1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #define pr_fmt(fmt) "GICv3: " fmt 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpu_pm.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/kstrtox.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/percpu.h> 20 #include <linux/refcount.h> 21 #include <linux/slab.h> 22 23 #include <linux/irqchip.h> 24 #include <linux/irqchip/arm-gic-common.h> 25 #include <linux/irqchip/arm-gic-v3.h> 26 #include <linux/irqchip/irq-partition-percpu.h> 27 #include <linux/bitfield.h> 28 #include <linux/bits.h> 29 #include <linux/arm-smccc.h> 30 31 #include <asm/cputype.h> 32 #include <asm/exception.h> 33 #include <asm/smp_plat.h> 34 #include <asm/virt.h> 35 36 #include "irq-gic-common.h" 37 38 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80) 39 40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) 41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) 42 43 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) 44 45 struct redist_region { 46 void __iomem *redist_base; 47 phys_addr_t phys_base; 48 bool single_redist; 49 }; 50 51 struct gic_chip_data { 52 struct fwnode_handle *fwnode; 53 phys_addr_t dist_phys_base; 54 void __iomem *dist_base; 55 struct redist_region *redist_regions; 56 struct rdists rdists; 57 struct irq_domain *domain; 58 u64 redist_stride; 59 u32 nr_redist_regions; 60 u64 flags; 61 bool has_rss; 62 unsigned int ppi_nr; 63 struct partition_desc **ppi_descs; 64 }; 65 66 #define T241_CHIPS_MAX 4 67 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; 68 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); 69 70 static struct gic_chip_data gic_data __read_mostly; 71 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 72 73 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) 74 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) 75 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) 76 77 /* 78 * The behaviours of RPR and PMR registers differ depending on the value of 79 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the 80 * distributor and redistributors depends on whether security is enabled in the 81 * GIC. 82 * 83 * When security is enabled, non-secure priority values from the (re)distributor 84 * are presented to the GIC CPUIF as follow: 85 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; 86 * 87 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure 88 * EL1 are subject to a similar operation thus matching the priorities presented 89 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, 90 * these values are unchanged by the GIC. 91 * 92 * see GICv3/GICv4 Architecture Specification (IHI0069D): 93 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt 94 * priorities. 95 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 96 * interrupt. 97 */ 98 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); 99 100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities); 101 EXPORT_SYMBOL(gic_nonsecure_priorities); 102 103 /* 104 * When the Non-secure world has access to group 0 interrupts (as a 105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will 106 * return the Distributor's view of the interrupt priority. 107 * 108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority 109 * written by software is moved to the Non-secure range by the Distributor. 110 * 111 * If both are true (which is when gic_nonsecure_priorities gets enabled), 112 * we need to shift down the priority programmed by software to match it 113 * against the value returned by ICC_RPR_EL1. 114 */ 115 #define GICD_INT_RPR_PRI(priority) \ 116 ({ \ 117 u32 __priority = (priority); \ 118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \ 119 __priority = 0x80 | (__priority >> 1); \ 120 \ 121 __priority; \ 122 }) 123 124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */ 125 static refcount_t *ppi_nmi_refs; 126 127 static struct gic_kvm_info gic_v3_kvm_info __initdata; 128 static DEFINE_PER_CPU(bool, has_rss); 129 130 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) 131 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) 132 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 133 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) 134 135 /* Our default, arbitrary priority value. Linux only uses one anyway. */ 136 #define DEFAULT_PMR_VALUE 0xf0 137 138 enum gic_intid_range { 139 SGI_RANGE, 140 PPI_RANGE, 141 SPI_RANGE, 142 EPPI_RANGE, 143 ESPI_RANGE, 144 LPI_RANGE, 145 __INVALID_RANGE__ 146 }; 147 148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) 149 { 150 switch (hwirq) { 151 case 0 ... 15: 152 return SGI_RANGE; 153 case 16 ... 31: 154 return PPI_RANGE; 155 case 32 ... 1019: 156 return SPI_RANGE; 157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): 158 return EPPI_RANGE; 159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): 160 return ESPI_RANGE; 161 case 8192 ... GENMASK(23, 0): 162 return LPI_RANGE; 163 default: 164 return __INVALID_RANGE__; 165 } 166 } 167 168 static enum gic_intid_range get_intid_range(struct irq_data *d) 169 { 170 return __get_intid_range(d->hwirq); 171 } 172 173 static inline unsigned int gic_irq(struct irq_data *d) 174 { 175 return d->hwirq; 176 } 177 178 static inline bool gic_irq_in_rdist(struct irq_data *d) 179 { 180 switch (get_intid_range(d)) { 181 case SGI_RANGE: 182 case PPI_RANGE: 183 case EPPI_RANGE: 184 return true; 185 default: 186 return false; 187 } 188 } 189 190 static inline void __iomem *gic_dist_base_alias(struct irq_data *d) 191 { 192 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { 193 irq_hw_number_t hwirq = irqd_to_hwirq(d); 194 u32 chip; 195 196 /* 197 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} 198 * registers are directed to the chip that owns the SPI. The 199 * the alias region can also be used for writes to the 200 * GICD_In{E} except GICD_ICENABLERn. Each chip has support 201 * for 320 {E}SPIs. Mappings for all 4 chips: 202 * Chip0 = 32-351 203 * Chip1 = 352-671 204 * Chip2 = 672-991 205 * Chip3 = 4096-4415 206 */ 207 switch (__get_intid_range(hwirq)) { 208 case SPI_RANGE: 209 chip = (hwirq - 32) / 320; 210 break; 211 case ESPI_RANGE: 212 chip = 3; 213 break; 214 default: 215 unreachable(); 216 } 217 return t241_dist_base_alias[chip]; 218 } 219 220 return gic_data.dist_base; 221 } 222 223 static inline void __iomem *gic_dist_base(struct irq_data *d) 224 { 225 switch (get_intid_range(d)) { 226 case SGI_RANGE: 227 case PPI_RANGE: 228 case EPPI_RANGE: 229 /* SGI+PPI -> SGI_base for this CPU */ 230 return gic_data_rdist_sgi_base(); 231 232 case SPI_RANGE: 233 case ESPI_RANGE: 234 /* SPI -> dist_base */ 235 return gic_data.dist_base; 236 237 default: 238 return NULL; 239 } 240 } 241 242 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) 243 { 244 u32 count = 1000000; /* 1s! */ 245 246 while (readl_relaxed(base + GICD_CTLR) & bit) { 247 count--; 248 if (!count) { 249 pr_err_ratelimited("RWP timeout, gone fishing\n"); 250 return; 251 } 252 cpu_relax(); 253 udelay(1); 254 } 255 } 256 257 /* Wait for completion of a distributor change */ 258 static void gic_dist_wait_for_rwp(void) 259 { 260 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); 261 } 262 263 /* Wait for completion of a redistributor change */ 264 static void gic_redist_wait_for_rwp(void) 265 { 266 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); 267 } 268 269 #ifdef CONFIG_ARM64 270 271 static u64 __maybe_unused gic_read_iar(void) 272 { 273 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154)) 274 return gic_read_iar_cavium_thunderx(); 275 else 276 return gic_read_iar_common(); 277 } 278 #endif 279 280 static void gic_enable_redist(bool enable) 281 { 282 void __iomem *rbase; 283 u32 count = 1000000; /* 1s! */ 284 u32 val; 285 286 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) 287 return; 288 289 rbase = gic_data_rdist_rd_base(); 290 291 val = readl_relaxed(rbase + GICR_WAKER); 292 if (enable) 293 /* Wake up this CPU redistributor */ 294 val &= ~GICR_WAKER_ProcessorSleep; 295 else 296 val |= GICR_WAKER_ProcessorSleep; 297 writel_relaxed(val, rbase + GICR_WAKER); 298 299 if (!enable) { /* Check that GICR_WAKER is writeable */ 300 val = readl_relaxed(rbase + GICR_WAKER); 301 if (!(val & GICR_WAKER_ProcessorSleep)) 302 return; /* No PM support in this redistributor */ 303 } 304 305 while (--count) { 306 val = readl_relaxed(rbase + GICR_WAKER); 307 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep)) 308 break; 309 cpu_relax(); 310 udelay(1); 311 } 312 if (!count) 313 pr_err_ratelimited("redistributor failed to %s...\n", 314 enable ? "wakeup" : "sleep"); 315 } 316 317 /* 318 * Routines to disable, enable, EOI and route interrupts 319 */ 320 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) 321 { 322 switch (get_intid_range(d)) { 323 case SGI_RANGE: 324 case PPI_RANGE: 325 case SPI_RANGE: 326 *index = d->hwirq; 327 return offset; 328 case EPPI_RANGE: 329 /* 330 * Contrary to the ESPI range, the EPPI range is contiguous 331 * to the PPI range in the registers, so let's adjust the 332 * displacement accordingly. Consistency is overrated. 