xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision e2f1cf25)
1 /*
2  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Interrupt architecture for the GIC:
9  *
10  * o There is one Interrupt Distributor, which receives interrupts
11  *   from system devices and sends them to the Interrupt Controllers.
12  *
13  * o There is one CPU Interface per CPU, which sends interrupts sent
14  *   by the Distributor, and interrupts generated locally, to the
15  *   associated CPU. The base address of the CPU interface is usually
16  *   aliased so that the same address points to different chips depending
17  *   on the CPU it is accessed from.
18  *
19  * Note that IRQs 0-31 are special - they are local to each CPU.
20  * As such, the enable set/clear, pending set/clear and active bit
21  * registers are banked per-cpu for these sources.
22  */
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/list.h>
28 #include <linux/smp.h>
29 #include <linux/cpu.h>
30 #include <linux/cpu_pm.h>
31 #include <linux/cpumask.h>
32 #include <linux/io.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/acpi.h>
37 #include <linux/irqdomain.h>
38 #include <linux/interrupt.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/irqchip/chained_irq.h>
42 #include <linux/irqchip/arm-gic.h>
43 #include <linux/irqchip/arm-gic-acpi.h>
44 
45 #include <asm/cputype.h>
46 #include <asm/irq.h>
47 #include <asm/exception.h>
48 #include <asm/smp_plat.h>
49 
50 #include "irq-gic-common.h"
51 #include "irqchip.h"
52 
53 union gic_base {
54 	void __iomem *common_base;
55 	void __percpu * __iomem *percpu_base;
56 };
57 
58 struct gic_chip_data {
59 	union gic_base dist_base;
60 	union gic_base cpu_base;
61 #ifdef CONFIG_CPU_PM
62 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
63 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
64 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
65 	u32 __percpu *saved_ppi_enable;
66 	u32 __percpu *saved_ppi_conf;
67 #endif
68 	struct irq_domain *domain;
69 	unsigned int gic_irqs;
70 #ifdef CONFIG_GIC_NON_BANKED
71 	void __iomem *(*get_base)(union gic_base *);
72 #endif
73 };
74 
75 static DEFINE_RAW_SPINLOCK(irq_controller_lock);
76 
77 /*
78  * The GIC mapping of CPU interfaces does not necessarily match
79  * the logical CPU numbering.  Let's use a mapping as returned
80  * by the GIC itself.
81  */
82 #define NR_GIC_CPU_IF 8
83 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
84 
85 #ifndef MAX_GIC_NR
86 #define MAX_GIC_NR	1
87 #endif
88 
89 static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
90 
91 #ifdef CONFIG_GIC_NON_BANKED
92 static void __iomem *gic_get_percpu_base(union gic_base *base)
93 {
94 	return raw_cpu_read(*base->percpu_base);
95 }
96 
97 static void __iomem *gic_get_common_base(union gic_base *base)
98 {
99 	return base->common_base;
100 }
101 
102 static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
103 {
104 	return data->get_base(&data->dist_base);
105 }
106 
107 static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
108 {
109 	return data->get_base(&data->cpu_base);
110 }
111 
112 static inline void gic_set_base_accessor(struct gic_chip_data *data,
113 					 void __iomem *(*f)(union gic_base *))
114 {
115 	data->get_base = f;
116 }
117 #else
118 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
119 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
120 #define gic_set_base_accessor(d, f)
121 #endif
122 
123 static inline void __iomem *gic_dist_base(struct irq_data *d)
124 {
125 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
126 	return gic_data_dist_base(gic_data);
127 }
128 
129 static inline void __iomem *gic_cpu_base(struct irq_data *d)
130 {
131 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
132 	return gic_data_cpu_base(gic_data);
133 }
134 
135 static inline unsigned int gic_irq(struct irq_data *d)
136 {
137 	return d->hwirq;
138 }
139 
140 /*
141  * Routines to acknowledge, disable and enable interrupts
142  */
143 static void gic_poke_irq(struct irq_data *d, u32 offset)
144 {
145 	u32 mask = 1 << (gic_irq(d) % 32);
