xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
104 static refcount_t *ppi_nmi_refs;
105 
106 static struct gic_kvm_info gic_v3_kvm_info __initdata;
107 static DEFINE_PER_CPU(bool, has_rss);
108 
109 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
110 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
111 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
112 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
113 
114 /* Our default, arbitrary priority value. Linux only uses one anyway. */
115 #define DEFAULT_PMR_VALUE	0xf0
116 
117 enum gic_intid_range {
118 	SGI_RANGE,
119 	PPI_RANGE,
120 	SPI_RANGE,
121 	EPPI_RANGE,
122 	ESPI_RANGE,
123 	LPI_RANGE,
124 	__INVALID_RANGE__
125 };
126 
127 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
128 {
129 	switch (hwirq) {
130 	case 0 ... 15:
131 		return SGI_RANGE;
132 	case 16 ... 31:
133 		return PPI_RANGE;
134 	case 32 ... 1019:
135 		return SPI_RANGE;
136 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
137 		return EPPI_RANGE;
138 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
139 		return ESPI_RANGE;
140 	case 8192 ... GENMASK(23, 0):
141 		return LPI_RANGE;
142 	default:
143 		return __INVALID_RANGE__;
144 	}
145 }
146 
147 static enum gic_intid_range get_intid_range(struct irq_data *d)
148 {
149 	return __get_intid_range(d->hwirq);
150 }
151 
152 static inline unsigned int gic_irq(struct irq_data *d)
153 {
154 	return d->hwirq;
155 }
156 
157 static inline bool gic_irq_in_rdist(struct irq_data *d)
158 {
159 	switch (get_intid_range(d)) {
160 	case SGI_RANGE:
161 	case PPI_RANGE:
162 	case EPPI_RANGE:
163 		return true;
164 	default:
165 		return false;
166 	}
167 }
168 
169 static inline void __iomem *gic_dist_base(struct irq_data *d)
170 {
171 	switch (get_intid_range(d)) {
172 	case SGI_RANGE:
173 	case PPI_RANGE:
174 	case EPPI_RANGE:
175 		/* SGI+PPI -> SGI_base for this CPU */
176 		return gic_data_rdist_sgi_base();
177 
178 	case SPI_RANGE:
179 	case ESPI_RANGE:
180 		/* SPI -> dist_base */
181 		return gic_data.dist_base;
182 
183 	default:
184 		return NULL;
185 	}
186 }
187 
188 static void gic_do_wait_for_rwp(void __iomem *base)
189 {
190 	u32 count = 1000000;	/* 1s! */
191 
192 	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
193 		count--;
194 		if (!count) {
195 			pr_err_ratelimited("RWP timeout, gone fishing\n");
196 			return;
197 		}
198 		cpu_relax();
199 		udelay(1);
200 	}
201 }
202 
203 /* Wait for completion of a distributor change */
204 static void gic_dist_wait_for_rwp(void)
205 {
206 	gic_do_wait_for_rwp(gic_data.dist_base);
207 }
208 
209 /* Wait for completion of a redistributor change */
210 static void gic_redist_wait_for_rwp(void)
211 {
212 	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
213 }
214 
215 #ifdef CONFIG_ARM64
216 
217 static u64 __maybe_unused gic_read_iar(void)
218 {
219 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
220 		return gic_read_iar_cavium_thunderx();
221 	else
222 		return gic_read_iar_common();
223 }
224 #endif
225 
226 static void gic_enable_redist(bool enable)
227 {
228 	void __iomem *rbase;
229 	u32 count = 1000000;	/* 1s! */
230 	u32 val;
231 
232 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
233 		return;
234 
235 	rbase = gic_data_rdist_rd_base();
236 
237 	val = readl_relaxed(rbase + GICR_WAKER);
238 	if (enable)
239 		/* Wake up this CPU redistributor */
240 		val &= ~GICR_WAKER_ProcessorSleep;
241 	else
242 		val |= GICR_WAKER_ProcessorSleep;
243 	writel_relaxed(val, rbase + GICR_WAKER);
244 
245 	if (!enable) {		/* Check that GICR_WAKER is writeable */
246 		val = readl_relaxed(rbase + GICR_WAKER);
247 		if (!(val & GICR_WAKER_ProcessorSleep))
248 			return;	/* No PM support in this redistributor */
249 	}
250 
251 	while (--count) {
252 		val = readl_relaxed(rbase + GICR_WAKER);
253 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
254 			break;
255 		cpu_relax();
256 		udelay(1);
257 	}
258 	if (!count)
259 		pr_err_ratelimited("redistributor failed to %s...\n",
260 				   enable ? "wakeup" : "sleep");
261 }
262 
263 /*
264  * Routines to disable, enable, EOI and route interrupts
265  */
266 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
267 {
268 	switch (get_intid_range(d)) {
269 	case SGI_RANGE:
270 	case PPI_RANGE:
271 	case SPI_RANGE:
272 		*index = d->hwirq;
273 		return offset;
274 	case EPPI_RANGE:
275 		/*
276 		 * Contrary to the ESPI range, the EPPI range is contiguous
277 		 * to the PPI range in the registers, so let's adjust the
278 		 * displacement accordingly. Consistency is overrated.
279 		 */
280 		*index = d->hwirq - EPPI_BASE_INTID + 32;
281 		return offset;
282 	case ESPI_RANGE:
283 		*index = d->hwirq - ESPI_BASE_INTID;
284 		switch (offset) {
285 		case GICD_ISENABLER:
286 			return GICD_ISENABLERnE;
287 		case GICD_ICENABLER:
288 			return GICD_ICENABLERnE;
289 		case GICD_ISPENDR:
290 			return GICD_ISPENDRnE;
291 		case GICD_ICPENDR:
292 			return GICD_ICPENDRnE;
293 		case GICD_ISACTIVER:
294 			return GICD_ISACTIVERnE;
295 		case GICD_ICACTIVER:
296 			return GICD_ICACTIVERnE;
297 		case GICD_IPRIORITYR:
298 			return GICD_IPRIORITYRnE;
299 		case GICD_ICFGR:
300 			return GICD_ICFGRnE;
301 		case GICD_IROUTER:
302 			return GICD_IROUTERnE;
303 		default:
304 			break;
305 		}
306 		break;
307 	default:
308 		break;
309 	}
310 
311 	WARN_ON(1);
312 	*index = d->hwirq;
313 	return offset;
314 }
315 
316 static int gic_peek_irq(struct irq_data *d, u32 offset)
317 {
318 	void __iomem *base;
319 	u32 index, mask;
320 
321 	offset = convert_offset_index(d, offset, &index);
322 	mask = 1 << (index % 32);
323 
324 	if (gic_irq_in_rdist(d))
325 		base = gic_data_rdist_sgi_base();
326 	else
327 		base = gic_data.dist_base;
328 
329 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
330 }
331 
332 static void gic_poke_irq(struct irq_data *d, u32 offset)
333 {
334 	void (*rwp_wait)(void);
335 	void __iomem *base;
336 	u32 index, mask;
337 
338 	offset = convert_offset_index(d, offset, &index);
339 	mask = 1 << (index % 32);
340 
341 	if (gic_irq_in_rdist(d)) {
342 		base = gic_data_rdist_sgi_base();
343 		rwp_wait = gic_redist_wait_for_rwp;
344 	} else {
345 		base = gic_data.dist_base;
346 		rwp_wait = gic_dist_wait_for_rwp;
347 	}
348 
349 	writel_relaxed(mask, base + offset + (index / 32) * 4);
350 	rwp_wait();
351 }
352 
353 static void gic_mask_irq(struct irq_data *d)
354 {
355 	gic_poke_irq(d, GICD_ICENABLER);
356 }
357 
358 static void gic_eoimode1_mask_irq(struct irq_data *d)
359 {
360 	gic_mask_irq(d);
361 	/*
362 	 * When masking a forwarded interrupt, make sure it is
363 	 * deactivated as well.
