xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision 6d8e62c3)
1 /*
2  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Interrupt architecture for the GIC:
9  *
10  * o There is one Interrupt Distributor, which receives interrupts
11  *   from system devices and sends them to the Interrupt Controllers.
12  *
13  * o There is one CPU Interface per CPU, which sends interrupts sent
14  *   by the Distributor, and interrupts generated locally, to the
15  *   associated CPU. The base address of the CPU interface is usually
16  *   aliased so that the same address points to different chips depending
17  *   on the CPU it is accessed from.
18  *
19  * Note that IRQs 0-31 are special - they are local to each CPU.
20  * As such, the enable set/clear, pending set/clear and active bit
21  * registers are banked per-cpu for these sources.
22  */
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/list.h>
28 #include <linux/smp.h>
29 #include <linux/cpu.h>
30 #include <linux/cpu_pm.h>
31 #include <linux/cpumask.h>
32 #include <linux/io.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/irqdomain.h>
37 #include <linux/interrupt.h>
38 #include <linux/percpu.h>
39 #include <linux/slab.h>
40 #include <linux/irqchip/chained_irq.h>
41 #include <linux/irqchip/arm-gic.h>
42 
43 #include <asm/cputype.h>
44 #include <asm/irq.h>
45 #include <asm/exception.h>
46 #include <asm/smp_plat.h>
47 
48 #include "irq-gic-common.h"
49 #include "irqchip.h"
50 
51 union gic_base {
52 	void __iomem *common_base;
53 	void __percpu * __iomem *percpu_base;
54 };
55 
56 struct gic_chip_data {
57 	union gic_base dist_base;
58 	union gic_base cpu_base;
59 #ifdef CONFIG_CPU_PM
60 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
61 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
62 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
63 	u32 __percpu *saved_ppi_enable;
64 	u32 __percpu *saved_ppi_conf;
65 #endif
66 	struct irq_domain *domain;
67 	unsigned int gic_irqs;
68 #ifdef CONFIG_GIC_NON_BANKED
69 	void __iomem *(*get_base)(union gic_base *);
70 #endif
71 };
72 
73 static DEFINE_RAW_SPINLOCK(irq_controller_lock);
74 
75 /*
76  * The GIC mapping of CPU interfaces does not necessarily match
77  * the logical CPU numbering.  Let's use a mapping as returned
78  * by the GIC itself.
79  */
80 #define NR_GIC_CPU_IF 8
81 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
82 
83 /*
84  * Supported arch specific GIC irq extension.
85  * Default make them NULL.
86  */
87 struct irq_chip gic_arch_extn = {
88 	.irq_eoi	= NULL,
89 	.irq_mask	= NULL,
90 	.irq_unmask	= NULL,
91 	.irq_retrigger	= NULL,
92 	.irq_set_type	= NULL,
93 	.irq_set_wake	= NULL,
94 };
95 
96 #ifndef MAX_GIC_NR
97 #define MAX_GIC_NR	1
98 #endif
99 
100 static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
101 
102 #ifdef CONFIG_GIC_NON_BANKED
103 static void __iomem *gic_get_percpu_base(union gic_base *base)
104 {
105 	return raw_cpu_read(*base->percpu_base);
106 }
107 
108 static void __iomem *gic_get_common_base(union gic_base *base)
109 {
110 	return base->common_base;
111 }
112 
113 static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
114 {
115 	return data->get_base(&data->dist_base);
116 }
117 
118 static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
119 {
120 	return data->get_base(&data->cpu_base);
121 }
122 
123 static inline void gic_set_base_accessor(struct gic_chip_data *data,
124 					 void __iomem *(*f)(union gic_base *))
125 {
126 	data->get_base = f;
127 }
128 #else
129 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
130 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
131 #define gic_set_base_accessor(d, f)
132 #endif
133 
134 static inline void __iomem *gic_dist_base(struct irq_data *d)
