1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #define pr_fmt(fmt) "GICv3: " fmt 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpu_pm.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/kstrtox.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/percpu.h> 20 #include <linux/refcount.h> 21 #include <linux/slab.h> 22 23 #include <linux/irqchip.h> 24 #include <linux/irqchip/arm-gic-common.h> 25 #include <linux/irqchip/arm-gic-v3.h> 26 #include <linux/irqchip/irq-partition-percpu.h> 27 #include <linux/bitfield.h> 28 #include <linux/bits.h> 29 #include <linux/arm-smccc.h> 30 31 #include <asm/cputype.h> 32 #include <asm/exception.h> 33 #include <asm/smp_plat.h> 34 #include <asm/virt.h> 35 36 #include "irq-gic-common.h" 37 38 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80) 39 40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) 41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) 42 #define FLAGS_WORKAROUND_MTK_GICR_SAVE (1ULL << 2) 43 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 3) 44 45 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) 46 47 struct redist_region { 48 void __iomem *redist_base; 49 phys_addr_t phys_base; 50 bool single_redist; 51 }; 52 53 struct gic_chip_data { 54 struct fwnode_handle *fwnode; 55 phys_addr_t dist_phys_base; 56 void __iomem *dist_base; 57 struct redist_region *redist_regions; 58 struct rdists rdists; 59 struct irq_domain *domain; 60 u64 redist_stride; 61 u32 nr_redist_regions; 62 u64 flags; 63 bool has_rss; 64 unsigned int ppi_nr; 65 struct partition_desc **ppi_descs; 66 }; 67 68 #define T241_CHIPS_MAX 4 69 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; 70 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); 71 72 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); 73 74 static struct gic_chip_data gic_data __read_mostly; 75 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 76 77 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) 78 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) 79 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) 80 81 /* 82 * The behaviours of RPR and PMR registers differ depending on the value of 83 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the 84 * distributor and redistributors depends on whether security is enabled in the 85 * GIC. 86 * 87 * When security is enabled, non-secure priority values from the (re)distributor 88 * are presented to the GIC CPUIF as follow: 89 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; 90 * 91 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure 92 * EL1 are subject to a similar operation thus matching the priorities presented 93 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, 94 * these values are unchanged by the GIC. 95 * 96 * see GICv3/GICv4 Architecture Specification (IHI0069D): 97 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt 98 * priorities. 99 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 100 * interrupt. 101 */ 102 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); 103 104 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities); 105 EXPORT_SYMBOL(gic_nonsecure_priorities); 106 107 /* 108 * When the Non-secure world has access to group 0 interrupts (as a 109 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will 110 * return the Distributor's view of the interrupt priority. 111 * 112 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority 113 * written by software is moved to the Non-secure range by the Distributor. 114 * 115 * If both are true (which is when gic_nonsecure_priorities gets enabled), 116 * we need to shift down the priority programmed by software to match it 117 * against the value returned by ICC_RPR_EL1. 118 */ 119 #define GICD_INT_RPR_PRI(priority) \ 120 ({ \ 121 u32 __priority = (priority); \ 122 if (static_branch_unlikely(&gic_nonsecure_priorities)) \ 123 __priority = 0x80 | (__priority >> 1); \ 124 \ 125 __priority; \ 126 }) 127 128 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */ 129 static refcount_t *ppi_nmi_refs; 130 131 static struct gic_kvm_info gic_v3_kvm_info __initdata; 132 static DEFINE_PER_CPU(bool, has_rss); 133 134 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) 135 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) 136 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 137 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) 138 139 /* Our default, arbitrary priority value. Linux only uses one anyway. */ 140 #define DEFAULT_PMR_VALUE 0xf0 141 142 enum gic_intid_range { 143 SGI_RANGE, 144 PPI_RANGE, 145 SPI_RANGE, 146 EPPI_RANGE, 147 ESPI_RANGE, 148 LPI_RANGE, 149 __INVALID_RANGE__ 150 }; 151 152 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) 153 { 154 switch (hwirq) { 155 case 0 ... 15: 156 return SGI_RANGE; 157 case 16 ... 31: 158 return PPI_RANGE; 159 case 32 ... 1019: 160 return SPI_RANGE; 161 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): 162 return EPPI_RANGE; 163 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): 164 return ESPI_RANGE; 165 case 8192 ... GENMASK(23, 0): 166 return LPI_RANGE; 167 default: 168 return __INVALID_RANGE__; 169 } 170 } 171 172 static enum gic_intid_range get_intid_range(struct irq_data *d) 173 { 174 return __get_intid_range(d->hwirq); 175 } 176 177 static inline unsigned int gic_irq(struct irq_data *d) 178 { 179 return d->hwirq; 180 } 181 182 static inline bool gic_irq_in_rdist(struct irq_data *d) 183 { 184 switch (get_intid_range(d)) { 185 case SGI_RANGE: 186 case PPI_RANGE: 187 case EPPI_RANGE: 188 return true; 189 default: 190 return false; 191 } 192 } 193 194 static inline void __iomem *gic_dist_base_alias(struct irq_data *d) 195 { 196 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { 197 irq_hw_number_t hwirq = irqd_to_hwirq(d); 198 u32 chip; 199 200 /* 201 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} 202 * registers are directed to the chip that owns the SPI. The 203 * the alias region can also be used for writes to the 204 * GICD_In{E} except GICD_ICENABLERn. Each chip has support 205 * for 320 {E}SPIs. Mappings for all 4 chips: 206 * Chip0 = 32-351 207 * Chip1 = 352-671 208 * Chip2 = 672-991 209 * Chip3 = 4096-4415 210 */ 211 switch (__get_intid_range(hwirq)) { 212 case SPI_RANGE: 213 chip = (hwirq - 32) / 320; 214 break; 215 case ESPI_RANGE: 216 chip = 3; 217 break; 218 default: 219 unreachable(); 220 } 221 return t241_dist_base_alias[chip]; 222 } 223 224 return gic_data.dist_base; 225 } 226 227 static inline void __iomem *gic_dist_base(struct irq_data *d) 228 { 229 switch (get_intid_range(d)) { 230 case SGI_RANGE: 231 case PPI_RANGE: 232 case EPPI_RANGE: 233 /* SGI+PPI -> SGI_base for this CPU */ 234 return gic_data_rdist_sgi_base(); 235 236 case SPI_RANGE: 237 case ESPI_RANGE: 238 /* SPI -> dist_base */ 239 return gic_data.dist_base; 240 241 default: 242 return NULL; 243 } 244 } 245 246 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) 247 { 248 u32 count = 1000000; /* 1s! */ 249 250 while (readl_relaxed(base + GICD_CTLR) & bit) { 251 count--; 252 if (!count) { 253 pr_err_ratelimited("RWP timeout, gone fishing\n"); 254 return; 255 } 256 cpu_relax(); 257 udelay(1); 258 } 259 } 260 261 /* Wait for completion of a distributor change */ 262 static void gic_dist_wait_for_rwp(void) 263 { 264 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); 265 } 266 267 /* Wait for completion of a redistributor change */ 268 static void gic_redist_wait_for_rwp(void) 269 { 270 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); 271 } 272 273 #ifdef CONFIG_ARM64 274 275 static u64 __maybe_unused gic_read_iar(void) 276 { 277 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154)) 278 return gic_read_iar_cavium_thunderx(); 279 else 280 return gic_read_iar_common(); 281 } 282 #endif 283 284 static void gic_enable_redist(bool enable) 285 { 286 void __iomem *rbase; 287 u32 count = 1000000; /* 1s! */ 288 u32 val; 289 290 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) 291 return; 292 293 rbase = gic_data_rdist_rd_base(); 294 295 val = readl_relaxed(rbase + GICR_WAKER); 296 if (enable) 297 /* Wake up this CPU redistributor */ 298 val &= ~GICR_WAKER_ProcessorSleep; 299 else 300 val |= GICR_WAKER_ProcessorSleep; 301 writel_relaxed(val, rbase + GICR_WAKER); 302 303 if (!enable) { /* Check that GICR_WAKER is writeable */ 304 val = readl_relaxed(rbase + GICR_WAKER); 305 if (!(val & GICR_WAKER_ProcessorSleep)) 306 return; /* No PM support in this redistributor */ 307 } 308 309 while (--count) { 310 val = readl_relaxed(rbase + GICR_WAKER); 311 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep)) 312 break; 313 cpu_relax(); 314 udelay(1); 315 } 316 if (!count) 317 pr_err_ratelimited("redistributor failed to %s...\n", 318 enable ? "wakeup" : "sleep"); 319 } 320 321 /* 322 * Routines to disable, enable, EOI and route interrupts 323 */ 324 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) 325 { 326 switch (get_intid_range(d)) { 327 case SGI_RANGE: 328 case PPI_RANGE: 329 case SPI_RANGE: 330 *index = d->hwirq; 331 return offset; 332 case EPPI_RANGE: 333 /* 334 * Contrary to the ESPI range, the EPPI range is contiguous 335 * to the PPI range in the registers, so let's adjust the 336 * displacement accordingly. Consistency is overrated. 