364 	 *
365 	 * This ensures that an interrupt that is getting
366 	 * disabled/masked will not get "stuck", because there is
367 	 * noone to deactivate it (guest is being terminated).
368 	 */
369 	if (irqd_is_forwarded_to_vcpu(d))
370 		gic_poke_irq(d, GICD_ICACTIVER);
371 }
372 
373 static void gic_unmask_irq(struct irq_data *d)
374 {
375 	gic_poke_irq(d, GICD_ISENABLER);
376 }
377 
378 static inline bool gic_supports_nmi(void)
379 {
380 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
381 	       static_branch_likely(&supports_pseudo_nmis);
382 }
383 
384 static int gic_irq_set_irqchip_state(struct irq_data *d,
385 				     enum irqchip_irq_state which, bool val)
386 {
387 	u32 reg;
388 
389 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
390 		return -EINVAL;
391 
392 	switch (which) {
393 	case IRQCHIP_STATE_PENDING:
394 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
395 		break;
396 
397 	case IRQCHIP_STATE_ACTIVE:
398 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
399 		break;
400 
401 	case IRQCHIP_STATE_MASKED:
402 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
403 		break;
404 
405 	default:
406 		return -EINVAL;
407 	}
408 
409 	gic_poke_irq(d, reg);
410 	return 0;
411 }
412 
413 static int gic_irq_get_irqchip_state(struct irq_data *d,
414 				     enum irqchip_irq_state which, bool *val)
415 {
416 	if (d->hwirq >= 8192) /* PPI/SPI only */
417 		return -EINVAL;
418 
419 	switch (which) {
420 	case IRQCHIP_STATE_PENDING:
421 		*val = gic_peek_irq(d, GICD_ISPENDR);
422 		break;
423 
424 	case IRQCHIP_STATE_ACTIVE:
425 		*val = gic_peek_irq(d, GICD_ISACTIVER);
426 		break;
427 
428 	case IRQCHIP_STATE_MASKED:
429 		*val = !gic_peek_irq(d, GICD_ISENABLER);
430 		break;
431 
432 	default:
433 		return -EINVAL;
434 	}
435 
436 	return 0;
437 }
438 
439 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
440 {
441 	void __iomem *base = gic_dist_base(d);
442 	u32 offset, index;
443 
444 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
445 
446 	writeb_relaxed(prio, base + offset + index);
447 }
448 
449 static u32 gic_get_ppi_index(struct irq_data *d)
450 {
451 	switch (get_intid_range(d)) {
452 	case PPI_RANGE:
453 		return d->hwirq - 16;
454 	case EPPI_RANGE:
455 		return d->hwirq - EPPI_BASE_INTID + 16;
456 	default:
457 		unreachable();
458 	}
459 }
460 
461 static int gic_irq_nmi_setup(struct irq_data *d)
462 {
463 	struct irq_desc *desc = irq_to_desc(d->irq);
464 
465 	if (!gic_supports_nmi())
466 		return -EINVAL;
467 
468 	if (gic_peek_irq(d, GICD_ISENABLER)) {
469 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
470 		return -EINVAL;
471 	}
472 
473 	/*
474 	 * A secondary irq_chip should be in charge of LPI request,
475 	 * it should not be possible to get there
476 	 */
477 	if (WARN_ON(gic_irq(d) >= 8192))
478 		return -EINVAL;
479 
480 	/* desc lock should already be held */
481 	if (gic_irq_in_rdist(d)) {
482 		u32 idx = gic_get_ppi_index(d);
483 
484 		/* Setting up PPI as NMI, only switch handler for first NMI */
485 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
486 			refcount_set(&ppi_nmi_refs[idx], 1);
487 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
488 		}
489 	} else {
490 		desc->handle_irq = handle_fasteoi_nmi;
491 	}
492 
493 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
494 
495 	return 0;
496 }
497 
498 static void gic_irq_nmi_teardown(struct irq_data *d)
499 {
500 	struct irq_desc *desc = irq_to_desc(d->irq);
501 
502 	if (WARN_ON(!gic_supports_nmi()))
503 		return;
504 
505 	if (gic_peek_irq(d, GICD_ISENABLER)) {
506 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
507 		return;
508 	}
509 
510 	/*
511 	 * A secondary irq_chip should be in charge of LPI request,
512 	 * it should not be possible to get there
513 	 */
514 	if (WARN_ON(gic_irq(d) >= 8192))
515 		return;
516 
517 	/* desc lock should already be held */
518 	if (gic_irq_in_rdist(d)) {
519 		u32 idx = gic_get_ppi_index(d);
520 
521 		/* Tearing down NMI, only switch handler for last NMI */
522 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
523 			desc->handle_irq = handle_percpu_devid_irq;
524 	} else {
525 		desc->handle_irq = handle_fasteoi_irq;
526 	}
527 
528 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
529 }
530 
531 static void gic_eoi_irq(struct irq_data *d)
532 {
533 	gic_write_eoir(gic_irq(d));
534 }
535 
536 static void gic_eoimode1_eoi_irq(struct irq_data *d)
537 {
538 	/*
539 	 * No need to deactivate an LPI, or an interrupt that
540 	 * is is getting forwarded to a vcpu.
541 	 */
542 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
543 		return;
544 	gic_write_dir(gic_irq(d));
545 }
546 
547 static int gic_set_type(struct irq_data *d, unsigned int type)
548 {
549 	enum gic_intid_range range;
550 	unsigned int irq = gic_irq(d);
551 	void (*rwp_wait)(void);
552 	void __iomem *base;
553 	u32 offset, index;
554 	int ret;
555 
556 	range = get_intid_range(d);
557 
558 	/* Interrupt configuration for SGIs can't be changed */
559 	if (range == SGI_RANGE)
560 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
561 
562 	/* SPIs have restrictions on the supported types */
563 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
564 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
565 		return -EINVAL;
566 
567 	if (gic_irq_in_rdist(d)) {
568 		base = gic_data_rdist_sgi_base();
569 		rwp_wait = gic_redist_wait_for_rwp;
570 	} else {
571 		base = gic_data.dist_base;
572 		rwp_wait = gic_dist_wait_for_rwp;
573 	}
574 
575 	offset = convert_offset_index(d, GICD_ICFGR, &index);
576 
577 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
578 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
579 		/* Misconfigured PPIs are usually not fatal */
580 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
581 		ret = 0;
582 	}
583 
584 	return ret;
585 }
586 
587 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
588 {
589 	if (get_intid_range(d) == SGI_RANGE)
590 		return -EINVAL;
591 
592 	if (vcpu)
593 		irqd_set_forwarded_to_vcpu(d);
594 	else
595 		irqd_clr_forwarded_to_vcpu(d);
596 	return 0;
597 }
598 
599 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
600 {
601 	u64 aff;
602 
603 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
604 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
605 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
606 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
607 
608 	return aff;
609 }
610 
611 static void gic_deactivate_unhandled(u32 irqnr)
612 {
613 	if (static_branch_likely(&supports_deactivate_key)) {
614 		if (irqnr < 8192)
615 			gic_write_dir(irqnr);
616 	} else {
617 		gic_write_eoir(irqnr);
618 	}
619 }
620 
621 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
622 {
623 	bool irqs_enabled = interrupts_enabled(regs);
624 	int err;
625 
626 	if (irqs_enabled)
627 		nmi_enter();
628 
629 	if (static_branch_likely(&supports_deactivate_key))
630 		gic_write_eoir(irqnr);
631 	/*
632 	 * Leave the PSR.I bit set to prevent other NMIs to be
633 	 * received while handling this one.
634 	 * PSR.I will be restored when we ERET to the
635 	 * interrupted context.