333 */ 334 *index = d->hwirq - EPPI_BASE_INTID + 32; 335 return offset; 336 case ESPI_RANGE: 337 *index = d->hwirq - ESPI_BASE_INTID; 338 switch (offset) { 339 case GICD_ISENABLER: 340 return GICD_ISENABLERnE; 341 case GICD_ICENABLER: 342 return GICD_ICENABLERnE; 343 case GICD_ISPENDR: 344 return GICD_ISPENDRnE; 345 case GICD_ICPENDR: 346 return GICD_ICPENDRnE; 347 case GICD_ISACTIVER: 348 return GICD_ISACTIVERnE; 349 case GICD_ICACTIVER: 350 return GICD_ICACTIVERnE; 351 case GICD_IPRIORITYR: 352 return GICD_IPRIORITYRnE; 353 case GICD_ICFGR: 354 return GICD_ICFGRnE; 355 case GICD_IROUTER: 356 return GICD_IROUTERnE; 357 default: 358 break; 359 } 360 break; 361 default: 362 break; 363 } 364 365 WARN_ON(1); 366 *index = d->hwirq; 367 return offset; 368 } 369 370 static int gic_peek_irq(struct irq_data *d, u32 offset) 371 { 372 void __iomem *base; 373 u32 index, mask; 374 375 offset = convert_offset_index(d, offset, &index); 376 mask = 1 << (index % 32); 377 378 if (gic_irq_in_rdist(d)) 379 base = gic_data_rdist_sgi_base(); 380 else 381 base = gic_dist_base_alias(d); 382 383 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); 384 } 385 386 static void gic_poke_irq(struct irq_data *d, u32 offset) 387 { 388 void __iomem *base; 389 u32 index, mask; 390 391 offset = convert_offset_index(d, offset, &index); 392 mask = 1 << (index % 32); 393 394 if (gic_irq_in_rdist(d)) 395 base = gic_data_rdist_sgi_base(); 396 else 397 base = gic_data.dist_base; 398 399 writel_relaxed(mask, base + offset + (index / 32) * 4); 400 } 401 402 static void gic_mask_irq(struct irq_data *d) 403 { 404 gic_poke_irq(d, GICD_ICENABLER); 405 if (gic_irq_in_rdist(d)) 406 gic_redist_wait_for_rwp(); 407 else 408 gic_dist_wait_for_rwp(); 409 } 410 411 static void gic_eoimode1_mask_irq(struct irq_data *d) 412 { 413 gic_mask_irq(d); 414 /* 415 * When masking a forwarded interrupt, make sure it is 416 * deactivated as well. 417 * 418 * This ensures that an interrupt that is getting 419 * disabled/masked will not get "stuck", because there is 420 * noone to deactivate it (guest is being terminated). 421 */ 422 if (irqd_is_forwarded_to_vcpu(d)) 423 gic_poke_irq(d, GICD_ICACTIVER); 424 } 425 426 static void gic_unmask_irq(struct irq_data *d) 427 { 428 gic_poke_irq(d, GICD_ISENABLER); 429 } 430 431 static inline bool gic_supports_nmi(void) 432 { 433 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 434 static_branch_likely(&supports_pseudo_nmis); 435 } 436 437 static int gic_irq_set_irqchip_state(struct irq_data *d, 438 enum irqchip_irq_state which, bool val) 439 { 440 u32 reg; 441 442 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ 443 return -EINVAL; 444 445 switch (which) { 446 case IRQCHIP_STATE_PENDING: 447 reg = val ? GICD_ISPENDR : GICD_ICPENDR; 448 break; 449 450 case IRQCHIP_STATE_ACTIVE: 451 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; 452 break; 453 454 case IRQCHIP_STATE_MASKED: 455 if (val) { 456 gic_mask_irq(d); 457 return 0; 458 } 459 reg = GICD_ISENABLER; 460 break; 461 462 default: 463 return -EINVAL; 464 } 465 466 gic_poke_irq(d, reg); 467 return 0; 468 } 469 470 static int gic_irq_get_irqchip_state(struct irq_data *d, 471 enum irqchip_irq_state which, bool *val) 472 { 473 if (d->hwirq >= 8192) /* PPI/SPI only */ 474 return -EINVAL; 475 476 switch (which) { 477 case IRQCHIP_STATE_PENDING: 478 *val = gic_peek_irq(d, GICD_ISPENDR); 479 break; 480 481 case IRQCHIP_STATE_ACTIVE: 482 *val = gic_peek_irq(d, GICD_ISACTIVER); 483 break; 484 485 case IRQCHIP_STATE_MASKED: 486 *val = !gic_peek_irq(d, GICD_ISENABLER); 487 break; 488 489 default: 490 return -EINVAL; 491 } 492 493 return 0; 494 } 495 496 static void gic_irq_set_prio(struct irq_data *d, u8 prio) 497 { 498 void __iomem *base = gic_dist_base(d); 499 u32 offset, index; 500 501 offset = convert_offset_index(d, GICD_IPRIORITYR, &index); 502 503 writeb_relaxed(prio, base + offset + index); 504 } 505 506 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) 507 { 508 switch (__get_intid_range(hwirq)) { 509 case PPI_RANGE: 510 return hwirq - 16; 511 case EPPI_RANGE: 512 return hwirq - EPPI_BASE_INTID + 16; 513 default: 514 unreachable(); 515 } 516 } 517 518 static u32 gic_get_ppi_index(struct irq_data *d) 519 { 520 return __gic_get_ppi_index(d->hwirq); 521 } 522 523 static int gic_irq_nmi_setup(struct irq_data *d) 524 { 525 struct irq_desc *desc = irq_to_desc(d->irq); 526 527 if (!gic_supports_nmi()) 528 return -EINVAL; 529 530 if (gic_peek_irq(d, GICD_ISENABLER)) { 531 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 532 return -EINVAL; 533 } 534 535 /* 536 * A secondary irq_chip should be in charge of LPI request, 537 * it should not be possible to get there 538 */ 539 if (WARN_ON(gic_irq(d) >= 8192)) 540 return -EINVAL; 541 542 /* desc lock should already be held */ 543 if (gic_irq_in_rdist(d)) { 544 u32 idx = gic_get_ppi_index(d); 545 546 /* Setting up PPI as NMI, only switch handler for first NMI */ 547 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) { 548 refcount_set(&ppi_nmi_refs[idx], 1); 549 desc->handle_irq = handle_percpu_devid_fasteoi_nmi; 550 } 551 } else { 552 desc->handle_irq = handle_fasteoi_nmi; 553 } 554 555 gic_irq_set_prio(d, GICD_INT_NMI_PRI); 556 557 return 0; 558 } 559 560 static void gic_irq_nmi_teardown(struct irq_data *d) 561 { 562 struct irq_desc *desc = irq_to_desc(d->irq); 563 564 if (WARN_ON(!gic_supports_nmi())) 565 return; 566 567 if (gic_peek_irq(d, GICD_ISENABLER)) { 568 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 569 return; 570 } 571 572 /* 573 * A secondary irq_chip should be in charge of LPI request, 574 * it should not be possible to get there 575 */ 576 if (WARN_ON(gic_irq(d) >= 8192)) 577 return; 578 579 /* desc lock should already be held */ 580 if (gic_irq_in_rdist(d)) { 581 u32 idx = gic_get_ppi_index(d); 582 583 /* Tearing down NMI, only switch handler for last NMI */ 584 if (refcount_dec_and_test(&ppi_nmi_refs[idx])) 585 desc->handle_irq = handle_percpu_devid_irq; 586 } else { 587 desc->handle_irq = handle_fasteoi_irq; 588 } 589 590 gic_irq_set_prio(d, GICD_INT_DEF_PRI); 591 } 592 593 static void gic_eoi_irq(struct irq_data *d) 594 { 595 write_gicreg(gic_irq(d), ICC_EOIR1_EL1); 596 isb(); 597 } 598 599 static void gic_eoimode1_eoi_irq(struct irq_data *d) 600 { 601 /* 602 * No need to deactivate an LPI, or an interrupt that 603 * is is getting forwarded to a vcpu. 604 */ 605 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) 606 return; 607 gic_write_dir(gic_irq(d)); 608 } 609 610 static int gic_set_type(struct irq_data *d, unsigned int type) 611 { 612 enum gic_intid_range range; 613 unsigned int irq = gic_irq(d); 614 void __iomem *base; 615 u32 offset, index; 616 int ret; 617 618 range = get_intid_range(d); 619 620 /* Interrupt configuration for SGIs can't be changed */ 621 if (range == SGI_RANGE) 622 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 623 624 /* SPIs have restrictions on the supported types */ 625 if ((range == SPI_RANGE || range == ESPI_RANGE) && 626 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) 627 return -EINVAL; 628 629 if (gic_irq_in_rdist(d)) 630 base = gic_data_rdist_sgi_base(); 631 else 632 base = gic_dist_base_alias(d); 633 634 offset = convert_offset_index(d, GICD_ICFGR, &index); 635 636 ret = gic_configure_irq(index, type, base + offset, NULL); 637 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { 638 /* Misconfigured PPIs are usually not fatal */ 639 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq); 640 ret = 0; 641 } 642 643 return ret; 644 } 645 646 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 647 { 648 if (get_intid_range(d) == SGI_RANGE) 649 return -EINVAL; 650 651 if (vcpu) 652 irqd_set_forwarded_to_vcpu(d); 653 else 654 irqd_clr_forwarded_to_vcpu(d); 655 return 0; 656 } 657 658 static u64 gic_mpidr_to_affinity(unsigned long mpidr) 659 { 660 u64 aff; 661 662 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | 663 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 664 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 665 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 666 667 return aff; 668 } 669 670 static void gic_deactivate_unhandled(u32 irqnr) 671 { 672 if (static_branch_likely(&supports_deactivate_key)) { 673 if (irqnr < 8192) 674 gic_write_dir(irqnr); 675 } else { 676 write_gicreg(irqnr, ICC_EOIR1_EL1); 677 isb(); 678 } 679 } 680 681 /* 682 * Follow a read of the IAR with any HW maintenance that needs to happen prior 683 * to invoking the relevant IRQ handler. We must do two things: 684 * 685 * (1) Ensure instruction ordering between a read of IAR and subsequent 686 * instructions in the IRQ handler using an ISB. 687 * 688 * It is possible for the IAR to report an IRQ which was signalled *after* 689 * the CPU took an IRQ exception as multiple interrupts can race to be 690 * recognized by the GIC, earlier interrupts could be withdrawn, and/or 691 * later interrupts could be prioritized by the GIC. 692 * 693 * For devices which are tightly coupled to the CPU, such as PMUs, a 694 * context synchronization event is necessary to ensure that system 695 * register state is not stale, as these may have been indirectly written 696 * *after* exception entry. 