xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision 5e18b9737004ef6f34862f6fb39d3c9027a4044a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)					\
116 	({								\
117 		u32 __priority = (priority);				\
118 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
119 			__priority = 0x80 | (__priority >> 1);		\
120 									\
121 		__priority;						\
122 	})
123 
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126 
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129 
130 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
134 
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE	0xf0
137 
138 enum gic_intid_range {
139 	SGI_RANGE,
140 	PPI_RANGE,
141 	SPI_RANGE,
142 	EPPI_RANGE,
143 	ESPI_RANGE,
144 	LPI_RANGE,
145 	__INVALID_RANGE__
146 };
147 
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 	switch (hwirq) {
151 	case 0 ... 15:
152 		return SGI_RANGE;
153 	case 16 ... 31:
154 		return PPI_RANGE;
155 	case 32 ... 1019:
156 		return SPI_RANGE;
157 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 		return EPPI_RANGE;
159 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 		return ESPI_RANGE;
161 	case 8192 ... GENMASK(23, 0):
162 		return LPI_RANGE;
163 	default:
164 		return __INVALID_RANGE__;
165 	}
166 }
167 
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 	return __get_intid_range(d->hwirq);
171 }
172 
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 	return d->hwirq;
176 }
177 
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 	switch (get_intid_range(d)) {
181 	case SGI_RANGE:
182 	case PPI_RANGE:
183 	case EPPI_RANGE:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192 	switch (get_intid_range(d)) {
193 	case SGI_RANGE:
194 	case PPI_RANGE:
195 	case EPPI_RANGE:
196 		/* SGI+PPI -> SGI_base for this CPU */
197 		return gic_data_rdist_sgi_base();
198 
199 	case SPI_RANGE:
200 	case ESPI_RANGE:
201 		/* SPI -> dist_base */
202 		return gic_data.dist_base;
203 
204 	default:
205 		return NULL;
206 	}
207 }
208 
209 static void gic_do_wait_for_rwp(void __iomem *base)
210 {
211 	u32 count = 1000000;	/* 1s! */
212 
213 	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
214 		count--;
215 		if (!count) {
216 			pr_err_ratelimited("RWP timeout, gone fishing\n");
217 			return;
218 		}
219 		cpu_relax();
220 		udelay(1);
221 	}
222 }
223 
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
226 {
227 	gic_do_wait_for_rwp(gic_data.dist_base);
228 }
229 
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
232 {
233 	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
234 }
235 
236 #ifdef CONFIG_ARM64
237 
238 static u64 __maybe_unused gic_read_iar(void)
239 {
240 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 		return gic_read_iar_cavium_thunderx();
242 	else
243 		return gic_read_iar_common();
244 }
245 #endif
246 
247 static void gic_enable_redist(bool enable)
248 {
249 	void __iomem *rbase;
250 	u32 count = 1000000;	/* 1s! */
251 	u32 val;
252 
253 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254 		return;
255 
256 	rbase = gic_data_rdist_rd_base();
257 
258 	val = readl_relaxed(rbase + GICR_WAKER);
259 	if (enable)
260 		/* Wake up this CPU redistributor */
261 		val &= ~GICR_WAKER_ProcessorSleep;
262 	else
263 		val |= GICR_WAKER_ProcessorSleep;
264 	writel_relaxed(val, rbase + GICR_WAKER);
265 
266 	if (!enable) {		/* Check that GICR_WAKER is writeable */
267 		val = readl_relaxed(rbase + GICR_WAKER);
268 		if (!(val & GICR_WAKER_ProcessorSleep))
269 			return;	/* No PM support in this redistributor */
270 	}
271 
272 	while (--count) {
273 		val = readl_relaxed(rbase + GICR_WAKER);
274 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275 			break;
276 		cpu_relax();
277 		udelay(1);
278 	}
279 	if (!count)
280 		pr_err_ratelimited("redistributor failed to %s...\n",
281 				   enable ? "wakeup" : "sleep");
282 }
283 
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289 	switch (get_intid_range(d)) {
290 	case SGI_RANGE:
291 	case PPI_RANGE:
292 	case SPI_RANGE:
293 		*index = d->hwirq;
294 		return offset;
295 	case EPPI_RANGE:
296 		/*
297 		 * Contrary to the ESPI range, the EPPI range is contiguous
298 		 * to the PPI range in the registers, so let's adjust the
299 		 * displacement accordingly. Consistency is overrated.
300 		 */
301 		*index = d->hwirq - EPPI_BASE_INTID + 32;
302 		return offset;
303 	case ESPI_RANGE:
304 		*index = d->hwirq - ESPI_BASE_INTID;
305 		switch (offset) {
306 		case GICD_ISENABLER:
307 			return GICD_ISENABLERnE;
308 		case GICD_ICENABLER:
309 			return GICD_ICENABLERnE;
310 		case GICD_ISPENDR:
311 			return GICD_ISPENDRnE;
312 		case GICD_ICPENDR:
313 			return GICD_ICPENDRnE;
314 		case GICD_ISACTIVER:
315 			return GICD_ISACTIVERnE;
316 		case GICD_ICACTIVER:
317 			return GICD_ICACTIVERnE;
318 		case GICD_IPRIORITYR:
319 			return GICD_IPRIORITYRnE;
320 		case GICD_ICFGR:
321 			return GICD_ICFGRnE;
322 		case GICD_IROUTER:
323 			return GICD_IROUTERnE;
324 		default:
325 			break;
326 		}
327 		break;
328 	default:
329 		break;
330 	}
331 
332 	WARN_ON(1);
333 	*index = d->hwirq;
334 	return offset;
335 }
336 
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339 	void __iomem *base;
340 	u32 index, mask;
341 
342 	offset = convert_offset_index(d, offset, &index);
343 	mask = 1 << (index % 32);
344 
345 	if (gic_irq_in_rdist(d))
346 		base = gic_data_rdist_sgi_base();
347 	else
348 		base = gic_data.dist_base;
349 
350 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352 
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355 	void (*rwp_wait)(void);
356 	void __iomem *base;
357 	u32 index, mask;
358 
359 	offset = convert_offset_index(d, offset, &index);
360 	mask = 1 << (index % 32);
361 
362 	if (gic_irq_in_rdist(d)) {
363 		base = gic_data_rdist_sgi_base();
364 		rwp_wait = gic_redist_wait_for_rwp;
365 	} else {
366 		base = gic_data.dist_base;
367 		rwp_wait = gic_dist_wait_for_rwp;
368 	}
369 
370 	writel_relaxed(mask, base + offset + (index / 32) * 4);
371 	rwp_wait();
372 }
373 
374 static void gic_mask_irq(struct irq_data *d)
375 {
376 	gic_poke_irq(d, GICD_ICENABLER);
377 }
378 
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381 	gic_mask_irq(d);
382 	/*
383 	 * When masking a forwarded interrupt, make sure it is
384 	 * deactivated as well.
385 	 *
386 	 * This ensures that an interrupt that is getting
387 	 * disabled/masked will not get "stuck", because there is
388 	 * noone to deactivate it (guest is being terminated).