135 {
136 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
137 	return gic_data_dist_base(gic_data);
138 }
139 
140 static inline void __iomem *gic_cpu_base(struct irq_data *d)
141 {
142 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
143 	return gic_data_cpu_base(gic_data);
144 }
145 
146 static inline unsigned int gic_irq(struct irq_data *d)
147 {
148 	return d->hwirq;
149 }
150 
151 /*
152  * Routines to acknowledge, disable and enable interrupts
153  */
154 static void gic_mask_irq(struct irq_data *d)
155 {
156 	u32 mask = 1 << (gic_irq(d) % 32);
157 
158 	raw_spin_lock(&irq_controller_lock);
159 	writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_CLEAR + (gic_irq(d) / 32) * 4);
160 	if (gic_arch_extn.irq_mask)
161 		gic_arch_extn.irq_mask(d);
162 	raw_spin_unlock(&irq_controller_lock);
163 }
164 
165 static void gic_unmask_irq(struct irq_data *d)
166 {
167 	u32 mask = 1 << (gic_irq(d) % 32);
168 
169 	raw_spin_lock(&irq_controller_lock);
170 	if (gic_arch_extn.irq_unmask)
171 		gic_arch_extn.irq_unmask(d);
172 	writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4);
173 	raw_spin_unlock(&irq_controller_lock);
174 }
175 
176 static void gic_eoi_irq(struct irq_data *d)
177 {
178 	if (gic_arch_extn.irq_eoi) {
179 		raw_spin_lock(&irq_controller_lock);
180 		gic_arch_extn.irq_eoi(d);
181 		raw_spin_unlock(&irq_controller_lock);
182 	}
183 
184 	writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
185 }
186 
187 static int gic_set_type(struct irq_data *d, unsigned int type)
188 {
189 	void __iomem *base = gic_dist_base(d);
190 	unsigned int gicirq = gic_irq(d);
191 
192 	/* Interrupt configuration for SGIs can't be changed */
193 	if (gicirq < 16)
194 		return -EINVAL;
195 
196 	if (type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
197 		return -EINVAL;
198 
199 	raw_spin_lock(&irq_controller_lock);
200 
201 	if (gic_arch_extn.irq_set_type)
202 		gic_arch_extn.irq_set_type(d, type);
203 
204 	gic_configure_irq(gicirq, type, base, NULL);
205 
206 	raw_spin_unlock(&irq_controller_lock);
207 
208 	return 0;
209 }
210 
211 static int gic_retrigger(struct irq_data *d)
212 {
213 	if (gic_arch_extn.irq_retrigger)
214 		return gic_arch_extn.irq_retrigger(d);
215 
216 	/* the genirq layer expects 0 if we can't retrigger in hardware */
217 	return 0;
218 }
219 
220 #ifdef CONFIG_SMP
221 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
222 			    bool force)
223 {
224 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
225 	unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
226 	u32 val, mask, bit;
227 
228 	if (!force)
229 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
230 	else
231 		cpu = cpumask_first(mask_val);
232 
233 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
234 		return -EINVAL;
235 
236 	raw_spin_lock(&irq_controller_lock);
237 	mask = 0xff << shift;
238 	bit = gic_cpu_map[cpu] << shift;
239 	val = readl_relaxed(reg) & ~mask;
240 	writel_relaxed(val | bit, reg);
241 	raw_spin_unlock(&irq_controller_lock);
242 
243 	return IRQ_SET_MASK_OK;
244 }
245 #endif
246 
247 #ifdef CONFIG_PM
248 static int gic_set_wake(struct irq_data *d, unsigned int on)
249 {
250 	int ret = -ENXIO;
251 
252 	if (gic_arch_extn.irq_set_wake)
253 		ret = gic_arch_extn.irq_set_wake(d, on);
254 
255 	return ret;
256 }
257 
258 #else
259 #define gic_set_wake	NULL
260 #endif
261 
262 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
263 {
264 	u32 irqstat, irqnr;
265 	struct gic_chip_data *gic = &gic_data[0];
266 	void __iomem *cpu_base = gic_data_cpu_base(gic);
267 
268 	do {
269 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
270 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
271 
272 		if (likely(irqnr > 15 && irqnr < 1021)) {
