xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision 9cfc5c90)
1 /*
2  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Interrupt architecture for the GIC:
9  *
10  * o There is one Interrupt Distributor, which receives interrupts
11  *   from system devices and sends them to the Interrupt Controllers.
12  *
13  * o There is one CPU Interface per CPU, which sends interrupts sent
14  *   by the Distributor, and interrupts generated locally, to the
15  *   associated CPU. The base address of the CPU interface is usually
16  *   aliased so that the same address points to different chips depending
17  *   on the CPU it is accessed from.
18  *
19  * Note that IRQs 0-31 are special - they are local to each CPU.
20  * As such, the enable set/clear, pending set/clear and active bit
21  * registers are banked per-cpu for these sources.
22  */
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/list.h>
28 #include <linux/smp.h>
29 #include <linux/cpu.h>
30 #include <linux/cpu_pm.h>
31 #include <linux/cpumask.h>
32 #include <linux/io.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/acpi.h>
37 #include <linux/irqdomain.h>
38 #include <linux/interrupt.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/irqchip.h>
42 #include <linux/irqchip/chained_irq.h>
43 #include <linux/irqchip/arm-gic.h>
44 
45 #include <asm/cputype.h>
46 #include <asm/irq.h>
47 #include <asm/exception.h>
48 #include <asm/smp_plat.h>
49 #include <asm/virt.h>
50 
51 #include "irq-gic-common.h"
52 
53 #ifdef CONFIG_ARM64
54 #include <asm/cpufeature.h>
55 
56 static void gic_check_cpu_features(void)
57 {
58 	WARN_TAINT_ONCE(cpus_have_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
59 			TAINT_CPU_OUT_OF_SPEC,
60 			"GICv3 system registers enabled, broken firmware!\n");
61 }
62 #else
63 #define gic_check_cpu_features()	do { } while(0)
64 #endif
65 
66 union gic_base {
67 	void __iomem *common_base;
68 	void __percpu * __iomem *percpu_base;
69 };
70 
71 struct gic_chip_data {
72 	union gic_base dist_base;
73 	union gic_base cpu_base;
74 #ifdef CONFIG_CPU_PM
75 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
76 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
77 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
78 	u32 __percpu *saved_ppi_enable;
79 	u32 __percpu *saved_ppi_conf;
80 #endif
81 	struct irq_domain *domain;
82 	unsigned int gic_irqs;
83 #ifdef CONFIG_GIC_NON_BANKED
84 	void __iomem *(*get_base)(union gic_base *);
85 #endif
86 };
87 
88 static DEFINE_RAW_SPINLOCK(irq_controller_lock);
89 
90 /*
91  * The GIC mapping of CPU interfaces does not necessarily match
92  * the logical CPU numbering.  Let's use a mapping as returned
93  * by the GIC itself.
94  */
95 #define NR_GIC_CPU_IF 8
96 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
97 
98 static struct static_key supports_deactivate = STATIC_KEY_INIT_TRUE;
99 
100 #ifndef MAX_GIC_NR
101 #define MAX_GIC_NR	1
102 #endif
103 
104 static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
105 
106 #ifdef CONFIG_GIC_NON_BANKED
107 static void __iomem *gic_get_percpu_base(union gic_base *base)
108 {
109 	return raw_cpu_read(*base->percpu_base);
110 }
111 
112 static void __iomem *gic_get_common_base(union gic_base *base)
113 {
114 	return base->common_base;
115 }
116 
117 static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
118 {
119 	return data->get_base(&data->dist_base);
120 }
121 
122 static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
123 {
124 	return data->get_base(&data->cpu_base);
125 }
126 
127 static inline void gic_set_base_accessor(struct gic_chip_data *data,
128 					 void __iomem *(*f)(union gic_base *))
129 {
130 	data->get_base = f;
131 }
132 #else
133 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
134 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
135 #define gic_set_base_accessor(d, f)
136 #endif
137 
138 static inline void __iomem *gic_dist_base(struct irq_data *d)
139 {
140 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
141 	return gic_data_dist_base(gic_data);
142 }
143 
144 static inline void __iomem *gic_cpu_base(struct irq_data *d)
145 {
146 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
147 	return gic_data_cpu_base(gic_data);
148 }
149 
150 static inline unsigned int gic_irq(struct irq_data *d)
151 {
152 	return d->hwirq;
153 }
154 
155 static inline bool cascading_gic_irq(struct irq_data *d)
156 {
157 	void *data = irq_data_get_irq_handler_data(d);
158 
159 	/*
160 	 * If handler_data is set, this is a cascading interrupt, and
161 	 * it cannot possibly be forwarded.
162 	 */
163 	return data != NULL;
164 }
165 
166 /*
167  * Routines to acknowledge, disable and enable interrupts
168  */
169 static void gic_poke_irq(struct irq_data *d, u32 offset)
170 {
171 	u32 mask = 1 << (gic_irq(d) % 32);
172 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
173 }
174 
175 static int gic_peek_irq(struct irq_data *d, u32 offset)
176 {
177 	u32 mask = 1 << (gic_irq(d) % 32);
178 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
179 }
180 
181 static void gic_mask_irq(struct irq_data *d)
182 {
183 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
184 }
185 
186 static void gic_eoimode1_mask_irq(struct irq_data *d)
187 {
188 	gic_mask_irq(d);
189 	/*
190 	 * When masking a forwarded interrupt, make sure it is
191 	 * deactivated as well.
