xref: /openbmc/linux/drivers/irqchip/irq-gic-v4.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Copyright (C) 2016,2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/interrupt.h>
19 #include <linux/irq.h>
20 #include <linux/irqdomain.h>
21 #include <linux/msi.h>
22 #include <linux/sched.h>
23 
24 #include <linux/irqchip/arm-gic-v4.h>
25 
26 /*
27  * WARNING: The blurb below assumes that you understand the
28  * intricacies of GICv3, GICv4, and how a guest's view of a GICv3 gets
29  * translated into GICv4 commands. So it effectively targets at most
30  * two individuals. You know who you are.
31  *
32  * The core GICv4 code is designed to *avoid* exposing too much of the
33  * core GIC code (that would in turn leak into the hypervisor code),
34  * and instead provide a hypervisor agnostic interface to the HW (of
35  * course, the astute reader will quickly realize that hypervisor
36  * agnostic actually means KVM-specific - what were you thinking?).
37  *
38  * In order to achieve a modicum of isolation, we try to hide most of
39  * the GICv4 "stuff" behind normal irqchip operations:
40  *
41  * - Any guest-visible VLPI is backed by a Linux interrupt (and a
42  *   physical LPI which gets unmapped when the guest maps the
43  *   VLPI). This allows the same DevID/EventID pair to be either
44  *   mapped to the LPI (host) or the VLPI (guest). Note that this is
45  *   exclusive, and you cannot have both.
46  *
47  * - Enabling/disabling a VLPI is done by issuing mask/unmask calls.
48  *
49  * - Guest INT/CLEAR commands are implemented through
50  *   irq_set_irqchip_state().
51  *
52  * - The *bizarre* stuff (mapping/unmapping an interrupt to a VLPI, or
53  *   issuing an INV after changing a priority) gets shoved into the
54  *   irq_set_vcpu_affinity() method. While this is quite horrible
55  *   (let's face it, this is the irqchip version of an ioctl), it
56  *   confines the crap to a single location. And map/unmap really is
57  *   about setting the affinity of a VLPI to a vcpu, so only INV is
58  *   majorly out of place. So there.
59  *
60  * A number of commands are simply not provided by this interface, as
61  * they do not make direct sense. For example, MAPD is purely local to
62  * the virtual ITS (because it references a virtual device, and the
63  * physical ITS is still very much in charge of the physical
64  * device). Same goes for things like MAPC (the physical ITS deals
65  * with the actual vPE affinity, and not the braindead concept of
66  * collection). SYNC is not provided either, as each and every command
67  * is followed by a VSYNC. This could be relaxed in the future, should
68  * this be seen as a bottleneck (yes, this means *never*).
69  *
70  * But handling VLPIs is only one side of the job of the GICv4
71  * code. The other (darker) side is to take care of the doorbell
72  * interrupts which are delivered when a VLPI targeting a non-running
73  * vcpu is being made pending.
74  *
75  * The choice made here is that each vcpu (VPE in old northern GICv4
76  * dialect) gets a single doorbell LPI, no matter how many interrupts
77  * are targeting it. This has a nice property, which is that the
78  * interrupt becomes a handle for the VPE, and that the hypervisor
79  * code can manipulate it through the normal interrupt API:
80  *
81  * - VMs (or rather the VM abstraction that matters to the GIC)
82  *   contain an irq domain where each interrupt maps to a VPE. In
83  *   turn, this domain sits on top of the normal LPI allocator, and a
84  *   specially crafted irq_chip implementation.
85  *
86  * - mask/unmask do what is expected on the doorbell interrupt.
87  *
88  * - irq_set_affinity is used to move a VPE from one redistributor to
89  *   another.
90  *
91  * - irq_set_vcpu_affinity once again gets hijacked for the purpose of
92  *   creating a new sub-API, namely scheduling/descheduling a VPE
93  *   (which involves programming GICR_V{PROP,PEND}BASER) and
94  *   performing INVALL operations.