273 			handle_domain_irq(gic->domain, irqnr, regs);
274 			continue;
275 		}
276 		if (irqnr < 16) {
277 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
278 #ifdef CONFIG_SMP
279 			handle_IPI(irqnr, regs);
280 #endif
281 			continue;
282 		}
283 		break;
284 	} while (1);
285 }
286 
287 static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
288 {
289 	struct gic_chip_data *chip_data = irq_get_handler_data(irq);
290 	struct irq_chip *chip = irq_get_chip(irq);
291 	unsigned int cascade_irq, gic_irq;
292 	unsigned long status;
293 
294 	chained_irq_enter(chip, desc);
295 
296 	raw_spin_lock(&irq_controller_lock);
297 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
298 	raw_spin_unlock(&irq_controller_lock);
299 
300 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
301 	if (gic_irq == GICC_INT_SPURIOUS)
302 		goto out;
303 
304 	cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
305 	if (unlikely(gic_irq < 32 || gic_irq > 1020))
306 		handle_bad_irq(cascade_irq, desc);
307 	else
308 		generic_handle_irq(cascade_irq);
309 
310  out:
311 	chained_irq_exit(chip, desc);
312 }
313 
314 static struct irq_chip gic_chip = {
315 	.name			= "GIC",
316 	.irq_mask		= gic_mask_irq,
317 	.irq_unmask		= gic_unmask_irq,
318 	.irq_eoi		= gic_eoi_irq,
319 	.irq_set_type		= gic_set_type,
320 	.irq_retrigger		= gic_retrigger,
321 #ifdef CONFIG_SMP
322 	.irq_set_affinity	= gic_set_affinity,
323 #endif
324 	.irq_set_wake		= gic_set_wake,
325 };
326 
327 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
328 {
329 	if (gic_nr >= MAX_GIC_NR)
330 		BUG();
331 	if (irq_set_handler_data(irq, &gic_data[gic_nr]) != 0)
332 		BUG();
333 	irq_set_chained_handler(irq, gic_handle_cascade_irq);
334 }
335 
336 static u8 gic_get_cpumask(struct gic_chip_data *gic)
337 {
338 	void __iomem *base = gic_data_dist_base(gic);
339 	u32 mask, i;
340 
341 	for (i = mask = 0; i < 32; i += 4) {
342 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
343 		mask |= mask >> 16;
344 		mask |= mask >> 8;
345 		if (mask)
346 			break;
347 	}
348 
349 	if (!mask)
350 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
351 
352 	return mask;
353 }
354 
355 static void gic_cpu_if_up(void)
356 {
357 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
358 	u32 bypass = 0;
359 
360 	/*
361 	* Preserve bypass disable bits to be written back later
362 	*/
363 	bypass = readl(cpu_base + GIC_CPU_CTRL);
364 	bypass &= GICC_DIS_BYPASS_MASK;
365 
366 	writel_relaxed(bypass | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
367 }
368 
369 
370 static void __init gic_dist_init(struct gic_chip_data *gic)
371 {
372 	unsigned int i;
373 	u32 cpumask;
374 	unsigned int gic_irqs = gic->gic_irqs;
375 	void __iomem *base = gic_data_dist_base(gic);
376 
377 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
378 
379 	/*
380 	 * Set all global interrupts to this CPU only.
381 	 */
382 	cpumask = gic_get_cpumask(gic);
383 	cpumask |= cpumask << 8;
384 	cpumask |= cpumask << 16;
385 	for (i = 32; i < gic_irqs; i += 4)
386 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
387 
388 	gic_dist_config(base, gic_irqs, NULL);
389 
390 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
391 }
392 
393 static void gic_cpu_init(struct gic_chip_data *gic)
394 {
395 	void __iomem *dist_base = gic_data_dist_base(gic);
396 	void __iomem *base = gic_data_cpu_base(gic);
397 	unsigned int cpu_mask, cpu = smp_processor_id();
398 	int i;
399 
400 	/*
401 	 * Get what the GIC says our CPU mask is.
402 	 */
403 	BUG_ON(cpu >= NR_GIC_CPU_IF);
404 	cpu_mask = gic_get_cpumask(gic);
405 	gic_cpu_map[cpu] = cpu_mask;
406 
407 	/*
408 	 * Clear our mask from the other map entries in case they're
409 	 * still undefined.