192 	 *
193 	 * This ensures that an interrupt that is getting
194 	 * disabled/masked will not get "stuck", because there is
195 	 * noone to deactivate it (guest is being terminated).
196 	 */
197 	if (irqd_is_forwarded_to_vcpu(d))
198 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
199 }
200 
201 static void gic_unmask_irq(struct irq_data *d)
202 {
203 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
204 }
205 
206 static void gic_eoi_irq(struct irq_data *d)
207 {
208 	writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
209 }
210 
211 static void gic_eoimode1_eoi_irq(struct irq_data *d)
212 {
213 	/* Do not deactivate an IRQ forwarded to a vcpu. */
214 	if (irqd_is_forwarded_to_vcpu(d))
215 		return;
216 
217 	writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
218 }
219 
220 static int gic_irq_set_irqchip_state(struct irq_data *d,
221 				     enum irqchip_irq_state which, bool val)
222 {
223 	u32 reg;
224 
225 	switch (which) {
226 	case IRQCHIP_STATE_PENDING:
227 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
228 		break;
229 
230 	case IRQCHIP_STATE_ACTIVE:
231 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
232 		break;
233 
234 	case IRQCHIP_STATE_MASKED:
235 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
236 		break;
237 
238 	default:
239 		return -EINVAL;
240 	}
241 
242 	gic_poke_irq(d, reg);
243 	return 0;
244 }
245 
246 static int gic_irq_get_irqchip_state(struct irq_data *d,
247 				      enum irqchip_irq_state which, bool *val)
248 {
249 	switch (which) {
250 	case IRQCHIP_STATE_PENDING:
251 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
252 		break;
253 
254 	case IRQCHIP_STATE_ACTIVE:
255 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
256 		break;
257 
258 	case IRQCHIP_STATE_MASKED:
259 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
260 		break;
261 
262 	default:
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int gic_set_type(struct irq_data *d, unsigned int type)
270 {
271 	void __iomem *base = gic_dist_base(d);
272 	unsigned int gicirq = gic_irq(d);
273 
274 	/* Interrupt configuration for SGIs can't be changed */
275 	if (gicirq < 16)
276 		return -EINVAL;
277 
278 	/* SPIs have restrictions on the supported types */
279 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
280 			    type != IRQ_TYPE_EDGE_RISING)
281 		return -EINVAL;
282 
283 	return gic_configure_irq(gicirq, type, base, NULL);
284 }
285 
286 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
287 {
288 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
289 	if (cascading_gic_irq(d))
290 		return -EINVAL;
291 
292 	if (vcpu)
293 		irqd_set_forwarded_to_vcpu(d);
294 	else
295 		irqd_clr_forwarded_to_vcpu(d);
296 	return 0;
297 }
298 
299 #ifdef CONFIG_SMP
300 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
301 			    bool force)
302 {
303 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
304 	unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
305 	u32 val, mask, bit;
306 	unsigned long flags;
307 
308 	if (!force)
309 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
310 	else
311 		cpu = cpumask_first(mask_val);
312 
313 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
314 		return -EINVAL;
315 
316 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
317 	mask = 0xff << shift;
318 	bit = gic_cpu_map[cpu] << shift;
319 	val = readl_relaxed(reg) & ~mask;
320 	writel_relaxed(val | bit, reg);
321 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
322 
323 	return IRQ_SET_MASK_OK;
324 }
325 #endif
326 
327 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
328 {
329 	u32 irqstat, irqnr;
330 	struct gic_chip_data *gic = &gic_data[0];
331 	void __iomem *cpu_base = gic_data_cpu_base(gic);
332 
333 	do {
334 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
335 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
336 
337 		if (likely(irqnr > 15 && irqnr < 1021)) {
338 			if (static_key_true(&supports_deactivate))
339 				writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
340 			handle_domain_irq(gic->domain, irqnr, regs);
341 			continue;
342 		}
343 		if (irqnr < 16) {
344 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
345 			if (static_key_true(&supports_deactivate))
346 				writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE);
347 #ifdef CONFIG_SMP
348 			handle_IPI(irqnr, regs);
349 #endif
350 			continue;
351 		}
352 		break;
353 	} while (1);
354 }
355 
