xref: /openbmc/linux/drivers/irqchip/irq-gic.c (revision 228662b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/seq_file.h>
38 #include <linux/slab.h>
39 #include <linux/irqchip.h>
40 #include <linux/irqchip/chained_irq.h>
41 #include <linux/irqchip/arm-gic.h>
42 
43 #include <asm/cputype.h>
44 #include <asm/irq.h>
45 #include <asm/exception.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 
49 #include "irq-gic-common.h"
50 
51 #ifdef CONFIG_ARM64
52 #include <asm/cpufeature.h>
53 
54 static void gic_check_cpu_features(void)
55 {
56 	WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
57 			TAINT_CPU_OUT_OF_SPEC,
58 			"GICv3 system registers enabled, broken firmware!\n");
59 }
60 #else
61 #define gic_check_cpu_features()	do { } while(0)
62 #endif
63 
64 union gic_base {
65 	void __iomem *common_base;
66 	void __percpu * __iomem *percpu_base;
67 };
68 
69 struct gic_chip_data {
70 	union gic_base dist_base;
71 	union gic_base cpu_base;
72 	void __iomem *raw_dist_base;
73 	void __iomem *raw_cpu_base;
74 	u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 	u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 	u32 __percpu *saved_ppi_enable;
81 	u32 __percpu *saved_ppi_active;
82 	u32 __percpu *saved_ppi_conf;
83 #endif
84 	struct irq_domain *domain;
85 	unsigned int gic_irqs;
86 };
87 
88 #ifdef CONFIG_BL_SWITCHER
89 
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91 
92 #define gic_lock_irqsave(f)		\
93 	raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f)	\
95 	raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96 
97 #define gic_lock()			raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock()			raw_spin_unlock(&cpu_map_lock)
99 
100 #else
101 
102 #define gic_lock_irqsave(f)		do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f)	do { (void)(f); } while(0)
104 
105 #define gic_lock()			do { } while(0)
106 #define gic_unlock()			do { } while(0)
107 
108 #endif
109 
110 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
111 
112 /*
113  * The GIC mapping of CPU interfaces does not necessarily match
114  * the logical CPU numbering.  Let's use a mapping as returned
115  * by the GIC itself.
116  */
117 #define NR_GIC_CPU_IF 8
118 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
119 
120 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
121 
122 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
123 
124 static struct gic_kvm_info gic_v2_kvm_info __initdata;
125 
126 static DEFINE_PER_CPU(u32, sgi_intid);
127 
128 #ifdef CONFIG_GIC_NON_BANKED
129 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
130 
131 static void enable_frankengic(void)
132 {
133 	static_branch_enable(&frankengic_key);
134 }
135 
136 static inline void __iomem *__get_base(union gic_base *base)
137 {
138 	if (static_branch_unlikely(&frankengic_key))
139 		return raw_cpu_read(*base->percpu_base);
140 
141 	return base->common_base;
142 }
143 
144 #define gic_data_dist_base(d)	__get_base(&(d)->dist_base)
145 #define gic_data_cpu_base(d)	__get_base(&(d)->cpu_base)
146 #else
147 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
148 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
149 #define enable_frankengic()	do { } while(0)
150 #endif
151 
152 static inline void __iomem *gic_dist_base(struct irq_data *d)
153 {
154 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
155 	return gic_data_dist_base(gic_data);
156 }
157 
158 static inline void __iomem *gic_cpu_base(struct irq_data *d)
159 {
160 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
161 	return gic_data_cpu_base(gic_data);
162 }
163 
164 static inline unsigned int gic_irq(struct irq_data *d)
165 {
166 	return d->hwirq;
167 }
168 
169 static inline bool cascading_gic_irq(struct irq_data *d)
170 {
171 	void *data = irq_data_get_irq_handler_data(d);
172 
173 	/*
174 	 * If handler_data is set, this is a cascading interrupt, and
175 	 * it cannot possibly be forwarded.
176 	 */
177 	return data != NULL;
178 }
179 
180 /*
181  * Routines to acknowledge, disable and enable interrupts
182  */
183 static void gic_poke_irq(struct irq_data *d, u32 offset)
184 {
185 	u32 mask = 1 << (gic_irq(d) % 32);
186 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
187 }
188 
189 static int gic_peek_irq(struct irq_data *d, u32 offset)
190 {
191 	u32 mask = 1 << (gic_irq(d) % 32);
192 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
193 }
194 
195 static void gic_mask_irq(struct irq_data *d)
196 {
197 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
198 }
199 
200 static void gic_eoimode1_mask_irq(struct irq_data *d)
201 {
202 	gic_mask_irq(d);
203 	/*
204 	 * When masking a forwarded interrupt, make sure it is
205 	 * deactivated as well.
206 	 *
207 	 * This ensures that an interrupt that is getting
208 	 * disabled/masked will not get "stuck", because there is
209 	 * noone to deactivate it (guest is being terminated).
