1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The R_INTC in Allwinner A31 and newer SoCs manages several types of 4 * interrupts, as shown below: 5 * 6 * NMI IRQ DIRECT IRQs MUXED IRQs 7 * bit 0 bits 1-15^ bits 19-31 8 * 9 * +---------+ +---------+ +---------+ +---------+ 10 * | NMI Pad | | IRQ d | | IRQ m | | IRQ m+7 | 11 * +---------+ +---------+ +---------+ +---------+ 12 * | | | | | | | 13 * | | | | |......| | 14 * +------V------+ +------------+ | | | +--V------V--+ | 15 * | Invert/ | | Write 1 to | | | | | AND with | | 16 * | Edge Detect | | PENDING[0] | | | | | MUX[m/8] | | 17 * +-------------+ +------------+ | | | +------------+ | 18 * | | | | | | | 19 * +--V-------V--+ +--V--+ | +--V--+ | +--V--+ 20 * | Set Reset| | GIC | | | GIC | | | GIC | 21 * | Latch | | SPI | | | SPI |... | ...| SPI | 22 * +-------------+ | N+d | | | m | | | m+7 | 23 * | | +-----+ | +-----+ | +-----+ 24 * | | | | 25 * +-------V-+ +-V----------+ +---------V--+ +--------V--------+ 26 * | GIC SPI | | AND with | | AND with | | AND with | 27 * | N (=32) | | ENABLE[0] | | ENABLE[d] | | ENABLE[19+m/8] | 28 * +---------+ +------------+ +------------+ +-----------------+ 29 * | | | 30 * +------V-----+ +------V-----+ +--------V--------+ 31 * | Read | | Read | | Read | 32 * | PENDING[0] | | PENDING[d] | | PENDING[19+m/8] | 33 * +------------+ +------------+ +-----------------+ 34 * 35 * ^ bits 16-18 are direct IRQs for peripherals with banked interrupts, such as 36 * the MSGBOX. These IRQs do not map to any GIC SPI. 37 * 38 * The H6 variant adds two more (banked) direct IRQs and implements the full 39 * set of 128 mux bits. This requires a second set of top-level registers. 40 */ 41 42 #include <linux/bitmap.h> 43 #include <linux/interrupt.h> 44 #include <linux/irq.h> 45 #include <linux/irqchip.h> 46 #include <linux/irqdomain.h> 47 #include <linux/of.h> 48 #include <linux/of_address.h> 49 #include <linux/of_irq.h> 50 #include <linux/syscore_ops.h> 51 52 #include <dt-bindings/interrupt-controller/arm-gic.h> 53 54 #define SUN6I_NMI_CTRL (0x0c) 55 #define SUN6I_IRQ_PENDING(n) (0x10 + 4 * (n)) 56 #define SUN6I_IRQ_ENABLE(n) (0x40 + 4 * (n)) 57 #define SUN6I_MUX_ENABLE(n) (0xc0 + 4 * (n)) 58 59 #define SUN6I_NMI_SRC_TYPE_LEVEL_LOW 0 60 #define SUN6I_NMI_SRC_TYPE_EDGE_FALLING 1 61 #define SUN6I_NMI_SRC_TYPE_LEVEL_HIGH 2 62 #define SUN6I_NMI_SRC_TYPE_EDGE_RISING 3 63 64 #define SUN6I_NMI_BIT BIT(0) 65 66 #define SUN6I_NMI_NEEDS_ACK ((void *)1) 67 68 #define SUN6I_NR_TOP_LEVEL_IRQS 64 69 #define SUN6I_NR_DIRECT_IRQS 16 70 #define SUN6I_NR_MUX_BITS 128 71 72 struct sun6i_r_intc_variant { 73 u32 first_mux_irq; 74 u32 nr_mux_irqs; 75 u32 mux_valid[BITS_TO_U32(SUN6I_NR_MUX_BITS)]; 76 }; 77 78 static void __iomem *base; 79 static irq_hw_number_t nmi_hwirq; 80 static DECLARE_BITMAP(wake_irq_enabled, SUN6I_NR_TOP_LEVEL_IRQS); 81 static DECLARE_BITMAP(wake_mux_enabled, SUN6I_NR_MUX_BITS); 82 static DECLARE_BITMAP(wake_mux_valid, SUN6I_NR_MUX_BITS); 83 84 static