389 	 */
390 	if (irqd_is_forwarded_to_vcpu(d))
391 		gic_poke_irq(d, GICD_ICACTIVER);
392 }
393 
394 static void gic_unmask_irq(struct irq_data *d)
395 {
396 	gic_poke_irq(d, GICD_ISENABLER);
397 }
398 
399 static inline bool gic_supports_nmi(void)
400 {
401 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 	       static_branch_likely(&supports_pseudo_nmis);
403 }
404 
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 				     enum irqchip_irq_state which, bool val)
407 {
408 	u32 reg;
409 
410 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411 		return -EINVAL;
412 
413 	switch (which) {
414 	case IRQCHIP_STATE_PENDING:
415 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416 		break;
417 
418 	case IRQCHIP_STATE_ACTIVE:
419 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420 		break;
421 
422 	case IRQCHIP_STATE_MASKED:
423 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424 		break;
425 
426 	default:
427 		return -EINVAL;
428 	}
429 
430 	gic_poke_irq(d, reg);
431 	return 0;
432 }
433 
434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 				     enum irqchip_irq_state which, bool *val)
436 {
437 	if (d->hwirq >= 8192) /* PPI/SPI only */
438 		return -EINVAL;
439 
440 	switch (which) {
441 	case IRQCHIP_STATE_PENDING:
442 		*val = gic_peek_irq(d, GICD_ISPENDR);
443 		break;
444 
445 	case IRQCHIP_STATE_ACTIVE:
446 		*val = gic_peek_irq(d, GICD_ISACTIVER);
447 		break;
448 
449 	case IRQCHIP_STATE_MASKED:
450 		*val = !gic_peek_irq(d, GICD_ISENABLER);
451 		break;
452 
453 	default:
454 		return -EINVAL;
455 	}
456 
457 	return 0;
458 }
459 
460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462 	void __iomem *base = gic_dist_base(d);
463 	u32 offset, index;
464 
465 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466 
467 	writeb_relaxed(prio, base + offset + index);
468 }
469 
470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
471 {
472 	switch (__get_intid_range(hwirq)) {
473 	case PPI_RANGE:
474 		return hwirq - 16;
475 	case EPPI_RANGE:
476 		return hwirq - EPPI_BASE_INTID + 16;
477 	default:
478 		unreachable();
479 	}
480 }
481 
482 static u32 gic_get_ppi_index(struct irq_data *d)
483 {
484 	return __gic_get_ppi_index(d->hwirq);
485 }
486 
487 static int gic_irq_nmi_setup(struct irq_data *d)
488 {
489 	struct irq_desc *desc = irq_to_desc(d->irq);
490 
491 	if (!gic_supports_nmi())
492 		return -EINVAL;
493 
494 	if (gic_peek_irq(d, GICD_ISENABLER)) {
495 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
496 		return -EINVAL;
497 	}
498 
499 	/*
500 	 * A secondary irq_chip should be in charge of LPI request,
501 	 * it should not be possible to get there
502 	 */
503 	if (WARN_ON(gic_irq(d) >= 8192))
504 		return -EINVAL;
505 
506 	/* desc lock should already be held */
507 	if (gic_irq_in_rdist(d)) {
508 		u32 idx = gic_get_ppi_index(d);
509 
510 		/* Setting up PPI as NMI, only switch handler for first NMI */
511 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512 			refcount_set(&ppi_nmi_refs[idx], 1);
513 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
514 		}
515 	} else {
516 		desc->handle_irq = handle_fasteoi_nmi;
517 	}
518 
519 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
520 
521 	return 0;
522 }
523 
524 static void gic_irq_nmi_teardown(struct irq_data *d)
525 {
526 	struct irq_desc *desc = irq_to_desc(d->irq);
527 
528 	if (WARN_ON(!gic_supports_nmi()))
529 		return;
530 
531 	if (gic_peek_irq(d, GICD_ISENABLER)) {
532 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533 		return;
534 	}
535 
536 	/*
537 	 * A secondary irq_chip should be in charge of LPI request,
538 	 * it should not be possible to get there
539 	 */
540 	if (WARN_ON(gic_irq(d) >= 8192))
541 		return;
542 
543 	/* desc lock should already be held */
544 	if (gic_irq_in_rdist(d)) {
545 		u32 idx = gic_get_ppi_index(d);
546 
547 		/* Tearing down NMI, only switch handler for last NMI */
548 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549 			desc->handle_irq = handle_percpu_devid_irq;
550 	} else {
551 		desc->handle_irq = handle_fasteoi_irq;
552 	}
553 
554 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
555 }
556 
557 static void gic_eoi_irq(struct irq_data *d)
558 {
559 	gic_write_eoir(gic_irq(d));
560 }
561 
562 static void gic_eoimode1_eoi_irq(struct irq_data *d)
563 {
564 	/*
565 	 * No need to deactivate an LPI, or an interrupt that
566 	 * is is getting forwarded to a vcpu.
567 	 */
568 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
569 		return;
570 	gic_write_dir(gic_irq(d));
571 }
572 
573 static int gic_set_type(struct irq_data *d, unsigned int type)
574 {
575 	enum gic_intid_range range;
576 	unsigned int irq = gic_irq(d);
577 	void (*rwp_wait)(void);
578 	void __iomem *base;
579 	u32 offset, index;
580 	int ret;
581 
582 	range = get_intid_range(d);
583 
584 	/* Interrupt configuration for SGIs can't be changed */
585 	if (range == SGI_RANGE)
586 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
587 
588 	/* SPIs have restrictions on the supported types */
589 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
590 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
591 		return -EINVAL;
592 
593 	if (gic_irq_in_rdist(d)) {
594 		base = gic_data_rdist_sgi_base();
595 		rwp_wait = gic_redist_wait_for_rwp;
596 	} else {
597 		base = gic_data.dist_base;
598 		rwp_wait = gic_dist_wait_for_rwp;
599 	}
600 
601 	offset = convert_offset_index(d, GICD_ICFGR, &index);
602 
603 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
604 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605 		/* Misconfigured PPIs are usually not fatal */
606 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607 		ret = 0;
608 	}
609 
610 	return ret;
611 }
612 
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615 	if (get_intid_range(d) == SGI_RANGE)
616 		return -EINVAL;
617 
618 	if (vcpu)
619 		irqd_set_forwarded_to_vcpu(d);
620 	else
621 		irqd_clr_forwarded_to_vcpu(d);
622 	return 0;
623 }
624 
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627 	u64 aff;
628 
629 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
632 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
633 
634 	return aff;
635 }
636 
637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639 	if (static_branch_likely(&supports_deactivate_key)) {
640 		if (irqnr < 8192)
641 			gic_write_dir(irqnr);
642 	} else {
643 		gic_write_eoir(irqnr);
644 	}
645 }
646 
647 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
648 {
649 	bool irqs_enabled = interrupts_enabled(regs);
650 	int err;
651 
652 	if (irqs_enabled)
653 		nmi_enter();
654 
655 	if (static_branch_likely(&supports_deactivate_key))
656 		gic_write_eoir(irqnr);
657 	/*
658 	 * Leave the PSR.I bit set to prevent other NMIs to be
659 	 * received while handling this one.
660 	 * PSR.I will be restored when we ERET to the
661 	 * interrupted context.
662 	 */
663 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
664 	if (err)
665 		gic_deactivate_unhandled(irqnr);
666 
667 	if (irqs_enabled)
668 		nmi_exit();
669 }
670 
671 static u32 do_read_iar(struct pt_regs *regs)
672 {
673 	u32 iar;
674 
675 	if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
676 		u64 pmr;
677 
678 		/*
679 		 * We were in a context with IRQs disabled. However, the
680 		 * entry code has set PMR to a value that allows any
681 		 * interrupt to be acknowledged, and not just NMIs. This can
682 		 * lead to surprising effects if the NMI has been retired in
683 		 * the meantime, and that there is an IRQ pending. The IRQ
684 		 * would then be taken in NMI context, something that nobody
685 		 * wants to debug twice.
686 		 *
687 		 * Until we sort this, drop PMR again to a level that will
688 		 * actually only allow NMIs before reading IAR, and then
689 		 * restore it to what it was.
