xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41 
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 
48 #include "irq-gic-common.h"
49 
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52 
53 static void gic_check_cpu_features(void)
54 {
55 	WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56 			TAINT_CPU_OUT_OF_SPEC,
57 			"GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features()	do { } while(0)
61 #endif
62 
63 union gic_base {
64 	void __iomem *common_base;
65 	void __percpu * __iomem *percpu_base;
66 };
67 
68 struct gic_chip_data {
69 	struct irq_chip chip;
70 	union gic_base dist_base;
71 	union gic_base cpu_base;
72 	void __iomem *raw_dist_base;
73 	void __iomem *raw_cpu_base;
74 	u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 	u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 	u32 __percpu *saved_ppi_enable;
81 	u32 __percpu *saved_ppi_active;
82 	u32 __percpu *saved_ppi_conf;
83 #endif
84 	struct irq_domain *domain;
85 	unsigned int gic_irqs;
86 };
87 
88 #ifdef CONFIG_BL_SWITCHER
89 
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91 
92 #define gic_lock_irqsave(f)		\
93 	raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f)	\
95 	raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96 
97 #define gic_lock()			raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock()			raw_spin_unlock(&cpu_map_lock)
99 
100 #else
101 
102 #define gic_lock_irqsave(f)		do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f)	do { (void)(f); } while(0)
104 
105 #define gic_lock()			do { } while(0)
106 #define gic_unlock()			do { } while(0)
107 
108 #endif
109 
110 /*
111  * The GIC mapping of CPU interfaces does not necessarily match
112  * the logical CPU numbering.  Let's use a mapping as returned
113  * by the GIC itself.
114  */
115 #define NR_GIC_CPU_IF 8
116 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
117 
118 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
119 
120 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
121 
122 static struct gic_kvm_info gic_v2_kvm_info;
123 
124 static DEFINE_PER_CPU(u32, sgi_intid);
125 
126 #ifdef CONFIG_GIC_NON_BANKED
127 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
128 
129 static void enable_frankengic(void)
130 {
131 	static_branch_enable(&frankengic_key);
132 }
133 
134 static inline void __iomem *__get_base(union gic_base *base)
135 {
136 	if (static_branch_unlikely(&frankengic_key))
137 		return raw_cpu_read(*base->percpu_base);
138 
139 	return base->common_base;
140 }
141 
142 #define gic_data_dist_base(d)	__get_base(&(d)->dist_base)
143 #define gic_data_cpu_base(d)	__get_base(&(d)->cpu_base)
144 #else
145 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
146 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
147 #define enable_frankengic()	do { } while(0)
148 #endif
149 
150 static inline void __iomem *gic_dist_base(struct irq_data *d)
151 {
152 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
153 	return gic_data_dist_base(gic_data);
154 }
155 
156 static inline void __iomem *gic_cpu_base(struct irq_data *d)
157 {
158 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
159 	return gic_data_cpu_base(gic_data);
160 }
161 
162 static inline unsigned int gic_irq(struct irq_data *d)
163 {
164 	return d->hwirq;
165 }
166 
167 static inline bool cascading_gic_irq(struct irq_data *d)
168 {
169 	void *data = irq_data_get_irq_handler_data(d);
170 
171 	/*
172 	 * If handler_data is set, this is a cascading interrupt, and
173 	 * it cannot possibly be forwarded.
174 	 */
175 	return data != NULL;
176 }
177 
178 /*
179  * Routines to acknowledge, disable and enable interrupts
180  */
181 static void gic_poke_irq(struct irq_data *d, u32 offset)
182 {
183 	u32 mask = 1 << (gic_irq(d) % 32);
184 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
185 }
186 
187 static int gic_peek_irq(struct irq_data *d, u32 offset)
188 {
189 	u32 mask = 1 << (gic_irq(d) % 32);
190 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
191 }
192 
193 static void gic_mask_irq(struct irq_data *d)
194 {
195 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
196 }
197 
198 static void gic_eoimode1_mask_irq(struct irq_data *d)
199 {
200 	gic_mask_irq(d);
201 	/*
202 	 * When masking a forwarded interrupt, make sure it is
203 	 * deactivated as well.
204 	 *
205 	 * This ensures that an interrupt that is getting
206 	 * disabled/masked will not get "stuck", because there is
207 	 * noone to deactivate it (guest is being terminated).
