
1133 static void __devexit
1134 fritz_remove_pci(struct pci_dev *pdev)
1135 {
1136 	struct fritzcard *card = pci_get_drvdata(pdev);
1137 
1138 	if (card)
1139 		release_card(card);
1140 	else
1141 		if (debug)
1142 			pr_info("%s: drvdata already removed\n", __func__);
1143 }
1144 
1145 static struct pci_device_id fcpci_ids[] __devinitdata = {
1146 	{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1, PCI_ANY_ID, PCI_ANY_ID,
1147 	  0, 0, (unsigned long) "Fritz!Card PCI"},
1148 	{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1_V2, PCI_ANY_ID, PCI_ANY_ID,
1149 	  0, 0, (unsigned long) "Fritz!Card PCI v2" },
1150 	{ }
1151 };
1152 MODULE_DEVICE_TABLE(pci, fcpci_ids);
1153 
1154 static struct pci_driver fcpci_driver = {
1155 	.name = "fcpci",
1156 	.probe = fritzpci_probe,
1157 	.remove = __devexit_p(fritz_remove_pci),
1158 	.id_table = fcpci_ids,
1159 };
1160 
1161 static int __init AVM_init(void)
1162 {
1163 	int err;
1164 
1165 	pr_notice("AVM Fritz PCI driver Rev. %s\n", AVMFRITZ_REV);
1166 	err = pci_register_driver(&fcpci_driver);
1167 	return err;
1168 }
1169 
1170 static void __exit AVM_cleanup(void)
1171 {
1172 	pci_unregister_driver(&fcpci_driver);
1173 }
1174 
1175 module_init(AVM_init);
1176 module_exit(AVM_cleanup);
1177