337 */ 338 *index = d->hwirq - EPPI_BASE_INTID + 32; 339 return offset; 340 case ESPI_RANGE: 341 *index = d->hwirq - ESPI_BASE_INTID; 342 switch (offset) { 343 case GICD_ISENABLER: 344 return GICD_ISENABLERnE; 345 case GICD_ICENABLER: 346 return GICD_ICENABLERnE; 347 case GICD_ISPENDR: 348 return GICD_ISPENDRnE; 349 case GICD_ICPENDR: 350 return GICD_ICPENDRnE; 351 case GICD_ISACTIVER: 352 return GICD_ISACTIVERnE; 353 case GICD_ICACTIVER: 354 return GICD_ICACTIVERnE; 355 case GICD_IPRIORITYR: 356 return GICD_IPRIORITYRnE; 357 case GICD_ICFGR: 358 return GICD_ICFGRnE; 359 case GICD_IROUTER: 360 return GICD_IROUTERnE; 361 default: 362 break; 363 } 364 break; 365 default: 366 break; 367 } 368 369 WARN_ON(1); 370 *index = d->hwirq; 371 return offset; 372 } 373 374 static int gic_peek_irq(struct irq_data *d, u32 offset) 375 { 376 void __iomem *base; 377 u32 index, mask; 378 379 offset = convert_offset_index(d, offset, &index); 380 mask = 1 << (index % 32); 381 382 if (gic_irq_in_rdist(d)) 383 base = gic_data_rdist_sgi_base(); 384 else 385 base = gic_dist_base_alias(d); 386 387 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); 388 } 389 390 static void gic_poke_irq(struct irq_data *d, u32 offset) 391 { 392 void __iomem *base; 393 u32 index, mask; 394 395 offset = convert_offset_index(d, offset, &index); 396 mask = 1 << (index % 32); 397 398 if (gic_irq_in_rdist(d)) 399 base = gic_data_rdist_sgi_base(); 400 else 401 base = gic_data.dist_base; 402 403 writel_relaxed(mask, base + offset + (index / 32) * 4); 404 } 405 406 static void gic_mask_irq(struct irq_data *d) 407 { 408 gic_poke_irq(d, GICD_ICENABLER); 409 if (gic_irq_in_rdist(d)) 410 gic_redist_wait_for_rwp(); 411 else 412 gic_dist_wait_for_rwp(); 413 } 414 415 static void gic_eoimode1_mask_irq(struct irq_data *d) 416 { 417 gic_mask_irq(d); 418 /* 419 * When masking a forwarded interrupt, make sure it is 420 * deactivated as well. 421 * 422 * This ensures that an interrupt that is getting 423 * disabled/masked will not get "stuck", because there is 424 * noone to deactivate it (guest is being terminated). 425 */ 426 if (irqd_is_forwarded_to_vcpu(d)) 427 gic_poke_irq(d, GICD_ICACTIVER); 428 } 429 430 static void gic_unmask_irq(struct irq_data *d) 431 { 432 gic_poke_irq(d, GICD_ISENABLER); 433 } 434 435 static inline bool gic_supports_nmi(void) 436 { 437 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 438 static_branch_likely(&supports_pseudo_nmis); 439 } 440 441 static int gic_irq_set_irqchip_state(struct irq_data *d, 442 enum irqchip_irq_state which, bool val) 443 { 444 u32 reg; 445 446 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ 447 return -EINVAL; 448 449 switch (which) { 450 case IRQCHIP_STATE_PENDING: 451 reg = val ? GICD_ISPENDR : GICD_ICPENDR; 452 break; 453 454 case IRQCHIP_STATE_ACTIVE: 455 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; 456 break; 457 458 case IRQCHIP_STATE_MASKED: 459 if (val) { 460 gic_mask_irq(d); 461 return 0; 462 } 463 reg = GICD_ISENABLER; 464 break; 465 466 default: 467 return -EINVAL; 468 } 469 470 gic_poke_irq(d, reg); 471 472 /* 473 * Force read-back to guarantee that the active state has taken 474 * effect, and won't race with a guest-driven deactivation. 475 */ 476 if (reg == GICD_ISACTIVER) 477 gic_peek_irq(d, reg); 478 return 0; 479 } 480 481 static int gic_irq_get_irqchip_state(struct irq_data *d, 482 enum irqchip_irq_state which, bool *val) 483 { 484 if (d->hwirq >= 8192) /* PPI/SPI only */ 485 return -EINVAL; 486 487 switch (which) { 488 case IRQCHIP_STATE_PENDING: 489 *val = gic_peek_irq(d, GICD_ISPENDR); 490 break; 491 492 case IRQCHIP_STATE_ACTIVE: 493 *val = gic_peek_irq(d, GICD_ISACTIVER); 494 break; 495 496 case IRQCHIP_STATE_MASKED: 497 *val = !gic_peek_irq(d, GICD_ISENABLER); 498 break; 499 500 default: 501 return -EINVAL; 502 } 503 504 return 0; 505 } 506 507 static void gic_irq_set_prio(struct irq_data *d, u8 prio) 508 { 509 void __iomem *base = gic_dist_base(d); 510 u32 offset, index; 511 512 offset = convert_offset_index(d, GICD_IPRIORITYR, &index); 513 514 writeb_relaxed(prio, base + offset + index); 515 } 516 517 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) 518 { 519 switch (__get_intid_range(hwirq)) { 520 case PPI_RANGE: 521 return hwirq - 16; 522 case EPPI_RANGE: 523 return hwirq - EPPI_BASE_INTID + 16; 524 default: 525 unreachable(); 526 } 527 } 528 529 static u32 gic_get_ppi_index(struct irq_data *d) 530 { 531 return __gic_get_ppi_index(d->hwirq); 532 } 533 534 static int gic_irq_nmi_setup(struct irq_data *d) 535 { 536 struct irq_desc *desc = irq_to_desc(d->irq); 537 538 if (!gic_supports_nmi()) 539 return -EINVAL; 540 541 if (gic_peek_irq(d, GICD_ISENABLER)) { 542 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 543 return -EINVAL; 544 } 545 546 /* 547 * A secondary irq_chip should be in charge of LPI request, 548 * it should not be possible to get there 549 */ 550 if (WARN_ON(gic_irq(d) >= 8192)) 551 return -EINVAL; 552 553 /* desc lock should already be held */ 554 if (gic_irq_in_rdist(d)) { 555 u32 idx = gic_get_ppi_index(d); 556 557 /* Setting up PPI as NMI, only switch handler for first NMI */ 558 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) { 559 refcount_set(&ppi_nmi_refs[idx], 1); 560 desc->handle_irq = handle_percpu_devid_fasteoi_nmi; 561 } 562 } else { 563 desc->handle_irq = handle_fasteoi_nmi; 564 } 565 566 gic_irq_set_prio(d, GICD_INT_NMI_PRI); 567 568 return 0; 569 } 570 571 static void gic_irq_nmi_teardown(struct irq_data *d) 572 { 573 struct irq_desc *desc = irq_to_desc(d->irq); 574 575 if (WARN_ON(!gic_supports_nmi())) 576 return; 577 578 if (gic_peek_irq(d, GICD_ISENABLER)) { 579 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 580 return; 581 } 582 583 /* 584 * A secondary irq_chip should be in charge of LPI request, 585 * it should not be possible to get there 586 */ 587 if (WARN_ON(gic_irq(d) >= 8192)) 588 return; 589 590 /* desc lock should already be held */ 591 if (gic_irq_in_rdist(d)) { 592 u32 idx = gic_get_ppi_index(d); 593 594 /* Tearing down NMI, only switch handler for last NMI */ 595 if (refcount_dec_and_test(&ppi_nmi_refs[idx])) 596 desc->handle_irq = handle_percpu_devid_irq; 597 } else { 598 desc->handle_irq = handle_fasteoi_irq; 599 } 600 601 gic_irq_set_prio(d, GICD_INT_DEF_PRI); 602 } 603 604 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) 605 { 606 enum gic_intid_range range; 607 608 if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) 609 return false; 610 611 range = get_intid_range(d); 612 613 /* 614 * The workaround is needed if the IRQ is an SPI and 615 * the target cpu is different from the one we are 616 * executing on. 617 */ 618 return (range == SPI_RANGE || range == ESPI_RANGE) && 619 !cpumask_test_cpu(raw_smp_processor_id(), 620 irq_data_get_effective_affinity_mask(d)); 621 } 622 623 static void gic_eoi_irq(struct irq_data *d) 624 { 625 write_gicreg(gic_irq(d), ICC_EOIR1_EL1); 626 isb(); 627 628 if (gic_arm64_erratum_2941627_needed(d)) { 629 /* 630 * Make sure the GIC stream deactivate packet 631 * issued by ICC_EOIR1_EL1 has completed before 632 * deactivating through GICD_IACTIVER. 633 */ 634 dsb(sy); 635 gic_poke_irq(d, GICD_ICACTIVER); 636 } 637 } 638 639 static void gic_eoimode1_eoi_irq(struct irq_data *d) 640 { 641 /* 642 * No need to deactivate an LPI, or an interrupt that 643 * is is getting forwarded to a vcpu. 644 */ 645 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) 646 return; 647 648 if (!gic_arm64_erratum_2941627_needed(d)) 649 gic_write_dir(gic_irq(d)); 650 else 651 gic_poke_irq(d, GICD_ICACTIVER); 652 } 653 654 static int gic_set_type(struct irq_data *d, unsigned int type) 655 { 656 enum gic_intid_range range; 657 unsigned int irq = gic_irq(d); 658 void __iomem *base; 659 u32 offset, index; 660 int ret; 661 662 range = get_intid_range(d); 663 664 /* Interrupt configuration for SGIs can't be changed */ 665 if (range == SGI_RANGE) 666 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 667 668 /* SPIs have restrictions on the supported types */ 669 if ((range == SPI_RANGE || range == ESPI_RANGE) && 670 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) 671 return -EINVAL; 672 673 if (gic_irq_in_rdist(d)) 674 base = gic_data_rdist_sgi_base(); 675 else 676 base = gic_dist_base_alias(d); 677 678 offset = convert_offset_index(d, GICD_ICFGR, &index); 679 680 ret = gic_configure_irq(index, type, base + offset, NULL); 681 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { 682 /* Misconfigured PPIs are usually not fatal */ 683 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq); 684 ret = 0; 685 } 686 687 return ret; 688 } 689 690 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 691 { 692 if (get_intid_range(d) == SGI_RANGE) 693 return -EINVAL; 694 695 if (vcpu) 696 irqd_set_forwarded_to_vcpu(d); 697 else 698 irqd_clr_forwarded_to_vcpu(d); 699 return 0; 700 } 701 702 static u64 gic_cpu_to_affinity(int cpu) 703 { 704 u64 mpidr = cpu_logical_map(cpu); 705 u64 aff; 706 707 /* ASR8601 needs to have its affinities shifted down... */ 708 if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) 709 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | 710 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); 711 712 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | 713 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 714 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 715 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 716 717 return aff; 718 } 719 720 static void gic_deactivate_unhandled(u32 irqnr) 721 { 722 if (static_branch_likely(&supports_deactivate_key)) { 723 if (irqnr < 8192) 724 gic_write_dir(irqnr); 725 } else { 726 write_gicreg(irqnr, ICC_EOIR1_EL1); 727 isb(); 728 } 729 } 730 731 /* 732 * Follow a read of the IAR with any HW maintenance that needs to happen prior 733 * to invoking the relevant IRQ handler. We must do two things: 734 * 735 * (1) Ensure instruction ordering between a read of IAR and subsequent 736 * instructions in the IRQ handler using an ISB. 737 * 738 * It is possible for the IAR to report an IRQ which was signalled *after* 739 * the CPU took an IRQ exception as multiple interrupts can race to be 740 * recognized by the GIC, earlier interrupts could be withdrawn, and/or 741 * later interrupts could be prioritized by the GIC. 742 * 743 * For devices which are tightly coupled to the CPU, such as PMUs, a 744 * context synchronization event is necessary to ensure that system 745 * register state is not stale, as these may have been indirectly written 746 * *after* exception entry. 