208 	 */
209 	if (irqd_is_forwarded_to_vcpu(d))
210 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
211 }
212 
213 static void gic_unmask_irq(struct irq_data *d)
214 {
215 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
216 }
217 
218 static void gic_eoi_irq(struct irq_data *d)
219 {
220 	u32 hwirq = gic_irq(d);
221 
222 	if (hwirq < 16)
223 		hwirq = this_cpu_read(sgi_intid);
224 
225 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
226 }
227 
228 static void gic_eoimode1_eoi_irq(struct irq_data *d)
229 {
230 	u32 hwirq = gic_irq(d);
231 
232 	/* Do not deactivate an IRQ forwarded to a vcpu. */
233 	if (irqd_is_forwarded_to_vcpu(d))
234 		return;
235 
236 	if (hwirq < 16)
237 		hwirq = this_cpu_read(sgi_intid);
238 
239 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
240 }
241 
242 static int gic_irq_set_irqchip_state(struct irq_data *d,
243 				     enum irqchip_irq_state which, bool val)
244 {
245 	u32 reg;
246 
247 	switch (which) {
248 	case IRQCHIP_STATE_PENDING:
249 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
250 		break;
251 
252 	case IRQCHIP_STATE_ACTIVE:
253 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
254 		break;
255 
256 	case IRQCHIP_STATE_MASKED:
257 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
258 		break;
259 
260 	default:
261 		return -EINVAL;
262 	}
263 
264 	gic_poke_irq(d, reg);
265 	return 0;
266 }
267 
268 static int gic_irq_get_irqchip_state(struct irq_data *d,
269 				      enum irqchip_irq_state which, bool *val)
270 {
271 	switch (which) {
272 	case IRQCHIP_STATE_PENDING:
273 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
274 		break;
275 
276 	case IRQCHIP_STATE_ACTIVE:
277 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
278 		break;
279 
280 	case IRQCHIP_STATE_MASKED:
281 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
282 		break;
283 
284 	default:
285 		return -EINVAL;
286 	}
287 
288 	return 0;
289 }
290 
291 static int gic_set_type(struct irq_data *d, unsigned int type)
292 {
293 	void __iomem *base = gic_dist_base(d);
294 	unsigned int gicirq = gic_irq(d);
295 	int ret;
296 
297 	/* Interrupt configuration for SGIs can't be changed */
298 	if (gicirq < 16)
299 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
300 
301 	/* SPIs have restrictions on the supported types */
302 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
303 			    type != IRQ_TYPE_EDGE_RISING)
304 		return -EINVAL;
305 
306 	ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
307 	if (ret && gicirq < 32) {
308 		/* Misconfigured PPIs are usually not fatal */
309 		pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
310 		ret = 0;
311 	}
312 
313 	return ret;
314 }
315 
316 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
317 {
318 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
319 	if (cascading_gic_irq(d) || gic_irq(d) < 16)
320 		return -EINVAL;
321 
322 	if (vcpu)
323 		irqd_set_forwarded_to_vcpu(d);
324 	else
325 		irqd_clr_forwarded_to_vcpu(d);
326 	return 0;
327 }
328 
329 static int gic_retrigger(struct irq_data *data)
330 {
331 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
332 }
333 
334 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
335 {
336 	u32 irqstat, irqnr;
337 	struct gic_chip_data *gic = &gic_data[0];
338 	void __iomem *cpu_base = gic_data_cpu_base(gic);
339 
340 	do {
341 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
342 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
343 
344 		if (unlikely(irqnr >= 1020))
345 			break;
346 
347 		if (static_branch_likely(&supports_deactivate_key))
348 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
349 		isb();
350 
351 		/*
352 		 * Ensure any shared data written by the CPU sending the IPI
353 		 * is read after we've read the ACK register on the GIC.
354 		 *
355 		 * Pairs with the write barrier in gic_ipi_send_mask
356 		 */
357 		if (irqnr <= 15) {
358 			smp_rmb();
359 
360 			/*
361 			 * The GIC encodes the source CPU in GICC_IAR,
362 			 * leading to the deactivation to fail if not
363 			 * written back as is to GICC_EOI.  Stash the INTID
364 			 * away for gic_eoi_irq() to write back.  This only
365 			 * works because we don't nest SGIs...
366 			 */
367 			this_cpu_write(sgi_intid, irqstat);
368 		}
369 
370 		handle_domain_irq(gic->domain, irqnr, regs);
371 	} while (1);
372 }
373 
374 static void gic_handle_cascade_irq(struct irq_desc *desc)
375 {
376 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
377 	struct irq_chip *chip = irq_desc_get_chip(desc);
378 	unsigned int cascade_irq, gic_irq;
379 	unsigned long status;
380 
381 	chained_irq_enter(chip, desc);
382 
383 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
384 
385 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
386 	if (gic_irq == GICC_INT_SPURIOUS)
387 		goto out;
388 
389 	cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
390 	if (unlikely(gic_irq < 32 || gic_irq > 1020)) {
391 		handle_bad_irq(desc);
392 	} else {
393 		isb();
394 		generic_handle_irq(cascade_irq);
395 	}
396 
397  out:
398 	chained_irq_exit(chip, desc);
399 }
400 
401 static const struct irq_chip gic_chip = {
402 	.irq_mask		= gic_mask_irq,
403 	.irq_unmask		= gic_unmask_irq,
404 	.irq_eoi		= gic_eoi_irq,
405 	.irq_set_type		= gic_set_type,
406 	.irq_retrigger          = gic_retrigger,
407 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
408 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
409 	.flags			= IRQCHIP_SET_TYPE_MASKED |
410 				  IRQCHIP_SKIP_SET_WAKE |
411 				  IRQCHIP_MASK_ON_SUSPEND,
412 };
413 
414 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
415 {
416 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
417 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
418 					 &gic_data[gic_nr]);
419 }
420 
421 static u8 gic_get_cpumask(struct gic_chip_data *gic)
422 {
423 	void __iomem *base = gic_data_dist_base(gic);
424 	u32 mask, i;
425 
426 	for (i = mask = 0; i < 32; i += 4) {
427 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
428 		mask |= mask >> 16;
429 		mask |= mask >> 8;
430 		if (mask)
431 			break;
432 	}
433 
434 	if (!mask && num_possible_cpus() > 1)
435 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
436 
437 	return mask;
438 }
439 
440 static bool gic_check_gicv2(void __iomem *base)
441 {
442 	u32 val = readl_relaxed(base + GIC_CPU_IDENT);
443 	return (val & 0xff0fff) == 0x02043B;
444 }
445 
446 static void gic_cpu_if_up(struct gic_chip_data *gic)
447 {
448 	void __iomem *cpu_base = gic_data_cpu_base(gic);
449 	u32 bypass = 0;
450 	u32 mode = 0;
451 	int i;
452 
453 	if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
454 		mode = GIC_CPU_CTRL_EOImodeNS;
455 
456 	if (gic_check_gicv2(cpu_base))
457 		for (i = 0; i < 4; i++)
458 			writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
459 
460 	/*
461 	* Preserve bypass disable bits to be written back later
462 	*/
463 	bypass = readl(cpu_base + GIC_CPU_CTRL);
464 	bypass &= GICC_DIS_BYPASS_MASK;
465 
466 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
467 }
468 
469 
470 static void gic_dist_init(struct gic_chip_data *gic)
471 {
472 	unsigned int i;
473 	u32 cpumask;
474 	unsigned int gic_irqs = gic->gic_irqs;
475 	void __iomem *base = gic_data_dist_base(gic);
476 
477 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
478 
479 	/*
480 	 * Set all global interrupts to this CPU only.