636 	 */
637 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
638 	if (err)
639 		gic_deactivate_unhandled(irqnr);
640 
641 	if (irqs_enabled)
642 		nmi_exit();
643 }
644 
645 static u32 do_read_iar(struct pt_regs *regs)
646 {
647 	u32 iar;
648 
649 	if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
650 		u64 pmr;
651 
652 		/*
653 		 * We were in a context with IRQs disabled. However, the
654 		 * entry code has set PMR to a value that allows any
655 		 * interrupt to be acknowledged, and not just NMIs. This can
656 		 * lead to surprising effects if the NMI has been retired in
657 		 * the meantime, and that there is an IRQ pending. The IRQ
658 		 * would then be taken in NMI context, something that nobody
659 		 * wants to debug twice.
660 		 *
661 		 * Until we sort this, drop PMR again to a level that will
662 		 * actually only allow NMIs before reading IAR, and then
663 		 * restore it to what it was.
664 		 */
665 		pmr = gic_read_pmr();
666 		gic_pmr_mask_irqs();
667 		isb();
668 
669 		iar = gic_read_iar();
670 
671 		gic_write_pmr(pmr);
672 	} else {
673 		iar = gic_read_iar();
674 	}
675 
676 	return iar;
677 }
678 
679 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
680 {
681 	u32 irqnr;
682 
683 	irqnr = do_read_iar(regs);
684 
685 	/* Check for special IDs first */
686 	if ((irqnr >= 1020 && irqnr <= 1023))
687 		return;
688 
689 	if (gic_supports_nmi() &&
690 	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
691 		gic_handle_nmi(irqnr, regs);
692 		return;
693 	}
694 
695 	if (gic_prio_masking_enabled()) {
696 		gic_pmr_mask_irqs();
697 		gic_arch_enable_irqs();
698 	}
699 
700 	if (static_branch_likely(&supports_deactivate_key))
701 		gic_write_eoir(irqnr);
702 	else
703 		isb();
704 
705 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
706 		WARN_ONCE(true, "Unexpected interrupt received!\n");
707 		gic_deactivate_unhandled(irqnr);
708 	}
709 }
710 
711 static u32 gic_get_pribits(void)
712 {
713 	u32 pribits;
714 
715 	pribits = gic_read_ctlr();
716 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
717 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
718 	pribits++;
719 
720 	return pribits;
721 }
722 
723 static bool gic_has_group0(void)
724 {
725 	u32 val;
726 	u32 old_pmr;
727 
728 	old_pmr = gic_read_pmr();
729 
730 	/*
731 	 * Let's find out if Group0 is under control of EL3 or not by
732 	 * setting the highest possible, non-zero priority in PMR.
733 	 *
734 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
735 	 * order for the CPU interface to set bit 7, and keep the
736 	 * actual priority in the non-secure range. In the process, it
737 	 * looses the least significant bit and the actual priority
738 	 * becomes 0x80. Reading it back returns 0, indicating that
739 	 * we're don't have access to Group0.
740 	 */
741 	gic_write_pmr(BIT(8 - gic_get_pribits()));
742 	val = gic_read_pmr();
743 
744 	gic_write_pmr(old_pmr);
745 
746 	return val != 0;
747 }
748 
749 static void __init gic_dist_init(void)
750 {
751 	unsigned int i;
752 	u64 affinity;
753 	void __iomem *base = gic_data.dist_base;
754 	u32 val;
755 
756 	/* Disable the distributor */
757 	writel_relaxed(0, base + GICD_CTLR);
758 	gic_dist_wait_for_rwp();
759 
760 	/*
761 	 * Configure SPIs as non-secure Group-1. This will only matter
762 	 * if the GIC only has a single security state. This will not
763 	 * do the right thing if the kernel is running in secure mode,
764 	 * but that's not the intended use case anyway.
765 	 */
766 	for (i = 32; i < GIC_LINE_NR; i += 32)
767 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
768 
769 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
770 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
771 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
772 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
773 	}
774 
775 	for (i = 0; i < GIC_ESPI_NR; i += 32)
776 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
777 
778 	for (i = 0; i < GIC_ESPI_NR; i += 16)
779 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
780 
781 	for (i = 0; i < GIC_ESPI_NR; i += 4)
782 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
783 
784 	/* Now do the common stuff, and wait for the distributor to drain */
785 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
786 
787 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
788 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
789 		pr_info("Enabling SGIs without active state\n");
790 		val |= GICD_CTLR_nASSGIreq;
791 	}
792 
793 	/* Enable distributor with ARE, Group1 */
794 	writel_relaxed(val, base + GICD_CTLR);
795 
796 	/*
797 	 * Set all global interrupts to the boot CPU only. ARE must be
798 	 * enabled.
799 	 */
800 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
801 	for (i = 32; i < GIC_LINE_NR; i++)
802 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
803 
804 	for (i = 0; i < GIC_ESPI_NR; i++)
805 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
806 }
807 
808 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
809 {
810 	int ret = -ENODEV;
811 	int i;
812 
813 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
814 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
815 		u64 typer;
816 		u32 reg;
817 
818 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
819 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
820 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
821 			pr_warn("No redistributor present @%p\n", ptr);
822 			break;
823 		}
824 
825 		do {
826 			typer = gic_read_typer(ptr + GICR_TYPER);
827 			ret = fn(gic_data.redist_regions + i, ptr);
828 			if (!ret)
829 				return 0;
830 
831 			if (gic_data.redist_regions[i].single_redist)
832 				break;
833 
834 			if (gic_data.redist_stride) {
835 				ptr += gic_data.redist_stride;
836 			} else {
837 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
838 				if (typer & GICR_TYPER_VLPIS)
839 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
840 			}
841 		} while (!(typer & GICR_TYPER_LAST));
842 	}
843 
844 	return ret ? -ENODEV : 0;
845 }
846 
847 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
848 {
849 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
850 	u64 typer;
851 	u32 aff;
852 
853 	/*
854 	 * Convert affinity to a 32bit value that can be matched to
855 	 * GICR_TYPER bits [63:32].
856 	 */
857 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
858 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
859 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
860 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
861 
862 	typer = gic_read_typer(ptr + GICR_TYPER);
863 	if ((typer >> 32) == aff) {
864 		u64 offset = ptr - region->redist_base;
865 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
866 		gic_data_rdist_rd_base() = ptr;
867 		gic_data_rdist()->phys_base = region->phys_base + offset;
868 
869 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
870 			smp_processor_id(), mpidr,
871 			(int)(region - gic_data.redist_regions),
872 			&gic_data_rdist()->phys_base);
873 		return 0;
874 	}
875 
876 	/* Try next one */
877 	return 1;
878 }
879 
880 static int gic_populate_rdist(void)
881 {
882 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
883 		return 0;
884 
885 	/* We couldn't even deal with ourselves... */
886 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
887 	     smp_processor_id(),
888 	     (unsigned long)cpu_logical_map(smp_processor_id()));
889 	return -ENODEV;
890 }
891 
892 static int __gic_update_rdist_properties(struct redist_region *region,
893 					 void __iomem *ptr)
894 {
895 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
896 
897 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
898 
899 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
900 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
901 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
902 					   gic_data.rdists.has_rvpeid);
903 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
904 
905 	/* Detect non-sensical configurations */
906 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
907 		gic_data.rdists.has_direct_lpi = false;
908 		gic_data.rdists.has_vlpis = false;
909 		gic_data.rdists.has_rvpeid = false;
910 	}
911 
912 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
913 
914 	return 1;
915 }
916 
917 static void gic_update_rdist_properties(void)
918 {
919 	gic_data.ppi_nr = UINT_MAX;
920 	gic_iterate_rdists(__gic_update_rdist_properties);
921 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
922 		gic_data.ppi_nr = 0;
923 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
924 	if (gic_data.rdists.has_vlpis)
925 		pr_info("GICv4 features: %s%s%s\n",
926 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
927 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
928 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
929 }
930 
931 /* Check whether it's single security state view */
932 static inline bool gic_dist_security_disabled(void)
933 {
934 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
935 }
936 
937 static void gic_cpu_sys_reg_init(void)
938 {
939 	int i, cpu = smp_processor_id();
940 	u64 mpidr = cpu_logical_map(cpu);
941 	u64 need_rss = MPIDR_RS(mpidr);
942 	bool group0;
943 	u32 pribits;
944 
945 	/*
946 	 * Need to check that the SRE bit has actually been set. If
947 	 * not, it means that SRE is disabled at EL2. We're going to
948 	 * die painfully, and there is nothing we can do about it.