747 * 748 * (2) Deactivate the interrupt when EOI mode 1 is in use. 749 */ 750 static inline void gic_complete_ack(u32 irqnr) 751 { 752 if (static_branch_likely(&supports_deactivate_key)) 753 write_gicreg(irqnr, ICC_EOIR1_EL1); 754 755 isb(); 756 } 757 758 static bool gic_rpr_is_nmi_prio(void) 759 { 760 if (!gic_supports_nmi()) 761 return false; 762 763 return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI)); 764 } 765 766 static bool gic_irqnr_is_special(u32 irqnr) 767 { 768 return irqnr >= 1020 && irqnr <= 1023; 769 } 770 771 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) 772 { 773 if (gic_irqnr_is_special(irqnr)) 774 return; 775 776 gic_complete_ack(irqnr); 777 778 if (generic_handle_domain_irq(gic_data.domain, irqnr)) { 779 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); 780 gic_deactivate_unhandled(irqnr); 781 } 782 } 783 784 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) 785 { 786 if (gic_irqnr_is_special(irqnr)) 787 return; 788 789 gic_complete_ack(irqnr); 790 791 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { 792 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); 793 gic_deactivate_unhandled(irqnr); 794 } 795 } 796 797 /* 798 * An exception has been taken from a context with IRQs enabled, and this could 799 * be an IRQ or an NMI. 800 * 801 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear 802 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, 803 * after handling any NMI but before handling any IRQ. 804 * 805 * The entry code has performed IRQ entry, and if an NMI is detected we must 806 * perform NMI entry/exit around invoking the handler. 807 */ 808 static void __gic_handle_irq_from_irqson(struct pt_regs *regs) 809 { 810 bool is_nmi; 811 u32 irqnr; 812 813 irqnr = gic_read_iar(); 814 815 is_nmi = gic_rpr_is_nmi_prio(); 816 817 if (is_nmi) { 818 nmi_enter(); 819 __gic_handle_nmi(irqnr, regs); 820 nmi_exit(); 821 } 822 823 if (gic_prio_masking_enabled()) { 824 gic_pmr_mask_irqs(); 825 gic_arch_enable_irqs(); 826 } 827 828 if (!is_nmi) 829 __gic_handle_irq(irqnr, regs); 830 } 831 832 /* 833 * An exception has been taken from a context with IRQs disabled, which can only 834 * be an NMI. 835 * 836 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave 837 * DAIF.IF (and ICC_PMR_EL1) unchanged. 838 * 839 * The entry code has performed NMI entry. 840 */ 841 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) 842 { 843 u64 pmr; 844 u32 irqnr; 845 846 /* 847 * We were in a context with IRQs disabled. However, the 848 * entry code has set PMR to a value that allows any 849 * interrupt to be acknowledged, and not just NMIs. This can 850 * lead to surprising effects if the NMI has been retired in 851 * the meantime, and that there is an IRQ pending. The IRQ 852 * would then be taken in NMI context, something that nobody 853 * wants to debug twice. 854 * 855 * Until we sort this, drop PMR again to a level that will 856 * actually only allow NMIs before reading IAR, and then 857 * restore it to what it was. 858 */ 859 pmr = gic_read_pmr(); 860 gic_pmr_mask_irqs(); 861 isb(); 862 irqnr = gic_read_iar(); 863 gic_write_pmr(pmr); 864 865 __gic_handle_nmi(irqnr, regs); 866 } 867 868 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 869 { 870 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) 871 __gic_handle_irq_from_irqsoff(regs); 872 else 873 __gic_handle_irq_from_irqson(regs); 874 } 875 876 static u32 gic_get_pribits(void) 877 { 878 u32 pribits; 879 880 pribits = gic_read_ctlr(); 881 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; 882 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; 883 pribits++; 884 885 return pribits; 886 } 887 888 static bool gic_has_group0(void) 889 { 890 u32 val; 891 u32 old_pmr; 892 893 old_pmr = gic_read_pmr(); 894 895 /* 896 * Let's find out if Group0 is under control of EL3 or not by 897 * setting the highest possible, non-zero priority in PMR. 898 * 899 * If SCR_EL3.FIQ is set, the priority gets shifted down in 900 * order for the CPU interface to set bit 7, and keep the 901 * actual priority in the non-secure range. In the process, it 902 * looses the least significant bit and the actual priority 903 * becomes 0x80. Reading it back returns 0, indicating that 904 * we're don't have access to Group0. 905 */ 906 gic_write_pmr(BIT(8 - gic_get_pribits())); 907 val = gic_read_pmr(); 908 909 gic_write_pmr(old_pmr); 910 911 return val != 0; 912 } 913 914 static void __init gic_dist_init(void) 915 { 916 unsigned int i; 917 u64 affinity; 918 void __iomem *base = gic_data.dist_base; 919 u32 val; 920 921 /* Disable the distributor */ 922 writel_relaxed(0, base + GICD_CTLR); 923 gic_dist_wait_for_rwp(); 924 925 /* 926 * Configure SPIs as non-secure Group-1. This will only matter 927 * if the GIC only has a single security state. This will not 928 * do the right thing if the kernel is running in secure mode, 929 * but that's not the intended use case anyway. 930 */ 931 for (i = 32; i < GIC_LINE_NR; i += 32) 932 writel_relaxed(~0, base + GICD_IGROUPR + i / 8); 933 934 /* Extended SPI range, not handled by the GICv2/GICv3 common code */ 935 for (i = 0; i < GIC_ESPI_NR; i += 32) { 936 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); 937 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); 938 } 939 940 for (i = 0; i < GIC_ESPI_NR; i += 32) 941 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); 942 943 for (i = 0; i < GIC_ESPI_NR; i += 16) 944 writel_relaxed(0, base + GICD_ICFGRnE + i / 4); 945 946 for (i = 0; i < GIC_ESPI_NR; i += 4) 947 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i); 948 949 /* Now do the common stuff */ 950 gic_dist_config(base, GIC_LINE_NR, NULL); 951 952 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; 953 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { 954 pr_info("Enabling SGIs without active state\n"); 955 val |= GICD_CTLR_nASSGIreq; 956 } 957 958 /* Enable distributor with ARE, Group1, and wait for it to drain */ 959 writel_relaxed(val, base + GICD_CTLR); 960 gic_dist_wait_for_rwp(); 961 962 /* 963 * Set all global interrupts to the boot CPU only. ARE must be 964 * enabled. 965 */ 966 affinity = gic_cpu_to_affinity(smp_processor_id()); 967 for (i = 32; i < GIC_LINE_NR; i++) 968 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); 969 970 for (i = 0; i < GIC_ESPI_NR; i++) 971 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); 972 } 973 974 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) 975 { 976 int ret = -ENODEV; 977 int i; 978 979 for (i = 0; i < gic_data.nr_redist_regions; i++) { 980 void __iomem *ptr = gic_data.redist_regions[i].redist_base; 981 u64 typer; 982 u32 reg; 983 984 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; 985 if (reg != GIC_PIDR2_ARCH_GICv3 && 986 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ 987 pr_warn("No redistributor present @%p\n", ptr); 988 break; 989 } 990 991 do { 992 typer = gic_read_typer(ptr + GICR_TYPER); 993 ret = fn(gic_data.redist_regions + i, ptr); 994 if (!ret) 995 return 0; 996 997 if (gic_data.redist_regions[i].single_redist) 998 break; 999 1000 if (gic_data.redist_stride) { 1001 ptr += gic_data.redist_stride; 1002 } else { 1003 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ 1004 if (typer & GICR_TYPER_VLPIS) 1005 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ 1006 } 1007 } while (!(typer & GICR_TYPER_LAST)); 1008 } 1009 1010 return ret ? -ENODEV : 0; 1011 } 1012 1013 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) 1014 { 1015 unsigned long mpidr; 1016 u64 typer; 1017 u32 aff; 1018 1019 /* 1020 * Convert affinity to a 32bit value that can be matched to 1021 * GICR_TYPER bits [63:32]. 