xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision b9221f71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41 
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 
48 #include "irq-gic-common.h"
49 
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52 
53 static void gic_check_cpu_features(void)
54 {
55 	WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56 			TAINT_CPU_OUT_OF_SPEC,
57 			"GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features()	do { } while(0)
61 #endif
62 
63 union gic_base {
64 	void __iomem *common_base;
65 	void __percpu * __iomem *percpu_base;
66 };
67 
68 struct gic_chip_data {
69 	struct irq_chip chip;
70 	union gic_base dist_base;
71 	union gic_base cpu_base;
72 	void __iomem *raw_dist_base;
73 	void __iomem *raw_cpu_base;
74 	u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 	u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 	u32 __percpu *saved_ppi_enable;
81 	u32 __percpu *saved_ppi_active;
82 	u32 __percpu *saved_ppi_conf;
83 #endif
84 	struct irq_domain *domain;
85 	unsigned int gic_irqs;
86 };
87 
88 #ifdef CONFIG_BL_SWITCHER
89 
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91 
92 #define gic_lock_irqsave(f)		\
93 	raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f)	\
95 	raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96 
97 #define gic_lock()			raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock()			raw_spin_unlock(&cpu_map_lock)
99 
100 #else
101 
102 #define gic_lock_irqsave(f)		do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f)	do { (void)(f); } while(0)
104 
105 #define gic_lock()			do { } while(0)
106 #define gic_unlock()			do { } while(0)
107 
108 #endif
109 
110 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
111 
112 /*
113  * The GIC mapping of CPU interfaces does not necessarily match
114  * the logical CPU numbering.  Let's use a mapping as returned
115  * by the GIC itself.
116  */
117 #define NR_GIC_CPU_IF 8
118 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
119 
120 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
121 
122 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
123 
124 static struct gic_kvm_info gic_v2_kvm_info __initdata;
125 
126 static DEFINE_PER_CPU(u32, sgi_intid);
127 
128 #ifdef CONFIG_GIC_NON_BANKED
129 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
130 
131 static void enable_frankengic(void)
132 {
133 	static_branch_enable(&frankengic_key);
134 }
135 
136 static inline void __iomem *__get_base(union gic_base *base)
137 {
138 	if (static_branch_unlikely(&frankengic_key))
139 		return raw_cpu_read(*base->percpu_base);
140 
141 	return base->common_base;
142 }
143 
144 #define gic_data_dist_base(d)	__get_base(&(d)->dist_base)
145 #define gic_data_cpu_base(d)	__get_base(&(d)->cpu_base)
146 #else
147 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
148 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
149 #define enable_frankengic()	do { } while(0)
150 #endif
151 
152 static inline void __iomem *gic_dist_base(struct irq_data *d)
153 {
154 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
155 	return gic_data_dist_base(gic_data);
156 }
157 
158 static inline void __iomem *gic_cpu_base(struct irq_data *d)
159 {
160 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
161 	return gic_data_cpu_base(gic_data);
162 }
163 
164 static inline unsigned int gic_irq(struct irq_data *d)
165 {
166 	return d->hwirq;
167 }
168 
169 static inline bool cascading_gic_irq(struct irq_data *d)
170 {
171 	void *data = irq_data_get_irq_handler_data(d);
172 
173 	/*
174 	 * If handler_data is set, this is a cascading interrupt, and
175 	 * it cannot possibly be forwarded.
176 	 */
177 	return data != NULL;
178 }
179 
180 /*
181  * Routines to acknowledge, disable and enable interrupts
182  */
183 static void gic_poke_irq(struct irq_data *d, u32 offset)
184 {
185 	u32 mask = 1 << (gic_irq(d) % 32);
186 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
187 }
188 
189 static int gic_peek_irq(struct irq_data *d, u32 offset)
190 {
191 	u32 mask = 1 << (gic_irq(d) % 32);
192 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
193 }
194 
195 static void gic_mask_irq(struct irq_data *d)
196 {
197 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
198 }
199 
200 static void gic_eoimode1_mask_irq(struct irq_data *d)
201 {
202 	gic_mask_irq(d);
203 	/*
204 	 * When masking a forwarded interrupt, make sure it is
205 	 * deactivated as well.
206 	 *
207 	 * This ensures that an interrupt that is getting
208 	 * disabled/masked will not get "stuck", because there is
209 	 * noone to deactivate it (guest is being terminated).
210 	 */
211 	if (irqd_is_forwarded_to_vcpu(d))
212 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
213 }
214 
215 static void gic_unmask_irq(struct irq_data *d)
216 {
217 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
218 }
219 
220 static void gic_eoi_irq(struct irq_data *d)
221 {
222 	u32 hwirq = gic_irq(d);
223 
224 	if (hwirq < 16)
225 		hwirq = this_cpu_read(sgi_intid);
226 
227 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
228 }
229 
230 static void gic_eoimode1_eoi_irq(struct irq_data *d)
231 {
232 	u32 hwirq = gic_irq(d);
233 
234 	/* Do not deactivate an IRQ forwarded to a vcpu. */
235 	if (irqd_is_forwarded_to_vcpu(d))
236 		return;
237 
238 	if (hwirq < 16)
239 		hwirq = this_cpu_read(sgi_intid);
240 
241 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243 
244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 				     enum irqchip_irq_state which, bool val)
246 {
247 	u32 reg;
248 
249 	switch (which) {
250 	case IRQCHIP_STATE_PENDING:
251 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 		break;
253 
254 	case IRQCHIP_STATE_ACTIVE:
255 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 		break;
257 
258 	case IRQCHIP_STATE_MASKED:
259 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 		break;
261 
262 	default:
263 		return -EINVAL;
264 	}
265 
266 	gic_poke_irq(d, reg);
267 	return 0;
268 }
269 
270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 				      enum irqchip_irq_state which, bool *val)
272 {
273 	switch (which) {
274 	case IRQCHIP_STATE_PENDING:
275 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 		break;
277 
278 	case IRQCHIP_STATE_ACTIVE:
279 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 		break;
281 
282 	case IRQCHIP_STATE_MASKED:
283 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 		break;
285 
286 	default:
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 	void __iomem *base = gic_dist_base(d);
296 	unsigned int gicirq = gic_irq(d);
297 	int ret;
298 
299 	/* Interrupt configuration for SGIs can't be changed */
300 	if (gicirq < 16)
301 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
302 
303 	/* SPIs have restrictions on the supported types */
304 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
305 			    type != IRQ_TYPE_EDGE_RISING)
306 		return -EINVAL;
307 
308 	ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
309 	if (ret && gicirq < 32) {
310 		/* Misconfigured PPIs are usually not fatal */
311 		pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
312 		ret = 0;
313 	}
314 
315 	return ret;
316 }
317 
318 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
319 {
320 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
321 	if (cascading_gic_irq(d) || gic_irq(d) < 16)
322 		return -EINVAL;
323 
324 	if (vcpu)
325 		irqd_set_forwarded_to_vcpu(d);
326 	else
327 		irqd_clr_forwarded_to_vcpu(d);
328 	return 0;
329 }
330 
331 static int gic_retrigger(struct irq_data *data)
332 {
333 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
334 }
335 
336 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
337 {
338 	u32 irqstat, irqnr;
339 	struct gic_chip_data *gic = &gic_data[0];
340 	void __iomem *cpu_base = gic_data_cpu_base(gic);
341 
342 	do {
343 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
344 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
345 
346 		if (unlikely(irqnr >= 1020))
347 			break;
348 
349 		if (static_branch_likely(&supports_deactivate_key))
350 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
351 		isb();
352 
353 		/*
354 		 * Ensure any shared data written by the CPU sending the IPI
355 		 * is read after we've read the ACK register on the GIC.
