xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision e8162521)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 
28 #include <asm/cputype.h>
29 #include <asm/exception.h>
30 #include <asm/smp_plat.h>
31 #include <asm/virt.h>
32 
33 #include "irq-gic-common.h"
34 
35 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
36 
37 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
38 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
39 
40 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
41 
42 struct redist_region {
43 	void __iomem		*redist_base;
44 	phys_addr_t		phys_base;
45 	bool			single_redist;
46 };
47 
48 struct gic_chip_data {
49 	struct fwnode_handle	*fwnode;
50 	void __iomem		*dist_base;
51 	struct redist_region	*redist_regions;
52 	struct rdists		rdists;
53 	struct irq_domain	*domain;
54 	u64			redist_stride;
55 	u32			nr_redist_regions;
56 	u64			flags;
57 	bool			has_rss;
58 	unsigned int		ppi_nr;
59 	struct partition_desc	**ppi_descs;
60 };
61 
62 static struct gic_chip_data gic_data __read_mostly;
63 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
64 
65 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
66 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
67 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
68 
69 /*
70  * The behaviours of RPR and PMR registers differ depending on the value of
71  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
72  * distributor and redistributors depends on whether security is enabled in the
73  * GIC.
74  *
75  * When security is enabled, non-secure priority values from the (re)distributor
76  * are presented to the GIC CPUIF as follow:
77  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
78  *
79  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
80  * EL1 are subject to a similar operation thus matching the priorities presented
81  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
82  * these values are unchanged by the GIC.
83  *
84  * see GICv3/GICv4 Architecture Specification (IHI0069D):
85  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
86  *   priorities.
87  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
88  *   interrupt.
89  */
90 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
91 
92 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
93 EXPORT_SYMBOL(gic_nonsecure_priorities);
94 
95 /*
96  * When the Non-secure world has access to group 0 interrupts (as a
97  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
98  * return the Distributor's view of the interrupt priority.
99  *
100  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
101  * written by software is moved to the Non-secure range by the Distributor.
102  *
103  * If both are true (which is when gic_nonsecure_priorities gets enabled),
104  * we need to shift down the priority programmed by software to match it
105  * against the value returned by ICC_RPR_EL1.
106  */
107 #define GICD_INT_RPR_PRI(priority)					\
108 	({								\
109 		u32 __priority = (priority);				\
110 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
111 			__priority = 0x80 | (__priority >> 1);		\
112 									\
113 		__priority;						\
114 	})
115 
116 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
117 static refcount_t *ppi_nmi_refs;
118 
119 static struct gic_kvm_info gic_v3_kvm_info __initdata;
120 static DEFINE_PER_CPU(bool, has_rss);
121 
122 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
123 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
124 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
125 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
126 
127 /* Our default, arbitrary priority value. Linux only uses one anyway. */
128 #define DEFAULT_PMR_VALUE	0xf0
129 
130 enum gic_intid_range {
131 	SGI_RANGE,
132 	PPI_RANGE,
133 	SPI_RANGE,
134 	EPPI_RANGE,
135 	ESPI_RANGE,
136 	LPI_RANGE,
137 	__INVALID_RANGE__
138 };
139 
140 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
141 {
142 	switch (hwirq) {
143 	case 0 ... 15:
144 		return SGI_RANGE;
145 	case 16 ... 31:
146 		return PPI_RANGE;
147 	case 32 ... 1019:
148 		return SPI_RANGE;
149 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
150 		return EPPI_RANGE;
151 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
152 		return ESPI_RANGE;
153 	case 8192 ... GENMASK(23, 0):
154 		return LPI_RANGE;
155 	default:
156 		return __INVALID_RANGE__;
157 	}
158 }
159 
160 static enum gic_intid_range get_intid_range(struct irq_data *d)
161 {
162 	return __get_intid_range(d->hwirq);
163 }
164 
165 static inline unsigned int gic_irq(struct irq_data *d)
166 {
167 	return d->hwirq;
168 }
169 
170 static inline bool gic_irq_in_rdist(struct irq_data *d)
171 {
172 	switch (get_intid_range(d)) {
173 	case SGI_RANGE:
174 	case PPI_RANGE:
175 	case EPPI_RANGE:
176 		return true;
177 	default:
178 		return false;
179 	}
180 }
181 
182 static inline void __iomem *gic_dist_base(struct irq_data *d)
183 {
184 	switch (get_intid_range(d)) {
185 	case SGI_RANGE:
186 	case PPI_RANGE:
187 	case EPPI_RANGE:
188 		/* SGI+PPI -> SGI_base for this CPU */
189 		return gic_data_rdist_sgi_base();
190 
191 	case SPI_RANGE:
192 	case ESPI_RANGE:
193 		/* SPI -> dist_base */
194 		return gic_data.dist_base;
195 
196 	default:
197 		return NULL;
198 	}
199 }
200 
201 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
202 {
203 	u32 count = 1000000;	/* 1s! */
204 
205 	while (readl_relaxed(base + GICD_CTLR) & bit) {
206 		count--;
207 		if (!count) {
208 			pr_err_ratelimited("RWP timeout, gone fishing\n");
209 			return;
210 		}
211 		cpu_relax();
212 		udelay(1);
213 	}
214 }
215 
216 /* Wait for completion of a distributor change */
217 static void gic_dist_wait_for_rwp(void)
218 {
219 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
220 }
221 
222 /* Wait for completion of a redistributor change */
223 static void gic_redist_wait_for_rwp(void)
224 {
225 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
226 }
227 
228 #ifdef CONFIG_ARM64
229 
230 static u64 __maybe_unused gic_read_iar(void)
231 {
232 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
233 		return gic_read_iar_cavium_thunderx();
234 	else
235 		return gic_read_iar_common();
236 }
237 #endif
238 
239 static void gic_enable_redist(bool enable)
240 {
241 	void __iomem *rbase;
242 	u32 count = 1000000;	/* 1s! */
243 	u32 val;
244 
245 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
246 		return;
247 
248 	rbase = gic_data_rdist_rd_base();
249 
250 	val = readl_relaxed(rbase + GICR_WAKER);
251 	if (enable)
252 		/* Wake up this CPU redistributor */
253 		val &= ~GICR_WAKER_ProcessorSleep;
254 	else
255 		val |= GICR_WAKER_ProcessorSleep;
256 	writel_relaxed(val, rbase + GICR_WAKER);
257 
258 	if (!enable) {		/* Check that GICR_WAKER is writeable */
259 		val = readl_relaxed(rbase + GICR_WAKER);
260 		if (!(val & GICR_WAKER_ProcessorSleep))
261 			return;	/* No PM support in this redistributor */
262 	}
263 
264 	while (--count) {
265 		val = readl_relaxed(rbase + GICR_WAKER);
266 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
267 			break;
268 		cpu_relax();
269 		udelay(1);
270 	}
271 	if (!count)
272 		pr_err_ratelimited("redistributor failed to %s...\n",
273 				   enable ? "wakeup" : "sleep");
274 }
275 
276 /*
277  * Routines to disable, enable, EOI and route interrupts
278  */
279 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
280 {
281 	switch (get_intid_range(d)) {
282 	case SGI_RANGE:
283 	case PPI_RANGE:
284 	case SPI_RANGE:
285 		*index = d->hwirq;
286 		return offset;
287 	case EPPI_RANGE:
288 		/*
289 		 * Contrary to the ESPI range, the EPPI range is contiguous
290 		 * to the PPI range in the registers, so let's adjust the
291 		 * displacement accordingly. Consistency is overrated.