210 	 */
211 	if (irqd_is_forwarded_to_vcpu(d))
212 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
213 }
214 
215 static void gic_unmask_irq(struct irq_data *d)
216 {
217 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
218 }
219 
220 static void gic_eoi_irq(struct irq_data *d)
221 {
222 	u32 hwirq = gic_irq(d);
223 
224 	if (hwirq < 16)
225 		hwirq = this_cpu_read(sgi_intid);
226 
227 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
228 }
229 
230 static void gic_eoimode1_eoi_irq(struct irq_data *d)
231 {
232 	u32 hwirq = gic_irq(d);
233 
234 	/* Do not deactivate an IRQ forwarded to a vcpu. */
235 	if (irqd_is_forwarded_to_vcpu(d))
236 		return;
237 
238 	if (hwirq < 16)
239 		hwirq = this_cpu_read(sgi_intid);
240 
241 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243 
244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 				     enum irqchip_irq_state which, bool val)
246 {
247 	u32 reg;
248 
249 	switch (which) {
250 	case IRQCHIP_STATE_PENDING:
251 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 		break;
253 
254 	case IRQCHIP_STATE_ACTIVE:
255 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 		break;
257 
258 	case IRQCHIP_STATE_MASKED:
259 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 		break;
261 
262 	default:
263 		return -EINVAL;
264 	}
265 
266 	gic_poke_irq(d, reg);
267 	return 0;
268 }
269 
270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 				      enum irqchip_irq_state which, bool *val)
272 {
273 	switch (which) {
274 	case IRQCHIP_STATE_PENDING:
275 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 		break;
277 
278 	case IRQCHIP_STATE_ACTIVE:
279 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 		break;
281 
282 	case IRQCHIP_STATE_MASKED:
283 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 		break;
285 
286 	default:
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 	void __iomem *base = gic_dist_base(d);
296 	unsigned int gicirq = gic_irq(d);
297 	int ret;
298 
299 	/* Interrupt configuration for SGIs can't be changed */
300 	if (gicirq < 16)
301 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
302 
303 	/* SPIs have restrictions on the supported types */
304 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
305 			    type != IRQ_TYPE_EDGE_RISING)
306 		return -EINVAL;
307 
308 	ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
309 	if (ret && gicirq < 32) {
310 		/* Misconfigured PPIs are usually not fatal */
311 		pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
312 		ret = 0;
313 	}
314 
315 	return ret;
316 }
317 
318 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
319 {
320 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
321 	if (cascading_gic_irq(d) || gic_irq(d) < 16)
322 		return -EINVAL;
323 
324 	if (vcpu)
325 		irqd_set_forwarded_to_vcpu(d);
326 	else
327 		irqd_clr_forwarded_to_vcpu(d);
328 	return 0;
329 }
330 
331 static int gic_retrigger(struct irq_data *data)
332 {
333 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
334 }
335 
336 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
337 {
338 	u32 irqstat, irqnr;
339 	struct gic_chip_data *gic = &gic_data[0];
340 	void __iomem *cpu_base = gic_data_cpu_base(gic);
341 
342 	do {
343 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
344 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
345 
346 		if (unlikely(irqnr >= 1020))
347 			break;
348 
349 		if (static_branch_likely(&supports_deactivate_key))
350 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
351 		isb();
352 
353 		/*
354 		 * Ensure any shared data written by the CPU sending the IPI
355 		 * is read after we've read the ACK register on the GIC.
356 		 *
357 		 * Pairs with the write barrier in gic_ipi_send_mask
358 		 */
359 		if (irqnr <= 15) {
360 			smp_rmb();
361 
362 			/*
363 			 * The GIC encodes the source CPU in GICC_IAR,
364 			 * leading to the deactivation to fail if not
365 			 * written back as is to GICC_EOI.  Stash the INTID
366 			 * away for gic_eoi_irq() to write back.  This only
367 			 * works because we don't nest SGIs...
368 			 */
369 			this_cpu_write(sgi_intid, irqstat);
370 		}
371 
372 		generic_handle_domain_irq(gic->domain, irqnr);
373 	} while (1);
374 }
375 
376 static void gic_handle_cascade_irq(struct irq_desc *desc)
377 {
378 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
379 	struct irq_chip *chip = irq_desc_get_chip(desc);
380 	unsigned int gic_irq;
381 	unsigned long status;
382 	int ret;
383 
384 	chained_irq_enter(chip, desc);
385 
386 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
387 
388 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
389 	if (gic_irq == GICC_INT_SPURIOUS)
390 		goto out;
391 
392 	isb();
393 	ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
394 	if (unlikely(ret))
395 		handle_bad_irq(desc);
396  out:
397 	chained_irq_exit(chip, desc);
398 }
399 
400 static void gic_irq_print_chip(struct irq_data *d, struct seq_file *p)
401 {
402 	struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
403 
404 	if (gic->domain->dev)
405 		seq_printf(p, gic->domain->dev->of_node->name);
406 	else
407 		seq_printf(p, "GIC-%d", (int)(gic - &gic_data[0]));
408 }
409 
410 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
411 {
412 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
413 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
414 					 &gic_data[gic_nr]);
415 }
416 
417 static u8 gic_get_cpumask(struct gic_chip_data *gic)
418 {
419 	void __iomem *base = gic_data_dist_base(gic);
420 	u32 mask, i;
421 
422 	for (i = mask = 0; i < 32; i += 4) {
423 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
424 		mask |= mask >> 16;
425 		mask |= mask >> 8;
426 		if (mask)
427 			break;
428 	}
429 
430 	if (!mask && num_possible_cpus() > 1)
431 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
432 
433 	return mask;
434 }
435 
436 static bool gic_check_gicv2(void __iomem *base)
437 {
438 	u32 val = readl_relaxed(base + GIC_CPU_IDENT);
439 	return (val & 0xff0fff) == 0x02043B;
440 }
441 
442 static void gic_cpu_if_up(struct gic_chip_data *gic)
443 {
444 	void __iomem *cpu_base = gic_data_cpu_base(gic);
445 	u32 bypass = 0;
446 	u32 mode = 0;
447 	int i;
448 
449 	if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
450 		mode = GIC_CPU_CTRL_EOImodeNS;
451 
452 	if (gic_check_gicv2(cpu_base))
453 		for (i = 0; i < 4; i++)
454 			writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
455 
456 	/*
457 	* Preserve bypass disable bits to be written back later
458 	*/
459 	bypass = readl(cpu_base + GIC_CPU_CTRL);
460 	bypass &= GICC_DIS_BYPASS_MASK;
461 
462 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
463 }
464 
465 
466 static void gic_dist_init(struct gic_chip_data *gic)
467 {
468 	unsigned int i;
469 	u32 cpumask;
470 	unsigned int gic_irqs = gic->gic_irqs;
471 	void __iomem *base = gic_data_dist_base(gic);
472 
473 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
474 
475 	/*
476 	 * Set all global interrupts to this CPU only.
477 	 */
478 	cpumask = gic_get_cpumask(gic);
479 	cpumask |= cpumask << 8;
480 	cpumask |= cpumask << 16;
481 	for (i = 32; i < gic_irqs; i += 4)
482 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
483 
484 	gic_dist_config(base, gic_irqs, NULL);
485 
486 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
487 }
488 
489 static int gic_cpu_init(struct gic_chip_data *gic)
490 {
491 	void __iomem *dist_base = gic_data_dist_base(gic);
492 	void __iomem *base = gic_data_cpu_base(gic);
493 	unsigned int cpu_mask, cpu = smp_processor_id();
494 	int i;
495 
496 	/*
497 	 * Setting up the CPU map is only relevant for the primary GIC
498 	 * because any nested/secondary GICs do not directly interface
499 	 * with the CPU(s).