356 static void gic_handle_cascade_irq(struct irq_desc *desc)
357 {
358 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
359 	struct irq_chip *chip = irq_desc_get_chip(desc);
360 	unsigned int cascade_irq, gic_irq;
361 	unsigned long status;
362 
363 	chained_irq_enter(chip, desc);
364 
365 	raw_spin_lock(&irq_controller_lock);
366 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
367 	raw_spin_unlock(&irq_controller_lock);
368 
369 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
370 	if (gic_irq == GICC_INT_SPURIOUS)
371 		goto out;
372 
373 	cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
374 	if (unlikely(gic_irq < 32 || gic_irq > 1020))
375 		handle_bad_irq(desc);
376 	else
377 		generic_handle_irq(cascade_irq);
378 
379  out:
380 	chained_irq_exit(chip, desc);
381 }
382 
383 static struct irq_chip gic_chip = {
384 	.name			= "GIC",
385 	.irq_mask		= gic_mask_irq,
386 	.irq_unmask		= gic_unmask_irq,
387 	.irq_eoi		= gic_eoi_irq,
388 	.irq_set_type		= gic_set_type,
389 #ifdef CONFIG_SMP
390 	.irq_set_affinity	= gic_set_affinity,
391 #endif
392 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
393 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
394 	.flags			= IRQCHIP_SET_TYPE_MASKED |
395 				  IRQCHIP_SKIP_SET_WAKE |
396 				  IRQCHIP_MASK_ON_SUSPEND,
397 };
398 
399 static struct irq_chip gic_eoimode1_chip = {
400 	.name			= "GICv2",
401 	.irq_mask		= gic_eoimode1_mask_irq,
402 	.irq_unmask		= gic_unmask_irq,
403 	.irq_eoi		= gic_eoimode1_eoi_irq,
404 	.irq_set_type		= gic_set_type,
405 #ifdef CONFIG_SMP
406 	.irq_set_affinity	= gic_set_affinity,
407 #endif
408 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
409 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
410 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
411 	.flags			= IRQCHIP_SET_TYPE_MASKED |
412 				  IRQCHIP_SKIP_SET_WAKE |
413 				  IRQCHIP_MASK_ON_SUSPEND,
414 };
415 
416 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
417 {
418 	if (gic_nr >= MAX_GIC_NR)
419 		BUG();
420 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
421 					 &gic_data[gic_nr]);
422 }
423 
424 static u8 gic_get_cpumask(struct gic_chip_data *gic)
425 {
426 	void __iomem *base = gic_data_dist_base(gic);
427 	u32 mask, i;
428 
429 	for (i = mask = 0; i < 32; i += 4) {
430 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
431 		mask |= mask >> 16;
432 		mask |= mask >> 8;
433 		if (mask)
434 			break;
435 	}
436 
437 	if (!mask && num_possible_cpus() > 1)
438 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
439 
440 	return mask;
441 }
442 
443 static void gic_cpu_if_up(struct gic_chip_data *gic)
444 {
445 	void __iomem *cpu_base = gic_data_cpu_base(gic);
446 	u32 bypass = 0;
447 	u32 mode = 0;
448 
449 	if (static_key_true(&supports_deactivate))
450 		mode = GIC_CPU_CTRL_EOImodeNS;
451 
452 	/*
453 	* Preserve bypass disable bits to be written back later
454 	*/
455 	bypass = readl(cpu_base + GIC_CPU_CTRL);
456 	bypass &= GICC_DIS_BYPASS_MASK;
457 
458 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
459 }
460 
461 
462 static void __init gic_dist_init(struct gic_chip_data *gic)
463 {
464 	unsigned int i;
465 	u32 cpumask;
466 	unsigned int gic_irqs = gic->gic_irqs;
467 	void __iomem *base = gic_data_dist_base(gic);
468 
469 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
470 
471 	/*
472 	 * Set all global interrupts to this CPU only.
473 	 */
474 	cpumask = gic_get_cpumask(gic);
475 	cpumask |= cpumask << 8;
476 	cpumask |= cpumask << 16;
477 	for (i = 32; i < gic_irqs; i += 4)
478 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
479 
480 	gic_dist_config(base, gic_irqs, NULL);
481 
482 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
483 }
484 
485 static void gic_cpu_init(struct gic_chip_data *gic)
486 {
487 	void __iomem *dist_base = gic_data_dist_base(gic);
488 	void __iomem *base = gic_data_cpu_base(gic);
489 	unsigned int cpu_mask, cpu = smp_processor_id();
490 	int i;
491 
492 	/*
493 	 * Setting up the CPU map is only relevant for the primary GIC
494 	 * because any nested/secondary GICs do not directly interface
495 	 * with the CPU(s).
496 	 */
497 	if (gic == &gic_data[0]) {
498 		/*
499 		 * Get what the GIC says our CPU mask is.
500 		 */
501 		BUG_ON(cpu >= NR_GIC_CPU_IF);
502 		cpu_mask = gic_get_cpumask(gic);
503 		gic_cpu_map[cpu] = cpu_mask;
504 
505 		/*
506 		 * Clear our mask from the other map entries in case they're
507 		 * still undefined.