697 * 698 * (2) Deactivate the interrupt when EOI mode 1 is in use. 699 */ 700 static inline void gic_complete_ack(u32 irqnr) 701 { 702 if (static_branch_likely(&supports_deactivate_key)) 703 write_gicreg(irqnr, ICC_EOIR1_EL1); 704 705 isb(); 706 } 707 708 static bool gic_rpr_is_nmi_prio(void) 709 { 710 if (!gic_supports_nmi()) 711 return false; 712 713 return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI)); 714 } 715 716 static bool gic_irqnr_is_special(u32 irqnr) 717 { 718 return irqnr >= 1020 && irqnr <= 1023; 719 } 720 721 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) 722 { 723 if (gic_irqnr_is_special(irqnr)) 724 return; 725 726 gic_complete_ack(irqnr); 727 728 if (generic_handle_domain_irq(gic_data.domain, irqnr)) { 729 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); 730 gic_deactivate_unhandled(irqnr); 731 } 732 } 733 734 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) 735 { 736 if (gic_irqnr_is_special(irqnr)) 737 return; 738 739 gic_complete_ack(irqnr); 740 741 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { 742 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); 743 gic_deactivate_unhandled(irqnr); 744 } 745 } 746 747 /* 748 * An exception has been taken from a context with IRQs enabled, and this could 749 * be an IRQ or an NMI. 750 * 751 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear 752 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, 753 * after handling any NMI but before handling any IRQ. 754 * 755 * The entry code has performed IRQ entry, and if an NMI is detected we must 756 * perform NMI entry/exit around invoking the handler. 757 */ 758 static void __gic_handle_irq_from_irqson(struct pt_regs *regs) 759 { 760 bool is_nmi; 761 u32 irqnr; 762 763 irqnr = gic_read_iar(); 764 765 is_nmi = gic_rpr_is_nmi_prio(); 766 767 if (is_nmi) { 768 nmi_enter(); 769 __gic_handle_nmi(irqnr, regs); 770 nmi_exit(); 771 } 772 773 if (gic_prio_masking_enabled()) { 774 gic_pmr_mask_irqs(); 775 gic_arch_enable_irqs(); 776 } 777 778 if (!is_nmi) 779 __gic_handle_irq(irqnr, regs); 780 } 781 782 /* 783 * An exception has been taken from a context with IRQs disabled, which can only 784 * be an NMI. 785 * 786 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave 787 * DAIF.IF (and ICC_PMR_EL1) unchanged. 788 * 789 * The entry code has performed NMI entry. 790 */ 791 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) 792 { 793 u64 pmr; 794 u32 irqnr; 795 796 /* 797 * We were in a context with IRQs disabled. However, the 798 * entry code has set PMR to a value that allows any 799 * interrupt to be acknowledged, and not just NMIs. This can 800 * lead to surprising effects if the NMI has been retired in 801 * the meantime, and that there is an IRQ pending. The IRQ 802 * would then be taken in NMI context, something that nobody 803 * wants to debug twice. 804 * 805 * Until we sort this, drop PMR again to a level that will 806 * actually only allow NMIs before reading IAR, and then 807 * restore it to what it was. 808 */ 809 pmr = gic_read_pmr(); 810 gic_pmr_mask_irqs(); 811 isb(); 812 irqnr = gic_read_iar(); 813 gic_write_pmr(pmr); 814 815 __gic_handle_nmi(irqnr, regs); 816 } 817 818 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 819 { 820 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) 821 __gic_handle_irq_from_irqsoff(regs); 822 else 823 __gic_handle_irq_from_irqson(regs); 824 } 825 826 static u32 gic_get_pribits(void) 827 { 828 u32 pribits; 829 830 pribits = gic_read_ctlr(); 831 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; 832 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; 833 pribits++; 834 835 return pribits; 836 } 837 838 static bool gic_has_group0(void) 839 { 840 u32 val; 841 u32 old_pmr; 842 843 old_pmr = gic_read_pmr(); 844 845 /* 846 * Let's find out if Group0 is under control of EL3 or not by 847 * setting the highest possible, non-zero priority in PMR. 848 * 849 * If SCR_EL3.FIQ is set, the priority gets shifted down in 850 * order for the CPU interface to set bit 7, and keep the 851 * actual priority in the non-secure range. In the process, it 852 * looses the least significant bit and the actual priority 853 * becomes 0x80. Reading it back returns 0, indicating that 854 * we're don't have access to Group0. 855 */ 856 gic_write_pmr(BIT(8 - gic_get_pribits())); 857 val = gic_read_pmr(); 858 859 gic_write_pmr(old_pmr); 860 861 return val != 0; 862 } 863 864 static void __init gic_dist_init(void) 865 { 866 unsigned int i; 867 u64 affinity; 868 void __iomem *base = gic_data.dist_base; 869 u32 val; 870 871 /* Disable the distributor */ 872 writel_relaxed(0, base + GICD_CTLR); 873 gic_dist_wait_for_rwp(); 874 875 /* 876 * Configure SPIs as non-secure Group-1. This will only matter 877 * if the GIC only has a single security state. This will not 878 * do the right thing if the kernel is running in secure mode, 879 * but that's not the intended use case anyway. 880 */ 881 for (i = 32; i < GIC_LINE_NR; i += 32) 882 writel_relaxed(~0, base + GICD_IGROUPR + i / 8); 883 884 /* Extended SPI range, not handled by the GICv2/GICv3 common code */ 885 for (i = 0; i < GIC_ESPI_NR; i += 32) { 886 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); 887 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); 888 } 889 890 for (i = 0; i < GIC_ESPI_NR; i += 32) 891 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); 892 893 for (i = 0; i < GIC_ESPI_NR; i += 16) 894 writel_relaxed(0, base + GICD_ICFGRnE + i / 4); 895 896 for (i = 0; i < GIC_ESPI_NR; i += 4) 897 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i); 898 899 /* Now do the common stuff */ 900 gic_dist_config(base, GIC_LINE_NR, NULL); 901 902 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; 903 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { 904 pr_info("Enabling SGIs without active state\n"); 905 val |= GICD_CTLR_nASSGIreq; 906 } 907 908 /* Enable distributor with ARE, Group1, and wait for it to drain */ 909 writel_relaxed(val, base + GICD_CTLR); 910 gic_dist_wait_for_rwp(); 911 912 /* 913 * Set all global interrupts to the boot CPU only. ARE must be 914 * enabled. 915 */ 916 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id())); 917 for (i = 32; i < GIC_LINE_NR; i++) 918 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); 919 920 for (i = 0; i < GIC_ESPI_NR; i++) 921 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); 922 } 923 924 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) 925 { 926 int ret = -ENODEV; 927 int i; 928 929 for (i = 0; i < gic_data.nr_redist_regions; i++) { 930 void __iomem *ptr = gic_data.redist_regions[i].redist_base; 931 u64 typer; 932 u32 reg; 933 934 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; 935 if (reg != GIC_PIDR2_ARCH_GICv3 && 936 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ 937 pr_warn("No redistributor present @%p\n", ptr); 938 break; 939 } 940 941 do { 942 typer = gic_read_typer(ptr + GICR_TYPER); 943 ret = fn(gic_data.redist_regions + i, ptr); 944 if (!ret) 945 return 0; 946 947 if (gic_data.redist_regions[i].single_redist) 948 break; 949 950 if (gic_data.redist_stride) { 951 ptr += gic_data.redist_stride; 952 } else { 953 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ 954 if (typer & GICR_TYPER_VLPIS) 955 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ 956 } 957 } while (!(typer & GICR_TYPER_LAST)); 958 } 959 960 return ret ? -ENODEV : 0; 961 } 962 963 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) 964 { 965 unsigned long mpidr = cpu_logical_map(smp_processor_id()); 966 u64 typer; 967 u32 aff; 968 969 /* 970 * Convert affinity to a 32bit value that can be matched to 971 * GICR_TYPER bits [63:32]. 