500 	 */
501 	if (gic == &gic_data[0]) {
502 		/*
503 		 * Get what the GIC says our CPU mask is.
504 		 */
505 		if (WARN_ON(cpu >= NR_GIC_CPU_IF))
506 			return -EINVAL;
507 
508 		gic_check_cpu_features();
509 		cpu_mask = gic_get_cpumask(gic);
510 		gic_cpu_map[cpu] = cpu_mask;
511 
512 		/*
513 		 * Clear our mask from the other map entries in case they're
514 		 * still undefined.
515 		 */
516 		for (i = 0; i < NR_GIC_CPU_IF; i++)
517 			if (i != cpu)
518 				gic_cpu_map[i] &= ~cpu_mask;
519 	}
520 
521 	gic_cpu_config(dist_base, 32, NULL);
522 
523 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
524 	gic_cpu_if_up(gic);
525 
526 	return 0;
527 }
528 
529 int gic_cpu_if_down(unsigned int gic_nr)
530 {
531 	void __iomem *cpu_base;
532 	u32 val = 0;
533 
534 	if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
535 		return -EINVAL;
536 
537 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
538 	val = readl(cpu_base + GIC_CPU_CTRL);
539 	val &= ~GICC_ENABLE;
540 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
541 
542 	return 0;
543 }
544 
545 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
546 /*
547  * Saves the GIC distributor registers during suspend or idle.  Must be called
548  * with interrupts disabled but before powering down the GIC.  After calling
549  * this function, no interrupts will be delivered by the GIC, and another
550  * platform-specific wakeup source must be enabled.
551  */
552 void gic_dist_save(struct gic_chip_data *gic)
553 {
554 	unsigned int gic_irqs;
555 	void __iomem *dist_base;
556 	int i;
557 
558 	if (WARN_ON(!gic))
559 		return;
560 
561 	gic_irqs = gic->gic_irqs;
562 	dist_base = gic_data_dist_base(gic);
563 
564 	if (!dist_base)
565 		return;
566 
567 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
568 		gic->saved_spi_conf[i] =
569 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
570 
571 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
572 		gic->saved_spi_target[i] =
573 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
574 
575 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
576 		gic->saved_spi_enable[i] =
577 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
578 
579 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
580 		gic->saved_spi_active[i] =
581 			readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
582 }
583 
584 /*
585  * Restores the GIC distributor registers during resume or when coming out of
586  * idle.  Must be called before enabling interrupts.  If a level interrupt
587  * that occurred while the GIC was suspended is still present, it will be
588  * handled normally, but any edge interrupts that occurred will not be seen by
589  * the GIC and need to be handled by the platform-specific wakeup source.
590  */
591 void gic_dist_restore(struct gic_chip_data *gic)
592 {
593 	unsigned int gic_irqs;
594 	unsigned int i;
595 	void __iomem *dist_base;
596 
597 	if (WARN_ON(!gic))
598 		return;
599 
600 	gic_irqs = gic->gic_irqs;
601 	dist_base = gic_data_dist_base(gic);
602 
603 	if (!dist_base)
604 		return;
605 
606 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
607 
608 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
609 		writel_relaxed(gic->saved_spi_conf[i],
610 			dist_base + GIC_DIST_CONFIG + i * 4);
611 
612 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
613 		writel_relaxed(GICD_INT_DEF_PRI_X4,
614 			dist_base + GIC_DIST_PRI + i * 4);
615 
616 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
617 		writel_relaxed(gic->saved_spi_target[i],
618 			dist_base + GIC_DIST_TARGET + i * 4);
619 
620 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
621 		writel_relaxed(GICD_INT_EN_CLR_X32,
622 			dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
623 		writel_relaxed(gic->saved_spi_enable[i],
624 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
625 	}
626 
627 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
628 		writel_relaxed(GICD_INT_EN_CLR_X32,
629 			dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
630 		writel_relaxed(gic->saved_spi_active[i],
631 			dist_base + GIC_DIST_ACTIVE_SET + i * 4);
632 	}
633 
634 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
635 }
636 
637 void gic_cpu_save(struct gic_chip_data *gic)
638 {
639 	int i;
640 	u32 *ptr;
641 	void __iomem *dist_base;
642 	void __iomem *cpu_base;
643 
644 	if (WARN_ON(!gic))
645 		return;
646 
647 	dist_base = gic_data_dist_base(gic);
648 	cpu_base = gic_data_cpu_base(gic);
649 
650 	if (!dist_base || !cpu_base)
651 		return;
652 
653 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
654 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
655 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
656 
657 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
658 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
659 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
660 
661 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
662 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
663 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
664 
665 }
666 
667 void gic_cpu_restore(struct gic_chip_data *gic)
668 {
669 	int i;
670 	u32 *ptr;
671 	void __iomem *dist_base;
672 	void __iomem *cpu_base;
673 
674 	if (WARN_ON(!gic))
675 		return;
676 
677 	dist_base = gic_data_dist_base(gic);
678 	cpu_base = gic_data_cpu_base(gic);
679 
680 	if (!dist_base || !cpu_base)
681 		return;
682 
683 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
684 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
685 		writel_relaxed(GICD_INT_EN_CLR_X32,
686 			       dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
687 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
688 	}
689 
690 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
691 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
692 		writel_relaxed(GICD_INT_EN_CLR_X32,
693 			       dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
694 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
695 	}
696 
697 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
698 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
699 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
700 
701 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
702 		writel_relaxed(GICD_INT_DEF_PRI_X4,
703 					dist_base + GIC_DIST_PRI + i * 4);
704 
705 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
