xref: /openbmc/linux/drivers/irqchip/irq-sifive-plic.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 SiFive
4  * Copyright (C) 2018 Christoph Hellwig
5  */
6 #define pr_fmt(fmt) "plic: " fmt
7 #include <linux/cpu.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/irq.h>
11 #include <linux/irqchip.h>
12 #include <linux/irqchip/chained_irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/platform_device.h>
19 #include <linux/spinlock.h>
20 #include <asm/smp.h>
21 
22 /*
23  * This driver implements a version of the RISC-V PLIC with the actual layout
24  * specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
25  *
26  *     https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
27  *
28  * The largest number supported by devices marked as 'sifive,plic-1.0.0', is
29  * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
30  * Spec.
31  */
32 
33 #define MAX_DEVICES			1024
34 #define MAX_CONTEXTS			15872
35 
36 /*
37  * Each interrupt source has a priority register associated with it.
38  * We always hardwire it to one in Linux.
39  */
40 #define PRIORITY_BASE			0
41 #define     PRIORITY_PER_ID		4
42 
43 /*
44  * Each hart context has a vector of interrupt enable bits associated with it.
45  * There's one bit for each interrupt source.
46  */
47 #define ENABLE_BASE			0x2000
48 #define     ENABLE_PER_HART		0x80
49 
50 /*
51  * Each hart context has a set of control registers associated with it.  Right
52  * now there's only two: a source priority threshold over which the hart will
53  * take an interrupt, and a register to claim interrupts.
54  */
55 #define CONTEXT_BASE			0x200000
56 #define     CONTEXT_PER_HART		0x1000
57 #define     CONTEXT_THRESHOLD		0x00
58 #define     CONTEXT_CLAIM		0x04
59 
60 #define	PLIC_DISABLE_THRESHOLD		0x7
61 #define	PLIC_ENABLE_THRESHOLD		0
62 
63 struct plic_priv {
64 	struct cpumask lmask;
65 	struct irq_domain *irqdomain;
66 	void __iomem *regs;
67 };
68 
69 struct plic_handler {
70 	bool			present;
71 	void __iomem		*hart_base;
72 	/*
73 	 * Protect mask operations on the registers given that we can't
74 	 * assume atomic memory operations work on them.
75 	 */
76 	raw_spinlock_t		enable_lock;
77 	void __iomem		*enable_base;
78 	struct plic_priv	*priv;
79 };
80 static int plic_parent_irq __ro_after_init;
81 static bool plic_cpuhp_setup_done __ro_after_init;
82 static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
83 
84 static inline void plic_toggle(struct plic_handler *handler,
85 				int hwirq, int enable)
86 {
87 	u32 __iomem *reg = handler->enable_base + (hwirq / 32) * sizeof(u32);
88 	u32 hwirq_mask = 1 << (hwirq % 32);
89 
90 	raw_spin_lock(&handler->enable_lock);
91 	if (enable)
92 		writel(readl(reg) | hwirq_mask, reg);
93 	else
94 		writel(readl(reg) & ~hwirq_mask, reg);
95 	raw_spin_unlock(&handler->enable_lock);
96 }
97 
98 static inline void plic_irq_toggle(const struct cpumask *mask,
99 				   struct irq_data *d, int enable)
100 {
101 	int cpu;
102 	struct plic_priv *priv = irq_data_get_irq_chip_data(d);
103 
104 	writel(enable, priv->regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
105 	for_each_cpu(cpu, mask) {
106 		struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
107 
108 		if (handler->present &&
109 		    cpumask_test_cpu(cpu, &handler->priv->lmask))
110 			plic_toggle(handler, d->hwirq, enable);
111 	}
112 }
113 
114 static void plic_irq_unmask(struct irq_data *d)
115 {
116 	struct cpumask amask;
117 	unsigned int cpu;
118 	struct plic_priv *priv = irq_data_get_irq_chip_data(d);
119 
120 	cpumask_and(&amask, &priv->lmask, cpu_online_mask);
121 	cpu = cpumask_any_and(irq_data_get_affinity_mask(d),
122 					   &amask);
123 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
124 		return;
125 	plic_irq_toggle(cpumask_of(cpu), d, 1);
126 }
127 
128 static void plic_irq_mask(struct irq_data *d)
129 {
130 	struct plic_priv *priv = irq_data_get_irq_chip_data(d);
131 