292 		 */
293 		*index = d->hwirq - EPPI_BASE_INTID + 32;
294 		return offset;
295 	case ESPI_RANGE:
296 		*index = d->hwirq - ESPI_BASE_INTID;
297 		switch (offset) {
298 		case GICD_ISENABLER:
299 			return GICD_ISENABLERnE;
300 		case GICD_ICENABLER:
301 			return GICD_ICENABLERnE;
302 		case GICD_ISPENDR:
303 			return GICD_ISPENDRnE;
304 		case GICD_ICPENDR:
305 			return GICD_ICPENDRnE;
306 		case GICD_ISACTIVER:
307 			return GICD_ISACTIVERnE;
308 		case GICD_ICACTIVER:
309 			return GICD_ICACTIVERnE;
310 		case GICD_IPRIORITYR:
311 			return GICD_IPRIORITYRnE;
312 		case GICD_ICFGR:
313 			return GICD_ICFGRnE;
314 		case GICD_IROUTER:
315 			return GICD_IROUTERnE;
316 		default:
317 			break;
318 		}
319 		break;
320 	default:
321 		break;
322 	}
323 
324 	WARN_ON(1);
325 	*index = d->hwirq;
326 	return offset;
327 }
328 
329 static int gic_peek_irq(struct irq_data *d, u32 offset)
330 {
331 	void __iomem *base;
332 	u32 index, mask;
333 
334 	offset = convert_offset_index(d, offset, &index);
335 	mask = 1 << (index % 32);
336 
337 	if (gic_irq_in_rdist(d))
338 		base = gic_data_rdist_sgi_base();
339 	else
340 		base = gic_data.dist_base;
341 
342 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
343 }
344 
345 static void gic_poke_irq(struct irq_data *d, u32 offset)
346 {
347 	void __iomem *base;
348 	u32 index, mask;
349 
350 	offset = convert_offset_index(d, offset, &index);
351 	mask = 1 << (index % 32);
352 
353 	if (gic_irq_in_rdist(d))
354 		base = gic_data_rdist_sgi_base();
355 	else
356 		base = gic_data.dist_base;
357 
358 	writel_relaxed(mask, base + offset + (index / 32) * 4);
359 }
360 
361 static void gic_mask_irq(struct irq_data *d)
362 {
363 	gic_poke_irq(d, GICD_ICENABLER);
364 	if (gic_irq_in_rdist(d))
365 		gic_redist_wait_for_rwp();
366 	else
367 		gic_dist_wait_for_rwp();
368 }
369 
370 static void gic_eoimode1_mask_irq(struct irq_data *d)
371 {
372 	gic_mask_irq(d);
373 	/*
374 	 * When masking a forwarded interrupt, make sure it is
375 	 * deactivated as well.
376 	 *
377 	 * This ensures that an interrupt that is getting
378 	 * disabled/masked will not get "stuck", because there is
379 	 * noone to deactivate it (guest is being terminated).
380 	 */
381 	if (irqd_is_forwarded_to_vcpu(d))
382 		gic_poke_irq(d, GICD_ICACTIVER);
383 }
384 
385 static void gic_unmask_irq(struct irq_data *d)
386 {
387 	gic_poke_irq(d, GICD_ISENABLER);
388 }
389 
390 static inline bool gic_supports_nmi(void)
391 {
392 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
393 	       static_branch_likely(&supports_pseudo_nmis);
394 }
395 
396 static int gic_irq_set_irqchip_state(struct irq_data *d,
397 				     enum irqchip_irq_state which, bool val)
398 {
399 	u32 reg;
400 
401 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
402 		return -EINVAL;
403 
404 	switch (which) {
405 	case IRQCHIP_STATE_PENDING:
406 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
407 		break;
408 
409 	case IRQCHIP_STATE_ACTIVE:
410 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
411 		break;
412 
413 	case IRQCHIP_STATE_MASKED:
414 		if (val) {
415 			gic_mask_irq(d);
416 			return 0;
417 		}
418 		reg = GICD_ISENABLER;
419 		break;
420 
421 	default:
422 		return -EINVAL;
423 	}
424 
425 	gic_poke_irq(d, reg);
426 	return 0;
427 }
428 
429 static int gic_irq_get_irqchip_state(struct irq_data *d,
430 				     enum irqchip_irq_state which, bool *val)
431 {
432 	if (d->hwirq >= 8192) /* PPI/SPI only */
433 		return -EINVAL;
434 
435 	switch (which) {
436 	case IRQCHIP_STATE_PENDING:
437 		*val = gic_peek_irq(d, GICD_ISPENDR);
438 		break;
439 
440 	case IRQCHIP_STATE_ACTIVE:
441 		*val = gic_peek_irq(d, GICD_ISACTIVER);
442 		break;
443 
444 	case IRQCHIP_STATE_MASKED:
445 		*val = !gic_peek_irq(d, GICD_ISENABLER);
446 		break;
447 
448 	default:
449 		return -EINVAL;
450 	}
451 
452 	return 0;
453 }
454 
455 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
456 {
457 	void __iomem *base = gic_dist_base(d);
458 	u32 offset, index;
459 
460 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
461 
462 	writeb_relaxed(prio, base + offset + index);
463 }
464 
465 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
466 {
467 	switch (__get_intid_range(hwirq)) {
468 	case PPI_RANGE:
469 		return hwirq - 16;
470 	case EPPI_RANGE:
471 		return hwirq - EPPI_BASE_INTID + 16;
472 	default:
473 		unreachable();
474 	}
475 }
476 
477 static u32 gic_get_ppi_index(struct irq_data *d)
478 {
479 	return __gic_get_ppi_index(d->hwirq);
480 }
481 
482 static int gic_irq_nmi_setup(struct irq_data *d)
483 {
484 	struct irq_desc *desc = irq_to_desc(d->irq);
485 
486 	if (!gic_supports_nmi())
487 		return -EINVAL;
488 
489 	if (gic_peek_irq(d, GICD_ISENABLER)) {
490 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
491 		return -EINVAL;
492 	}
493 
494 	/*
495 	 * A secondary irq_chip should be in charge of LPI request,
496 	 * it should not be possible to get there
497 	 */
498 	if (WARN_ON(gic_irq(d) >= 8192))
499 		return -EINVAL;
500 
501 	/* desc lock should already be held */
502 	if (gic_irq_in_rdist(d)) {
503 		u32 idx = gic_get_ppi_index(d);
504 
505 		/* Setting up PPI as NMI, only switch handler for first NMI */
506 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
507 			refcount_set(&ppi_nmi_refs[idx], 1);
508 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
509 		}
510 	} else {
511 		desc->handle_irq = handle_fasteoi_nmi;
512 	}
513 
514 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
515 
516 	return 0;
517 }
518 
519 static void gic_irq_nmi_teardown(struct irq_data *d)
520 {
521 	struct irq_desc *desc = irq_to_desc(d->irq);
522 
523 	if (WARN_ON(!gic_supports_nmi()))
524 		return;
525 
526 	if (gic_peek_irq(d, GICD_ISENABLER)) {
527 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
528 		return;
529 	}
530 
531 	/*
532 	 * A secondary irq_chip should be in charge of LPI request,
533 	 * it should not be possible to get there
534 	 */
535 	if (WARN_ON(gic_irq(d) >= 8192))
536 		return;
537 
538 	/* desc lock should already be held */
539 	if (gic_irq_in_rdist(d)) {
540 		u32 idx = gic_get_ppi_index(d);
541 
542 		/* Tearing down NMI, only switch handler for last NMI */
543 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
544 			desc->handle_irq = handle_percpu_devid_irq;
545 	} else {
546 		desc->handle_irq = handle_fasteoi_irq;
547 	}
548 
549 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
550 }
551 
552 static void gic_eoi_irq(struct irq_data *d)
553 {
554 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
555 	isb();
556 }
557 
558 static void gic_eoimode1_eoi_irq(struct irq_data *d)
559 {
560 	/*
561 	 * No need to deactivate an LPI, or an interrupt that
562 	 * is is getting forwarded to a vcpu.
563 	 */
564 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
565 		return;
566 	gic_write_dir(gic_irq(d));
567 }
568 
569 static int gic_set_type(struct irq_data *d, unsigned int type)
570 {
571 	enum gic_intid_range range;
572 	unsigned int irq = gic_irq(d);
573 	void __iomem *base;
574 	u32 offset, index;
575 	int ret;
576 
577 	range = get_intid_range(d);
578 
579 	/* Interrupt configuration for SGIs can't be changed */
580 	if (range == SGI_RANGE)
581 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
582 
583 	/* SPIs have restrictions on the supported types */
584 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
585 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
586 		return -EINVAL;
587 
588 	if (gic_irq_in_rdist(d))
589 		base = gic_data_rdist_sgi_base();
590 	else
591 		base = gic_data.dist_base;
592 
593 	offset = convert_offset_index(d, GICD_ICFGR, &index);
594 
595 	ret = gic_configure_irq(index, type, base + offset, NULL);
596 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
597 		/* Misconfigured PPIs are usually not fatal */
598 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
599 		ret = 0;
600 	}
601 
602 	return ret;
603 }
604 
605 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
606 {
607 	if (get_intid_range(d) == SGI_RANGE)
608 		return -EINVAL;
609 
610 	if (vcpu)
611 		irqd_set_forwarded_to_vcpu(d);
612 	else
613 		irqd_clr_forwarded_to_vcpu(d);
614 	return 0;
615 }
616 
617 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
618 {
619 	u64 aff;
620 
621 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
622 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
623 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
624 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
625 
626 	return aff;
627 }
628 
629 static void gic_deactivate_unhandled(u32 irqnr)
630 {
631 	if (static_branch_likely(&supports_deactivate_key)) {
632 		if (irqnr < 8192)
633 			gic_write_dir(irqnr);
634 	} else {
635 		write_gicreg(irqnr, ICC_EOIR1_EL1);
636 		isb();
637 	}
638 }
639 
640 /*
641  * Follow a read of the IAR with any HW maintenance that needs to happen prior
642  * to invoking the relevant IRQ handler. We must do two things:
643  *
644  * (1) Ensure instruction ordering between a read of IAR and subsequent
645  *     instructions in the IRQ handler using an ISB.