481 	 */
482 	cpumask = gic_get_cpumask(gic);
483 	cpumask |= cpumask << 8;
484 	cpumask |= cpumask << 16;
485 	for (i = 32; i < gic_irqs; i += 4)
486 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
487 
488 	gic_dist_config(base, gic_irqs, NULL);
489 
490 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
491 }
492 
493 static int gic_cpu_init(struct gic_chip_data *gic)
494 {
495 	void __iomem *dist_base = gic_data_dist_base(gic);
496 	void __iomem *base = gic_data_cpu_base(gic);
497 	unsigned int cpu_mask, cpu = smp_processor_id();
498 	int i;
499 
500 	/*
501 	 * Setting up the CPU map is only relevant for the primary GIC
502 	 * because any nested/secondary GICs do not directly interface
503 	 * with the CPU(s).
504 	 */
505 	if (gic == &gic_data[0]) {
506 		/*
507 		 * Get what the GIC says our CPU mask is.
508 		 */
509 		if (WARN_ON(cpu >= NR_GIC_CPU_IF))
510 			return -EINVAL;
511 
512 		gic_check_cpu_features();
513 		cpu_mask = gic_get_cpumask(gic);
514 		gic_cpu_map[cpu] = cpu_mask;
515 
516 		/*
517 		 * Clear our mask from the other map entries in case they're
518 		 * still undefined.
519 		 */
520 		for (i = 0; i < NR_GIC_CPU_IF; i++)
521 			if (i != cpu)
522 				gic_cpu_map[i] &= ~cpu_mask;
523 	}
524 
525 	gic_cpu_config(dist_base, 32, NULL);
526 
527 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
528 	gic_cpu_if_up(gic);
529 
530 	return 0;
531 }
532 
533 int gic_cpu_if_down(unsigned int gic_nr)
534 {
535 	void __iomem *cpu_base;
536 	u32 val = 0;
537 
538 	if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
539 		return -EINVAL;
540 
541 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
542 	val = readl(cpu_base + GIC_CPU_CTRL);
543 	val &= ~GICC_ENABLE;
544 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
545 
546 	return 0;
547 }
548 
549 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
550 /*
551  * Saves the GIC distributor registers during suspend or idle.  Must be called
552  * with interrupts disabled but before powering down the GIC.  After calling
553  * this function, no interrupts will be delivered by the GIC, and another
554  * platform-specific wakeup source must be enabled.
555  */
556 void gic_dist_save(struct gic_chip_data *gic)
557 {
558 	unsigned int gic_irqs;
559 	void __iomem *dist_base;
560 	int i;
561 
562 	if (WARN_ON(!gic))
563 		return;
564 
565 	gic_irqs = gic->gic_irqs;
566 	dist_base = gic_data_dist_base(gic);
567 
568 	if (!dist_base)
569 		return;
570 
571 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
572 		gic->saved_spi_conf[i] =
573 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
574 
575 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
576 		gic->saved_spi_target[i] =
577 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
578 
579 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
580 		gic->saved_spi_enable[i] =
581 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
582 
583 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
584 		gic->saved_spi_active[i] =
585 			readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
586 }
587 
588 /*
589  * Restores the GIC distributor registers during resume or when coming out of
590  * idle.  Must be called before enabling interrupts.  If a level interrupt
591  * that occurred while the GIC was suspended is still present, it will be
592  * handled normally, but any edge interrupts that occurred will not be seen by
593  * the GIC and need to be handled by the platform-specific wakeup source.
594  */
595 void gic_dist_restore(struct gic_chip_data *gic)
596 {
597 	unsigned int gic_irqs;
598 	unsigned int i;
599 	void __iomem *dist_base;
600 
601 	if (WARN_ON(!gic))
602 		return;
603 
604 	gic_irqs = gic->gic_irqs;
605 	dist_base = gic_data_dist_base(gic);
606 
607 	if (!dist_base)
608 		return;
609 
610 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
611 
612 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
613 		writel_relaxed(gic->saved_spi_conf[i],
614 			dist_base + GIC_DIST_CONFIG + i * 4);
615 
616 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
617 		writel_relaxed(GICD_INT_DEF_PRI_X4,
618 			dist_base + GIC_DIST_PRI + i * 4);
619 
620 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
621 		writel_relaxed(gic->saved_spi_target[i],
622 			dist_base + GIC_DIST_TARGET + i * 4);
623 
624 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
625 		writel_relaxed(GICD_INT_EN_CLR_X32,
626 			dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
627 		writel_relaxed(gic->saved_spi_enable[i],
628 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
629 	}
630 
631 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
632 		writel_relaxed(GICD_INT_EN_CLR_X32,
633 			dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
634 		writel_relaxed(gic->saved_spi_active[i],
635 			dist_base + GIC_DIST_ACTIVE_SET + i * 4);
636 	}
637 
638 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
639 }
640 
641 void gic_cpu_save(struct gic_chip_data *gic)
642 {
643 	int i;
644 	u32 *ptr;
645 	void __iomem *dist_base;
646 	void __iomem *cpu_base;
647 
648 	if (WARN_ON(!gic))
649 		return;
650 
651 	dist_base = gic_data_dist_base(gic);
652 	cpu_base = gic_data_cpu_base(gic);
653 
654 	if (!dist_base || !cpu_base)
655 		return;
656 
657 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
658 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
659 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
660 
661 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
662 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
663 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
664 
665 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
666 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
667 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
668 
669 }
670 
671 void gic_cpu_restore(struct gic_chip_data *gic)
672 {
673 	int i;
674 	u32 *ptr;
675 	void __iomem *dist_base;
676 	void __iomem *cpu_base;
677 
678 	if (WARN_ON(!gic))
679 		return;
680 
681 	dist_base = gic_data_dist_base(gic);
682 	cpu_base = gic_data_cpu_base(gic);
683 
684 	if (!dist_base || !cpu_base)
685 		return;
686 
