1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #define pr_fmt(fmt) "GICv3: " fmt 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpu_pm.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/of_irq.h> 18 #include <linux/percpu.h> 19 #include <linux/refcount.h> 20 #include <linux/slab.h> 21 22 #include <linux/irqchip.h> 23 #include <linux/irqchip/arm-gic-common.h> 24 #include <linux/irqchip/arm-gic-v3.h> 25 #include <linux/irqchip/irq-partition-percpu.h> 26 27 #include <asm/cputype.h> 28 #include <asm/exception.h> 29 #include <asm/smp_plat.h> 30 #include <asm/virt.h> 31 32 #include "irq-gic-common.h" 33 34 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80) 35 36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) 37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) 38 39 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) 40 41 struct redist_region { 42 void __iomem *redist_base; 43 phys_addr_t phys_base; 44 bool single_redist; 45 }; 46 47 struct gic_chip_data { 48 struct fwnode_handle *fwnode; 49 void __iomem *dist_base; 50 struct redist_region *redist_regions; 51 struct rdists rdists; 52 struct irq_domain *domain; 53 u64 redist_stride; 54 u32 nr_redist_regions; 55 u64 flags; 56 bool has_rss; 57 unsigned int ppi_nr; 58 struct partition_desc **ppi_descs; 59 }; 60 61 static struct gic_chip_data gic_data __read_mostly; 62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 63 64 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) 65 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) 66 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) 67 68 /* 69 * The behaviours of RPR and PMR registers differ depending on the value of 70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the 71 * distributor and redistributors depends on whether security is enabled in the 72 * GIC. 73 * 74 * When security is enabled, non-secure priority values from the (re)distributor 75 * are presented to the GIC CPUIF as follow: 76 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; 77 * 78 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure 79 * EL1 are subject to a similar operation thus matching the priorities presented 80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, 81 * these values are unchanged by the GIC. 82 * 83 * see GICv3/GICv4 Architecture Specification (IHI0069D): 84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt 85 * priorities. 86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 87 * interrupt. 88 */ 89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); 90 91 /* 92 * Global static key controlling whether an update to PMR allowing more 93 * interrupts requires to be propagated to the redistributor (DSB SY). 94 * And this needs to be exported for modules to be able to enable 95 * interrupts... 96 */ 97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync); 98 EXPORT_SYMBOL(gic_pmr_sync); 99 100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities); 101 EXPORT_SYMBOL(gic_nonsecure_priorities); 102 103 /* 104 * When the Non-secure world has access to group 0 interrupts (as a 105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will 106 * return the Distributor's view of the interrupt priority. 107 * 108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority 109 * written by software is moved to the Non-secure range by the Distributor. 110 * 111 * If both are true (which is when gic_nonsecure_priorities gets enabled), 112 * we need to shift down the priority programmed by software to match it 113 * against the value returned by ICC_RPR_EL1. 