972 */ 973 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | 974 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 975 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 976 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 977 978 typer = gic_read_typer(ptr + GICR_TYPER); 979 if ((typer >> 32) == aff) { 980 u64 offset = ptr - region->redist_base; 981 raw_spin_lock_init(&gic_data_rdist()->rd_lock); 982 gic_data_rdist_rd_base() = ptr; 983 gic_data_rdist()->phys_base = region->phys_base + offset; 984 985 pr_info("CPU%d: found redistributor %lx region %d:%pa\n", 986 smp_processor_id(), mpidr, 987 (int)(region - gic_data.redist_regions), 988 &gic_data_rdist()->phys_base); 989 return 0; 990 } 991 992 /* Try next one */ 993 return 1; 994 } 995 996 static int gic_populate_rdist(void) 997 { 998 if (gic_iterate_rdists(__gic_populate_rdist) == 0) 999 return 0; 1000 1001 /* We couldn't even deal with ourselves... */ 1002 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", 1003 smp_processor_id(), 1004 (unsigned long)cpu_logical_map(smp_processor_id())); 1005 return -ENODEV; 1006 } 1007 1008 static int __gic_update_rdist_properties(struct redist_region *region, 1009 void __iomem *ptr) 1010 { 1011 u64 typer = gic_read_typer(ptr + GICR_TYPER); 1012 u32 ctlr = readl_relaxed(ptr + GICR_CTLR); 1013 1014 /* Boot-time cleanup */ 1015 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { 1016 u64 val; 1017 1018 /* Deactivate any present vPE */ 1019 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); 1020 if (val & GICR_VPENDBASER_Valid) 1021 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 1022 ptr + SZ_128K + GICR_VPENDBASER); 1023 1024 /* Mark the VPE table as invalid */ 1025 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); 1026 val &= ~GICR_VPROPBASER_4_1_VALID; 1027 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); 1028 } 1029 1030 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); 1031 1032 /* 1033 * TYPER.RVPEID implies some form of DirectLPI, no matter what the 1034 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI 1035 * that the ITS driver can make use of for LPIs (and not VLPIs). 1036 * 1037 * These are 3 different ways to express the same thing, depending 1038 * on the revision of the architecture and its relaxations over 1039 * time. Just group them under the 'direct_lpi' banner. 1040 */ 1041 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); 1042 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | 1043 !!(ctlr & GICR_CTLR_IR) | 1044 gic_data.rdists.has_rvpeid); 1045 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); 1046 1047 /* Detect non-sensical configurations */ 1048 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { 1049 gic_data.rdists.has_direct_lpi = false; 1050 gic_data.rdists.has_vlpis = false; 1051 gic_data.rdists.has_rvpeid = false; 1052 } 1053 1054 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); 1055 1056 return 1; 1057 } 1058 1059 static void gic_update_rdist_properties(void) 1060 { 1061 gic_data.ppi_nr = UINT_MAX; 1062 gic_iterate_rdists(__gic_update_rdist_properties); 1063 if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) 1064 gic_data.ppi_nr = 0; 1065 pr_info("GICv3 features: %d PPIs%s%s\n", 1066 gic_data.ppi_nr, 1067 gic_data.has_rss ? ", RSS" : "", 1068 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); 1069 1070 if (gic_data.rdists.has_vlpis) 1071 pr_info("GICv4 features: %s%s%s\n", 1072 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", 1073 gic_data.rdists.has_rvpeid ? "RVPEID " : "", 1074 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); 1075 } 1076 1077 /* Check whether it's single security state view */ 1078 static inline bool gic_dist_security_disabled(void) 1079 { 1080 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; 1081 } 1082 1083 static void gic_cpu_sys_reg_init(void) 1084 { 1085 int i, cpu = smp_processor_id(); 1086 u64 mpidr = cpu_logical_map(cpu); 1087 u64 need_rss = MPIDR_RS(mpidr); 1088 bool group0; 1089 u32 pribits; 1090 1091 /* 1092 * Need to check that the SRE bit has actually been set. If 1093 * not, it means that SRE is disabled at EL2. We're going to 1094 * die painfully, and there is nothing we can do about it. 1095 * 1096 * Kindly inform the luser. 1097 */ 1098 if (!gic_enable_sre()) 1099 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); 1100 1101 pribits = gic_get_pribits(); 1102 1103 group0 = gic_has_group0(); 1104 1105 /* Set priority mask register */ 1106 if (!gic_prio_masking_enabled()) { 1107 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); 1108 } else if (gic_supports_nmi()) { 1109 /* 1110 * Mismatch configuration with boot CPU, the system is likely 1111 * to die as interrupt masking will not work properly on all 1112 * CPUs 1113 * 1114 * The boot CPU calls this function before enabling NMI support, 1115 * and as a result we'll never see this warning in the boot path 1116 * for that CPU. 1117 */ 1118 if (static_branch_unlikely(&gic_nonsecure_priorities)) 1119 WARN_ON(!group0 || gic_dist_security_disabled()); 1120 else 1121 WARN_ON(group0 && !gic_dist_security_disabled()); 1122 } 1123 1124 /* 1125 * Some firmwares hand over to the kernel with the BPR changed from 1126 * its reset value (and with a value large enough to prevent 1127 * any pre-emptive interrupts from working at all). Writing a zero 1128 * to BPR restores is reset value. 1129 */ 1130 gic_write_bpr1(0); 1131 1132 if (static_branch_likely(&supports_deactivate_key)) { 1133 /* EOI drops priority only (mode 1) */ 1134 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); 1135 } else { 1136 /* EOI deactivates interrupt too (mode 0) */ 1137 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); 1138 } 1139 1140 /* Always whack Group0 before Group1 */ 1141 if (group0) { 1142 switch(pribits) { 1143 case 8: 1144 case 7: 1145 write_gicreg(0, ICC_AP0R3_EL1); 1146 write_gicreg(0, ICC_AP0R2_EL1); 1147 fallthrough; 1148 case 6: 1149 write_gicreg(0, ICC_AP0R1_EL1); 1150 fallthrough; 1151 case 5: 1152 case 4: 1153 write_gicreg(0, ICC_AP0R0_EL1); 1154 } 1155 1156 isb(); 1157 } 1158 1159 switch(pribits) { 1160 case 8: 1161 case 7: 1162 write_gicreg(0, ICC_AP1R3_EL1); 1163 write_gicreg(0, ICC_AP1R2_EL1); 1164 fallthrough; 1165 case 6: 1166 write_gicreg(0, ICC_AP1R1_EL1); 1167 fallthrough; 1168 case 5: 1169 case 4: 1170 write_gicreg(0, ICC_AP1R0_EL1); 1171 } 1172 1173 isb(); 1174 1175 /* ... and let's hit the road... */ 1176 gic_write_grpen1(1); 1177 1178 /* Keep the RSS capability status in per_cpu variable */ 1179 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); 1180 1181 /* Check all the CPUs have capable of sending SGIs to other CPUs */ 1182 for_each_online_cpu(i) { 1183 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); 1184 1185 need_rss |= MPIDR_RS(cpu_logical_map(i)); 1186 if (need_rss && (!have_rss)) 1187 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", 1188 cpu, (unsigned long)mpidr, 1189 i, (unsigned long)cpu_logical_map(i)); 1190 } 1191 1192 /** 1193 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, 1194 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED 1195 * UNPREDICTABLE choice of : 1196 * - The write is ignored. 1197 * - The RS field is treated as 0. 1198 */ 1199 if (need_rss && (!gic_data.has_rss)) 1200 pr_crit_once("RSS is required but GICD doesn't support it\n"); 1201 } 1202 1203 static bool gicv3_nolpi; 1204 1205 static int __init gicv3_nolpi_cfg(char *buf) 1206 { 1207 return kstrtobool(buf, &gicv3_nolpi); 1208 } 1209 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); 1210 1211 static int gic_dist_supports_lpis(void) 1212 { 1213 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && 1214 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && 1215 !gicv3_nolpi); 1216 } 1217 1218 static void gic_cpu_init(void) 1219 { 1220 void __iomem *rbase; 1221 int i; 1222 1223 /* Register ourselves with the rest of the world */ 1224 if (gic_populate_rdist()) 1225 return; 1226 1227 gic_enable_redist(true); 1228 1229 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && 1230 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), 1231 "Distributor has extended ranges, but CPU%d doesn't\n", 1232 smp_processor_id()); 1233 1234 rbase = gic_data_rdist_sgi_base(); 1235 1236 /* Configure SGIs/PPIs as non-secure Group-1 */ 1237 for (i = 0; i < gic_data.ppi_nr + 16; i += 32) 1238 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); 1239 1240 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp); 1241 1242 /* initialise system registers */ 1243 gic_cpu_sys_reg_init(); 1244 } 1245 1246 #ifdef CONFIG_SMP 1247 1248 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) 1249 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) 1250 1251 static int gic_starting_cpu(unsigned int cpu) 1252 { 1253 gic_cpu_init(); 1254 1255 if (gic_dist_supports_lpis()) 1256 its_cpu_init(); 1257 1258 return 0; 1259 } 1260 1261 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, 1262 unsigned long cluster_id) 1263 { 1264 int next_cpu, cpu = *base_cpu; 1265 unsigned long mpidr = cpu_logical_map(cpu); 1266 u16 tlist = 0; 1267 1268 while (cpu < nr_cpu_ids) { 1269 tlist |= 1 << (mpidr & 0xf); 1270 1271 next_cpu = cpumask_next(cpu, mask); 1272 if (next_cpu >= nr_cpu_ids) 1273 goto out; 1274 cpu = next_cpu; 1275 1276 mpidr = cpu_logical_map(cpu); 1277 1278 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { 1279 cpu--; 1280 goto out; 1281 } 1282 } 1283 out: 1284 *base_cpu = cpu; 1285 return tlist; 1286 } 1287 1288 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ 1289 