706 	gic_cpu_if_up(gic);
707 }
708 
709 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
710 {
711 	int i;
712 
713 	for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
714 		switch (cmd) {
715 		case CPU_PM_ENTER:
716 			gic_cpu_save(&gic_data[i]);
717 			break;
718 		case CPU_PM_ENTER_FAILED:
719 		case CPU_PM_EXIT:
720 			gic_cpu_restore(&gic_data[i]);
721 			break;
722 		case CPU_CLUSTER_PM_ENTER:
723 			gic_dist_save(&gic_data[i]);
724 			break;
725 		case CPU_CLUSTER_PM_ENTER_FAILED:
726 		case CPU_CLUSTER_PM_EXIT:
727 			gic_dist_restore(&gic_data[i]);
728 			break;
729 		}
730 	}
731 
732 	return NOTIFY_OK;
733 }
734 
735 static struct notifier_block gic_notifier_block = {
736 	.notifier_call = gic_notifier,
737 };
738 
739 static int gic_pm_init(struct gic_chip_data *gic)
740 {
741 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
742 		sizeof(u32));
743 	if (WARN_ON(!gic->saved_ppi_enable))
744 		return -ENOMEM;
745 
746 	gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
747 		sizeof(u32));
748 	if (WARN_ON(!gic->saved_ppi_active))
749 		goto free_ppi_enable;
750 
751 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
752 		sizeof(u32));
753 	if (WARN_ON(!gic->saved_ppi_conf))
754 		goto free_ppi_active;
755 
756 	if (gic == &gic_data[0])
757 		cpu_pm_register_notifier(&gic_notifier_block);
758 
759 	return 0;
760 
761 free_ppi_active:
762 	free_percpu(gic->saved_ppi_active);
763 free_ppi_enable:
764 	free_percpu(gic->saved_ppi_enable);
765 
766 	return -ENOMEM;
767 }
768 #else
769 static int gic_pm_init(struct gic_chip_data *gic)
770 {
771 	return 0;
772 }
773 #endif
774 
775 #ifdef CONFIG_SMP
776 static void rmw_writeb(u8 bval, void __iomem *addr)
777 {
778 	static DEFINE_RAW_SPINLOCK(rmw_lock);
779 	unsigned long offset = (unsigned long)addr & 3UL;
780 	unsigned long shift = offset * 8;
781 	unsigned long flags;
782 	u32 val;
783 
784 	raw_spin_lock_irqsave(&rmw_lock, flags);
785 
786 	addr -= offset;
787 	val = readl_relaxed(addr);
788 	val &= ~GENMASK(shift + 7, shift);
789 	val |= bval << shift;
790 	writel_relaxed(val, addr);
791 
792 	raw_spin_unlock_irqrestore(&rmw_lock, flags);
793 }
794 
795 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
796 			    bool force)
797 {
798 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
799 	struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
800 	unsigned int cpu;
801 
802 	if (unlikely(gic != &gic_data[0]))
803 		return -EINVAL;
804 
805 	if (!force)
806 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
807 	else
808 		cpu = cpumask_first(mask_val);
809 
810 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
811 		return -EINVAL;
812 
813 	if (static_branch_unlikely(&needs_rmw_access))
814 		rmw_writeb(gic_cpu_map[cpu], reg);
815 	else
816 		writeb_relaxed(gic_cpu_map[cpu], reg);
817 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
818 
819 	return IRQ_SET_MASK_OK_DONE;
820 }
821 
822 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
823 {
824 	int cpu;
825 	unsigned long flags, map = 0;
826 
827 	if (unlikely(nr_cpu_ids == 1)) {
828 		/* Only one CPU? let's do a self-IPI... */
829 		writel_relaxed(2 << 24 | d->hwirq,
830 			       gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
831 		return;
832 	}
833 
834 	gic_lock_irqsave(flags);
835 
836 	/* Convert our logical CPU mask into a physical one. */
837 	for_each_cpu(cpu, mask)
838 		map |= gic_cpu_map[cpu];
839 
840 	/*
841 	 * Ensure that stores to Normal memory are visible to the
842 	 * other CPUs before they observe us issuing the IPI.
843 	 */
844 	dmb(ishst);
845 
846 	/* this always happens on GIC0 */
847 	writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
848 
849 	gic_unlock_irqrestore(flags);
850 }
851 
852 static int gic_starting_cpu(unsigned int cpu)
853 {
854 	gic_cpu_init(&gic_data[0]);
855 	return 0;
856 }
857 
858 static __init void gic_smp_init(void)
859 {
860 	struct irq_fwspec sgi_fwspec = {
861 		.fwnode		= gic_data[0].domain->fwnode,
862 		.param_count	= 1,
863 	};
864 	int base_sgi;
865 
866 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
867 				  "irqchip/arm/gic:starting",
868 				  gic_starting_cpu, NULL);
869 
870 	base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
871 					   NUMA_NO_NODE, &sgi_fwspec,
872 					   false, NULL);
873 	if (WARN_ON(base_sgi <= 0))
874 		return;
875 
876 	set_smp_ipi_range(base_sgi, 8);
877 }
878 #else
879 #define gic_smp_init()		do { } while(0)
880 #define gic_set_affinity	NULL
881 #define gic_ipi_send_mask	NULL
882 #endif
883 
884 static const struct irq_chip gic_chip = {
885 	.irq_mask		= gic_mask_irq,
886 	.irq_unmask		= gic_unmask_irq,
887 	.irq_eoi		= gic_eoi_irq,
888 	.irq_set_type		= gic_set_type,
889 	.irq_retrigger          = gic_retrigger,
890 	.irq_set_affinity	= gic_set_affinity,
891 	.ipi_send_mask		= gic_ipi_send_mask,
892 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
893 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
894 	.irq_print_chip		= gic_irq_print_chip,
895 	.flags			= IRQCHIP_SET_TYPE_MASKED |
896 				  IRQCHIP_SKIP_SET_WAKE |
897 				  IRQCHIP_MASK_ON_SUSPEND,
898 };
899 
900 static const struct irq_chip gic_chip_mode1 = {
901 	.name			= "GICv2",
902 	.irq_mask		= gic_eoimode1_mask_irq,
903 	.irq_unmask		= gic_unmask_irq,
904 	.irq_eoi		= gic_eoimode1_eoi_irq,
905 	.irq_set_type		= gic_set_type,
906 	.irq_retrigger          = gic_retrigger,
907 	.irq_set_affinity	= gic_set_affinity,
908 	.ipi_send_mask		= gic_ipi_send_mask,
909 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
910 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
911 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
912 	.flags			= IRQCHIP_SET_TYPE_MASKED |
913 				  IRQCHIP_SKIP_SET_WAKE |
914 				  IRQCHIP_MASK_ON_SUSPEND,
915 };
916 
917 #ifdef CONFIG_BL_SWITCHER
918 /*
919  * gic_send_sgi - send a SGI directly to given CPU interface number
920  *
921  * cpu_id: the ID for the destination CPU interface
922  * irq: the IPI number to send a SGI for
923  */
924 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
925 {
926 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
927 	cpu_id = 1 << cpu_id;
928 	/* this always happens on GIC0 */
929 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
930 }
931 
932 /*
933  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
934  *
935  * @cpu: the logical CPU number to get the GIC ID for.