146 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
147 }
148 
149 static int gic_peek_irq(struct irq_data *d, u32 offset)
150 {
151 	u32 mask = 1 << (gic_irq(d) % 32);
152 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
153 }
154 
155 static void gic_mask_irq(struct irq_data *d)
156 {
157 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
158 }
159 
160 static void gic_unmask_irq(struct irq_data *d)
161 {
162 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
163 }
164 
165 static void gic_eoi_irq(struct irq_data *d)
166 {
167 	writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
168 }
169 
170 static int gic_irq_set_irqchip_state(struct irq_data *d,
171 				     enum irqchip_irq_state which, bool val)
172 {
173 	u32 reg;
174 
175 	switch (which) {
176 	case IRQCHIP_STATE_PENDING:
177 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
178 		break;
179 
180 	case IRQCHIP_STATE_ACTIVE:
181 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
182 		break;
183 
184 	case IRQCHIP_STATE_MASKED:
185 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
186 		break;
187 
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	gic_poke_irq(d, reg);
193 	return 0;
194 }
195 
196 static int gic_irq_get_irqchip_state(struct irq_data *d,
197 				      enum irqchip_irq_state which, bool *val)
198 {
199 	switch (which) {
200 	case IRQCHIP_STATE_PENDING:
201 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
202 		break;
203 
204 	case IRQCHIP_STATE_ACTIVE:
205 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
206 		break;
207 
208 	case IRQCHIP_STATE_MASKED:
209 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
210 		break;
211 
212 	default:
213 		return -EINVAL;
214 	}
215 
216 	return 0;
217 }
218 
219 static int gic_set_type(struct irq_data *d, unsigned int type)
220 {
221 	void __iomem *base = gic_dist_base(d);
222 	unsigned int gicirq = gic_irq(d);
223 
224 	/* Interrupt configuration for SGIs can't be changed */
225 	if (gicirq < 16)
226 		return -EINVAL;
227 
228 	/* SPIs have restrictions on the supported types */
229 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
230 			    type != IRQ_TYPE_EDGE_RISING)
231 		return -EINVAL;
232 
233 	return gic_configure_irq(gicirq, type, base, NULL);
234 }
235 
236 #ifdef CONFIG_SMP
237 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
238 			    bool force)
239 {
240 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
241 	unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
242 	u32 val, mask, bit;
243 	unsigned long flags;
244 
245 	if (!force)
246 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
247 	else
248 		cpu = cpumask_first(mask_val);
249 
250 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
251 		return -EINVAL;
252 
253 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
254 	mask = 0xff << shift;
255 	bit = gic_cpu_map[cpu] << shift;
256 	val = readl_relaxed(reg) & ~mask;
257 	writel_relaxed(val | bit, reg);
258 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
259 
260 	return IRQ_SET_MASK_OK;
261 }
262 #endif
263 
264 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
265 {
266 	u32 irqstat, irqnr;
267 	struct gic_chip_data *gic = &gic_data[0];
268 	void __iomem *cpu_base = gic_data_cpu_base(gic);
269 
270 	do {
271 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
272 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
273 
274 		if (likely(irqnr > 15 && irqnr < 1021)) {
275 			handle_domain_irq(gic->domain, irqnr, regs);
276 			continue;
277 		}
278 		if (irqnr < 16) {
279 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
280 #ifdef CONFIG_SMP
281 			handle_IPI(irqnr, regs);
282 #endif
283 			continue;
284 		}
285 		break;
286 	} while (1);
287 }
288 
289 static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
290 {
291 	struct gic_chip_data *chip_data = irq_get_handler_data(irq);
292 	struct irq_chip *chip = irq_get_chip(irq);
293 	unsigned int cascade_irq, gic_irq;
294 	unsigned long status;
295 
296 	chained_irq_enter(chip, desc);
297 