356 		 *
357 		 * Pairs with the write barrier in gic_ipi_send_mask
358 		 */
359 		if (irqnr <= 15) {
360 			smp_rmb();
361 
362 			/*
363 			 * The GIC encodes the source CPU in GICC_IAR,
364 			 * leading to the deactivation to fail if not
365 			 * written back as is to GICC_EOI.  Stash the INTID
366 			 * away for gic_eoi_irq() to write back.  This only
367 			 * works because we don't nest SGIs...
368 			 */
369 			this_cpu_write(sgi_intid, irqstat);
370 		}
371 
372 		handle_domain_irq(gic->domain, irqnr, regs);
373 	} while (1);
374 }
375 
376 static void gic_handle_cascade_irq(struct irq_desc *desc)
377 {
378 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
379 	struct irq_chip *chip = irq_desc_get_chip(desc);
380 	unsigned int gic_irq;
381 	unsigned long status;
382 	int ret;
383 
384 	chained_irq_enter(chip, desc);
385 
386 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
387 
388 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
389 	if (gic_irq == GICC_INT_SPURIOUS)
390 		goto out;
391 
392 	isb();
393 	ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
394 	if (unlikely(ret))
395 		handle_bad_irq(desc);
396  out:
397 	chained_irq_exit(chip, desc);
398 }
399 
400 static const struct irq_chip gic_chip = {
401 	.irq_mask		= gic_mask_irq,
402 	.irq_unmask		= gic_unmask_irq,
403 	.irq_eoi		= gic_eoi_irq,
404 	.irq_set_type		= gic_set_type,
405 	.irq_retrigger          = gic_retrigger,
406 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
407 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
408 	.flags			= IRQCHIP_SET_TYPE_MASKED |
409 				  IRQCHIP_SKIP_SET_WAKE |
410 				  IRQCHIP_MASK_ON_SUSPEND,
411 };
412 
413 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
414 {
415 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
416 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
417 					 &gic_data[gic_nr]);
418 }
419 
420 static u8 gic_get_cpumask(struct gic_chip_data *gic)
421 {
422 	void __iomem *base = gic_data_dist_base(gic);
423 	u32 mask, i;
424 
425 	for (i = mask = 0; i < 32; i += 4) {
426 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
427 		mask |= mask >> 16;
428 		mask |= mask >> 8;
429 		if (mask)
430 			break;
431 	}
432 
433 	if (!mask && num_possible_cpus() > 1)
434 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
435 
436 	return mask;
437 }
438 
439 static bool gic_check_gicv2(void __iomem *base)
440 {
441 	u32 val = readl_relaxed(base + GIC_CPU_IDENT);
442 	return (val & 0xff0fff) == 0x02043B;
443 }
444 
445 static void gic_cpu_if_up(struct gic_chip_data *gic)
446 {
447 	void __iomem *cpu_base = gic_data_cpu_base(gic);
448 	u32 bypass = 0;
449 	u32 mode = 0;
450 	int i;
451 
452 	if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
453 		mode = GIC_CPU_CTRL_EOImodeNS;
454 
455 	if (gic_check_gicv2(cpu_base))
456 		for (i = 0; i < 4; i++)
457 			writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
458 
459 	/*
460 	* Preserve bypass disable bits to be written back later
461 	*/
462 	bypass = readl(cpu_base + GIC_CPU_CTRL);
463 	bypass &= GICC_DIS_BYPASS_MASK;
464 
465 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
466 }
467 
468 
469 static void gic_dist_init(struct gic_chip_data *gic)
470 {
471 	unsigned int i;
472 	u32 cpumask;
473 	unsigned int gic_irqs = gic->gic_irqs;
474 	void __iomem *base = gic_data_dist_base(gic);
475 
476 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
477 
478 	/*
479 	 * Set all global interrupts to this CPU only.
480 	 */
481 	cpumask = gic_get_cpumask(gic);
482 	cpumask |= cpumask << 8;
483 	cpumask |= cpumask << 16;
484 	for (i = 32; i < gic_irqs; i += 4)
485 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
486 
487 	gic_dist_config(base, gic_irqs, NULL);
488 
489 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
490 }
491 
492 static int gic_cpu_init(struct gic_chip_data *gic)
493 {
494 	void __iomem *dist_base = gic_data_dist_base(gic);
495 	void __iomem *base = gic_data_cpu_base(gic);
496 	unsigned int cpu_mask, cpu = smp_processor_id();
497 	int i;
498 
499 	/*
500 	 * Setting up the CPU map is only relevant for the primary GIC
501 	 * because any nested/secondary GICs do not directly interface
502 	 * with the CPU(s).