690 		 */
691 		pmr = gic_read_pmr();
692 		gic_pmr_mask_irqs();
693 		isb();
694 
695 		iar = gic_read_iar();
696 
697 		gic_write_pmr(pmr);
698 	} else {
699 		iar = gic_read_iar();
700 	}
701 
702 	return iar;
703 }
704 
705 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
706 {
707 	u32 irqnr;
708 
709 	irqnr = do_read_iar(regs);
710 
711 	/* Check for special IDs first */
712 	if ((irqnr >= 1020 && irqnr <= 1023))
713 		return;
714 
715 	if (gic_supports_nmi() &&
716 	    unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
717 		gic_handle_nmi(irqnr, regs);
718 		return;
719 	}
720 
721 	if (gic_prio_masking_enabled()) {
722 		gic_pmr_mask_irqs();
723 		gic_arch_enable_irqs();
724 	}
725 
726 	if (static_branch_likely(&supports_deactivate_key))
727 		gic_write_eoir(irqnr);
728 	else
729 		isb();
730 
731 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
732 		WARN_ONCE(true, "Unexpected interrupt received!\n");
733 		gic_deactivate_unhandled(irqnr);
734 	}
735 }
736 
737 static u32 gic_get_pribits(void)
738 {
739 	u32 pribits;
740 
741 	pribits = gic_read_ctlr();
742 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
743 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
744 	pribits++;
745 
746 	return pribits;
747 }
748 
749 static bool gic_has_group0(void)
750 {
751 	u32 val;
752 	u32 old_pmr;
753 
754 	old_pmr = gic_read_pmr();
755 
756 	/*
757 	 * Let's find out if Group0 is under control of EL3 or not by
758 	 * setting the highest possible, non-zero priority in PMR.
759 	 *
760 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
761 	 * order for the CPU interface to set bit 7, and keep the
762 	 * actual priority in the non-secure range. In the process, it
763 	 * looses the least significant bit and the actual priority
764 	 * becomes 0x80. Reading it back returns 0, indicating that
765 	 * we're don't have access to Group0.
766 	 */
767 	gic_write_pmr(BIT(8 - gic_get_pribits()));
768 	val = gic_read_pmr();
769 
770 	gic_write_pmr(old_pmr);
771 
772 	return val != 0;
773 }
774 
775 static void __init gic_dist_init(void)
776 {
777 	unsigned int i;
778 	u64 affinity;
779 	void __iomem *base = gic_data.dist_base;
780 	u32 val;
781 
782 	/* Disable the distributor */
783 	writel_relaxed(0, base + GICD_CTLR);
784 	gic_dist_wait_for_rwp();
785 
786 	/*
787 	 * Configure SPIs as non-secure Group-1. This will only matter
788 	 * if the GIC only has a single security state. This will not
789 	 * do the right thing if the kernel is running in secure mode,
790 	 * but that's not the intended use case anyway.
791 	 */
792 	for (i = 32; i < GIC_LINE_NR; i += 32)
793 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
794 
795 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
796 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
797 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
798 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
799 	}
800 
801 	for (i = 0; i < GIC_ESPI_NR; i += 32)
802 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
803 
804 	for (i = 0; i < GIC_ESPI_NR; i += 16)
805 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
806 
807 	for (i = 0; i < GIC_ESPI_NR; i += 4)
808 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
809 
810 	/* Now do the common stuff, and wait for the distributor to drain */
811 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
812 
813 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
814 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
815 		pr_info("Enabling SGIs without active state\n");
816 		val |= GICD_CTLR_nASSGIreq;
817 	}
818 
819 	/* Enable distributor with ARE, Group1 */
820 	writel_relaxed(val, base + GICD_CTLR);
821 
822 	/*
823 	 * Set all global interrupts to the boot CPU only. ARE must be
824 	 * enabled.
825 	 */
826 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
827 	for (i = 32; i < GIC_LINE_NR; i++)
828 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
829 
830 	for (i = 0; i < GIC_ESPI_NR; i++)
831 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
832 }
833 
834 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
835 {
836 	int ret = -ENODEV;
837 	int i;
838 
839 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
840 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
841 		u64 typer;
842 		u32 reg;
843 
844 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
845 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
846 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
847 			pr_warn("No redistributor present @%p\n", ptr);
848 			break;
849 		}
850 
851 		do {
852 			typer = gic_read_typer(ptr + GICR_TYPER);
853 			ret = fn(gic_data.redist_regions + i, ptr);
854 			if (!ret)
855 				return 0;
856 
857 			if (gic_data.redist_regions[i].single_redist)
858 				break;
859 
860 			if (gic_data.redist_stride) {
861 				ptr += gic_data.redist_stride;
862 			} else {
863 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
864 				if (typer & GICR_TYPER_VLPIS)
865 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
866 			}
867 		} while (!(typer & GICR_TYPER_LAST));
868 	}
869 
870 	return ret ? -ENODEV : 0;
871 }
872 
873 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
874 {
875 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
876 	u64 typer;
877 	u32 aff;
878 
879 	/*
880 	 * Convert affinity to a 32bit value that can be matched to
881 	 * GICR_TYPER bits [63:32].
882 	 */
883 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
884 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
885 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
886 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
887 
888 	typer = gic_read_typer(ptr + GICR_TYPER);
889 	if ((typer >> 32) == aff) {
890 		u64 offset = ptr - region->redist_base;
891 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
892 		gic_data_rdist_rd_base() = ptr;
893 		gic_data_rdist()->phys_base = region->phys_base + offset;
894 
895 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
896 			smp_processor_id(), mpidr,
897 			(int)(region - gic_data.redist_regions),
898 			&gic_data_rdist()->phys_base);
899 		return 0;
900 	}
901 
902 	/* Try next one */
903 	return 1;
904 }
905 
906 static int gic_populate_rdist(void)
907 {
908 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
909 		return 0;
910 
911 	/* We couldn't even deal with ourselves... */
912 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
913 	     smp_processor_id(),
914 	     (unsigned long)cpu_logical_map(smp_processor_id()));
915 	return -ENODEV;
916 }
917 
918 static int __gic_update_rdist_properties(struct redist_region *region,
919 					 void __iomem *ptr)
920 {
921 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
922 
923 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
924 
925 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
926 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
927 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
928 					   gic_data.rdists.has_rvpeid);
929 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
930 
931 	/* Detect non-sensical configurations */
932 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
933 		gic_data.rdists.has_direct_lpi = false;
934 		gic_data.rdists.has_vlpis = false;
935 		gic_data.rdists.has_rvpeid = false;
936 	}
937 
938 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
939 
940 	return 1;
941 }
942 
943 static void gic_update_rdist_properties(void)
944 {
945 	gic_data.ppi_nr = UINT_MAX;
946 	gic_iterate_rdists(__gic_update_rdist_properties);
947 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
948 		gic_data.ppi_nr = 0;
949 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
950 	if (gic_data.rdists.has_vlpis)
951 		pr_info("GICv4 features: %s%s%s\n",
952 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
953 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
954 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
955 }
956 
957 /* Check whether it's single security state view */
958 static inline bool gic_dist_security_disabled(void)
959 {
960 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
961 }
962 
963 static void gic_cpu_sys_reg_init(void)
964 {
965 	int i, cpu = smp_processor_id();
966 	u64 mpidr = cpu_logical_map(cpu);
967 	u64 need_rss = MPIDR_RS(mpidr);
968 	bool group0;
969 	u32 pribits;
970 
971 	/*
972 	 * Need to check that the SRE bit has actually been set. If
973 	 * not, it means that SRE is disabled at EL2. We're going to
974 	 * die painfully, and there is nothing we can do about it.
975 	 *
976 	 * Kindly inform the luser.
977 	 */
978 	if (!gic_enable_sre())
979 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
980 
981 	pribits = gic_get_pribits();
982 
983 	group0 = gic_has_group0();
984 
985 	/* Set priority mask register */
986 	if (!gic_prio_masking_enabled()) {
987 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
988 	} else if (gic_supports_nmi()) {
989 		/*
990 		 * Mismatch configuration with boot CPU, the system is likely
991 		 * to die as interrupt masking will not work properly on all
992 		 * CPUs
993 		 *
994 		 * The boot CPU calls this function before enabling NMI support,
995 		 * and as a result we'll never see this warning in the boot path
996 		 * for that CPU.