646  *
647  *     It is possible for the IAR to report an IRQ which was signalled *after*
648  *     the CPU took an IRQ exception as multiple interrupts can race to be
649  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
650  *     later interrupts could be prioritized by the GIC.
651  *
652  *     For devices which are tightly coupled to the CPU, such as PMUs, a
653  *     context synchronization event is necessary to ensure that system
654  *     register state is not stale, as these may have been indirectly written
655  *     *after* exception entry.
656  *
657  * (2) Deactivate the interrupt when EOI mode 1 is in use.
658  */
659 static inline void gic_complete_ack(u32 irqnr)
660 {
661 	if (static_branch_likely(&supports_deactivate_key))
662 		write_gicreg(irqnr, ICC_EOIR1_EL1);
663 
664 	isb();
665 }
666 
667 static bool gic_rpr_is_nmi_prio(void)
668 {
669 	if (!gic_supports_nmi())
670 		return false;
671 
672 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
673 }
674 
675 static bool gic_irqnr_is_special(u32 irqnr)
676 {
677 	return irqnr >= 1020 && irqnr <= 1023;
678 }
679 
680 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
681 {
682 	if (gic_irqnr_is_special(irqnr))
683 		return;
684 
685 	gic_complete_ack(irqnr);
686 
687 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
688 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
689 		gic_deactivate_unhandled(irqnr);
690 	}
691 }
692 
693 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
694 {
695 	if (gic_irqnr_is_special(irqnr))
696 		return;
697 
698 	gic_complete_ack(irqnr);
699 
700 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
701 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
702 		gic_deactivate_unhandled(irqnr);
703 	}
704 }
705 
706 /*
707  * An exception has been taken from a context with IRQs enabled, and this could
708  * be an IRQ or an NMI.
709  *
710  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
711  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
712  * after handling any NMI but before handling any IRQ.
713  *
714  * The entry code has performed IRQ entry, and if an NMI is detected we must
715  * perform NMI entry/exit around invoking the handler.
716  */
717 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
718 {
719 	bool is_nmi;
720 	u32 irqnr;
721 
722 	irqnr = gic_read_iar();
723 
724 	is_nmi = gic_rpr_is_nmi_prio();
725 
726 	if (is_nmi) {
727 		nmi_enter();
728 		__gic_handle_nmi(irqnr, regs);
729 		nmi_exit();
730 	}
731 
732 	if (gic_prio_masking_enabled()) {
733 		gic_pmr_mask_irqs();
734 		gic_arch_enable_irqs();
735 	}
736 
737 	if (!is_nmi)
738 		__gic_handle_irq(irqnr, regs);
739 }
740 
741 /*
742  * An exception has been taken from a context with IRQs disabled, which can only
743  * be an NMI.
744  *
745  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
746  * DAIF.IF (and ICC_PMR_EL1) unchanged.
747  *
748  * The entry code has performed NMI entry.
749  */
750 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
751 {
752 	u64 pmr;
753 	u32 irqnr;
754 
755 	/*
756 	 * We were in a context with IRQs disabled. However, the
757 	 * entry code has set PMR to a value that allows any
758 	 * interrupt to be acknowledged, and not just NMIs. This can
759 	 * lead to surprising effects if the NMI has been retired in
760 	 * the meantime, and that there is an IRQ pending. The IRQ
761 	 * would then be taken in NMI context, something that nobody
762 	 * wants to debug twice.
763 	 *
764 	 * Until we sort this, drop PMR again to a level that will
765 	 * actually only allow NMIs before reading IAR, and then
766 	 * restore it to what it was.
767 	 */
768 	pmr = gic_read_pmr();
769 	gic_pmr_mask_irqs();
770 	isb();
771 	irqnr = gic_read_iar();
772 	gic_write_pmr(pmr);
773 
774 	__gic_handle_nmi(irqnr, regs);
775 }
776 
777 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
778 {
779 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
780 		__gic_handle_irq_from_irqsoff(regs);
781 	else
782 		__gic_handle_irq_from_irqson(regs);
783 }
784 
785 static u32 gic_get_pribits(void)
786 {
787 	u32 pribits;
788 
789 	pribits = gic_read_ctlr();
790 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
791 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
792 	pribits++;
793 
794 	return pribits;
795 }
796 
797 static bool gic_has_group0(void)
798 {
799 	u32 val;
800 	u32 old_pmr;
801 
802 	old_pmr = gic_read_pmr();
803 
804 	/*
805 	 * Let's find out if Group0 is under control of EL3 or not by
806 	 * setting the highest possible, non-zero priority in PMR.
807 	 *
808 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
809 	 * order for the CPU interface to set bit 7, and keep the
810 	 * actual priority in the non-secure range. In the process, it
811 	 * looses the least significant bit and the actual priority
812 	 * becomes 0x80. Reading it back returns 0, indicating that
813 	 * we're don't have access to Group0.
814 	 */
815 	gic_write_pmr(BIT(8 - gic_get_pribits()));
816 	val = gic_read_pmr();
817 
818 	gic_write_pmr(old_pmr);
819 
820 	return val != 0;
821 }
822 
823 static void __init gic_dist_init(void)
824 {
825 	unsigned int i;
826 	u64 affinity;
827 	void __iomem *base = gic_data.dist_base;
828 	u32 val;
829 
830 	/* Disable the distributor */
831 	writel_relaxed(0, base + GICD_CTLR);
832 	gic_dist_wait_for_rwp();
833 
834 	/*
835 	 * Configure SPIs as non-secure Group-1. This will only matter
836 	 * if the GIC only has a single security state. This will not
837 	 * do the right thing if the kernel is running in secure mode,
838 	 * but that's not the intended use case anyway.
839 	 */
840 	for (i = 32; i < GIC_LINE_NR; i += 32)
841 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
842 
843 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
844 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
845 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
846 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
847 	}
848 
849 	for (i = 0; i < GIC_ESPI_NR; i += 32)
850 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
851 
852 	for (i = 0; i < GIC_ESPI_NR; i += 16)
853 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
854 
855 	for (i = 0; i < GIC_ESPI_NR; i += 4)
856 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
857 
858 	/* Now do the common stuff */
859 	gic_dist_config(base, GIC_LINE_NR, NULL);
860 
861 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
862 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
863 		pr_info("Enabling SGIs without active state\n");
864 		val |= GICD_CTLR_nASSGIreq;
865 	}
866 
867 	/* Enable distributor with ARE, Group1, and wait for it to drain */
868 	writel_relaxed(val, base + GICD_CTLR);
869 	gic_dist_wait_for_rwp();
870 
871 	/*
872 	 * Set all global interrupts to the boot CPU only. ARE must be
873 	 * enabled.
874 	 */
875 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
876 	for (i = 32; i < GIC_LINE_NR; i++)
877 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
878 
879 	for (i = 0; i < GIC_ESPI_NR; i++)
880 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
881 }
882 
883 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
884 {
885 	int ret = -ENODEV;
886 	int i;
887 
888 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
889 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
890 		u64 typer;
891 		u32 reg;
892 
893 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
894 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
895 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
896 			pr_warn("No redistributor present @%p\n", ptr);
897 			break;
898 		}
899 
900 		do {
901 			typer = gic_read_typer(ptr + GICR_TYPER);
902 			ret = fn(gic_data.redist_regions + i, ptr);
903 			if (!ret)
904 				return 0;
905 
906 			if (gic_data.redist_regions[i].single_redist)
907 				break;
908 
909 			if (gic_data.redist_stride) {
910 				ptr += gic_data.redist_stride;
911 			} else {
912 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
913 				if (typer & GICR_TYPER_VLPIS)
914 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
915 			}
916 		} while (!(typer & GICR_TYPER_LAST));
917 	}
918 
919 	return ret ? -ENODEV : 0;
920 }
921 
922 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
923 {
924 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
925 	u64 typer;
926 	u32 aff;
927 
928 	/*
929 	 * Convert affinity to a 32bit value that can be matched to
930 	 * GICR_TYPER bits [63:32].