503 	 */
504 	if (gic == &gic_data[0]) {
505 		/*
506 		 * Get what the GIC says our CPU mask is.
507 		 */
508 		if (WARN_ON(cpu >= NR_GIC_CPU_IF))
509 			return -EINVAL;
510 
511 		gic_check_cpu_features();
512 		cpu_mask = gic_get_cpumask(gic);
513 		gic_cpu_map[cpu] = cpu_mask;
514 
515 		/*
516 		 * Clear our mask from the other map entries in case they're
517 		 * still undefined.
518 		 */
519 		for (i = 0; i < NR_GIC_CPU_IF; i++)
520 			if (i != cpu)
521 				gic_cpu_map[i] &= ~cpu_mask;
522 	}
523 
524 	gic_cpu_config(dist_base, 32, NULL);
525 
526 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
527 	gic_cpu_if_up(gic);
528 
529 	return 0;
530 }
531 
532 int gic_cpu_if_down(unsigned int gic_nr)
533 {
534 	void __iomem *cpu_base;
535 	u32 val = 0;
536 
537 	if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
538 		return -EINVAL;
539 
540 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
541 	val = readl(cpu_base + GIC_CPU_CTRL);
542 	val &= ~GICC_ENABLE;
543 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
544 
545 	return 0;
546 }
547 
548 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
549 /*
550  * Saves the GIC distributor registers during suspend or idle.  Must be called
551  * with interrupts disabled but before powering down the GIC.  After calling
552  * this function, no interrupts will be delivered by the GIC, and another
553  * platform-specific wakeup source must be enabled.
554  */
555 void gic_dist_save(struct gic_chip_data *gic)
556 {
557 	unsigned int gic_irqs;
558 	void __iomem *dist_base;
559 	int i;
560 
561 	if (WARN_ON(!gic))
562 		return;
563 
564 	gic_irqs = gic->gic_irqs;
565 	dist_base = gic_data_dist_base(gic);
566 
567 	if (!dist_base)
568 		return;
569 
570 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
571 		gic->saved_spi_conf[i] =
572 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
573 
574 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
575 		gic->saved_spi_target[i] =
576 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
577 
578 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
579 		gic->saved_spi_enable[i] =
580 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
581 
582 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
583 		gic->saved_spi_active[i] =
584 			readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
585 }
586 
587 /*
588  * Restores the GIC distributor registers during resume or when coming out of
589  * idle.  Must be called before enabling interrupts.  If a level interrupt
590  * that occurred while the GIC was suspended is still present, it will be
591  * handled normally, but any edge interrupts that occurred will not be seen by
592  * the GIC and need to be handled by the platform-specific wakeup source.
593  */
594 void gic_dist_restore(struct gic_chip_data *gic)
595 {
596 	unsigned int gic_irqs;
597 	unsigned int i;
598 	void __iomem *dist_base;
599 
600 	if (WARN_ON(!gic))
601 		return;
602 
603 	gic_irqs = gic->gic_irqs;
604 	dist_base = gic_data_dist_base(gic);
605 
606 	if (!dist_base)
607 		return;
608 
609 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
610 
611 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
612 		writel_relaxed(gic->saved_spi_conf[i],
613 			dist_base + GIC_DIST_CONFIG + i * 4);
614 
615 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
616 		writel_relaxed(GICD_INT_DEF_PRI_X4,
617 			dist_base + GIC_DIST_PRI + i * 4);
618 
619 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
620 		writel_relaxed(gic->saved_spi_target[i],
621 			dist_base + GIC_DIST_TARGET + i * 4);
622 
623 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
624 		writel_relaxed(GICD_INT_EN_CLR_X32,
625 			dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
626 		writel_relaxed(gic->saved_spi_enable[i],
627 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
628 	}
629 
630 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
631 		writel_relaxed(GICD_INT_EN_CLR_X32,
632 			dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
633 		writel_relaxed(gic->saved_spi_active[i],
634 			dist_base + GIC_DIST_ACTIVE_SET + i * 4);
635 	}
636 
637 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
638 }
639 
640 void gic_cpu_save(struct gic_chip_data *gic)
641 {
642 	int i;
643 	u32 *ptr;
644 	void __iomem *dist_base;
645 	void __iomem *cpu_base;
646 
647 	if (WARN_ON(!gic))
648 		return;
649 
650 	dist_base = gic_data_dist_base(gic);
651 	cpu_base = gic_data_cpu_base(gic);
652 
653 	if (!dist_base || !cpu_base)
654 		return;
655 
656 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
657 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
658 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
659 
660 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
661 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
662 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
663 
664 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
665 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
666 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
667 
668 }
669 
670 void gic_cpu_restore(struct gic_chip_data *gic)
671 {
672 	int i;
673 	u32 *ptr;
674 	void __iomem *dist_base;
675 	void __iomem *cpu_base;
676 
677 	if (WARN_ON(!gic))
678 		return;
679 
680 	dist_base = gic_data_dist_base(gic);
681 	cpu_base = gic_data_cpu_base(gic);
682 
683 	if (!dist_base || !cpu_base)
684 		return;
685 
686 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
687 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
688 		writel_relaxed(GICD_INT_EN_CLR_X32,
689 			       dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
690 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
691 	}
692 
693 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
694 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
695 		writel_relaxed(GICD_INT_EN_CLR_X32,
696 			       dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
697 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
698 	}
699 
700 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
701 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