997 		 */
998 		if (static_branch_unlikely(&gic_nonsecure_priorities))
999 			WARN_ON(!group0 || gic_dist_security_disabled());
1000 		else
1001 			WARN_ON(group0 && !gic_dist_security_disabled());
1002 	}
1003 
1004 	/*
1005 	 * Some firmwares hand over to the kernel with the BPR changed from
1006 	 * its reset value (and with a value large enough to prevent
1007 	 * any pre-emptive interrupts from working at all). Writing a zero
1008 	 * to BPR restores is reset value.
1009 	 */
1010 	gic_write_bpr1(0);
1011 
1012 	if (static_branch_likely(&supports_deactivate_key)) {
1013 		/* EOI drops priority only (mode 1) */
1014 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1015 	} else {
1016 		/* EOI deactivates interrupt too (mode 0) */
1017 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1018 	}
1019 
1020 	/* Always whack Group0 before Group1 */
1021 	if (group0) {
1022 		switch(pribits) {
1023 		case 8:
1024 		case 7:
1025 			write_gicreg(0, ICC_AP0R3_EL1);
1026 			write_gicreg(0, ICC_AP0R2_EL1);
1027 			fallthrough;
1028 		case 6:
1029 			write_gicreg(0, ICC_AP0R1_EL1);
1030 			fallthrough;
1031 		case 5:
1032 		case 4:
1033 			write_gicreg(0, ICC_AP0R0_EL1);
1034 		}
1035 
1036 		isb();
1037 	}
1038 
1039 	switch(pribits) {
1040 	case 8:
1041 	case 7:
1042 		write_gicreg(0, ICC_AP1R3_EL1);
1043 		write_gicreg(0, ICC_AP1R2_EL1);
1044 		fallthrough;
1045 	case 6:
1046 		write_gicreg(0, ICC_AP1R1_EL1);
1047 		fallthrough;
1048 	case 5:
1049 	case 4:
1050 		write_gicreg(0, ICC_AP1R0_EL1);
1051 	}
1052 
1053 	isb();
1054 
1055 	/* ... and let's hit the road... */
1056 	gic_write_grpen1(1);
1057 
1058 	/* Keep the RSS capability status in per_cpu variable */
1059 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1060 
1061 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1062 	for_each_online_cpu(i) {
1063 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1064 
1065 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1066 		if (need_rss && (!have_rss))
1067 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1068 				cpu, (unsigned long)mpidr,
1069 				i, (unsigned long)cpu_logical_map(i));
1070 	}
1071 
1072 	/**
1073 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1074 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1075 	 * UNPREDICTABLE choice of :
1076 	 *   - The write is ignored.
1077 	 *   - The RS field is treated as 0.
1078 	 */
1079 	if (need_rss && (!gic_data.has_rss))
1080 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1081 }
1082 
1083 static bool gicv3_nolpi;
1084 
1085 static int __init gicv3_nolpi_cfg(char *buf)
1086 {
1087 	return strtobool(buf, &gicv3_nolpi);
1088 }
1089 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1090 
1091 static int gic_dist_supports_lpis(void)
1092 {
1093 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1094 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1095 		!gicv3_nolpi);
1096 }
1097 
1098 static void gic_cpu_init(void)
1099 {
1100 	void __iomem *rbase;
1101 	int i;
1102 
1103 	/* Register ourselves with the rest of the world */
1104 	if (gic_populate_rdist())
1105 		return;
1106 
1107 	gic_enable_redist(true);
1108 
1109 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1110 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1111 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1112 	     smp_processor_id());
1113 
1114 	rbase = gic_data_rdist_sgi_base();
1115 
1116 	/* Configure SGIs/PPIs as non-secure Group-1 */
1117 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1118 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1119 
1120 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1121 
1122 	/* initialise system registers */
1123 	gic_cpu_sys_reg_init();
1124 }
1125 
1126 #ifdef CONFIG_SMP
1127 
1128 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1129 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1130 
1131 static int gic_starting_cpu(unsigned int cpu)
1132 {
1133 	gic_cpu_init();
1134 
1135 	if (gic_dist_supports_lpis())
1136 		its_cpu_init();
1137 
1138 	return 0;
1139 }
1140 
1141 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1142 				   unsigned long cluster_id)
1143 {
1144 	int next_cpu, cpu = *base_cpu;
1145 	unsigned long mpidr = cpu_logical_map(cpu);
1146 	u16 tlist = 0;
1147 
1148 	while (cpu < nr_cpu_ids) {
1149 		tlist |= 1 << (mpidr & 0xf);
1150 
1151 		next_cpu = cpumask_next(cpu, mask);
1152 		if (next_cpu >= nr_cpu_ids)
1153 			goto out;
1154 		cpu = next_cpu;
1155 
1156 		mpidr = cpu_logical_map(cpu);
1157 
1158 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1159 			cpu--;
1160 			goto out;
1161 		}
1162 	}
1163 out:
1164 	*base_cpu = cpu;
1165 	return tlist;
1166 }
1167 
1168 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1169 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1170 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1171 
1172 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1173 {
1174 	u64 val;
1175 
1176 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1177 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1178 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1179 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1180 	       MPIDR_TO_SGI_RS(cluster_id)		|
1181 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1182 
1183 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1184 	gic_write_sgi1r(val);
1185 }
1186 
1187 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1188 {
1189 	int cpu;
1190 
1191 	if (WARN_ON(d->hwirq >= 16))
1192 		return;
1193 
1194 	/*
1195 	 * Ensure that stores to Normal memory are visible to the
1196 	 * other CPUs before issuing the IPI.
1197 	 */
1198 	wmb();
1199 
1200 	for_each_cpu(cpu, mask) {
1201 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1202 		u16 tlist;
1203 
1204 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1205 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1206 	}
1207 
1208 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1209 	isb();
1210 }
1211 
1212 static void __init gic_smp_init(void)
1213 {
1214 	struct irq_fwspec sgi_fwspec = {
1215 		.fwnode		= gic_data.fwnode,
1216 		.param_count	= 1,
1217 	};
1218 	int base_sgi;
1219 
1220 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1221 				  "irqchip/arm/gicv3:starting",
1222 				  gic_starting_cpu, NULL);
1223 
1224 	/* Register all 8 non-secure SGIs */
1225 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1226 					   NUMA_NO_NODE, &sgi_fwspec,
1227 					   false, NULL);
1228 	if (WARN_ON(base_sgi <= 0))
1229 		return;
1230 
1231 	set_smp_ipi_range(base_sgi, 8);
1232 }
1233 
1234 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1235 			    bool force)
1236 {
1237 	unsigned int cpu;
1238 	u32 offset, index;
1239 	void __iomem *reg;
1240 	int enabled;
1241 	u64 val;
1242 
1243 	if (force)
1244 		cpu = cpumask_first(mask_val);
1245 	else
1246 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1247 
1248 	if (cpu >= nr_cpu_ids)
1249 		return -EINVAL;
1250 
1251 	if (gic_irq_in_rdist(d))
1252 		return -EINVAL;
1253 
1254 	/* If interrupt was enabled, disable it first */
1255 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1256 	if (enabled)
1257 		gic_mask_irq(d);
1258 
1259 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1260 	reg = gic_dist_base(d) + offset + (index * 8);
1261 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1262 
1263 	gic_write_irouter(val, reg);
1264 
1265 	/*
1266 	 * If the interrupt was enabled, enabled it again. Otherwise,
1267 	 * just wait for the distributor to have digested our changes.