949 	 *
950 	 * Kindly inform the luser.
951 	 */
952 	if (!gic_enable_sre())
953 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
954 
955 	pribits = gic_get_pribits();
956 
957 	group0 = gic_has_group0();
958 
959 	/* Set priority mask register */
960 	if (!gic_prio_masking_enabled()) {
961 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
962 	} else if (gic_supports_nmi()) {
963 		/*
964 		 * Mismatch configuration with boot CPU, the system is likely
965 		 * to die as interrupt masking will not work properly on all
966 		 * CPUs
967 		 *
968 		 * The boot CPU calls this function before enabling NMI support,
969 		 * and as a result we'll never see this warning in the boot path
970 		 * for that CPU.
971 		 */
972 		if (static_branch_unlikely(&gic_nonsecure_priorities))
973 			WARN_ON(!group0 || gic_dist_security_disabled());
974 		else
975 			WARN_ON(group0 && !gic_dist_security_disabled());
976 	}
977 
978 	/*
979 	 * Some firmwares hand over to the kernel with the BPR changed from
980 	 * its reset value (and with a value large enough to prevent
981 	 * any pre-emptive interrupts from working at all). Writing a zero
982 	 * to BPR restores is reset value.
983 	 */
984 	gic_write_bpr1(0);
985 
986 	if (static_branch_likely(&supports_deactivate_key)) {
987 		/* EOI drops priority only (mode 1) */
988 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
989 	} else {
990 		/* EOI deactivates interrupt too (mode 0) */
991 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
992 	}
993 
994 	/* Always whack Group0 before Group1 */
995 	if (group0) {
996 		switch(pribits) {
997 		case 8:
998 		case 7:
999 			write_gicreg(0, ICC_AP0R3_EL1);
1000 			write_gicreg(0, ICC_AP0R2_EL1);
1001 			fallthrough;
1002 		case 6:
1003 			write_gicreg(0, ICC_AP0R1_EL1);
1004 			fallthrough;
1005 		case 5:
1006 		case 4:
1007 			write_gicreg(0, ICC_AP0R0_EL1);
1008 		}
1009 
1010 		isb();
1011 	}
1012 
1013 	switch(pribits) {
1014 	case 8:
1015 	case 7:
1016 		write_gicreg(0, ICC_AP1R3_EL1);
1017 		write_gicreg(0, ICC_AP1R2_EL1);
1018 		fallthrough;
1019 	case 6:
1020 		write_gicreg(0, ICC_AP1R1_EL1);
1021 		fallthrough;
1022 	case 5:
1023 	case 4:
1024 		write_gicreg(0, ICC_AP1R0_EL1);
1025 	}
1026 
1027 	isb();
1028 
1029 	/* ... and let's hit the road... */
1030 	gic_write_grpen1(1);
1031 
1032 	/* Keep the RSS capability status in per_cpu variable */
1033 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1034 
1035 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1036 	for_each_online_cpu(i) {
1037 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1038 
1039 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1040 		if (need_rss && (!have_rss))
1041 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1042 				cpu, (unsigned long)mpidr,
1043 				i, (unsigned long)cpu_logical_map(i));
1044 	}
1045 
1046 	/**
1047 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1048 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1049 	 * UNPREDICTABLE choice of :
1050 	 *   - The write is ignored.
1051 	 *   - The RS field is treated as 0.
1052 	 */
1053 	if (need_rss && (!gic_data.has_rss))
1054 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1055 }
1056 
1057 static bool gicv3_nolpi;
1058 
1059 static int __init gicv3_nolpi_cfg(char *buf)
1060 {
1061 	return strtobool(buf, &gicv3_nolpi);
1062 }
1063 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1064 
1065 static int gic_dist_supports_lpis(void)
1066 {
1067 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1068 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1069 		!gicv3_nolpi);
1070 }
1071 
1072 static void gic_cpu_init(void)
1073 {
1074 	void __iomem *rbase;
1075 	int i;
1076 
1077 	/* Register ourselves with the rest of the world */
1078 	if (gic_populate_rdist())
1079 		return;
1080 
1081 	gic_enable_redist(true);
1082 
1083 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1084 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1085 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1086 	     smp_processor_id());
1087 
1088 	rbase = gic_data_rdist_sgi_base();
1089 
1090 	/* Configure SGIs/PPIs as non-secure Group-1 */
1091 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1092 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1093 
1094 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1095 
1096 	/* initialise system registers */
1097 	gic_cpu_sys_reg_init();
1098 }
1099 
1100 #ifdef CONFIG_SMP
1101 
1102 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1103 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1104 
1105 static int gic_starting_cpu(unsigned int cpu)
1106 {
1107 	gic_cpu_init();
1108 
1109 	if (gic_dist_supports_lpis())
1110 		its_cpu_init();
1111 
1112 	return 0;
1113 }
1114 
1115 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1116 				   unsigned long cluster_id)
1117 {
1118 	int next_cpu, cpu = *base_cpu;
1119 	unsigned long mpidr = cpu_logical_map(cpu);
1120 	u16 tlist = 0;
1121 
1122 	while (cpu < nr_cpu_ids) {
1123 		tlist |= 1 << (mpidr & 0xf);
1124 
1125 		next_cpu = cpumask_next(cpu, mask);
1126 		if (next_cpu >= nr_cpu_ids)
1127 			goto out;
1128 		cpu = next_cpu;
1129 
1130 		mpidr = cpu_logical_map(cpu);
1131 
1132 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1133 			cpu--;
1134 			goto out;
1135 		}
1136 	}
1137 out:
1138 	*base_cpu = cpu;
1139 	return tlist;
1140 }
1141 
1142 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1143 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1144 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1145 
1146 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1147 {
1148 	u64 val;
1149 
1150 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1151 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1152 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1153 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1154 	       MPIDR_TO_SGI_RS(cluster_id)		|
1155 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1156 
1157 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1158 	gic_write_sgi1r(val);
1159 }
1160 
1161 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1162 {
1163 	int cpu;
1164 
1165 	if (WARN_ON(d->hwirq >= 16))
1166 		return;
1167 
1168 	/*
1169 	 * Ensure that stores to Normal memory are visible to the
1170 	 * other CPUs before issuing the IPI.
1171 	 */
1172 	wmb();
1173 
1174 	for_each_cpu(cpu, mask) {
1175 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1176 		u16 tlist;
1177 
1178 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1179 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1180 	}
1181 
1182 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1183 	isb();
1184 }
1185 
1186 static void __init gic_smp_init(void)
1187 {
1188 	struct irq_fwspec sgi_fwspec = {
1189 		.fwnode		= gic_data.fwnode,
1190 		.param_count	= 1,
1191 	};
1192 	int base_sgi;
1193 
1194 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1195 				  "irqchip/arm/gicv3:starting",
1196 				  gic_starting_cpu, NULL);
1197 
1198 	/* Register all 8 non-secure SGIs */
1199 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1200 					   NUMA_NO_NODE, &sgi_fwspec,
1201 					   false, NULL);
1202 	if (WARN_ON(base_sgi <= 0))
1203 		return;
1204 
1205 	set_smp_ipi_range(base_sgi, 8);
1206 }
1207 
1208 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1209 			    bool force)
1210 {
1211 	unsigned int cpu;
1212 	u32 offset, index;
1213 	void __iomem *reg;
1214 	int enabled;
1215 	u64 val;
1216 
1217 	if (force)
1218 		cpu = cpumask_first(mask_val);
1219 	else
1220 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1221 
1222 	if (cpu >= nr_cpu_ids)
1223 		return -EINVAL;
1224 
1225 	if (gic_irq_in_rdist(d))
1226 		return -EINVAL;
1227 
1228 	/* If interrupt was enabled, disable it first */
1229 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1230 	if (enabled)
1231 		gic_mask_irq(d);
1232 
1233 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1234 	reg = gic_dist_base(d) + offset + (index * 8);
1235 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1236 
1237 	gic_write_irouter(val, reg);
1238 
1239 	/*
1240 	 * If the interrupt was enabled, enabled it again. Otherwise,
1241 	 * just wait for the distributor to have digested our changes.