702 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
703 
704 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
705 		writel_relaxed(GICD_INT_DEF_PRI_X4,
706 					dist_base + GIC_DIST_PRI + i * 4);
707 
708 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
709 	gic_cpu_if_up(gic);
710 }
711 
712 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
713 {
714 	int i;
715 
716 	for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
717 		switch (cmd) {
718 		case CPU_PM_ENTER:
719 			gic_cpu_save(&gic_data[i]);
720 			break;
721 		case CPU_PM_ENTER_FAILED:
722 		case CPU_PM_EXIT:
723 			gic_cpu_restore(&gic_data[i]);
724 			break;
725 		case CPU_CLUSTER_PM_ENTER:
726 			gic_dist_save(&gic_data[i]);
727 			break;
728 		case CPU_CLUSTER_PM_ENTER_FAILED:
729 		case CPU_CLUSTER_PM_EXIT:
730 			gic_dist_restore(&gic_data[i]);
731 			break;
732 		}
733 	}
734 
735 	return NOTIFY_OK;
736 }
737 
738 static struct notifier_block gic_notifier_block = {
739 	.notifier_call = gic_notifier,
740 };
741 
742 static int gic_pm_init(struct gic_chip_data *gic)
743 {
744 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
745 		sizeof(u32));
746 	if (WARN_ON(!gic->saved_ppi_enable))
747 		return -ENOMEM;
748 
749 	gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
750 		sizeof(u32));
751 	if (WARN_ON(!gic->saved_ppi_active))
752 		goto free_ppi_enable;
753 
754 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
755 		sizeof(u32));
756 	if (WARN_ON(!gic->saved_ppi_conf))
757 		goto free_ppi_active;
758 
759 	if (gic == &gic_data[0])
760 		cpu_pm_register_notifier(&gic_notifier_block);
761 
762 	return 0;
763 
764 free_ppi_active:
765 	free_percpu(gic->saved_ppi_active);
766 free_ppi_enable:
767 	free_percpu(gic->saved_ppi_enable);
768 
769 	return -ENOMEM;
770 }
771 #else
772 static int gic_pm_init(struct gic_chip_data *gic)
773 {
774 	return 0;
775 }
776 #endif
777 
778 #ifdef CONFIG_SMP
779 static void rmw_writeb(u8 bval, void __iomem *addr)
780 {
781 	static DEFINE_RAW_SPINLOCK(rmw_lock);
782 	unsigned long offset = (unsigned long)addr & 3UL;
783 	unsigned long shift = offset * 8;
784 	unsigned long flags;
785 	u32 val;
786 
787 	raw_spin_lock_irqsave(&rmw_lock, flags);
788 
789 	addr -= offset;
790 	val = readl_relaxed(addr);
791 	val &= ~GENMASK(shift + 7, shift);
792 	val |= bval << shift;
793 	writel_relaxed(val, addr);
794 
795 	raw_spin_unlock_irqrestore(&rmw_lock, flags);
796 }
797 
798 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
799 			    bool force)
800 {
801 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
802 	unsigned int cpu;
803 
804 	if (!force)
805 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
806 	else
807 		cpu = cpumask_first(mask_val);
808 
809 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
810 		return -EINVAL;
811 
812 	if (static_branch_unlikely(&needs_rmw_access))
813 		rmw_writeb(gic_cpu_map[cpu], reg);
814 	else
815 		writeb_relaxed(gic_cpu_map[cpu], reg);
816 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
817 
818 	return IRQ_SET_MASK_OK_DONE;
819 }
820 
821 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
822 {
823 	int cpu;
824 	unsigned long flags, map = 0;
825 
826 	if (unlikely(nr_cpu_ids == 1)) {
827 		/* Only one CPU? let's do a self-IPI... */
828 		writel_relaxed(2 << 24 | d->hwirq,
829 			       gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
830 		return;
831 	}
832 
833 	gic_lock_irqsave(flags);
834 
835 	/* Convert our logical CPU mask into a physical one. */
836 	for_each_cpu(cpu, mask)
837 		map |= gic_cpu_map[cpu];
838 
839 	/*
840 	 * Ensure that stores to Normal memory are visible to the
841 	 * other CPUs before they observe us issuing the IPI.
842 	 */
843 	dmb(ishst);
844 
845 	/* this always happens on GIC0 */
846 	writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
847 
848 	gic_unlock_irqrestore(flags);
849 }
850 
851 static int gic_starting_cpu(unsigned int cpu)
852 {
853 	gic_cpu_init(&gic_data[0]);
854 	return 0;
855 }
856 
857 static __init void gic_smp_init(void)
858 {
859 	struct irq_fwspec sgi_fwspec = {
860 		.fwnode		= gic_data[0].domain->fwnode,
861 		.param_count	= 1,
862 	};
863 	int base_sgi;
864 
865 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
866 				  "irqchip/arm/gic:starting",
867 				  gic_starting_cpu, NULL);
868 
869 	base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
870 					   NUMA_NO_NODE, &sgi_fwspec,
871 					   false, NULL);
872 	if (WARN_ON(base_sgi <= 0))
873 		return;
874 
875 	set_smp_ipi_range(base_sgi, 8);
876 }
877 #else
878 #define gic_smp_init()		do { } while(0)
879 #define gic_set_affinity	NULL
880 #define gic_ipi_send_mask	NULL
881 #endif
882 
883 #ifdef CONFIG_BL_SWITCHER
884 /*
885  * gic_send_sgi - send a SGI directly to given CPU interface number
886  *
887  * cpu_id: the ID for the destination CPU interface
888  * irq: the IPI number to send a SGI for
889  */
890 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
891 {
892 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
893 	cpu_id = 1 << cpu_id;
894 	/* this always happens on GIC0 */
895 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
896 }
897 
898 /*
899  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
900  *
901  * @cpu: the logical CPU number to get the GIC ID for.
902  *
903  * Return the CPU interface ID for the given logical CPU number,
904  * or -1 if the CPU number is too large or the interface ID is
905  * unknown (more than one bit set).
906  */
907 int gic_get_cpu_id(unsigned int cpu)
908 {
909 	unsigned int cpu_bit;
910 
911 	if (cpu >= NR_GIC_CPU_IF)
912 		return -1;
913 	cpu_bit = gic_cpu_map[cpu];
914 	if (cpu_bit & (cpu_bit - 1))
915 		return -1;
916 	return __ffs(cpu_bit);
917 }
918 
919 /*
920  * gic_migrate_target - migrate IRQs to another CPU interface
921  *
922  * @new_cpu_id: the CPU target ID to migrate IRQs to
923  *
924  * Migrate all peripheral interrupts with a target matching the current CPU
925  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
926  * is also updated.  Targets to other CPU interfaces are unchanged.
927  * This must be called with IRQs locally disabled.
