xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <linux/bitfield.h>
28 #include <linux/bits.h>
29 #include <linux/arm-smccc.h>
30 
31 #include <asm/cputype.h>
32 #include <asm/exception.h>
33 #include <asm/smp_plat.h>
34 #include <asm/virt.h>
35 
36 #include "irq-gic-common.h"
37 
38 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39 
40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42 
43 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
44 
45 struct redist_region {
46 	void __iomem		*redist_base;
47 	phys_addr_t		phys_base;
48 	bool			single_redist;
49 };
50 
51 struct gic_chip_data {
52 	struct fwnode_handle	*fwnode;
53 	phys_addr_t		dist_phys_base;
54 	void __iomem		*dist_base;
55 	struct redist_region	*redist_regions;
56 	struct rdists		rdists;
57 	struct irq_domain	*domain;
58 	u64			redist_stride;
59 	u32			nr_redist_regions;
60 	u64			flags;
61 	bool			has_rss;
62 	unsigned int		ppi_nr;
63 	struct partition_desc	**ppi_descs;
64 };
65 
66 #define T241_CHIPS_MAX		4
67 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
68 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
69 
70 static struct gic_chip_data gic_data __read_mostly;
71 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
72 
73 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
74 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
75 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
76 
77 /*
78  * The behaviours of RPR and PMR registers differ depending on the value of
79  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
80  * distributor and redistributors depends on whether security is enabled in the
81  * GIC.
82  *
83  * When security is enabled, non-secure priority values from the (re)distributor
84  * are presented to the GIC CPUIF as follow:
85  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
86  *
87  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
88  * EL1 are subject to a similar operation thus matching the priorities presented
89  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
90  * these values are unchanged by the GIC.
91  *
92  * see GICv3/GICv4 Architecture Specification (IHI0069D):
93  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
94  *   priorities.
95  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
96  *   interrupt.
97  */
98 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)					\
116 	({								\
117 		u32 __priority = (priority);				\
118 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
119 			__priority = 0x80 | (__priority >> 1);		\
120 									\
121 		__priority;						\
122 	})
123 
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126 
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129 
130 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
134 
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE	0xf0
137 
138 enum gic_intid_range {
139 	SGI_RANGE,
140 	PPI_RANGE,
141 	SPI_RANGE,
142 	EPPI_RANGE,
143 	ESPI_RANGE,
144 	LPI_RANGE,
145 	__INVALID_RANGE__
146 };
147 
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 	switch (hwirq) {
151 	case 0 ... 15:
152 		return SGI_RANGE;
153 	case 16 ... 31:
154 		return PPI_RANGE;
155 	case 32 ... 1019:
156 		return SPI_RANGE;
157 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 		return EPPI_RANGE;
159 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 		return ESPI_RANGE;
161 	case 8192 ... GENMASK(23, 0):
162 		return LPI_RANGE;
163 	default:
164 		return __INVALID_RANGE__;
165 	}
166 }
167 
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 	return __get_intid_range(d->hwirq);
171 }
172 
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 	return d->hwirq;
176 }
177 
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 	switch (get_intid_range(d)) {
181 	case SGI_RANGE:
182 	case PPI_RANGE:
183 	case EPPI_RANGE:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
191 {
192 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
193 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
194 		u32 chip;
195 
196 		/*
197 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
198 		 * registers are directed to the chip that owns the SPI. The
199 		 * the alias region can also be used for writes to the
200 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
201 		 * for 320 {E}SPIs. Mappings for all 4 chips:
202 		 *    Chip0 = 32-351
203 		 *    Chip1 = 352-671
204 		 *    Chip2 = 672-991
205 		 *    Chip3 = 4096-4415
206 		 */
207 		switch (__get_intid_range(hwirq)) {
208 		case SPI_RANGE:
209 			chip = (hwirq - 32) / 320;
210 			break;
211 		case ESPI_RANGE:
212 			chip = 3;
213 			break;
214 		default:
215 			unreachable();
216 		}
217 		return t241_dist_base_alias[chip];
218 	}
219 
220 	return gic_data.dist_base;
221 }
222 
223 static inline void __iomem *gic_dist_base(struct irq_data *d)
224 {
225 	switch (get_intid_range(d)) {
226 	case SGI_RANGE:
227 	case PPI_RANGE:
228 	case EPPI_RANGE:
229 		/* SGI+PPI -> SGI_base for this CPU */
230 		return gic_data_rdist_sgi_base();
231 
232 	case SPI_RANGE:
233 	case ESPI_RANGE:
234 		/* SPI -> dist_base */
235 		return gic_data.dist_base;
236 
237 	default:
238 		return NULL;
239 	}
240 }
241 
242 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
243 {
244 	u32 count = 1000000;	/* 1s! */
245 
246 	while (readl_relaxed(base + GICD_CTLR) & bit) {
247 		count--;
248 		if (!count) {
249 			pr_err_ratelimited("RWP timeout, gone fishing\n");
250 			return;
251 		}
252 		cpu_relax();
253 		udelay(1);
254 	}
255 }
256 
257 /* Wait for completion of a distributor change */
258 static void gic_dist_wait_for_rwp(void)
259 {
260 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
261 }
262 
263 /* Wait for completion of a redistributor change */
264 static void gic_redist_wait_for_rwp(void)
265 {
266 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
267 }
268 
269 #ifdef CONFIG_ARM64
270 
271 static u64 __maybe_unused gic_read_iar(void)
272 {
273 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
274 		return gic_read_iar_cavium_thunderx();
275 	else
276 		return gic_read_iar_common();
277 }
278 #endif
279 
280 static void gic_enable_redist(bool enable)
281 {
282 	void __iomem *rbase;
283 	u32 count = 1000000;	/* 1s! */
284 	u32 val;
285 
286 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
287 		return;
288 
289 	rbase = gic_data_rdist_rd_base();
290 
291 	val = readl_relaxed(rbase + GICR_WAKER);
292 	if (enable)
293 		/* Wake up this CPU redistributor */
294 		val &= ~GICR_WAKER_ProcessorSleep;
295 	else
296 		val |= GICR_WAKER_ProcessorSleep;
297 	writel_relaxed(val, rbase + GICR_WAKER);
298 
299 	if (!enable) {		/* Check that GICR_WAKER is writeable */
300 		val = readl_relaxed(rbase + GICR_WAKER);
301 		if (!(val & GICR_WAKER_ProcessorSleep))
302 			return;	/* No PM support in this redistributor */
303 	}
304 
305 	while (--count) {
306 		val = readl_relaxed(rbase + GICR_WAKER);
307 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
308 			break;
309 		cpu_relax();
310 		udelay(1);
311 	}
312 	if (!count)
313 		pr_err_ratelimited("redistributor failed to %s...\n",
314 				   enable ? "wakeup" : "sleep");
315 }
316 
317 /*
318  * Routines to disable, enable, EOI and route interrupts
319  */
320 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
321 {
322 	switch (get_intid_range(d)) {
323 	case SGI_RANGE:
324 	case PPI_RANGE:
325 	case SPI_RANGE:
326 		*index = d->hwirq;
327 		return offset;
328 	case EPPI_RANGE:
329 		/*
330 		 * Contrary to the ESPI range, the EPPI range is contiguous
331 		 * to the PPI range in the registers, so let's adjust the
332 		 * displacement accordingly. Consistency is overrated.
333 		 */
334 		*index = d->hwirq - EPPI_BASE_INTID + 32;
335 		return offset;
336 	case ESPI_RANGE:
337 		*index = d->hwirq - ESPI_BASE_INTID;
338 		switch (offset) {
339 		case GICD_ISENABLER:
340 			return GICD_ISENABLERnE;
341 		case GICD_ICENABLER:
342 			return GICD_ICENABLERnE;
343 		case GICD_ISPENDR:
344 			return GICD_ISPENDRnE;
345 		case GICD_ICPENDR:
346 			return GICD_ICPENDRnE;
347 		case GICD_ISACTIVER:
348 			return GICD_ISACTIVERnE;
349 		case GICD_ICACTIVER:
350 			return GICD_ICACTIVERnE;
351 		case GICD_IPRIORITYR:
352 			return GICD_IPRIORITYRnE;
353 		case GICD_ICFGR:
354 			return GICD_ICFGRnE;
355 		case GICD_IROUTER:
356 			return GICD_IROUTERnE;
357 		default:
358 			break;
359 		}
360 		break;
361 	default:
362 		break;
363 	}
364 
365 	WARN_ON(1);
366 	*index = d->hwirq;
367 	return offset;
368 }
369 
370 static int gic_peek_irq(struct irq_data *d, u32 offset)
371 {
372 	void __iomem *base;
373 	u32 index, mask;
374 
375 	offset = convert_offset_index(d, offset, &index);
376 	mask = 1 << (index % 32);
377 
378 	if (gic_irq_in_rdist(d))
379 		base = gic_data_rdist_sgi_base();
380 	else
381 		base = gic_dist_base_alias(d);
382 
383 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
384 }
385 
386 static void gic_poke_irq(struct irq_data *d, u32 offset)
387 {
388 	void __iomem *base;
389 	u32 index, mask;
390 
391 	offset = convert_offset_index(d, offset, &index);
392 	mask = 1 << (index % 32);
393 
394 	if (gic_irq_in_rdist(d))
395 		base = gic_data_rdist_sgi_base();
396 	else
397 		base = gic_data.dist_base;
398 
399 	writel_relaxed(mask, base + offset + (index / 32) * 4);
400 }
401 
402 static void gic_mask_irq(struct irq_data *d)
403 {
404 	gic_poke_irq(d, GICD_ICENABLER);
405 	if (gic_irq_in_rdist(d))
406 		gic_redist_wait_for_rwp();
407 	else
408 		gic_dist_wait_for_rwp();
409 }
410 
411 static void gic_eoimode1_mask_irq(struct irq_data *d)
412 {
413 	gic_mask_irq(d);
414 	/*
415 	 * When masking a forwarded interrupt, make sure it is
416 	 * deactivated as well.