508 		 */
509 		for (i = 0; i < NR_GIC_CPU_IF; i++)
510 			if (i != cpu)
511 				gic_cpu_map[i] &= ~cpu_mask;
512 	}
513 
514 	gic_cpu_config(dist_base, NULL);
515 
516 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
517 	gic_cpu_if_up(gic);
518 }
519 
520 int gic_cpu_if_down(unsigned int gic_nr)
521 {
522 	void __iomem *cpu_base;
523 	u32 val = 0;
524 
525 	if (gic_nr >= MAX_GIC_NR)
526 		return -EINVAL;
527 
528 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
529 	val = readl(cpu_base + GIC_CPU_CTRL);
530 	val &= ~GICC_ENABLE;
531 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
532 
533 	return 0;
534 }
535 
536 #ifdef CONFIG_CPU_PM
537 /*
538  * Saves the GIC distributor registers during suspend or idle.  Must be called
539  * with interrupts disabled but before powering down the GIC.  After calling
540  * this function, no interrupts will be delivered by the GIC, and another
541  * platform-specific wakeup source must be enabled.
542  */
543 static void gic_dist_save(unsigned int gic_nr)
544 {
545 	unsigned int gic_irqs;
546 	void __iomem *dist_base;
547 	int i;
548 
549 	if (gic_nr >= MAX_GIC_NR)
550 		BUG();
551 
552 	gic_irqs = gic_data[gic_nr].gic_irqs;
553 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
554 
555 	if (!dist_base)
556 		return;
557 
558 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
559 		gic_data[gic_nr].saved_spi_conf[i] =
560 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
561 
562 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
563 		gic_data[gic_nr].saved_spi_target[i] =
564 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
565 
566 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
567 		gic_data[gic_nr].saved_spi_enable[i] =
568 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
569 }
570 
571 /*
572  * Restores the GIC distributor registers during resume or when coming out of
573  * idle.  Must be called before enabling interrupts.  If a level interrupt
574  * that occured while the GIC was suspended is still present, it will be
575  * handled normally, but any edge interrupts that occured will not be seen by
576  * the GIC and need to be handled by the platform-specific wakeup source.
577  */
578 static void gic_dist_restore(unsigned int gic_nr)
579 {
580 	unsigned int gic_irqs;
581 	unsigned int i;
582 	void __iomem *dist_base;
583 
584 	if (gic_nr >= MAX_GIC_NR)
585 		BUG();
586 
587 	gic_irqs = gic_data[gic_nr].gic_irqs;
588 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
589 
590 	if (!dist_base)
591 		return;
592 
593 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
594 
595 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
596 		writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
597 			dist_base + GIC_DIST_CONFIG + i * 4);
598 
599 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
600 		writel_relaxed(GICD_INT_DEF_PRI_X4,
601 			dist_base + GIC_DIST_PRI + i * 4);
602 
603 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
604 		writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
605 			dist_base + GIC_DIST_TARGET + i * 4);
606 
607 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
608 		writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
609 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
610 
611 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
612 }
613 
614 static void gic_cpu_save(unsigned int gic_nr)
615 {
616 	int i;
617 	u32 *ptr;
618 	void __iomem *dist_base;
619 	void __iomem *cpu_base;
620 
621 	if (gic_nr >= MAX_GIC_NR)
622 		BUG();
623 
624 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
625 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
626 
627 	if (!dist_base || !cpu_base)
628 		return;
629 
630 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
631 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
632 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
633 
634 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
635 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
636 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
637 
638 }
639 
640 static void gic_cpu_restore(unsigned int gic_nr)
641 {
642 	int i;
643 	u32 *ptr;
644 	void __iomem *dist_base;
645 	void __iomem *cpu_base;
646 
647 	if (gic_nr >= MAX_GIC_NR)
648 		BUG();
649 
650 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
651 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
652 
653 	if (!dist_base || !cpu_base)
654 		return;
655 
656 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
657 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
658 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
659 
660 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
661 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
662 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
663 
664 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
665 		writel_relaxed(GICD_INT_DEF_PRI_X4,
666 					dist_base + GIC_DIST_PRI + i * 4);
667 
668 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
669 	gic_cpu_if_up(&gic_data[gic_nr]);
670 }
671 
672 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
673 {
674 	int i;
675 
676 	for (i = 0; i < MAX_GIC_NR; i++) {
677 #ifdef CONFIG_GIC_NON_BANKED
678 		/* Skip over unused GICs */
679 		if (!gic_data[i].get_base)
680 			continue;
681 #endif
682 		switch (cmd) {
683 		case CPU_PM_ENTER:
684 			gic_cpu_save(i);
685 			break;
686 		case CPU_PM_ENTER_FAILED:
687 		case CPU_PM_EXIT:
688 			gic_cpu_restore(i);
689 			break;
690 		case CPU_CLUSTER_PM_ENTER:
691 			gic_dist_save(i);
692 			break;
693 		case CPU_CLUSTER_PM_ENTER_FAILED:
694 		case CPU_CLUSTER_PM_EXIT:
695 			gic_dist_restore(i);
696 			break;
697 		}
698 	}
699 
700 	return NOTIFY_OK;
701 }
702 
703 static struct notifier_block gic_notifier_block = {
704 	.notifier_call = gic_notifier,
705 };
706 
707 static void __init gic_pm_init(struct gic_chip_data *gic)
708 {
709 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
710 		sizeof(u32));
711 	BUG_ON(!gic->saved_ppi_enable);
712 
713 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
714 		sizeof(u32));
715 	BUG_ON(!gic->saved_ppi_conf);
716 
717 	if (gic == &gic_data[0])
718 		cpu_pm_register_notifier(&gic_notifier_block);
719 }
720 #else
721 static void __init gic_pm_init(struct gic_chip_data *gic)
722 {
723 }
724 #endif
725 
726 #ifdef CONFIG_SMP
727 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
728 {
729 	int cpu;
730 	unsigned long flags, map = 0;
731 
732 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
733 
734 	/* Convert our logical CPU mask into a physical one. */
735 	for_each_cpu(cpu, mask)
736 		map |= gic_cpu_map[cpu];
737 
738 	/*
739 	 * Ensure that stores to Normal memory are visible to the
740 	 * other CPUs before they observe us issuing the IPI.