298 	raw_spin_lock(&irq_controller_lock);
299 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
300 	raw_spin_unlock(&irq_controller_lock);
301 
302 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
303 	if (gic_irq == GICC_INT_SPURIOUS)
304 		goto out;
305 
306 	cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
307 	if (unlikely(gic_irq < 32 || gic_irq > 1020))
308 		handle_bad_irq(cascade_irq, desc);
309 	else
310 		generic_handle_irq(cascade_irq);
311 
312  out:
313 	chained_irq_exit(chip, desc);
314 }
315 
316 static struct irq_chip gic_chip = {
317 	.name			= "GIC",
318 	.irq_mask		= gic_mask_irq,
319 	.irq_unmask		= gic_unmask_irq,
320 	.irq_eoi		= gic_eoi_irq,
321 	.irq_set_type		= gic_set_type,
322 #ifdef CONFIG_SMP
323 	.irq_set_affinity	= gic_set_affinity,
324 #endif
325 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
326 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
327 	.flags			= IRQCHIP_SET_TYPE_MASKED,
328 };
329 
330 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
331 {
332 	if (gic_nr >= MAX_GIC_NR)
333 		BUG();
334 	if (irq_set_handler_data(irq, &gic_data[gic_nr]) != 0)
335 		BUG();
336 	irq_set_chained_handler(irq, gic_handle_cascade_irq);
337 }
338 
339 static u8 gic_get_cpumask(struct gic_chip_data *gic)
340 {
341 	void __iomem *base = gic_data_dist_base(gic);
342 	u32 mask, i;
343 
344 	for (i = mask = 0; i < 32; i += 4) {
345 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
346 		mask |= mask >> 16;
347 		mask |= mask >> 8;
348 		if (mask)
349 			break;
350 	}
351 
352 	if (!mask && num_possible_cpus() > 1)
353 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
354 
355 	return mask;
356 }
357 
358 static void gic_cpu_if_up(void)
359 {
360 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
361 	u32 bypass = 0;
362 
363 	/*
364 	* Preserve bypass disable bits to be written back later
365 	*/
366 	bypass = readl(cpu_base + GIC_CPU_CTRL);
367 	bypass &= GICC_DIS_BYPASS_MASK;
368 
369 	writel_relaxed(bypass | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
370 }
371 
372 
373 static void __init gic_dist_init(struct gic_chip_data *gic)
374 {
375 	unsigned int i;
376 	u32 cpumask;
377 	unsigned int gic_irqs = gic->gic_irqs;
378 	void __iomem *base = gic_data_dist_base(gic);
379 
380 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
381 
382 	/*
383 	 * Set all global interrupts to this CPU only.
384 	 */
385 	cpumask = gic_get_cpumask(gic);
386 	cpumask |= cpumask << 8;
387 	cpumask |= cpumask << 16;
388 	for (i = 32; i < gic_irqs; i += 4)
389 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
390 
391 	gic_dist_config(base, gic_irqs, NULL);
392 
393 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
394 }
395 
396 static void gic_cpu_init(struct gic_chip_data *gic)
397 {
398 	void __iomem *dist_base = gic_data_dist_base(gic);
399 	void __iomem *base = gic_data_cpu_base(gic);
400 	unsigned int cpu_mask, cpu = smp_processor_id();
401 	int i;
402 
403 	/*
404 	 * Get what the GIC says our CPU mask is.
405 	 */
406 	BUG_ON(cpu >= NR_GIC_CPU_IF);
407 	cpu_mask = gic_get_cpumask(gic);
408 	gic_cpu_map[cpu] = cpu_mask;
409 
410 	/*
411 	 * Clear our mask from the other map entries in case they're
412 	 * still undefined.
413 	 */
414 	for (i = 0; i < NR_GIC_CPU_IF; i++)
415 		if (i != cpu)
416 			gic_cpu_map[i] &= ~cpu_mask;
417 
418 	gic_cpu_config(dist_base, NULL);
419 
420 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
421 	gic_cpu_if_up();
422 }
423 
424 void gic_cpu_if_down(void)
425 {
426 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
427 	u32 val = 0;
428 
429 	val = readl(cpu_base + GIC_CPU_CTRL);
430 	val &= ~GICC_ENABLE;
431 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
432 }
433 
434 #ifdef CONFIG_CPU_PM
435 /*
436  * Saves the GIC distributor registers during suspend or idle.  Must be called
437  * with interrupts disabled but before powering down the GIC.  After calling
438  * this function, no interrupts will be delivered by the GIC, and another
439  * platform-specific wakeup source must be enabled.