1022 */ 1023 mpidr = gic_cpu_to_affinity(smp_processor_id()); 1024 1025 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | 1026 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 1027 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 1028 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 1029 1030 typer = gic_read_typer(ptr + GICR_TYPER); 1031 if ((typer >> 32) == aff) { 1032 u64 offset = ptr - region->redist_base; 1033 raw_spin_lock_init(&gic_data_rdist()->rd_lock); 1034 gic_data_rdist_rd_base() = ptr; 1035 gic_data_rdist()->phys_base = region->phys_base + offset; 1036 1037 pr_info("CPU%d: found redistributor %lx region %d:%pa\n", 1038 smp_processor_id(), mpidr, 1039 (int)(region - gic_data.redist_regions), 1040 &gic_data_rdist()->phys_base); 1041 return 0; 1042 } 1043 1044 /* Try next one */ 1045 return 1; 1046 } 1047 1048 static int gic_populate_rdist(void) 1049 { 1050 if (gic_iterate_rdists(__gic_populate_rdist) == 0) 1051 return 0; 1052 1053 /* We couldn't even deal with ourselves... */ 1054 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", 1055 smp_processor_id(), 1056 (unsigned long)cpu_logical_map(smp_processor_id())); 1057 return -ENODEV; 1058 } 1059 1060 static int __gic_update_rdist_properties(struct redist_region *region, 1061 void __iomem *ptr) 1062 { 1063 u64 typer = gic_read_typer(ptr + GICR_TYPER); 1064 u32 ctlr = readl_relaxed(ptr + GICR_CTLR); 1065 1066 /* Boot-time cleanup */ 1067 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { 1068 u64 val; 1069 1070 /* Deactivate any present vPE */ 1071 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); 1072 if (val & GICR_VPENDBASER_Valid) 1073 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 1074 ptr + SZ_128K + GICR_VPENDBASER); 1075 1076 /* Mark the VPE table as invalid */ 1077 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); 1078 val &= ~GICR_VPROPBASER_4_1_VALID; 1079 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); 1080 } 1081 1082 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); 1083 1084 /* 1085 * TYPER.RVPEID implies some form of DirectLPI, no matter what the 1086 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI 1087 * that the ITS driver can make use of for LPIs (and not VLPIs). 1088 * 1089 * These are 3 different ways to express the same thing, depending 1090 * on the revision of the architecture and its relaxations over 1091 * time. Just group them under the 'direct_lpi' banner. 1092 */ 1093 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); 1094 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | 1095 !!(ctlr & GICR_CTLR_IR) | 1096 gic_data.rdists.has_rvpeid); 1097 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); 1098 1099 /* Detect non-sensical configurations */ 1100 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { 1101 gic_data.rdists.has_direct_lpi = false; 1102 gic_data.rdists.has_vlpis = false; 1103 gic_data.rdists.has_rvpeid = false; 1104 } 1105 1106 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); 1107 1108 return 1; 1109 } 1110 1111 static void gic_update_rdist_properties(void) 1112 { 1113 gic_data.ppi_nr = UINT_MAX; 1114 gic_iterate_rdists(__gic_update_rdist_properties); 1115 if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) 1116 gic_data.ppi_nr = 0; 1117 pr_info("GICv3 features: %d PPIs%s%s\n", 1118 gic_data.ppi_nr, 1119 gic_data.has_rss ? ", RSS" : "", 1120 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); 1121 1122 if (gic_data.rdists.has_vlpis) 1123 pr_info("GICv4 features: %s%s%s\n", 1124 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", 1125 gic_data.rdists.has_rvpeid ? "RVPEID " : "", 1126 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); 1127 } 1128 1129 /* Check whether it's single security state view */ 1130 static inline bool gic_dist_security_disabled(void) 1131 { 1132 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; 1133 } 1134 1135 static void gic_cpu_sys_reg_init(void) 1136 { 1137 int i, cpu = smp_processor_id(); 1138 u64 mpidr = gic_cpu_to_affinity(cpu); 1139 u64 need_rss = MPIDR_RS(mpidr); 1140 bool group0; 1141 u32 pribits; 1142 1143 /* 1144 * Need to check that the SRE bit has actually been set. If 1145 * not, it means that SRE is disabled at EL2. We're going to 1146 * die painfully, and there is nothing we can do about it. 1147 * 1148 * Kindly inform the luser. 1149 */ 1150 if (!gic_enable_sre()) 1151 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); 1152 1153 pribits = gic_get_pribits(); 1154 1155 group0 = gic_has_group0(); 1156 1157 /* Set priority mask register */ 1158 if (!gic_prio_masking_enabled()) { 1159 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); 1160 } else if (gic_supports_nmi()) { 1161 /* 1162 * Mismatch configuration with boot CPU, the system is likely 1163 * to die as interrupt masking will not work properly on all 1164 * CPUs 1165 * 1166 * The boot CPU calls this function before enabling NMI support, 1167 * and as a result we'll never see this warning in the boot path 1168 * for that CPU. 1169 */ 1170 if (static_branch_unlikely(&gic_nonsecure_priorities)) 1171 WARN_ON(!group0 || gic_dist_security_disabled()); 1172 else 1173 WARN_ON(group0 && !gic_dist_security_disabled()); 1174 } 1175 1176 /* 1177 * Some firmwares hand over to the kernel with the BPR changed from 1178 * its reset value (and with a value large enough to prevent 1179 * any pre-emptive interrupts from working at all). Writing a zero 1180 * to BPR restores is reset value. 1181 */ 1182 gic_write_bpr1(0); 1183 1184 if (static_branch_likely(&supports_deactivate_key)) { 1185 /* EOI drops priority only (mode 1) */ 1186 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); 1187 } else { 1188 /* EOI deactivates interrupt too (mode 0) */ 1189 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); 1190 } 1191 1192 /* Always whack Group0 before Group1 */ 1193 if (group0) { 1194 switch(pribits) { 1195 case 8: 1196 case 7: 1197 write_gicreg(0, ICC_AP0R3_EL1); 1198 write_gicreg(0, ICC_AP0R2_EL1); 1199 fallthrough; 1200 case 6: 1201 write_gicreg(0, ICC_AP0R1_EL1); 1202 fallthrough; 1203 case 5: 1204 case 4: 1205 write_gicreg(0, ICC_AP0R0_EL1); 1206 } 1207 1208 isb(); 1209 } 1210 1211 switch(pribits) { 1212 case 8: 1213 case 7: 1214 write_gicreg(0, ICC_AP1R3_EL1); 1215 write_gicreg(0, ICC_AP1R2_EL1); 1216 fallthrough; 1217 case 6: 1218 write_gicreg(0, ICC_AP1R1_EL1); 1219 fallthrough; 1220 case 5: 1221 case 4: 1222 write_gicreg(0, ICC_AP1R0_EL1); 1223 } 1224 1225 isb(); 1226 1227 /* ... and let's hit the road... */ 1228 gic_write_grpen1(1); 1229 1230 /* Keep the RSS capability status in per_cpu variable */ 1231 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); 1232 1233 /* Check all the CPUs have capable of sending SGIs to other CPUs */ 1234 for_each_online_cpu(i) { 1235 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); 1236 1237 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); 1238 if (need_rss && (!have_rss)) 1239 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", 1240 cpu, (unsigned long)mpidr, 1241 i, (unsigned long)gic_cpu_to_affinity(i)); 1242 } 1243 1244 /** 1245 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, 1246 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED 1247 * UNPREDICTABLE choice of : 1248 * - The write is ignored. 1249 * - The RS field is treated as 0. 1250 */ 1251 if (need_rss && (!gic_data.has_rss)) 1252 pr_crit_once("RSS is required but GICD doesn't support it\n"); 1253 } 1254 1255 static bool gicv3_nolpi; 1256 1257 static int __init gicv3_nolpi_cfg(char *buf) 1258 { 1259 return kstrtobool(buf, &gicv3_nolpi); 1260 } 1261 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); 1262 1263 static int gic_dist_supports_lpis(void) 1264 { 1265 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && 1266 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && 1267 !gicv3_nolpi); 1268 } 1269 1270 static void gic_cpu_init(void) 1271 { 1272 void __iomem *rbase; 1273 int i; 1274 1275 /* Register ourselves with the rest of the world */ 1276 if (gic_populate_rdist()) 1277 return; 1278 1279 gic_enable_redist(true); 1280 1281 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && 1282 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), 1283 "Distributor has extended ranges, but CPU%d doesn't\n", 1284 smp_processor_id()); 1285 1286 rbase = gic_data_rdist_sgi_base(); 1287 1288 /* Configure SGIs/PPIs as non-secure Group-1 */ 1289 for (i = 0; i < gic_data.ppi_nr + 16; i += 32) 1290 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); 1291 1292 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp); 1293 1294 /* initialise system registers */ 1295 gic_cpu_sys_reg_init(); 1296 } 1297 1298 #ifdef CONFIG_SMP 1299 1300 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) 1301 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) 1302 1303 static int gic_starting_cpu(unsigned int cpu) 1304 { 1305 gic_cpu_init(); 1306 1307 if (gic_dist_supports_lpis()) 1308 its_cpu_init(); 1309 1310 return 0; 1311 } 1312 1313 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, 1314 unsigned long cluster_id) 1315 { 1316 int next_cpu, cpu = *base_cpu; 1317 unsigned long mpidr; 1318 u16 tlist = 0; 1319 1320 mpidr = gic_cpu_to_affinity(cpu); 1321 1322 while (cpu < nr_cpu_ids) { 1323 tlist |= 1 << (mpidr & 0xf); 1324 1325 next_cpu = cpumask_next(cpu, mask); 1326 if (next_cpu >= nr_cpu_ids) 1327 goto out; 1328 cpu = next_cpu; 1329 1330 mpidr = gic_cpu_to_affinity(cpu); 1331 1332 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { 1333 cpu--; 1334 goto out; 1335 } 1336 } 1337 out: 1338 *base_cpu = cpu; 1339 return tlist; 1340 } 1341 1342 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ 1343 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ 1344 << ICC_SGI1R_AFFINITY_## level ##_SHIFT) 1345 1346 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) 1347 { 1348 u64 val; 1349 1350 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | 1351 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | 1352 irq << ICC_SGI1R_SGI_ID_SHIFT | 1353 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | 1354 MPIDR_TO_SGI_RS(cluster_id) | 1355 tlist << ICC_SGI1R_TARGET_LIST_SHIFT); 1356 1357 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); 1358 gic_write_sgi1r(val); 1359 } 1360 1361 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 1362 { 1363 int cpu; 1364 1365 if (WARN_ON(d->hwirq >= 16)) 1366 return; 1367 1368 /* 1369 * Ensure that stores to Normal memory are visible to the 1370 * other CPUs before issuing the IPI. 1371 */ 1372 dsb(ishst); 1373 1374 for_each_cpu(cpu, mask) { 1375 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); 1376 u16 tlist; 1377 1378 tlist = gic_compute_target_list(&cpu, mask, cluster_id); 1379 gic_send_sgi(cluster_id, tlist, d->hwirq); 1380 } 1381 1382 /* Force the above writes to ICC_SGI1R_EL1 to be executed */ 1383 isb(); 1384 } 1385 1386 static void __init gic_smp_init(void) 1387 { 1388 struct irq_fwspec sgi_fwspec = { 1389 .fwnode = gic_data.fwnode, 1390 .param_count = 1, 1391 }; 1392 int base_sgi; 1393 1394 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 1395 "irqchip/arm/gicv3:starting", 1396 gic_starting_cpu, NULL); 1397 1398 /* Register all 8 non-secure SGIs */ 1399 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); 1400 if (WARN_ON(base_sgi <= 0)) 1401 return; 1402 1403 set_smp_ipi_range(base_sgi, 8); 1404 } 1405 1406 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1407 bool force) 1408 { 1409 unsigned int cpu; 1410 u32 offset, index; 1411 void __iomem *reg; 1412 int enabled; 1413 u64 val; 1414 1415 if (force) 1416 cpu = cpumask_first(mask_val); 1417 else 1418 cpu = cpumask_any_and(mask_val, cpu_online_mask); 1419 1420 if (cpu >= nr_cpu_ids) 1421 return -EINVAL; 1422 1423 if (gic_irq_in_rdist(d)) 1424 return -EINVAL; 1425 1426 /* If interrupt was enabled, disable it first */ 1427 enabled = gic_peek_irq(d, GICD_ISENABLER); 1428 if (enabled) 1429 gic_mask_irq(d); 1430 1431 offset = convert_offset_index(d, GICD_IROUTER, &index); 1432 reg = gic_dist_base(d) + offset + (index * 8); 1433 val = gic_cpu_to_affinity(cpu); 1434 1435 gic_write_irouter(val, reg); 1436 1437 /* 1438 * If the interrupt was enabled, enabled it again. Otherwise, 1439 * just wait for the distributor to have digested our changes. 1440 */ 1441 if (enabled) 1442 gic_unmask_irq(d); 1443 1444 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1445 1446 return IRQ_SET_MASK_OK_DONE; 1447 } 1448 #else 1449 #define gic_set_affinity NULL 1450 #define gic_ipi_send_mask NULL 1451 #define gic_smp_init() do { } while(0) 1452 #endif 1453 1454 static int gic_retrigger(struct irq_data *data) 1455 { 1456 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 1457 } 1458 1459 #ifdef CONFIG_CPU_PM 1460 static int gic_cpu_pm_notifier(struct notifier_block *self, 1461 unsigned long cmd, void *v) 1462 { 1463 if (cmd == CPU_PM_EXIT) { 1464 if (gic_dist_security_disabled()) 1465 gic_enable_redist(true); 1466 gic_cpu_sys_reg_init(); 1467 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { 1468 gic_write_grpen1(0); 1469 gic_enable_redist(false); 1470 } 1471 return NOTIFY_OK; 1472 } 1473 1474 static struct notifier_block gic_cpu_pm_notifier_block = { 1475 .notifier_call = gic_cpu_pm_notifier, 1476 }; 1477 1478 static void gic_cpu_pm_init(void) 1479 { 1480 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); 1481 } 1482 1483 #else 1484 static inline void gic_cpu_pm_init(void) { } 1485 #endif /* CONFIG_CPU_PM */ 1486 1487 static struct irq_chip gic_chip = { 1488 .name = "GICv3", 1489 .irq_mask = gic_mask_irq, 1490 .irq_unmask = gic_unmask_irq, 1491 .irq_eoi = gic_eoi_irq, 1492 .irq_set_type = gic_set_type, 1493 .irq_set_affinity = gic_set_affinity, 1494 .irq_retrigger = gic_retrigger, 1495 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1496 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1497 .irq_nmi_setup = gic_irq_nmi_setup, 1498 .irq_nmi_teardown = gic_irq_nmi_teardown, 1499 .ipi_send_mask = gic_ipi_send_mask, 1500 .flags = IRQCHIP_SET_TYPE_MASKED | 1501 IRQCHIP_SKIP_SET_WAKE | 1502 IRQCHIP_MASK_ON_SUSPEND, 1503 }; 1504 1505 static struct irq_chip gic_eoimode1_chip = { 1506 .name = "GICv3", 1507 .irq_mask = gic_eoimode1_mask_irq, 1508 .irq_unmask = gic_unmask_irq, 1509 .irq_eoi = gic_eoimode1_eoi_irq, 1510 .irq_set_type = gic_set_type, 1511 .irq_set_affinity = gic_set_affinity, 1512 .irq_retrigger = gic_retrigger, 1513 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1514 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1515 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 1516 .irq_nmi_setup = gic_irq_nmi_setup, 1517 .irq_nmi_teardown = gic_irq_nmi_teardown, 1518 .ipi_send_mask = gic_ipi_send_mask, 1519 .flags = IRQCHIP_SET_TYPE_MASKED | 1520 IRQCHIP_SKIP_SET_WAKE | 1521 IRQCHIP_MASK_ON_SUSPEND, 1522 }; 1523 1524 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1525 irq_hw_number_t hw) 1526 { 1527 struct irq_chip *chip = &gic_chip; 1528 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1529 1530 if (static_branch_likely(&supports_deactivate_key)) 1531 chip = &gic_eoimode1_chip; 1532 1533 switch (__get_intid_range(hw)) { 1534 case SGI_RANGE: 1535 case PPI_RANGE: 1536 case EPPI_RANGE: 1537 irq_set_percpu_devid(irq); 1538 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1539 handle_percpu_devid_irq, NULL, NULL); 1540 break; 1541 1542 case SPI_RANGE: 1543 case ESPI_RANGE: 1544 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1545 handle_fasteoi_irq, NULL, NULL); 1546 irq_set_probe(irq); 1547 irqd_set_single_target(irqd); 1548 break; 1549 1550 case LPI_RANGE: 1551 if (!gic_dist_supports_lpis()) 1552 return -EPERM; 1553 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1554 handle_fasteoi_irq, NULL, NULL); 1555 break; 1556 1557 default: 1558 return -EPERM; 1559 } 1560 1561 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1562 irqd_set_handle_enforce_irqctx(irqd); 1563 return 0; 1564 } 1565 1566 static int gic_irq_domain_translate(struct irq_domain *d, 1567 struct irq_fwspec *fwspec, 1568 unsigned long *hwirq, 1569 unsigned int *type) 1570 { 1571 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1572 *hwirq = fwspec->param[0]; 1573 *type = IRQ_TYPE_EDGE_RISING; 1574 return 0; 1575 } 1576 1577 if (is_of_node(fwspec->fwnode)) { 1578 if (fwspec->param_count < 3) 1579 return -EINVAL; 1580 1581 switch (fwspec->param[0]) { 1582 case 0: /* SPI */ 1583 *hwirq = fwspec->param[1] + 32; 1584 break; 1585 case 1: /* PPI */ 1586 *hwirq = fwspec->param[1] + 16; 1587 break; 1588 case 2: /* ESPI */ 1589 *hwirq = fwspec->param[1] + ESPI_BASE_INTID; 1590 break; 1591 case 3: /* EPPI */ 1592 *hwirq = fwspec->param[1] + EPPI_BASE_INTID; 1593 break; 1594 case GIC_IRQ_TYPE_LPI: /* LPI */ 1595 *hwirq = fwspec->param[1]; 1596 break; 1597 case GIC_IRQ_TYPE_PARTITION: 1598 *hwirq = fwspec->param[1]; 1599 if (fwspec->param[1] >= 16) 1600 *hwirq += EPPI_BASE_INTID - 16; 1601 else 1602 *hwirq += 16; 1603 break; 1604 default: 1605 return -EINVAL; 1606 } 1607 1608 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1609 1610 /* 1611 * Make it clear that broken DTs are... broken. 1612 * Partitioned PPIs are an unfortunate exception. 1613 */ 1614 WARN_ON(*type == IRQ_TYPE_NONE && 1615 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); 1616 return 0; 1617 } 1618 1619 if (is_fwnode_irqchip(fwspec->fwnode)) { 1620 if(fwspec->param_count != 2) 1621 return -EINVAL; 1622 1623 if (fwspec->param[0] < 16) { 1624 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1625 fwspec->param[0]); 1626 return -EINVAL; 1627 } 1628 1629 *hwirq = fwspec->param[0]; 1630 *type = fwspec->param[1]; 1631 1632 WARN_ON(*type == IRQ_TYPE_NONE); 1633 return 0; 1634 } 1635 1636 return -EINVAL; 1637 } 1638 1639 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1640 unsigned int nr_irqs, void *arg) 1641 { 1642 int i, ret; 1643 irq_hw_number_t hwirq; 1644 unsigned int type = IRQ_TYPE_NONE; 1645 struct irq_fwspec *fwspec = arg; 1646 1647 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1648 if (ret) 1649 return ret; 1650 1651 for (i = 0; i < nr_irqs; i++) { 1652 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1653 if (ret) 1654 return ret; 1655 } 1656 1657 return 0; 1658 } 1659 1660 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1661 unsigned int nr_irqs) 1662 { 1663 int i; 1664 1665 for (i = 0; i < nr_irqs; i++) { 1666 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 1667 irq_set_handler(virq + i, NULL); 1668 irq_domain_reset_irq_data(d); 1669 } 1670 } 1671 1672 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, 1673 irq_hw_number_t hwirq) 1674 { 1675 enum gic_intid_range range; 1676 1677 if (!gic_data.ppi_descs) 1678 return false; 1679 1680 if (!is_of_node(fwspec->fwnode)) 1681 return false; 1682 1683 if (fwspec->param_count < 4 || !fwspec->param[3]) 1684 return false; 1685 1686 range = __get_intid_range(hwirq); 1687 if (range != PPI_RANGE && range != EPPI_RANGE) 1688 return false; 1689 1690 return true; 1691 } 1692 1693 static int gic_irq_domain_select(struct irq_domain *d, 1694 struct irq_fwspec *fwspec, 1695 enum irq_domain_bus_token bus_token) 1696 { 1697 unsigned int type, ret, ppi_idx; 1698 irq_hw_number_t hwirq; 1699 1700 /* Not for us */ 1701 if (fwspec->fwnode != d->fwnode) 1702 return 0; 1703 1704 /* If this is not DT, then we have a single domain */ 1705 if (!is_of_node(fwspec->fwnode)) 1706 return 1; 1707 1708 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); 1709 if (WARN_ON_ONCE(ret)) 1710 return 0; 1711 1712 if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) 1713 return d == gic_data.domain; 1714 1715 /* 1716 * If this is a PPI and we have a 4th (non-null) parameter, 1717 * then we need to match the partition domain. 