741 	 */
742 	dmb(ishst);
743 
744 	/* this always happens on GIC0 */
745 	writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
746 
747 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
748 }
749 #endif
750 
751 #ifdef CONFIG_BL_SWITCHER
752 /*
753  * gic_send_sgi - send a SGI directly to given CPU interface number
754  *
755  * cpu_id: the ID for the destination CPU interface
756  * irq: the IPI number to send a SGI for
757  */
758 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
759 {
760 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
761 	cpu_id = 1 << cpu_id;
762 	/* this always happens on GIC0 */
763 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
764 }
765 
766 /*
767  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
768  *
769  * @cpu: the logical CPU number to get the GIC ID for.
770  *
771  * Return the CPU interface ID for the given logical CPU number,
772  * or -1 if the CPU number is too large or the interface ID is
773  * unknown (more than one bit set).
774  */
775 int gic_get_cpu_id(unsigned int cpu)
776 {
777 	unsigned int cpu_bit;
778 
779 	if (cpu >= NR_GIC_CPU_IF)
780 		return -1;
781 	cpu_bit = gic_cpu_map[cpu];
782 	if (cpu_bit & (cpu_bit - 1))
783 		return -1;
784 	return __ffs(cpu_bit);
785 }
786 
787 /*
788  * gic_migrate_target - migrate IRQs to another CPU interface
789  *
790  * @new_cpu_id: the CPU target ID to migrate IRQs to
791  *
792  * Migrate all peripheral interrupts with a target matching the current CPU
793  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
794  * is also updated.  Targets to other CPU interfaces are unchanged.
795  * This must be called with IRQs locally disabled.
796  */
797 void gic_migrate_target(unsigned int new_cpu_id)
798 {
799 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
800 	void __iomem *dist_base;
801 	int i, ror_val, cpu = smp_processor_id();
802 	u32 val, cur_target_mask, active_mask;
803 
804 	if (gic_nr >= MAX_GIC_NR)
805 		BUG();
806 
807 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
808 	if (!dist_base)
809 		return;
810 	gic_irqs = gic_data[gic_nr].gic_irqs;
811 
812 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
813 	cur_target_mask = 0x01010101 << cur_cpu_id;
814 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
815 
816 	raw_spin_lock(&irq_controller_lock);
817 
818 	/* Update the target interface for this logical CPU */
819 	gic_cpu_map[cpu] = 1 << new_cpu_id;
820 
821 	/*
822 	 * Find all the peripheral interrupts targetting the current
823 	 * CPU interface and migrate them to the new CPU interface.
824 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
825 	 */
826 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
827 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
828 		active_mask = val & cur_target_mask;
829 		if (active_mask) {
830 			val &= ~active_mask;
831 			val |= ror32(active_mask, ror_val);
832 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
833 		}
834 	}
835 
836 	raw_spin_unlock(&irq_controller_lock);
837 
838 	/*
839 	 * Now let's migrate and clear any potential SGIs that might be
840 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
841 	 * is a banked register, we can only forward the SGI using
842 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
843 	 * doesn't use that information anyway.
844 	 *
845 	 * For the same reason we do not adjust SGI source information
846 	 * for previously sent SGIs by us to other CPUs either.
847 	 */
848 	for (i = 0; i < 16; i += 4) {
849 		int j;
850 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
851 		if (!val)
852 			continue;
853 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
854 		for (j = i; j < i + 4; j++) {
855 			if (val & 0xff)
856 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
857 						dist_base + GIC_DIST_SOFTINT);
858 			val >>= 8;
859 		}
860 	}
861 }
862 
863 /*
864  * gic_get_sgir_physaddr - get the physical address for the SGI register
865  *
866  * REturn the physical address of the SGI register to be used
867  * by some early assembly code when the kernel is not yet available.