931 	 */
932 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
933 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
934 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
935 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
936 
937 	typer = gic_read_typer(ptr + GICR_TYPER);
938 	if ((typer >> 32) == aff) {
939 		u64 offset = ptr - region->redist_base;
940 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
941 		gic_data_rdist_rd_base() = ptr;
942 		gic_data_rdist()->phys_base = region->phys_base + offset;
943 
944 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
945 			smp_processor_id(), mpidr,
946 			(int)(region - gic_data.redist_regions),
947 			&gic_data_rdist()->phys_base);
948 		return 0;
949 	}
950 
951 	/* Try next one */
952 	return 1;
953 }
954 
955 static int gic_populate_rdist(void)
956 {
957 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
958 		return 0;
959 
960 	/* We couldn't even deal with ourselves... */
961 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
962 	     smp_processor_id(),
963 	     (unsigned long)cpu_logical_map(smp_processor_id()));
964 	return -ENODEV;
965 }
966 
967 static int __gic_update_rdist_properties(struct redist_region *region,
968 					 void __iomem *ptr)
969 {
970 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
971 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
972 
973 	/* Boot-time cleanup */
974 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
975 		u64 val;
976 
977 		/* Deactivate any present vPE */
978 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
979 		if (val & GICR_VPENDBASER_Valid)
980 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
981 					      ptr + SZ_128K + GICR_VPENDBASER);
982 
983 		/* Mark the VPE table as invalid */
984 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
985 		val &= ~GICR_VPROPBASER_4_1_VALID;
986 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
987 	}
988 
989 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
990 
991 	/*
992 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
993 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
994 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
995 	 *
996 	 * These are 3 different ways to express the same thing, depending
997 	 * on the revision of the architecture and its relaxations over
998 	 * time. Just group them under the 'direct_lpi' banner.
999 	 */
1000 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1001 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1002 					   !!(ctlr & GICR_CTLR_IR) |
1003 					   gic_data.rdists.has_rvpeid);
1004 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1005 
1006 	/* Detect non-sensical configurations */
1007 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1008 		gic_data.rdists.has_direct_lpi = false;
1009 		gic_data.rdists.has_vlpis = false;
1010 		gic_data.rdists.has_rvpeid = false;
1011 	}
1012 
1013 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1014 
1015 	return 1;
1016 }
1017 
1018 static void gic_update_rdist_properties(void)
1019 {
1020 	gic_data.ppi_nr = UINT_MAX;
1021 	gic_iterate_rdists(__gic_update_rdist_properties);
1022 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1023 		gic_data.ppi_nr = 0;
1024 	pr_info("GICv3 features: %d PPIs%s%s\n",
1025 		gic_data.ppi_nr,
1026 		gic_data.has_rss ? ", RSS" : "",
1027 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1028 
1029 	if (gic_data.rdists.has_vlpis)
1030 		pr_info("GICv4 features: %s%s%s\n",
1031 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1032 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1033 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1034 }
1035 
1036 /* Check whether it's single security state view */
1037 static inline bool gic_dist_security_disabled(void)
1038 {
1039 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1040 }
1041 
1042 static void gic_cpu_sys_reg_init(void)
1043 {
1044 	int i, cpu = smp_processor_id();
1045 	u64 mpidr = cpu_logical_map(cpu);
1046 	u64 need_rss = MPIDR_RS(mpidr);
1047 	bool group0;
1048 	u32 pribits;
1049 
1050 	/*
1051 	 * Need to check that the SRE bit has actually been set. If
1052 	 * not, it means that SRE is disabled at EL2. We're going to
1053 	 * die painfully, and there is nothing we can do about it.
1054 	 *
1055 	 * Kindly inform the luser.
1056 	 */
1057 	if (!gic_enable_sre())
1058 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1059 
1060 	pribits = gic_get_pribits();
1061 
1062 	group0 = gic_has_group0();
1063 
1064 	/* Set priority mask register */
1065 	if (!gic_prio_masking_enabled()) {
1066 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1067 	} else if (gic_supports_nmi()) {
1068 		/*
1069 		 * Mismatch configuration with boot CPU, the system is likely
1070 		 * to die as interrupt masking will not work properly on all
1071 		 * CPUs
1072 		 *
1073 		 * The boot CPU calls this function before enabling NMI support,
1074 		 * and as a result we'll never see this warning in the boot path
1075 		 * for that CPU.
1076 		 */
1077 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1078 			WARN_ON(!group0 || gic_dist_security_disabled());
1079 		else
1080 			WARN_ON(group0 && !gic_dist_security_disabled());
1081 	}
1082 
1083 	/*
1084 	 * Some firmwares hand over to the kernel with the BPR changed from
1085 	 * its reset value (and with a value large enough to prevent
1086 	 * any pre-emptive interrupts from working at all). Writing a zero
1087 	 * to BPR restores is reset value.
1088 	 */
1089 	gic_write_bpr1(0);
1090 
1091 	if (static_branch_likely(&supports_deactivate_key)) {
1092 		/* EOI drops priority only (mode 1) */
1093 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1094 	} else {
1095 		/* EOI deactivates interrupt too (mode 0) */
1096 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1097 	}
1098 
1099 	/* Always whack Group0 before Group1 */
1100 	if (group0) {
1101 		switch(pribits) {
1102 		case 8:
1103 		case 7:
1104 			write_gicreg(0, ICC_AP0R3_EL1);
1105 			write_gicreg(0, ICC_AP0R2_EL1);
1106 			fallthrough;
1107 		case 6:
1108 			write_gicreg(0, ICC_AP0R1_EL1);
1109 			fallthrough;
1110 		case 5:
1111 		case 4:
1112 			write_gicreg(0, ICC_AP0R0_EL1);
1113 		}
1114 
1115 		isb();
1116 	}
1117 
1118 	switch(pribits) {
1119 	case 8:
1120 	case 7:
1121 		write_gicreg(0, ICC_AP1R3_EL1);
1122 		write_gicreg(0, ICC_AP1R2_EL1);
1123 		fallthrough;
1124 	case 6:
1125 		write_gicreg(0, ICC_AP1R1_EL1);
1126 		fallthrough;
1127 	case 5:
1128 	case 4:
1129 		write_gicreg(0, ICC_AP1R0_EL1);
1130 	}
1131 
1132 	isb();
1133 
1134 	/* ... and let's hit the road... */
1135 	gic_write_grpen1(1);
1136 
1137 	/* Keep the RSS capability status in per_cpu variable */
1138 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1139 
1140 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1141 	for_each_online_cpu(i) {
1142 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1143 
1144 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1145 		if (need_rss && (!have_rss))
1146 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1147 				cpu, (unsigned long)mpidr,
1148 				i, (unsigned long)cpu_logical_map(i));
1149 	}
1150 
1151 	/**
1152 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1153 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1154 	 * UNPREDICTABLE choice of :
1155 	 *   - The write is ignored.
1156 	 *   - The RS field is treated as 0.
1157 	 */
1158 	if (need_rss && (!gic_data.has_rss))
1159 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1160 }
1161 
1162 static bool gicv3_nolpi;
1163 
1164 static int __init gicv3_nolpi_cfg(char *buf)
1165 {
1166 	return kstrtobool(buf, &gicv3_nolpi);
1167 }
1168 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1169 
1170 static int gic_dist_supports_lpis(void)
1171 {
1172 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1173 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1174 		!gicv3_nolpi);
1175 }
1176 
1177 static void gic_cpu_init(void)
1178 {
1179 	void __iomem *rbase;
1180 	int i;
1181 
1182 	/* Register ourselves with the rest of the world */
1183 	if (gic_populate_rdist())
1184 		return;
1185 
1186 	gic_enable_redist(true);
1187 
1188 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1189 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1190 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1191 	     smp_processor_id());
1192 
1193 	rbase = gic_data_rdist_sgi_base();
1194 
1195 	/* Configure SGIs/PPIs as non-secure Group-1 */
1196 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1197 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1198 
1199 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1200 
1201 	/* initialise system registers */
1202 	gic_cpu_sys_reg_init();
1203 }
1204 
1205 #ifdef CONFIG_SMP
1206 
1207 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1208 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1209 
1210 static int gic_starting_cpu(unsigned int cpu)
1211 {
1212 	gic_cpu_init();
1213 
1214 	if (gic_dist_supports_lpis())
1215 		its_cpu_init();
1216 
1217 	return 0;
1218 }
1219 
1220 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1221 				   unsigned long cluster_id)
1222 {
1223 	int next_cpu, cpu = *base_cpu;
1224 	unsigned long mpidr = cpu_logical_map(cpu);
1225 	u16 tlist = 0;
1226 
1227 	while (cpu < nr_cpu_ids) {
1228 		tlist |= 1 << (mpidr & 0xf);
1229 
1230 		next_cpu = cpumask_next(cpu, mask);
1231 		if (next_cpu >= nr_cpu_ids)
1232 			goto out;
1233 		cpu = next_cpu;
1234 
1235 		mpidr = cpu_logical_map(cpu);
1236 
1237 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1238 			cpu--;
1239 			goto out;
1240 		}
1241 	}
1242 out:
1243 	*base_cpu = cpu;
1244 	return tlist;
1245 }
1246 
1247 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1248 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1249 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1250 
1251 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1252 {
1253 	u64 val;
1254 
1255 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1256 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1257 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1258 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1259 	       MPIDR_TO_SGI_RS(cluster_id)		|
1260 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1261 
1262 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1263 	gic_write_sgi1r(val);
1264 }
1265 
1266 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1267 {
1268 	int cpu;
1269 
1270 	if (WARN_ON(d->hwirq >= 16))
1271 		return;
1272 
1273 	/*
1274 	 * Ensure that stores to Normal memory are visible to the
1275 	 * other CPUs before issuing the IPI.