132 	plic_irq_toggle(&priv->lmask, d, 0);
133 }
134 
135 #ifdef CONFIG_SMP
136 static int plic_set_affinity(struct irq_data *d,
137 			     const struct cpumask *mask_val, bool force)
138 {
139 	unsigned int cpu;
140 	struct cpumask amask;
141 	struct plic_priv *priv = irq_data_get_irq_chip_data(d);
142 
143 	cpumask_and(&amask, &priv->lmask, mask_val);
144 
145 	if (force)
146 		cpu = cpumask_first(&amask);
147 	else
148 		cpu = cpumask_any_and(&amask, cpu_online_mask);
149 
150 	if (cpu >= nr_cpu_ids)
151 		return -EINVAL;
152 
153 	plic_irq_toggle(&priv->lmask, d, 0);
154 	plic_irq_toggle(cpumask_of(cpu), d, !irqd_irq_masked(d));
155 
156 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
157 
158 	return IRQ_SET_MASK_OK_DONE;
159 }
160 #endif
161 
162 static void plic_irq_eoi(struct irq_data *d)
163 {
164 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
165 
166 	if (irqd_irq_masked(d)) {
167 		plic_irq_unmask(d);
168 		writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM);
169 		plic_irq_mask(d);
170 	} else {
171 		writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM);
172 	}
173 }
174 
175 static struct irq_chip plic_chip = {
176 	.name		= "SiFive PLIC",
177 	.irq_mask	= plic_irq_mask,
178 	.irq_unmask	= plic_irq_unmask,
179 	.irq_eoi	= plic_irq_eoi,
180 #ifdef CONFIG_SMP
181 	.irq_set_affinity = plic_set_affinity,
182 #endif
183 };
184 
185 static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
186 			      irq_hw_number_t hwirq)
187 {
188 	struct plic_priv *priv = d->host_data;
189 
190 	irq_domain_set_info(d, irq, hwirq, &plic_chip, d->host_data,
191 			    handle_fasteoi_irq, NULL, NULL);
192 	irq_set_noprobe(irq);
193 	irq_set_affinity(irq, &priv->lmask);
194 	return 0;
195 }
196 
197 static int plic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
198 				 unsigned int nr_irqs, void *arg)
199 {
200 	int i, ret;
201 	irq_hw_number_t hwirq;
202 	unsigned int type;
203 	struct irq_fwspec *fwspec = arg;
204 
205 	ret = irq_domain_translate_onecell(domain, fwspec, &hwirq, &type);
206 	if (ret)
207 		return ret;
208 
209 	for (i = 0; i < nr_irqs; i++) {
210 		ret = plic_irqdomain_map(domain, virq + i, hwirq + i);
211 		if (ret)
212 			return ret;
213 	}
214 
215 	return 0;
216 }
217 
218 static const struct irq_domain_ops plic_irqdomain_ops = {
219 	.translate	= irq_domain_translate_onecell,
220 	.alloc		= plic_irq_domain_alloc,
221 	.free		= irq_domain_free_irqs_top,
222 };
223 
224 /*
225  * Handling an interrupt is a two-step process: first you claim the interrupt
226  * by reading the claim register, then you complete the interrupt by writing
227  * that source ID back to the same claim register.  This automatically enables
228  * and disables the interrupt, so there's nothing else to do.
229  */
230 static void plic_handle_irq(struct irq_desc *desc)
231 {
232 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
233 	struct irq_chip *chip = irq_desc_get_chip(desc);
234 	void __iomem *claim = handler->hart_base + CONTEXT_CLAIM;
235 	irq_hw_number_t hwirq;
236 
237 	WARN_ON_ONCE(!handler->present);
238 
239 	chained_irq_enter(chip, desc);
240 
241 	while ((hwirq = readl(claim))) {
242 		int err = generic_handle_domain_irq(handler->priv->irqdomain,
243 						    hwirq);
244 		if (unlikely(err))
245 			pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
246 					hwirq);
247 	}
248 
249 	chained_irq_exit(chip, desc);
250 }
251 
252 static void plic_set_threshold(struct plic_handler *handler, u32 threshold)
253 {
254 	/* priority must be > threshold to trigger an interrupt */
255 	writel(threshold, handler->hart_base + CONTEXT_THRESHOLD);
256 }
257 
258 static int plic_dying_cpu(unsigned int cpu)
259 {
260 	if (plic_parent_irq)
261 		disable_percpu_irq(plic_parent_irq);
262 
263 	return 0;
264 }
265 
266 static int plic_starting_cpu(unsigned int cpu)
267 {
268 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