1242 	 */
1243 	if (enabled)
1244 		gic_unmask_irq(d);
1245 	else
1246 		gic_dist_wait_for_rwp();
1247 
1248 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1249 
1250 	return IRQ_SET_MASK_OK_DONE;
1251 }
1252 #else
1253 #define gic_set_affinity	NULL
1254 #define gic_ipi_send_mask	NULL
1255 #define gic_smp_init()		do { } while(0)
1256 #endif
1257 
1258 static int gic_retrigger(struct irq_data *data)
1259 {
1260 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1261 }
1262 
1263 #ifdef CONFIG_CPU_PM
1264 static int gic_cpu_pm_notifier(struct notifier_block *self,
1265 			       unsigned long cmd, void *v)
1266 {
1267 	if (cmd == CPU_PM_EXIT) {
1268 		if (gic_dist_security_disabled())
1269 			gic_enable_redist(true);
1270 		gic_cpu_sys_reg_init();
1271 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1272 		gic_write_grpen1(0);
1273 		gic_enable_redist(false);
1274 	}
1275 	return NOTIFY_OK;
1276 }
1277 
1278 static struct notifier_block gic_cpu_pm_notifier_block = {
1279 	.notifier_call = gic_cpu_pm_notifier,
1280 };
1281 
1282 static void gic_cpu_pm_init(void)
1283 {
1284 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1285 }
1286 
1287 #else
1288 static inline void gic_cpu_pm_init(void) { }
1289 #endif /* CONFIG_CPU_PM */
1290 
1291 static struct irq_chip gic_chip = {
1292 	.name			= "GICv3",
1293 	.irq_mask		= gic_mask_irq,
1294 	.irq_unmask		= gic_unmask_irq,
1295 	.irq_eoi		= gic_eoi_irq,
1296 	.irq_set_type		= gic_set_type,
1297 	.irq_set_affinity	= gic_set_affinity,
1298 	.irq_retrigger          = gic_retrigger,
1299 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1300 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1301 	.irq_nmi_setup		= gic_irq_nmi_setup,
1302 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1303 	.ipi_send_mask		= gic_ipi_send_mask,
1304 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1305 				  IRQCHIP_SKIP_SET_WAKE |
1306 				  IRQCHIP_MASK_ON_SUSPEND,
1307 };
1308 
1309 static struct irq_chip gic_eoimode1_chip = {
1310 	.name			= "GICv3",
1311 	.irq_mask		= gic_eoimode1_mask_irq,
1312 	.irq_unmask		= gic_unmask_irq,
1313 	.irq_eoi		= gic_eoimode1_eoi_irq,
1314 	.irq_set_type		= gic_set_type,
1315 	.irq_set_affinity	= gic_set_affinity,
1316 	.irq_retrigger          = gic_retrigger,
1317 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1318 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1319 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1320 	.irq_nmi_setup		= gic_irq_nmi_setup,
1321 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1322 	.ipi_send_mask		= gic_ipi_send_mask,
1323 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1324 				  IRQCHIP_SKIP_SET_WAKE |
1325 				  IRQCHIP_MASK_ON_SUSPEND,
1326 };
1327 
1328 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1329 			      irq_hw_number_t hw)
1330 {
1331 	struct irq_chip *chip = &gic_chip;
1332 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1333 
1334 	if (static_branch_likely(&supports_deactivate_key))
1335 		chip = &gic_eoimode1_chip;
1336 
1337 	switch (__get_intid_range(hw)) {
1338 	case SGI_RANGE:
1339 	case PPI_RANGE:
1340 	case EPPI_RANGE:
1341 		irq_set_percpu_devid(irq);
1342 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1343 				    handle_percpu_devid_irq, NULL, NULL);
1344 		break;
1345 
1346 	case SPI_RANGE:
1347 	case ESPI_RANGE:
1348 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1349 				    handle_fasteoi_irq, NULL, NULL);
1350 		irq_set_probe(irq);
1351 		irqd_set_single_target(irqd);
1352 		break;
1353 
1354 	case LPI_RANGE:
1355 		if (!gic_dist_supports_lpis())
1356 			return -EPERM;
1357 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1358 				    handle_fasteoi_irq, NULL, NULL);
1359 		break;
1360 
1361 	default:
1362 		return -EPERM;
1363 	}
1364 
1365 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1366 	irqd_set_handle_enforce_irqctx(irqd);
1367 	return 0;
1368 }
1369 
1370 static int gic_irq_domain_translate(struct irq_domain *d,
1371 				    struct irq_fwspec *fwspec,
1372 				    unsigned long *hwirq,
1373 				    unsigned int *type)
1374 {
1375 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1376 		*hwirq = fwspec->param[0];
1377 		*type = IRQ_TYPE_EDGE_RISING;
1378 		return 0;
1379 	}
1380 
1381 	if (is_of_node(fwspec->fwnode)) {
1382 		if (fwspec->param_count < 3)
1383 			return -EINVAL;
1384 
1385 		switch (fwspec->param[0]) {
1386 		case 0:			/* SPI */
1387 			*hwirq = fwspec->param[1] + 32;
1388 			break;
1389 		case 1:			/* PPI */
1390 			*hwirq = fwspec->param[1] + 16;
1391 			break;
1392 		case 2:			/* ESPI */
1393 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1394 			break;
1395 		case 3:			/* EPPI */
1396 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1397 			break;
1398 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1399 			*hwirq = fwspec->param[1];
1400 			break;
1401 		case GIC_IRQ_TYPE_PARTITION:
1402 			*hwirq = fwspec->param[1];
1403 			if (fwspec->param[1] >= 16)
1404 				*hwirq += EPPI_BASE_INTID - 16;
1405 			else
1406 				*hwirq += 16;
1407 			break;
1408 		default:
1409 			return -EINVAL;
1410 		}
1411 
1412 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1413 
1414 		/*
1415 		 * Make it clear that broken DTs are... broken.
1416 		 * Partitioned PPIs are an unfortunate exception.
1417 		 */
1418 		WARN_ON(*type == IRQ_TYPE_NONE &&
1419 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1420 		return 0;
1421 	}
1422 
1423 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1424 		if(fwspec->param_count != 2)
1425 			return -EINVAL;
1426 
1427 		*hwirq = fwspec->param[0];
1428 		*type = fwspec->param[1];
1429 
1430 		WARN_ON(*type == IRQ_TYPE_NONE);
1431 		return 0;
1432 	}
1433 
1434 	return -EINVAL;
1435 }
1436 
1437 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1438 				unsigned int nr_irqs, void *arg)
1439 {
1440 	int i, ret;
1441 	irq_hw_number_t hwirq;
1442 	unsigned int type = IRQ_TYPE_NONE;
1443 	struct irq_fwspec *fwspec = arg;
1444 
1445 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1446 	if (ret)
1447 		return ret;
1448 
1449 	for (i = 0; i < nr_irqs; i++) {
1450 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1451 		if (ret)
1452 			return ret;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1459 				unsigned int nr_irqs)
1460 {
1461 	int i;
1462 
1463 	for (i = 0; i < nr_irqs; i++) {
1464 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1465 		irq_set_handler(virq + i, NULL);
1466 		irq_domain_reset_irq_data(d);
1467 	}
1468 }
1469 
1470 static int gic_irq_domain_select(struct irq_domain *d,
1471 				 struct irq_fwspec *fwspec,
1472 				 enum irq_domain_bus_token bus_token)
1473 {
1474 	/* Not for us */
1475         if (fwspec->fwnode != d->fwnode)
1476 		return 0;
1477 
1478 	/* If this is not DT, then we have a single domain */
1479 	if (!is_of_node(fwspec->fwnode))
1480 		return 1;
1481 
1482 	/*
1483 	 * If this is a PPI and we have a 4th (non-null) parameter,
1484 	 * then we need to match the partition domain.