1268 	 */
1269 	if (enabled)
1270 		gic_unmask_irq(d);
1271 	else
1272 		gic_dist_wait_for_rwp();
1273 
1274 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1275 
1276 	return IRQ_SET_MASK_OK_DONE;
1277 }
1278 #else
1279 #define gic_set_affinity	NULL
1280 #define gic_ipi_send_mask	NULL
1281 #define gic_smp_init()		do { } while(0)
1282 #endif
1283 
1284 static int gic_retrigger(struct irq_data *data)
1285 {
1286 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1287 }
1288 
1289 #ifdef CONFIG_CPU_PM
1290 static int gic_cpu_pm_notifier(struct notifier_block *self,
1291 			       unsigned long cmd, void *v)
1292 {
1293 	if (cmd == CPU_PM_EXIT) {
1294 		if (gic_dist_security_disabled())
1295 			gic_enable_redist(true);
1296 		gic_cpu_sys_reg_init();
1297 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1298 		gic_write_grpen1(0);
1299 		gic_enable_redist(false);
1300 	}
1301 	return NOTIFY_OK;
1302 }
1303 
1304 static struct notifier_block gic_cpu_pm_notifier_block = {
1305 	.notifier_call = gic_cpu_pm_notifier,
1306 };
1307 
1308 static void gic_cpu_pm_init(void)
1309 {
1310 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1311 }
1312 
1313 #else
1314 static inline void gic_cpu_pm_init(void) { }
1315 #endif /* CONFIG_CPU_PM */
1316 
1317 static struct irq_chip gic_chip = {
1318 	.name			= "GICv3",
1319 	.irq_mask		= gic_mask_irq,
1320 	.irq_unmask		= gic_unmask_irq,
1321 	.irq_eoi		= gic_eoi_irq,
1322 	.irq_set_type		= gic_set_type,
1323 	.irq_set_affinity	= gic_set_affinity,
1324 	.irq_retrigger          = gic_retrigger,
1325 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1326 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1327 	.irq_nmi_setup		= gic_irq_nmi_setup,
1328 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1329 	.ipi_send_mask		= gic_ipi_send_mask,
1330 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1331 				  IRQCHIP_SKIP_SET_WAKE |
1332 				  IRQCHIP_MASK_ON_SUSPEND,
1333 };
1334 
1335 static struct irq_chip gic_eoimode1_chip = {
1336 	.name			= "GICv3",
1337 	.irq_mask		= gic_eoimode1_mask_irq,
1338 	.irq_unmask		= gic_unmask_irq,
1339 	.irq_eoi		= gic_eoimode1_eoi_irq,
1340 	.irq_set_type		= gic_set_type,
1341 	.irq_set_affinity	= gic_set_affinity,
1342 	.irq_retrigger          = gic_retrigger,
1343 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1344 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1345 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1346 	.irq_nmi_setup		= gic_irq_nmi_setup,
1347 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1348 	.ipi_send_mask		= gic_ipi_send_mask,
1349 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1350 				  IRQCHIP_SKIP_SET_WAKE |
1351 				  IRQCHIP_MASK_ON_SUSPEND,
1352 };
1353 
1354 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1355 			      irq_hw_number_t hw)
1356 {
1357 	struct irq_chip *chip = &gic_chip;
1358 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1359 
1360 	if (static_branch_likely(&supports_deactivate_key))
1361 		chip = &gic_eoimode1_chip;
1362 
1363 	switch (__get_intid_range(hw)) {
1364 	case SGI_RANGE:
1365 	case PPI_RANGE:
1366 	case EPPI_RANGE:
1367 		irq_set_percpu_devid(irq);
1368 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1369 				    handle_percpu_devid_irq, NULL, NULL);
1370 		break;
1371 
1372 	case SPI_RANGE:
1373 	case ESPI_RANGE:
1374 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1375 				    handle_fasteoi_irq, NULL, NULL);
1376 		irq_set_probe(irq);
1377 		irqd_set_single_target(irqd);
1378 		break;
1379 
1380 	case LPI_RANGE:
1381 		if (!gic_dist_supports_lpis())
1382 			return -EPERM;
1383 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1384 				    handle_fasteoi_irq, NULL, NULL);
1385 		break;
1386 
1387 	default:
1388 		return -EPERM;
1389 	}
1390 
1391 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1392 	irqd_set_handle_enforce_irqctx(irqd);
1393 	return 0;
1394 }
1395 
1396 static int gic_irq_domain_translate(struct irq_domain *d,
1397 				    struct irq_fwspec *fwspec,
1398 				    unsigned long *hwirq,
1399 				    unsigned int *type)
1400 {
1401 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1402 		*hwirq = fwspec->param[0];
1403 		*type = IRQ_TYPE_EDGE_RISING;
1404 		return 0;
1405 	}
1406 
1407 	if (is_of_node(fwspec->fwnode)) {
1408 		if (fwspec->param_count < 3)
1409 			return -EINVAL;
1410 
1411 		switch (fwspec->param[0]) {
1412 		case 0:			/* SPI */
1413 			*hwirq = fwspec->param[1] + 32;
1414 			break;
1415 		case 1:			/* PPI */
1416 			*hwirq = fwspec->param[1] + 16;
1417 			break;
1418 		case 2:			/* ESPI */
1419 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1420 			break;
1421 		case 3:			/* EPPI */
1422 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1423 			break;
1424 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1425 			*hwirq = fwspec->param[1];
1426 			break;
1427 		case GIC_IRQ_TYPE_PARTITION:
1428 			*hwirq = fwspec->param[1];
1429 			if (fwspec->param[1] >= 16)
1430 				*hwirq += EPPI_BASE_INTID - 16;
1431 			else
1432 				*hwirq += 16;
1433 			break;
1434 		default:
1435 			return -EINVAL;
1436 		}
1437 
1438 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1439 
1440 		/*
1441 		 * Make it clear that broken DTs are... broken.
1442 		 * Partitioned PPIs are an unfortunate exception.
1443 		 */
1444 		WARN_ON(*type == IRQ_TYPE_NONE &&
1445 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1446 		return 0;
1447 	}
1448 
1449 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1450 		if(fwspec->param_count != 2)
1451 			return -EINVAL;
1452 
1453 		*hwirq = fwspec->param[0];
1454 		*type = fwspec->param[1];
1455 
1456 		WARN_ON(*type == IRQ_TYPE_NONE);
1457 		return 0;
1458 	}
1459 
1460 	return -EINVAL;
1461 }
1462 
1463 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1464 				unsigned int nr_irqs, void *arg)
1465 {
1466 	int i, ret;
1467 	irq_hw_number_t hwirq;
1468 	unsigned int type = IRQ_TYPE_NONE;
1469 	struct irq_fwspec *fwspec = arg;
1470 
1471 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1472 	if (ret)
1473 		return ret;
1474 
1475 	for (i = 0; i < nr_irqs; i++) {
1476 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1477 		if (ret)
1478 			return ret;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1485 				unsigned int nr_irqs)
1486 {
1487 	int i;
1488 
1489 	for (i = 0; i < nr_irqs; i++) {
1490 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1491 		irq_set_handler(virq + i, NULL);
1492 		irq_domain_reset_irq_data(d);
1493 	}
1494 }
1495 
1496 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1497 				      irq_hw_number_t hwirq)
1498 {
1499 	enum gic_intid_range range;
1500 
1501 	if (!gic_data.ppi_descs)
1502 		return false;
1503 
1504 	if (!is_of_node(fwspec->fwnode))
1505 		return false;
1506 
1507 	if (fwspec->param_count < 4 || !fwspec->param[3])
1508 		return false;
1509 
1510 	range = __get_intid_range(hwirq);
1511 	if (range != PPI_RANGE && range != EPPI_RANGE)
1512 		return false;
1513 
1514 	return true;
1515 }
1516 
1517 static int gic_irq_domain_select(struct irq_domain *d,
1518 				 struct irq_fwspec *fwspec,
1519 				 enum irq_domain_bus_token bus_token)
1520 {
1521 	unsigned int type, ret, ppi_idx;
1522 	irq_hw_number_t hwirq;
1523 
1524 	/* Not for us */
1525         if (fwspec->fwnode != d->fwnode)
1526 		return 0;
1527 
1528 	/* If this is not DT, then we have a single domain */
1529 	if (!is_of_node(fwspec->fwnode))
1530 		return 1;
1531 
1532 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1533 	if (WARN_ON_ONCE(ret))
1534 		return 0;
1535 
1536 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1537 		return d == gic_data.domain;
1538 
1539 	/*
1540 	 * If this is a PPI and we have a 4th (non-null) parameter,
1541 	 * then we need to match the partition domain.