1276 	 */
1277 	dsb(ishst);
1278 
1279 	for_each_cpu(cpu, mask) {
1280 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1281 		u16 tlist;
1282 
1283 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1284 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1285 	}
1286 
1287 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1288 	isb();
1289 }
1290 
1291 static void __init gic_smp_init(void)
1292 {
1293 	struct irq_fwspec sgi_fwspec = {
1294 		.fwnode		= gic_data.fwnode,
1295 		.param_count	= 1,
1296 	};
1297 	int base_sgi;
1298 
1299 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1300 				  "irqchip/arm/gicv3:starting",
1301 				  gic_starting_cpu, NULL);
1302 
1303 	/* Register all 8 non-secure SGIs */
1304 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1305 	if (WARN_ON(base_sgi <= 0))
1306 		return;
1307 
1308 	set_smp_ipi_range(base_sgi, 8);
1309 }
1310 
1311 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1312 			    bool force)
1313 {
1314 	unsigned int cpu;
1315 	u32 offset, index;
1316 	void __iomem *reg;
1317 	int enabled;
1318 	u64 val;
1319 
1320 	if (force)
1321 		cpu = cpumask_first(mask_val);
1322 	else
1323 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1324 
1325 	if (cpu >= nr_cpu_ids)
1326 		return -EINVAL;
1327 
1328 	if (gic_irq_in_rdist(d))
1329 		return -EINVAL;
1330 
1331 	/* If interrupt was enabled, disable it first */
1332 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1333 	if (enabled)
1334 		gic_mask_irq(d);
1335 
1336 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1337 	reg = gic_dist_base(d) + offset + (index * 8);
1338 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1339 
1340 	gic_write_irouter(val, reg);
1341 
1342 	/*
1343 	 * If the interrupt was enabled, enabled it again. Otherwise,
1344 	 * just wait for the distributor to have digested our changes.
1345 	 */
1346 	if (enabled)
1347 		gic_unmask_irq(d);
1348 
1349 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1350 
1351 	return IRQ_SET_MASK_OK_DONE;
1352 }
1353 #else
1354 #define gic_set_affinity	NULL
1355 #define gic_ipi_send_mask	NULL
1356 #define gic_smp_init()		do { } while(0)
1357 #endif
1358 
1359 static int gic_retrigger(struct irq_data *data)
1360 {
1361 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1362 }
1363 
1364 #ifdef CONFIG_CPU_PM
1365 static int gic_cpu_pm_notifier(struct notifier_block *self,
1366 			       unsigned long cmd, void *v)
1367 {
1368 	if (cmd == CPU_PM_EXIT) {
1369 		if (gic_dist_security_disabled())
1370 			gic_enable_redist(true);
1371 		gic_cpu_sys_reg_init();
1372 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1373 		gic_write_grpen1(0);
1374 		gic_enable_redist(false);
1375 	}
1376 	return NOTIFY_OK;
1377 }
1378 
1379 static struct notifier_block gic_cpu_pm_notifier_block = {
1380 	.notifier_call = gic_cpu_pm_notifier,
1381 };
1382 
1383 static void gic_cpu_pm_init(void)
1384 {
1385 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1386 }
1387 
1388 #else
1389 static inline void gic_cpu_pm_init(void) { }
1390 #endif /* CONFIG_CPU_PM */
1391 
1392 static struct irq_chip gic_chip = {
1393 	.name			= "GICv3",
1394 	.irq_mask		= gic_mask_irq,
1395 	.irq_unmask		= gic_unmask_irq,
1396 	.irq_eoi		= gic_eoi_irq,
1397 	.irq_set_type		= gic_set_type,
1398 	.irq_set_affinity	= gic_set_affinity,
1399 	.irq_retrigger          = gic_retrigger,
1400 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1401 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1402 	.irq_nmi_setup		= gic_irq_nmi_setup,
1403 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1404 	.ipi_send_mask		= gic_ipi_send_mask,
1405 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1406 				  IRQCHIP_SKIP_SET_WAKE |
1407 				  IRQCHIP_MASK_ON_SUSPEND,
1408 };
1409 
1410 static struct irq_chip gic_eoimode1_chip = {
1411 	.name			= "GICv3",
1412 	.irq_mask		= gic_eoimode1_mask_irq,
1413 	.irq_unmask		= gic_unmask_irq,
1414 	.irq_eoi		= gic_eoimode1_eoi_irq,
1415 	.irq_set_type		= gic_set_type,
1416 	.irq_set_affinity	= gic_set_affinity,
1417 	.irq_retrigger          = gic_retrigger,
1418 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1419 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1420 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1421 	.irq_nmi_setup		= gic_irq_nmi_setup,
1422 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1423 	.ipi_send_mask		= gic_ipi_send_mask,
1424 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1425 				  IRQCHIP_SKIP_SET_WAKE |
1426 				  IRQCHIP_MASK_ON_SUSPEND,
1427 };
1428 
1429 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1430 			      irq_hw_number_t hw)
1431 {
1432 	struct irq_chip *chip = &gic_chip;
1433 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1434 
1435 	if (static_branch_likely(&supports_deactivate_key))
1436 		chip = &gic_eoimode1_chip;
1437 
1438 	switch (__get_intid_range(hw)) {
1439 	case SGI_RANGE:
1440 	case PPI_RANGE:
1441 	case EPPI_RANGE:
1442 		irq_set_percpu_devid(irq);
1443 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1444 				    handle_percpu_devid_irq, NULL, NULL);
1445 		break;
1446 
1447 	case SPI_RANGE:
1448 	case ESPI_RANGE:
1449 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1450 				    handle_fasteoi_irq, NULL, NULL);
1451 		irq_set_probe(irq);
1452 		irqd_set_single_target(irqd);
1453 		break;
1454 
1455 	case LPI_RANGE:
1456 		if (!gic_dist_supports_lpis())
1457 			return -EPERM;
1458 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1459 				    handle_fasteoi_irq, NULL, NULL);
1460 		break;
1461 
1462 	default:
1463 		return -EPERM;
1464 	}
1465 
1466 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1467 	irqd_set_handle_enforce_irqctx(irqd);
1468 	return 0;
1469 }
1470 
1471 static int gic_irq_domain_translate(struct irq_domain *d,
1472 				    struct irq_fwspec *fwspec,
1473 				    unsigned long *hwirq,
1474 				    unsigned int *type)
1475 {
1476 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1477 		*hwirq = fwspec->param[0];
1478 		*type = IRQ_TYPE_EDGE_RISING;
1479 		return 0;
1480 	}
1481 
1482 	if (is_of_node(fwspec->fwnode)) {
1483 		if (fwspec->param_count < 3)
1484 			return -EINVAL;
1485 
1486 		switch (fwspec->param[0]) {
1487 		case 0:			/* SPI */
1488 			*hwirq = fwspec->param[1] + 32;
1489 			break;
1490 		case 1:			/* PPI */
1491 			*hwirq = fwspec->param[1] + 16;
1492 			break;
1493 		case 2:			/* ESPI */
1494 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1495 			break;
1496 		case 3:			/* EPPI */
1497 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1498 			break;
1499 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1500 			*hwirq = fwspec->param[1];
1501 			break;
1502 		case GIC_IRQ_TYPE_PARTITION:
1503 			*hwirq = fwspec->param[1];
1504 			if (fwspec->param[1] >= 16)
1505 				*hwirq += EPPI_BASE_INTID - 16;
1506 			else
1507 				*hwirq += 16;
1508 			break;
1509 		default:
1510 			return -EINVAL;
1511 		}
1512 
1513 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1514 
1515 		/*
1516 		 * Make it clear that broken DTs are... broken.
1517 		 * Partitioned PPIs are an unfortunate exception.