1485 	 */
1486 	if (fwspec->param_count >= 4 &&
1487 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1488 	    gic_data.ppi_descs)
1489 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1490 
1491 	return d == gic_data.domain;
1492 }
1493 
1494 static const struct irq_domain_ops gic_irq_domain_ops = {
1495 	.translate = gic_irq_domain_translate,
1496 	.alloc = gic_irq_domain_alloc,
1497 	.free = gic_irq_domain_free,
1498 	.select = gic_irq_domain_select,
1499 };
1500 
1501 static int partition_domain_translate(struct irq_domain *d,
1502 				      struct irq_fwspec *fwspec,
1503 				      unsigned long *hwirq,
1504 				      unsigned int *type)
1505 {
1506 	struct device_node *np;
1507 	int ret;
1508 
1509 	if (!gic_data.ppi_descs)
1510 		return -ENOMEM;
1511 
1512 	np = of_find_node_by_phandle(fwspec->param[3]);
1513 	if (WARN_ON(!np))
1514 		return -EINVAL;
1515 
1516 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1517 				     of_node_to_fwnode(np));
1518 	if (ret < 0)
1519 		return ret;
1520 
1521 	*hwirq = ret;
1522 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1523 
1524 	return 0;
1525 }
1526 
1527 static const struct irq_domain_ops partition_domain_ops = {
1528 	.translate = partition_domain_translate,
1529 	.select = gic_irq_domain_select,
1530 };
1531 
1532 static bool gic_enable_quirk_msm8996(void *data)
1533 {
1534 	struct gic_chip_data *d = data;
1535 
1536 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1537 
1538 	return true;
1539 }
1540 
1541 static bool gic_enable_quirk_cavium_38539(void *data)
1542 {
1543 	struct gic_chip_data *d = data;
1544 
1545 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1546 
1547 	return true;
1548 }
1549 
1550 static bool gic_enable_quirk_hip06_07(void *data)
1551 {
1552 	struct gic_chip_data *d = data;
1553 
1554 	/*
1555 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1556 	 * not being an actual ARM implementation). The saving grace is
1557 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1558 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1559 	 * have ESPI. In both cases, put them right.
1560 	 */
1561 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1562 		/* Zero both ESPI and the RES0 field next to it... */
1563 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1564 		return true;
1565 	}
1566 
1567 	return false;
1568 }
1569 
1570 static const struct gic_quirk gic_quirks[] = {
1571 	{
1572 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1573 		.compatible = "qcom,msm8996-gic-v3",
1574 		.init	= gic_enable_quirk_msm8996,
1575 	},
1576 	{
1577 		.desc	= "GICv3: HIP06 erratum 161010803",
1578 		.iidr	= 0x0204043b,
1579 		.mask	= 0xffffffff,
1580 		.init	= gic_enable_quirk_hip06_07,
1581 	},
1582 	{
1583 		.desc	= "GICv3: HIP07 erratum 161010803",
1584 		.iidr	= 0x00000000,
1585 		.mask	= 0xffffffff,
1586 		.init	= gic_enable_quirk_hip06_07,
1587 	},
1588 	{
1589 		/*
1590 		 * Reserved register accesses generate a Synchronous
1591 		 * External Abort. This erratum applies to:
1592 		 * - ThunderX: CN88xx
1593 		 * - OCTEON TX: CN83xx, CN81xx
1594 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1595 		 */
1596 		.desc	= "GICv3: Cavium erratum 38539",
1597 		.iidr	= 0xa000034c,
1598 		.mask	= 0xe8f00fff,
1599 		.init	= gic_enable_quirk_cavium_38539,
1600 	},
1601 	{
1602 	}
1603 };
1604 
1605 static void gic_enable_nmi_support(void)
1606 {
1607 	int i;
1608 
1609 	if (!gic_prio_masking_enabled())
1610 		return;
1611 
1612 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1613 	if (!ppi_nmi_refs)
1614 		return;
1615 
1616 	for (i = 0; i < gic_data.ppi_nr; i++)
1617 		refcount_set(&ppi_nmi_refs[i], 0);
1618 
1619 	/*
1620 	 * Linux itself doesn't use 1:N distribution, so has no need to
1621 	 * set PMHE. The only reason to have it set is if EL3 requires it
1622 	 * (and we can't change it).
1623 	 */
1624 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1625 		static_branch_enable(&gic_pmr_sync);
1626 
1627 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1628 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1629 
1630 	/*
1631 	 * How priority values are used by the GIC depends on two things:
1632 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1633 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1634 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1635 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1636 	 * interrupts:
1637 	 *
1638 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1639 	 * -----------------------------------------------------------
1640 	 *      1       |      -      |  unchanged  |    unchanged
1641 	 * -----------------------------------------------------------
1642 	 *      0       |      1      |  non-secure |    non-secure
1643 	 * -----------------------------------------------------------
1644 	 *      0       |      0      |  unchanged  |    non-secure
1645 	 *
1646 	 * where non-secure means that the value is right-shifted by one and the
1647 	 * MSB bit set, to make it fit in the non-secure priority range.
1648 	 *
1649 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1650 	 * are both either modified or unchanged, we can use the same set of
1651 	 * priorities.
1652 	 *
1653 	 * In the last case, where only the interrupt priorities are modified to
1654 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1655 	 * and the rest of the values that we use remain unchanged.
1656 	 */
1657 	if (gic_has_group0() && !gic_dist_security_disabled())
1658 		static_branch_enable(&gic_nonsecure_priorities);
1659 
1660 	static_branch_enable(&supports_pseudo_nmis);
1661 
1662 	if (static_branch_likely(&supports_deactivate_key))
1663 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1664 	else
1665 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1666 }
1667 
1668 static int __init gic_init_bases(void __iomem *dist_base,
1669 				 struct redist_region *rdist_regs,
1670 				 u32 nr_redist_regions,
1671 				 u64 redist_stride,
1672 				 struct fwnode_handle *handle)
1673 {
1674 	u32 typer;
1675 	int err;
1676 
1677 	if (!is_hyp_mode_available())
1678 		static_branch_disable(&supports_deactivate_key);
1679 
1680 	if (static_branch_likely(&supports_deactivate_key))
1681 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1682 
1683 	gic_data.fwnode = handle;
1684 	gic_data.dist_base = dist_base;
1685 	gic_data.redist_regions = rdist_regs;
1686 	gic_data.nr_redist_regions = nr_redist_regions;
1687 	gic_data.redist_stride = redist_stride;
1688 
1689 	/*
1690 	 * Find out how many interrupts are supported.
1691 	 */
1692 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1693 	gic_data.rdists.gicd_typer = typer;
1694 
1695 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1696 			  gic_quirks, &gic_data);
1697 
1698 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1699 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1700 
1701 	/*
1702 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1703 	 * architecture spec (which says that reserved registers are RES0).