1542 	 */
1543 	ppi_idx = __gic_get_ppi_index(hwirq);
1544 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1545 }
1546 
1547 static const struct irq_domain_ops gic_irq_domain_ops = {
1548 	.translate = gic_irq_domain_translate,
1549 	.alloc = gic_irq_domain_alloc,
1550 	.free = gic_irq_domain_free,
1551 	.select = gic_irq_domain_select,
1552 };
1553 
1554 static int partition_domain_translate(struct irq_domain *d,
1555 				      struct irq_fwspec *fwspec,
1556 				      unsigned long *hwirq,
1557 				      unsigned int *type)
1558 {
1559 	unsigned long ppi_intid;
1560 	struct device_node *np;
1561 	unsigned int ppi_idx;
1562 	int ret;
1563 
1564 	if (!gic_data.ppi_descs)
1565 		return -ENOMEM;
1566 
1567 	np = of_find_node_by_phandle(fwspec->param[3]);
1568 	if (WARN_ON(!np))
1569 		return -EINVAL;
1570 
1571 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1572 	if (WARN_ON_ONCE(ret))
1573 		return 0;
1574 
1575 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1576 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1577 				     of_node_to_fwnode(np));
1578 	if (ret < 0)
1579 		return ret;
1580 
1581 	*hwirq = ret;
1582 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1583 
1584 	return 0;
1585 }
1586 
1587 static const struct irq_domain_ops partition_domain_ops = {
1588 	.translate = partition_domain_translate,
1589 	.select = gic_irq_domain_select,
1590 };
1591 
1592 static bool gic_enable_quirk_msm8996(void *data)
1593 {
1594 	struct gic_chip_data *d = data;
1595 
1596 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1597 
1598 	return true;
1599 }
1600 
1601 static bool gic_enable_quirk_cavium_38539(void *data)
1602 {
1603 	struct gic_chip_data *d = data;
1604 
1605 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1606 
1607 	return true;
1608 }
1609 
1610 static bool gic_enable_quirk_hip06_07(void *data)
1611 {
1612 	struct gic_chip_data *d = data;
1613 
1614 	/*
1615 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1616 	 * not being an actual ARM implementation). The saving grace is
1617 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1618 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1619 	 * have ESPI. In both cases, put them right.
1620 	 */
1621 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1622 		/* Zero both ESPI and the RES0 field next to it... */
1623 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1624 		return true;
1625 	}
1626 
1627 	return false;
1628 }
1629 
1630 static const struct gic_quirk gic_quirks[] = {
1631 	{
1632 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1633 		.compatible = "qcom,msm8996-gic-v3",
1634 		.init	= gic_enable_quirk_msm8996,
1635 	},
1636 	{
1637 		.desc	= "GICv3: HIP06 erratum 161010803",
1638 		.iidr	= 0x0204043b,
1639 		.mask	= 0xffffffff,
1640 		.init	= gic_enable_quirk_hip06_07,
1641 	},
1642 	{
1643 		.desc	= "GICv3: HIP07 erratum 161010803",
1644 		.iidr	= 0x00000000,
1645 		.mask	= 0xffffffff,
1646 		.init	= gic_enable_quirk_hip06_07,
1647 	},
1648 	{
1649 		/*
1650 		 * Reserved register accesses generate a Synchronous
1651 		 * External Abort. This erratum applies to:
1652 		 * - ThunderX: CN88xx
1653 		 * - OCTEON TX: CN83xx, CN81xx
1654 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1655 		 */
1656 		.desc	= "GICv3: Cavium erratum 38539",
1657 		.iidr	= 0xa000034c,
1658 		.mask	= 0xe8f00fff,
1659 		.init	= gic_enable_quirk_cavium_38539,
1660 	},
1661 	{
1662 	}
1663 };
1664 
1665 static void gic_enable_nmi_support(void)
1666 {
1667 	int i;
1668 
1669 	if (!gic_prio_masking_enabled())
1670 		return;
1671 
1672 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1673 	if (!ppi_nmi_refs)
1674 		return;
1675 
1676 	for (i = 0; i < gic_data.ppi_nr; i++)
1677 		refcount_set(&ppi_nmi_refs[i], 0);
1678 
1679 	/*
1680 	 * Linux itself doesn't use 1:N distribution, so has no need to
1681 	 * set PMHE. The only reason to have it set is if EL3 requires it
1682 	 * (and we can't change it).
1683 	 */
1684 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1685 		static_branch_enable(&gic_pmr_sync);
1686 
1687 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1688 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1689 
1690 	/*
1691 	 * How priority values are used by the GIC depends on two things:
1692 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1693 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1694 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1695 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1696 	 * interrupts:
1697 	 *
1698 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1699 	 * -----------------------------------------------------------
1700 	 *      1       |      -      |  unchanged  |    unchanged
1701 	 * -----------------------------------------------------------
1702 	 *      0       |      1      |  non-secure |    non-secure
1703 	 * -----------------------------------------------------------
1704 	 *      0       |      0      |  unchanged  |    non-secure
1705 	 *
1706 	 * where non-secure means that the value is right-shifted by one and the
1707 	 * MSB bit set, to make it fit in the non-secure priority range.
1708 	 *
1709 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1710 	 * are both either modified or unchanged, we can use the same set of
1711 	 * priorities.
1712 	 *
1713 	 * In the last case, where only the interrupt priorities are modified to
1714 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1715 	 * and the rest of the values that we use remain unchanged.
1716 	 */
1717 	if (gic_has_group0() && !gic_dist_security_disabled())
1718 		static_branch_enable(&gic_nonsecure_priorities);
1719 
1720 	static_branch_enable(&supports_pseudo_nmis);
1721 
1722 	if (static_branch_likely(&supports_deactivate_key))
1723 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1724 	else
1725 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1726 }
1727 
1728 static int __init gic_init_bases(void __iomem *dist_base,
1729 				 struct redist_region *rdist_regs,
1730 				 u32 nr_redist_regions,
1731 				 u64 redist_stride,
1732 				 struct fwnode_handle *handle)
1733 {
1734 	u32 typer;
1735 	int err;
1736 
1737 	if (!is_hyp_mode_available())
1738 		static_branch_disable(&supports_deactivate_key);
1739 
1740 	if (static_branch_likely(&supports_deactivate_key))
1741 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1742 
1743 	gic_data.fwnode = handle;
1744 	gic_data.dist_base = dist_base;
1745 	gic_data.redist_regions = rdist_regs;
1746 	gic_data.nr_redist_regions = nr_redist_regions;
1747 	gic_data.redist_stride = redist_stride;
1748 
1749 	/*
1750 	 * Find out how many interrupts are supported.
1751 	 */
1752 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1753 	gic_data.rdists.gicd_typer = typer;
1754 
1755 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1756 			  gic_quirks, &gic_data);
1757 
1758 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1759 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1760 
1761 	/*
1762 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1763 	 * architecture spec (which says that reserved registers are RES0).