417 	 *
418 	 * This ensures that an interrupt that is getting
419 	 * disabled/masked will not get "stuck", because there is
420 	 * noone to deactivate it (guest is being terminated).
421 	 */
422 	if (irqd_is_forwarded_to_vcpu(d))
423 		gic_poke_irq(d, GICD_ICACTIVER);
424 }
425 
426 static void gic_unmask_irq(struct irq_data *d)
427 {
428 	gic_poke_irq(d, GICD_ISENABLER);
429 }
430 
431 static inline bool gic_supports_nmi(void)
432 {
433 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
434 	       static_branch_likely(&supports_pseudo_nmis);
435 }
436 
437 static int gic_irq_set_irqchip_state(struct irq_data *d,
438 				     enum irqchip_irq_state which, bool val)
439 {
440 	u32 reg;
441 
442 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
443 		return -EINVAL;
444 
445 	switch (which) {
446 	case IRQCHIP_STATE_PENDING:
447 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
448 		break;
449 
450 	case IRQCHIP_STATE_ACTIVE:
451 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
452 		break;
453 
454 	case IRQCHIP_STATE_MASKED:
455 		if (val) {
456 			gic_mask_irq(d);
457 			return 0;
458 		}
459 		reg = GICD_ISENABLER;
460 		break;
461 
462 	default:
463 		return -EINVAL;
464 	}
465 
466 	gic_poke_irq(d, reg);
467 	return 0;
468 }
469 
470 static int gic_irq_get_irqchip_state(struct irq_data *d,
471 				     enum irqchip_irq_state which, bool *val)
472 {
473 	if (d->hwirq >= 8192) /* PPI/SPI only */
474 		return -EINVAL;
475 
476 	switch (which) {
477 	case IRQCHIP_STATE_PENDING:
478 		*val = gic_peek_irq(d, GICD_ISPENDR);
479 		break;
480 
481 	case IRQCHIP_STATE_ACTIVE:
482 		*val = gic_peek_irq(d, GICD_ISACTIVER);
483 		break;
484 
485 	case IRQCHIP_STATE_MASKED:
486 		*val = !gic_peek_irq(d, GICD_ISENABLER);
487 		break;
488 
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
497 {
498 	void __iomem *base = gic_dist_base(d);
499 	u32 offset, index;
500 
501 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
502 
503 	writeb_relaxed(prio, base + offset + index);
504 }
505 
506 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
507 {
508 	switch (__get_intid_range(hwirq)) {
509 	case PPI_RANGE:
510 		return hwirq - 16;
511 	case EPPI_RANGE:
512 		return hwirq - EPPI_BASE_INTID + 16;
513 	default:
514 		unreachable();
515 	}
516 }
517 
518 static u32 gic_get_ppi_index(struct irq_data *d)
519 {
520 	return __gic_get_ppi_index(d->hwirq);
521 }
522 
523 static int gic_irq_nmi_setup(struct irq_data *d)
524 {
525 	struct irq_desc *desc = irq_to_desc(d->irq);
526 
527 	if (!gic_supports_nmi())
528 		return -EINVAL;
529 
530 	if (gic_peek_irq(d, GICD_ISENABLER)) {
531 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
532 		return -EINVAL;
533 	}
534 
535 	/*
536 	 * A secondary irq_chip should be in charge of LPI request,
537 	 * it should not be possible to get there
538 	 */
539 	if (WARN_ON(gic_irq(d) >= 8192))
540 		return -EINVAL;
541 
542 	/* desc lock should already be held */
543 	if (gic_irq_in_rdist(d)) {
544 		u32 idx = gic_get_ppi_index(d);
545 
546 		/* Setting up PPI as NMI, only switch handler for first NMI */
547 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
548 			refcount_set(&ppi_nmi_refs[idx], 1);
549 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
550 		}
551 	} else {
552 		desc->handle_irq = handle_fasteoi_nmi;
553 	}
554 
555 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
556 
557 	return 0;
558 }
559 
560 static void gic_irq_nmi_teardown(struct irq_data *d)
561 {
562 	struct irq_desc *desc = irq_to_desc(d->irq);
563 
564 	if (WARN_ON(!gic_supports_nmi()))
565 		return;
566 
567 	if (gic_peek_irq(d, GICD_ISENABLER)) {
568 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
569 		return;
570 	}
571 
572 	/*
573 	 * A secondary irq_chip should be in charge of LPI request,
574 	 * it should not be possible to get there
575 	 */
576 	if (WARN_ON(gic_irq(d) >= 8192))
577 		return;
578 
579 	/* desc lock should already be held */
580 	if (gic_irq_in_rdist(d)) {
581 		u32 idx = gic_get_ppi_index(d);
582 
583 		/* Tearing down NMI, only switch handler for last NMI */
584 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
585 			desc->handle_irq = handle_percpu_devid_irq;
586 	} else {
587 		desc->handle_irq = handle_fasteoi_irq;
588 	}
589 
590 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
591 }
592 
593 static void gic_eoi_irq(struct irq_data *d)
594 {
595 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
596 	isb();
597 }
598 
599 static void gic_eoimode1_eoi_irq(struct irq_data *d)
600 {
601 	/*
602 	 * No need to deactivate an LPI, or an interrupt that
603 	 * is is getting forwarded to a vcpu.
604 	 */
605 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
606 		return;
607 	gic_write_dir(gic_irq(d));
608 }
609 
610 static int gic_set_type(struct irq_data *d, unsigned int type)
611 {
612 	enum gic_intid_range range;
613 	unsigned int irq = gic_irq(d);
614 	void __iomem *base;
615 	u32 offset, index;
616 	int ret;
617 
618 	range = get_intid_range(d);
619 
620 	/* Interrupt configuration for SGIs can't be changed */
621 	if (range == SGI_RANGE)
622 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
623 
624 	/* SPIs have restrictions on the supported types */
625 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
626 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
627 		return -EINVAL;
628 
629 	if (gic_irq_in_rdist(d))
630 		base = gic_data_rdist_sgi_base();
631 	else
632 		base = gic_dist_base_alias(d);
633 
634 	offset = convert_offset_index(d, GICD_ICFGR, &index);
635 
636 	ret = gic_configure_irq(index, type, base + offset, NULL);
637 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
638 		/* Misconfigured PPIs are usually not fatal */
639 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
640 		ret = 0;
641 	}
642 
643 	return ret;
644 }
645 
646 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
647 {
648 	if (get_intid_range(d) == SGI_RANGE)
649 		return -EINVAL;
650 
651 	if (vcpu)
652 		irqd_set_forwarded_to_vcpu(d);
653 	else
654 		irqd_clr_forwarded_to_vcpu(d);
655 	return 0;
656 }
657 
658 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
659 {
660 	u64 aff;
661 
662 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
663 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
664 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
665 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
666 
667 	return aff;
668 }
669 
670 static void gic_deactivate_unhandled(u32 irqnr)
671 {
672 	if (static_branch_likely(&supports_deactivate_key)) {
673 		if (irqnr < 8192)
674 			gic_write_dir(irqnr);
675 	} else {
676 		write_gicreg(irqnr, ICC_EOIR1_EL1);
677 		isb();
678 	}
679 }
680 
681 /*
682  * Follow a read of the IAR with any HW maintenance that needs to happen prior
683  * to invoking the relevant IRQ handler. We must do two things:
684  *
685  * (1) Ensure instruction ordering between a read of IAR and subsequent
686  *     instructions in the IRQ handler using an ISB.
687  *
688  *     It is possible for the IAR to report an IRQ which was signalled *after*
689  *     the CPU took an IRQ exception as multiple interrupts can race to be
690  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
691  *     later interrupts could be prioritized by the GIC.
692  *
693  *     For devices which are tightly coupled to the CPU, such as PMUs, a
694  *     context synchronization event is necessary to ensure that system
695  *     register state is not stale, as these may have been indirectly written
696  *     *after* exception entry.