687 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
688 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
689 		writel_relaxed(GICD_INT_EN_CLR_X32,
690 			       dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
691 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
692 	}
693 
694 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
695 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
696 		writel_relaxed(GICD_INT_EN_CLR_X32,
697 			       dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
698 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
699 	}
700 
701 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
702 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
703 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
704 
705 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
706 		writel_relaxed(GICD_INT_DEF_PRI_X4,
707 					dist_base + GIC_DIST_PRI + i * 4);
708 
709 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
710 	gic_cpu_if_up(gic);
711 }
712 
713 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
714 {
715 	int i;
716 
717 	for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
718 		switch (cmd) {
719 		case CPU_PM_ENTER:
720 			gic_cpu_save(&gic_data[i]);
721 			break;
722 		case CPU_PM_ENTER_FAILED:
723 		case CPU_PM_EXIT:
724 			gic_cpu_restore(&gic_data[i]);
725 			break;
726 		case CPU_CLUSTER_PM_ENTER:
727 			gic_dist_save(&gic_data[i]);
728 			break;
729 		case CPU_CLUSTER_PM_ENTER_FAILED:
730 		case CPU_CLUSTER_PM_EXIT:
731 			gic_dist_restore(&gic_data[i]);
732 			break;
733 		}
734 	}
735 
736 	return NOTIFY_OK;
737 }
738 
739 static struct notifier_block gic_notifier_block = {
740 	.notifier_call = gic_notifier,
741 };
742 
743 static int gic_pm_init(struct gic_chip_data *gic)
744 {
745 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
746 		sizeof(u32));
747 	if (WARN_ON(!gic->saved_ppi_enable))
748 		return -ENOMEM;
749 
750 	gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
751 		sizeof(u32));
752 	if (WARN_ON(!gic->saved_ppi_active))
753 		goto free_ppi_enable;
754 
755 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
756 		sizeof(u32));
757 	if (WARN_ON(!gic->saved_ppi_conf))
758 		goto free_ppi_active;
759 
760 	if (gic == &gic_data[0])
761 		cpu_pm_register_notifier(&gic_notifier_block);
762 
763 	return 0;
764 
765 free_ppi_active:
766 	free_percpu(gic->saved_ppi_active);
767 free_ppi_enable:
768 	free_percpu(gic->saved_ppi_enable);
769 
770 	return -ENOMEM;
771 }
772 #else
773 static int gic_pm_init(struct gic_chip_data *gic)
774 {
775 	return 0;
776 }
777 #endif
778 
779 #ifdef CONFIG_SMP
780 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
781 			    bool force)
782 {
783 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
784 	unsigned int cpu;
785 
786 	if (!force)
787 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
788 	else
789 		cpu = cpumask_first(mask_val);
790 
791 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
792 		return -EINVAL;
793 
794 	writeb_relaxed(gic_cpu_map[cpu], reg);
795 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
796 
797 	return IRQ_SET_MASK_OK_DONE;
798 }
799 
800 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
801 {
802 	int cpu;
803 	unsigned long flags, map = 0;
804 
805 	if (unlikely(nr_cpu_ids == 1)) {
806 		/* Only one CPU? let's do a self-IPI... */
807 		writel_relaxed(2 << 24 | d->hwirq,
808 			       gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
809 		return;
810 	}
811 
812 	gic_lock_irqsave(flags);
813 
814 	/* Convert our logical CPU mask into a physical one. */
815 	for_each_cpu(cpu, mask)
816 		map |= gic_cpu_map[cpu];
817 
818 	/*
819 	 * Ensure that stores to Normal memory are visible to the
820 	 * other CPUs before they observe us issuing the IPI.
821 	 */
822 	dmb(ishst);
823 
824 	/* this always happens on GIC0 */
825 	writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
826 
827 	gic_unlock_irqrestore(flags);
828 }
829 
830 static int gic_starting_cpu(unsigned int cpu)
831 {
832 	gic_cpu_init(&gic_data[0]);
833 	return 0;
834 }
835 
836 static __init void gic_smp_init(void)
837 {
838 	struct irq_fwspec sgi_fwspec = {
839 		.fwnode		= gic_data[0].domain->fwnode,
840 		.param_count	= 1,
841 	};
842 	int base_sgi;
843 
844 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
845 				  "irqchip/arm/gic:starting",
846 				  gic_starting_cpu, NULL);
847 
848 	base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
849 					   NUMA_NO_NODE, &sgi_fwspec,
850 					   false, NULL);
851 	if (WARN_ON(base_sgi <= 0))
852 		return;
853 
854 	set_smp_ipi_range(base_sgi, 8);
855 }
856 #else
857 #define gic_smp_init()		do { } while(0)
858 #define gic_set_affinity	NULL
859 #define gic_ipi_send_mask	NULL
860 #endif
861 
862 #ifdef CONFIG_BL_SWITCHER
863 /*
864  * gic_send_sgi - send a SGI directly to given CPU interface number
865  *
866  * cpu_id: the ID for the destination CPU interface
867  * irq: the IPI number to send a SGI for
868  */
869 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
870 {
871 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
872 	cpu_id = 1 << cpu_id;
873 	/* this always happens on GIC0 */
874 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
875 }
876 
877 /*
878  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
879  *
880  * @cpu: the logical CPU number to get the GIC ID for.
881  *
882  * Return the CPU interface ID for the given logical CPU number,
883  * or -1 if the CPU number is too large or the interface ID is
884  * unknown (more than one bit set).
885  */
886 int gic_get_cpu_id(unsigned int cpu)
887 {
888 	unsigned int cpu_bit;
889 
890 	if (cpu >= NR_GIC_CPU_IF)
891 		return -1;
892 	cpu_bit = gic_cpu_map[cpu];
893 	if (cpu_bit & (cpu_bit - 1))
894 		return -1;
895 	return __ffs(cpu_bit);
896 }
897 
898 /*
899  * gic_migrate_target - migrate IRQs to another CPU interface
900  *
901  * @new_cpu_id: the CPU target ID to migrate IRQs to
902  *
903  * Migrate all peripheral interrupts with a target matching the current CPU
904  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
905  * is also updated.  Targets to other CPU interfaces are unchanged.