void sun6i_r_intc_ack_nmi(void) 85 { 86 writel_relaxed(SUN6I_NMI_BIT, base + SUN6I_IRQ_PENDING(0)); 87 } 88 89 static void sun6i_r_intc_nmi_ack(struct irq_data *data) 90 { 91 if (irqd_get_trigger_type(data) & IRQ_TYPE_EDGE_BOTH) 92 sun6i_r_intc_ack_nmi(); 93 else 94 data->chip_data = SUN6I_NMI_NEEDS_ACK; 95 } 96 97 static void sun6i_r_intc_nmi_eoi(struct irq_data *data) 98 { 99 /* For oneshot IRQs, delay the ack until the IRQ is unmasked. */ 100 if (data->chip_data == SUN6I_NMI_NEEDS_ACK && !irqd_irq_masked(data)) { 101 data->chip_data = NULL; 102 sun6i_r_intc_ack_nmi(); 103 } 104 105 irq_chip_eoi_parent(data); 106 } 107 108 static void sun6i_r_intc_nmi_unmask(struct irq_data *data) 109 { 110 if (data->chip_data == SUN6I_NMI_NEEDS_ACK) { 111 data->chip_data = NULL; 112 sun6i_r_intc_ack_nmi(); 113 } 114 115 irq_chip_unmask_parent(data); 116 } 117 118 static int sun6i_r_intc_nmi_set_type(struct irq_data *data, unsigned int type) 119 { 120 u32 nmi_src_type; 121 122 switch (type) { 123 case IRQ_TYPE_EDGE_RISING: 124 nmi_src_type = SUN6I_NMI_SRC_TYPE_EDGE_RISING; 125 break; 126 case IRQ_TYPE_EDGE_FALLING: 127 nmi_src_type = SUN6I_NMI_SRC_TYPE_EDGE_FALLING; 128 break; 129 case IRQ_TYPE_LEVEL_HIGH: 130 nmi_src_type = SUN6I_NMI_SRC_TYPE_LEVEL_HIGH; 131 break; 132 case IRQ_TYPE_LEVEL_LOW: 133 nmi_src_type = SUN6I_NMI_SRC_TYPE_LEVEL_LOW; 134 break; 135 default: 136 return -EINVAL; 137 } 138 139 writel_relaxed(nmi_src_type, base + SUN6I_NMI_CTRL); 140 141 /* 142 * The "External NMI" GIC input connects to a latch inside R_INTC, not 143 * directly to the pin. So the GIC trigger type does not depend on the 144 * NMI pin trigger type. 145 */ 146 return irq_chip_set_type_parent(data, IRQ_TYPE_LEVEL_HIGH); 147 } 148 149 static int sun6i_r_intc_nmi_set_irqchip_state(struct irq_data *data, 150 enum irqchip_irq_state which, 151 bool state) 152 { 153 if (which == IRQCHIP_STATE_PENDING && !state) 154 sun6i_r_intc_ack_nmi(); 155 156 return irq_chip_set_parent_state(data, which, state); 157 } 158 159 static int sun6i_r_intc_irq_set_wake(struct irq_data *data, unsigned int on) 160 { 161 unsigned long offset_from_nmi = data->hwirq - nmi_hwirq; 162 163 if (offset_from_nmi < SUN6I_NR_DIRECT_IRQS) 164 assign_bit(offset_from_nmi, wake_irq_enabled, on); 165 else if (test_bit(data->hwirq, wake_mux_valid)) 166 assign_bit(data->hwirq, wake_mux_enabled, on); 167 else 168 /* Not wakeup capable. */ 169 return -EPERM; 170 171 return 0; 172 } 173 174 static struct irq_chip sun6i_r_intc_nmi_chip = { 175 .name = "sun6i-r-intc", 176 .irq_ack = sun6i_r_intc_nmi_ack, 177 .irq_mask = irq_chip_mask_parent, 178 .irq_unmask = sun6i_r_intc_nmi_unmask, 179 .irq_eoi = sun6i_r_intc_nmi_eoi, 180 .irq_set_affinity = irq_chip_set_affinity_parent, 181 .irq_set_type = sun6i_r_intc_nmi_set_type, 182 .irq_set_irqchip_state = sun6i_r_intc_nmi_set_irqchip_state, 183 .irq_set_wake = sun6i_r_intc_irq_set_wake, 184 .flags = IRQCHIP_SET_TYPE_MASKED, 185 }; 186 187 static struct