440  */
441 static void gic_dist_save(unsigned int gic_nr)
442 {
443 	unsigned int gic_irqs;
444 	void __iomem *dist_base;
445 	int i;
446 
447 	if (gic_nr >= MAX_GIC_NR)
448 		BUG();
449 
450 	gic_irqs = gic_data[gic_nr].gic_irqs;
451 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
452 
453 	if (!dist_base)
454 		return;
455 
456 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
457 		gic_data[gic_nr].saved_spi_conf[i] =
458 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
459 
460 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
461 		gic_data[gic_nr].saved_spi_target[i] =
462 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
463 
464 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
465 		gic_data[gic_nr].saved_spi_enable[i] =
466 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
467 }
468 
469 /*
470  * Restores the GIC distributor registers during resume or when coming out of
471  * idle.  Must be called before enabling interrupts.  If a level interrupt
472  * that occured while the GIC was suspended is still present, it will be
473  * handled normally, but any edge interrupts that occured will not be seen by
474  * the GIC and need to be handled by the platform-specific wakeup source.
475  */
476 static void gic_dist_restore(unsigned int gic_nr)
477 {
478 	unsigned int gic_irqs;
479 	unsigned int i;
480 	void __iomem *dist_base;
481 
482 	if (gic_nr >= MAX_GIC_NR)
483 		BUG();
484 
485 	gic_irqs = gic_data[gic_nr].gic_irqs;
486 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
487 
488 	if (!dist_base)
489 		return;
490 
491 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
492 
493 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
494 		writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
495 			dist_base + GIC_DIST_CONFIG + i * 4);
496 
497 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
498 		writel_relaxed(GICD_INT_DEF_PRI_X4,
499 			dist_base + GIC_DIST_PRI + i * 4);
500 
501 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
502 		writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
503 			dist_base + GIC_DIST_TARGET + i * 4);
504 
505 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
506 		writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
507 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
508 
509 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
510 }
511 
512 static void gic_cpu_save(unsigned int gic_nr)
513 {
514 	int i;
515 	u32 *ptr;
516 	void __iomem *dist_base;
517 	void __iomem *cpu_base;
518 
519 	if (gic_nr >= MAX_GIC_NR)
520 		BUG();
521 
522 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
523 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
524 
525 	if (!dist_base || !cpu_base)
526 		return;
527 
528 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
529 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
530 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
531 
532 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
533 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
534 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
535 
536 }
537 
538 static void gic_cpu_restore(unsigned int gic_nr)
539 {
540 	int i;
541 	u32 *ptr;
542 	void __iomem *dist_base;
543 	void __iomem *cpu_base;
544 
545 	if (gic_nr >= MAX_GIC_NR)
546 		BUG();
547 
548 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
549 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
550 
551 	if (!dist_base || !cpu_base)
552 		return;
553 
554 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
555 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
556 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
557 
558 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
559 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
560 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
561 
562 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
563 		writel_relaxed(GICD_INT_DEF_PRI_X4,
564 					dist_base + GIC_DIST_PRI + i * 4);
565 
566 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
567 	gic_cpu_if_up();
568 }
569 
570 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
571 {
572 	int i;
573 
574 	for (i = 0; i < MAX_GIC_NR; i++) {
575 #ifdef CONFIG_GIC_NON_BANKED
576 		/* Skip over unused GICs */
577 		if (!gic_data[i].get_base)
578 			continue;
579 #endif
580 		switch (cmd) {
581 		case CPU_PM_ENTER:
582 			gic_cpu_save(i);
583 			break;
584 		case CPU_PM_ENTER_FAILED:
585 		case CPU_PM_EXIT:
586 			gic_cpu_restore(i);
587 			break;
588 		case CPU_CLUSTER_PM_ENTER:
589 			gic_dist_save(i);
590 			break;
591 		case CPU_CLUSTER_PM_ENTER_FAILED:
592 		case CPU_CLUSTER_PM_EXIT:
593 			gic_dist_restore(i);
594 			break;
595 		}
596 	}
597 
598 	return NOTIFY_OK;
599 }
600 
601 static struct notifier_block gic_notifier_block = {
602 	.notifier_call = gic_notifier,
603 };
604 
605 static void __init gic_pm_init(struct gic_chip_data *gic)
606 {
607 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
608 		sizeof(u32));
609 	BUG_ON(!gic->saved_ppi_enable);
610 
611 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
612 		sizeof(u32));
613 	BUG_ON(!gic->saved_ppi_conf);
614 
615 	if (gic == &gic_data[0])
616 		cpu_pm_register_notifier(&gic_notifier_block);
617 }
618 #else
619 static void __init gic_pm_init(struct gic_chip_data *gic)
620 {
621 }
622 #endif
623 
624 #ifdef CONFIG_SMP
625 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
626 {
627 	int cpu;
628 	unsigned long flags, map = 0;
629 
630 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
631 
632 	/* Convert our logical CPU mask into a physical one. */
633 	for_each_cpu(cpu, mask)
634 		map |= gic_cpu_map[cpu];
635 
636 	/*
637 	 * Ensure that stores to Normal memory are visible to the
638 	 * other CPUs before they observe us issuing the IPI.