114 */ 115 #define GICD_INT_RPR_PRI(priority) \ 116 ({ \ 117 u32 __priority = (priority); \ 118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \ 119 __priority = 0x80 | (__priority >> 1); \ 120 \ 121 __priority; \ 122 }) 123 124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */ 125 static refcount_t *ppi_nmi_refs; 126 127 static struct gic_kvm_info gic_v3_kvm_info __initdata; 128 static DEFINE_PER_CPU(bool, has_rss); 129 130 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) 131 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) 132 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 133 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) 134 135 /* Our default, arbitrary priority value. Linux only uses one anyway. */ 136 #define DEFAULT_PMR_VALUE 0xf0 137 138 enum gic_intid_range { 139 SGI_RANGE, 140 PPI_RANGE, 141 SPI_RANGE, 142 EPPI_RANGE, 143 ESPI_RANGE, 144 LPI_RANGE, 145 __INVALID_RANGE__ 146 }; 147 148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) 149 { 150 switch (hwirq) { 151 case 0 ... 15: 152 return SGI_RANGE; 153 case 16 ... 31: 154 return PPI_RANGE; 155 case 32 ... 1019: 156 return SPI_RANGE; 157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): 158 return EPPI_RANGE; 159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): 160 return ESPI_RANGE; 161 case 8192 ... GENMASK(23, 0): 162 return LPI_RANGE; 163 default: 164 return __INVALID_RANGE__; 165 } 166 } 167 168 static enum gic_intid_range get_intid_range(struct irq_data *d) 169 { 170 return __get_intid_range(d->hwirq); 171 } 172 173 static inline unsigned int gic_irq(struct irq_data *d) 174 { 175 return d->hwirq; 176 } 177 178 static inline bool gic_irq_in_rdist(struct irq_data *d) 179 { 180 switch (get_intid_range(d)) { 181 case SGI_RANGE: 182 case PPI_RANGE: 183 case EPPI_RANGE: 184 return true; 185 default: 186 return false; 187 } 188 } 189 190 static inline void __iomem *gic_dist_base(struct irq_data *d) 191 { 192 switch (get_intid_range(d)) { 193 case SGI_RANGE: 194 case PPI_RANGE: 195 case EPPI_RANGE: 196 /* SGI+PPI -> SGI_base for this CPU */ 197 return gic_data_rdist_sgi_base(); 198 199 case SPI_RANGE: 200 case ESPI_RANGE: 201 /* SPI -> dist_base */ 202 return gic_data.dist_base; 203 204 default: 205 return NULL; 206 } 207 } 208 209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) 210 { 211 u32 count = 1000000; /* 1s! */ 212 213 while (readl_relaxed(base + GICD_CTLR) & bit) { 214 count--; 215 if (!count) { 216 pr_err_ratelimited("RWP timeout, gone fishing\n"); 217 return; 218 } 219 cpu_relax(); 220 udelay(1); 221 } 222 } 223 224 /* Wait for completion of a distributor change */ 225 static void gic_dist_wait_for_rwp(void) 226 { 227 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); 228 } 229 230 /* Wait for completion of a redistributor change */ 231 static void gic_redist_wait_for_rwp(void) 232 { 233 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); 234 } 235 236 #ifdef CONFIG_ARM64 237 238 static u64 __maybe_unused gic_read_iar(void) 239 { 240 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154)) 241 return gic_read_iar_cavium_thunderx(); 242 else 243 return gic_read_iar_common(); 244 } 245 #endif 246 247 static void gic_enable_redist(bool enable) 248 { 249 void __iomem *rbase; 250 u32 count = 1000000; /* 1s! */ 251 u32 val; 252 253 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) 254 return; 255 256 rbase = gic_data_rdist_rd_base(); 257 258 val = readl_relaxed(rbase + GICR_WAKER); 259 if (enable) 260 /* Wake up this CPU redistributor */ 261 val &= ~GICR_WAKER_ProcessorSleep; 262 else 263 val |= GICR_WAKER_ProcessorSleep; 264 writel_relaxed(val, rbase + GICR_WAKER); 265 266 if (!enable) { /* Check that GICR_WAKER is writeable */ 267 val = readl_relaxed(rbase + GICR_WAKER); 268 if (!(val & GICR_WAKER_ProcessorSleep)) 269 return; /* No PM support in this redistributor */ 270 } 271 272 while (--count) { 273 val = readl_relaxed(rbase + GICR_WAKER); 274 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep)) 275 break; 276 cpu_relax(); 277 udelay(1); 278 } 279 if (!count) 280 pr_err_ratelimited("redistributor failed to %s...