936  *
937  * Return the CPU interface ID for the given logical CPU number,
938  * or -1 if the CPU number is too large or the interface ID is
939  * unknown (more than one bit set).
940  */
941 int gic_get_cpu_id(unsigned int cpu)
942 {
943 	unsigned int cpu_bit;
944 
945 	if (cpu >= NR_GIC_CPU_IF)
946 		return -1;
947 	cpu_bit = gic_cpu_map[cpu];
948 	if (cpu_bit & (cpu_bit - 1))
949 		return -1;
950 	return __ffs(cpu_bit);
951 }
952 
953 /*
954  * gic_migrate_target - migrate IRQs to another CPU interface
955  *
956  * @new_cpu_id: the CPU target ID to migrate IRQs to
957  *
958  * Migrate all peripheral interrupts with a target matching the current CPU
959  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
960  * is also updated.  Targets to other CPU interfaces are unchanged.
961  * This must be called with IRQs locally disabled.
962  */
963 void gic_migrate_target(unsigned int new_cpu_id)
964 {
965 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
966 	void __iomem *dist_base;
967 	int i, ror_val, cpu = smp_processor_id();
968 	u32 val, cur_target_mask, active_mask;
969 
970 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
971 
972 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
973 	if (!dist_base)
974 		return;
975 	gic_irqs = gic_data[gic_nr].gic_irqs;
976 
977 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
978 	cur_target_mask = 0x01010101 << cur_cpu_id;
979 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
980 
981 	gic_lock();
982 
983 	/* Update the target interface for this logical CPU */
984 	gic_cpu_map[cpu] = 1 << new_cpu_id;
985 
986 	/*
987 	 * Find all the peripheral interrupts targeting the current
988 	 * CPU interface and migrate them to the new CPU interface.
989 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
990 	 */
991 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
992 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
993 		active_mask = val & cur_target_mask;
994 		if (active_mask) {
995 			val &= ~active_mask;
996 			val |= ror32(active_mask, ror_val);
997 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
998 		}
999 	}
1000 
1001 	gic_unlock();
1002 
1003 	/*
1004 	 * Now let's migrate and clear any potential SGIs that might be
1005 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
1006 	 * is a banked register, we can only forward the SGI using
1007 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
1008 	 * doesn't use that information anyway.
1009 	 *
1010 	 * For the same reason we do not adjust SGI source information
1011 	 * for previously sent SGIs by us to other CPUs either.
1012 	 */
1013 	for (i = 0; i < 16; i += 4) {
1014 		int j;
1015 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
1016 		if (!val)
1017 			continue;
1018 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
1019 		for (j = i; j < i + 4; j++) {
1020 			if (val & 0xff)
1021 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
1022 						dist_base + GIC_DIST_SOFTINT);
1023 			val >>= 8;
1024 		}
1025 	}
1026 }
1027 
1028 /*
1029  * gic_get_sgir_physaddr - get the physical address for the SGI register
1030  *
1031  * Return the physical address of the SGI register to be used
1032  * by some early assembly code when the kernel is not yet available.
1033  */
1034 static unsigned long gic_dist_physaddr;
1035 
1036 unsigned long gic_get_sgir_physaddr(void)
1037 {
1038 	if (!gic_dist_physaddr)
1039 		return 0;
1040 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
1041 }
1042 
1043 static void __init gic_init_physaddr(struct device_node *node)
1044 {
1045 	struct resource res;
1046 	if (of_address_to_resource(node, 0, &res) == 0) {
1047 		gic_dist_physaddr = res.start;
1048 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1049 	}
1050 }
1051 
1052 #else
1053 #define gic_init_physaddr(node)  do { } while (0)
1054 #endif
1055 
1056 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1057 				irq_hw_number_t hw)
1058 {
1059 	struct gic_chip_data *gic = d->host_data;
1060 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1061 	const struct irq_chip *chip;
1062 
1063 	chip = (static_branch_likely(&supports_deactivate_key) &&
1064 		gic == &gic_data[0]) ? &gic_chip_mode1 : &gic_chip;
1065 
1066 	switch (hw) {
1067 	case 0 ... 31:
1068 		irq_set_percpu_devid(irq);
1069 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1070 				    handle_percpu_devid_irq, NULL, NULL);
1071 		break;
1072 	default:
1073 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1074 				    handle_fasteoi_irq, NULL, NULL);
1075 		irq_set_probe(irq);
1076 		irqd_set_single_target(irqd);
1077 		break;
1078 	}
1079 
1080 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1081 	irqd_set_handle_enforce_irqctx(irqd);
1082 	return 0;
1083 }
1084 
1085 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1086 {
1087 }
1088 
1089 static int gic_irq_domain_translate(struct irq_domain *d,
1090 				    struct irq_fwspec *fwspec,
1091 				    unsigned long *hwirq,
1092 				    unsigned int *type)
1093 {
1094 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1095 		*hwirq = fwspec->param[0];
1096 		*type = IRQ_TYPE_EDGE_RISING;
1097 		return 0;
1098 	}
1099 
1100 	if (is_of_node(fwspec->fwnode)) {
1101 		if (fwspec->param_count < 3)
1102 			return -EINVAL;
1103 
1104 		switch (fwspec->param[0]) {
1105 		case 0:			/* SPI */
1106 			*hwirq = fwspec->param[1] + 32;
1107 			break;
1108 		case 1:			/* PPI */
1109 			*hwirq = fwspec->param[1] + 16;
1110 			break;
1111 		default:
1112 			return -EINVAL;
1113 		}
1114 
1115 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1116 
1117 		/* Make it clear that broken DTs are... broken */
1118 		WARN_ON(*type == IRQ_TYPE_NONE);
1119 		return 0;
1120 	}
1121 
1122 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1123 		if(fwspec->param_count != 2)
1124 			return -EINVAL;
1125 
1126 		if (fwspec->param[0] < 16) {
1127 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1128 			       fwspec->param[0]);