1704 	 */
1705 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1706 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1707 
1708 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1709 						 &gic_data);
1710 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1711 	gic_data.rdists.has_rvpeid = true;
1712 	gic_data.rdists.has_vlpis = true;
1713 	gic_data.rdists.has_direct_lpi = true;
1714 	gic_data.rdists.has_vpend_valid_dirty = true;
1715 
1716 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1717 		err = -ENOMEM;
1718 		goto out_free;
1719 	}
1720 
1721 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1722 
1723 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1724 	pr_info("Distributor has %sRange Selector support\n",
1725 		gic_data.has_rss ? "" : "no ");
1726 
1727 	if (typer & GICD_TYPER_MBIS) {
1728 		err = mbi_init(handle, gic_data.domain);
1729 		if (err)
1730 			pr_err("Failed to initialize MBIs\n");
1731 	}
1732 
1733 	set_handle_irq(gic_handle_irq);
1734 
1735 	gic_update_rdist_properties();
1736 
1737 	gic_dist_init();
1738 	gic_cpu_init();
1739 	gic_smp_init();
1740 	gic_cpu_pm_init();
1741 
1742 	if (gic_dist_supports_lpis()) {
1743 		its_init(handle, &gic_data.rdists, gic_data.domain);
1744 		its_cpu_init();
1745 	} else {
1746 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1747 			gicv2m_init(handle, gic_data.domain);
1748 	}
1749 
1750 	gic_enable_nmi_support();
1751 
1752 	return 0;
1753 
1754 out_free:
1755 	if (gic_data.domain)
1756 		irq_domain_remove(gic_data.domain);
1757 	free_percpu(gic_data.rdists.rdist);
1758 	return err;
1759 }
1760 
1761 static int __init gic_validate_dist_version(void __iomem *dist_base)
1762 {
1763 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1764 
1765 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1766 		return -ENODEV;
1767 
1768 	return 0;
1769 }
1770 
1771 /* Create all possible partitions at boot time */
1772 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1773 {
1774 	struct device_node *parts_node, *child_part;
1775 	int part_idx = 0, i;
1776 	int nr_parts;
1777 	struct partition_affinity *parts;
1778 
1779 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1780 	if (!parts_node)
1781 		return;
1782 
1783 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1784 	if (!gic_data.ppi_descs)
1785 		return;
1786 
1787 	nr_parts = of_get_child_count(parts_node);
1788 
1789 	if (!nr_parts)
1790 		goto out_put_node;
1791 
1792 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1793 	if (WARN_ON(!parts))
1794 		goto out_put_node;
1795 
1796 	for_each_child_of_node(parts_node, child_part) {
1797 		struct partition_affinity *part;
1798 		int n;
1799 
1800 		part = &parts[part_idx];
1801 
1802 		part->partition_id = of_node_to_fwnode(child_part);
1803 
1804 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1805 			child_part, part_idx);
1806 
1807 		n = of_property_count_elems_of_size(child_part, "affinity",
1808 						    sizeof(u32));
1809 		WARN_ON(n <= 0);
1810 
1811 		for (i = 0; i < n; i++) {
1812 			int err, cpu;
1813 			u32 cpu_phandle;
1814 			struct device_node *cpu_node;
1815 
1816 			err = of_property_read_u32_index(child_part, "affinity",
1817 							 i, &cpu_phandle);
1818 			if (WARN_ON(err))
1819 				continue;
1820 
1821 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1822 			if (WARN_ON(!cpu_node))
1823 				continue;
1824 
1825 			cpu = of_cpu_node_to_id(cpu_node);
1826 			if (WARN_ON(cpu < 0))
1827 				continue;
1828 
1829 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1830 
1831 			cpumask_set_cpu(cpu, &part->mask);
1832 		}
1833 
1834 		pr_cont("}\n");
1835 		part_idx++;
1836 	}
1837 
1838 	for (i = 0; i < gic_data.ppi_nr; i++) {
1839 		unsigned int irq;
1840 		struct partition_desc *desc;
1841 		struct irq_fwspec ppi_fwspec = {
1842 			.fwnode		= gic_data.fwnode,
1843 			.param_count	= 3,
1844 			.param		= {
1845 				[0]	= GIC_IRQ_TYPE_PARTITION,
1846 				[1]	= i,
1847 				[2]	= IRQ_TYPE_NONE,
1848 			},
1849 		};
1850 
1851 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1852 		if (WARN_ON(!irq))
1853 			continue;
1854 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1855 					     irq, &partition_domain_ops);
1856 		if (WARN_ON(!desc))
1857 			continue;
1858 
1859 		gic_data.ppi_descs[i] = desc;
1860 	}
1861 
1862 out_put_node:
1863 	of_node_put(parts_node);
1864 }
1865 
1866 static void __init gic_of_setup_kvm_info(struct device_node *node)
1867 {
1868 	int ret;
1869 	struct resource r;
1870 	u32 gicv_idx;
1871 
1872 	gic_v3_kvm_info.type = GIC_V3;
1873 
1874 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1875 	if (!gic_v3_kvm_info.maint_irq)
1876 		return;
1877 
1878 	if (of_property_read_u32(node, "#redistributor-regions",
1879 				 &gicv_idx))
1880 		gicv_idx = 1;
1881 
1882 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1883 	ret = of_address_to_resource(node, gicv_idx, &r);
1884 	if (!ret)
1885 		gic_v3_kvm_info.vcpu = r;
1886 
1887 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1888 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1889 	vgic_set_kvm_info(&gic_v3_kvm_info);
1890 }
1891 
1892 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1893 {
1894 	void __iomem *dist_base;
1895 	struct redist_region *rdist_regs;
1896 	u64 redist_stride;
1897 	u32 nr_redist_regions;
1898 	int err, i;
1899 
1900 	dist_base = of_iomap(node, 0);
1901 	if (!dist_base) {
1902 		pr_err("%pOF: unable to map gic dist registers\n", node);
1903 		return -ENXIO;
1904 	}
1905 
1906 	err = gic_validate_dist_version(dist_base);
1907 	if (err) {
1908 		pr_err("%pOF: no distributor detected, giving up\n", node);
1909 		goto out_unmap_dist;
1910 	}
1911 
1912 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1913 		nr_redist_regions = 1;
1914 
1915 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1916 			     GFP_KERNEL);
1917 	if (!rdist_regs) {
1918 		err = -ENOMEM;
1919 		goto out_unmap_dist;
1920 	}
1921 
1922 	for (i = 0; i < nr_redist_regions; i++) {
1923 		struct resource res;
1924 		int ret;
1925 
1926 		ret = of_address_to_resource(node, 1 + i, &res);
1927 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1928 		if (ret || !rdist_regs[i].redist_base) {
1929 			pr_err("%pOF: couldn't map region %d\n", node, i);
1930 			err = -ENODEV;
1931 			goto out_unmap_rdist;
1932 		}
1933 		rdist_regs[i].phys_base = res.start;
1934 	}
1935 
1936 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1937 		redist_stride = 0;
1938 
1939 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
1940 
1941 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1942 			     redist_stride, &node->fwnode);
1943 	if (err)
1944 		goto out_unmap_rdist;
1945 
1946 	gic_populate_ppi_partitions(node);
1947 
1948 	if (static_branch_likely(&supports_deactivate_key))
1949 		gic_of_setup_kvm_info(node);
1950 	return 0;
1951 
1952 out_unmap_rdist:
1953 	for (i = 0; i < nr_redist_regions; i++)
1954 		if (rdist_regs[i].redist_base)
1955 			iounmap(rdist_regs[i].redist_base);
1956 	kfree(rdist_regs);
1957 out_unmap_dist:
1958 	iounmap(dist_base);
1959 	return err;
1960 }
1961 
1962 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1963 
1964 #ifdef CONFIG_ACPI
1965 static struct
1966 {
1967 	void __iomem *dist_base;
1968 	struct redist_region *redist_regs;
1969 	u32 nr_redist_regions;
1970 	bool single_redist;
1971 	int enabled_rdists;
1972 	u32 maint_irq;
1973 	int maint_irq_mode;
1974 	phys_addr_t vcpu_base;
1975 } acpi_data __initdata;
1976 
1977 static void __init
1978 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
1979 {
1980 	static int count = 0;
1981 
1982 	acpi_data.redist_regs[count].phys_base = phys_base;
1983 	acpi_data.redist_regs[count].redist_base = redist_base;
1984 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1985 	count++;
1986 }
1987 
1988 static int __init
1989 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1990 			   const unsigned long end)
1991 {
1992 	struct acpi_madt_generic_redistributor *redist =
1993 			(struct acpi_madt_generic_redistributor *)header;
1994 	void __iomem *redist_base;
1995 
1996 	redist_base = ioremap(redist->base_address, redist->length);
1997 	if (!redist_base) {
1998 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
1999 		return -ENOMEM;
2000 	}
2001 
2002 	gic_acpi_register_redist(redist->base_address, redist_base);
2003 	return 0;
2004 }
2005 
2006 static int __init
2007 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2008 			 const unsigned long end)
2009 {
2010 	struct acpi_madt_generic_interrupt *gicc =
2011 				(struct acpi_madt_generic_interrupt *)header;
2012 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2013 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2014 	void __iomem *redist_base;
2015 
2016 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2017 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2018 		return 0;
2019 
2020 	redist_base = ioremap(gicc->gicr_base_address, size);
2021 	if (!redist_base)
2022 		return -ENOMEM;
2023 
2024 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2025 	return 0;
2026 }
2027 
2028 static int __init gic_acpi_collect_gicr_base(void)
2029 {
2030 	acpi_tbl_entry_handler redist_parser;
2031 	enum acpi_madt_type type;
2032 
2033 	if (acpi_data.single_redist) {
2034 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2035 		redist_parser = gic_acpi_parse_madt_gicc;
2036 	} else {
2037 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2038 		redist_parser = gic_acpi_parse_madt_redist;
2039 	}
2040 
2041 	/* Collect redistributor base addresses in GICR entries */
2042 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2043 		return 0;
2044 
2045 	pr_info("No valid GICR entries exist\n");
2046 	return -ENODEV;
2047 }
2048 
2049 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2050 				  const unsigned long end)
2051 {
2052 	/* Subtable presence means that redist exists, that's it */
2053 	return 0;
2054 }
2055 
2056 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2057 				      const unsigned long end)
2058 {
2059 	struct acpi_madt_generic_interrupt *gicc =
2060 				(struct acpi_madt_generic_interrupt *)header;
2061 
2062 	/*
2063 	 * If GICC is enabled and has valid gicr base address, then it means
2064 	 * GICR base is presented via GICC
2065 	 */
2066 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2067 		acpi_data.enabled_rdists++;
2068 		return 0;
2069 	}
2070 
2071 	/*
2072 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2073 	 * should not treat as errors, skip the entry instead of probe fail.