906  * This must be called with IRQs locally disabled.
907  */
908 void gic_migrate_target(unsigned int new_cpu_id)
909 {
910 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
911 	void __iomem *dist_base;
912 	int i, ror_val, cpu = smp_processor_id();
913 	u32 val, cur_target_mask, active_mask;
914 
915 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
916 
917 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
918 	if (!dist_base)
919 		return;
920 	gic_irqs = gic_data[gic_nr].gic_irqs;
921 
922 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
923 	cur_target_mask = 0x01010101 << cur_cpu_id;
924 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
925 
926 	gic_lock();
927 
928 	/* Update the target interface for this logical CPU */
929 	gic_cpu_map[cpu] = 1 << new_cpu_id;
930 
931 	/*
932 	 * Find all the peripheral interrupts targeting the current
933 	 * CPU interface and migrate them to the new CPU interface.
934 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
935 	 */
936 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
937 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
938 		active_mask = val & cur_target_mask;
939 		if (active_mask) {
940 			val &= ~active_mask;
941 			val |= ror32(active_mask, ror_val);
942 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
943 		}
944 	}
945 
946 	gic_unlock();
947 
948 	/*
949 	 * Now let's migrate and clear any potential SGIs that might be
950 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
951 	 * is a banked register, we can only forward the SGI using
952 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
953 	 * doesn't use that information anyway.
954 	 *
955 	 * For the same reason we do not adjust SGI source information
956 	 * for previously sent SGIs by us to other CPUs either.
957 	 */
958 	for (i = 0; i < 16; i += 4) {
959 		int j;
960 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
961 		if (!val)
962 			continue;
963 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
964 		for (j = i; j < i + 4; j++) {
965 			if (val & 0xff)
966 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
967 						dist_base + GIC_DIST_SOFTINT);
968 			val >>= 8;
969 		}
970 	}
971 }
972 
973 /*
974  * gic_get_sgir_physaddr - get the physical address for the SGI register
975  *
976  * REturn the physical address of the SGI register to be used
977  * by some early assembly code when the kernel is not yet available.
978  */
979 static unsigned long gic_dist_physaddr;
980 
981 unsigned long gic_get_sgir_physaddr(void)
982 {
983 	if (!gic_dist_physaddr)
984 		return 0;
985 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
986 }
987 
988 static void __init gic_init_physaddr(struct device_node *node)
989 {
990 	struct resource res;
991 	if (of_address_to_resource(node, 0, &res) == 0) {
992 		gic_dist_physaddr = res.start;
993 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
994 	}
995 }
996 
997 #else
998 #define gic_init_physaddr(node)  do { } while (0)
999 #endif
1000 
1001 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1002 				irq_hw_number_t hw)
1003 {
1004 	struct gic_chip_data *gic = d->host_data;
1005 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1006 
1007 	switch (hw) {
1008 	case 0 ... 15:
1009 		irq_set_percpu_devid(irq);
1010 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1011 				    handle_percpu_devid_fasteoi_ipi,
1012 				    NULL, NULL);
1013 		break;
1014 	case 16 ... 31:
1015 		irq_set_percpu_devid(irq);
1016 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1017 				    handle_percpu_devid_irq, NULL, NULL);
1018 		break;
1019 	default:
1020 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1021 				    handle_fasteoi_irq, NULL, NULL);
1022 		irq_set_probe(irq);
1023 		irqd_set_single_target(irqd);
1024 		break;
1025 	}
1026 
1027 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1028 	irqd_set_handle_enforce_irqctx(irqd);
1029 	return 0;
1030 }
1031 
1032 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1033 {
1034 }
1035 
1036 static int gic_irq_domain_translate(struct irq_domain *d,
1037 				    struct irq_fwspec *fwspec,
1038 				    unsigned long *hwirq,
1039 				    unsigned int *type)
1040 {
1041 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1042 		*hwirq = fwspec->param[0];
1043 		*type = IRQ_TYPE_EDGE_RISING;
1044 		return 0;
1045 	}
1046 
1047 	if (is_of_node(fwspec->fwnode)) {
1048 		if (fwspec->param_count < 3)
1049 			return -EINVAL;
1050 
1051 		switch (fwspec->param[0]) {
1052 		case 0:			/* SPI */
1053 			*hwirq = fwspec->param[1] + 32;
1054 			break;
1055 		case 1:			/* PPI */
1056 			*hwirq = fwspec->param[1] + 16;
1057 			break;
1058 		default:
1059 			return -EINVAL;
1060 		}
1061 
1062 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1063 
1064 		/* Make it clear that broken DTs are... broken */
1065 		WARN_ON(*type == IRQ_TYPE_NONE);
1066 		return 0;
1067 	}
1068 
1069 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1070 		if(fwspec->param_count != 2)
1071 			return -EINVAL;
1072 
1073 		*hwirq = fwspec->param[0];
1074 		*type = fwspec->param[1];
1075 
1076 		WARN_ON(*type == IRQ_TYPE_NONE);
1077 		return 0;
1078 	}
1079 
1080 	return -EINVAL;
1081 }
1082 
1083 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1084 				unsigned int nr_irqs, void *arg)
1085 {
1086 	int i, ret;
1087 	irq_hw_number_t hwirq;
1088 	unsigned int type = IRQ_TYPE_NONE;
1089 	struct irq_fwspec *fwspec = arg;
1090 
1091 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1092 	if (ret)
1093 		return ret;
1094 
1095 	for (i = 0; i < nr_irqs; i++) {
1096 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1097 		if (ret)
1098 			return ret;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1105 	.translate = gic_irq_domain_translate,
1106 	.alloc = gic_irq_domain_alloc,
1107 	.free = irq_domain_free_irqs_top,
1108 };
1109 
1110 static const struct irq_domain_ops gic_irq_domain_ops = {
1111 	.map = gic_irq_domain_map,
1112 	.unmap = gic_irq_domain_unmap,