1764 	 */
1765 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1766 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1767 
1768 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1769 						 &gic_data);
1770 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1771 	gic_data.rdists.has_rvpeid = true;
1772 	gic_data.rdists.has_vlpis = true;
1773 	gic_data.rdists.has_direct_lpi = true;
1774 	gic_data.rdists.has_vpend_valid_dirty = true;
1775 
1776 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1777 		err = -ENOMEM;
1778 		goto out_free;
1779 	}
1780 
1781 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1782 
1783 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1784 	pr_info("Distributor has %sRange Selector support\n",
1785 		gic_data.has_rss ? "" : "no ");
1786 
1787 	if (typer & GICD_TYPER_MBIS) {
1788 		err = mbi_init(handle, gic_data.domain);
1789 		if (err)
1790 			pr_err("Failed to initialize MBIs\n");
1791 	}
1792 
1793 	set_handle_irq(gic_handle_irq);
1794 
1795 	gic_update_rdist_properties();
1796 
1797 	gic_dist_init();
1798 	gic_cpu_init();
1799 	gic_smp_init();
1800 	gic_cpu_pm_init();
1801 
1802 	if (gic_dist_supports_lpis()) {
1803 		its_init(handle, &gic_data.rdists, gic_data.domain);
1804 		its_cpu_init();
1805 	} else {
1806 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1807 			gicv2m_init(handle, gic_data.domain);
1808 	}
1809 
1810 	gic_enable_nmi_support();
1811 
1812 	return 0;
1813 
1814 out_free:
1815 	if (gic_data.domain)
1816 		irq_domain_remove(gic_data.domain);
1817 	free_percpu(gic_data.rdists.rdist);
1818 	return err;
1819 }
1820 
1821 static int __init gic_validate_dist_version(void __iomem *dist_base)
1822 {
1823 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1824 
1825 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1826 		return -ENODEV;
1827 
1828 	return 0;
1829 }
1830 
1831 /* Create all possible partitions at boot time */
1832 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1833 {
1834 	struct device_node *parts_node, *child_part;
1835 	int part_idx = 0, i;
1836 	int nr_parts;
1837 	struct partition_affinity *parts;
1838 
1839 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1840 	if (!parts_node)
1841 		return;
1842 
1843 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1844 	if (!gic_data.ppi_descs)
1845 		return;
1846 
1847 	nr_parts = of_get_child_count(parts_node);
1848 
1849 	if (!nr_parts)
1850 		goto out_put_node;
1851 
1852 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1853 	if (WARN_ON(!parts))
1854 		goto out_put_node;
1855 
1856 	for_each_child_of_node(parts_node, child_part) {
1857 		struct partition_affinity *part;
1858 		int n;
1859 
1860 		part = &parts[part_idx];
1861 
1862 		part->partition_id = of_node_to_fwnode(child_part);
1863 
1864 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1865 			child_part, part_idx);
1866 
1867 		n = of_property_count_elems_of_size(child_part, "affinity",
1868 						    sizeof(u32));
1869 		WARN_ON(n <= 0);
1870 
1871 		for (i = 0; i < n; i++) {
1872 			int err, cpu;
1873 			u32 cpu_phandle;
1874 			struct device_node *cpu_node;
1875 
1876 			err = of_property_read_u32_index(child_part, "affinity",
1877 							 i, &cpu_phandle);
1878 			if (WARN_ON(err))
1879 				continue;
1880 
1881 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1882 			if (WARN_ON(!cpu_node))
1883 				continue;
1884 
1885 			cpu = of_cpu_node_to_id(cpu_node);
1886 			if (WARN_ON(cpu < 0))
1887 				continue;
1888 
1889 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1890 
1891 			cpumask_set_cpu(cpu, &part->mask);
1892 		}
1893 
1894 		pr_cont("}\n");
1895 		part_idx++;
1896 	}
1897 
1898 	for (i = 0; i < gic_data.ppi_nr; i++) {
1899 		unsigned int irq;
1900 		struct partition_desc *desc;
1901 		struct irq_fwspec ppi_fwspec = {
1902 			.fwnode		= gic_data.fwnode,
1903 			.param_count	= 3,
1904 			.param		= {
1905 				[0]	= GIC_IRQ_TYPE_PARTITION,
1906 				[1]	= i,
1907 				[2]	= IRQ_TYPE_NONE,
1908 			},
1909 		};
1910 
1911 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1912 		if (WARN_ON(!irq))
1913 			continue;
1914 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1915 					     irq, &partition_domain_ops);
1916 		if (WARN_ON(!desc))
1917 			continue;
1918 
1919 		gic_data.ppi_descs[i] = desc;
1920 	}
1921 
1922 out_put_node:
1923 	of_node_put(parts_node);
1924 }
1925 
1926 static void __init gic_of_setup_kvm_info(struct device_node *node)
1927 {
1928 	int ret;
1929 	struct resource r;
1930 	u32 gicv_idx;
1931 
1932 	gic_v3_kvm_info.type = GIC_V3;
1933 
1934 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1935 	if (!gic_v3_kvm_info.maint_irq)
1936 		return;
1937 
1938 	if (of_property_read_u32(node, "#redistributor-regions",
1939 				 &gicv_idx))
1940 		gicv_idx = 1;
1941 
1942 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1943 	ret = of_address_to_resource(node, gicv_idx, &r);
1944 	if (!ret)
1945 		gic_v3_kvm_info.vcpu = r;
1946 
1947 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1948 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1949 	vgic_set_kvm_info(&gic_v3_kvm_info);
1950 }
1951 
1952 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1953 {
1954 	void __iomem *dist_base;
1955 	struct redist_region *rdist_regs;
1956 	u64 redist_stride;
1957 	u32 nr_redist_regions;
1958 	int err, i;
1959 
1960 	dist_base = of_iomap(node, 0);
1961 	if (!dist_base) {
1962 		pr_err("%pOF: unable to map gic dist registers\n", node);
1963 		return -ENXIO;
1964 	}
1965 
1966 	err = gic_validate_dist_version(dist_base);
1967 	if (err) {
1968 		pr_err("%pOF: no distributor detected, giving up\n", node);
1969 		goto out_unmap_dist;
1970 	}
1971 
1972 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1973 		nr_redist_regions = 1;
1974 
1975 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1976 			     GFP_KERNEL);
1977 	if (!rdist_regs) {
1978 		err = -ENOMEM;
1979 		goto out_unmap_dist;
1980 	}
1981 
1982 	for (i = 0; i < nr_redist_regions; i++) {
1983 		struct resource res;
1984 		int ret;
1985 
1986 		ret = of_address_to_resource(node, 1 + i, &res);
1987 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1988 		if (ret || !rdist_regs[i].redist_base) {
1989 			pr_err("%pOF: couldn't map region %d\n", node, i);
1990 			err = -ENODEV;
1991 			goto out_unmap_rdist;
1992 		}
1993 		rdist_regs[i].phys_base = res.start;
1994 	}
1995 
1996 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1997 		redist_stride = 0;
1998 
1999 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2000 
2001 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2002 			     redist_stride, &node->fwnode);
2003 	if (err)
2004 		goto out_unmap_rdist;
2005 
2006 	gic_populate_ppi_partitions(node);
2007 
2008 	if (static_branch_likely(&supports_deactivate_key))
2009 		gic_of_setup_kvm_info(node);
2010 	return 0;
2011 
2012 out_unmap_rdist:
2013 	for (i = 0; i < nr_redist_regions; i++)
2014 		if (rdist_regs[i].redist_base)
2015 			iounmap(rdist_regs[i].redist_base);
2016 	kfree(rdist_regs);
2017 out_unmap_dist:
2018 	iounmap(dist_base);
2019 	return err;
2020 }
2021 
2022 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2023 
2024 #ifdef CONFIG_ACPI
2025 static struct
2026 {
2027 	void __iomem *dist_base;
2028 	struct redist_region *redist_regs;
2029 	u32 nr_redist_regions;
2030 	bool single_redist;
2031 	int enabled_rdists;
2032 	u32 maint_irq;
2033 	int maint_irq_mode;
2034 	phys_addr_t vcpu_base;
2035 } acpi_data __initdata;
2036 
2037 static void __init
2038 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2039 {
2040 	static int count = 0;
2041 
2042 	acpi_data.redist_regs[count].phys_base = phys_base;
2043 	acpi_data.redist_regs[count].redist_base = redist_base;
2044 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2045 	count++;
2046 }
2047 
2048 static int __init
2049 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2050 			   const unsigned long end)
2051 {
2052 	struct acpi_madt_generic_redistributor *redist =
2053 			(struct acpi_madt_generic_redistributor *)header;
2054 	void __iomem *redist_base;
2055 
2056 	redist_base = ioremap(redist->base_address, redist->length);
2057 	if (!redist_base) {
2058 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2059 		return -ENOMEM;
2060 	}
2061 
2062 	gic_acpi_register_redist(redist->base_address, redist_base);
2063 	return 0;
2064 }
2065 
2066 static int __init
2067 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2068 			 const unsigned long end)
2069 {
2070 	struct acpi_madt_generic_interrupt *gicc =
2071 				(struct acpi_madt_generic_interrupt *)header;
2072 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2073 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2074 	void __iomem *redist_base;
2075 
2076 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2077 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2078 		return 0;
2079 
2080 	redist_base = ioremap(gicc->gicr_base_address, size);
2081 	if (!redist_base)
2082 		return -ENOMEM;
2083 
2084 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2085 	return 0;
2086 }
2087 
2088 static int __init gic_acpi_collect_gicr_base(void)
2089 {
2090 	acpi_tbl_entry_handler redist_parser;
2091 	enum acpi_madt_type type;
2092 
2093 	if (acpi_data.single_redist) {
2094 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2095 		redist_parser = gic_acpi_parse_madt_gicc;
2096 	} else {
2097 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2098 		redist_parser = gic_acpi_parse_madt_redist;
2099 	}
2100 
2101 	/* Collect redistributor base addresses in GICR entries */
2102 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2103 		return 0;
2104 
2105 	pr_info("No valid GICR entries exist\n");
2106 	return -ENODEV;
2107 }
2108 
2109 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2110 				  const unsigned long end)
2111 {
2112 	/* Subtable presence means that redist exists, that's it */
2113 	return 0;
2114 }
2115 
2116 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2117 				      const unsigned long end)
2118 {
2119 	struct acpi_madt_generic_interrupt *gicc =
2120 				(struct acpi_madt_generic_interrupt *)header;
2121 
2122 	/*
2123 	 * If GICC is enabled and has valid gicr base address, then it means
2124 	 * GICR base is presented via GICC
2125 	 */
2126 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2127 		acpi_data.enabled_rdists++;
2128 		return 0;
2129 	}
2130 
2131 	/*
2132 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2133 	 * should not treat as errors, skip the entry instead of probe fail.