269 
270 	if (plic_parent_irq)
271 		enable_percpu_irq(plic_parent_irq,
272 				  irq_get_trigger_type(plic_parent_irq));
273 	else
274 		pr_warn("cpu%d: parent irq not available\n", cpu);
275 	plic_set_threshold(handler, PLIC_ENABLE_THRESHOLD);
276 
277 	return 0;
278 }
279 
280 static int __init plic_init(struct device_node *node,
281 		struct device_node *parent)
282 {
283 	int error = 0, nr_contexts, nr_handlers = 0, i;
284 	u32 nr_irqs;
285 	struct plic_priv *priv;
286 	struct plic_handler *handler;
287 
288 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
289 	if (!priv)
290 		return -ENOMEM;
291 
292 	priv->regs = of_iomap(node, 0);
293 	if (WARN_ON(!priv->regs)) {
294 		error = -EIO;
295 		goto out_free_priv;
296 	}
297 
298 	error = -EINVAL;
299 	of_property_read_u32(node, "riscv,ndev", &nr_irqs);
300 	if (WARN_ON(!nr_irqs))
301 		goto out_iounmap;
302 
303 	nr_contexts = of_irq_count(node);
304 	if (WARN_ON(!nr_contexts))
305 		goto out_iounmap;
306 
307 	error = -ENOMEM;
308 	priv->irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
309 			&plic_irqdomain_ops, priv);
310 	if (WARN_ON(!priv->irqdomain))
311 		goto out_iounmap;
312 
313 	for (i = 0; i < nr_contexts; i++) {
314 		struct of_phandle_args parent;
315 		irq_hw_number_t hwirq;
316 		int cpu, hartid;
317 
318 		if (of_irq_parse_one(node, i, &parent)) {
319 			pr_err("failed to parse parent for context %d.\n", i);
320 			continue;
321 		}
322 
323 		/*
324 		 * Skip contexts other than external interrupts for our
325 		 * privilege level.
326 		 */
327 		if (parent.args[0] != RV_IRQ_EXT)
328 			continue;
329 
330 		hartid = riscv_of_parent_hartid(parent.np);
331 		if (hartid < 0) {
332 			pr_warn("failed to parse hart ID for context %d.\n", i);
333 			continue;
334 		}
335 
336 		cpu = riscv_hartid_to_cpuid(hartid);
337 		if (cpu < 0) {
338 			pr_warn("Invalid cpuid for context %d\n", i);
339 			continue;
340 		}
341 
342 		/* Find parent domain and register chained handler */
343 		if (!plic_parent_irq && irq_find_host(parent.np)) {
344 			plic_parent_irq = irq_of_parse_and_map(node, i);
345 			if (plic_parent_irq)
346 				irq_set_chained_handler(plic_parent_irq,
347 							plic_handle_irq);
348 		}
349 
350 		/*
351 		 * When running in M-mode we need to ignore the S-mode handler.
352 		 * Here we assume it always comes later, but that might be a
353 		 * little fragile.
354 		 */
355 		handler = per_cpu_ptr(&plic_handlers, cpu);
356 		if (handler->present) {
357 			pr_warn("handler already present for context %d.\n", i);
358 			plic_set_threshold(handler, PLIC_DISABLE_THRESHOLD);
359 			goto done;
360 		}
361 
362 		cpumask_set_cpu(cpu, &priv->lmask);
363 		handler->present = true;
364 		handler->hart_base =
365 			priv->regs + CONTEXT_BASE + i * CONTEXT_PER_HART;
366 		raw_spin_lock_init(&handler->enable_lock);
367 		handler->enable_base =
368 			priv->regs + ENABLE_BASE + i * ENABLE_PER_HART;
369 		handler->priv = priv;
370 done:
371 		for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
372 			plic_toggle(handler, hwirq, 0);
373 		nr_handlers++;
374 	}
375 
376 	/*
377 	 * We can have multiple PLIC instances so setup cpuhp state only
378 	 * when context handler for current/boot CPU is present.
379 	 */
380 	handler = this_cpu_ptr(&plic_handlers);
381 	if (handler->present && !plic_cpuhp_setup_done) {
382 		cpuhp_setup_state(CPUHP_AP_IRQ_SIFIVE_PLIC_STARTING,
383 				  "irqchip/sifive/plic:starting",
384 				  plic_starting_cpu, plic_dying_cpu);
385 		plic_cpuhp_setup_done = true;
386 	}
387 
388 	pr_info("%pOFP: mapped %d interrupts with %d handlers for"
389 		" %d contexts.\n", node, nr_irqs, nr_handlers, nr_contexts);
390 	return 0;
391 
392 out_iounmap:
393 	iounmap(priv->regs);
394 out_free_priv:
395 	kfree(priv);
396 	return error;
397 }
398 
399 IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
400 IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
401