410 	 */
411 	for (i = 0; i < NR_GIC_CPU_IF; i++)
412 		if (i != cpu)
413 			gic_cpu_map[i] &= ~cpu_mask;
414 
415 	gic_cpu_config(dist_base, NULL);
416 
417 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
418 	gic_cpu_if_up();
419 }
420 
421 void gic_cpu_if_down(void)
422 {
423 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
424 	u32 val = 0;
425 
426 	val = readl(cpu_base + GIC_CPU_CTRL);
427 	val &= ~GICC_ENABLE;
428 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
429 }
430 
431 #ifdef CONFIG_CPU_PM
432 /*
433  * Saves the GIC distributor registers during suspend or idle.  Must be called
434  * with interrupts disabled but before powering down the GIC.  After calling
435  * this function, no interrupts will be delivered by the GIC, and another
436  * platform-specific wakeup source must be enabled.
437  */
438 static void gic_dist_save(unsigned int gic_nr)
439 {
440 	unsigned int gic_irqs;
441 	void __iomem *dist_base;
442 	int i;
443 
444 	if (gic_nr >= MAX_GIC_NR)
445 		BUG();
446 
447 	gic_irqs = gic_data[gic_nr].gic_irqs;
448 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
449 
450 	if (!dist_base)
451 		return;
452 
453 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
454 		gic_data[gic_nr].saved_spi_conf[i] =
455 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
456 
457 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
458 		gic_data[gic_nr].saved_spi_target[i] =
459 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
460 
461 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
462 		gic_data[gic_nr].saved_spi_enable[i] =
463 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
464 }
465 
466 /*
467  * Restores the GIC distributor registers during resume or when coming out of
468  * idle.  Must be called before enabling interrupts.  If a level interrupt
469  * that occured while the GIC was suspended is still present, it will be
470  * handled normally, but any edge interrupts that occured will not be seen by
471  * the GIC and need to be handled by the platform-specific wakeup source.
472  */
473 static void gic_dist_restore(unsigned int gic_nr)
474 {
475 	unsigned int gic_irqs;
476 	unsigned int i;
477 	void __iomem *dist_base;
478 
479 	if (gic_nr >= MAX_GIC_NR)
480 		BUG();
481 
482 	gic_irqs = gic_data[gic_nr].gic_irqs;
483 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
484 
485 	if (!dist_base)
486 		return;
487 
488 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
489 
490 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
491 		writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
492 			dist_base + GIC_DIST_CONFIG + i * 4);
493 
494 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
495 		writel_relaxed(GICD_INT_DEF_PRI_X4,
496 			dist_base + GIC_DIST_PRI + i * 4);
497 
498 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
499 		writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
500 			dist_base + GIC_DIST_TARGET + i * 4);
501 
502 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
503 		writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
504 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
505 
506 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
507 }
508 
509 static void gic_cpu_save(unsigned int gic_nr)
510 {
511 	int i;
512 	u32 *ptr;
513 	void __iomem *dist_base;
514 	void __iomem *cpu_base;
515 
516 	if (gic_nr >= MAX_GIC_NR)
517 		BUG();
518 
519 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
520 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
521 
522 	if (!dist_base || !cpu_base)
523 		return;
524 
525 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
526 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
527 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
528 
529 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
530 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
531 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
532 
533 }
534 
535 static void gic_cpu_restore(unsigned int gic_nr)
536 {
537 	int i;
538 	u32 *ptr;
539 	void __iomem *dist_base;
540 	void __iomem *cpu_base;
541 
542 	if (gic_nr >= MAX_GIC_NR)
543 		BUG();
544 
545 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
546 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
547 
548 	if (!dist_base || !cpu_base)
549 		return;
550 
551 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
552 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
553 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
554 
555 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
556 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
