xref: /openbmc/linux/drivers/irqchip/irq-sifive-plic.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 SiFive
4  * Copyright (C) 2018 Christoph Hellwig
5  */
6 #define pr_fmt(fmt) "plic: " fmt
7 #include <linux/interrupt.h>
8 #include <linux/io.h>
9 #include <linux/irq.h>
10 #include <linux/irqchip.h>
11 #include <linux/irqdomain.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/spinlock.h>
18 #include <asm/smp.h>
19 
20 /*
21  * This driver implements a version of the RISC-V PLIC with the actual layout
22  * specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
23  *
24  *     https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
25  *
26  * The largest number supported by devices marked as 'sifive,plic-1.0.0', is
27  * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
28  * Spec.
29  */
30 
31 #define MAX_DEVICES			1024
32 #define MAX_CONTEXTS			15872
33 
34 /*
35  * Each interrupt source has a priority register associated with it.
36  * We always hardwire it to one in Linux.
37  */
38 #define PRIORITY_BASE			0
39 #define     PRIORITY_PER_ID		4
40 
41 /*
42  * Each hart context has a vector of interrupt enable bits associated with it.
43  * There's one bit for each interrupt source.
44  */
45 #define ENABLE_BASE			0x2000
46 #define     ENABLE_PER_HART		0x80
47 
48 /*
49  * Each hart context has a set of control registers associated with it.  Right
50  * now there's only two: a source priority threshold over which the hart will
51  * take an interrupt, and a register to claim interrupts.
52  */
53 #define CONTEXT_BASE			0x200000
54 #define     CONTEXT_PER_HART		0x1000
55 #define     CONTEXT_THRESHOLD		0x00
56 #define     CONTEXT_CLAIM		0x04
57 
58 static void __iomem *plic_regs;
59 
60 struct plic_handler {
61 	bool			present;
62 	void __iomem		*hart_base;
63 	/*
64 	 * Protect mask operations on the registers given that we can't
65 	 * assume atomic memory operations work on them.
66 	 */
67 	raw_spinlock_t		enable_lock;
68 	void __iomem		*enable_base;
69 };
70 static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
71 
72 static inline void plic_toggle(struct plic_handler *handler,
73 				int hwirq, int enable)
74 {
75 	u32 __iomem *reg = handler->enable_base + (hwirq / 32) * sizeof(u32);
76 	u32 hwirq_mask = 1 << (hwirq % 32);
77 
78 	raw_spin_lock(&handler->enable_lock);
79 	if (enable)
80 		writel(readl(reg) | hwirq_mask, reg);
81 	else
82 		writel(readl(reg) & ~hwirq_mask, reg);
83 	raw_spin_unlock(&handler->enable_lock);
84 }
85 
86 static inline void plic_irq_toggle(const struct cpumask *mask,
87 				   int hwirq, int enable)
88 {
89 	int cpu;
90 
91 	writel(enable, plic_regs + PRIORITY_BASE + hwirq * PRIORITY_PER_ID);
92 	for_each_cpu(cpu, mask) {
93 		struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
94 
95 		if (handler->present)
96 			plic_toggle(handler, hwirq, enable);
97 	}
98 }
99 
100 static void plic_irq_unmask(struct irq_data *d)
101 {
102 	unsigned int cpu = cpumask_any_and(irq_data_get_affinity_mask(d),
103 					   cpu_online_mask);
104 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
105 		return;
106 	plic_irq_toggle(cpumask_of(cpu), d->hwirq, 1);
107 }
108 
109 static void plic_irq_mask(struct irq_data *d)
110 {
111 	plic_irq_toggle(cpu_possible_mask, d->hwirq, 0);
112 }
113 
114 #ifdef CONFIG_SMP
115 static int plic_set_affinity(struct irq_data *d,
116 			     const struct cpumask *mask_val, bool force)
117 {
118 	unsigned int cpu;
119 
120 	if (force)
121 		cpu = cpumask_first(mask_val);
122 	else
123 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
124 
125 	if (cpu >= nr_cpu_ids)
126 		return -EINVAL;
127 
128 	plic_irq_toggle(cpu_possible_mask, d->hwirq, 0);
129 	plic_irq_toggle(cpumask_of(cpu), d->hwirq, 1);
130 
131 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
132 
133 	return IRQ_SET_MASK_OK_DONE;
134 }
135 #endif
136 
137 static void plic_irq_eoi(struct irq_data *d)
138 {
139 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
140 
141 	writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM);
142 }
143 
144 static struct irq_chip plic_chip = {
145 	.name		= "SiFive PLIC",
146 	.irq_mask	= plic_irq_mask,
147 	.irq_unmask	= plic_irq_unmask,
148 	.irq_eoi	= plic_irq_eoi,
149 #ifdef CONFIG_SMP
150 	.irq_set_affinity = plic_set_affinity,
151 #endif
152 };
153 
154 static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
155 			      irq_hw_number_t hwirq)
156 {
157 	irq_set_chip_and_handler(irq, &plic_chip, handle_fasteoi_irq);
158 	irq_set_chip_data(irq, NULL);
159 	irq_set_noprobe(irq);
160 	return 0;
161 }
162 
163 static const struct irq_domain_ops plic_irqdomain_ops = {
164 	.map		= plic_irqdomain_map,
165 	.xlate		= irq_domain_xlate_onecell,
166 };
167 
168 static struct irq_domain *plic_irqdomain;
169 
170 /*
171  * Handling an interrupt is a two-step process: first you claim the interrupt
172  * by reading the claim register, then you complete the interrupt by writing
173  * that source ID back to the same claim register.  This automatically enables
174  * and disables the interrupt, so there's nothing else to do.