2074 	 */
2075 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2076 		return 0;
2077 
2078 	return -ENODEV;
2079 }
2080 
2081 static int __init gic_acpi_count_gicr_regions(void)
2082 {
2083 	int count;
2084 
2085 	/*
2086 	 * Count how many redistributor regions we have. It is not allowed
2087 	 * to mix redistributor description, GICR and GICC subtables have to be
2088 	 * mutually exclusive.
2089 	 */
2090 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2091 				      gic_acpi_match_gicr, 0);
2092 	if (count > 0) {
2093 		acpi_data.single_redist = false;
2094 		return count;
2095 	}
2096 
2097 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2098 				      gic_acpi_match_gicc, 0);
2099 	if (count > 0) {
2100 		acpi_data.single_redist = true;
2101 		count = acpi_data.enabled_rdists;
2102 	}
2103 
2104 	return count;
2105 }
2106 
2107 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2108 					   struct acpi_probe_entry *ape)
2109 {
2110 	struct acpi_madt_generic_distributor *dist;
2111 	int count;
2112 
2113 	dist = (struct acpi_madt_generic_distributor *)header;
2114 	if (dist->version != ape->driver_data)
2115 		return false;
2116 
2117 	/* We need to do that exercise anyway, the sooner the better */
2118 	count = gic_acpi_count_gicr_regions();
2119 	if (count <= 0)
2120 		return false;
2121 
2122 	acpi_data.nr_redist_regions = count;
2123 	return true;
2124 }
2125 
2126 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2127 						const unsigned long end)
2128 {
2129 	struct acpi_madt_generic_interrupt *gicc =
2130 		(struct acpi_madt_generic_interrupt *)header;
2131 	int maint_irq_mode;
2132 	static int first_madt = true;
2133 
2134 	/* Skip unusable CPUs */
2135 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2136 		return 0;
2137 
2138 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2139 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2140 
2141 	if (first_madt) {
2142 		first_madt = false;
2143 
2144 		acpi_data.maint_irq = gicc->vgic_interrupt;
2145 		acpi_data.maint_irq_mode = maint_irq_mode;
2146 		acpi_data.vcpu_base = gicc->gicv_base_address;
2147 
2148 		return 0;
2149 	}
2150 
2151 	/*
2152 	 * The maintenance interrupt and GICV should be the same for every CPU
2153 	 */
2154 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2155 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2156 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2157 		return -EINVAL;
2158 
2159 	return 0;
2160 }
2161 
2162 static bool __init gic_acpi_collect_virt_info(void)
2163 {
2164 	int count;
2165 
2166 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2167 				      gic_acpi_parse_virt_madt_gicc, 0);
2168 
2169 	return (count > 0);
2170 }
2171 
2172 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2173 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2174 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2175 
2176 static void __init gic_acpi_setup_kvm_info(void)
2177 {
2178 	int irq;
2179 
2180 	if (!gic_acpi_collect_virt_info()) {
2181 		pr_warn("Unable to get hardware information used for virtualization\n");
2182 		return;
2183 	}
2184 
2185 	gic_v3_kvm_info.type = GIC_V3;
2186 
2187 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2188 				acpi_data.maint_irq_mode,
2189 				ACPI_ACTIVE_HIGH);
2190 	if (irq <= 0)
2191 		return;
2192 
2193 	gic_v3_kvm_info.maint_irq = irq;
2194 
2195 	if (acpi_data.vcpu_base) {
2196 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2197 
2198 		vcpu->flags = IORESOURCE_MEM;
2199 		vcpu->start = acpi_data.vcpu_base;
2200 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2201 	}
2202 
2203 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2204 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2205 	vgic_set_kvm_info(&gic_v3_kvm_info);
2206 }
2207 
2208 static int __init
2209 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2210 {
2211 	struct acpi_madt_generic_distributor *dist;
2212 	struct fwnode_handle *domain_handle;
2213 	size_t size;
2214 	int i, err;
2215 
2216 	/* Get distributor base address */
2217 	dist = (struct acpi_madt_generic_distributor *)header;
2218 	acpi_data.dist_base = ioremap(dist->base_address,
2219 				      ACPI_GICV3_DIST_MEM_SIZE);
2220 	if (!acpi_data.dist_base) {
2221 		pr_err("Unable to map GICD registers\n");
2222 		return -ENOMEM;
2223 	}
2224 
2225 	err = gic_validate_dist_version(acpi_data.dist_base);
2226 	if (err) {
2227 		pr_err("No distributor detected at @%p, giving up\n",
2228 		       acpi_data.dist_base);
2229 		goto out_dist_unmap;
2230 	}
2231 
2232 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2233 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2234 	if (!acpi_data.redist_regs) {
2235 		err = -ENOMEM;
2236 		goto out_dist_unmap;
2237 	}
2238 
2239 	err = gic_acpi_collect_gicr_base();
2240 	if (err)
2241 		goto out_redist_unmap;
2242 
2243 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2244 	if (!domain_handle) {
2245 		err = -ENOMEM;
2246 		goto out_redist_unmap;
2247 	}
2248 
2249 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2250 			     acpi_data.nr_redist_regions, 0, domain_handle);
2251 	if (err)
2252 		goto out_fwhandle_free;
2253 
2254 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2255 
2256 	if (static_branch_likely(&supports_deactivate_key))
2257 		gic_acpi_setup_kvm_info();
2258 
2259 	return 0;
2260 
2261 out_fwhandle_free:
2262 	irq_domain_free_fwnode(domain_handle);
2263 out_redist_unmap:
2264 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2265 		if (acpi_data.redist_regs[i].redist_base)
2266 			iounmap(acpi_data.redist_regs[i].redist_base);
2267 	kfree(acpi_data.redist_regs);
2268 out_dist_unmap:
2269 	iounmap(acpi_data.dist_base);
2270 	return err;
2271 }
2272 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2273 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2274 		     gic_acpi_init);
2275 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2276 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2277 		     gic_acpi_init);
2278 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2279 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2280 		     gic_acpi_init);
2281 #endif
2282