557 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
558 
559 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
560 		writel_relaxed(GICD_INT_DEF_PRI_X4,
561 					dist_base + GIC_DIST_PRI + i * 4);
562 
563 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
564 	gic_cpu_if_up();
565 }
566 
567 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
568 {
569 	int i;
570 
571 	for (i = 0; i < MAX_GIC_NR; i++) {
572 #ifdef CONFIG_GIC_NON_BANKED
573 		/* Skip over unused GICs */
574 		if (!gic_data[i].get_base)
575 			continue;
576 #endif
577 		switch (cmd) {
578 		case CPU_PM_ENTER:
579 			gic_cpu_save(i);
580 			break;
581 		case CPU_PM_ENTER_FAILED:
582 		case CPU_PM_EXIT:
583 			gic_cpu_restore(i);
584 			break;
585 		case CPU_CLUSTER_PM_ENTER:
586 			gic_dist_save(i);
587 			break;
588 		case CPU_CLUSTER_PM_ENTER_FAILED:
589 		case CPU_CLUSTER_PM_EXIT:
590 			gic_dist_restore(i);
591 			break;
592 		}
593 	}
594 
595 	return NOTIFY_OK;
596 }
597 
598 static struct notifier_block gic_notifier_block = {
599 	.notifier_call = gic_notifier,
600 };
601 
602 static void __init gic_pm_init(struct gic_chip_data *gic)
603 {
604 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
605 		sizeof(u32));
606 	BUG_ON(!gic->saved_ppi_enable);
607 
608 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
609 		sizeof(u32));
610 	BUG_ON(!gic->saved_ppi_conf);
611 
612 	if (gic == &gic_data[0])
613 		cpu_pm_register_notifier(&gic_notifier_block);
614 }
615 #else
616 static void __init gic_pm_init(struct gic_chip_data *gic)
617 {
618 }
619 #endif
620 
621 #ifdef CONFIG_SMP
622 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
623 {
624 	int cpu;
625 	unsigned long flags, map = 0;
626 
627 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
628 
629 	/* Convert our logical CPU mask into a physical one. */
630 	for_each_cpu(cpu, mask)
631 		map |= gic_cpu_map[cpu];
632 
633 	/*
634 	 * Ensure that stores to Normal memory are visible to the
635 	 * other CPUs before they observe us issuing the IPI.
636 	 */
637 	dmb(ishst);
638 
639 	/* this always happens on GIC0 */
640 	writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
641 
642 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
643 }
644 #endif
645 
646 #ifdef CONFIG_BL_SWITCHER
647 /*
648  * gic_send_sgi - send a SGI directly to given CPU interface number
649  *
650  * cpu_id: the ID for the destination CPU interface
651  * irq: the IPI number to send a SGI for
652  */
653 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
654 {
655 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
656 	cpu_id = 1 << cpu_id;
657 	/* this always happens on GIC0 */
658 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
659 }
660 
661 /*
662  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
663  *
664  * @cpu: the logical CPU number to get the GIC ID for.
665  *
666  * Return the CPU interface ID for the given logical CPU number,
667  * or -1 if the CPU number is too large or the interface ID is
668  * unknown (more than one bit set).
669  */
670 int gic_get_cpu_id(unsigned int cpu)
671 {
672 	unsigned int cpu_bit;
673 
674 	if (cpu >= NR_GIC_CPU_IF)
675 		return -1;
676 	cpu_bit = gic_cpu_map[cpu];
677 	if (cpu_bit & (cpu_bit - 1))
678 		return -1;
679 	return __ffs(cpu_bit);
680 }
681 
682 /*
683  * gic_migrate_target - migrate IRQs to another CPU interface
684  *
685  * @new_cpu_id: the CPU target ID to migrate IRQs to
686  *
687  * Migrate all peripheral interrupts with a target matching the current CPU
688  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
689  * is also updated.  Targets to other CPU interfaces are unchanged.
690  * This must be called with IRQs locally disabled.
691  */
692 void gic_migrate_target(unsigned int new_cpu_id)
693 {
694 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
695 	void __iomem *dist_base;
696 	int i, ror_val, cpu = smp_processor_id();
697 	u32 val, cur_target_mask, active_mask;
698 
699 	if (gic_nr >= MAX_GIC_NR)
700 		BUG();
701 
702 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
703 	if (!dist_base)
704 		return;
705 	gic_irqs = gic_data[gic_nr].gic_irqs;
706 
707 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
708 	cur_target_mask = 0x01010101 << cur_cpu_id;
709 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
710 
711 	raw_spin_lock(&irq_controller_lock);
712 
713 	/* Update the target interface for this logical CPU */
714 	gic_cpu_map[cpu] = 1 << new_cpu_id;
715 
716 	/*
717 	 * Find all the peripheral interrupts targetting the current
718 	 * CPU interface and migrate them to the new CPU interface.