639 	 */
640 	dmb(ishst);
641 
642 	/* this always happens on GIC0 */
643 	writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
644 
645 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
646 }
647 #endif
648 
649 #ifdef CONFIG_BL_SWITCHER
650 /*
651  * gic_send_sgi - send a SGI directly to given CPU interface number
652  *
653  * cpu_id: the ID for the destination CPU interface
654  * irq: the IPI number to send a SGI for
655  */
656 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
657 {
658 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
659 	cpu_id = 1 << cpu_id;
660 	/* this always happens on GIC0 */
661 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
662 }
663 
664 /*
665  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
666  *
667  * @cpu: the logical CPU number to get the GIC ID for.
668  *
669  * Return the CPU interface ID for the given logical CPU number,
670  * or -1 if the CPU number is too large or the interface ID is
671  * unknown (more than one bit set).
672  */
673 int gic_get_cpu_id(unsigned int cpu)
674 {
675 	unsigned int cpu_bit;
676 
677 	if (cpu >= NR_GIC_CPU_IF)
678 		return -1;
679 	cpu_bit = gic_cpu_map[cpu];
680 	if (cpu_bit & (cpu_bit - 1))
681 		return -1;
682 	return __ffs(cpu_bit);
683 }
684 
685 /*
686  * gic_migrate_target - migrate IRQs to another CPU interface
687  *
688  * @new_cpu_id: the CPU target ID to migrate IRQs to
689  *
690  * Migrate all peripheral interrupts with a target matching the current CPU
691  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
692  * is also updated.  Targets to other CPU interfaces are unchanged.
693  * This must be called with IRQs locally disabled.
694  */
695 void gic_migrate_target(unsigned int new_cpu_id)
696 {
697 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
698 	void __iomem *dist_base;
699 	int i, ror_val, cpu = smp_processor_id();
700 	u32 val, cur_target_mask, active_mask;
701 
702 	if (gic_nr >= MAX_GIC_NR)
703 		BUG();
704 
705 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
706 	if (!dist_base)
707 		return;
708 	gic_irqs = gic_data[gic_nr].gic_irqs;
709 
710 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
711 	cur_target_mask = 0x01010101 << cur_cpu_id;
712 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
713 
714 	raw_spin_lock(&irq_controller_lock);
715 
716 	/* Update the target interface for this logical CPU */
717 	gic_cpu_map[cpu] = 1 << new_cpu_id;
718 
719 	/*
720 	 * Find all the peripheral interrupts targetting the current
721 	 * CPU interface and migrate them to the new CPU interface.
722 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
723 	 */
724 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
725 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
726 		active_mask = val & cur_target_mask;
727 		if (active_mask) {
728 			val &= ~active_mask;
729 			val |= ror32(active_mask, ror_val);
730 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
731 		}
732 	}
733 
734 	raw_spin_unlock(&irq_controller_lock);
735 
736 	/*
737 	 * Now let's migrate and clear any potential SGIs that might be
738 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
739 	 * is a banked register, we can only forward the SGI using
740 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
741 	 * doesn't use that information anyway.
742 	 *
743 	 * For the same reason we do not adjust SGI source information
744 	 * for previously sent SGIs by us to other CPUs either.
745 	 */
746 	for (i = 0; i < 16; i += 4) {
747 		int j;
748 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
749 		if (!val)
750 			continue;
751 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
752 		for (j = i; j < i + 4; j++) {
753 			if (val & 0xff)
754 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
755 						dist_base + GIC_DIST_SOFTINT);
756 			val >>= 8;
757 		}
758 	}
759 }
760 
761 /*
762  * gic_get_sgir_physaddr - get the physical address for the SGI register
763  *
764  * REturn the physical address of the SGI register to be used
765  * by some early assembly code when the kernel is not yet available.