928  */
929 void gic_migrate_target(unsigned int new_cpu_id)
930 {
931 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
932 	void __iomem *dist_base;
933 	int i, ror_val, cpu = smp_processor_id();
934 	u32 val, cur_target_mask, active_mask;
935 
936 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
937 
938 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
939 	if (!dist_base)
940 		return;
941 	gic_irqs = gic_data[gic_nr].gic_irqs;
942 
943 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
944 	cur_target_mask = 0x01010101 << cur_cpu_id;
945 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
946 
947 	gic_lock();
948 
949 	/* Update the target interface for this logical CPU */
950 	gic_cpu_map[cpu] = 1 << new_cpu_id;
951 
952 	/*
953 	 * Find all the peripheral interrupts targeting the current
954 	 * CPU interface and migrate them to the new CPU interface.
955 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
956 	 */
957 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
958 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
959 		active_mask = val & cur_target_mask;
960 		if (active_mask) {
961 			val &= ~active_mask;
962 			val |= ror32(active_mask, ror_val);
963 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
964 		}
965 	}
966 
967 	gic_unlock();
968 
969 	/*
970 	 * Now let's migrate and clear any potential SGIs that might be
971 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
972 	 * is a banked register, we can only forward the SGI using
973 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
974 	 * doesn't use that information anyway.
975 	 *
976 	 * For the same reason we do not adjust SGI source information
977 	 * for previously sent SGIs by us to other CPUs either.
978 	 */
979 	for (i = 0; i < 16; i += 4) {
980 		int j;
981 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
982 		if (!val)
983 			continue;
984 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
985 		for (j = i; j < i + 4; j++) {
986 			if (val & 0xff)
987 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
988 						dist_base + GIC_DIST_SOFTINT);
989 			val >>= 8;
990 		}
991 	}
992 }
993 
994 /*
995  * gic_get_sgir_physaddr - get the physical address for the SGI register
996  *
997  * Return the physical address of the SGI register to be used
998  * by some early assembly code when the kernel is not yet available.
999  */
1000 static unsigned long gic_dist_physaddr;
1001 
1002 unsigned long gic_get_sgir_physaddr(void)
1003 {
1004 	if (!gic_dist_physaddr)
1005 		return 0;
1006 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
1007 }
1008 
1009 static void __init gic_init_physaddr(struct device_node *node)
1010 {
1011 	struct resource res;
1012 	if (of_address_to_resource(node, 0, &res) == 0) {
1013 		gic_dist_physaddr = res.start;
1014 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1015 	}
1016 }
1017 
1018 #else
1019 #define gic_init_physaddr(node)  do { } while (0)
1020 #endif
1021 
1022 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1023 				irq_hw_number_t hw)
1024 {
1025 	struct gic_chip_data *gic = d->host_data;
1026 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1027 
1028 	switch (hw) {
1029 	case 0 ... 31:
1030 		irq_set_percpu_devid(irq);
1031 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1032 				    handle_percpu_devid_irq, NULL, NULL);
1033 		break;
1034 	default:
1035 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1036 				    handle_fasteoi_irq, NULL, NULL);
1037 		irq_set_probe(irq);
1038 		irqd_set_single_target(irqd);
1039 		break;
1040 	}
1041 
1042 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1043 	irqd_set_handle_enforce_irqctx(irqd);
1044 	return 0;
1045 }
1046 
1047 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1048 {
1049 }
1050 
1051 static int gic_irq_domain_translate(struct irq_domain *d,
1052 				    struct irq_fwspec *fwspec,
1053 				    unsigned long *hwirq,
1054 				    unsigned int *type)
1055 {
1056 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1057 		*hwirq = fwspec->param[0];
1058 		*type = IRQ_TYPE_EDGE_RISING;
1059 		return 0;
1060 	}
1061 
1062 	if (is_of_node(fwspec->fwnode)) {
1063 		if (fwspec->param_count < 3)
1064 			return -EINVAL;
1065 
1066 		switch (fwspec->param[0]) {
1067 		case 0:			/* SPI */
1068 			*hwirq = fwspec->param[1] + 32;
1069 			break;
1070 		case 1:			/* PPI */
1071 			*hwirq = fwspec->param[1] + 16;
1072 			break;
1073 		default:
1074 			return -EINVAL;
1075 		}
1076 
1077 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1078 
1079 		/* Make it clear that broken DTs are... broken */
1080 		WARN_ON(*type == IRQ_TYPE_NONE);
1081 		return 0;
1082 	}
1083 
1084 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1085 		if(fwspec->param_count != 2)
1086 			return -EINVAL;
1087 
1088 		*hwirq = fwspec->param[0];
1089 		*type = fwspec->param[1];
1090 
1091 		WARN_ON(*type == IRQ_TYPE_NONE);
1092 		return 0;
1093 	}
1094 
1095 	return -EINVAL;
1096 }
1097 
1098 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1099 				unsigned int nr_irqs, void *arg)
1100 {
1101 	int i, ret;
1102 	irq_hw_number_t hwirq;
1103 	unsigned int type = IRQ_TYPE_NONE;
1104 	struct irq_fwspec *fwspec = arg;
1105 
1106 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1107 	if (ret)
1108 		return ret;
1109 
1110 	for (i = 0; i < nr_irqs; i++) {
1111 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1112 		if (ret)
1113 			return ret;
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1120 	.translate = gic_irq_domain_translate,
1121 	.alloc = gic_irq_domain_alloc,
1122 	.free = irq_domain_free_irqs_top,
1123 };
1124 
1125 static const struct irq_domain_ops gic_irq_domain_ops = {
1126 	.map = gic_irq_domain_map,
1127 	.unmap = gic_irq_domain_unmap,
1128 };
1129 
1130 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1131 			  const char *name, bool use_eoimode1)
1132 {
1133 	/* Initialize irq_chip */
1134 	gic->chip = gic_chip;
1135 	gic->chip.name = name;
1136 	gic->chip.parent_device = dev;
1137 
1138 	if (use_eoimode1) {
1139 		gic->chip.irq_mask = gic_eoimode1_mask_irq;
1140 		gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1141 		gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1142 	}
1143 
1144 	if (gic == &gic_data[0]) {
1145 		gic->chip.irq_set_affinity = gic_set_affinity;
1146 		gic->chip.ipi_send_mask = gic_ipi_send_mask;
1147 	}
1148 }
1149 
1150 static int gic_init_bases(struct gic_chip_data *gic,
1151 			  struct fwnode_handle *handle)
1152 {
1153 	int gic_irqs, ret;
1154 
1155 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1156 		/* Frankein-GIC without banked registers... */
1157 		unsigned int cpu;
1158 
1159 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1160 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1161 		if (WARN_ON(!gic->dist_base.percpu_base ||
1162 			    !gic->cpu_base.percpu_base)) {
1163 			ret = -ENOMEM;
1164 			goto error;
1165 		}
1166 
1167 		for_each_possible_cpu(cpu) {
1168 			u32 mpidr = cpu_logical_map(cpu);
1169 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1170 			unsigned long offset = gic->percpu_offset * core_id;
1171 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1172 				gic->raw_dist_base + offset;
1173 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1174 				gic->raw_cpu_base + offset;
1175 		}
1176 
1177 		enable_frankengic();
1178 	} else {
1179 		/* Normal, sane GIC... */
1180 		WARN(gic->percpu_offset,
1181 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1182 		     gic->percpu_offset);
1183 		gic->dist_base.common_base = gic->raw_dist_base;
1184 		gic->cpu_base.common_base = gic->raw_cpu_base;
1185 	}
1186 
1187 	/*
1188 	 * Find out how many interrupts are supported.