1518 		 */
1519 		WARN_ON(*type == IRQ_TYPE_NONE &&
1520 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1521 		return 0;
1522 	}
1523 
1524 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1525 		if(fwspec->param_count != 2)
1526 			return -EINVAL;
1527 
1528 		if (fwspec->param[0] < 16) {
1529 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1530 			       fwspec->param[0]);
1531 			return -EINVAL;
1532 		}
1533 
1534 		*hwirq = fwspec->param[0];
1535 		*type = fwspec->param[1];
1536 
1537 		WARN_ON(*type == IRQ_TYPE_NONE);
1538 		return 0;
1539 	}
1540 
1541 	return -EINVAL;
1542 }
1543 
1544 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1545 				unsigned int nr_irqs, void *arg)
1546 {
1547 	int i, ret;
1548 	irq_hw_number_t hwirq;
1549 	unsigned int type = IRQ_TYPE_NONE;
1550 	struct irq_fwspec *fwspec = arg;
1551 
1552 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1553 	if (ret)
1554 		return ret;
1555 
1556 	for (i = 0; i < nr_irqs; i++) {
1557 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1558 		if (ret)
1559 			return ret;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1566 				unsigned int nr_irqs)
1567 {
1568 	int i;
1569 
1570 	for (i = 0; i < nr_irqs; i++) {
1571 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1572 		irq_set_handler(virq + i, NULL);
1573 		irq_domain_reset_irq_data(d);
1574 	}
1575 }
1576 
1577 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1578 				      irq_hw_number_t hwirq)
1579 {
1580 	enum gic_intid_range range;
1581 
1582 	if (!gic_data.ppi_descs)
1583 		return false;
1584 
1585 	if (!is_of_node(fwspec->fwnode))
1586 		return false;
1587 
1588 	if (fwspec->param_count < 4 || !fwspec->param[3])
1589 		return false;
1590 
1591 	range = __get_intid_range(hwirq);
1592 	if (range != PPI_RANGE && range != EPPI_RANGE)
1593 		return false;
1594 
1595 	return true;
1596 }
1597 
1598 static int gic_irq_domain_select(struct irq_domain *d,
1599 				 struct irq_fwspec *fwspec,
1600 				 enum irq_domain_bus_token bus_token)
1601 {
1602 	unsigned int type, ret, ppi_idx;
1603 	irq_hw_number_t hwirq;
1604 
1605 	/* Not for us */
1606         if (fwspec->fwnode != d->fwnode)
1607 		return 0;
1608 
1609 	/* If this is not DT, then we have a single domain */
1610 	if (!is_of_node(fwspec->fwnode))
1611 		return 1;
1612 
1613 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1614 	if (WARN_ON_ONCE(ret))
1615 		return 0;
1616 
1617 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1618 		return d == gic_data.domain;
1619 
1620 	/*
1621 	 * If this is a PPI and we have a 4th (non-null) parameter,
1622 	 * then we need to match the partition domain.
1623 	 */
1624 	ppi_idx = __gic_get_ppi_index(hwirq);
1625 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1626 }
1627 
1628 static const struct irq_domain_ops gic_irq_domain_ops = {
1629 	.translate = gic_irq_domain_translate,
1630 	.alloc = gic_irq_domain_alloc,
1631 	.free = gic_irq_domain_free,
1632 	.select = gic_irq_domain_select,
1633 };
1634 
1635 static int partition_domain_translate(struct irq_domain *d,
1636 				      struct irq_fwspec *fwspec,
1637 				      unsigned long *hwirq,
1638 				      unsigned int *type)
1639 {
1640 	unsigned long ppi_intid;
1641 	struct device_node *np;
1642 	unsigned int ppi_idx;
1643 	int ret;
1644 
1645 	if (!gic_data.ppi_descs)
1646 		return -ENOMEM;
1647 
1648 	np = of_find_node_by_phandle(fwspec->param[3]);
1649 	if (WARN_ON(!np))
1650 		return -EINVAL;
1651 
1652 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1653 	if (WARN_ON_ONCE(ret))
1654 		return 0;
1655 
1656 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1657 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1658 				     of_node_to_fwnode(np));
1659 	if (ret < 0)
1660 		return ret;
1661 
1662 	*hwirq = ret;
1663 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1664 
1665 	return 0;
1666 }
1667 
1668 static const struct irq_domain_ops partition_domain_ops = {
1669 	.translate = partition_domain_translate,
1670 	.select = gic_irq_domain_select,
1671 };
1672 
1673 static bool gic_enable_quirk_msm8996(void *data)
1674 {
1675 	struct gic_chip_data *d = data;
1676 
1677 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1678 
1679 	return true;
1680 }
1681 
1682 static bool gic_enable_quirk_cavium_38539(void *data)
1683 {
1684 	struct gic_chip_data *d = data;
1685 
1686 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1687 
1688 	return true;
1689 }
1690 
1691 static bool gic_enable_quirk_hip06_07(void *data)
1692 {
1693 	struct gic_chip_data *d = data;
1694 
1695 	/*
1696 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1697 	 * not being an actual ARM implementation). The saving grace is
1698 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1699 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1700 	 * have ESPI. In both cases, put them right.
1701 	 */
1702 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1703 		/* Zero both ESPI and the RES0 field next to it... */
1704 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1705 		return true;
1706 	}
1707 
1708 	return false;
1709 }
1710 
1711 static const struct gic_quirk gic_quirks[] = {
1712 	{
1713 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1714 		.compatible = "qcom,msm8996-gic-v3",
1715 		.init	= gic_enable_quirk_msm8996,
1716 	},
1717 	{
1718 		.desc	= "GICv3: HIP06 erratum 161010803",
1719 		.iidr	= 0x0204043b,
1720 		.mask	= 0xffffffff,
1721 		.init	= gic_enable_quirk_hip06_07,
1722 	},
1723 	{
1724 		.desc	= "GICv3: HIP07 erratum 161010803",
1725 		.iidr	= 0x00000000,
1726 		.mask	= 0xffffffff,
1727 		.init	= gic_enable_quirk_hip06_07,
1728 	},
1729 	{
1730 		/*
1731 		 * Reserved register accesses generate a Synchronous
1732 		 * External Abort. This erratum applies to:
1733 		 * - ThunderX: CN88xx
1734 		 * - OCTEON TX: CN83xx, CN81xx
1735 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1736 		 */
1737 		.desc	= "GICv3: Cavium erratum 38539",
1738 		.iidr	= 0xa000034c,
1739 		.mask	= 0xe8f00fff,
1740 		.init	= gic_enable_quirk_cavium_38539,
1741 	},
1742 	{
1743 	}
1744 };
1745 
1746 static void gic_enable_nmi_support(void)
1747 {
1748 	int i;
1749 
1750 	if (!gic_prio_masking_enabled())
1751 		return;
1752 
1753 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1754 	if (!ppi_nmi_refs)
1755 		return;
1756 
1757 	for (i = 0; i < gic_data.ppi_nr; i++)
1758 		refcount_set(&ppi_nmi_refs[i], 0);
1759 
1760 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1761 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1762 
1763 	/*
1764 	 * How priority values are used by the GIC depends on two things:
1765 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1766 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1767 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1768 	 * ICC_PMR_EL1 register and the priority that software assigns to
1769 	 * interrupts:
1770 	 *
1771 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1772 	 * -----------------------------------------------------------
1773 	 *      1       |      -      |  unchanged  |    unchanged
1774 	 * -----------------------------------------------------------
1775 	 *      0       |      1      |  non-secure |    non-secure
1776 	 * -----------------------------------------------------------
1777 	 *      0       |      0      |  unchanged  |    non-secure
1778 	 *
1779 	 * where non-secure means that the value is right-shifted by one and the
1780 	 * MSB bit set, to make it fit in the non-secure priority range.
1781 	 *
1782 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1783 	 * are both either modified or unchanged, we can use the same set of
1784 	 * priorities.
1785 	 *
1786 	 * In the last case, where only the interrupt priorities are modified to
1787 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1788 	 * and the rest of the values that we use remain unchanged.
1789 	 */
1790 	if (gic_has_group0() && !gic_dist_security_disabled())
1791 		static_branch_enable(&gic_nonsecure_priorities);
1792 
1793 	static_branch_enable(&supports_pseudo_nmis);
1794 
1795 	if (static_branch_likely(&supports_deactivate_key))
1796 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1797 	else
1798 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1799 }
1800 
1801 static int __init gic_init_bases(void __iomem *dist_base,
1802 				 struct redist_region *rdist_regs,
1803 				 u32 nr_redist_regions,
1804 				 u64 redist_stride,
1805 				 struct fwnode_handle *handle)
1806 {
1807 	u32 typer;
1808 	int err;
1809 
1810 	if (!is_hyp_mode_available())
1811 		static_branch_disable(&supports_deactivate_key);
1812 
1813 	if (static_branch_likely(&supports_deactivate_key))
1814 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1815 
1816 	gic_data.fwnode = handle;
1817 	gic_data.dist_base = dist_base;
1818 	gic_data.redist_regions = rdist_regs;
1819 	gic_data.nr_redist_regions = nr_redist_regions;
1820 	gic_data.redist_stride = redist_stride;
1821 
1822 	/*
1823 	 * Find out how many interrupts are supported.
1824 	 */
1825 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1826 	gic_data.rdists.gicd_typer = typer;
1827 
1828 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1829 			  gic_quirks, &gic_data);
1830 
1831 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1832 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1833 
1834 	/*
1835 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1836 	 * architecture spec (which says that reserved registers are RES0).