766  */
767 static unsigned long gic_dist_physaddr;
768 
769 unsigned long gic_get_sgir_physaddr(void)
770 {
771 	if (!gic_dist_physaddr)
772 		return 0;
773 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
774 }
775 
776 void __init gic_init_physaddr(struct device_node *node)
777 {
778 	struct resource res;
779 	if (of_address_to_resource(node, 0, &res) == 0) {
780 		gic_dist_physaddr = res.start;
781 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
782 	}
783 }
784 
785 #else
786 #define gic_init_physaddr(node)  do { } while (0)
787 #endif
788 
789 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
790 				irq_hw_number_t hw)
791 {
792 	if (hw < 32) {
793 		irq_set_percpu_devid(irq);
794 		irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,
795 				    handle_percpu_devid_irq, NULL, NULL);
796 		set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);
797 	} else {
798 		irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,
799 				    handle_fasteoi_irq, NULL, NULL);
800 		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
801 	}
802 	return 0;
803 }
804 
805 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
806 {
807 }
808 
809 static int gic_irq_domain_xlate(struct irq_domain *d,
810 				struct device_node *controller,
811 				const u32 *intspec, unsigned int intsize,
812 				unsigned long *out_hwirq, unsigned int *out_type)
813 {
814 	unsigned long ret = 0;
815 
816 	if (d->of_node != controller)
817 		return -EINVAL;
818 	if (intsize < 3)
819 		return -EINVAL;
820 
821 	/* Get the interrupt number and add 16 to skip over SGIs */
822 	*out_hwirq = intspec[1] + 16;
823 
824 	/* For SPIs, we need to add 16 more to get the GIC irq ID number */
825 	if (!intspec[0])
826 		*out_hwirq += 16;
827 
828 	*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
829 
830 	return ret;
831 }
832 
833 #ifdef CONFIG_SMP
834 static int gic_secondary_init(struct notifier_block *nfb, unsigned long action,
835 			      void *hcpu)
836 {
837 	if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
838 		gic_cpu_init(&gic_data[0]);
839 	return NOTIFY_OK;
840 }
841 
842 /*
843  * Notifier for enabling the GIC CPU interface. Set an arbitrarily high
844  * priority because the GIC needs to be up before the ARM generic timers.
845  */
846 static struct notifier_block gic_cpu_notifier = {
847 	.notifier_call = gic_secondary_init,
848 	.priority = 100,
849 };
850 #endif
851 
852 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
853 				unsigned int nr_irqs, void *arg)
854 {
855 	int i, ret;
856 	irq_hw_number_t hwirq;
857 	unsigned int type = IRQ_TYPE_NONE;
858 	struct of_phandle_args *irq_data = arg;
859 
860 	ret = gic_irq_domain_xlate(domain, irq_data->np, irq_data->args,
861 				   irq_data->args_count, &hwirq, &type);
862 	if (ret)
863 		return ret;
864 
865 	for (i = 0; i < nr_irqs; i++)
866 		gic_irq_domain_map(domain, virq + i, hwirq + i);
867 
868 	return 0;
869 }
870 
871 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
872 	.xlate = gic_irq_domain_xlate,
873 	.alloc = gic_irq_domain_alloc,
874 	.free = irq_domain_free_irqs_top,
875 };
876 
877 static const struct irq_domain_ops gic_irq_domain_ops = {
878 	.map = gic_irq_domain_map,
879 	.unmap = gic_irq_domain_unmap,
880 	.xlate = gic_irq_domain_xlate,
881 };
882 
883 void gic_set_irqchip_flags(unsigned long flags)
884 {
885 	gic_chip.flags |= flags;
886 }
887 
888 void __init gic_init_bases(unsigned int gic_nr, int irq_start,
889 			   void __iomem *dist_base, void __iomem *cpu_base,
890 			   u32 percpu_offset, struct device_node *node)
891 {
892 	irq_hw_number_t hwirq_base;
893 	struct gic_chip_data *gic;
894 	int gic_irqs, irq_base, i;
895 
896 	BUG_ON(gic_nr >= MAX_GIC_NR);
897 
898 	gic = &gic_data[gic_nr];
899 #ifdef CONFIG_GIC_NON_BANKED
900 	if (percpu_offset) { /* Frankein-GIC without banked registers... */
901 		unsigned int cpu;
902 
903 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
904 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
905 		if (WARN_ON(!gic->dist_base.percpu_base ||
906 			    !gic->cpu_base.percpu_base)) {
907 			free_percpu(gic->dist_base.percpu_base);
908 			free_percpu(gic->cpu_base.percpu_base);
909 			return;
910 		}
911 
912 		for_each_possible_cpu(cpu) {
913 			u32 mpidr = cpu_logical_map(cpu);
914 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
915 			unsigned long offset = percpu_offset * core_id;
916 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
917 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
918 		}
919 
920 		gic_set_base_accessor(gic, gic_get_percpu_base);
921 	} else
922 #endif
923 	{			/* Normal, sane GIC... */
924 		WARN(percpu_offset,
925 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
926 		     percpu_offset);
927 		gic->dist_base.common_base = dist_base;
928 		gic->cpu_base.common_base = cpu_base;
929 		gic_set_base_accessor(gic, gic_get_common_base);
930 	}
931 
932 	/*
933 	 * Initialize the CPU interface map to all CPUs.