1189 	 * The GIC only supports up to 1020 interrupt sources.
1190 	 */
1191 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1192 	gic_irqs = (gic_irqs + 1) * 32;
1193 	if (gic_irqs > 1020)
1194 		gic_irqs = 1020;
1195 	gic->gic_irqs = gic_irqs;
1196 
1197 	if (handle) {		/* DT/ACPI */
1198 		gic->domain = irq_domain_create_linear(handle, gic_irqs,
1199 						       &gic_irq_domain_hierarchy_ops,
1200 						       gic);
1201 	} else {		/* Legacy support */
1202 		/*
1203 		 * For primary GICs, skip over SGIs.
1204 		 * No secondary GIC support whatsoever.
1205 		 */
1206 		int irq_base;
1207 
1208 		gic_irqs -= 16; /* calculate # of irqs to allocate */
1209 
1210 		irq_base = irq_alloc_descs(16, 16, gic_irqs,
1211 					   numa_node_id());
1212 		if (irq_base < 0) {
1213 			WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1214 			irq_base = 16;
1215 		}
1216 
1217 		gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1218 						    16, &gic_irq_domain_ops, gic);
1219 	}
1220 
1221 	if (WARN_ON(!gic->domain)) {
1222 		ret = -ENODEV;
1223 		goto error;
1224 	}
1225 
1226 	gic_dist_init(gic);
1227 	ret = gic_cpu_init(gic);
1228 	if (ret)
1229 		goto error;
1230 
1231 	ret = gic_pm_init(gic);
1232 	if (ret)
1233 		goto error;
1234 
1235 	return 0;
1236 
1237 error:
1238 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1239 		free_percpu(gic->dist_base.percpu_base);
1240 		free_percpu(gic->cpu_base.percpu_base);
1241 	}
1242 
1243 	return ret;
1244 }
1245 
1246 static int __init __gic_init_bases(struct gic_chip_data *gic,
1247 				   struct fwnode_handle *handle)
1248 {
1249 	char *name;
1250 	int i, ret;
1251 
1252 	if (WARN_ON(!gic || gic->domain))
1253 		return -EINVAL;
1254 
1255 	if (gic == &gic_data[0]) {
1256 		/*
1257 		 * Initialize the CPU interface map to all CPUs.
1258 		 * It will be refined as each CPU probes its ID.
1259 		 * This is only necessary for the primary GIC.
1260 		 */
1261 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1262 			gic_cpu_map[i] = 0xff;
1263 
1264 		set_handle_irq(gic_handle_irq);
1265 		if (static_branch_likely(&supports_deactivate_key))
1266 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1267 	}
1268 
1269 	if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1270 		name = kasprintf(GFP_KERNEL, "GICv2");
1271 		gic_init_chip(gic, NULL, name, true);
1272 	} else {
1273 		name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1274 		gic_init_chip(gic, NULL, name, false);
1275 	}
1276 
1277 	ret = gic_init_bases(gic, handle);
1278 	if (ret)
1279 		kfree(name);
1280 	else if (gic == &gic_data[0])
1281 		gic_smp_init();
1282 
1283 	return ret;
1284 }
1285 
1286 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1287 {
1288 	struct gic_chip_data *gic;
1289 
1290 	/*
1291 	 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1292 	 * bother with these...
1293 	 */
1294 	static_branch_disable(&supports_deactivate_key);
1295 
1296 	gic = &gic_data[0];
1297 	gic->raw_dist_base = dist_base;
1298 	gic->raw_cpu_base = cpu_base;
1299 
1300 	__gic_init_bases(gic, NULL);
1301 }
1302 
1303 static void gic_teardown(struct gic_chip_data *gic)
1304 {
1305 	if (WARN_ON(!gic))
1306 		return;
1307 
1308 	if (gic->raw_dist_base)
1309 		iounmap(gic->raw_dist_base);
1310 	if (gic->raw_cpu_base)
1311 		iounmap(gic->raw_cpu_base);
1312 }
1313 
1314 #ifdef CONFIG_OF
1315 static int gic_cnt __initdata;
1316 static bool gicv2_force_probe;
1317 
1318 static int __init gicv2_force_probe_cfg(char *buf)
1319 {
1320 	return strtobool(buf, &gicv2_force_probe);
1321 }
1322 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1323 
1324 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1325 {
1326 	struct resource cpuif_res;
1327 
1328 	of_address_to_resource(node, 1, &cpuif_res);
1329 
1330 	if (!is_hyp_mode_available())
1331 		return false;
1332 	if (resource_size(&cpuif_res) < SZ_8K) {
1333 		void __iomem *alt;
1334 		/*
1335 		 * Check for a stupid firmware that only exposes the
1336 		 * first page of a GICv2.