1837 	 */
1838 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1839 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1840 
1841 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1842 						 &gic_data);
1843 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1844 	gic_data.rdists.has_rvpeid = true;
1845 	gic_data.rdists.has_vlpis = true;
1846 	gic_data.rdists.has_direct_lpi = true;
1847 	gic_data.rdists.has_vpend_valid_dirty = true;
1848 
1849 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1850 		err = -ENOMEM;
1851 		goto out_free;
1852 	}
1853 
1854 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1855 
1856 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1857 
1858 	if (typer & GICD_TYPER_MBIS) {
1859 		err = mbi_init(handle, gic_data.domain);
1860 		if (err)
1861 			pr_err("Failed to initialize MBIs\n");
1862 	}
1863 
1864 	set_handle_irq(gic_handle_irq);
1865 
1866 	gic_update_rdist_properties();
1867 
1868 	gic_dist_init();
1869 	gic_cpu_init();
1870 	gic_smp_init();
1871 	gic_cpu_pm_init();
1872 
1873 	if (gic_dist_supports_lpis()) {
1874 		its_init(handle, &gic_data.rdists, gic_data.domain);
1875 		its_cpu_init();
1876 		its_lpi_memreserve_init();
1877 	} else {
1878 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1879 			gicv2m_init(handle, gic_data.domain);
1880 	}
1881 
1882 	gic_enable_nmi_support();
1883 
1884 	return 0;
1885 
1886 out_free:
1887 	if (gic_data.domain)
1888 		irq_domain_remove(gic_data.domain);
1889 	free_percpu(gic_data.rdists.rdist);
1890 	return err;
1891 }
1892 
1893 static int __init gic_validate_dist_version(void __iomem *dist_base)
1894 {
1895 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1896 
1897 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1898 		return -ENODEV;
1899 
1900 	return 0;
1901 }
1902 
1903 /* Create all possible partitions at boot time */
1904 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1905 {
1906 	struct device_node *parts_node, *child_part;
1907 	int part_idx = 0, i;
1908 	int nr_parts;
1909 	struct partition_affinity *parts;
1910 
1911 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1912 	if (!parts_node)
1913 		return;
1914 
1915 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1916 	if (!gic_data.ppi_descs)
1917 		goto out_put_node;
1918 
1919 	nr_parts = of_get_child_count(parts_node);
1920 
1921 	if (!nr_parts)
1922 		goto out_put_node;
1923 
1924 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1925 	if (WARN_ON(!parts))
1926 		goto out_put_node;
1927 
1928 	for_each_child_of_node(parts_node, child_part) {
1929 		struct partition_affinity *part;
1930 		int n;
1931 
1932 		part = &parts[part_idx];
1933 
1934 		part->partition_id = of_node_to_fwnode(child_part);
1935 
1936 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1937 			child_part, part_idx);
1938 
1939 		n = of_property_count_elems_of_size(child_part, "affinity",
1940 						    sizeof(u32));
1941 		WARN_ON(n <= 0);
1942 
1943 		for (i = 0; i < n; i++) {
1944 			int err, cpu;
1945 			u32 cpu_phandle;
1946 			struct device_node *cpu_node;
1947 
1948 			err = of_property_read_u32_index(child_part, "affinity",
1949 							 i, &cpu_phandle);
1950 			if (WARN_ON(err))
1951 				continue;
1952 
1953 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1954 			if (WARN_ON(!cpu_node))
1955 				continue;
1956 
1957 			cpu = of_cpu_node_to_id(cpu_node);
1958 			if (WARN_ON(cpu < 0)) {
1959 				of_node_put(cpu_node);
1960 				continue;
1961 			}
1962 
1963 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1964 
1965 			cpumask_set_cpu(cpu, &part->mask);
1966 			of_node_put(cpu_node);
1967 		}
1968 
1969 		pr_cont("}\n");
1970 		part_idx++;
1971 	}
1972 
1973 	for (i = 0; i < gic_data.ppi_nr; i++) {
1974 		unsigned int irq;
1975 		struct partition_desc *desc;
1976 		struct irq_fwspec ppi_fwspec = {
1977 			.fwnode		= gic_data.fwnode,
1978 			.param_count	= 3,
1979 			.param		= {
1980 				[0]	= GIC_IRQ_TYPE_PARTITION,
1981 				[1]	= i,
1982 				[2]	= IRQ_TYPE_NONE,
1983 			},
1984 		};
1985 
1986 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1987 		if (WARN_ON(!irq))
1988 			continue;
1989 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1990 					     irq, &partition_domain_ops);
1991 		if (WARN_ON(!desc))
1992 			continue;
1993 
1994 		gic_data.ppi_descs[i] = desc;
1995 	}
1996 
1997 out_put_node:
1998 	of_node_put(parts_node);
1999 }
2000 
2001 static void __init gic_of_setup_kvm_info(struct device_node *node)
2002 {
2003 	int ret;
2004 	struct resource r;
2005 	u32 gicv_idx;
2006 
2007 	gic_v3_kvm_info.type = GIC_V3;
2008 
2009 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2010 	if (!gic_v3_kvm_info.maint_irq)
2011 		return;
2012 
2013 	if (of_property_read_u32(node, "#redistributor-regions",
2014 				 &gicv_idx))
2015 		gicv_idx = 1;
2016 
2017 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2018 	ret = of_address_to_resource(node, gicv_idx, &r);
2019 	if (!ret)
2020 		gic_v3_kvm_info.vcpu = r;
2021 
2022 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2023 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2024 	vgic_set_kvm_info(&gic_v3_kvm_info);
2025 }
2026 
2027 static void gic_request_region(resource_size_t base, resource_size_t size,
2028 			       const char *name)
2029 {
2030 	if (!request_mem_region(base, size, name))
2031 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2032 			     name, &base);
2033 }
2034 
2035 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2036 				  const char *name, struct resource *res)
2037 {
2038 	void __iomem *base;
2039 	int ret;
2040 
2041 	ret = of_address_to_resource(node, idx, res);
2042 	if (ret)
2043 		return IOMEM_ERR_PTR(ret);
2044 
2045 	gic_request_region(res->start, resource_size(res), name);
2046 	base = of_iomap(node, idx);
2047 
2048 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2049 }
2050 
2051 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2052 {
2053 	void __iomem *dist_base;
2054 	struct redist_region *rdist_regs;
2055 	struct resource res;
2056 	u64 redist_stride;
2057 	u32 nr_redist_regions;
2058 	int err, i;
2059 
2060 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2061 	if (IS_ERR(dist_base)) {
2062 		pr_err("%pOF: unable to map gic dist registers\n", node);
2063 		return PTR_ERR(dist_base);
2064 	}
2065 
2066 	err = gic_validate_dist_version(dist_base);
2067 	if (err) {
2068 		pr_err("%pOF: no distributor detected, giving up\n", node);
2069 		goto out_unmap_dist;
2070 	}
2071 
2072 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2073 		nr_redist_regions = 1;
2074 
2075 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2076 			     GFP_KERNEL);
2077 	if (!rdist_regs) {
2078 		err = -ENOMEM;
2079 		goto out_unmap_dist;
2080 	}
2081 
2082 	for (i = 0; i < nr_redist_regions; i++) {
2083 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2084 		if (IS_ERR(rdist_regs[i].redist_base)) {
2085 			pr_err("%pOF: couldn't map region %d\n", node, i);
2086 			err = -ENODEV;
2087 			goto out_unmap_rdist;
2088 		}
2089 		rdist_regs[i].phys_base = res.start;
2090 	}
2091 
2092 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2093 		redist_stride = 0;
2094 
2095 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2096 
2097 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2098 			     redist_stride, &node->fwnode);
2099 	if (err)
2100 		goto out_unmap_rdist;
2101 
2102 	gic_populate_ppi_partitions(node);
2103 
2104 	if (static_branch_likely(&supports_deactivate_key))
2105 		gic_of_setup_kvm_info(node);
2106 	return 0;
2107 
2108 out_unmap_rdist:
2109 	for (i = 0; i < nr_redist_regions; i++)
2110 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2111 			iounmap(rdist_regs[i].redist_base);
2112 	kfree(rdist_regs);
2113 out_unmap_dist:
2114 	iounmap(dist_base);
2115 	return err;
2116 }
2117 
2118 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2119 
2120 #ifdef CONFIG_ACPI
2121 static struct
2122 {
2123 	void __iomem *dist_base;
2124 	struct redist_region *redist_regs;
2125 	u32 nr_redist_regions;
2126 	bool single_redist;
2127 	int enabled_rdists;
2128 	u32 maint_irq;
2129 	int maint_irq_mode;
2130 	phys_addr_t vcpu_base;
2131 } acpi_data __initdata;
2132 
2133 static void __init
2134 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2135 {
2136 	static int count = 0;
2137 
2138 	acpi_data.redist_regs[count].phys_base = phys_base;
2139 	acpi_data.redist_regs[count].redist_base = redist_base;
2140 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2141 	count++;
2142 }
2143 
2144 static int __init
2145 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2146 			   const unsigned long end)
2147 {
2148 	struct acpi_madt_generic_redistributor *redist =
2149 			(struct acpi_madt_generic_redistributor *)header;
2150 	void __iomem *redist_base;
2151 
2152 	redist_base = ioremap(redist->base_address, redist->length);
2153 	if (!redist_base) {