2134 	 */
2135 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2136 		return 0;
2137 
2138 	return -ENODEV;
2139 }
2140 
2141 static int __init gic_acpi_count_gicr_regions(void)
2142 {
2143 	int count;
2144 
2145 	/*
2146 	 * Count how many redistributor regions we have. It is not allowed
2147 	 * to mix redistributor description, GICR and GICC subtables have to be
2148 	 * mutually exclusive.
2149 	 */
2150 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2151 				      gic_acpi_match_gicr, 0);
2152 	if (count > 0) {
2153 		acpi_data.single_redist = false;
2154 		return count;
2155 	}
2156 
2157 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2158 				      gic_acpi_match_gicc, 0);
2159 	if (count > 0) {
2160 		acpi_data.single_redist = true;
2161 		count = acpi_data.enabled_rdists;
2162 	}
2163 
2164 	return count;
2165 }
2166 
2167 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2168 					   struct acpi_probe_entry *ape)
2169 {
2170 	struct acpi_madt_generic_distributor *dist;
2171 	int count;
2172 
2173 	dist = (struct acpi_madt_generic_distributor *)header;
2174 	if (dist->version != ape->driver_data)
2175 		return false;
2176 
2177 	/* We need to do that exercise anyway, the sooner the better */
2178 	count = gic_acpi_count_gicr_regions();
2179 	if (count <= 0)
2180 		return false;
2181 
2182 	acpi_data.nr_redist_regions = count;
2183 	return true;
2184 }
2185 
2186 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2187 						const unsigned long end)
2188 {
2189 	struct acpi_madt_generic_interrupt *gicc =
2190 		(struct acpi_madt_generic_interrupt *)header;
2191 	int maint_irq_mode;
2192 	static int first_madt = true;
2193 
2194 	/* Skip unusable CPUs */
2195 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2196 		return 0;
2197 
2198 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2199 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2200 
2201 	if (first_madt) {
2202 		first_madt = false;
2203 
2204 		acpi_data.maint_irq = gicc->vgic_interrupt;
2205 		acpi_data.maint_irq_mode = maint_irq_mode;
2206 		acpi_data.vcpu_base = gicc->gicv_base_address;
2207 
2208 		return 0;
2209 	}
2210 
2211 	/*
2212 	 * The maintenance interrupt and GICV should be the same for every CPU
2213 	 */
2214 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2215 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2216 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2217 		return -EINVAL;
2218 
2219 	return 0;
2220 }
2221 
2222 static bool __init gic_acpi_collect_virt_info(void)
2223 {
2224 	int count;
2225 
2226 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2227 				      gic_acpi_parse_virt_madt_gicc, 0);
2228 
2229 	return (count > 0);
2230 }
2231 
2232 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2233 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2234 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2235 
2236 static void __init gic_acpi_setup_kvm_info(void)
2237 {
2238 	int irq;
2239 
2240 	if (!gic_acpi_collect_virt_info()) {
2241 		pr_warn("Unable to get hardware information used for virtualization\n");
2242 		return;
2243 	}
2244 
2245 	gic_v3_kvm_info.type = GIC_V3;
2246 
2247 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2248 				acpi_data.maint_irq_mode,
2249 				ACPI_ACTIVE_HIGH);
2250 	if (irq <= 0)
2251 		return;
2252 
2253 	gic_v3_kvm_info.maint_irq = irq;
2254 
2255 	if (acpi_data.vcpu_base) {
2256 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2257 
2258 		vcpu->flags = IORESOURCE_MEM;
2259 		vcpu->start = acpi_data.vcpu_base;
2260 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2261 	}
2262 
2263 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2264 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2265 	vgic_set_kvm_info(&gic_v3_kvm_info);
2266 }
2267 
2268 static int __init
2269 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2270 {
2271 	struct acpi_madt_generic_distributor *dist;
2272 	struct fwnode_handle *domain_handle;
2273 	size_t size;
2274 	int i, err;
2275 
2276 	/* Get distributor base address */
2277 	dist = (struct acpi_madt_generic_distributor *)header;
2278 	acpi_data.dist_base = ioremap(dist->base_address,
2279 				      ACPI_GICV3_DIST_MEM_SIZE);
2280 	if (!acpi_data.dist_base) {
2281 		pr_err("Unable to map GICD registers\n");
2282 		return -ENOMEM;
2283 	}
2284 
2285 	err = gic_validate_dist_version(acpi_data.dist_base);
2286 	if (err) {
2287 		pr_err("No distributor detected at @%p, giving up\n",
2288 		       acpi_data.dist_base);
2289 		goto out_dist_unmap;
2290 	}
2291 
2292 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2293 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2294 	if (!acpi_data.redist_regs) {
2295 		err = -ENOMEM;
2296 		goto out_dist_unmap;
2297 	}
2298 
2299 	err = gic_acpi_collect_gicr_base();
2300 	if (err)
2301 		goto out_redist_unmap;
2302 
2303 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2304 	if (!domain_handle) {
2305 		err = -ENOMEM;
2306 		goto out_redist_unmap;
2307 	}
2308 
2309 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2310 			     acpi_data.nr_redist_regions, 0, domain_handle);
2311 	if (err)
2312 		goto out_fwhandle_free;
2313 
2314 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2315 
2316 	if (static_branch_likely(&supports_deactivate_key))
2317 		gic_acpi_setup_kvm_info();
2318 
2319 	return 0;
2320 
2321 out_fwhandle_free:
2322 	irq_domain_free_fwnode(domain_handle);
2323 out_redist_unmap:
2324 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2325 		if (acpi_data.redist_regs[i].redist_base)
2326 			iounmap(acpi_data.redist_regs[i].redist_base);
2327 	kfree(acpi_data.redist_regs);
2328 out_dist_unmap:
2329 	iounmap(acpi_data.dist_base);
2330 	return err;
2331 }
2332 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2333 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2334 		     gic_acpi_init);
2335 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2336 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2337 		     gic_acpi_init);
2338 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2339 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2340 		     gic_acpi_init);
2341 #endif
2342