697  *
698  * (2) Deactivate the interrupt when EOI mode 1 is in use.
699  */
700 static inline void gic_complete_ack(u32 irqnr)
701 {
702 	if (static_branch_likely(&supports_deactivate_key))
703 		write_gicreg(irqnr, ICC_EOIR1_EL1);
704 
705 	isb();
706 }
707 
708 static bool gic_rpr_is_nmi_prio(void)
709 {
710 	if (!gic_supports_nmi())
711 		return false;
712 
713 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
714 }
715 
716 static bool gic_irqnr_is_special(u32 irqnr)
717 {
718 	return irqnr >= 1020 && irqnr <= 1023;
719 }
720 
721 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
722 {
723 	if (gic_irqnr_is_special(irqnr))
724 		return;
725 
726 	gic_complete_ack(irqnr);
727 
728 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
729 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
730 		gic_deactivate_unhandled(irqnr);
731 	}
732 }
733 
734 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
735 {
736 	if (gic_irqnr_is_special(irqnr))
737 		return;
738 
739 	gic_complete_ack(irqnr);
740 
741 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
742 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
743 		gic_deactivate_unhandled(irqnr);
744 	}
745 }
746 
747 /*
748  * An exception has been taken from a context with IRQs enabled, and this could
749  * be an IRQ or an NMI.
750  *
751  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
752  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
753  * after handling any NMI but before handling any IRQ.
754  *
755  * The entry code has performed IRQ entry, and if an NMI is detected we must
756  * perform NMI entry/exit around invoking the handler.
757  */
758 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
759 {
760 	bool is_nmi;
761 	u32 irqnr;
762 
763 	irqnr = gic_read_iar();
764 
765 	is_nmi = gic_rpr_is_nmi_prio();
766 
767 	if (is_nmi) {
768 		nmi_enter();
769 		__gic_handle_nmi(irqnr, regs);
770 		nmi_exit();
771 	}
772 
773 	if (gic_prio_masking_enabled()) {
774 		gic_pmr_mask_irqs();
775 		gic_arch_enable_irqs();
776 	}
777 
778 	if (!is_nmi)
779 		__gic_handle_irq(irqnr, regs);
780 }
781 
782 /*
783  * An exception has been taken from a context with IRQs disabled, which can only
784  * be an NMI.
785  *
786  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
787  * DAIF.IF (and ICC_PMR_EL1) unchanged.
788  *
789  * The entry code has performed NMI entry.
790  */
791 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
792 {
793 	u64 pmr;
794 	u32 irqnr;
795 
796 	/*
797 	 * We were in a context with IRQs disabled. However, the
798 	 * entry code has set PMR to a value that allows any
799 	 * interrupt to be acknowledged, and not just NMIs. This can
800 	 * lead to surprising effects if the NMI has been retired in
801 	 * the meantime, and that there is an IRQ pending. The IRQ
802 	 * would then be taken in NMI context, something that nobody
803 	 * wants to debug twice.
804 	 *
805 	 * Until we sort this, drop PMR again to a level that will
806 	 * actually only allow NMIs before reading IAR, and then
807 	 * restore it to what it was.
808 	 */
809 	pmr = gic_read_pmr();
810 	gic_pmr_mask_irqs();
811 	isb();
812 	irqnr = gic_read_iar();
813 	gic_write_pmr(pmr);
814 
815 	__gic_handle_nmi(irqnr, regs);
816 }
817 
818 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
819 {
820 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
821 		__gic_handle_irq_from_irqsoff(regs);
822 	else
823 		__gic_handle_irq_from_irqson(regs);
824 }
825 
826 static u32 gic_get_pribits(void)
827 {
828 	u32 pribits;
829 
830 	pribits = gic_read_ctlr();
831 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
832 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
833 	pribits++;
834 
835 	return pribits;
836 }
837 
838 static bool gic_has_group0(void)
839 {
840 	u32 val;
841 	u32 old_pmr;
842 
843 	old_pmr = gic_read_pmr();
844 
845 	/*
846 	 * Let's find out if Group0 is under control of EL3 or not by
847 	 * setting the highest possible, non-zero priority in PMR.
848 	 *
849 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
850 	 * order for the CPU interface to set bit 7, and keep the
851 	 * actual priority in the non-secure range. In the process, it
852 	 * looses the least significant bit and the actual priority
853 	 * becomes 0x80. Reading it back returns 0, indicating that
854 	 * we're don't have access to Group0.
855 	 */
856 	gic_write_pmr(BIT(8 - gic_get_pribits()));
857 	val = gic_read_pmr();
858 
859 	gic_write_pmr(old_pmr);
860 
861 	return val != 0;
862 }
863 
864 static void __init gic_dist_init(void)
865 {
866 	unsigned int i;
867 	u64 affinity;
868 	void __iomem *base = gic_data.dist_base;
869 	u32 val;
870 
871 	/* Disable the distributor */
872 	writel_relaxed(0, base + GICD_CTLR);
873 	gic_dist_wait_for_rwp();
874 
875 	/*
876 	 * Configure SPIs as non-secure Group-1. This will only matter
877 	 * if the GIC only has a single security state. This will not
878 	 * do the right thing if the kernel is running in secure mode,
879 	 * but that's not the intended use case anyway.
880 	 */
881 	for (i = 32; i < GIC_LINE_NR; i += 32)
882 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
883 
884 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
885 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
886 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
887 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
888 	}
889 
890 	for (i = 0; i < GIC_ESPI_NR; i += 32)
891 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
892 
893 	for (i = 0; i < GIC_ESPI_NR; i += 16)
894 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
895 
896 	for (i = 0; i < GIC_ESPI_NR; i += 4)
897 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
898 
899 	/* Now do the common stuff */
900 	gic_dist_config(base, GIC_LINE_NR, NULL);
901 
902 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
903 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
904 		pr_info("Enabling SGIs without active state\n");
905 		val |= GICD_CTLR_nASSGIreq;
906 	}
907 
908 	/* Enable distributor with ARE, Group1, and wait for it to drain */
909 	writel_relaxed(val, base + GICD_CTLR);
910 	gic_dist_wait_for_rwp();
911 
912 	/*
913 	 * Set all global interrupts to the boot CPU only. ARE must be
914 	 * enabled.
915 	 */
916 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
917 	for (i = 32; i < GIC_LINE_NR; i++)
918 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
919 
920 	for (i = 0; i < GIC_ESPI_NR; i++)
921 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
922 }
923 
924 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
925 {
926 	int ret = -ENODEV;
927 	int i;
928 
929 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
930 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
931 		u64 typer;
932 		u32 reg;
933 
934 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
935 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
936 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
937 			pr_warn("No redistributor present @%p\n", ptr);
938 			break;
939 		}
940 
941 		do {
942 			typer = gic_read_typer(ptr + GICR_TYPER);
943 			ret = fn(gic_data.redist_regions + i, ptr);
944 			if (!ret)
945 				return 0;
946 
947 			if (gic_data.redist_regions[i].single_redist)
948 				break;
949 
950 			if (gic_data.redist_stride) {
951 				ptr += gic_data.redist_stride;
952 			} else {
953 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
954 				if (typer & GICR_TYPER_VLPIS)
955 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
956 			}
957 		} while (!(typer & GICR_TYPER_LAST));
958 	}
959 
960 	return ret ? -ENODEV : 0;
961 }
962 
963 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
964 {
965 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
966 	u64 typer;
967 	u32 aff;
968 
969 	/*
970 	 * Convert affinity to a 32bit value that can be matched to
971 	 * GICR_TYPER bits [63:32].
972 	 */
973 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
974 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
975 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
976 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
977 
978 	typer = gic_read_typer(ptr + GICR_TYPER);
979 	if ((typer >> 32) == aff) {
980 		u64 offset = ptr - region->redist_base;
981 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
982 		gic_data_rdist_rd_base() = ptr;
983 		gic_data_rdist()->phys_base = region->phys_base + offset;
984 
985 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
986 			smp_processor_id(), mpidr,
987 			(int)(region - gic_data.redist_regions),
988 			&gic_data_rdist()->phys_base);
989 		return 0;
990 	}
991 
992 	/* Try next one */
993 	return 1;
994 }
995 
996 static int gic_populate_rdist(void)
997 {
998 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
999 		return 0;
1000 
1001 	/* We couldn't even deal with ourselves... */
1002 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1003 	     smp_processor_id(),
1004 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1005 	return -ENODEV;
1006 }
1007 
1008 static int __gic_update_rdist_properties(struct redist_region *region,
1009 					 void __iomem *ptr)
1010 {
1011 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1012 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1013 
1014 	/* Boot-time cleanup */
1015 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1016 		u64 val;
1017 
1018 		/* Deactivate any present vPE */
1019 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1020 		if (val & GICR_VPENDBASER_Valid)
1021 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1022 					      ptr + SZ_128K + GICR_VPENDBASER);
1023 
1024 		/* Mark the VPE table as invalid */
1025 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1026 		val &= ~GICR_VPROPBASER_4_1_VALID;
1027 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1028 	}
1029 
1030 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1031 
1032 	/*
1033 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1034 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1035 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1036 	 *
1037 	 * These are 3 different ways to express the same thing, depending
1038 	 * on the revision of the architecture and its relaxations over
1039 	 * time. Just group them under the 'direct_lpi' banner.