868  */
869 static unsigned long gic_dist_physaddr;
870 
871 unsigned long gic_get_sgir_physaddr(void)
872 {
873 	if (!gic_dist_physaddr)
874 		return 0;
875 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
876 }
877 
878 void __init gic_init_physaddr(struct device_node *node)
879 {
880 	struct resource res;
881 	if (of_address_to_resource(node, 0, &res) == 0) {
882 		gic_dist_physaddr = res.start;
883 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
884 	}
885 }
886 
887 #else
888 #define gic_init_physaddr(node)  do { } while (0)
889 #endif
890 
891 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
892 				irq_hw_number_t hw)
893 {
894 	struct irq_chip *chip = &gic_chip;
895 
896 	if (static_key_true(&supports_deactivate)) {
897 		if (d->host_data == (void *)&gic_data[0])
898 			chip = &gic_eoimode1_chip;
899 	}
900 
901 	if (hw < 32) {
902 		irq_set_percpu_devid(irq);
903 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
904 				    handle_percpu_devid_irq, NULL, NULL);
905 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
906 	} else {
907 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
908 				    handle_fasteoi_irq, NULL, NULL);
909 		irq_set_probe(irq);
910 	}
911 	return 0;
912 }
913 
914 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
915 {
916 }
917 
918 static int gic_irq_domain_translate(struct irq_domain *d,
919 				    struct irq_fwspec *fwspec,
920 				    unsigned long *hwirq,
921 				    unsigned int *type)
922 {
923 	if (is_of_node(fwspec->fwnode)) {
924 		if (fwspec->param_count < 3)
925 			return -EINVAL;
926 
927 		/* Get the interrupt number and add 16 to skip over SGIs */
928 		*hwirq = fwspec->param[1] + 16;
929 
930 		/*
931 		 * For SPIs, we need to add 16 more to get the GIC irq
932 		 * ID number
933 		 */
934 		if (!fwspec->param[0])
935 			*hwirq += 16;
936 
937 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
938 		return 0;
939 	}
940 
941 	if (fwspec->fwnode->type == FWNODE_IRQCHIP) {
942 		if(fwspec->param_count != 2)
943 			return -EINVAL;
944 
945 		*hwirq = fwspec->param[0];
946 		*type = fwspec->param[1];
947 		return 0;
948 	}
949 
950 	return -EINVAL;
951 }
952 
953 #ifdef CONFIG_SMP
954 static int gic_secondary_init(struct notifier_block *nfb, unsigned long action,
955 			      void *hcpu)
956 {
957 	if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
958 		gic_cpu_init(&gic_data[0]);
959 	return NOTIFY_OK;
960 }
961 
962 /*
963  * Notifier for enabling the GIC CPU interface. Set an arbitrarily high
964  * priority because the GIC needs to be up before the ARM generic timers.
965  */
966 static struct notifier_block gic_cpu_notifier = {
967 	.notifier_call = gic_secondary_init,
968 	.priority = 100,
969 };
970 #endif
971 
972 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
973 				unsigned int nr_irqs, void *arg)
974 {
975 	int i, ret;
976 	irq_hw_number_t hwirq;
977 	unsigned int type = IRQ_TYPE_NONE;
978 	struct irq_fwspec *fwspec = arg;
979 
980 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
981 	if (ret)
982 		return ret;
983 
984 	for (i = 0; i < nr_irqs; i++)
985 		gic_irq_domain_map(domain, virq + i, hwirq + i);
986 
987 	return 0;
988 }
989 
990 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
991 	.translate = gic_irq_domain_translate,
992 	.alloc = gic_irq_domain_alloc,
993 	.free = irq_domain_free_irqs_top,
994 };
995 
996 static const struct irq_domain_ops gic_irq_domain_ops = {
997 	.map = gic_irq_domain_map,
998 	.unmap = gic_irq_domain_unmap,
999 };
1000 
1001 static void __init __gic_init_bases(unsigned int gic_nr, int irq_start,
1002 			   void __iomem *dist_base, void __iomem *cpu_base,
1003 			   u32 percpu_offset, struct fwnode_handle *handle)
1004 {
1005 	irq_hw_number_t hwirq_base;
1006 	struct gic_chip_data *gic;
1007 	int gic_irqs, irq_base, i;
1008 
1009 	BUG_ON(gic_nr >= MAX_GIC_NR);
1010 
1011 	gic_check_cpu_features();
1012 
1013 	gic = &gic_data[gic_nr];
1014 #ifdef CONFIG_GIC_NON_BANKED
1015 	if (percpu_offset) { /* Frankein-GIC without banked registers... */
1016 		unsigned int cpu;
1017 
1018 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1019 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1020 		if (WARN_ON(!gic->dist_base.percpu_base ||
1021 			    !gic->cpu_base.percpu_base)) {
1022 			free_percpu(gic->dist_base.percpu_base);
1023 			free_percpu(gic->cpu_base.percpu_base);
1024 			return;
1025 		}
1026 
1027 		for_each_possible_cpu(cpu) {
1028 			u32 mpidr = cpu_logical_map(cpu);
1029 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1030 			unsigned long offset = percpu_offset * core_id;
1031 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
1032 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
1033 		}
1034 
1035 		gic_set_base_accessor(gic, gic_get_percpu_base);
1036 	} else
1037 #endif
1038 	{			/* Normal, sane GIC... */
1039 		WARN(percpu_offset,
1040 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1041 		     percpu_offset);
1042 		gic->dist_base.common_base = dist_base;
1043 		gic->cpu_base.common_base = cpu_base;
1044 		gic_set_base_accessor(gic, gic_get_common_base);
1045 	}
1046 
1047 	/*
1048 	 * Find out how many interrupts are supported.