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ 1290 << ICC_SGI1R_AFFINITY_## level ##_SHIFT) 1291 1292 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) 1293 { 1294 u64 val; 1295 1296 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | 1297 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | 1298 irq << ICC_SGI1R_SGI_ID_SHIFT | 1299 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | 1300 MPIDR_TO_SGI_RS(cluster_id) | 1301 tlist << ICC_SGI1R_TARGET_LIST_SHIFT); 1302 1303 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); 1304 gic_write_sgi1r(val); 1305 } 1306 1307 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 1308 { 1309 int cpu; 1310 1311 if (WARN_ON(d->hwirq >= 16)) 1312 return; 1313 1314 /* 1315 * Ensure that stores to Normal memory are visible to the 1316 * other CPUs before issuing the IPI. 1317 */ 1318 dsb(ishst); 1319 1320 for_each_cpu(cpu, mask) { 1321 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu)); 1322 u16 tlist; 1323 1324 tlist = gic_compute_target_list(&cpu, mask, cluster_id); 1325 gic_send_sgi(cluster_id, tlist, d->hwirq); 1326 } 1327 1328 /* Force the above writes to ICC_SGI1R_EL1 to be executed */ 1329 isb(); 1330 } 1331 1332 static void __init gic_smp_init(void) 1333 { 1334 struct irq_fwspec sgi_fwspec = { 1335 .fwnode = gic_data.fwnode, 1336 .param_count = 1, 1337 }; 1338 int base_sgi; 1339 1340 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 1341 "irqchip/arm/gicv3:starting", 1342 gic_starting_cpu, NULL); 1343 1344 /* Register all 8 non-secure SGIs */ 1345 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); 1346 if (WARN_ON(base_sgi <= 0)) 1347 return; 1348 1349 set_smp_ipi_range(base_sgi, 8); 1350 } 1351 1352 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1353 bool force) 1354 { 1355 unsigned int cpu; 1356 u32 offset, index; 1357 void __iomem *reg; 1358 int enabled; 1359 u64 val; 1360 1361 if (force) 1362 cpu = cpumask_first(mask_val); 1363 else 1364 cpu = cpumask_any_and(mask_val, cpu_online_mask); 1365 1366 if (cpu >= nr_cpu_ids) 1367 return -EINVAL; 1368 1369 if (gic_irq_in_rdist(d)) 1370 return -EINVAL; 1371 1372 /* If interrupt was enabled, disable it first */ 1373 enabled = gic_peek_irq(d, GICD_ISENABLER); 1374 if (enabled) 1375 gic_mask_irq(d); 1376 1377 offset = convert_offset_index(d, GICD_IROUTER, &index); 1378 reg = gic_dist_base(d) + offset + (index * 8); 1379 val = gic_mpidr_to_affinity(cpu_logical_map(cpu)); 1380 1381 gic_write_irouter(val, reg); 1382 1383 /* 1384 * If the interrupt was enabled, enabled it again. Otherwise, 1385 * just wait for the distributor to have digested our changes. 1386 */ 1387 if (enabled) 1388 gic_unmask_irq(d); 1389 1390 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1391 1392 return IRQ_SET_MASK_OK_DONE; 1393 } 1394 #else 1395 #define gic_set_affinity NULL 1396 #define gic_ipi_send_mask NULL 1397 #define gic_smp_init() do { } while(0) 1398 #endif 1399 1400 static int gic_retrigger(struct irq_data *data) 1401 { 1402 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 1403 } 1404 1405 #ifdef CONFIG_CPU_PM 1406 static int gic_cpu_pm_notifier(struct notifier_block *self, 1407 unsigned long cmd, void *v) 1408 { 1409 if (cmd == CPU_PM_EXIT) { 1410 if (gic_dist_security_disabled()) 1411 gic_enable_redist(true); 1412 gic_cpu_sys_reg_init(); 1413 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { 1414 gic_write_grpen1(0); 1415 gic_enable_redist(false); 1416 } 1417 return NOTIFY_OK; 1418 } 1419 1420 static struct notifier_block gic_cpu_pm_notifier_block = { 1421 .notifier_call = gic_cpu_pm_notifier, 1422 }; 1423 1424 static void gic_cpu_pm_init(void) 1425 { 1426 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); 1427 } 1428 1429 #else 1430 static inline void gic_cpu_pm_init(void) { } 1431 #endif /* CONFIG_CPU_PM */ 1432 1433 static struct irq_chip gic_chip = { 1434 .name = "GICv3", 1435 .irq_mask = gic_mask_irq, 1436 .irq_unmask = gic_unmask_irq, 1437 .irq_eoi = gic_eoi_irq, 1438 .irq_set_type = gic_set_type, 1439 .irq_set_affinity = gic_set_affinity, 1440 .irq_retrigger = gic_retrigger, 1441 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1442 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1443 .irq_nmi_setup = gic_irq_nmi_setup, 1444 .irq_nmi_teardown = gic_irq_nmi_teardown, 1445 .ipi_send_mask = gic_ipi_send_mask, 1446 .flags = IRQCHIP_SET_TYPE_MASKED | 1447 IRQCHIP_SKIP_SET_WAKE | 1448 IRQCHIP_MASK_ON_SUSPEND, 1449 }; 1450 1451 static struct irq_chip gic_eoimode1_chip = { 1452 .name = "GICv3", 1453 .irq_mask = gic_eoimode1_mask_irq, 1454 .irq_unmask = gic_unmask_irq, 1455 .irq_eoi = gic_eoimode1_eoi_irq, 1456 .irq_set_type = gic_set_type, 1457 .irq_set_affinity = gic_set_affinity, 1458 .irq_retrigger = gic_retrigger, 1459 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1460 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1461 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 1462 .irq_nmi_setup = gic_irq_nmi_setup, 1463 .irq_nmi_teardown = gic_irq_nmi_teardown, 1464 .ipi_send_mask = gic_ipi_send_mask, 1465 .flags = IRQCHIP_SET_TYPE_MASKED | 1466 IRQCHIP_SKIP_SET_WAKE | 1467 IRQCHIP_MASK_ON_SUSPEND, 1468 }; 1469 1470 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1471 irq_hw_number_t hw) 1472 { 1473 struct irq_chip *chip = &gic_chip; 1474 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1475 1476 if (static_branch_likely(&supports_deactivate_key)) 1477 chip = &gic_eoimode1_chip; 1478 1479 switch (__get_intid_range(hw)) { 1480 case SGI_RANGE: 1481 case PPI_RANGE: 1482 case EPPI_RANGE: 1483 irq_set_percpu_devid(irq); 1484 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1485 handle_percpu_devid_irq, NULL, NULL); 1486 break; 1487 1488 case SPI_RANGE: 1489 case ESPI_RANGE: 1490 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1491 handle_fasteoi_irq, NULL, NULL); 1492 irq_set_probe(irq); 1493 irqd_set_single_target(irqd); 1494 break; 1495 1496 case LPI_RANGE: 1497 if (!gic_dist_supports_lpis()) 1498 return -EPERM; 1499 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1500 handle_fasteoi_irq, NULL, NULL); 1501 break; 1502 1503 default: 1504 return -EPERM; 1505 } 1506 1507 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1508 irqd_set_handle_enforce_irqctx(irqd); 1509 return 0; 1510 } 1511 1512 static int gic_irq_domain_translate(struct irq_domain *d, 1513 struct irq_fwspec *fwspec, 1514 unsigned long *hwirq, 1515 unsigned int *type) 1516 { 1517 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1518 *hwirq = fwspec->param[0]; 1519 *type = IRQ_TYPE_EDGE_RISING; 1520 return 0; 1521 } 1522 1523 if (is_of_node(fwspec->fwnode)) { 1524 if (fwspec->param_count < 3) 1525 return -EINVAL; 1526 1527 switch (fwspec->param[0]) { 1528 case 0: /* SPI */ 1529 *hwirq = fwspec->param[1] + 32; 1530 break; 1531 case 1: /* PPI */ 1532 *hwirq = fwspec->param[1] + 16; 1533 break; 1534 case 2: /* ESPI */ 1535 *hwirq = fwspec->param[1] + ESPI_BASE_INTID; 1536 break; 1537 case 3: /* EPPI */ 1538 *hwirq = fwspec->param[1] + EPPI_BASE_INTID; 1539 break; 1540 case GIC_IRQ_TYPE_LPI: /* LPI */ 1541 *hwirq = fwspec->param[1]; 1542 break; 1543 case GIC_IRQ_TYPE_PARTITION: 1544 *hwirq = fwspec->param[1]; 1545 if (fwspec->param[1] >= 16) 1546 *hwirq += EPPI_BASE_INTID - 16; 1547 else 1548 *hwirq += 16; 1549 break; 1550 default: 1551 return -EINVAL; 1552 } 1553 1554 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1555 1556 /* 1557 * Make it clear that broken DTs are... broken. 1558 * Partitioned PPIs are an unfortunate exception. 1559 */ 1560 WARN_ON(*type == IRQ_TYPE_NONE && 1561 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); 1562 return 0; 1563 } 1564 1565 if (is_fwnode_irqchip(fwspec->fwnode)) { 1566 if(fwspec->param_count != 2) 1567 return -EINVAL; 1568 1569 if (fwspec->param[0] < 16) { 1570 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1571 fwspec->param[0]); 1572 return -EINVAL; 1573 } 1574 1575 *hwirq = fwspec->param[0]; 1576 *type = fwspec->param[1]; 1577 1578 WARN_ON(*type == IRQ_TYPE_NONE); 1579 return 0; 1580 } 1581 1582 return -EINVAL; 1583 } 1584 1585 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1586 unsigned int nr_irqs, void *arg) 1587 { 1588 int i, ret; 1589 irq_hw_number_t hwirq; 1590 unsigned int type = IRQ_TYPE_NONE; 1591 struct irq_fwspec *fwspec = arg; 1592 1593 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1594 if (ret) 1595 return ret; 1596 1597 for (i = 0; i < nr_irqs; i++) { 1598 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1599 if (ret) 1600 return ret; 1601 } 1602 1603 return 0; 1604 } 1605 1606 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1607 unsigned int nr_irqs) 1608 { 1609 int i; 1610 1611 for (i = 0; i < nr_irqs; i++) { 1612 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 1613 irq_set_handler(virq + i, NULL); 1614 irq_domain_reset_irq_data(d); 1615 } 1616 } 1617 1618 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, 1619 irq_hw_number_t hwirq) 1620 { 1621 enum gic_intid_range range; 1622 1623 if (!gic_data.ppi_descs) 1624 return false; 1625 1626 if (!is_of_node(fwspec->fwnode)) 1627 return false; 1628 1629 if (fwspec->param_count < 4 || !fwspec->param[3]) 1630 return false; 1631 1632 range = __get_intid_range(hwirq); 1633 if (range != PPI_RANGE && range != EPPI_RANGE) 1634 return false; 1635 1636 return true; 1637 } 1638 1639 static int gic_irq_domain_select(struct irq_domain *d, 1640 struct irq_fwspec *fwspec, 1641 enum irq_domain_bus_token bus_token) 1642 { 1643 unsigned int type, ret, ppi_idx; 1644 irq_hw_number_t hwirq; 1645 1646 /* Not for us */ 1647 if (fwspec->fwnode != d->fwnode) 1648 return 0; 1649 1650 /* If this is not DT, then we have a single domain */ 1651 if (!is_of_node(fwspec->fwnode)) 1652 return 1; 1653 1654 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); 1655 if (WARN_ON_ONCE(ret)) 1656 return 0; 1657 1658 if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) 1659 return d == gic_data.domain; 1660 1661 /* 1662 * If this is a PPI and we have a 4th (non-null) parameter, 1663 * then we need to match the partition domain. 