1040 	 */
1041 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1042 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1043 					   !!(ctlr & GICR_CTLR_IR) |
1044 					   gic_data.rdists.has_rvpeid);
1045 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1046 
1047 	/* Detect non-sensical configurations */
1048 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1049 		gic_data.rdists.has_direct_lpi = false;
1050 		gic_data.rdists.has_vlpis = false;
1051 		gic_data.rdists.has_rvpeid = false;
1052 	}
1053 
1054 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1055 
1056 	return 1;
1057 }
1058 
1059 static void gic_update_rdist_properties(void)
1060 {
1061 	gic_data.ppi_nr = UINT_MAX;
1062 	gic_iterate_rdists(__gic_update_rdist_properties);
1063 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1064 		gic_data.ppi_nr = 0;
1065 	pr_info("GICv3 features: %d PPIs%s%s\n",
1066 		gic_data.ppi_nr,
1067 		gic_data.has_rss ? ", RSS" : "",
1068 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1069 
1070 	if (gic_data.rdists.has_vlpis)
1071 		pr_info("GICv4 features: %s%s%s\n",
1072 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1073 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1074 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1075 }
1076 
1077 /* Check whether it's single security state view */
1078 static inline bool gic_dist_security_disabled(void)
1079 {
1080 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1081 }
1082 
1083 static void gic_cpu_sys_reg_init(void)
1084 {
1085 	int i, cpu = smp_processor_id();
1086 	u64 mpidr = cpu_logical_map(cpu);
1087 	u64 need_rss = MPIDR_RS(mpidr);
1088 	bool group0;
1089 	u32 pribits;
1090 
1091 	/*
1092 	 * Need to check that the SRE bit has actually been set. If
1093 	 * not, it means that SRE is disabled at EL2. We're going to
1094 	 * die painfully, and there is nothing we can do about it.
1095 	 *
1096 	 * Kindly inform the luser.
1097 	 */
1098 	if (!gic_enable_sre())
1099 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1100 
1101 	pribits = gic_get_pribits();
1102 
1103 	group0 = gic_has_group0();
1104 
1105 	/* Set priority mask register */
1106 	if (!gic_prio_masking_enabled()) {
1107 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1108 	} else if (gic_supports_nmi()) {
1109 		/*
1110 		 * Mismatch configuration with boot CPU, the system is likely
1111 		 * to die as interrupt masking will not work properly on all
1112 		 * CPUs
1113 		 *
1114 		 * The boot CPU calls this function before enabling NMI support,
1115 		 * and as a result we'll never see this warning in the boot path
1116 		 * for that CPU.
1117 		 */
1118 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1119 			WARN_ON(!group0 || gic_dist_security_disabled());
1120 		else
1121 			WARN_ON(group0 && !gic_dist_security_disabled());
1122 	}
1123 
1124 	/*
1125 	 * Some firmwares hand over to the kernel with the BPR changed from
1126 	 * its reset value (and with a value large enough to prevent
1127 	 * any pre-emptive interrupts from working at all). Writing a zero
1128 	 * to BPR restores is reset value.
1129 	 */
1130 	gic_write_bpr1(0);
1131 
1132 	if (static_branch_likely(&supports_deactivate_key)) {
1133 		/* EOI drops priority only (mode 1) */
1134 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1135 	} else {
1136 		/* EOI deactivates interrupt too (mode 0) */
1137 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1138 	}
1139 
1140 	/* Always whack Group0 before Group1 */
1141 	if (group0) {
1142 		switch(pribits) {
1143 		case 8:
1144 		case 7:
1145 			write_gicreg(0, ICC_AP0R3_EL1);
1146 			write_gicreg(0, ICC_AP0R2_EL1);
1147 			fallthrough;
1148 		case 6:
1149 			write_gicreg(0, ICC_AP0R1_EL1);
1150 			fallthrough;
1151 		case 5:
1152 		case 4:
1153 			write_gicreg(0, ICC_AP0R0_EL1);
1154 		}
1155 
1156 		isb();
1157 	}
1158 
1159 	switch(pribits) {
1160 	case 8:
1161 	case 7:
1162 		write_gicreg(0, ICC_AP1R3_EL1);
1163 		write_gicreg(0, ICC_AP1R2_EL1);
1164 		fallthrough;
1165 	case 6:
1166 		write_gicreg(0, ICC_AP1R1_EL1);
1167 		fallthrough;
1168 	case 5:
1169 	case 4:
1170 		write_gicreg(0, ICC_AP1R0_EL1);
1171 	}
1172 
1173 	isb();
1174 
1175 	/* ... and let's hit the road... */
1176 	gic_write_grpen1(1);
1177 
1178 	/* Keep the RSS capability status in per_cpu variable */
1179 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1180 
1181 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1182 	for_each_online_cpu(i) {
1183 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1184 
1185 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1186 		if (need_rss && (!have_rss))
1187 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1188 				cpu, (unsigned long)mpidr,
1189 				i, (unsigned long)cpu_logical_map(i));
1190 	}
1191 
1192 	/**
1193 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1194 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1195 	 * UNPREDICTABLE choice of :
1196 	 *   - The write is ignored.
1197 	 *   - The RS field is treated as 0.
1198 	 */
1199 	if (need_rss && (!gic_data.has_rss))
1200 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1201 }
1202 
1203 static bool gicv3_nolpi;
1204 
1205 static int __init gicv3_nolpi_cfg(char *buf)
1206 {
1207 	return kstrtobool(buf, &gicv3_nolpi);
1208 }
1209 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1210 
1211 static int gic_dist_supports_lpis(void)
1212 {
1213 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1214 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1215 		!gicv3_nolpi);
1216 }
1217 
1218 static void gic_cpu_init(void)
1219 {
1220 	void __iomem *rbase;
1221 	int i;
1222 
1223 	/* Register ourselves with the rest of the world */
1224 	if (gic_populate_rdist())
1225 		return;
1226 
1227 	gic_enable_redist(true);
1228 
1229 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1230 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1231 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1232 	     smp_processor_id());
1233 
1234 	rbase = gic_data_rdist_sgi_base();
1235 
1236 	/* Configure SGIs/PPIs as non-secure Group-1 */
1237 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1238 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1239 
1240 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1241 
1242 	/* initialise system registers */
1243 	gic_cpu_sys_reg_init();
1244 }
1245 
1246 #ifdef CONFIG_SMP
1247 
1248 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1249 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1250 
1251 static int gic_starting_cpu(unsigned int cpu)
1252 {
1253 	gic_cpu_init();
1254 
1255 	if (gic_dist_supports_lpis())
1256 		its_cpu_init();
1257 
1258 	return 0;
1259 }
1260 
1261 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1262 				   unsigned long cluster_id)
1263 {
1264 	int next_cpu, cpu = *base_cpu;
1265 	unsigned long mpidr = cpu_logical_map(cpu);
1266 	u16 tlist = 0;
1267 
1268 	while (cpu < nr_cpu_ids) {
1269 		tlist |= 1 << (mpidr & 0xf);
1270 
1271 		next_cpu = cpumask_next(cpu, mask);
1272 		if (next_cpu >= nr_cpu_ids)
1273 			goto out;
1274 		cpu = next_cpu;
1275 
1276 		mpidr = cpu_logical_map(cpu);
1277 
1278 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1279 			cpu--;
1280 			goto out;
1281 		}
1282 	}
1283 out:
1284 	*base_cpu = cpu;
1285 	return tlist;
1286 }
1287 
1288 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1289 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1290 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1291 
1292 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1293 {
1294 	u64 val;
1295 
1296 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1297 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1298 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1299 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1300 	       MPIDR_TO_SGI_RS(cluster_id)		|
1301 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1302 
1303 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1304 	gic_write_sgi1r(val);
1305 }
1306 
1307 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1308 {
1309 	int cpu;
1310 
1311 	if (WARN_ON(d->hwirq >= 16))
1312 		return;
1313 
1314 	/*
1315 	 * Ensure that stores to Normal memory are visible to the
1316 	 * other CPUs before issuing the IPI.