934 	 * It will be refined as each CPU probes its ID.
935 	 */
936 	for (i = 0; i < NR_GIC_CPU_IF; i++)
937 		gic_cpu_map[i] = 0xff;
938 
939 	/*
940 	 * Find out how many interrupts are supported.
941 	 * The GIC only supports up to 1020 interrupt sources.
942 	 */
943 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
944 	gic_irqs = (gic_irqs + 1) * 32;
945 	if (gic_irqs > 1020)
946 		gic_irqs = 1020;
947 	gic->gic_irqs = gic_irqs;
948 
949 	if (node) {		/* DT case */
950 		gic->domain = irq_domain_add_linear(node, gic_irqs,
951 						    &gic_irq_domain_hierarchy_ops,
952 						    gic);
953 	} else {		/* Non-DT case */
954 		/*
955 		 * For primary GICs, skip over SGIs.
956 		 * For secondary GICs, skip over PPIs, too.
957 		 */
958 		if (gic_nr == 0 && (irq_start & 31) > 0) {
959 			hwirq_base = 16;
960 			if (irq_start != -1)
961 				irq_start = (irq_start & ~31) + 16;
962 		} else {
963 			hwirq_base = 32;
964 		}
965 
966 		gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
967 
968 		irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
969 					   numa_node_id());
970 		if (IS_ERR_VALUE(irq_base)) {
971 			WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
972 			     irq_start);
973 			irq_base = irq_start;
974 		}
975 
976 		gic->domain = irq_domain_add_legacy(node, gic_irqs, irq_base,
977 					hwirq_base, &gic_irq_domain_ops, gic);
978 	}
979 
980 	if (WARN_ON(!gic->domain))
981 		return;
982 
983 	if (gic_nr == 0) {
984 #ifdef CONFIG_SMP
985 		set_smp_cross_call(gic_raise_softirq);
986 		register_cpu_notifier(&gic_cpu_notifier);
987 #endif
988 		set_handle_irq(gic_handle_irq);
989 	}
990 
991 	gic_dist_init(gic);
992 	gic_cpu_init(gic);
993 	gic_pm_init(gic);
994 }
995 
996 #ifdef CONFIG_OF
997 static int gic_cnt __initdata;
998 
999 static int __init
1000 gic_of_init(struct device_node *node, struct device_node *parent)
1001 {
1002 	void __iomem *cpu_base;
1003 	void __iomem *dist_base;
1004 	u32 percpu_offset;
1005 	int irq;
1006 
1007 	if (WARN_ON(!node))
1008 		return -ENODEV;
1009 
1010 	dist_base = of_iomap(node, 0);
1011 	WARN(!dist_base, "unable to map gic dist registers\n");
1012 
1013 	cpu_base = of_iomap(node, 1);
1014 	WARN(!cpu_base, "unable to map gic cpu registers\n");
1015 
1016 	if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
1017 		percpu_offset = 0;
1018 
1019 	gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node);
1020 	if (!gic_cnt)
1021 		gic_init_physaddr(node);
1022 
1023 	if (parent) {
1024 		irq = irq_of_parse_and_map(node, 0);
1025 		gic_cascade_irq(gic_cnt, irq);
1026 	}
1027 
1028 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1029 		gicv2m_of_init(node, gic_data[gic_cnt].domain);
1030 
1031 	gic_cnt++;
1032 	return 0;
1033 }
1034 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1035 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1036 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1037 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1038 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1039 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1040 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1041 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1042 
1043 #endif
1044 
1045 #ifdef CONFIG_ACPI
1046 static phys_addr_t dist_phy_base, cpu_phy_base __initdata;
1047 
1048 static int __init
1049 gic_acpi_parse_madt_cpu(struct acpi_subtable_header *header,
1050 			const unsigned long end)
1051 {
1052 	struct acpi_madt_generic_interrupt *processor;
1053 	phys_addr_t gic_cpu_base;
1054 	static int cpu_base_assigned;
1055 
1056 	processor = (struct acpi_madt_generic_interrupt *)header;
1057 
1058 	if (BAD_MADT_GICC_ENTRY(processor, end))
1059 		return -EINVAL;
1060 
1061 	/*
1062 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1063 	 * All CPU interface addresses have to be the same.