1113 };
1114 
1115 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1116 			  const char *name, bool use_eoimode1)
1117 {
1118 	/* Initialize irq_chip */
1119 	gic->chip = gic_chip;
1120 	gic->chip.name = name;
1121 	gic->chip.parent_device = dev;
1122 
1123 	if (use_eoimode1) {
1124 		gic->chip.irq_mask = gic_eoimode1_mask_irq;
1125 		gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1126 		gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1127 	}
1128 
1129 	if (gic == &gic_data[0]) {
1130 		gic->chip.irq_set_affinity = gic_set_affinity;
1131 		gic->chip.ipi_send_mask = gic_ipi_send_mask;
1132 	}
1133 }
1134 
1135 static int gic_init_bases(struct gic_chip_data *gic,
1136 			  struct fwnode_handle *handle)
1137 {
1138 	int gic_irqs, ret;
1139 
1140 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1141 		/* Frankein-GIC without banked registers... */
1142 		unsigned int cpu;
1143 
1144 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1145 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1146 		if (WARN_ON(!gic->dist_base.percpu_base ||
1147 			    !gic->cpu_base.percpu_base)) {
1148 			ret = -ENOMEM;
1149 			goto error;
1150 		}
1151 
1152 		for_each_possible_cpu(cpu) {
1153 			u32 mpidr = cpu_logical_map(cpu);
1154 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1155 			unsigned long offset = gic->percpu_offset * core_id;
1156 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1157 				gic->raw_dist_base + offset;
1158 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1159 				gic->raw_cpu_base + offset;
1160 		}
1161 
1162 		enable_frankengic();
1163 	} else {
1164 		/* Normal, sane GIC... */
1165 		WARN(gic->percpu_offset,
1166 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1167 		     gic->percpu_offset);
1168 		gic->dist_base.common_base = gic->raw_dist_base;
1169 		gic->cpu_base.common_base = gic->raw_cpu_base;
1170 	}
1171 
1172 	/*
1173 	 * Find out how many interrupts are supported.
1174 	 * The GIC only supports up to 1020 interrupt sources.
1175 	 */
1176 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1177 	gic_irqs = (gic_irqs + 1) * 32;
1178 	if (gic_irqs > 1020)
1179 		gic_irqs = 1020;
1180 	gic->gic_irqs = gic_irqs;
1181 
1182 	if (handle) {		/* DT/ACPI */
1183 		gic->domain = irq_domain_create_linear(handle, gic_irqs,
1184 						       &gic_irq_domain_hierarchy_ops,
1185 						       gic);
1186 	} else {		/* Legacy support */
1187 		/*
1188 		 * For primary GICs, skip over SGIs.
1189 		 * No secondary GIC support whatsoever.
1190 		 */
1191 		int irq_base;
1192 
1193 		gic_irqs -= 16; /* calculate # of irqs to allocate */
1194 
1195 		irq_base = irq_alloc_descs(16, 16, gic_irqs,
1196 					   numa_node_id());
1197 		if (irq_base < 0) {
1198 			WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1199 			irq_base = 16;
1200 		}
1201 
1202 		gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1203 						    16, &gic_irq_domain_ops, gic);
1204 	}
1205 
1206 	if (WARN_ON(!gic->domain)) {
1207 		ret = -ENODEV;
1208 		goto error;
1209 	}
1210 
1211 	gic_dist_init(gic);
1212 	ret = gic_cpu_init(gic);
1213 	if (ret)
1214 		goto error;
1215 
1216 	ret = gic_pm_init(gic);
1217 	if (ret)
1218 		goto error;
1219 
1220 	return 0;
1221 
1222 error:
1223 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1224 		free_percpu(gic->dist_base.percpu_base);
1225 		free_percpu(gic->cpu_base.percpu_base);
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 static int __init __gic_init_bases(struct gic_chip_data *gic,
1232 				   struct fwnode_handle *handle)
1233 {
1234 	char *name;
1235 	int i, ret;
1236 
1237 	if (WARN_ON(!gic || gic->domain))
1238 		return -EINVAL;
1239 
1240 	if (gic == &gic_data[0]) {
1241 		/*
1242 		 * Initialize the CPU interface map to all CPUs.
1243 		 * It will be refined as each CPU probes its ID.
1244 		 * This is only necessary for the primary GIC.
1245 		 */
1246 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1247 			gic_cpu_map[i] = 0xff;
1248 
1249 		set_handle_irq(gic_handle_irq);
1250 		if (static_branch_likely(&supports_deactivate_key))
1251 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1252 	}
1253 
1254 	if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1255 		name = kasprintf(GFP_KERNEL, "GICv2");
1256 		gic_init_chip(gic, NULL, name, true);
1257 	} else {
1258 		name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1259 		gic_init_chip(gic, NULL, name, false);
1260 	}
1261 
1262 	ret = gic_init_bases(gic, handle);
1263 	if (ret)
1264 		kfree(name);
1265 	else if (gic == &gic_data[0])
1266 		gic_smp_init();
1267 
1268 	return ret;
1269 }
1270 
1271 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1272 {
1273 	struct gic_chip_data *gic;
1274 
1275 	/*
1276 	 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1277 	 * bother with these...
1278 	 */
1279 	static_branch_disable(&supports_deactivate_key);
1280 
1281 	gic = &gic_data[0];
1282 	gic->raw_dist_base = dist_base;
1283 	gic->raw_cpu_base = cpu_base;
1284 
1285 	__gic_init_bases(gic, NULL);
1286 }
1287 
1288 static void gic_teardown(struct gic_chip_data *gic)
1289 {
1290 	if (WARN_ON(!gic))
1291 		return;
1292 
1293 	if (gic->raw_dist_base)
1294 		iounmap(gic->raw_dist_base);
1295 	if (gic->raw_cpu_base)
1296 		iounmap(gic->raw_cpu_base);
1297 }
1298 
1299 #ifdef CONFIG_OF
1300 static int gic_cnt __initdata;
1301 static bool gicv2_force_probe;
1302 
1303 static int __init gicv2_force_probe_cfg(char *buf)
1304 {
1305 	return strtobool(buf, &gicv2_force_probe);
1306 }
1307 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1308 
1309 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1310 {
1311 	struct resource cpuif_res;
1312 
1313 	of_address_to_resource(node, 1, &cpuif_res);
1314 
1315 	if (!is_hyp_mode_available())
1316 		return false;
1317 	if (resource_size(&cpuif_res) < SZ_8K) {
1318 		void __iomem *alt;
1319 		/*
1320 		 * Check for a stupid firmware that only exposes the
1321 		 * first page of a GICv2.