1718 */ 1719 ppi_idx = __gic_get_ppi_index(hwirq); 1720 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); 1721 } 1722 1723 static const struct irq_domain_ops gic_irq_domain_ops = { 1724 .translate = gic_irq_domain_translate, 1725 .alloc = gic_irq_domain_alloc, 1726 .free = gic_irq_domain_free, 1727 .select = gic_irq_domain_select, 1728 }; 1729 1730 static int partition_domain_translate(struct irq_domain *d, 1731 struct irq_fwspec *fwspec, 1732 unsigned long *hwirq, 1733 unsigned int *type) 1734 { 1735 unsigned long ppi_intid; 1736 struct device_node *np; 1737 unsigned int ppi_idx; 1738 int ret; 1739 1740 if (!gic_data.ppi_descs) 1741 return -ENOMEM; 1742 1743 np = of_find_node_by_phandle(fwspec->param[3]); 1744 if (WARN_ON(!np)) 1745 return -EINVAL; 1746 1747 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); 1748 if (WARN_ON_ONCE(ret)) 1749 return 0; 1750 1751 ppi_idx = __gic_get_ppi_index(ppi_intid); 1752 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], 1753 of_node_to_fwnode(np)); 1754 if (ret < 0) 1755 return ret; 1756 1757 *hwirq = ret; 1758 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1759 1760 return 0; 1761 } 1762 1763 static const struct irq_domain_ops partition_domain_ops = { 1764 .translate = partition_domain_translate, 1765 .select = gic_irq_domain_select, 1766 }; 1767 1768 static bool gic_enable_quirk_msm8996(void *data) 1769 { 1770 struct gic_chip_data *d = data; 1771 1772 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; 1773 1774 return true; 1775 } 1776 1777 static bool gic_enable_quirk_mtk_gicr(void *data) 1778 { 1779 struct gic_chip_data *d = data; 1780 1781 d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE; 1782 1783 return true; 1784 } 1785 1786 static bool gic_enable_quirk_cavium_38539(void *data) 1787 { 1788 struct gic_chip_data *d = data; 1789 1790 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; 1791 1792 return true; 1793 } 1794 1795 static bool gic_enable_quirk_hip06_07(void *data) 1796 { 1797 struct gic_chip_data *d = data; 1798 1799 /* 1800 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite 1801 * not being an actual ARM implementation). The saving grace is 1802 * that GIC-600 doesn't have ESPI, so nothing to do in that case. 1803 * HIP07 doesn't even have a proper IIDR, and still pretends to 1804 * have ESPI. In both cases, put them right. 1805 */ 1806 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { 1807 /* Zero both ESPI and the RES0 field next to it... */ 1808 d->rdists.gicd_typer &= ~GENMASK(9, 8); 1809 return true; 1810 } 1811 1812 return false; 1813 } 1814 1815 #define T241_CHIPN_MASK GENMASK_ULL(45, 44) 1816 #define T241_CHIP_GICDA_OFFSET 0x1580000 1817 #define SMCCC_SOC_ID_T241 0x036b0241 1818 1819 static bool gic_enable_quirk_nvidia_t241(void *data) 1820 { 1821 s32 soc_id = arm_smccc_get_soc_id_version(); 1822 unsigned long chip_bmask = 0; 1823 phys_addr_t phys; 1824 u32 i; 1825 1826 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ 1827 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) 1828 return false; 1829 1830 /* Find the chips based on GICR regions PHYS addr */ 1831 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1832 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, 1833 (u64)gic_data.redist_regions[i].phys_base)); 1834 } 1835 1836 if (hweight32(chip_bmask) < 3) 1837 return false; 1838 1839 /* Setup GICD alias regions */ 1840 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { 1841 if (chip_bmask & BIT(i)) { 1842 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; 1843 phys |= FIELD_PREP(T241_CHIPN_MASK, i); 1844 t241_dist_base_alias[i] = ioremap(phys, SZ_64K); 1845 WARN_ON_ONCE(!t241_dist_base_alias[i]); 1846 } 1847 } 1848 static_branch_enable(&gic_nvidia_t241_erratum); 1849 return true; 1850 } 1851 1852 static bool gic_enable_quirk_asr8601(void *data) 1853 { 1854 struct gic_chip_data *d = data; 1855 1856 d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; 1857 1858 return true; 1859 } 1860 1861 static bool gic_enable_quirk_arm64_2941627(void *data) 1862 { 1863 static_branch_enable(&gic_arm64_2941627_erratum); 1864 return true; 1865 } 1866 1867 static bool rd_set_non_coherent(void *data) 1868 { 1869 struct gic_chip_data *d = data; 1870 1871 d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 1872 return true; 1873 } 1874 1875 static const struct gic_quirk gic_quirks[] = { 1876 { 1877 .desc = "GICv3: Qualcomm MSM8996 broken firmware", 1878 .compatible = "qcom,msm8996-gic-v3", 1879 .init = gic_enable_quirk_msm8996, 1880 }, 1881 { 1882 .desc = "GICv3: ASR erratum 8601001", 1883 .compatible = "asr,asr8601-gic-v3", 1884 .init = gic_enable_quirk_asr8601, 1885 }, 1886 { 1887 .desc = "GICv3: Mediatek Chromebook GICR save problem", 1888 .property = "mediatek,broken-save-restore-fw", 1889 .init = gic_enable_quirk_mtk_gicr, 1890 }, 1891 { 1892 .desc = "GICv3: HIP06 erratum 161010803", 1893 .iidr = 0x0204043b, 1894 .mask = 0xffffffff, 1895 .init = gic_enable_quirk_hip06_07, 1896 }, 1897 { 1898 .desc = "GICv3: HIP07 erratum 161010803", 1899 .iidr = 0x00000000, 1900 .mask = 0xffffffff, 1901 .init = gic_enable_quirk_hip06_07, 1902 }, 1903 { 1904 /* 1905 * Reserved register accesses generate a Synchronous 1906 * External Abort. This erratum applies to: 1907 * - ThunderX: CN88xx 1908 * - OCTEON TX: CN83xx, CN81xx 1909 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* 1910 */ 1911 .desc = "GICv3: Cavium erratum 38539", 1912 .iidr = 0xa000034c, 1913 .mask = 0xe8f00fff, 1914 .init = gic_enable_quirk_cavium_38539, 1915 }, 1916 { 1917 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", 1918 .iidr = 0x0402043b, 1919 .mask = 0xffffffff, 1920 .init = gic_enable_quirk_nvidia_t241, 1921 }, 1922 { 1923 /* 1924 * GIC-700: 2941627 workaround - IP variant [0,1] 1925 * 1926 */ 1927 .desc = "GICv3: ARM64 erratum 2941627", 1928 .iidr = 0x0400043b, 1929 .mask = 0xff0e0fff, 1930 .init = gic_enable_quirk_arm64_2941627, 1931 }, 1932 { 1933 /* 1934 * GIC-700: 2941627 workaround - IP variant [2] 1935 */ 1936 .desc = "GICv3: ARM64 erratum 2941627", 1937 .iidr = 0x0402043b, 1938 .mask = 0xff0f0fff, 1939 .init = gic_enable_quirk_arm64_2941627, 1940 }, 1941 { 1942 .desc = "GICv3: non-coherent attribute", 1943 .property = "dma-noncoherent", 1944 .init = rd_set_non_coherent, 1945 }, 1946 { 1947 } 1948 }; 1949 1950 static void gic_enable_nmi_support(void) 1951 { 1952 int i; 1953 1954 if (!gic_prio_masking_enabled()) 1955 return; 1956 1957 if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) { 1958 pr_warn("Skipping NMI enable due to firmware issues\n"); 1959 return; 1960 } 1961 1962 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL); 1963 if (!ppi_nmi_refs) 1964 return; 1965 1966 for (i = 0; i < gic_data.ppi_nr; i++) 1967 refcount_set(&ppi_nmi_refs[i], 0); 1968 1969 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", 1970 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); 1971 1972 /* 1973 * How priority values are used by the GIC depends on two things: 1974 * the security state of the GIC (controlled by the GICD_CTRL.DS bit) 1975 * and if Group 0 interrupts can be delivered to Linux in the non-secure 1976 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the 1977 * ICC_PMR_EL1 register and the priority that software assigns to 1978 * interrupts: 1979 * 1980 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority 1981 * ----------------------------------------------------------- 1982 * 1 | - | unchanged | unchanged 1983 * ----------------------------------------------------------- 1984 * 0 | 1 | non-secure | non-secure 1985 * ----------------------------------------------------------- 1986 * 0 | 0 | unchanged | non-secure 1987 * 1988 * where non-secure means that the value is right-shifted by one and the 1989 * MSB bit set, to make it fit in the non-secure priority range. 1990 * 1991 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority 1992 * are both either modified or unchanged, we can use the same set of 1993 * priorities. 1994 * 1995 * In the last case, where only the interrupt priorities are modified to 1996 * be in the non-secure range, we use a different PMR value to mask IRQs 1997 * and the rest of the values that we use remain unchanged. 