1317 	 */
1318 	dsb(ishst);
1319 
1320 	for_each_cpu(cpu, mask) {
1321 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1322 		u16 tlist;
1323 
1324 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1325 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1326 	}
1327 
1328 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1329 	isb();
1330 }
1331 
1332 static void __init gic_smp_init(void)
1333 {
1334 	struct irq_fwspec sgi_fwspec = {
1335 		.fwnode		= gic_data.fwnode,
1336 		.param_count	= 1,
1337 	};
1338 	int base_sgi;
1339 
1340 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1341 				  "irqchip/arm/gicv3:starting",
1342 				  gic_starting_cpu, NULL);
1343 
1344 	/* Register all 8 non-secure SGIs */
1345 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1346 	if (WARN_ON(base_sgi <= 0))
1347 		return;
1348 
1349 	set_smp_ipi_range(base_sgi, 8);
1350 }
1351 
1352 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1353 			    bool force)
1354 {
1355 	unsigned int cpu;
1356 	u32 offset, index;
1357 	void __iomem *reg;
1358 	int enabled;
1359 	u64 val;
1360 
1361 	if (force)
1362 		cpu = cpumask_first(mask_val);
1363 	else
1364 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1365 
1366 	if (cpu >= nr_cpu_ids)
1367 		return -EINVAL;
1368 
1369 	if (gic_irq_in_rdist(d))
1370 		return -EINVAL;
1371 
1372 	/* If interrupt was enabled, disable it first */
1373 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1374 	if (enabled)
1375 		gic_mask_irq(d);
1376 
1377 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1378 	reg = gic_dist_base(d) + offset + (index * 8);
1379 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1380 
1381 	gic_write_irouter(val, reg);
1382 
1383 	/*
1384 	 * If the interrupt was enabled, enabled it again. Otherwise,
1385 	 * just wait for the distributor to have digested our changes.
1386 	 */
1387 	if (enabled)
1388 		gic_unmask_irq(d);
1389 
1390 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1391 
1392 	return IRQ_SET_MASK_OK_DONE;
1393 }
1394 #else
1395 #define gic_set_affinity	NULL
1396 #define gic_ipi_send_mask	NULL
1397 #define gic_smp_init()		do { } while(0)
1398 #endif
1399 
1400 static int gic_retrigger(struct irq_data *data)
1401 {
1402 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1403 }
1404 
1405 #ifdef CONFIG_CPU_PM
1406 static int gic_cpu_pm_notifier(struct notifier_block *self,
1407 			       unsigned long cmd, void *v)
1408 {
1409 	if (cmd == CPU_PM_EXIT) {
1410 		if (gic_dist_security_disabled())
1411 			gic_enable_redist(true);
1412 		gic_cpu_sys_reg_init();
1413 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1414 		gic_write_grpen1(0);
1415 		gic_enable_redist(false);
1416 	}
1417 	return NOTIFY_OK;
1418 }
1419 
1420 static struct notifier_block gic_cpu_pm_notifier_block = {
1421 	.notifier_call = gic_cpu_pm_notifier,
1422 };
1423 
1424 static void gic_cpu_pm_init(void)
1425 {
1426 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1427 }
1428 
1429 #else
1430 static inline void gic_cpu_pm_init(void) { }
1431 #endif /* CONFIG_CPU_PM */
1432 
1433 static struct irq_chip gic_chip = {
1434 	.name			= "GICv3",
1435 	.irq_mask		= gic_mask_irq,
1436 	.irq_unmask		= gic_unmask_irq,
1437 	.irq_eoi		= gic_eoi_irq,
1438 	.irq_set_type		= gic_set_type,
1439 	.irq_set_affinity	= gic_set_affinity,
1440 	.irq_retrigger          = gic_retrigger,
1441 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1442 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1443 	.irq_nmi_setup		= gic_irq_nmi_setup,
1444 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1445 	.ipi_send_mask		= gic_ipi_send_mask,
1446 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1447 				  IRQCHIP_SKIP_SET_WAKE |
1448 				  IRQCHIP_MASK_ON_SUSPEND,
1449 };
1450 
1451 static struct irq_chip gic_eoimode1_chip = {
1452 	.name			= "GICv3",
1453 	.irq_mask		= gic_eoimode1_mask_irq,
1454 	.irq_unmask		= gic_unmask_irq,
1455 	.irq_eoi		= gic_eoimode1_eoi_irq,
1456 	.irq_set_type		= gic_set_type,
1457 	.irq_set_affinity	= gic_set_affinity,
1458 	.irq_retrigger          = gic_retrigger,
1459 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1460 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1461 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1462 	.irq_nmi_setup		= gic_irq_nmi_setup,
1463 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1464 	.ipi_send_mask		= gic_ipi_send_mask,
1465 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1466 				  IRQCHIP_SKIP_SET_WAKE |
1467 				  IRQCHIP_MASK_ON_SUSPEND,
1468 };
1469 
1470 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1471 			      irq_hw_number_t hw)
1472 {
1473 	struct irq_chip *chip = &gic_chip;
1474 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1475 
1476 	if (static_branch_likely(&supports_deactivate_key))
1477 		chip = &gic_eoimode1_chip;
1478 
1479 	switch (__get_intid_range(hw)) {
1480 	case SGI_RANGE:
1481 	case PPI_RANGE:
1482 	case EPPI_RANGE:
1483 		irq_set_percpu_devid(irq);
1484 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1485 				    handle_percpu_devid_irq, NULL, NULL);
1486 		break;
1487 
1488 	case SPI_RANGE:
1489 	case ESPI_RANGE:
1490 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1491 				    handle_fasteoi_irq, NULL, NULL);
1492 		irq_set_probe(irq);
1493 		irqd_set_single_target(irqd);
1494 		break;
1495 
1496 	case LPI_RANGE:
1497 		if (!gic_dist_supports_lpis())
1498 			return -EPERM;
1499 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1500 				    handle_fasteoi_irq, NULL, NULL);
1501 		break;
1502 
1503 	default:
1504 		return -EPERM;
1505 	}
1506 
1507 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1508 	irqd_set_handle_enforce_irqctx(irqd);
1509 	return 0;
1510 }
1511 
1512 static int gic_irq_domain_translate(struct irq_domain *d,
1513 				    struct irq_fwspec *fwspec,
1514 				    unsigned long *hwirq,
1515 				    unsigned int *type)
1516 {
1517 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1518 		*hwirq = fwspec->param[0];
1519 		*type = IRQ_TYPE_EDGE_RISING;
1520 		return 0;
1521 	}
1522 
1523 	if (is_of_node(fwspec->fwnode)) {
1524 		if (fwspec->param_count < 3)
1525 			return -EINVAL;
1526 
1527 		switch (fwspec->param[0]) {
1528 		case 0:			/* SPI */
1529 			*hwirq = fwspec->param[1] + 32;
1530 			break;
1531 		case 1:			/* PPI */
1532 			*hwirq = fwspec->param[1] + 16;
1533 			break;
1534 		case 2:			/* ESPI */
1535 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1536 			break;
1537 		case 3:			/* EPPI */
1538 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1539 			break;
1540 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1541 			*hwirq = fwspec->param[1];
1542 			break;
1543 		case GIC_IRQ_TYPE_PARTITION:
1544 			*hwirq = fwspec->param[1];
1545 			if (fwspec->param[1] >= 16)
1546 				*hwirq += EPPI_BASE_INTID - 16;
1547 			else
1548 				*hwirq += 16;
1549 			break;
1550 		default:
1551 			return -EINVAL;
1552 		}
1553 
1554 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1555 
1556 		/*
1557 		 * Make it clear that broken DTs are... broken.
1558 		 * Partitioned PPIs are an unfortunate exception.
1559 		 */
1560 		WARN_ON(*type == IRQ_TYPE_NONE &&
1561 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1562 		return 0;
1563 	}
1564 
1565 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1566 		if(fwspec->param_count != 2)
1567 			return -EINVAL;
1568 
1569 		if (fwspec->param[0] < 16) {
1570 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1571 			       fwspec->param[0]);
1572 			return -EINVAL;
1573 		}
1574 
1575 		*hwirq = fwspec->param[0];
1576 		*type = fwspec->param[1];
1577 
1578 		WARN_ON(*type == IRQ_TYPE_NONE);
1579 		return 0;
1580 	}
1581 
1582 	return -EINVAL;
1583 }
1584 
1585 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1586 				unsigned int nr_irqs, void *arg)
1587 {
1588 	int i, ret;
1589 	irq_hw_number_t hwirq;
1590 	unsigned int type = IRQ_TYPE_NONE;
1591 	struct irq_fwspec *fwspec = arg;
1592 
1593 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1594 	if (ret)
1595 		return ret;
1596 
1597 	for (i = 0; i < nr_irqs; i++) {
1598 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1599 		if (ret)
1600 			return ret;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1607 				unsigned int nr_irqs)
1608 {
1609 	int i;
1610 
1611 	for (i = 0; i < nr_irqs; i++) {
1612 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1613 		irq_set_handler(virq + i, NULL);
1614 		irq_domain_reset_irq_data(d);
1615 	}
1616 }
1617 
1618 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1619 				      irq_hw_number_t hwirq)
1620 {
1621 	enum gic_intid_range range;
1622 
1623 	if (!gic_data.ppi_descs)
1624 		return false;
1625 
1626 	if (!is_of_node(fwspec->fwnode))
1627 		return false;
1628 
1629 	if (fwspec->param_count < 4 || !fwspec->param[3])
1630 		return false;
1631 
1632 	range = __get_intid_range(hwirq);
1633 	if (range != PPI_RANGE && range != EPPI_RANGE)
1634 		return false;
1635 
1636 	return true;
1637 }
1638 
1639 static int gic_irq_domain_select(struct irq_domain *d,
1640 				 struct irq_fwspec *fwspec,
1641 				 enum irq_domain_bus_token bus_token)
1642 {
1643 	unsigned int type, ret, ppi_idx;
1644 	irq_hw_number_t hwirq;
1645 
1646 	/* Not for us */
1647         if (fwspec->fwnode != d->fwnode)
1648 		return 0;
1649 
1650 	/* If this is not DT, then we have a single domain */
1651 	if (!is_of_node(fwspec->fwnode))
1652 		return 1;
1653 
1654 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1655 	if (WARN_ON_ONCE(ret))
1656 		return 0;
1657 
1658 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1659 		return d == gic_data.domain;
1660 
1661 	/*
1662 	 * If this is a PPI and we have a 4th (non-null) parameter,
1663 	 * then we need to match the partition domain.