1064 	 */
1065 	gic_cpu_base = processor->base_address;
1066 	if (cpu_base_assigned && gic_cpu_base != cpu_phy_base)
1067 		return -EINVAL;
1068 
1069 	cpu_phy_base = gic_cpu_base;
1070 	cpu_base_assigned = 1;
1071 	return 0;
1072 }
1073 
1074 static int __init
1075 gic_acpi_parse_madt_distributor(struct acpi_subtable_header *header,
1076 				const unsigned long end)
1077 {
1078 	struct acpi_madt_generic_distributor *dist;
1079 
1080 	dist = (struct acpi_madt_generic_distributor *)header;
1081 
1082 	if (BAD_MADT_ENTRY(dist, end))
1083 		return -EINVAL;
1084 
1085 	dist_phy_base = dist->base_address;
1086 	return 0;
1087 }
1088 
1089 int __init
1090 gic_v2_acpi_init(struct acpi_table_header *table)
1091 {
1092 	void __iomem *cpu_base, *dist_base;
1093 	int count;
1094 
1095 	/* Collect CPU base addresses */
1096 	count = acpi_parse_entries(ACPI_SIG_MADT,
1097 				   sizeof(struct acpi_table_madt),
1098 				   gic_acpi_parse_madt_cpu, table,
1099 				   ACPI_MADT_TYPE_GENERIC_INTERRUPT, 0);
1100 	if (count <= 0) {
1101 		pr_err("No valid GICC entries exist\n");
1102 		return -EINVAL;
1103 	}
1104 
1105 	/*
1106 	 * Find distributor base address. We expect one distributor entry since
1107 	 * ACPI 5.1 spec neither support multi-GIC instances nor GIC cascade.
1108 	 */
1109 	count = acpi_parse_entries(ACPI_SIG_MADT,
1110 				   sizeof(struct acpi_table_madt),
1111 				   gic_acpi_parse_madt_distributor, table,
1112 				   ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 0);
1113 	if (count <= 0) {
1114 		pr_err("No valid GICD entries exist\n");
1115 		return -EINVAL;
1116 	} else if (count > 1) {
1117 		pr_err("More than one GICD entry detected\n");
1118 		return -EINVAL;
1119 	}
1120 
1121 	cpu_base = ioremap(cpu_phy_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1122 	if (!cpu_base) {
1123 		pr_err("Unable to map GICC registers\n");
1124 		return -ENOMEM;
1125 	}
1126 
1127 	dist_base = ioremap(dist_phy_base, ACPI_GICV2_DIST_MEM_SIZE);
1128 	if (!dist_base) {
1129 		pr_err("Unable to map GICD registers\n");
1130 		iounmap(cpu_base);
1131 		return -ENOMEM;
1132 	}
1133 
1134 	/*
1135 	 * Initialize zero GIC instance (no multi-GIC support). Also, set GIC
1136 	 * as default IRQ domain to allow for GSI registration and GSI to IRQ
1137 	 * number translation (see acpi_register_gsi() and acpi_gsi_to_irq()).
1138 	 */
1139 	gic_init_bases(0, -1, dist_base, cpu_base, 0, NULL);
1140 	irq_set_default_host(gic_data[0].domain);
1141 
1142 	acpi_irq_model = ACPI_IRQ_MODEL_GIC;
1143 	return 0;
1144 }
1145 #endif
1146