1998 */ 1999 if (gic_has_group0() && !gic_dist_security_disabled()) 2000 static_branch_enable(&gic_nonsecure_priorities); 2001 2002 static_branch_enable(&supports_pseudo_nmis); 2003 2004 if (static_branch_likely(&supports_deactivate_key)) 2005 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2006 else 2007 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2008 } 2009 2010 static int __init gic_init_bases(phys_addr_t dist_phys_base, 2011 void __iomem *dist_base, 2012 struct redist_region *rdist_regs, 2013 u32 nr_redist_regions, 2014 u64 redist_stride, 2015 struct fwnode_handle *handle) 2016 { 2017 u32 typer; 2018 int err; 2019 2020 if (!is_hyp_mode_available()) 2021 static_branch_disable(&supports_deactivate_key); 2022 2023 if (static_branch_likely(&supports_deactivate_key)) 2024 pr_info("GIC: Using split EOI/Deactivate mode\n"); 2025 2026 gic_data.fwnode = handle; 2027 gic_data.dist_phys_base = dist_phys_base; 2028 gic_data.dist_base = dist_base; 2029 gic_data.redist_regions = rdist_regs; 2030 gic_data.nr_redist_regions = nr_redist_regions; 2031 gic_data.redist_stride = redist_stride; 2032 2033 /* 2034 * Find out how many interrupts are supported. 2035 */ 2036 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); 2037 gic_data.rdists.gicd_typer = typer; 2038 2039 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), 2040 gic_quirks, &gic_data); 2041 2042 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); 2043 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); 2044 2045 /* 2046 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the 2047 * architecture spec (which says that reserved registers are RES0). 2048 */ 2049 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) 2050 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); 2051 2052 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, 2053 &gic_data); 2054 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); 2055 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { 2056 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ 2057 gic_data.rdists.has_rvpeid = true; 2058 gic_data.rdists.has_vlpis = true; 2059 gic_data.rdists.has_direct_lpi = true; 2060 gic_data.rdists.has_vpend_valid_dirty = true; 2061 } 2062 2063 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { 2064 err = -ENOMEM; 2065 goto out_free; 2066 } 2067 2068 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); 2069 2070 gic_data.has_rss = !!(typer & GICD_TYPER_RSS); 2071 2072 if (typer & GICD_TYPER_MBIS) { 2073 err = mbi_init(handle, gic_data.domain); 2074 if (err) 2075 pr_err("Failed to initialize MBIs\n"); 2076 } 2077 2078 set_handle_irq(gic_handle_irq); 2079 2080 gic_update_rdist_properties(); 2081 2082 gic_dist_init(); 2083 gic_cpu_init(); 2084 gic_smp_init(); 2085 gic_cpu_pm_init(); 2086 2087 if (gic_dist_supports_lpis()) { 2088 its_init(handle, &gic_data.rdists, gic_data.domain); 2089 its_cpu_init(); 2090 its_lpi_memreserve_init(); 2091 } else { 2092 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 2093 gicv2m_init(handle, gic_data.domain); 2094 } 2095 2096 gic_enable_nmi_support(); 2097 2098 return 0; 2099 2100 out_free: 2101 if (gic_data.domain) 2102 irq_domain_remove(gic_data.domain); 2103 free_percpu(gic_data.rdists.rdist); 2104 return err; 2105 } 2106 2107 static int __init gic_validate_dist_version(void __iomem *dist_base) 2108 { 2109 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2110 2111 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) 2112 return -ENODEV; 2113 2114 return 0; 2115 } 2116 2117 /* Create all possible partitions at boot time */ 2118 static void __init gic_populate_ppi_partitions(struct device_node *gic_node) 2119 { 2120 struct device_node *parts_node, *child_part; 2121 int part_idx = 0, i; 2122 int nr_parts; 2123 struct partition_affinity *parts; 2124 2125 parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); 2126 if (!parts_node) 2127 return; 2128 2129 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); 2130 if (!gic_data.ppi_descs) 2131 goto out_put_node; 2132 2133 nr_parts = of_get_child_count(parts_node); 2134 2135 if (!nr_parts) 2136 goto out_put_node; 2137 2138 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); 2139 if (WARN_ON(!parts)) 2140 goto out_put_node; 2141 2142 for_each_child_of_node(parts_node, child_part) { 2143 struct partition_affinity *part; 2144 int n; 2145 2146 part = &parts[part_idx]; 2147 2148 part->partition_id = of_node_to_fwnode(child_part); 2149 2150 pr_info("GIC: PPI partition %pOFn[%d] { ", 2151 child_part, part_idx); 2152 2153 n = of_property_count_elems_of_size(child_part, "affinity", 2154 sizeof(u32)); 2155 WARN_ON(n <= 0); 2156 2157 for (i = 0; i < n; i++) { 2158 int err, cpu; 2159 u32 cpu_phandle; 2160 struct device_node *cpu_node; 2161 2162 err = of_property_read_u32_index(child_part, "affinity", 2163 i, &cpu_phandle); 2164 if (WARN_ON(err)) 2165 continue; 2166 2167 cpu_node = of_find_node_by_phandle(cpu_phandle); 2168 if (WARN_ON(!cpu_node)) 2169 continue; 2170 2171 cpu = of_cpu_node_to_id(cpu_node); 2172 if (WARN_ON(cpu < 0)) { 2173 of_node_put(cpu_node); 2174 continue; 2175 } 2176 2177 pr_cont("%pOF[%d] ", cpu_node, cpu); 2178 2179 cpumask_set_cpu(cpu, &part->mask); 2180 of_node_put(cpu_node); 2181 } 2182 2183 pr_cont("}\n"); 2184 part_idx++; 2185 } 2186 2187 for (i = 0; i < gic_data.ppi_nr; i++) { 2188 unsigned int irq; 2189 struct partition_desc *desc; 2190 struct irq_fwspec ppi_fwspec = { 2191 .fwnode = gic_data.fwnode, 2192 .param_count = 3, 2193 .param = { 2194 [0] = GIC_IRQ_TYPE_PARTITION, 2195 [1] = i, 2196 [2] = IRQ_TYPE_NONE, 2197 }, 2198 }; 2199 2200 irq = irq_create_fwspec_mapping(&ppi_fwspec); 2201 if (WARN_ON(!irq)) 2202 continue; 2203 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, 2204 irq, &partition_domain_ops); 2205 if (WARN_ON(!desc)) 2206 continue; 2207 2208 gic_data.ppi_descs[i] = desc; 2209 } 2210 2211 out_put_node: 2212 of_node_put(parts_node); 2213 } 2214 2215 static void __init gic_of_setup_kvm_info(struct device_node *node) 2216 { 2217 int ret; 2218 struct resource r; 2219 u32 gicv_idx; 2220 2221 gic_v3_kvm_info.type = GIC_V3; 2222 2223 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 2224 if (!gic_v3_kvm_info.maint_irq) 2225 return; 2226 2227 if (of_property_read_u32(node, "#redistributor-regions", 2228 &gicv_idx)) 2229 gicv_idx = 1; 2230 2231 gicv_idx += 3; /* Also skip GICD, GICC, GICH */ 2232 ret = of_address_to_resource(node, gicv_idx, &r); 2233 if (!ret) 2234 gic_v3_kvm_info.vcpu = r; 2235 2236 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2237 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2238 vgic_set_kvm_info(&gic_v3_kvm_info); 2239 } 2240 2241 static void gic_request_region(resource_size_t base, resource_size_t size, 2242 const char *name) 2243 { 2244 if (!request_mem_region(base, size, name)) 2245 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", 2246 name, &base); 2247 } 2248 2249 static void __iomem *gic_of_iomap(struct device_node *node, int idx, 2250 const char *name, struct resource *res) 2251 { 2252 void __iomem *base; 2253 int ret; 2254 2255 ret = of_address_to_resource(node, idx, res); 2256 if (ret) 2257 return IOMEM_ERR_PTR(ret); 2258 2259 gic_request_region(res->start, resource_size(res), name); 2260 base = of_iomap(node, idx); 2261 2262 return base ?: IOMEM_ERR_PTR(-ENOMEM); 2263 } 2264 2265 static int __init gic_of_init(struct device_node *node, struct device_node *parent) 2266 { 2267 phys_addr_t dist_phys_base; 2268 void __iomem *dist_base; 2269 struct redist_region *rdist_regs; 2270 struct resource res; 2271 u64 redist_stride; 2272 u32 nr_redist_regions; 2273 int err, i; 2274 2275 dist_base = gic_of_iomap(node, 0, "GICD", &res); 2276 if (IS_ERR(dist_base)) { 2277 pr_err("%pOF: unable to map gic dist registers\n", node); 2278 return PTR_ERR(dist_base); 2279 } 2280 2281 dist_phys_base = res.start; 2282 2283 err = gic_validate_dist_version(dist_base); 2284 if (err) { 2285 pr_err("%pOF: no distributor detected, giving up\n", node); 2286 goto out_unmap_dist; 2287 } 2288 2289 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) 2290 nr_redist_regions = 1; 2291 2292 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), 2293 GFP_KERNEL); 2294 if (!rdist_regs) { 2295 err = -ENOMEM; 2296 goto out_unmap_dist; 2297 } 2298 2299 for (i = 0; i < nr_redist_regions; i++) { 2300 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); 2301 if (IS_ERR(rdist_regs[i].redist_base)) { 2302 pr_err("%pOF: couldn't map region %d\n", node, i); 2303 err = -ENODEV; 2304 goto out_unmap_rdist; 2305 } 2306 rdist_regs[i].phys_base = res.start; 2307 } 2308 2309 if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) 2310 redist_stride = 0; 2311 2312 gic_enable_of_quirks(node, gic_quirks, &gic_data); 2313 2314 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, 2315 nr_redist_regions, redist_stride, &node->fwnode); 2316 if (err) 2317 goto out_unmap_rdist; 2318 2319 gic_populate_ppi_partitions(node); 2320 2321 if (static_branch_likely(&supports_deactivate_key)) 2322 gic_of_setup_kvm_info(node); 2323 return 0; 2324 2325 out_unmap_rdist: 2326 for (i = 0; i < nr_redist_regions; i++) 2327 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) 2328 iounmap(rdist_regs[i].redist_base); 2329 kfree(rdist_regs); 2330 out_unmap_dist: 2331 iounmap(dist_base); 2332 return err; 2333 } 2334 2335 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); 2336 2337 #ifdef CONFIG_ACPI 2338 static struct 2339 { 2340 void __iomem *dist_base; 2341 struct redist_region *redist_regs; 2342 u32 nr_redist_regions; 2343 bool single_redist; 2344 int enabled_rdists; 2345 u32 maint_irq; 2346 int maint_irq_mode; 2347 phys_addr_t vcpu_base; 2348 } acpi_data __initdata; 2349 2350 static void __init 2351 