1664 	 */
1665 	ppi_idx = __gic_get_ppi_index(hwirq);
1666 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1667 }
1668 
1669 static const struct irq_domain_ops gic_irq_domain_ops = {
1670 	.translate = gic_irq_domain_translate,
1671 	.alloc = gic_irq_domain_alloc,
1672 	.free = gic_irq_domain_free,
1673 	.select = gic_irq_domain_select,
1674 };
1675 
1676 static int partition_domain_translate(struct irq_domain *d,
1677 				      struct irq_fwspec *fwspec,
1678 				      unsigned long *hwirq,
1679 				      unsigned int *type)
1680 {
1681 	unsigned long ppi_intid;
1682 	struct device_node *np;
1683 	unsigned int ppi_idx;
1684 	int ret;
1685 
1686 	if (!gic_data.ppi_descs)
1687 		return -ENOMEM;
1688 
1689 	np = of_find_node_by_phandle(fwspec->param[3]);
1690 	if (WARN_ON(!np))
1691 		return -EINVAL;
1692 
1693 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1694 	if (WARN_ON_ONCE(ret))
1695 		return 0;
1696 
1697 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1698 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1699 				     of_node_to_fwnode(np));
1700 	if (ret < 0)
1701 		return ret;
1702 
1703 	*hwirq = ret;
1704 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct irq_domain_ops partition_domain_ops = {
1710 	.translate = partition_domain_translate,
1711 	.select = gic_irq_domain_select,
1712 };
1713 
1714 static bool gic_enable_quirk_msm8996(void *data)
1715 {
1716 	struct gic_chip_data *d = data;
1717 
1718 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1719 
1720 	return true;
1721 }
1722 
1723 static bool gic_enable_quirk_cavium_38539(void *data)
1724 {
1725 	struct gic_chip_data *d = data;
1726 
1727 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1728 
1729 	return true;
1730 }
1731 
1732 static bool gic_enable_quirk_hip06_07(void *data)
1733 {
1734 	struct gic_chip_data *d = data;
1735 
1736 	/*
1737 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1738 	 * not being an actual ARM implementation). The saving grace is
1739 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1740 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1741 	 * have ESPI. In both cases, put them right.
1742 	 */
1743 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1744 		/* Zero both ESPI and the RES0 field next to it... */
1745 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1746 		return true;
1747 	}
1748 
1749 	return false;
1750 }
1751 
1752 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1753 #define T241_CHIP_GICDA_OFFSET	0x1580000
1754 #define SMCCC_SOC_ID_T241	0x036b0241
1755 
1756 static bool gic_enable_quirk_nvidia_t241(void *data)
1757 {
1758 	s32 soc_id = arm_smccc_get_soc_id_version();
1759 	unsigned long chip_bmask = 0;
1760 	phys_addr_t phys;
1761 	u32 i;
1762 
1763 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1764 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1765 		return false;
1766 
1767 	/* Find the chips based on GICR regions PHYS addr */
1768 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1769 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1770 				  (u64)gic_data.redist_regions[i].phys_base));
1771 	}
1772 
1773 	if (hweight32(chip_bmask) < 3)
1774 		return false;
1775 
1776 	/* Setup GICD alias regions */
1777 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1778 		if (chip_bmask & BIT(i)) {
1779 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1780 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1781 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1782 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1783 		}
1784 	}
1785 	static_branch_enable(&gic_nvidia_t241_erratum);
1786 	return true;
1787 }
1788 
1789 static const struct gic_quirk gic_quirks[] = {
1790 	{
1791 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1792 		.compatible = "qcom,msm8996-gic-v3",
1793 		.init	= gic_enable_quirk_msm8996,
1794 	},
1795 	{
1796 		.desc	= "GICv3: HIP06 erratum 161010803",
1797 		.iidr	= 0x0204043b,
1798 		.mask	= 0xffffffff,
1799 		.init	= gic_enable_quirk_hip06_07,
1800 	},
1801 	{
1802 		.desc	= "GICv3: HIP07 erratum 161010803",
1803 		.iidr	= 0x00000000,
1804 		.mask	= 0xffffffff,
1805 		.init	= gic_enable_quirk_hip06_07,
1806 	},
1807 	{
1808 		/*
1809 		 * Reserved register accesses generate a Synchronous
1810 		 * External Abort. This erratum applies to:
1811 		 * - ThunderX: CN88xx
1812 		 * - OCTEON TX: CN83xx, CN81xx
1813 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1814 		 */
1815 		.desc	= "GICv3: Cavium erratum 38539",
1816 		.iidr	= 0xa000034c,
1817 		.mask	= 0xe8f00fff,
1818 		.init	= gic_enable_quirk_cavium_38539,
1819 	},
1820 	{
1821 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1822 		.iidr	= 0x0402043b,
1823 		.mask	= 0xffffffff,
1824 		.init	= gic_enable_quirk_nvidia_t241,
1825 	},
1826 	{
1827 	}
1828 };
1829 
1830 static void gic_enable_nmi_support(void)
1831 {
1832 	int i;
1833 
1834 	if (!gic_prio_masking_enabled())
1835 		return;
1836 
1837 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1838 	if (!ppi_nmi_refs)
1839 		return;
1840 
1841 	for (i = 0; i < gic_data.ppi_nr; i++)
1842 		refcount_set(&ppi_nmi_refs[i], 0);
1843 
1844 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1845 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1846 
1847 	/*
1848 	 * How priority values are used by the GIC depends on two things:
1849 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1850 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1851 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1852 	 * ICC_PMR_EL1 register and the priority that software assigns to
1853 	 * interrupts:
1854 	 *
1855 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1856 	 * -----------------------------------------------------------
1857 	 *      1       |      -      |  unchanged  |    unchanged
1858 	 * -----------------------------------------------------------
1859 	 *      0       |      1      |  non-secure |    non-secure
1860 	 * -----------------------------------------------------------
1861 	 *      0       |      0      |  unchanged  |    non-secure
1862 	 *
1863 	 * where non-secure means that the value is right-shifted by one and the
1864 	 * MSB bit set, to make it fit in the non-secure priority range.
1865 	 *
1866 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1867 	 * are both either modified or unchanged, we can use the same set of
1868 	 * priorities.
1869 	 *
1870 	 * In the last case, where only the interrupt priorities are modified to
1871 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1872 	 * and the rest of the values that we use remain unchanged.
1873 	 */
1874 	if (gic_has_group0() && !gic_dist_security_disabled())
1875 		static_branch_enable(&gic_nonsecure_priorities);
1876 
1877 	static_branch_enable(&supports_pseudo_nmis);
1878 
1879 	if (static_branch_likely(&supports_deactivate_key))
1880 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1881 	else
1882 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1883 }
1884 
1885 static int __init gic_init_bases(phys_addr_t dist_phys_base,
1886 				 void __iomem *dist_base,
1887 				 struct redist_region *rdist_regs,
1888 				 u32 nr_redist_regions,
1889 				 u64 redist_stride,
1890 				 struct fwnode_handle *handle)
1891 {
1892 	u32 typer;
1893 	int err;
1894 
1895 	if (!is_hyp_mode_available())
1896 		static_branch_disable(&supports_deactivate_key);
1897 
1898 	if (static_branch_likely(&supports_deactivate_key))
1899 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1900 
1901 	gic_data.fwnode = handle;
1902 	gic_data.dist_phys_base = dist_phys_base;
1903 	gic_data.dist_base = dist_base;
1904 	gic_data.redist_regions = rdist_regs;
1905 	gic_data.nr_redist_regions = nr_redist_regions;
1906 	gic_data.redist_stride = redist_stride;
1907 
1908 	/*
1909 	 * Find out how many interrupts are supported.
1910 	 */
1911 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1912 	gic_data.rdists.gicd_typer = typer;
1913 
1914 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1915 			  gic_quirks, &gic_data);
1916 
1917 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1918 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1919 
1920 	/*
1921 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1922 	 * architecture spec (which says that reserved registers are RES0).