1049 	 * The GIC only supports up to 1020 interrupt sources.
1050 	 */
1051 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1052 	gic_irqs = (gic_irqs + 1) * 32;
1053 	if (gic_irqs > 1020)
1054 		gic_irqs = 1020;
1055 	gic->gic_irqs = gic_irqs;
1056 
1057 	if (handle) {		/* DT/ACPI */
1058 		gic->domain = irq_domain_create_linear(handle, gic_irqs,
1059 						       &gic_irq_domain_hierarchy_ops,
1060 						       gic);
1061 	} else {		/* Legacy support */
1062 		/*
1063 		 * For primary GICs, skip over SGIs.
1064 		 * For secondary GICs, skip over PPIs, too.
1065 		 */
1066 		if (gic_nr == 0 && (irq_start & 31) > 0) {
1067 			hwirq_base = 16;
1068 			if (irq_start != -1)
1069 				irq_start = (irq_start & ~31) + 16;
1070 		} else {
1071 			hwirq_base = 32;
1072 		}
1073 
1074 		gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
1075 
1076 		irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
1077 					   numa_node_id());
1078 		if (IS_ERR_VALUE(irq_base)) {
1079 			WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
1080 			     irq_start);
1081 			irq_base = irq_start;
1082 		}
1083 
1084 		gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1085 					hwirq_base, &gic_irq_domain_ops, gic);
1086 	}
1087 
1088 	if (WARN_ON(!gic->domain))
1089 		return;
1090 
1091 	if (gic_nr == 0) {
1092 		/*
1093 		 * Initialize the CPU interface map to all CPUs.
1094 		 * It will be refined as each CPU probes its ID.
1095 		 * This is only necessary for the primary GIC.
1096 		 */
1097 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1098 			gic_cpu_map[i] = 0xff;
1099 #ifdef CONFIG_SMP
1100 		set_smp_cross_call(gic_raise_softirq);
1101 		register_cpu_notifier(&gic_cpu_notifier);
1102 #endif
1103 		set_handle_irq(gic_handle_irq);
1104 		if (static_key_true(&supports_deactivate))
1105 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1106 	}
1107 
1108 	gic_dist_init(gic);
1109 	gic_cpu_init(gic);
1110 	gic_pm_init(gic);
1111 }
1112 
1113 void __init gic_init(unsigned int gic_nr, int irq_start,
1114 		     void __iomem *dist_base, void __iomem *cpu_base)
1115 {
1116 	/*
1117 	 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1118 	 * bother with these...
1119 	 */
1120 	static_key_slow_dec(&supports_deactivate);
1121 	__gic_init_bases(gic_nr, irq_start, dist_base, cpu_base, 0, NULL);
1122 }
1123 
1124 #ifdef CONFIG_OF
1125 static int gic_cnt __initdata;
1126 
1127 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1128 {
1129 	struct resource cpuif_res;
1130 
1131 	of_address_to_resource(node, 1, &cpuif_res);
1132 
1133 	if (!is_hyp_mode_available())
1134 		return false;
1135 	if (resource_size(&cpuif_res) < SZ_8K)
1136 		return false;
1137 	if (resource_size(&cpuif_res) == SZ_128K) {
1138 		u32 val_low, val_high;
1139 
1140 		/*
1141 		 * Verify that we have the first 4kB of a GIC400
1142 		 * aliased over the first 64kB by checking the
1143 		 * GICC_IIDR register on both ends.
1144 		 */
1145 		val_low = readl_relaxed(*base + GIC_CPU_IDENT);
1146 		val_high = readl_relaxed(*base + GIC_CPU_IDENT + 0xf000);
1147 		if ((val_low & 0xffff0fff) != 0x0202043B ||
1148 		    val_low != val_high)
1149 			return false;
1150 
1151 		/*
1152 		 * Move the base up by 60kB, so that we have a 8kB
1153 		 * contiguous region, which allows us to use GICC_DIR
1154 		 * at its normal offset. Please pass me that bucket.
1155 		 */
1156 		*base += 0xf000;
1157 		cpuif_res.start += 0xf000;
1158 		pr_warn("GIC: Adjusting CPU interface base to %pa",
1159 			&cpuif_res.start);
1160 	}
1161 
1162 	return true;
1163 }
1164 
1165 static int __init
1166 gic_of_init(struct device_node *node, struct device_node *parent)
1167 {
1168 	void __iomem *cpu_base;
1169 	void __iomem *dist_base;
1170 	u32 percpu_offset;
1171 	int irq;
1172 
1173 	if (WARN_ON(!node))
1174 		return -ENODEV;
1175 
1176 	dist_base = of_iomap(node, 0);
1177 	WARN(!dist_base, "unable to map gic dist registers\n");
1178 
1179 	cpu_base = of_iomap(node, 1);
1180 	WARN(!cpu_base, "unable to map gic cpu registers\n");
1181 
1182 	/*
1183 	 * Disable split EOI/Deactivate if either HYP is not available
1184 	 * or the CPU interface is too small.