1664 */ 1665 ppi_idx = __gic_get_ppi_index(hwirq); 1666 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); 1667 } 1668 1669 static const struct irq_domain_ops gic_irq_domain_ops = { 1670 .translate = gic_irq_domain_translate, 1671 .alloc = gic_irq_domain_alloc, 1672 .free = gic_irq_domain_free, 1673 .select = gic_irq_domain_select, 1674 }; 1675 1676 static int partition_domain_translate(struct irq_domain *d, 1677 struct irq_fwspec *fwspec, 1678 unsigned long *hwirq, 1679 unsigned int *type) 1680 { 1681 unsigned long ppi_intid; 1682 struct device_node *np; 1683 unsigned int ppi_idx; 1684 int ret; 1685 1686 if (!gic_data.ppi_descs) 1687 return -ENOMEM; 1688 1689 np = of_find_node_by_phandle(fwspec->param[3]); 1690 if (WARN_ON(!np)) 1691 return -EINVAL; 1692 1693 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); 1694 if (WARN_ON_ONCE(ret)) 1695 return 0; 1696 1697 ppi_idx = __gic_get_ppi_index(ppi_intid); 1698 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], 1699 of_node_to_fwnode(np)); 1700 if (ret < 0) 1701 return ret; 1702 1703 *hwirq = ret; 1704 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1705 1706 return 0; 1707 } 1708 1709 static const struct irq_domain_ops partition_domain_ops = { 1710 .translate = partition_domain_translate, 1711 .select = gic_irq_domain_select, 1712 }; 1713 1714 static bool gic_enable_quirk_msm8996(void *data) 1715 { 1716 struct gic_chip_data *d = data; 1717 1718 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; 1719 1720 return true; 1721 } 1722 1723 static bool gic_enable_quirk_cavium_38539(void *data) 1724 { 1725 struct gic_chip_data *d = data; 1726 1727 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; 1728 1729 return true; 1730 } 1731 1732 static bool gic_enable_quirk_hip06_07(void *data) 1733 { 1734 struct gic_chip_data *d = data; 1735 1736 /* 1737 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite 1738 * not being an actual ARM implementation). The saving grace is 1739 * that GIC-600 doesn't have ESPI, so nothing to do in that case. 1740 * HIP07 doesn't even have a proper IIDR, and still pretends to 1741 * have ESPI. In both cases, put them right. 1742 */ 1743 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { 1744 /* Zero both ESPI and the RES0 field next to it... */ 1745 d->rdists.gicd_typer &= ~GENMASK(9, 8); 1746 return true; 1747 } 1748 1749 return false; 1750 } 1751 1752 #define T241_CHIPN_MASK GENMASK_ULL(45, 44) 1753 #define T241_CHIP_GICDA_OFFSET 0x1580000 1754 #define SMCCC_SOC_ID_T241 0x036b0241 1755 1756 static bool gic_enable_quirk_nvidia_t241(void *data) 1757 { 1758 s32 soc_id = arm_smccc_get_soc_id_version(); 1759 unsigned long chip_bmask = 0; 1760 phys_addr_t phys; 1761 u32 i; 1762 1763 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ 1764 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) 1765 return false; 1766 1767 /* Find the chips based on GICR regions PHYS addr */ 1768 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1769 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, 1770 (u64)gic_data.redist_regions[i].phys_base)); 1771 } 1772 1773 if (hweight32(chip_bmask) < 3) 1774 return false; 1775 1776 /* Setup GICD alias regions */ 1777 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { 1778 if (chip_bmask & BIT(i)) { 1779 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; 1780 phys |= FIELD_PREP(T241_CHIPN_MASK, i); 1781 t241_dist_base_alias[i] = ioremap(phys, SZ_64K); 1782 WARN_ON_ONCE(!t241_dist_base_alias[i]); 1783 } 1784 } 1785 static_branch_enable(&gic_nvidia_t241_erratum); 1786 return true; 1787 } 1788 1789 static const struct gic_quirk gic_quirks[] = { 1790 { 1791 .desc = "GICv3: Qualcomm MSM8996 broken firmware", 1792 .compatible = "qcom,msm8996-gic-v3", 1793 .init = gic_enable_quirk_msm8996, 1794 }, 1795 { 1796 .desc = "GICv3: HIP06 erratum 161010803", 1797 .iidr = 0x0204043b, 1798 .mask = 0xffffffff, 1799 .init = gic_enable_quirk_hip06_07, 1800 }, 1801 { 1802 .desc = "GICv3: HIP07 erratum 161010803", 1803 .iidr = 0x00000000, 1804 .mask = 0xffffffff, 1805 .init = gic_enable_quirk_hip06_07, 1806 }, 1807 { 1808 /* 1809 * Reserved register accesses generate a Synchronous 1810 * External Abort. This erratum applies to: 1811 * - ThunderX: CN88xx 1812 * - OCTEON TX: CN83xx, CN81xx 1813 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* 1814 */ 1815 .desc = "GICv3: Cavium erratum 38539", 1816 .iidr = 0xa000034c, 1817 .mask = 0xe8f00fff, 1818 .init = gic_enable_quirk_cavium_38539, 1819 }, 1820 { 1821 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", 1822 .iidr = 0x0402043b, 1823 .mask = 0xffffffff, 1824 .init = gic_enable_quirk_nvidia_t241, 1825 }, 1826 { 1827 } 1828 }; 1829 1830 static void gic_enable_nmi_support(void) 1831 { 1832 int i; 1833 1834 if (!gic_prio_masking_enabled()) 1835 return; 1836 1837 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL); 1838 if (!ppi_nmi_refs) 1839 return; 1840 1841 for (i = 0; i < gic_data.ppi_nr; i++) 1842 refcount_set(&ppi_nmi_refs[i], 0); 1843 1844 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", 1845 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); 1846 1847 /* 1848 * How priority values are used by the GIC depends on two things: 1849 * the security state of the GIC (controlled by the GICD_CTRL.DS bit) 1850 * and if Group 0 interrupts can be delivered to Linux in the non-secure 1851 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the 1852 * ICC_PMR_EL1 register and the priority that software assigns to 1853 * interrupts: 1854 * 1855 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority 1856 * ----------------------------------------------------------- 1857 * 1 | - | unchanged | unchanged 1858 * ----------------------------------------------------------- 1859 * 0 | 1 | non-secure | non-secure 1860 * ----------------------------------------------------------- 1861 * 0 | 0 | unchanged | non-secure 1862 * 1863 * where non-secure means that the value is right-shifted by one and the 1864 * MSB bit set, to make it fit in the non-secure priority range. 1865 * 1866 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority 1867 * are both either modified or unchanged, we can use the same set of 1868 * priorities. 1869 * 1870 * In the last case, where only the interrupt priorities are modified to 1871 * be in the non-secure range, we use a different PMR value to mask IRQs 1872 * and the rest of the values that we use remain unchanged. 1873 */ 1874 if (gic_has_group0() && !gic_dist_security_disabled()) 1875 static_branch_enable(&gic_nonsecure_priorities); 1876 1877 static_branch_enable(&supports_pseudo_nmis); 1878 1879 if (static_branch_likely(&supports_deactivate_key)) 1880 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; 1881 else 1882 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; 1883 } 1884 1885 static int __init gic_init_bases(phys_addr_t dist_phys_base, 1886 void __iomem *dist_base, 1887 struct redist_region *rdist_regs, 1888 u32 nr_redist_regions, 1889 u64 redist_stride, 1890 struct fwnode_handle *handle) 1891 { 1892 u32 typer; 1893 int err; 1894 1895 if (!is_hyp_mode_available()) 1896 static_branch_disable(&supports_deactivate_key); 1897 1898 if (static_branch_likely(&supports_deactivate_key)) 1899 pr_info("GIC: Using split EOI/Deactivate mode\n"); 1900 1901 gic_data.fwnode = handle; 1902 gic_data.dist_phys_base = dist_phys_base; 1903 gic_data.dist_base = dist_base; 1904 gic_data.redist_regions = rdist_regs; 1905 gic_data.nr_redist_regions = nr_redist_regions; 1906 gic_data.redist_stride = redist_stride; 1907 1908 /* 1909 * Find out how many interrupts are supported. 