1923 	 */
1924 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1925 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1926 
1927 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1928 						 &gic_data);
1929 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1930 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
1931 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
1932 		gic_data.rdists.has_rvpeid = true;
1933 		gic_data.rdists.has_vlpis = true;
1934 		gic_data.rdists.has_direct_lpi = true;
1935 		gic_data.rdists.has_vpend_valid_dirty = true;
1936 	}
1937 
1938 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1939 		err = -ENOMEM;
1940 		goto out_free;
1941 	}
1942 
1943 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1944 
1945 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1946 
1947 	if (typer & GICD_TYPER_MBIS) {
1948 		err = mbi_init(handle, gic_data.domain);
1949 		if (err)
1950 			pr_err("Failed to initialize MBIs\n");
1951 	}
1952 
1953 	set_handle_irq(gic_handle_irq);
1954 
1955 	gic_update_rdist_properties();
1956 
1957 	gic_dist_init();
1958 	gic_cpu_init();
1959 	gic_smp_init();
1960 	gic_cpu_pm_init();
1961 
1962 	if (gic_dist_supports_lpis()) {
1963 		its_init(handle, &gic_data.rdists, gic_data.domain);
1964 		its_cpu_init();
1965 		its_lpi_memreserve_init();
1966 	} else {
1967 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1968 			gicv2m_init(handle, gic_data.domain);
1969 	}
1970 
1971 	gic_enable_nmi_support();
1972 
1973 	return 0;
1974 
1975 out_free:
1976 	if (gic_data.domain)
1977 		irq_domain_remove(gic_data.domain);
1978 	free_percpu(gic_data.rdists.rdist);
1979 	return err;
1980 }
1981 
1982 static int __init gic_validate_dist_version(void __iomem *dist_base)
1983 {
1984 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1985 
1986 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1987 		return -ENODEV;
1988 
1989 	return 0;
1990 }
1991 
1992 /* Create all possible partitions at boot time */
1993 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1994 {
1995 	struct device_node *parts_node, *child_part;
1996 	int part_idx = 0, i;
1997 	int nr_parts;
1998 	struct partition_affinity *parts;
1999 
2000 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2001 	if (!parts_node)
2002 		return;
2003 
2004 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2005 	if (!gic_data.ppi_descs)
2006 		goto out_put_node;
2007 
2008 	nr_parts = of_get_child_count(parts_node);
2009 
2010 	if (!nr_parts)
2011 		goto out_put_node;
2012 
2013 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2014 	if (WARN_ON(!parts))
2015 		goto out_put_node;
2016 
2017 	for_each_child_of_node(parts_node, child_part) {
2018 		struct partition_affinity *part;
2019 		int n;
2020 
2021 		part = &parts[part_idx];
2022 
2023 		part->partition_id = of_node_to_fwnode(child_part);
2024 
2025 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2026 			child_part, part_idx);
2027 
2028 		n = of_property_count_elems_of_size(child_part, "affinity",
2029 						    sizeof(u32));
2030 		WARN_ON(n <= 0);
2031 
2032 		for (i = 0; i < n; i++) {
2033 			int err, cpu;
2034 			u32 cpu_phandle;
2035 			struct device_node *cpu_node;
2036 
2037 			err = of_property_read_u32_index(child_part, "affinity",
2038 							 i, &cpu_phandle);
2039 			if (WARN_ON(err))
2040 				continue;
2041 
2042 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2043 			if (WARN_ON(!cpu_node))
2044 				continue;
2045 
2046 			cpu = of_cpu_node_to_id(cpu_node);
2047 			if (WARN_ON(cpu < 0)) {
2048 				of_node_put(cpu_node);
2049 				continue;
2050 			}
2051 
2052 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2053 
2054 			cpumask_set_cpu(cpu, &part->mask);
2055 			of_node_put(cpu_node);
2056 		}
2057 
2058 		pr_cont("}\n");
2059 		part_idx++;
2060 	}
2061 
2062 	for (i = 0; i < gic_data.ppi_nr; i++) {
2063 		unsigned int irq;
2064 		struct partition_desc *desc;
2065 		struct irq_fwspec ppi_fwspec = {
2066 			.fwnode		= gic_data.fwnode,
2067 			.param_count	= 3,
2068 			.param		= {
2069 				[0]	= GIC_IRQ_TYPE_PARTITION,
2070 				[1]	= i,
2071 				[2]	= IRQ_TYPE_NONE,
2072 			},
2073 		};
2074 
2075 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2076 		if (WARN_ON(!irq))
2077 			continue;
2078 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2079 					     irq, &partition_domain_ops);
2080 		if (WARN_ON(!desc))
2081 			continue;
2082 
2083 		gic_data.ppi_descs[i] = desc;
2084 	}
2085 
2086 out_put_node:
2087 	of_node_put(parts_node);
2088 }
2089 
2090 static void __init gic_of_setup_kvm_info(struct device_node *node)
2091 {
2092 	int ret;
2093 	struct resource r;
2094 	u32 gicv_idx;
2095 
2096 	gic_v3_kvm_info.type = GIC_V3;
2097 
2098 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2099 	if (!gic_v3_kvm_info.maint_irq)
2100 		return;
2101 
2102 	if (of_property_read_u32(node, "#redistributor-regions",
2103 				 &gicv_idx))
2104 		gicv_idx = 1;
2105 
2106 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2107 	ret = of_address_to_resource(node, gicv_idx, &r);
2108 	if (!ret)
2109 		gic_v3_kvm_info.vcpu = r;
2110 
2111 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2112 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2113 	vgic_set_kvm_info(&gic_v3_kvm_info);
2114 }
2115 
2116 static void gic_request_region(resource_size_t base, resource_size_t size,
2117 			       const char *name)
2118 {
2119 	if (!request_mem_region(base, size, name))
2120 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2121 			     name, &base);
2122 }
2123 
2124 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2125 				  const char *name, struct resource *res)
2126 {
2127 	void __iomem *base;
2128 	int ret;
2129 
2130 	ret = of_address_to_resource(node, idx, res);
2131 	if (ret)
2132 		return IOMEM_ERR_PTR(ret);
2133 
2134 	gic_request_region(res->start, resource_size(res), name);
2135 	base = of_iomap(node, idx);
2136 
2137 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2138 }
2139 
2140 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2141 {
2142 	phys_addr_t dist_phys_base;
2143 	void __iomem *dist_base;
2144 	struct redist_region *rdist_regs;
2145 	struct resource res;
2146 	u64 redist_stride;
2147 	u32 nr_redist_regions;
2148 	int err, i;
2149 
2150 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2151 	if (IS_ERR(dist_base)) {
2152 		pr_err("%pOF: unable to map gic dist registers\n", node);
2153 		return PTR_ERR(dist_base);
2154 	}
2155 
2156 	dist_phys_base = res.start;
2157 
2158 	err = gic_validate_dist_version(dist_base);
2159 	if (err) {
2160 		pr_err("%pOF: no distributor detected, giving up\n", node);
2161 		goto out_unmap_dist;
2162 	}
2163 
2164 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2165 		nr_redist_regions = 1;
2166 
2167 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2168 			     GFP_KERNEL);
2169 	if (!rdist_regs) {
2170 		err = -ENOMEM;
2171 		goto out_unmap_dist;
2172 	}
2173 
2174 	for (i = 0; i < nr_redist_regions; i++) {
2175 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2176 		if (IS_ERR(rdist_regs[i].redist_base)) {
2177 			pr_err("%pOF: couldn't map region %d\n", node, i);
2178 			err = -ENODEV;
2179 			goto out_unmap_rdist;
2180 		}
2181 		rdist_regs[i].phys_base = res.start;
2182 	}
2183 
2184 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2185 		redist_stride = 0;
2186 
2187 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2188 
2189 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2190 			     nr_redist_regions, redist_stride, &node->fwnode);
2191 	if (err)
2192 		goto out_unmap_rdist;
2193 
2194 	gic_populate_ppi_partitions(node);
2195 
2196 	if (static_branch_likely(&supports_deactivate_key))
2197 		gic_of_setup_kvm_info(node);
2198 	return 0;
2199 
2200 out_unmap_rdist:
2201 	for (i = 0; i < nr_redist_regions; i++)
2202 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2203 			iounmap(rdist_regs[i].redist_base);
2204 	kfree(rdist_regs);
2205 out_unmap_dist:
2206 	iounmap(dist_base);
2207 	return err;
2208 }
2209 
2210 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2211 
2212 #ifdef CONFIG_ACPI
2213 static struct
2214 {
2215 	void __iomem *dist_base;
2216 	struct redist_region *redist_regs;
2217 	u32 nr_redist_regions;
2218 	bool single_redist;
2219 	int enabled_rdists;
2220 	u32 maint_irq;
2221 	int maint_irq_mode;
2222 	phys_addr_t vcpu_base;
2223 } acpi_data __initdata;
2224 
2225 static void __init
2226 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2227 {
2228 	static int count = 0;
2229 
2230 	acpi_data.redist_regs[count].phys_base = phys_base;
2231 	acpi_data.redist_regs[count].redist_base = redist_base;
2232 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2233 	count++;
2234 }
2235 
2236 static int __init
2237 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2238 			   const unsigned long end)
2239 {
2240 	struct acpi_madt_generic_redistributor *redist =
2241 			(struct acpi_madt_generic_redistributor *)header;
2242 	void __iomem *redist_base;