2154 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2155 		return -ENOMEM;
2156 	}
2157 	gic_request_region(redist->base_address, redist->length, "GICR");
2158 
2159 	gic_acpi_register_redist(redist->base_address, redist_base);
2160 	return 0;
2161 }
2162 
2163 static int __init
2164 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2165 			 const unsigned long end)
2166 {
2167 	struct acpi_madt_generic_interrupt *gicc =
2168 				(struct acpi_madt_generic_interrupt *)header;
2169 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2170 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2171 	void __iomem *redist_base;
2172 
2173 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2174 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2175 		return 0;
2176 
2177 	redist_base = ioremap(gicc->gicr_base_address, size);
2178 	if (!redist_base)
2179 		return -ENOMEM;
2180 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2181 
2182 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2183 	return 0;
2184 }
2185 
2186 static int __init gic_acpi_collect_gicr_base(void)
2187 {
2188 	acpi_tbl_entry_handler redist_parser;
2189 	enum acpi_madt_type type;
2190 
2191 	if (acpi_data.single_redist) {
2192 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2193 		redist_parser = gic_acpi_parse_madt_gicc;
2194 	} else {
2195 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2196 		redist_parser = gic_acpi_parse_madt_redist;
2197 	}
2198 
2199 	/* Collect redistributor base addresses in GICR entries */
2200 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2201 		return 0;
2202 
2203 	pr_info("No valid GICR entries exist\n");
2204 	return -ENODEV;
2205 }
2206 
2207 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2208 				  const unsigned long end)
2209 {
2210 	/* Subtable presence means that redist exists, that's it */
2211 	return 0;
2212 }
2213 
2214 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2215 				      const unsigned long end)
2216 {
2217 	struct acpi_madt_generic_interrupt *gicc =
2218 				(struct acpi_madt_generic_interrupt *)header;
2219 
2220 	/*
2221 	 * If GICC is enabled and has valid gicr base address, then it means
2222 	 * GICR base is presented via GICC
2223 	 */
2224 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2225 		acpi_data.enabled_rdists++;
2226 		return 0;
2227 	}
2228 
2229 	/*
2230 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2231 	 * should not treat as errors, skip the entry instead of probe fail.
2232 	 */
2233 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2234 		return 0;
2235 
2236 	return -ENODEV;
2237 }
2238 
2239 static int __init gic_acpi_count_gicr_regions(void)
2240 {
2241 	int count;
2242 
2243 	/*
2244 	 * Count how many redistributor regions we have. It is not allowed
2245 	 * to mix redistributor description, GICR and GICC subtables have to be
2246 	 * mutually exclusive.
2247 	 */
2248 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2249 				      gic_acpi_match_gicr, 0);
2250 	if (count > 0) {
2251 		acpi_data.single_redist = false;
2252 		return count;
2253 	}
2254 
2255 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2256 				      gic_acpi_match_gicc, 0);
2257 	if (count > 0) {
2258 		acpi_data.single_redist = true;
2259 		count = acpi_data.enabled_rdists;
2260 	}
2261 
2262 	return count;
2263 }
2264 
2265 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2266 					   struct acpi_probe_entry *ape)
2267 {
2268 	struct acpi_madt_generic_distributor *dist;
2269 	int count;
2270 
2271 	dist = (struct acpi_madt_generic_distributor *)header;
2272 	if (dist->version != ape->driver_data)
2273 		return false;
2274 
2275 	/* We need to do that exercise anyway, the sooner the better */
2276 	count = gic_acpi_count_gicr_regions();
2277 	if (count <= 0)
2278 		return false;
2279 
2280 	acpi_data.nr_redist_regions = count;
2281 	return true;
2282 }
2283 
2284 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2285 						const unsigned long end)
2286 {
2287 	struct acpi_madt_generic_interrupt *gicc =
2288 		(struct acpi_madt_generic_interrupt *)header;
2289 	int maint_irq_mode;
2290 	static int first_madt = true;
2291 
2292 	/* Skip unusable CPUs */
2293 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2294 		return 0;
2295 
2296 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2297 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2298 
2299 	if (first_madt) {
2300 		first_madt = false;
2301 
2302 		acpi_data.maint_irq = gicc->vgic_interrupt;
2303 		acpi_data.maint_irq_mode = maint_irq_mode;
2304 		acpi_data.vcpu_base = gicc->gicv_base_address;
2305 
2306 		return 0;
2307 	}
2308 
2309 	/*
2310 	 * The maintenance interrupt and GICV should be the same for every CPU
2311 	 */
2312 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2313 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2314 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2315 		return -EINVAL;
2316 
2317 	return 0;
2318 }
2319 
2320 static bool __init gic_acpi_collect_virt_info(void)
2321 {
2322 	int count;
2323 
2324 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2325 				      gic_acpi_parse_virt_madt_gicc, 0);
2326 
2327 	return (count > 0);
2328 }
2329 
2330 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2331 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2332 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2333 
2334 static void __init gic_acpi_setup_kvm_info(void)
2335 {
2336 	int irq;
2337 
2338 	if (!gic_acpi_collect_virt_info()) {
2339 		pr_warn("Unable to get hardware information used for virtualization\n");
2340 		return;
2341 	}
2342 
2343 	gic_v3_kvm_info.type = GIC_V3;
2344 
2345 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2346 				acpi_data.maint_irq_mode,
2347 				ACPI_ACTIVE_HIGH);
2348 	if (irq <= 0)
2349 		return;
2350 
2351 	gic_v3_kvm_info.maint_irq = irq;
2352 
2353 	if (acpi_data.vcpu_base) {
2354 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2355 
2356 		vcpu->flags = IORESOURCE_MEM;
2357 		vcpu->start = acpi_data.vcpu_base;
2358 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2359 	}
2360 
2361 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2362 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2363 	vgic_set_kvm_info(&gic_v3_kvm_info);
2364 }
2365 
2366 static struct fwnode_handle *gsi_domain_handle;
2367 
2368 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2369 {
2370 	return gsi_domain_handle;
2371 }
2372 
2373 static int __init
2374 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2375 {
2376 	struct acpi_madt_generic_distributor *dist;
2377 	size_t size;
2378 	int i, err;
2379 
2380 	/* Get distributor base address */
2381 	dist = (struct acpi_madt_generic_distributor *)header;
2382 	acpi_data.dist_base = ioremap(dist->base_address,
2383 				      ACPI_GICV3_DIST_MEM_SIZE);
2384 	if (!acpi_data.dist_base) {
2385 		pr_err("Unable to map GICD registers\n");
2386 		return -ENOMEM;
2387 	}
2388 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2389 
2390 	err = gic_validate_dist_version(acpi_data.dist_base);
2391 	if (err) {
2392 		pr_err("No distributor detected at @%p, giving up\n",
2393 		       acpi_data.dist_base);
2394 		goto out_dist_unmap;
2395 	}
2396 
2397 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2398 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2399 	if (!acpi_data.redist_regs) {
2400 		err = -ENOMEM;
2401 		goto out_dist_unmap;
2402 	}
2403 
2404 	err = gic_acpi_collect_gicr_base();
2405 	if (err)
2406 		goto out_redist_unmap;
2407 
2408 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2409 	if (!gsi_domain_handle) {
2410 		err = -ENOMEM;
2411 		goto out_redist_unmap;
2412 	}
2413 
2414 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2415 			     acpi_data.nr_redist_regions, 0, gsi_domain_handle);
2416 	if (err)
2417 		goto out_fwhandle_free;
2418 
2419 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2420 
2421 	if (static_branch_likely(&supports_deactivate_key))
2422 		gic_acpi_setup_kvm_info();
2423 
2424 	return 0;
2425 
2426 out_fwhandle_free:
2427 	irq_domain_free_fwnode(gsi_domain_handle);
2428 out_redist_unmap:
2429 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2430 		if (acpi_data.redist_regs[i].redist_base)
2431 			iounmap(acpi_data.redist_regs[i].redist_base);
2432 	kfree(acpi_data.redist_regs);
2433 out_dist_unmap:
2434 	iounmap(acpi_data.dist_base);
2435 	return err;
2436 }
2437 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2438 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2439 		     gic_acpi_init);
2440 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2441 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2442 		     gic_acpi_init);
2443 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2444 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2445 		     gic_acpi_init);
2446 #endif
2447