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) 2352 { 2353 static int count = 0; 2354 2355 acpi_data.redist_regs[count].phys_base = phys_base; 2356 acpi_data.redist_regs[count].redist_base = redist_base; 2357 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; 2358 count++; 2359 } 2360 2361 static int __init 2362 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, 2363 const unsigned long end) 2364 { 2365 struct acpi_madt_generic_redistributor *redist = 2366 (struct acpi_madt_generic_redistributor *)header; 2367 void __iomem *redist_base; 2368 2369 redist_base = ioremap(redist->base_address, redist->length); 2370 if (!redist_base) { 2371 pr_err("Couldn't map GICR region @%llx\n", redist->base_address); 2372 return -ENOMEM; 2373 } 2374 gic_request_region(redist->base_address, redist->length, "GICR"); 2375 2376 gic_acpi_register_redist(redist->base_address, redist_base); 2377 return 0; 2378 } 2379 2380 static int __init 2381 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, 2382 const unsigned long end) 2383 { 2384 struct acpi_madt_generic_interrupt *gicc = 2385 (struct acpi_madt_generic_interrupt *)header; 2386 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2387 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; 2388 void __iomem *redist_base; 2389 2390 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */ 2391 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2392 return 0; 2393 2394 redist_base = ioremap(gicc->gicr_base_address, size); 2395 if (!redist_base) 2396 return -ENOMEM; 2397 gic_request_region(gicc->gicr_base_address, size, "GICR"); 2398 2399 gic_acpi_register_redist(gicc->gicr_base_address, redist_base); 2400 return 0; 2401 } 2402 2403 static int __init gic_acpi_collect_gicr_base(void) 2404 { 2405 acpi_tbl_entry_handler redist_parser; 2406 enum acpi_madt_type type; 2407 2408 if (acpi_data.single_redist) { 2409 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; 2410 redist_parser = gic_acpi_parse_madt_gicc; 2411 } else { 2412 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; 2413 redist_parser = gic_acpi_parse_madt_redist; 2414 } 2415 2416 /* Collect redistributor base addresses in GICR entries */ 2417 if (acpi_table_parse_madt(type, redist_parser, 0) > 0) 2418 return 0; 2419 2420 pr_info("No valid GICR entries exist\n"); 2421 return -ENODEV; 2422 } 2423 2424 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, 2425 const unsigned long end) 2426 { 2427 /* Subtable presence means that redist exists, that's it */ 2428 return 0; 2429 } 2430 2431 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, 2432 const unsigned long end) 2433 { 2434 struct acpi_madt_generic_interrupt *gicc = 2435 (struct acpi_madt_generic_interrupt *)header; 2436 2437 /* 2438 * If GICC is enabled and has valid gicr base address, then it means 2439 * GICR base is presented via GICC 2440 */ 2441 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) { 2442 acpi_data.enabled_rdists++; 2443 return 0; 2444 } 2445 2446 /* 2447 * It's perfectly valid firmware can pass disabled GICC entry, driver 2448 * should not treat as errors, skip the entry instead of probe fail. 2449 */ 2450 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2451 return 0; 2452 2453 return -ENODEV; 2454 } 2455 2456 static int __init gic_acpi_count_gicr_regions(void) 2457 { 2458 int count; 2459 2460 /* 2461 * Count how many redistributor regions we have. It is not allowed 2462 * to mix redistributor description, GICR and GICC subtables have to be 2463 * mutually exclusive. 2464 */ 2465 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 2466 gic_acpi_match_gicr, 0); 2467 if (count > 0) { 2468 acpi_data.single_redist = false; 2469 return count; 2470 } 2471 2472 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2473 gic_acpi_match_gicc, 0); 2474 if (count > 0) { 2475 acpi_data.single_redist = true; 2476 count = acpi_data.enabled_rdists; 2477 } 2478 2479 return count; 2480 } 2481 2482 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, 2483 struct acpi_probe_entry *ape) 2484 { 2485 struct acpi_madt_generic_distributor *dist; 2486 int count; 2487 2488 dist = (struct acpi_madt_generic_distributor *)header; 2489 if (dist->version != ape->driver_data) 2490 return false; 2491 2492 /* We need to do that exercise anyway, the sooner the better */ 2493 count = gic_acpi_count_gicr_regions(); 2494 if (count <= 0) 2495 return false; 2496 2497 acpi_data.nr_redist_regions = count; 2498 return true; 2499 } 2500 2501 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, 2502 const unsigned long end) 2503 { 2504 struct acpi_madt_generic_interrupt *gicc = 2505 (struct acpi_madt_generic_interrupt *)header; 2506 int maint_irq_mode; 2507 static int first_madt = true; 2508 2509 /* Skip unusable CPUs */ 2510 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2511 return 0; 2512 2513 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 2514 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 2515 2516 if (first_madt) { 2517 first_madt = false; 2518 2519 acpi_data.maint_irq = gicc->vgic_interrupt; 2520 acpi_data.maint_irq_mode = maint_irq_mode; 2521 acpi_data.vcpu_base = gicc->gicv_base_address; 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * The maintenance interrupt and GICV should be the same for every CPU 2528 */ 2529 if ((acpi_data.maint_irq != gicc->vgic_interrupt) || 2530 (acpi_data.maint_irq_mode != maint_irq_mode) || 2531 (acpi_data.vcpu_base != gicc->gicv_base_address)) 2532 return -EINVAL; 2533 2534 return 0; 2535 } 2536 2537 static bool __init gic_acpi_collect_virt_info(void) 2538 { 2539 int count; 2540 2541 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2542 gic_acpi_parse_virt_madt_gicc, 0); 2543 2544 return (count > 0); 2545 } 2546 2547 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) 2548 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 2549 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 2550 2551 static void __init gic_acpi_setup_kvm_info(void) 2552 { 2553 int irq; 2554 2555 if (!gic_acpi_collect_virt_info()) { 2556 pr_warn("Unable to get hardware information used for virtualization\n"); 2557 return; 2558 } 2559 2560 gic_v3_kvm_info.type = GIC_V3; 2561 2562 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 2563 acpi_data.maint_irq_mode, 2564 ACPI_ACTIVE_HIGH); 2565 if (irq <= 0) 2566 return; 2567 2568 gic_v3_kvm_info.maint_irq = irq; 2569 2570 if (acpi_data.vcpu_base) { 2571 struct resource *vcpu = &gic_v3_kvm_info.vcpu; 2572 2573 vcpu->flags = IORESOURCE_MEM; 2574 vcpu->start = acpi_data.vcpu_base; 2575 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 2576 } 2577 2578 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2579 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2580 vgic_set_kvm_info(&gic_v3_kvm_info); 2581 } 2582 2583 static struct fwnode_handle *gsi_domain_handle; 2584 2585 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) 2586 { 2587 return gsi_domain_handle; 2588 } 2589 2590 static int __init 2591 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) 2592 { 2593 struct acpi_madt_generic_distributor *dist; 2594 size_t size; 2595 int i, err; 2596 2597 /* Get distributor base address */ 2598 dist = (struct acpi_madt_generic_distributor *)header; 2599 acpi_data.dist_base = ioremap(dist->base_address, 2600 ACPI_GICV3_DIST_MEM_SIZE); 2601 if (!acpi_data.dist_base) { 2602 pr_err("Unable to map GICD registers\n"); 2603 return -ENOMEM; 2604 } 2605 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); 2606 2607 err = gic_validate_dist_version(acpi_data.dist_base); 2608 if (err) { 2609 pr_err("No distributor detected at @%p, giving up\n", 2610 acpi_data.dist_base); 2611 goto out_dist_unmap; 2612 } 2613 2614 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; 2615 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); 2616 if (!acpi_data.redist_regs) { 2617 err = -ENOMEM; 2618 goto out_dist_unmap; 2619 } 2620 2621 err = gic_acpi_collect_gicr_base(); 2622 if (err) 2623 goto out_redist_unmap; 2624 2625 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 2626 if (!gsi_domain_handle) { 2627 err = -ENOMEM; 2628 goto out_redist_unmap; 2629 } 2630 2631 err = gic_init_bases(dist->base_address, acpi_data.dist_base, 2632 acpi_data.redist_regs, acpi_data.nr_redist_regions, 2633 0, gsi_domain_handle); 2634 if (err) 2635 goto out_fwhandle_free; 2636 2637 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); 2638 2639 if (static_branch_likely(&supports_deactivate_key)) 2640 gic_acpi_setup_kvm_info(); 2641 2642 return 0; 2643 2644 out_fwhandle_free: 2645 irq_domain_free_fwnode(gsi_domain_handle); 2646 out_redist_unmap: 2647 for (i = 0; i < acpi_data.nr_redist_regions; i++) 2648 if (acpi_data.redist_regs[i].redist_base) 2649 iounmap(acpi_data.redist_regs[i].redist_base); 2650 kfree(acpi_data.redist_regs); 2651 out_dist_unmap: 2652 iounmap(acpi_data.dist_base); 2653 return err; 2654 } 2655 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2656 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, 2657 gic_acpi_init); 2658 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2659 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, 2660 gic_acpi_init); 2661 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2662 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, 2663 gic_acpi_init); 2664 #endif 2665