1129 			return -EINVAL;
1130 		}
1131 
1132 		*hwirq = fwspec->param[0];
1133 		*type = fwspec->param[1];
1134 
1135 		WARN_ON(*type == IRQ_TYPE_NONE);
1136 		return 0;
1137 	}
1138 
1139 	return -EINVAL;
1140 }
1141 
1142 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1143 				unsigned int nr_irqs, void *arg)
1144 {
1145 	int i, ret;
1146 	irq_hw_number_t hwirq;
1147 	unsigned int type = IRQ_TYPE_NONE;
1148 	struct irq_fwspec *fwspec = arg;
1149 
1150 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1151 	if (ret)
1152 		return ret;
1153 
1154 	for (i = 0; i < nr_irqs; i++) {
1155 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1164 	.translate = gic_irq_domain_translate,
1165 	.alloc = gic_irq_domain_alloc,
1166 	.free = irq_domain_free_irqs_top,
1167 };
1168 
1169 static const struct irq_domain_ops gic_irq_domain_ops = {
1170 	.map = gic_irq_domain_map,
1171 	.unmap = gic_irq_domain_unmap,
1172 };
1173 
1174 static int gic_init_bases(struct gic_chip_data *gic,
1175 			  struct fwnode_handle *handle)
1176 {
1177 	int gic_irqs, ret;
1178 
1179 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1180 		/* Frankein-GIC without banked registers... */
1181 		unsigned int cpu;
1182 
1183 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1184 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1185 		if (WARN_ON(!gic->dist_base.percpu_base ||
1186 			    !gic->cpu_base.percpu_base)) {
1187 			ret = -ENOMEM;
1188 			goto error;
1189 		}
1190 
1191 		for_each_possible_cpu(cpu) {
1192 			u32 mpidr = cpu_logical_map(cpu);
1193 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1194 			unsigned long offset = gic->percpu_offset * core_id;
1195 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1196 				gic->raw_dist_base + offset;
1197 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1198 				gic->raw_cpu_base + offset;
1199 		}
1200 
1201 		enable_frankengic();
1202 	} else {
1203 		/* Normal, sane GIC... */
1204 		WARN(gic->percpu_offset,
1205 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1206 		     gic->percpu_offset);
1207 		gic->dist_base.common_base = gic->raw_dist_base;
1208 		gic->cpu_base.common_base = gic->raw_cpu_base;
1209 	}
1210 
1211 	/*
1212 	 * Find out how many interrupts are supported.
1213 	 * The GIC only supports up to 1020 interrupt sources.
1214 	 */
1215 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1216 	gic_irqs = (gic_irqs + 1) * 32;
1217 	if (gic_irqs > 1020)
1218 		gic_irqs = 1020;
1219 	gic->gic_irqs = gic_irqs;
1220 
1221 	if (handle) {		/* DT/ACPI */
1222 		gic->domain = irq_domain_create_linear(handle, gic_irqs,
1223 						       &gic_irq_domain_hierarchy_ops,
1224 						       gic);
1225 	} else {		/* Legacy support */
1226 		/*
1227 		 * For primary GICs, skip over SGIs.
1228 		 * No secondary GIC support whatsoever.
1229 		 */
1230 		int irq_base;
1231 
1232 		gic_irqs -= 16; /* calculate # of irqs to allocate */
1233 
1234 		irq_base = irq_alloc_descs(16, 16, gic_irqs,
1235 					   numa_node_id());
1236 		if (irq_base < 0) {
1237 			WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1238 			irq_base = 16;
1239 		}
1240 
1241 		gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1242 						    16, &gic_irq_domain_ops, gic);
1243 	}
1244 
1245 	if (WARN_ON(!gic->domain)) {
1246 		ret = -ENODEV;
1247 		goto error;
1248 	}
1249 
1250 	gic_dist_init(gic);
1251 	ret = gic_cpu_init(gic);
1252 	if (ret)
1253 		goto error;
1254 
1255 	ret = gic_pm_init(gic);
1256 	if (ret)
1257 		goto error;
1258 
1259 	return 0;
1260 
1261 error:
1262 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1263 		free_percpu(gic->dist_base.percpu_base);
1264 		free_percpu(gic->cpu_base.percpu_base);
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 static int __init __gic_init_bases(struct gic_chip_data *gic,
1271 				   struct fwnode_handle *handle)
1272 {
1273 	int i, ret;
1274 
1275 	if (WARN_ON(!gic || gic->domain))
1276 		return -EINVAL;
1277 
1278 	if (gic == &gic_data[0]) {
1279 		/*
1280 		 * Initialize the CPU interface map to all CPUs.
1281 		 * It will be refined as each CPU probes its ID.
1282 		 * This is only necessary for the primary GIC.
1283 		 */
1284 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1285 			gic_cpu_map[i] = 0xff;
1286 
1287 		set_handle_irq(gic_handle_irq);
1288 		if (static_branch_likely(&supports_deactivate_key))
1289 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1290 	}
1291 
1292 	ret = gic_init_bases(gic, handle);
1293 	if (gic == &gic_data[0])
1294 		gic_smp_init();
1295 
1296 	return ret;
1297 }
1298 
1299 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1300 {
1301 	struct gic_chip_data *gic;
1302 
1303 	/*
1304 	 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1305 	 * bother with these...
1306 	 */
1307 	static_branch_disable(&supports_deactivate_key);
1308 
1309 	gic = &gic_data[0];
1310 	gic->raw_dist_base = dist_base;
1311 	gic->raw_cpu_base = cpu_base;
1312 
1313 	__gic_init_bases(gic, NULL);
1314 }
1315 
1316 static void gic_teardown(struct gic_chip_data *gic)
1317 {
1318 	if (WARN_ON(!gic))
1319 		return;
1320 
1321 	if (gic->raw_dist_base)
1322 		iounmap(gic->raw_dist_base);
1323 	if (gic->raw_cpu_base)
1324 		iounmap(gic->raw_cpu_base);
1325 }
1326 
1327 #ifdef CONFIG_OF
1328 static int gic_cnt __initdata;
1329 static bool gicv2_force_probe;
1330 
1331 static int __init gicv2_force_probe_cfg(char *buf)
1332 {
1333 	return strtobool(buf, &gicv2_force_probe);
1334 }
1335 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1336 
1337 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1338 {
1339 	struct resource cpuif_res;
1340 
1341 	of_address_to_resource(node, 1, &cpuif_res);
1342 
1343 	if (!is_hyp_mode_available())
1344 		return false;
1345 	if (resource_size(&cpuif_res) < SZ_8K) {
1346 		void __iomem *alt;
1347 		/*
1348 		 * Check for a stupid firmware that only exposes the
1349 		 * first page of a GICv2.