719 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
720 	 */
721 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
722 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
723 		active_mask = val & cur_target_mask;
724 		if (active_mask) {
725 			val &= ~active_mask;
726 			val |= ror32(active_mask, ror_val);
727 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
728 		}
729 	}
730 
731 	raw_spin_unlock(&irq_controller_lock);
732 
733 	/*
734 	 * Now let's migrate and clear any potential SGIs that might be
735 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
736 	 * is a banked register, we can only forward the SGI using
737 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
738 	 * doesn't use that information anyway.
739 	 *
740 	 * For the same reason we do not adjust SGI source information
741 	 * for previously sent SGIs by us to other CPUs either.
742 	 */
743 	for (i = 0; i < 16; i += 4) {
744 		int j;
745 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
746 		if (!val)
747 			continue;
748 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
749 		for (j = i; j < i + 4; j++) {
750 			if (val & 0xff)
751 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
752 						dist_base + GIC_DIST_SOFTINT);
753 			val >>= 8;
754 		}
755 	}
756 }
757 
758 /*
759  * gic_get_sgir_physaddr - get the physical address for the SGI register
760  *
761  * REturn the physical address of the SGI register to be used
762  * by some early assembly code when the kernel is not yet available.
763  */
764 static unsigned long gic_dist_physaddr;
765 
766 unsigned long gic_get_sgir_physaddr(void)
767 {
768 	if (!gic_dist_physaddr)
769 		return 0;
770 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
771 }
772 
773 void __init gic_init_physaddr(struct device_node *node)
774 {
775 	struct resource res;
776 	if (of_address_to_resource(node, 0, &res) == 0) {
777 		gic_dist_physaddr = res.start;
778 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
779 	}
780 }
781 
782 #else
783 #define gic_init_physaddr(node)  do { } while (0)
784 #endif
785 
786 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
787 				irq_hw_number_t hw)
788 {
789 	if (hw < 32) {
790 		irq_set_percpu_devid(irq);
791 		irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,
792 				    handle_percpu_devid_irq, NULL, NULL);
793 		set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);
794 	} else {
795 		irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,
796 				    handle_fasteoi_irq, NULL, NULL);
797 		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
798 
799 		gic_routable_irq_domain_ops->map(d, irq, hw);
800 	}
801 	return 0;
802 }
803 
804 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
805 {
806 	gic_routable_irq_domain_ops->unmap(d, irq);
807 }
808 
809 static int gic_irq_domain_xlate(struct irq_domain *d,
810 				struct device_node *controller,
811 				const u32 *intspec, unsigned int intsize,
812 				unsigned long *out_hwirq, unsigned int *out_type)
813 {
814 	unsigned long ret = 0;
815 
816 	if (d->of_node != controller)
817 		return -EINVAL;
818 	if (intsize < 3)
819 		return -EINVAL;
820 
821 	/* Get the interrupt number and add 16 to skip over SGIs */
822 	*out_hwirq = intspec[1] + 16;
823 
824 	/* For SPIs, we need to add 16 more to get the GIC irq ID number */
825 	if (!intspec[0]) {
826 		ret = gic_routable_irq_domain_ops->xlate(d, controller,
827 							 intspec,
828 							 intsize,
829 							 out_hwirq,
830 							 out_type);
831 
832 		if (IS_ERR_VALUE(ret))
833 			return ret;
834 	}
835 
836 	*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
837 
838 	return ret;
839 }
840 
841 #ifdef CONFIG_SMP
842 static int gic_secondary_init(struct notifier_block *nfb, unsigned long action,
843 			      void *hcpu)
844 {
845 	if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
846 		gic_cpu_init(&gic_data[0]);
847 	return NOTIFY_OK;
848 }
849 
850 /*
851  * Notifier for enabling the GIC CPU interface. Set an arbitrarily high
852  * priority because the GIC needs to be up before the ARM generic timers.