irq_chip sun6i_r_intc_wakeup_chip = { 188 .name = "sun6i-r-intc", 189 .irq_mask = irq_chip_mask_parent, 190 .irq_unmask = irq_chip_unmask_parent, 191 .irq_eoi = irq_chip_eoi_parent, 192 .irq_set_affinity = irq_chip_set_affinity_parent, 193 .irq_set_type = irq_chip_set_type_parent, 194 .irq_set_wake = sun6i_r_intc_irq_set_wake, 195 .flags = IRQCHIP_SET_TYPE_MASKED, 196 }; 197 198 static int sun6i_r_intc_domain_translate(struct irq_domain *domain, 199 struct irq_fwspec *fwspec, 200 unsigned long *hwirq, 201 unsigned int *type) 202 { 203 /* Accept the old two-cell binding for the NMI only. */ 204 if (fwspec->param_count == 2 && fwspec->param[0] == 0) { 205 *hwirq = nmi_hwirq; 206 *type = fwspec->param[1] & IRQ_TYPE_SENSE_MASK; 207 return 0; 208 } 209 210 /* Otherwise this binding should match the GIC SPI binding. */ 211 if (fwspec->param_count < 3) 212 return -EINVAL; 213 if (fwspec->param[0] != GIC_SPI) 214 return -EINVAL; 215 216 *hwirq = fwspec->param[1]; 217 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 218 219 return 0; 220 } 221 222 static int sun6i_r_intc_domain_alloc(struct irq_domain *domain, 223 unsigned int virq, 224 unsigned int nr_irqs, void *arg) 225 { 226 struct irq_fwspec *fwspec = arg; 227 struct irq_fwspec gic_fwspec; 228 unsigned long hwirq; 229 unsigned int type; 230 int i, ret; 231 232 ret = sun6i_r_intc_domain_translate(domain, fwspec, &hwirq, &type); 233 if (ret) 234 return ret; 235 if (hwirq + nr_irqs > SUN6I_NR_MUX_BITS) 236 return -EINVAL; 237 238 /* Construct a GIC-compatible fwspec from this fwspec. */ 239 gic_fwspec = (struct irq_fwspec) { 240 .fwnode = domain->parent->fwnode, 241 .param_count = 3, 242 .param = { GIC_SPI, hwirq, type }, 243 }; 244 245 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, &gic_fwspec); 246 if (ret) 247 return ret; 248 249 for (i = 0; i < nr_irqs; ++i, ++hwirq, ++virq) { 250 if (hwirq == nmi_hwirq) { 251 irq_domain_set_hwirq_and_chip(domain, virq, hwirq, 252 &sun6i_r_intc_nmi_chip, 0); 253 irq_set_handler(virq, handle_fasteoi_ack_irq); 254 } else { 255 irq_domain_set_hwirq_and_chip(domain, virq, hwirq, 256 &sun6i_r_intc_wakeup_chip, 0); 257 } 258 } 259 260 return 0; 261 } 262 263 static const struct irq_domain_ops sun6i_r_intc_domain_ops = { 264 .translate = sun6i_r_intc_domain_translate, 265 .alloc = sun6i_r_intc_domain_alloc, 266 .free = irq_domain_free_irqs_common, 267 }; 268 269 static int sun6i_r_intc_suspend(void) 270 { 271 u32 buf[BITS_TO_U32(max(SUN6I_NR_TOP_LEVEL_IRQS, SUN6I_NR_MUX_BITS))]; 272 int i; 273 274 /* Wake IRQs are enabled during system sleep and shutdown. */ 275 bitmap_to_arr32(buf, wake_irq_enabled, SUN6I_NR_TOP_LEVEL_IRQS); 276 for (i = 0; i < BITS_TO_U32(SUN6I_NR_TOP_LEVEL_IRQS); ++i) 277 writel_relaxed(buf[i], base + SUN6I_IRQ_ENABLE(i)); 278 bitmap_to_arr32(buf, wake_mux_enabled, SUN6I_NR_MUX_BITS); 279 for (i = 0; i < BITS_TO_U32(SUN6I_NR_MUX_BITS); ++i) 280 writel_relaxed(buf[i], base + SUN6I_MUX_ENABLE(i)); 281 282 return 0; 283 } 284 285 static void sun6i_r_intc_resume(void) 286 { 287 int i; 288 289 /* Only the NMI is relevant during normal operation. */ 290 writel_relaxed(SUN6I_NMI_BIT, base + SUN6I_IRQ_ENABLE(0)); 291 for (i = 1; i < BITS_TO_U32(SUN6I_NR_TOP_LEVEL_IRQS); ++i) 292 writel_relaxed(0, base + SUN6I_IRQ_ENABLE(i)); 293 } 294 295 static void sun6i_r_intc_shutdown(void) 296 { 297 sun6i_r_intc_suspend(); 298 } 299 300 static struct syscore_ops sun6i_r_intc_syscore_ops = { 301 .suspend = sun6i_r_intc_suspend, 302 .resume = sun6i_r_intc_resume, 303 .shutdown = sun6i_r_intc_shutdown, 304 }; 305 306 static int __init sun6i_r_intc_init(struct device_node *node, 307 struct device_node *parent, 308 const struct sun6i_r_intc_variant *v) 309 { 310 struct irq_domain *domain, *parent_domain; 311 struct of_phandle_args nmi_parent; 312 int ret; 313 314 /* Extract the NMI hwirq number from the OF node. */ 315 ret = of_irq_parse_one(node, 0, &nmi_parent); 316 if (ret) 317 return ret; 318 if (nmi_parent.args_count < 3 || 319 nmi_parent.args[0] != GIC_SPI || 320 nmi_parent.args[2] != IRQ_TYPE_LEVEL_HIGH) 321 return -EINVAL; 322 nmi_hwirq = nmi_parent.args[1]; 323 324 bitmap_set(wake_irq_enabled, v->first_mux_irq, v->nr_mux_irqs); 325 bitmap_from_arr32(wake_mux_valid, v->mux_valid, SUN6I_NR_MUX_BITS); 326 327 parent_domain = irq_find_host(parent); 328 if (!parent_domain) { 329 pr_err("%pOF: Failed to obtain parent domain\n", node); 330 return -ENXIO; 331 } 332 333 base = of_io_request_and_map(node, 0, NULL); 334 if (IS_ERR(base)) { 335 pr_err("%pOF: Failed to map MMIO region\n", node); 336 return PTR_ERR(base); 337 } 338 339 domain = irq_domain_add_hierarchy(parent_domain, 0, 0, node, 340 &sun6i_r_intc_domain_ops, NULL); 341 if (!domain) { 342 pr_err("%pOF: Failed to allocate domain\n", node); 343 iounmap(base); 344 return -ENOMEM; 345 } 346 347 register_syscore_ops(&sun6i_r_intc_syscore_ops); 348 349 sun6i_r_intc_ack_nmi(); 350 sun6i_r_intc_resume(); 351 352 return 0; 353 } 354 355 static const struct sun6i_r_intc_variant sun6i_a31_r_intc_variant __initconst = { 356 .first_mux_irq = 19, 357 .nr_mux_irqs = 13, 358 .mux_valid = { 0xffffffff, 0xfff80000, 0xffffffff, 0x0000000f }, 359 }; 360 361 static int __init sun6i_a31_r_intc_init(struct device_node *node, 362 struct device_node *parent) 363 { 364 return sun6i_r_intc_init(node, parent, &sun6i_a31_r_intc_variant); 365 } 366 IRQCHIP_DECLARE(sun6i_a31_r_intc, "allwinner,sun6i-a31-r-intc", sun6i_a31_r_intc_init); 367 368 static const struct sun6i_r_intc_variant sun50i_h6_r_intc_variant __initconst = { 369 .first_mux_irq = 21, 370 .nr_mux_irqs = 16, 371 .mux_valid = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }, 372 }; 373 374 static int __init sun50i_h6_r_intc_init(struct device_node *node, 375 struct device_node *parent) 376 { 377 return sun6i_r_intc_init(node, parent, &sun50i_h6_r_intc_variant); 378 } 379 IRQCHIP_DECLARE(sun50i_h6_r_intc, "allwinner,sun50i-h6-r-intc", sun50i_h6_r_intc_init); 380