95  */
96 
97 static struct irq_domain *gic_domain;
98 static const struct irq_domain_ops *vpe_domain_ops;
99 
100 int its_alloc_vcpu_irqs(struct its_vm *vm)
101 {
102 	int vpe_base_irq, i;
103 
104 	vm->fwnode = irq_domain_alloc_named_id_fwnode("GICv4-vpe",
105 						      task_pid_nr(current));
106 	if (!vm->fwnode)
107 		goto err;
108 
109 	vm->domain = irq_domain_create_hierarchy(gic_domain, 0, vm->nr_vpes,
110 						 vm->fwnode, vpe_domain_ops,
111 						 vm);
112 	if (!vm->domain)
113 		goto err;
114 
115 	for (i = 0; i < vm->nr_vpes; i++) {
116 		vm->vpes[i]->its_vm = vm;
117 		vm->vpes[i]->idai = true;
118 	}
119 
120 	vpe_base_irq = __irq_domain_alloc_irqs(vm->domain, -1, vm->nr_vpes,
121 					       NUMA_NO_NODE, vm,
122 					       false, NULL);
123 	if (vpe_base_irq <= 0)
124 		goto err;
125 
126 	for (i = 0; i < vm->nr_vpes; i++)
127 		vm->vpes[i]->irq = vpe_base_irq + i;
128 
129 	return 0;
130 
131 err:
132 	if (vm->domain)
133 		irq_domain_remove(vm->domain);
134 	if (vm->fwnode)
135 		irq_domain_free_fwnode(vm->fwnode);
136 
137 	return -ENOMEM;
138 }
139 
140 void its_free_vcpu_irqs(struct its_vm *vm)
141 {
142 	irq_domain_free_irqs(vm->vpes[0]->irq, vm->nr_vpes);
143 	irq_domain_remove(vm->domain);
144 	irq_domain_free_fwnode(vm->fwnode);
145 }
146 
147 static int its_send_vpe_cmd(struct its_vpe *vpe, struct its_cmd_info *info)
148 {
149 	return irq_set_vcpu_affinity(vpe->irq, info);
150 }
151 
152 int its_schedule_vpe(struct its_vpe *vpe, bool on)
153 {
154 	struct its_cmd_info info;
155 
156 	WARN_ON(preemptible());
157 
158 	info.cmd_type = on ? SCHEDULE_VPE : DESCHEDULE_VPE;
159 
160 	return its_send_vpe_cmd(vpe, &info);
161 }
162 
163 int its_invall_vpe(struct its_vpe *vpe)
164 {
165 	struct its_cmd_info info = {
166 		.cmd_type = INVALL_VPE,
167 	};
168 
169 	return its_send_vpe_cmd(vpe, &info);
170 }
171 
172 int its_map_vlpi(int irq, struct its_vlpi_map *map)
173 {
174 	struct its_cmd_info info = {
175 		.cmd_type = MAP_VLPI,
176 		{
177 			.map      = map,
178 		},
179 	};
180 	int ret;
181 
182 	/*
183 	 * The host will never see that interrupt firing again, so it
184 	 * is vital that we don't do any lazy masking.
185 	 */
186 	irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY);
187 
188 	ret = irq_set_vcpu_affinity(irq, &info);
189 	if (ret)
190 		irq_clear_status_flags(irq, IRQ_DISABLE_UNLAZY);
191 
192 	return ret;
193 }
194 
195 int its_get_vlpi(int irq, struct its_vlpi_map *map)
196 {
197 	struct its_cmd_info info = {
198 		.cmd_type = GET_VLPI,
199 		{
200 			.map      = map,
201 		},
202 	};
203 
204 	return irq_set_vcpu_affinity(irq, &info);
205 }
206 
207 int its_unmap_vlpi(int irq)
208 {
209 	irq_clear_status_flags(irq, IRQ_DISABLE_UNLAZY);
210 	return irq_set_vcpu_affinity(irq, NULL);
211 }
212 
213 int its_prop_update_vlpi(int irq, u8 config, bool inv)
214 {
215 	struct its_cmd_info info = {
216 		.cmd_type = inv ? PROP_UPDATE_AND_INV_VLPI : PROP_UPDATE_VLPI,
217 		{
218 			.config   = config,
219 		},
220 	};
221 
222 	return irq_set_vcpu_affinity(irq, &info);
223 }
224 
225 int its_init_v4(struct irq_domain *domain, const struct irq_domain_ops *ops)
226 {
227 	if (domain) {
228 		pr_info("ITS: Enabling GICv4 support\n");
229 		gic_domain = domain;
230 		vpe_domain_ops = ops;
231 		return 0;
232 	}
233 
234 	pr_err("ITS: No GICv4 VPE domain allocated\n");
235 	return -ENODEV;
236 }
237