1337 		 */
1338 		if (!gic_check_gicv2(*base))
1339 			return false;
1340 
1341 		if (!gicv2_force_probe) {
1342 			pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1343 			return false;
1344 		}
1345 
1346 		alt = ioremap(cpuif_res.start, SZ_8K);
1347 		if (!alt)
1348 			return false;
1349 		if (!gic_check_gicv2(alt + SZ_4K)) {
1350 			/*
1351 			 * The first page was that of a GICv2, and
1352 			 * the second was *something*. Let's trust it
1353 			 * to be a GICv2, and update the mapping.
1354 			 */
1355 			pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1356 				&cpuif_res.start);
1357 			iounmap(*base);
1358 			*base = alt;
1359 			return true;
1360 		}
1361 
1362 		/*
1363 		 * We detected *two* initial GICv2 pages in a
1364 		 * row. Could be a GICv2 aliased over two 64kB
1365 		 * pages. Update the resource, map the iospace, and
1366 		 * pray.
1367 		 */
1368 		iounmap(alt);
1369 		alt = ioremap(cpuif_res.start, SZ_128K);
1370 		if (!alt)
1371 			return false;
1372 		pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1373 			&cpuif_res.start);
1374 		cpuif_res.end = cpuif_res.start + SZ_128K -1;
1375 		iounmap(*base);
1376 		*base = alt;
1377 	}
1378 	if (resource_size(&cpuif_res) == SZ_128K) {
1379 		/*
1380 		 * Verify that we have the first 4kB of a GICv2
1381 		 * aliased over the first 64kB by checking the
1382 		 * GICC_IIDR register on both ends.
1383 		 */
1384 		if (!gic_check_gicv2(*base) ||
1385 		    !gic_check_gicv2(*base + 0xf000))
1386 			return false;
1387 
1388 		/*
1389 		 * Move the base up by 60kB, so that we have a 8kB
1390 		 * contiguous region, which allows us to use GICC_DIR
1391 		 * at its normal offset. Please pass me that bucket.
1392 		 */
1393 		*base += 0xf000;
1394 		cpuif_res.start += 0xf000;
1395 		pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1396 			&cpuif_res.start);
1397 	}
1398 
1399 	return true;
1400 }
1401 
1402 static bool gic_enable_rmw_access(void *data)
1403 {
1404 	/*
1405 	 * The EMEV2 class of machines has a broken interconnect, and
1406 	 * locks up on accesses that are less than 32bit. So far, only
1407 	 * the affinity setting requires it.
1408 	 */
1409 	if (of_machine_is_compatible("renesas,emev2")) {
1410 		static_branch_enable(&needs_rmw_access);
1411 		return true;
1412 	}
1413 
1414 	return false;
1415 }
1416 
1417 static const struct gic_quirk gic_quirks[] = {
1418 	{
1419 		.desc		= "broken byte access",
1420 		.compatible	= "arm,pl390",
1421 		.init		= gic_enable_rmw_access,
1422 	},
1423 	{ },
1424 };
1425 
1426 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1427 {
1428 	if (!gic || !node)
1429 		return -EINVAL;
1430 
1431 	gic->raw_dist_base = of_iomap(node, 0);
1432 	if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1433 		goto error;
1434 
1435 	gic->raw_cpu_base = of_iomap(node, 1);
1436 	if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1437 		goto error;
1438 
1439 	if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1440 		gic->percpu_offset = 0;
1441 
1442 	gic_enable_of_quirks(node, gic_quirks, gic);
1443 
1444 	return 0;
1445 
1446 error:
1447 	gic_teardown(gic);
1448 
1449 	return -ENOMEM;
1450 }
1451 
1452 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1453 {
1454 	int ret;
1455 
1456 	if (!dev || !dev->of_node || !gic || !irq)
1457 		return -EINVAL;
1458 
1459 	*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1460 	if (!*gic)
1461 		return -ENOMEM;
1462 
1463 	gic_init_chip(*gic, dev, dev->of_node->name, false);
1464 
1465 	ret = gic_of_setup(*gic, dev->of_node);
1466 	if (ret)
1467 		return ret;
1468 
1469 	ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1470 	if (ret) {
1471 		gic_teardown(*gic);
1472 		return ret;
1473 	}
1474 
1475 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1476 
1477 	return 0;
1478 }
1479 
1480 static void __init gic_of_setup_kvm_info(struct device_node *node)
1481 {
1482 	int ret;
1483 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1484 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1485 
1486 	gic_v2_kvm_info.type = GIC_V2;
1487 
1488 	gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1489 	if (!gic_v2_kvm_info.maint_irq)
1490 		return;
1491 
1492 	ret = of_address_to_resource(node, 2, vctrl_res);
1493 	if (ret)
1494 		return;
1495 
1496 	ret = of_address_to_resource(node, 3, vcpu_res);
1497 	if (ret)
1498 		return;
1499 
1500 	if (static_branch_likely(&supports_deactivate_key))
1501 		vgic_set_kvm_info(&gic_v2_kvm_info);
1502 }
1503 
1504 int __init
1505 gic_of_init(struct device_node *node, struct device_node *parent)
1506 {
1507 	struct gic_chip_data *gic;
1508 	int irq, ret;
1509 
1510 	if (WARN_ON(!node))
1511 		return -ENODEV;
1512 
1513 	if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1514 		return -EINVAL;
1515 
1516 	gic = &gic_data[gic_cnt];
1517 
1518 	ret = gic_of_setup(gic, node);
1519 	if (ret)
1520 		return ret;
1521 
1522 	/*
1523 	 * Disable split EOI/Deactivate if either HYP is not available
1524 	 * or the CPU interface is too small.