1350 		 */
1351 		if (!gic_check_gicv2(*base))
1352 			return false;
1353 
1354 		if (!gicv2_force_probe) {
1355 			pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1356 			return false;
1357 		}
1358 
1359 		alt = ioremap(cpuif_res.start, SZ_8K);
1360 		if (!alt)
1361 			return false;
1362 		if (!gic_check_gicv2(alt + SZ_4K)) {
1363 			/*
1364 			 * The first page was that of a GICv2, and
1365 			 * the second was *something*. Let's trust it
1366 			 * to be a GICv2, and update the mapping.
1367 			 */
1368 			pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1369 				&cpuif_res.start);
1370 			iounmap(*base);
1371 			*base = alt;
1372 			return true;
1373 		}
1374 
1375 		/*
1376 		 * We detected *two* initial GICv2 pages in a
1377 		 * row. Could be a GICv2 aliased over two 64kB
1378 		 * pages. Update the resource, map the iospace, and
1379 		 * pray.
1380 		 */
1381 		iounmap(alt);
1382 		alt = ioremap(cpuif_res.start, SZ_128K);
1383 		if (!alt)
1384 			return false;
1385 		pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1386 			&cpuif_res.start);
1387 		cpuif_res.end = cpuif_res.start + SZ_128K -1;
1388 		iounmap(*base);
1389 		*base = alt;
1390 	}
1391 	if (resource_size(&cpuif_res) == SZ_128K) {
1392 		/*
1393 		 * Verify that we have the first 4kB of a GICv2
1394 		 * aliased over the first 64kB by checking the
1395 		 * GICC_IIDR register on both ends.
1396 		 */
1397 		if (!gic_check_gicv2(*base) ||
1398 		    !gic_check_gicv2(*base + 0xf000))
1399 			return false;
1400 
1401 		/*
1402 		 * Move the base up by 60kB, so that we have a 8kB
1403 		 * contiguous region, which allows us to use GICC_DIR
1404 		 * at its normal offset. Please pass me that bucket.
1405 		 */
1406 		*base += 0xf000;
1407 		cpuif_res.start += 0xf000;
1408 		pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1409 			&cpuif_res.start);
1410 	}
1411 
1412 	return true;
1413 }
1414 
1415 static bool gic_enable_rmw_access(void *data)
1416 {
1417 	/*
1418 	 * The EMEV2 class of machines has a broken interconnect, and
1419 	 * locks up on accesses that are less than 32bit. So far, only
1420 	 * the affinity setting requires it.
1421 	 */
1422 	if (of_machine_is_compatible("renesas,emev2")) {
1423 		static_branch_enable(&needs_rmw_access);
1424 		return true;
1425 	}
1426 
1427 	return false;
1428 }
1429 
1430 static const struct gic_quirk gic_quirks[] = {
1431 	{
1432 		.desc		= "broken byte access",
1433 		.compatible	= "arm,pl390",
1434 		.init		= gic_enable_rmw_access,
1435 	},
1436 	{ },
1437 };
1438 
1439 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1440 {
1441 	if (!gic || !node)
1442 		return -EINVAL;
1443 
1444 	gic->raw_dist_base = of_iomap(node, 0);
1445 	if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1446 		goto error;
1447 
1448 	gic->raw_cpu_base = of_iomap(node, 1);
1449 	if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1450 		goto error;
1451 
1452 	if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1453 		gic->percpu_offset = 0;
1454 
1455 	gic_enable_of_quirks(node, gic_quirks, gic);
1456 
1457 	return 0;
1458 
1459 error:
1460 	gic_teardown(gic);
1461 
1462 	return -ENOMEM;
1463 }
1464 
1465 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1466 {
1467 	int ret;
1468 
1469 	if (!dev || !dev->of_node || !gic || !irq)
1470 		return -EINVAL;
1471 
1472 	*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1473 	if (!*gic)
1474 		return -ENOMEM;
1475 
1476 	ret = gic_of_setup(*gic, dev->of_node);
1477 	if (ret)
1478 		return ret;
1479 
1480 	ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1481 	if (ret) {
1482 		gic_teardown(*gic);
1483 		return ret;
1484 	}
1485 
1486 	irq_domain_set_pm_device((*gic)->domain, dev);
1487 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1488 
1489 	return 0;
1490 }
1491 
1492 static void __init gic_of_setup_kvm_info(struct device_node *node)
1493 {
1494 	int ret;
1495 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1496 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1497 
1498 	gic_v2_kvm_info.type = GIC_V2;
1499 
1500 	gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1501 	if (!gic_v2_kvm_info.maint_irq)
1502 		return;
1503 
1504 	ret = of_address_to_resource(node, 2, vctrl_res);
1505 	if (ret)
1506 		return;
1507 
1508 	ret = of_address_to_resource(node, 3, vcpu_res);
1509 	if (ret)
1510 		return;
1511 
1512 	if (static_branch_likely(&supports_deactivate_key))
1513 		vgic_set_kvm_info(&gic_v2_kvm_info);
1514 }
1515 
1516 int __init
1517 gic_of_init(struct device_node *node, struct device_node *parent)
1518 {
1519 	struct gic_chip_data *gic;
1520 	int irq, ret;
1521 
1522 	if (WARN_ON(!node))
1523 		return -ENODEV;
1524 
1525 	if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1526 		return -EINVAL;
1527 
1528 	gic = &gic_data[gic_cnt];
1529 
1530 	ret = gic_of_setup(gic, node);
1531 	if (ret)
1532 		return ret;
1533 
1534 	/*
1535 	 * Disable split EOI/Deactivate if either HYP is not available
1536 	 * or the CPU interface is too small.