1910 */ 1911 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); 1912 gic_data.rdists.gicd_typer = typer; 1913 1914 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), 1915 gic_quirks, &gic_data); 1916 1917 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); 1918 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); 1919 1920 /* 1921 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the 1922 * architecture spec (which says that reserved registers are RES0). 1923 */ 1924 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) 1925 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); 1926 1927 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, 1928 &gic_data); 1929 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); 1930 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { 1931 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ 1932 gic_data.rdists.has_rvpeid = true; 1933 gic_data.rdists.has_vlpis = true; 1934 gic_data.rdists.has_direct_lpi = true; 1935 gic_data.rdists.has_vpend_valid_dirty = true; 1936 } 1937 1938 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { 1939 err = -ENOMEM; 1940 goto out_free; 1941 } 1942 1943 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); 1944 1945 gic_data.has_rss = !!(typer & GICD_TYPER_RSS); 1946 1947 if (typer & GICD_TYPER_MBIS) { 1948 err = mbi_init(handle, gic_data.domain); 1949 if (err) 1950 pr_err("Failed to initialize MBIs\n"); 1951 } 1952 1953 set_handle_irq(gic_handle_irq); 1954 1955 gic_update_rdist_properties(); 1956 1957 gic_dist_init(); 1958 gic_cpu_init(); 1959 gic_smp_init(); 1960 gic_cpu_pm_init(); 1961 1962 if (gic_dist_supports_lpis()) { 1963 its_init(handle, &gic_data.rdists, gic_data.domain); 1964 its_cpu_init(); 1965 its_lpi_memreserve_init(); 1966 } else { 1967 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 1968 gicv2m_init(handle, gic_data.domain); 1969 } 1970 1971 gic_enable_nmi_support(); 1972 1973 return 0; 1974 1975 out_free: 1976 if (gic_data.domain) 1977 irq_domain_remove(gic_data.domain); 1978 free_percpu(gic_data.rdists.rdist); 1979 return err; 1980 } 1981 1982 static int __init gic_validate_dist_version(void __iomem *dist_base) 1983 { 1984 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 1985 1986 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) 1987 return -ENODEV; 1988 1989 return 0; 1990 } 1991 1992 /* Create all possible partitions at boot time */ 1993 static void __init gic_populate_ppi_partitions(struct device_node *gic_node) 1994 { 1995 struct device_node *parts_node, *child_part; 1996 int part_idx = 0, i; 1997 int nr_parts; 1998 struct partition_affinity *parts; 1999 2000 parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); 2001 if (!parts_node) 2002 return; 2003 2004 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); 2005 if (!gic_data.ppi_descs) 2006 goto out_put_node; 2007 2008 nr_parts = of_get_child_count(parts_node); 2009 2010 if (!nr_parts) 2011 goto out_put_node; 2012 2013 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); 2014 if (WARN_ON(!parts)) 2015 goto out_put_node; 2016 2017 for_each_child_of_node(parts_node, child_part) { 2018 struct partition_affinity *part; 2019 int n; 2020 2021 part = &parts[part_idx]; 2022 2023 part->partition_id = of_node_to_fwnode(child_part); 2024 2025 pr_info("GIC: PPI partition %pOFn[%d] { ", 2026 child_part, part_idx); 2027 2028 n = of_property_count_elems_of_size(child_part, "affinity", 2029 sizeof(u32)); 2030 WARN_ON(n <= 0); 2031 2032 for (i = 0; i < n; i++) { 2033 int err, cpu; 2034 u32 cpu_phandle; 2035 struct device_node *cpu_node; 2036 2037 err = of_property_read_u32_index(child_part, "affinity", 2038 i, &cpu_phandle); 2039 if (WARN_ON(err)) 2040 continue; 2041 2042 cpu_node = of_find_node_by_phandle(cpu_phandle); 2043 if (WARN_ON(!cpu_node)) 2044 continue; 2045 2046 cpu = of_cpu_node_to_id(cpu_node); 2047 if (WARN_ON(cpu < 0)) { 2048 of_node_put(cpu_node); 2049 continue; 2050 } 2051 2052 pr_cont("%pOF[%d] ", cpu_node, cpu); 2053 2054 cpumask_set_cpu(cpu, &part->mask); 2055 of_node_put(cpu_node); 2056 } 2057 2058 pr_cont("}\n"); 2059 part_idx++; 2060 } 2061 2062 for (i = 0; i < gic_data.ppi_nr; i++) { 2063 unsigned int irq; 2064 struct partition_desc *desc; 2065 struct irq_fwspec ppi_fwspec = { 2066 .fwnode = gic_data.fwnode, 2067 .param_count = 3, 2068 .param = { 2069 [0] = GIC_IRQ_TYPE_PARTITION, 2070 [1] = i, 2071 [2] = IRQ_TYPE_NONE, 2072 }, 2073 }; 2074 2075 irq = irq_create_fwspec_mapping(&ppi_fwspec); 2076 if (WARN_ON(!irq)) 2077 continue; 2078 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, 2079 irq, &partition_domain_ops); 2080 if (WARN_ON(!desc)) 2081 continue; 2082 2083 gic_data.ppi_descs[i] = desc; 2084 } 2085 2086 out_put_node: 2087 of_node_put(parts_node); 2088 } 2089 2090 static void __init gic_of_setup_kvm_info(struct device_node *node) 2091 { 2092 int ret; 2093 struct resource r; 2094 u32 gicv_idx; 2095 2096 gic_v3_kvm_info.type = GIC_V3; 2097 2098 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 2099 if (!gic_v3_kvm_info.maint_irq) 2100 return; 2101 2102 if (of_property_read_u32(node, "#redistributor-regions", 2103 &gicv_idx)) 2104 gicv_idx = 1; 2105 2106 gicv_idx += 3; /* Also skip GICD, GICC, GICH */ 2107 ret = of_address_to_resource(node, gicv_idx, &r); 2108 if (!ret) 2109 gic_v3_kvm_info.vcpu = r; 2110 2111 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2112 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2113 vgic_set_kvm_info(&gic_v3_kvm_info); 2114 } 2115 2116 static void gic_request_region(resource_size_t base, resource_size_t size, 2117 const char *name) 2118 { 2119 if (!request_mem_region(base, size, name)) 2120 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", 2121 name, &base); 2122 } 2123 2124 static void __iomem *gic_of_iomap(struct device_node *node, int idx, 2125 const char *name, struct resource *res) 2126 { 2127 void __iomem *base; 2128 int ret; 2129 2130 ret = of_address_to_resource(node, idx, res); 2131 if (ret) 2132 return IOMEM_ERR_PTR(ret); 2133 2134 gic_request_region(res->start, resource_size(res), name); 2135 base = of_iomap(node, idx); 2136 2137 return base ?: IOMEM_ERR_PTR(-ENOMEM); 2138 } 2139 2140 static int __init gic_of_init(struct device_node *node, struct device_node *parent) 2141 { 2142 phys_addr_t dist_phys_base; 2143 void __iomem *dist_base; 2144 struct redist_region *rdist_regs; 2145 struct resource res; 2146 u64 redist_stride; 2147 u32 nr_redist_regions; 2148 int err, i; 2149 2150 dist_base = gic_of_iomap(node, 0, "GICD", &res); 2151 if (IS_ERR(dist_base)) { 2152 pr_err("%pOF: unable to map gic dist registers\n", node); 2153 return PTR_ERR(dist_base); 2154 } 2155 2156 dist_phys_base = res.start; 2157 2158 err = gic_validate_dist_version(dist_base); 2159 if (err) { 2160 pr_err("%pOF: no distributor detected, giving up\n", node); 2161 goto out_unmap_dist; 2162 } 2163 2164 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) 2165 nr_redist_regions = 1; 2166 2167 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), 2168 GFP_KERNEL); 2169 if (!rdist_regs) { 2170 err = -ENOMEM; 2171 goto out_unmap_dist; 2172 } 2173 2174 for (i = 0; i < nr_redist_regions; i++) { 2175 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); 2176 if (IS_ERR(rdist_regs[i].redist_base)) { 2177 pr_err("%pOF: couldn't map region %d\n", node, i); 2178 err = -ENODEV; 2179 goto out_unmap_rdist; 2180 } 2181 rdist_regs[i].phys_base = res.start; 2182 } 2183 2184 if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) 2185 redist_stride = 0; 2186 2187 gic_enable_of_quirks(node, gic_quirks, &gic_data); 2188 2189 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, 2190 nr_redist_regions, redist_stride, &node->fwnode); 2191 if (err) 2192 goto out_unmap_rdist; 2193 2194 gic_populate_ppi_partitions(node); 2195 2196 if (static_branch_likely(&supports_deactivate_key)) 2197 gic_of_setup_kvm_info(node); 2198 return 0; 2199 2200 out_unmap_rdist: 2201 for (i = 0; i < nr_redist_regions; i++) 2202 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) 2203 iounmap(rdist_regs[i].redist_base); 2204 kfree(rdist_regs); 2205 out_unmap_dist: 2206 iounmap(dist_base); 2207 return err; 2208 } 2209 2210 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); 2211 2212 #ifdef CONFIG_ACPI 2213 static struct 2214 { 2215 void __iomem *dist_base; 2216 struct redist_region *redist_regs; 2217 u32 nr_redist_regions; 2218 bool single_redist; 2219 int enabled_rdists; 2220 u32 maint_irq; 2221 int maint_irq_mode; 2222 phys_addr_t vcpu_base; 2223 } acpi_data __initdata; 2224 2225 static void __init 2226 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) 2227 { 2228 static int count = 0; 2229 2230 acpi_data.redist_regs[count].phys_base = phys_base; 2231 acpi_data.redist_regs[count].redist_base = redist_base; 2232 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; 2233 count++; 2234 } 2235 2236 static int __init 2237 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, 2238 const unsigned long end) 2239 { 2240 