175  */
176 static void plic_handle_irq(struct pt_regs *regs)
177 {
178 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
179 	void __iomem *claim = handler->hart_base + CONTEXT_CLAIM;
180 	irq_hw_number_t hwirq;
181 
182 	WARN_ON_ONCE(!handler->present);
183 
184 	csr_clear(CSR_IE, IE_EIE);
185 	while ((hwirq = readl(claim))) {
186 		int irq = irq_find_mapping(plic_irqdomain, hwirq);
187 
188 		if (unlikely(irq <= 0))
189 			pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
190 					hwirq);
191 		else
192 			generic_handle_irq(irq);
193 	}
194 	csr_set(CSR_IE, IE_EIE);
195 }
196 
197 /*
198  * Walk up the DT tree until we find an active RISC-V core (HART) node and
199  * extract the cpuid from it.
200  */
201 static int plic_find_hart_id(struct device_node *node)
202 {
203 	for (; node; node = node->parent) {
204 		if (of_device_is_compatible(node, "riscv"))
205 			return riscv_of_processor_hartid(node);
206 	}
207 
208 	return -1;
209 }
210 
211 static int __init plic_init(struct device_node *node,
212 		struct device_node *parent)
213 {
214 	int error = 0, nr_contexts, nr_handlers = 0, i;
215 	u32 nr_irqs;
216 
217 	if (plic_regs) {
218 		pr_warn("PLIC already present.\n");
219 		return -ENXIO;
220 	}
221 
222 	plic_regs = of_iomap(node, 0);
223 	if (WARN_ON(!plic_regs))
224 		return -EIO;
225 
226 	error = -EINVAL;
227 	of_property_read_u32(node, "riscv,ndev", &nr_irqs);
228 	if (WARN_ON(!nr_irqs))
229 		goto out_iounmap;
230 
231 	nr_contexts = of_irq_count(node);
232 	if (WARN_ON(!nr_contexts))
233 		goto out_iounmap;
234 	if (WARN_ON(nr_contexts < num_possible_cpus()))
235 		goto out_iounmap;
236 
237 	error = -ENOMEM;
238 	plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
239 			&plic_irqdomain_ops, NULL);
240 	if (WARN_ON(!plic_irqdomain))
241 		goto out_iounmap;
242 
243 	for (i = 0; i < nr_contexts; i++) {
244 		struct of_phandle_args parent;
245 		struct plic_handler *handler;
246 		irq_hw_number_t hwirq;
247 		int cpu, hartid;
248 		u32 threshold = 0;
249 
250 		if (of_irq_parse_one(node, i, &parent)) {
251 			pr_err("failed to parse parent for context %d.\n", i);
252 			continue;
253 		}
254 
255 		/*
256 		 * Skip contexts other than external interrupts for our
257 		 * privilege level.
258 		 */
259 		if (parent.args[0] != IRQ_EXT)
260 			continue;
261 
262 		hartid = plic_find_hart_id(parent.np);
263 		if (hartid < 0) {
264 			pr_warn("failed to parse hart ID for context %d.\n", i);
265 			continue;
266 		}
267 
268 		cpu = riscv_hartid_to_cpuid(hartid);
269 		if (cpu < 0) {
270 			pr_warn("Invalid cpuid for context %d\n", i);
271 			continue;
272 		}
273 
274 		/*
275 		 * When running in M-mode we need to ignore the S-mode handler.
276 		 * Here we assume it always comes later, but that might be a
277 		 * little fragile.
278 		 */
279 		handler = per_cpu_ptr(&plic_handlers, cpu);
280 		if (handler->present) {
281 			pr_warn("handler already present for context %d.\n", i);
282 			threshold = 0xffffffff;
283 			goto done;
284 		}
285 
286 		handler->present = true;
287 		handler->hart_base =
288 			plic_regs + CONTEXT_BASE + i * CONTEXT_PER_HART;
289 		raw_spin_lock_init(&handler->enable_lock);
290 		handler->enable_base =
291 			plic_regs + ENABLE_BASE + i * ENABLE_PER_HART;
292 
293 done:
294 		/* priority must be > threshold to trigger an interrupt */
295 		writel(threshold, handler->hart_base + CONTEXT_THRESHOLD);
296 		for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
297 			plic_toggle(handler, hwirq, 0);
298 		nr_handlers++;
299 	}
300 
301 	pr_info("mapped %d interrupts with %d handlers for %d contexts.\n",
302 		nr_irqs, nr_handlers, nr_contexts);
303 	set_handle_irq(plic_handle_irq);
304 	return 0;
305 
306 out_iounmap:
307 	iounmap(plic_regs);
308 	return error;
309 }
310 
311 IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
312 IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
313