1537 	 */
1538 	if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1539 		static_branch_disable(&supports_deactivate_key);
1540 
1541 	ret = __gic_init_bases(gic, &node->fwnode);
1542 	if (ret) {
1543 		gic_teardown(gic);
1544 		return ret;
1545 	}
1546 
1547 	if (!gic_cnt) {
1548 		gic_init_physaddr(node);
1549 		gic_of_setup_kvm_info(node);
1550 	}
1551 
1552 	if (parent) {
1553 		irq = irq_of_parse_and_map(node, 0);
1554 		gic_cascade_irq(gic_cnt, irq);
1555 	}
1556 
1557 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1558 		gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1559 
1560 	gic_cnt++;
1561 	return 0;
1562 }
1563 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1564 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1565 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1566 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1567 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1568 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1569 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1570 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1571 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1572 #else
1573 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1574 {
1575 	return -ENOTSUPP;
1576 }
1577 #endif
1578 
1579 #ifdef CONFIG_ACPI
1580 static struct
1581 {
1582 	phys_addr_t cpu_phys_base;
1583 	u32 maint_irq;
1584 	int maint_irq_mode;
1585 	phys_addr_t vctrl_base;
1586 	phys_addr_t vcpu_base;
1587 } acpi_data __initdata;
1588 
1589 static int __init
1590 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1591 			const unsigned long end)
1592 {
1593 	struct acpi_madt_generic_interrupt *processor;
1594 	phys_addr_t gic_cpu_base;
1595 	static int cpu_base_assigned;
1596 
1597 	processor = (struct acpi_madt_generic_interrupt *)header;
1598 
1599 	if (BAD_MADT_GICC_ENTRY(processor, end))
1600 		return -EINVAL;
1601 
1602 	/*
1603 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1604 	 * All CPU interface addresses have to be the same.
1605 	 */
1606 	gic_cpu_base = processor->base_address;
1607 	if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1608 		return -EINVAL;
1609 
1610 	acpi_data.cpu_phys_base = gic_cpu_base;
1611 	acpi_data.maint_irq = processor->vgic_interrupt;
1612 	acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1613 				    ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1614 	acpi_data.vctrl_base = processor->gich_base_address;
1615 	acpi_data.vcpu_base = processor->gicv_base_address;
1616 
1617 	cpu_base_assigned = 1;
1618 	return 0;
1619 }
1620 
1621 /* The things you have to do to just *count* something... */
1622 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1623 				  const unsigned long end)
1624 {
1625 	return 0;
1626 }
1627 
1628 static bool __init acpi_gic_redist_is_present(void)
1629 {
1630 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1631 				     acpi_dummy_func, 0) > 0;
1632 }
1633 
1634 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1635 				     struct acpi_probe_entry *ape)
1636 {
1637 	struct acpi_madt_generic_distributor *dist;
1638 	dist = (struct acpi_madt_generic_distributor *)header;
1639 
1640 	return (dist->version == ape->driver_data &&
1641 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1642 		 !acpi_gic_redist_is_present()));
1643 }
1644 
1645 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1646 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1647 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
1648 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
1649 
1650 static void __init gic_acpi_setup_kvm_info(void)
1651 {
1652 	int irq;
1653 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1654 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1655 
1656 	gic_v2_kvm_info.type = GIC_V2;
1657 
1658 	if (!acpi_data.vctrl_base)
1659 		return;
1660 
1661 	vctrl_res->flags = IORESOURCE_MEM;
1662 	vctrl_res->start = acpi_data.vctrl_base;
1663 	vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1664 
1665 	if (!acpi_data.vcpu_base)
1666 		return;
1667 
1668 	vcpu_res->flags = IORESOURCE_MEM;
1669 	vcpu_res->start = acpi_data.vcpu_base;
1670 	vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1671 
1672 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1673 				acpi_data.maint_irq_mode,
1674 				ACPI_ACTIVE_HIGH);
1675 	if (irq <= 0)
1676 		return;
1677 
1678 	gic_v2_kvm_info.maint_irq = irq;
1679 
1680 	vgic_set_kvm_info(&gic_v2_kvm_info);
1681 }
1682 
1683 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1684 				   const unsigned long end)
1685 {
1686 	struct acpi_madt_generic_distributor *dist;
1687 	struct fwnode_handle *domain_handle;
1688 	struct gic_chip_data *gic = &gic_data[0];
1689 	int count, ret;
1690 
1691 	/* Collect CPU base addresses */
1692 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1693 				      gic_acpi_parse_madt_cpu, 0);
1694 	if (count <= 0) {
1695 		pr_err("No valid GICC entries exist\n");
1696 		return -EINVAL;
1697 	}
1698 
1699 	gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1700 	if (!gic->raw_cpu_base) {
1701 		pr_err("Unable to map GICC registers\n");
1702 		return -ENOMEM;
1703 	}
1704 
1705 	dist = (struct acpi_madt_generic_distributor *)header;
1706 	gic->raw_dist_base = ioremap(dist->base_address,
1707 				     ACPI_GICV2_DIST_MEM_SIZE);
1708 	if (!gic->raw_dist_base) {
1709 		pr_err("Unable to map GICD registers\n");
1710 		gic_teardown(gic);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	/*
1715 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1716 	 * guarantees that we'll always have a GICv2, so the CPU
1717 	 * interface will always be the right size.
1718 	 */
1719 	if (!is_hyp_mode_available())
1720 		static_branch_disable(&supports_deactivate_key);
1721 
1722 	/*
1723 	 * Initialize GIC instance zero (no multi-GIC support).
1724 	 */
1725 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1726 	if (!domain_handle) {
1727 		pr_err("Unable to allocate domain handle\n");
1728 		gic_teardown(gic);
1729 		return -ENOMEM;
1730 	}
1731 
1732 	ret = __gic_init_bases(gic, domain_handle);
1733 	if (ret) {
1734 		pr_err("Failed to initialise GIC\n");
1735 		irq_domain_free_fwnode(domain_handle);
1736 		gic_teardown(gic);
1737 		return ret;
1738 	}
1739 
1740 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1741 
1742 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1743 		gicv2m_init(NULL, gic_data[0].domain);
1744 
1745 	if (static_branch_likely(&supports_deactivate_key))
1746 		gic_acpi_setup_kvm_info();
1747 
1748 	return 0;
1749 }
1750 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1751 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1752 		     gic_v2_acpi_init);
1753 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1754 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1755 		     gic_v2_acpi_init);
1756 #endif
1757