1322 		 */
1323 		if (!gic_check_gicv2(*base))
1324 			return false;
1325 
1326 		if (!gicv2_force_probe) {
1327 			pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1328 			return false;
1329 		}
1330 
1331 		alt = ioremap(cpuif_res.start, SZ_8K);
1332 		if (!alt)
1333 			return false;
1334 		if (!gic_check_gicv2(alt + SZ_4K)) {
1335 			/*
1336 			 * The first page was that of a GICv2, and
1337 			 * the second was *something*. Let's trust it
1338 			 * to be a GICv2, and update the mapping.
1339 			 */
1340 			pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1341 				&cpuif_res.start);
1342 			iounmap(*base);
1343 			*base = alt;
1344 			return true;
1345 		}
1346 
1347 		/*
1348 		 * We detected *two* initial GICv2 pages in a
1349 		 * row. Could be a GICv2 aliased over two 64kB
1350 		 * pages. Update the resource, map the iospace, and
1351 		 * pray.
1352 		 */
1353 		iounmap(alt);
1354 		alt = ioremap(cpuif_res.start, SZ_128K);
1355 		if (!alt)
1356 			return false;
1357 		pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1358 			&cpuif_res.start);
1359 		cpuif_res.end = cpuif_res.start + SZ_128K -1;
1360 		iounmap(*base);
1361 		*base = alt;
1362 	}
1363 	if (resource_size(&cpuif_res) == SZ_128K) {
1364 		/*
1365 		 * Verify that we have the first 4kB of a GICv2
1366 		 * aliased over the first 64kB by checking the
1367 		 * GICC_IIDR register on both ends.
1368 		 */
1369 		if (!gic_check_gicv2(*base) ||
1370 		    !gic_check_gicv2(*base + 0xf000))
1371 			return false;
1372 
1373 		/*
1374 		 * Move the base up by 60kB, so that we have a 8kB
1375 		 * contiguous region, which allows us to use GICC_DIR
1376 		 * at its normal offset. Please pass me that bucket.
1377 		 */
1378 		*base += 0xf000;
1379 		cpuif_res.start += 0xf000;
1380 		pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1381 			&cpuif_res.start);
1382 	}
1383 
1384 	return true;
1385 }
1386 
1387 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1388 {
1389 	if (!gic || !node)
1390 		return -EINVAL;
1391 
1392 	gic->raw_dist_base = of_iomap(node, 0);
1393 	if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1394 		goto error;
1395 
1396 	gic->raw_cpu_base = of_iomap(node, 1);
1397 	if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1398 		goto error;
1399 
1400 	if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1401 		gic->percpu_offset = 0;
1402 
1403 	return 0;
1404 
1405 error:
1406 	gic_teardown(gic);
1407 
1408 	return -ENOMEM;
1409 }
1410 
1411 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1412 {
1413 	int ret;
1414 
1415 	if (!dev || !dev->of_node || !gic || !irq)
1416 		return -EINVAL;
1417 
1418 	*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1419 	if (!*gic)
1420 		return -ENOMEM;
1421 
1422 	gic_init_chip(*gic, dev, dev->of_node->name, false);
1423 
1424 	ret = gic_of_setup(*gic, dev->of_node);
1425 	if (ret)
1426 		return ret;
1427 
1428 	ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1429 	if (ret) {
1430 		gic_teardown(*gic);
1431 		return ret;
1432 	}
1433 
1434 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1435 
1436 	return 0;
1437 }
1438 
1439 static void __init gic_of_setup_kvm_info(struct device_node *node)
1440 {
1441 	int ret;
1442 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1443 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1444 
1445 	gic_v2_kvm_info.type = GIC_V2;
1446 
1447 	gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1448 	if (!gic_v2_kvm_info.maint_irq)
1449 		return;
1450 
1451 	ret = of_address_to_resource(node, 2, vctrl_res);
1452 	if (ret)
1453 		return;
1454 
1455 	ret = of_address_to_resource(node, 3, vcpu_res);
1456 	if (ret)
1457 		return;
1458 
1459 	if (static_branch_likely(&supports_deactivate_key))
1460 		gic_set_kvm_info(&gic_v2_kvm_info);
1461 }
1462 
1463 int __init
1464 gic_of_init(struct device_node *node, struct device_node *parent)
1465 {
1466 	struct gic_chip_data *gic;
1467 	int irq, ret;
1468 
1469 	if (WARN_ON(!node))
1470 		return -ENODEV;
1471 
1472 	if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1473 		return -EINVAL;
1474 
1475 	gic = &gic_data[gic_cnt];
1476 
1477 	ret = gic_of_setup(gic, node);
1478 	if (ret)
1479 		return ret;
1480 
1481 	/*
1482 	 * Disable split EOI/Deactivate if either HYP is not available
1483 	 * or the CPU interface is too small.