853  */
854 static struct notifier_block gic_cpu_notifier = {
855 	.notifier_call = gic_secondary_init,
856 	.priority = 100,
857 };
858 #endif
859 
860 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
861 				unsigned int nr_irqs, void *arg)
862 {
863 	int i, ret;
864 	irq_hw_number_t hwirq;
865 	unsigned int type = IRQ_TYPE_NONE;
866 	struct of_phandle_args *irq_data = arg;
867 
868 	ret = gic_irq_domain_xlate(domain, irq_data->np, irq_data->args,
869 				   irq_data->args_count, &hwirq, &type);
870 	if (ret)
871 		return ret;
872 
873 	for (i = 0; i < nr_irqs; i++)
874 		gic_irq_domain_map(domain, virq + i, hwirq + i);
875 
876 	return 0;
877 }
878 
879 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
880 	.xlate = gic_irq_domain_xlate,
881 	.alloc = gic_irq_domain_alloc,
882 	.free = irq_domain_free_irqs_top,
883 };
884 
885 static const struct irq_domain_ops gic_irq_domain_ops = {
886 	.map = gic_irq_domain_map,
887 	.unmap = gic_irq_domain_unmap,
888 	.xlate = gic_irq_domain_xlate,
889 };
890 
891 /* Default functions for routable irq domain */
892 static int gic_routable_irq_domain_map(struct irq_domain *d, unsigned int irq,
893 			      irq_hw_number_t hw)
894 {
895 	return 0;
896 }
897 
898 static void gic_routable_irq_domain_unmap(struct irq_domain *d,
899 					  unsigned int irq)
900 {
901 }
902 
903 static int gic_routable_irq_domain_xlate(struct irq_domain *d,
904 				struct device_node *controller,
905 				const u32 *intspec, unsigned int intsize,
906 				unsigned long *out_hwirq,
907 				unsigned int *out_type)
908 {
909 	*out_hwirq += 16;
910 	return 0;
911 }
912 
913 static const struct irq_domain_ops gic_default_routable_irq_domain_ops = {
914 	.map = gic_routable_irq_domain_map,
915 	.unmap = gic_routable_irq_domain_unmap,
916 	.xlate = gic_routable_irq_domain_xlate,
917 };
918 
919 const struct irq_domain_ops *gic_routable_irq_domain_ops =
920 					&gic_default_routable_irq_domain_ops;
921 
922 void __init gic_init_bases(unsigned int gic_nr, int irq_start,
923 			   void __iomem *dist_base, void __iomem *cpu_base,
924 			   u32 percpu_offset, struct device_node *node)
925 {
926 	irq_hw_number_t hwirq_base;
927 	struct gic_chip_data *gic;
928 	int gic_irqs, irq_base, i;
929 	int nr_routable_irqs;
930 
931 	BUG_ON(gic_nr >= MAX_GIC_NR);
932 
933 	gic = &gic_data[gic_nr];
934 #ifdef CONFIG_GIC_NON_BANKED
935 	if (percpu_offset) { /* Frankein-GIC without banked registers... */
936 		unsigned int cpu;
937 
938 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
939 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
940 		if (WARN_ON(!gic->dist_base.percpu_base ||
941 			    !gic->cpu_base.percpu_base)) {
942 			free_percpu(gic->dist_base.percpu_base);
943 			free_percpu(gic->cpu_base.percpu_base);
944 			return;
945 		}
946 
947 		for_each_possible_cpu(cpu) {
948 			u32 mpidr = cpu_logical_map(cpu);
949 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
950 			unsigned long offset = percpu_offset * core_id;
951 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
952 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
953 		}
954 
955 		gic_set_base_accessor(gic, gic_get_percpu_base);
956 	} else
957 #endif
958 	{			/* Normal, sane GIC... */
959 		WARN(percpu_offset,
960 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
961 		     percpu_offset);
962 		gic->dist_base.common_base = dist_base;
963 		gic->cpu_base.common_base = cpu_base;
964 		gic_set_base_accessor(gic, gic_get_common_base);
965 	}
966 
967 	/*
968 	 * Initialize the CPU interface map to all CPUs.