1185 	 */
1186 	if (gic_cnt == 0 && !gic_check_eoimode(node, &cpu_base))
1187 		static_key_slow_dec(&supports_deactivate);
1188 
1189 	if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
1190 		percpu_offset = 0;
1191 
1192 	__gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset,
1193 			 &node->fwnode);
1194 	if (!gic_cnt)
1195 		gic_init_physaddr(node);
1196 
1197 	if (parent) {
1198 		irq = irq_of_parse_and_map(node, 0);
1199 		gic_cascade_irq(gic_cnt, irq);
1200 	}
1201 
1202 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1203 		gicv2m_of_init(node, gic_data[gic_cnt].domain);
1204 
1205 	gic_cnt++;
1206 	return 0;
1207 }
1208 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1209 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1210 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1211 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1212 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1213 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1214 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1215 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1216 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1217 
1218 #endif
1219 
1220 #ifdef CONFIG_ACPI
1221 static phys_addr_t cpu_phy_base __initdata;
1222 
1223 static int __init
1224 gic_acpi_parse_madt_cpu(struct acpi_subtable_header *header,
1225 			const unsigned long end)
1226 {
1227 	struct acpi_madt_generic_interrupt *processor;
1228 	phys_addr_t gic_cpu_base;
1229 	static int cpu_base_assigned;
1230 
1231 	processor = (struct acpi_madt_generic_interrupt *)header;
1232 
1233 	if (BAD_MADT_GICC_ENTRY(processor, end))
1234 		return -EINVAL;
1235 
1236 	/*
1237 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1238 	 * All CPU interface addresses have to be the same.
1239 	 */
1240 	gic_cpu_base = processor->base_address;
1241 	if (cpu_base_assigned && gic_cpu_base != cpu_phy_base)
1242 		return -EINVAL;
1243 
1244 	cpu_phy_base = gic_cpu_base;
1245 	cpu_base_assigned = 1;
1246 	return 0;
1247 }
1248 
1249 /* The things you have to do to just *count* something... */
1250 static int __init acpi_dummy_func(struct acpi_subtable_header *header,
1251 				  const unsigned long end)
1252 {
1253 	return 0;
1254 }
1255 
1256 static bool __init acpi_gic_redist_is_present(void)
1257 {
1258 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1259 				     acpi_dummy_func, 0) > 0;
1260 }
1261 
1262 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1263 				     struct acpi_probe_entry *ape)
1264 {
1265 	struct acpi_madt_generic_distributor *dist;
1266 	dist = (struct acpi_madt_generic_distributor *)header;
1267 
1268 	return (dist->version == ape->driver_data &&
1269 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1270 		 !acpi_gic_redist_is_present()));
1271 }
1272 
1273 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1274 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1275 
1276 static int __init gic_v2_acpi_init(struct acpi_subtable_header *header,
1277 				   const unsigned long end)
1278 {
1279 	struct acpi_madt_generic_distributor *dist;
1280 	void __iomem *cpu_base, *dist_base;
1281 	struct fwnode_handle *domain_handle;
1282 	int count;
1283 
1284 	/* Collect CPU base addresses */
1285 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1286 				      gic_acpi_parse_madt_cpu, 0);
1287 	if (count <= 0) {
1288 		pr_err("No valid GICC entries exist\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	cpu_base = ioremap(cpu_phy_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1293 	if (!cpu_base) {
1294 		pr_err("Unable to map GICC registers\n");
1295 		return -ENOMEM;
1296 	}
1297 
1298 	dist = (struct acpi_madt_generic_distributor *)header;
1299 	dist_base = ioremap(dist->base_address, ACPI_GICV2_DIST_MEM_SIZE);
1300 	if (!dist_base) {
1301 		pr_err("Unable to map GICD registers\n");
1302 		iounmap(cpu_base);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	/*
1307 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1308 	 * guarantees that we'll always have a GICv2, so the CPU
1309 	 * interface will always be the right size.
1310 	 */
1311 	if (!is_hyp_mode_available())
1312 		static_key_slow_dec(&supports_deactivate);
1313 
1314 	/*
1315 	 * Initialize GIC instance zero (no multi-GIC support).
1316 	 */
1317 	domain_handle = irq_domain_alloc_fwnode(dist_base);
1318 	if (!domain_handle) {
1319 		pr_err("Unable to allocate domain handle\n");
1320 		iounmap(cpu_base);
1321 		iounmap(dist_base);
1322 		return -ENOMEM;
1323 	}
1324 
1325 	__gic_init_bases(0, -1, dist_base, cpu_base, 0, domain_handle);
1326 
1327 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1328 	return 0;
1329 }
1330 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1331 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1332 		     gic_v2_acpi_init);
1333 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1334 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1335 		     gic_v2_acpi_init);
1336 #endif
1337