1484 	 */
1485 	if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1486 		static_branch_disable(&supports_deactivate_key);
1487 
1488 	ret = __gic_init_bases(gic, &node->fwnode);
1489 	if (ret) {
1490 		gic_teardown(gic);
1491 		return ret;
1492 	}
1493 
1494 	if (!gic_cnt) {
1495 		gic_init_physaddr(node);
1496 		gic_of_setup_kvm_info(node);
1497 	}
1498 
1499 	if (parent) {
1500 		irq = irq_of_parse_and_map(node, 0);
1501 		gic_cascade_irq(gic_cnt, irq);
1502 	}
1503 
1504 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1505 		gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1506 
1507 	gic_cnt++;
1508 	return 0;
1509 }
1510 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1511 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1512 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1513 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1514 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1515 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1516 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1517 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1518 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1519 #else
1520 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1521 {
1522 	return -ENOTSUPP;
1523 }
1524 #endif
1525 
1526 #ifdef CONFIG_ACPI
1527 static struct
1528 {
1529 	phys_addr_t cpu_phys_base;
1530 	u32 maint_irq;
1531 	int maint_irq_mode;
1532 	phys_addr_t vctrl_base;
1533 	phys_addr_t vcpu_base;
1534 } acpi_data __initdata;
1535 
1536 static int __init
1537 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1538 			const unsigned long end)
1539 {
1540 	struct acpi_madt_generic_interrupt *processor;
1541 	phys_addr_t gic_cpu_base;
1542 	static int cpu_base_assigned;
1543 
1544 	processor = (struct acpi_madt_generic_interrupt *)header;
1545 
1546 	if (BAD_MADT_GICC_ENTRY(processor, end))
1547 		return -EINVAL;
1548 
1549 	/*
1550 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1551 	 * All CPU interface addresses have to be the same.
1552 	 */
1553 	gic_cpu_base = processor->base_address;
1554 	if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1555 		return -EINVAL;
1556 
1557 	acpi_data.cpu_phys_base = gic_cpu_base;
1558 	acpi_data.maint_irq = processor->vgic_interrupt;
1559 	acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1560 				    ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1561 	acpi_data.vctrl_base = processor->gich_base_address;
1562 	acpi_data.vcpu_base = processor->gicv_base_address;
1563 
1564 	cpu_base_assigned = 1;
1565 	return 0;
1566 }
1567 
1568 /* The things you have to do to just *count* something... */
1569 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1570 				  const unsigned long end)
1571 {
1572 	return 0;
1573 }
1574 
1575 static bool __init acpi_gic_redist_is_present(void)
1576 {
1577 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1578 				     acpi_dummy_func, 0) > 0;
1579 }
1580 
1581 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1582 				     struct acpi_probe_entry *ape)
1583 {
1584 	struct acpi_madt_generic_distributor *dist;
1585 	dist = (struct acpi_madt_generic_distributor *)header;
1586 
1587 	return (dist->version == ape->driver_data &&
1588 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1589 		 !acpi_gic_redist_is_present()));
1590 }
1591 
1592 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1593 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1594 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
1595 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
1596 
1597 static void __init gic_acpi_setup_kvm_info(void)
1598 {
1599 	int irq;
1600 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1601 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1602 
1603 	gic_v2_kvm_info.type = GIC_V2;
1604 
1605 	if (!acpi_data.vctrl_base)
1606 		return;
1607 
1608 	vctrl_res->flags = IORESOURCE_MEM;
1609 	vctrl_res->start = acpi_data.vctrl_base;
1610 	vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1611 
1612 	if (!acpi_data.vcpu_base)
1613 		return;
1614 
1615 	vcpu_res->flags = IORESOURCE_MEM;
1616 	vcpu_res->start = acpi_data.vcpu_base;
1617 	vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1618 
1619 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1620 				acpi_data.maint_irq_mode,
1621 				ACPI_ACTIVE_HIGH);
1622 	if (irq <= 0)
1623 		return;
1624 
1625 	gic_v2_kvm_info.maint_irq = irq;
1626 
1627 	gic_set_kvm_info(&gic_v2_kvm_info);
1628 }
1629 
1630 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1631 				   const unsigned long end)
1632 {
1633 	struct acpi_madt_generic_distributor *dist;
1634 	struct fwnode_handle *domain_handle;
1635 	struct gic_chip_data *gic = &gic_data[0];
1636 	int count, ret;
1637 
1638 	/* Collect CPU base addresses */
1639 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1640 				      gic_acpi_parse_madt_cpu, 0);
1641 	if (count <= 0) {
1642 		pr_err("No valid GICC entries exist\n");
1643 		return -EINVAL;
1644 	}
1645 
1646 	gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1647 	if (!gic->raw_cpu_base) {
1648 		pr_err("Unable to map GICC registers\n");
1649 		return -ENOMEM;
1650 	}
1651 
1652 	dist = (struct acpi_madt_generic_distributor *)header;
1653 	gic->raw_dist_base = ioremap(dist->base_address,
1654 				     ACPI_GICV2_DIST_MEM_SIZE);
1655 	if (!gic->raw_dist_base) {
1656 		pr_err("Unable to map GICD registers\n");
1657 		gic_teardown(gic);
1658 		return -ENOMEM;
1659 	}
1660 
1661 	/*
1662 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1663 	 * guarantees that we'll always have a GICv2, so the CPU
1664 	 * interface will always be the right size.
1665 	 */
1666 	if (!is_hyp_mode_available())
1667 		static_branch_disable(&supports_deactivate_key);
1668 
1669 	/*
1670 	 * Initialize GIC instance zero (no multi-GIC support).
1671 	 */
1672 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1673 	if (!domain_handle) {
1674 		pr_err("Unable to allocate domain handle\n");
1675 		gic_teardown(gic);
1676 		return -ENOMEM;
1677 	}
1678 
1679 	ret = __gic_init_bases(gic, domain_handle);
1680 	if (ret) {
1681 		pr_err("Failed to initialise GIC\n");
1682 		irq_domain_free_fwnode(domain_handle);
1683 		gic_teardown(gic);
1684 		return ret;
1685 	}
1686 
1687 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1688 
1689 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1690 		gicv2m_init(NULL, gic_data[0].domain);
1691 
1692 	if (static_branch_likely(&supports_deactivate_key))
1693 		gic_acpi_setup_kvm_info();
1694 
1695 	return 0;
1696 }
1697 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1698 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1699 		     gic_v2_acpi_init);
1700 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1701 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1702 		     gic_v2_acpi_init);
1703 #endif
1704