969 	 * It will be refined as each CPU probes its ID.
970 	 */
971 	for (i = 0; i < NR_GIC_CPU_IF; i++)
972 		gic_cpu_map[i] = 0xff;
973 
974 	/*
975 	 * Find out how many interrupts are supported.
976 	 * The GIC only supports up to 1020 interrupt sources.
977 	 */
978 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
979 	gic_irqs = (gic_irqs + 1) * 32;
980 	if (gic_irqs > 1020)
981 		gic_irqs = 1020;
982 	gic->gic_irqs = gic_irqs;
983 
984 	if (node) {		/* DT case */
985 		const struct irq_domain_ops *ops = &gic_irq_domain_hierarchy_ops;
986 
987 		if (!of_property_read_u32(node, "arm,routable-irqs",
988 					  &nr_routable_irqs)) {
989 			ops = &gic_irq_domain_ops;
990 			gic_irqs = nr_routable_irqs;
991 		}
992 
993 		gic->domain = irq_domain_add_linear(node, gic_irqs, ops, gic);
994 	} else {		/* Non-DT case */
995 		/*
996 		 * For primary GICs, skip over SGIs.
997 		 * For secondary GICs, skip over PPIs, too.
998 		 */
999 		if (gic_nr == 0 && (irq_start & 31) > 0) {
1000 			hwirq_base = 16;
1001 			if (irq_start != -1)
1002 				irq_start = (irq_start & ~31) + 16;
1003 		} else {
1004 			hwirq_base = 32;
1005 		}
1006 
1007 		gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
1008 
1009 		irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
1010 					   numa_node_id());
1011 		if (IS_ERR_VALUE(irq_base)) {
1012 			WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
1013 			     irq_start);
1014 			irq_base = irq_start;
1015 		}
1016 
1017 		gic->domain = irq_domain_add_legacy(node, gic_irqs, irq_base,
1018 					hwirq_base, &gic_irq_domain_ops, gic);
1019 	}
1020 
1021 	if (WARN_ON(!gic->domain))
1022 		return;
1023 
1024 	if (gic_nr == 0) {
1025 #ifdef CONFIG_SMP
1026 		set_smp_cross_call(gic_raise_softirq);
1027 		register_cpu_notifier(&gic_cpu_notifier);
1028 #endif
1029 		set_handle_irq(gic_handle_irq);
1030 	}
1031 
1032 	gic_chip.flags |= gic_arch_extn.flags;
1033 	gic_dist_init(gic);
1034 	gic_cpu_init(gic);
1035 	gic_pm_init(gic);
1036 }
1037 
1038 #ifdef CONFIG_OF
1039 static int gic_cnt __initdata;
1040 
1041 static int __init
1042 gic_of_init(struct device_node *node, struct device_node *parent)
1043 {
1044 	void __iomem *cpu_base;
1045 	void __iomem *dist_base;
1046 	u32 percpu_offset;
1047 	int irq;
1048 
1049 	if (WARN_ON(!node))
1050 		return -ENODEV;
1051 
1052 	dist_base = of_iomap(node, 0);
1053 	WARN(!dist_base, "unable to map gic dist registers\n");
1054 
1055 	cpu_base = of_iomap(node, 1);
1056 	WARN(!cpu_base, "unable to map gic cpu registers\n");
1057 
1058 	if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
1059 		percpu_offset = 0;
1060 
1061 	gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node);
1062 	if (!gic_cnt)
1063 		gic_init_physaddr(node);
1064 
1065 	if (parent) {
1066 		irq = irq_of_parse_and_map(node, 0);
1067 		gic_cascade_irq(gic_cnt, irq);
1068 	}
1069 
1070 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1071 		gicv2m_of_init(node, gic_data[gic_cnt].domain);
1072 
1073 	gic_cnt++;
1074 	return 0;
1075 }
1076 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1077 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1078 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1079 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1080 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1081 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1082 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1083 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1084 
1085 #endif
1086