2243 
2244 	redist_base = ioremap(redist->base_address, redist->length);
2245 	if (!redist_base) {
2246 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2247 		return -ENOMEM;
2248 	}
2249 	gic_request_region(redist->base_address, redist->length, "GICR");
2250 
2251 	gic_acpi_register_redist(redist->base_address, redist_base);
2252 	return 0;
2253 }
2254 
2255 static int __init
2256 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2257 			 const unsigned long end)
2258 {
2259 	struct acpi_madt_generic_interrupt *gicc =
2260 				(struct acpi_madt_generic_interrupt *)header;
2261 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2262 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2263 	void __iomem *redist_base;
2264 
2265 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2266 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2267 		return 0;
2268 
2269 	redist_base = ioremap(gicc->gicr_base_address, size);
2270 	if (!redist_base)
2271 		return -ENOMEM;
2272 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2273 
2274 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2275 	return 0;
2276 }
2277 
2278 static int __init gic_acpi_collect_gicr_base(void)
2279 {
2280 	acpi_tbl_entry_handler redist_parser;
2281 	enum acpi_madt_type type;
2282 
2283 	if (acpi_data.single_redist) {
2284 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2285 		redist_parser = gic_acpi_parse_madt_gicc;
2286 	} else {
2287 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2288 		redist_parser = gic_acpi_parse_madt_redist;
2289 	}
2290 
2291 	/* Collect redistributor base addresses in GICR entries */
2292 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2293 		return 0;
2294 
2295 	pr_info("No valid GICR entries exist\n");
2296 	return -ENODEV;
2297 }
2298 
2299 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2300 				  const unsigned long end)
2301 {
2302 	/* Subtable presence means that redist exists, that's it */
2303 	return 0;
2304 }
2305 
2306 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2307 				      const unsigned long end)
2308 {
2309 	struct acpi_madt_generic_interrupt *gicc =
2310 				(struct acpi_madt_generic_interrupt *)header;
2311 
2312 	/*
2313 	 * If GICC is enabled and has valid gicr base address, then it means
2314 	 * GICR base is presented via GICC
2315 	 */
2316 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2317 		acpi_data.enabled_rdists++;
2318 		return 0;
2319 	}
2320 
2321 	/*
2322 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2323 	 * should not treat as errors, skip the entry instead of probe fail.
2324 	 */
2325 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2326 		return 0;
2327 
2328 	return -ENODEV;
2329 }
2330 
2331 static int __init gic_acpi_count_gicr_regions(void)
2332 {
2333 	int count;
2334 
2335 	/*
2336 	 * Count how many redistributor regions we have. It is not allowed
2337 	 * to mix redistributor description, GICR and GICC subtables have to be
2338 	 * mutually exclusive.
2339 	 */
2340 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2341 				      gic_acpi_match_gicr, 0);
2342 	if (count > 0) {
2343 		acpi_data.single_redist = false;
2344 		return count;
2345 	}
2346 
2347 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2348 				      gic_acpi_match_gicc, 0);
2349 	if (count > 0) {
2350 		acpi_data.single_redist = true;
2351 		count = acpi_data.enabled_rdists;
2352 	}
2353 
2354 	return count;
2355 }
2356 
2357 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2358 					   struct acpi_probe_entry *ape)
2359 {
2360 	struct acpi_madt_generic_distributor *dist;
2361 	int count;
2362 
2363 	dist = (struct acpi_madt_generic_distributor *)header;
2364 	if (dist->version != ape->driver_data)
2365 		return false;
2366 
2367 	/* We need to do that exercise anyway, the sooner the better */
2368 	count = gic_acpi_count_gicr_regions();
2369 	if (count <= 0)
2370 		return false;
2371 
2372 	acpi_data.nr_redist_regions = count;
2373 	return true;
2374 }
2375 
2376 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2377 						const unsigned long end)
2378 {
2379 	struct acpi_madt_generic_interrupt *gicc =
2380 		(struct acpi_madt_generic_interrupt *)header;
2381 	int maint_irq_mode;
2382 	static int first_madt = true;
2383 
2384 	/* Skip unusable CPUs */
2385 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2386 		return 0;
2387 
2388 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2389 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2390 
2391 	if (first_madt) {
2392 		first_madt = false;
2393 
2394 		acpi_data.maint_irq = gicc->vgic_interrupt;
2395 		acpi_data.maint_irq_mode = maint_irq_mode;
2396 		acpi_data.vcpu_base = gicc->gicv_base_address;
2397 
2398 		return 0;
2399 	}
2400 
2401 	/*
2402 	 * The maintenance interrupt and GICV should be the same for every CPU
2403 	 */
2404 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2405 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2406 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2407 		return -EINVAL;
2408 
2409 	return 0;
2410 }
2411 
2412 static bool __init gic_acpi_collect_virt_info(void)
2413 {
2414 	int count;
2415 
2416 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2417 				      gic_acpi_parse_virt_madt_gicc, 0);
2418 
2419 	return (count > 0);
2420 }
2421 
2422 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2423 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2424 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2425 
2426 static void __init gic_acpi_setup_kvm_info(void)
2427 {
2428 	int irq;
2429 
2430 	if (!gic_acpi_collect_virt_info()) {
2431 		pr_warn("Unable to get hardware information used for virtualization\n");
2432 		return;
2433 	}
2434 
2435 	gic_v3_kvm_info.type = GIC_V3;
2436 
2437 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2438 				acpi_data.maint_irq_mode,
2439 				ACPI_ACTIVE_HIGH);
2440 	if (irq <= 0)
2441 		return;
2442 
2443 	gic_v3_kvm_info.maint_irq = irq;
2444 
2445 	if (acpi_data.vcpu_base) {
2446 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2447 
2448 		vcpu->flags = IORESOURCE_MEM;
2449 		vcpu->start = acpi_data.vcpu_base;
2450 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2451 	}
2452 
2453 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2454 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2455 	vgic_set_kvm_info(&gic_v3_kvm_info);
2456 }
2457 
2458 static struct fwnode_handle *gsi_domain_handle;
2459 
2460 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2461 {
2462 	return gsi_domain_handle;
2463 }
2464 
2465 static int __init
2466 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2467 {
2468 	struct acpi_madt_generic_distributor *dist;
2469 	size_t size;
2470 	int i, err;
2471 
2472 	/* Get distributor base address */
2473 	dist = (struct acpi_madt_generic_distributor *)header;
2474 	acpi_data.dist_base = ioremap(dist->base_address,
2475 				      ACPI_GICV3_DIST_MEM_SIZE);
2476 	if (!acpi_data.dist_base) {
2477 		pr_err("Unable to map GICD registers\n");
2478 		return -ENOMEM;
2479 	}
2480 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2481 
2482 	err = gic_validate_dist_version(acpi_data.dist_base);
2483 	if (err) {
2484 		pr_err("No distributor detected at @%p, giving up\n",
2485 		       acpi_data.dist_base);
2486 		goto out_dist_unmap;
2487 	}
2488 
2489 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2490 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2491 	if (!acpi_data.redist_regs) {
2492 		err = -ENOMEM;
2493 		goto out_dist_unmap;
2494 	}
2495 
2496 	err = gic_acpi_collect_gicr_base();
2497 	if (err)
2498 		goto out_redist_unmap;
2499 
2500 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2501 	if (!gsi_domain_handle) {
2502 		err = -ENOMEM;
2503 		goto out_redist_unmap;
2504 	}
2505 
2506 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2507 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2508 			     0, gsi_domain_handle);
2509 	if (err)
2510 		goto out_fwhandle_free;
2511 
2512 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2513 
2514 	if (static_branch_likely(&supports_deactivate_key))
2515 		gic_acpi_setup_kvm_info();
2516 
2517 	return 0;
2518 
2519 out_fwhandle_free:
2520 	irq_domain_free_fwnode(gsi_domain_handle);
2521 out_redist_unmap:
2522 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2523 		if (acpi_data.redist_regs[i].redist_base)
2524 			iounmap(acpi_data.redist_regs[i].redist_base);
2525 	kfree(acpi_data.redist_regs);
2526 out_dist_unmap:
2527 	iounmap(acpi_data.dist_base);
2528 	return err;
2529 }
2530 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2531 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2532 		     gic_acpi_init);
2533 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2534 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2535 		     gic_acpi_init);
2536 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2537 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2538 		     gic_acpi_init);
2539 #endif
2540