1525 	 */
1526 	if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1527 		static_branch_disable(&supports_deactivate_key);
1528 
1529 	ret = __gic_init_bases(gic, &node->fwnode);
1530 	if (ret) {
1531 		gic_teardown(gic);
1532 		return ret;
1533 	}
1534 
1535 	if (!gic_cnt) {
1536 		gic_init_physaddr(node);
1537 		gic_of_setup_kvm_info(node);
1538 	}
1539 
1540 	if (parent) {
1541 		irq = irq_of_parse_and_map(node, 0);
1542 		gic_cascade_irq(gic_cnt, irq);
1543 	}
1544 
1545 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1546 		gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1547 
1548 	gic_cnt++;
1549 	return 0;
1550 }
1551 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1552 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1553 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1554 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1555 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1556 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1557 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1558 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1559 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1560 #else
1561 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1562 {
1563 	return -ENOTSUPP;
1564 }
1565 #endif
1566 
1567 #ifdef CONFIG_ACPI
1568 static struct
1569 {
1570 	phys_addr_t cpu_phys_base;
1571 	u32 maint_irq;
1572 	int maint_irq_mode;
1573 	phys_addr_t vctrl_base;
1574 	phys_addr_t vcpu_base;
1575 } acpi_data __initdata;
1576 
1577 static int __init
1578 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1579 			const unsigned long end)
1580 {
1581 	struct acpi_madt_generic_interrupt *processor;
1582 	phys_addr_t gic_cpu_base;
1583 	static int cpu_base_assigned;
1584 
1585 	processor = (struct acpi_madt_generic_interrupt *)header;
1586 
1587 	if (BAD_MADT_GICC_ENTRY(processor, end))
1588 		return -EINVAL;
1589 
1590 	/*
1591 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1592 	 * All CPU interface addresses have to be the same.
1593 	 */
1594 	gic_cpu_base = processor->base_address;
1595 	if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1596 		return -EINVAL;
1597 
1598 	acpi_data.cpu_phys_base = gic_cpu_base;
1599 	acpi_data.maint_irq = processor->vgic_interrupt;
1600 	acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1601 				    ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1602 	acpi_data.vctrl_base = processor->gich_base_address;
1603 	acpi_data.vcpu_base = processor->gicv_base_address;
1604 
1605 	cpu_base_assigned = 1;
1606 	return 0;
1607 }
1608 
1609 /* The things you have to do to just *count* something... */
1610 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1611 				  const unsigned long end)
1612 {
1613 	return 0;
1614 }
1615 
1616 static bool __init acpi_gic_redist_is_present(void)
1617 {
1618 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1619 				     acpi_dummy_func, 0) > 0;
1620 }
1621 
1622 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1623 				     struct acpi_probe_entry *ape)
1624 {
1625 	struct acpi_madt_generic_distributor *dist;
1626 	dist = (struct acpi_madt_generic_distributor *)header;
1627 
1628 	return (dist->version == ape->driver_data &&
1629 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1630 		 !acpi_gic_redist_is_present()));
1631 }
1632 
1633 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1634 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1635 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
1636 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
1637 
1638 static void __init gic_acpi_setup_kvm_info(void)
1639 {
1640 	int irq;
1641 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1642 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1643 
1644 	gic_v2_kvm_info.type = GIC_V2;
1645 
1646 	if (!acpi_data.vctrl_base)
1647 		return;
1648 
1649 	vctrl_res->flags = IORESOURCE_MEM;
1650 	vctrl_res->start = acpi_data.vctrl_base;
1651 	vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1652 
1653 	if (!acpi_data.vcpu_base)
1654 		return;
1655 
1656 	vcpu_res->flags = IORESOURCE_MEM;
1657 	vcpu_res->start = acpi_data.vcpu_base;
1658 	vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1659 
1660 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1661 				acpi_data.maint_irq_mode,
1662 				ACPI_ACTIVE_HIGH);
1663 	if (irq <= 0)
1664 		return;
1665 
1666 	gic_v2_kvm_info.maint_irq = irq;
1667 
1668 	vgic_set_kvm_info(&gic_v2_kvm_info);
1669 }
1670 
1671 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1672 				   const unsigned long end)
1673 {
1674 	struct acpi_madt_generic_distributor *dist;
1675 	struct fwnode_handle *domain_handle;
1676 	struct gic_chip_data *gic = &gic_data[0];
1677 	int count, ret;
1678 
1679 	/* Collect CPU base addresses */
1680 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1681 				      gic_acpi_parse_madt_cpu, 0);
1682 	if (count <= 0) {
1683 		pr_err("No valid GICC entries exist\n");
1684 		return -EINVAL;
1685 	}
1686 
1687 	gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1688 	if (!gic->raw_cpu_base) {
1689 		pr_err("Unable to map GICC registers\n");
1690 		return -ENOMEM;
1691 	}
1692 
1693 	dist = (struct acpi_madt_generic_distributor *)header;
1694 	gic->raw_dist_base = ioremap(dist->base_address,
1695 				     ACPI_GICV2_DIST_MEM_SIZE);
1696 	if (!gic->raw_dist_base) {
1697 		pr_err("Unable to map GICD registers\n");
1698 		gic_teardown(gic);
1699 		return -ENOMEM;
1700 	}
1701 
1702 	/*
1703 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1704 	 * guarantees that we'll always have a GICv2, so the CPU
1705 	 * interface will always be the right size.
1706 	 */
1707 	if (!is_hyp_mode_available())
1708 		static_branch_disable(&supports_deactivate_key);
1709 
1710 	/*
1711 	 * Initialize GIC instance zero (no multi-GIC support).
1712 	 */
1713 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1714 	if (!domain_handle) {
1715 		pr_err("Unable to allocate domain handle\n");
1716 		gic_teardown(gic);
1717 		return -ENOMEM;
1718 	}
1719 
1720 	ret = __gic_init_bases(gic, domain_handle);
1721 	if (ret) {
1722 		pr_err("Failed to initialise GIC\n");
1723 		irq_domain_free_fwnode(domain_handle);
1724 		gic_teardown(gic);
1725 		return ret;
1726 	}
1727 
1728 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1729 
1730 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1731 		gicv2m_init(NULL, gic_data[0].domain);
1732 
1733 	if (static_branch_likely(&supports_deactivate_key))
1734 		gic_acpi_setup_kvm_info();
1735 
1736 	return 0;
1737 }
1738 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1739 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1740 		     gic_v2_acpi_init);
1741 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1742 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1743 		     gic_v2_acpi_init);
1744 #endif
1745