struct acpi_madt_generic_redistributor *redist = 2241 (struct acpi_madt_generic_redistributor *)header; 2242 void __iomem *redist_base; 2243 2244 redist_base = ioremap(redist->base_address, redist->length); 2245 if (!redist_base) { 2246 pr_err("Couldn't map GICR region @%llx\n", redist->base_address); 2247 return -ENOMEM; 2248 } 2249 gic_request_region(redist->base_address, redist->length, "GICR"); 2250 2251 gic_acpi_register_redist(redist->base_address, redist_base); 2252 return 0; 2253 } 2254 2255 static int __init 2256 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, 2257 const unsigned long end) 2258 { 2259 struct acpi_madt_generic_interrupt *gicc = 2260 (struct acpi_madt_generic_interrupt *)header; 2261 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2262 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; 2263 void __iomem *redist_base; 2264 2265 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */ 2266 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2267 return 0; 2268 2269 redist_base = ioremap(gicc->gicr_base_address, size); 2270 if (!redist_base) 2271 return -ENOMEM; 2272 gic_request_region(gicc->gicr_base_address, size, "GICR"); 2273 2274 gic_acpi_register_redist(gicc->gicr_base_address, redist_base); 2275 return 0; 2276 } 2277 2278 static int __init gic_acpi_collect_gicr_base(void) 2279 { 2280 acpi_tbl_entry_handler redist_parser; 2281 enum acpi_madt_type type; 2282 2283 if (acpi_data.single_redist) { 2284 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; 2285 redist_parser = gic_acpi_parse_madt_gicc; 2286 } else { 2287 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; 2288 redist_parser = gic_acpi_parse_madt_redist; 2289 } 2290 2291 /* Collect redistributor base addresses in GICR entries */ 2292 if (acpi_table_parse_madt(type, redist_parser, 0) > 0) 2293 return 0; 2294 2295 pr_info("No valid GICR entries exist\n"); 2296 return -ENODEV; 2297 } 2298 2299 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, 2300 const unsigned long end) 2301 { 2302 /* Subtable presence means that redist exists, that's it */ 2303 return 0; 2304 } 2305 2306 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, 2307 const unsigned long end) 2308 { 2309 struct acpi_madt_generic_interrupt *gicc = 2310 (struct acpi_madt_generic_interrupt *)header; 2311 2312 /* 2313 * If GICC is enabled and has valid gicr base address, then it means 2314 * GICR base is presented via GICC 2315 */ 2316 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) { 2317 acpi_data.enabled_rdists++; 2318 return 0; 2319 } 2320 2321 /* 2322 * It's perfectly valid firmware can pass disabled GICC entry, driver 2323 * should not treat as errors, skip the entry instead of probe fail. 2324 */ 2325 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2326 return 0; 2327 2328 return -ENODEV; 2329 } 2330 2331 static int __init gic_acpi_count_gicr_regions(void) 2332 { 2333 int count; 2334 2335 /* 2336 * Count how many redistributor regions we have. It is not allowed 2337 * to mix redistributor description, GICR and GICC subtables have to be 2338 * mutually exclusive. 2339 */ 2340 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 2341 gic_acpi_match_gicr, 0); 2342 if (count > 0) { 2343 acpi_data.single_redist = false; 2344 return count; 2345 } 2346 2347 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2348 gic_acpi_match_gicc, 0); 2349 if (count > 0) { 2350 acpi_data.single_redist = true; 2351 count = acpi_data.enabled_rdists; 2352 } 2353 2354 return count; 2355 } 2356 2357 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, 2358 struct acpi_probe_entry *ape) 2359 { 2360 struct acpi_madt_generic_distributor *dist; 2361 int count; 2362 2363 dist = (struct acpi_madt_generic_distributor *)header; 2364 if (dist->version != ape->driver_data) 2365 return false; 2366 2367 /* We need to do that exercise anyway, the sooner the better */ 2368 count = gic_acpi_count_gicr_regions(); 2369 if (count <= 0) 2370 return false; 2371 2372 acpi_data.nr_redist_regions = count; 2373 return true; 2374 } 2375 2376 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, 2377 const unsigned long end) 2378 { 2379 struct acpi_madt_generic_interrupt *gicc = 2380 (struct acpi_madt_generic_interrupt *)header; 2381 int maint_irq_mode; 2382 static int first_madt = true; 2383 2384 /* Skip unusable CPUs */ 2385 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2386 return 0; 2387 2388 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 2389 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 2390 2391 if (first_madt) { 2392 first_madt = false; 2393 2394 acpi_data.maint_irq = gicc->vgic_interrupt; 2395 acpi_data.maint_irq_mode = maint_irq_mode; 2396 acpi_data.vcpu_base = gicc->gicv_base_address; 2397 2398 return 0; 2399 } 2400 2401 /* 2402 * The maintenance interrupt and GICV should be the same for every CPU 2403 */ 2404 if ((acpi_data.maint_irq != gicc->vgic_interrupt) || 2405 (acpi_data.maint_irq_mode != maint_irq_mode) || 2406 (acpi_data.vcpu_base != gicc->gicv_base_address)) 2407 return -EINVAL; 2408 2409 return 0; 2410 } 2411 2412 static bool __init gic_acpi_collect_virt_info(void) 2413 { 2414 int count; 2415 2416 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2417 gic_acpi_parse_virt_madt_gicc, 0); 2418 2419 return (count > 0); 2420 } 2421 2422 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) 2423 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 2424 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 2425 2426 static void __init gic_acpi_setup_kvm_info(void) 2427 { 2428 int irq; 2429 2430 if (!gic_acpi_collect_virt_info()) { 2431 pr_warn("Unable to get hardware information used for virtualization\n"); 2432 return; 2433 } 2434 2435 gic_v3_kvm_info.type = GIC_V3; 2436 2437 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 2438 acpi_data.maint_irq_mode, 2439 ACPI_ACTIVE_HIGH); 2440 if (irq <= 0) 2441 return; 2442 2443 gic_v3_kvm_info.maint_irq = irq; 2444 2445 if (acpi_data.vcpu_base) { 2446 struct resource *vcpu = &gic_v3_kvm_info.vcpu; 2447 2448 vcpu->flags = IORESOURCE_MEM; 2449 vcpu->start = acpi_data.vcpu_base; 2450 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 2451 } 2452 2453 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2454 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2455 vgic_set_kvm_info(&gic_v3_kvm_info); 2456 } 2457 2458 static struct fwnode_handle *gsi_domain_handle; 2459 2460 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) 2461 { 2462 return gsi_domain_handle; 2463 } 2464 2465 static int __init 2466 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) 2467 { 2468 struct acpi_madt_generic_distributor *dist; 2469 size_t size; 2470 int i, err; 2471 2472 /* Get distributor base address */ 2473 dist = (struct acpi_madt_generic_distributor *)header; 2474 acpi_data.dist_base = ioremap(dist->base_address, 2475 ACPI_GICV3_DIST_MEM_SIZE); 2476 if (!acpi_data.dist_base) { 2477 pr_err("Unable to map GICD registers\n"); 2478 return -ENOMEM; 2479 } 2480 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); 2481 2482 err = gic_validate_dist_version(acpi_data.dist_base); 2483 if (err) { 2484 pr_err("No distributor detected at @%p, giving up\n", 2485 acpi_data.dist_base); 2486 goto out_dist_unmap; 2487 } 2488 2489 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; 2490 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); 2491 if (!acpi_data.redist_regs) { 2492 err = -ENOMEM; 2493 goto out_dist_unmap; 2494 } 2495 2496 err = gic_acpi_collect_gicr_base(); 2497 if (err) 2498 goto out_redist_unmap; 2499 2500 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 2501 if (!gsi_domain_handle) { 2502 err = -ENOMEM; 2503 goto out_redist_unmap; 2504 } 2505 2506 err = gic_init_bases(dist->base_address, acpi_data.dist_base, 2507 acpi_data.redist_regs, acpi_data.nr_redist_regions, 2508 0, gsi_domain_handle); 2509 if (err) 2510 goto out_fwhandle_free; 2511 2512 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); 2513 2514 if (static_branch_likely(&supports_deactivate_key)) 2515 gic_acpi_setup_kvm_info(); 2516 2517 return 0; 2518 2519 out_fwhandle_free: 2520 irq_domain_free_fwnode(gsi_domain_handle); 2521 out_redist_unmap: 2522 for (i = 0; i < acpi_data.nr_redist_regions; i++) 2523 if (acpi_data.redist_regs[i].redist_base) 2524 iounmap(acpi_data.redist_regs[i].redist_base); 2525 kfree(acpi_data.redist_regs); 2526 out_dist_unmap: 2527 iounmap(acpi_data.dist_base); 2528 return err; 2529 } 2530 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2531 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, 2532 gic_acpi_init); 2533 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2534 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, 2535 gic_acpi_init); 2536 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2537 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, 2538 gic_acpi_init); 2539 #endif 2540