\n", 281 enable ? "wakeup" : "sleep"); 282 } 283 284 /* 285 * Routines to disable, enable, EOI and route interrupts 286 */ 287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) 288 { 289 switch (get_intid_range(d)) { 290 case SGI_RANGE: 291 case PPI_RANGE: 292 case SPI_RANGE: 293 *index = d->hwirq; 294 return offset; 295 case EPPI_RANGE: 296 /* 297 * Contrary to the ESPI range, the EPPI range is contiguous 298 * to the PPI range in the registers, so let's adjust the 299 * displacement accordingly. Consistency is overrated. 300 */ 301 *index = d->hwirq - EPPI_BASE_INTID + 32; 302 return offset; 303 case ESPI_RANGE: 304 *index = d->hwirq - ESPI_BASE_INTID; 305 switch (offset) { 306 case GICD_ISENABLER: 307 return GICD_ISENABLERnE; 308 case GICD_ICENABLER: 309 return GICD_ICENABLERnE; 310 case GICD_ISPENDR: 311 return GICD_ISPENDRnE; 312 case GICD_ICPENDR: 313 return GICD_ICPENDRnE; 314 case GICD_ISACTIVER: 315 return GICD_ISACTIVERnE; 316 case GICD_ICACTIVER: 317 return GICD_ICACTIVERnE; 318 case GICD_IPRIORITYR: 319 return GICD_IPRIORITYRnE; 320 case GICD_ICFGR: 321 return GICD_ICFGRnE; 322 case GICD_IROUTER: 323 return GICD_IROUTERnE; 324 default: 325 break; 326 } 327 break; 328 default: 329 break; 330 } 331 332 WARN_ON(1); 333 *index = d->hwirq; 334 return offset; 335 } 336 337 static int gic_peek_irq(struct irq_data *d, u32 offset) 338 { 339 void __iomem *base; 340 u32 index, mask; 341 342 offset = convert_offset_index(d, offset, &index); 343 mask = 1 << (index % 32); 344 345 if (gic_irq_in_rdist(d)) 346 base = gic_data_rdist_sgi_base(); 347 else 348 base = gic_data.dist_base; 349 350 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); 351 } 352 353 static void gic_poke_irq(struct irq_data *d, u32 offset) 354 { 355 void __iomem *base; 356 u32 index, mask; 357 358 offset = convert_offset_index(d, offset, &index); 359 mask = 1 << (index % 32); 360 361 if (gic_irq_in_rdist(d)) 362 base = gic_data_rdist_sgi_base(); 363 else 364 base = gic_data.dist_base; 365 366 writel_relaxed(mask, base + offset + (index / 32) * 4); 367 } 368 369 static void gic_mask_irq(struct irq_data *d) 370 { 371 gic_poke_irq(d, GICD_ICENABLER); 372 if (gic_irq_in_rdist(d)) 373 gic_redist_wait_for_rwp(); 374 else 375 gic_dist_wait_for_rwp(); 376 } 377 378 static void gic_eoimode1_mask_irq(struct irq_data *d) 379 { 380 gic_mask_irq(d); 381 /* 382 * When masking a forwarded interrupt, make sure it is 383 * deactivated as well. 384 * 385 * This ensures that an interrupt that is getting 386 * disabled/masked will not get "stuck", because there is 387 * noone to deactivate it (guest is being terminated). 388 */ 389 if (irqd_is_forwarded_to_vcpu(d)) 390 gic_poke_irq(d, GICD_ICACTIVER); 391 } 392 393 static void gic_unmask_irq(struct irq_data *d) 394 { 395 gic_poke_irq(d, GICD_ISENABLER); 396 } 397 398 static inline bool gic_supports_nmi(void) 399 { 400 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 401 static_branch_likely(&supports_pseudo_nmis); 402 } 403 404 static int gic_irq_set_irqchip_state(struct irq_data *d, 405 enum irqchip_irq_state which, bool val) 406 { 407 u32 reg; 408 409 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ 410 return -EINVAL; 411 412 switch (which) { 413 case IRQCHIP_STATE_PENDING: 414 reg = val ? GICD_ISPENDR : GICD_ICPENDR; 415 break; 416 417 case IRQCHIP_STATE_ACTIVE: 418 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; 419 break; 420 421 case IRQCHIP_STATE_MASKED: 422 if (val) { 423 gic_mask_irq(d); 424 return 0; 425 } 426 reg = GICD_ISENABLER; 427 break; 428 429 default: 430 return -EINVAL; 431 } 432 433 gic_poke_irq(d, reg); 434 return 0; 435 } 436 437 static int gic_irq_get_irqchip_state(struct irq_data *d, 438 enum irqchip_irq_state which, bool *val) 439 { 440 if (d->hwirq >= 8192) /* PPI/SPI only */ 441 return -EINVAL; 442 443 switch (which) { 444 case IRQCHIP_STATE_PENDING: 445 *val = gic_peek_irq(d, GICD_ISPENDR); 446 break; 447 448 case IRQCHIP_STATE_ACTIVE: 449 *val = gic_peek_irq(d, GICD_ISACTIVER); 450 break; 451 452 case IRQCHIP_STATE_MASKED: 453 *val = !gic_peek_irq(d, GICD_ISENABLER); 454 break; 455 456 default: 457 return -EINVAL; 458 } 459 460 return 0; 461 } 462 463 static void gic_irq_set_prio(struct irq_data *d, u8 prio) 464 { 465 void __iomem *base = gic_dist_base(d); 466 u32 offset, index; 467 468 offset = convert_offset_index(d, GICD_IPRIORITYR, &index); 469 470 writeb_relaxed(prio, base + offset + index); 471 } 472 473 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) 474 { 475 switch (__get_intid_range(hwirq)) { 476 case PPI_RANGE: 477 return hwirq - 16; 478 case EPPI_RANGE: 479 return hwirq - EPPI_BASE_INTID + 16; 480 default: 481 unreachable(); 482 } 483 } 484 485 static u32 gic_get_ppi_index(struct irq_data *d) 486 { 487 return __gic_get_ppi_index(d->hwirq); 488 } 489 490 static int gic_irq_nmi_setup(struct irq_data *d) 491 { 492 struct irq_desc *desc = irq_to_desc(d->irq); 493 494 if (!gic_supports_nmi()) 495 return -EINVAL; 496 497 if (gic_peek_irq(d, GICD_ISENABLER)) { 498 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 499 return -EINVAL; 500 } 501 502 /* 503 * A secondary irq_chip should be in charge of LPI request, 504 * it should not be possible to get there 505 */ 506 if (WARN_ON(gic_irq(d) >= 8192)) 507 return -EINVAL; 508 509 /* desc lock should already be held */ 510 if (gic_irq_in_rdist(d)) { 511 u32 idx = gic_get_ppi_index(d); 512 513 /* Setting up PPI as NMI, only switch handler for first NMI */ 514 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) { 515 refcount_set(&ppi_nmi_refs[idx], 1); 516 desc->handle_irq = handle_percpu_devid_fasteoi_nmi; 517 } 518 } else { 519 desc->handle_irq = handle_fasteoi_nmi; 520 } 521 522 gic_irq_set_prio(d, GICD_INT_NMI_PRI); 523 524 return 0; 525 } 526 527 static void gic_irq_nmi_teardown(struct irq_data *d) 528 { 529 struct irq_desc *desc = irq_to_desc(d->irq); 530 531 if (WARN_ON(!gic_supports_nmi())) 532 return; 533 534 if (gic_peek_irq(d, GICD_ISENABLER)) { 535 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 536 return; 537 } 538 539 /* 540 * A secondary irq_chip should be in charge of LPI request, 541 * it should not be possible to get there 542 */ 543 if (WARN_ON(gic_irq(d) >= 8192)) 544 return; 545 546 /* desc lock should already be held */ 547 if (gic_irq_in_rdist(d)) { 548 u32 idx = gic_get_ppi_index(d); 549 550 /* Tearing down NMI, only switch handler for last NMI */ 551 if (refcount_dec_and_test(&ppi_nmi_refs[idx])) 552 desc->handle_irq = handle_percpu_devid_irq; 553 } else { 554 desc->handle_irq = handle_fasteoi_irq; 555 } 556 557 gic_irq_set_prio(d, GICD_INT_DEF_PRI); 558 } 559 560 static void gic_eoi_irq(struct irq_data *d) 561 { 562 write_gicreg(gic_irq(d), ICC_EOIR1_EL1); 563 isb(); 564 } 565 566 static void gic_eoimode1_eoi_irq(struct irq_data *d) 567 { 568 /* 569 * No need to deactivate an LPI, or an interrupt that 570 * is is getting forwarded to a vcpu. 571 */ 572 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) 573 return; 574 gic_write_dir(gic_irq(d)); 575 } 576 577 static int gic_set_type(struct irq_data *d, unsigned int type) 578 { 579 enum gic_intid_range range; 580 unsigned int irq = gic_irq(d); 581 void __iomem *base; 582 u32 offset, index; 583 int ret; 584 585 range = get_intid_range(d); 586 587 /* Interrupt configuration for SGIs can't be changed */ 588 if (range == SGI_RANGE) 589 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 590 591 /* SPIs have restrictions on the supported types */ 592 if ((range == SPI_RANGE || range == ESPI_RANGE) && 593 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) 594 return -EINVAL; 595 596 if (gic_irq_in_rdist(d)) 597 base = gic_data_rdist_sgi_base(); 598 else 599 base = gic_data.dist_base; 600 601 offset = convert_offset_index(d, GICD_ICFGR, &index); 602 603 ret = gic_configure_irq(index, type, base + offset, NULL); 604 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { 605 /* Misconfigured PPIs are usually not fatal */ 606 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq); 607 ret = 0; 608 } 609 610 return ret; 611 } 612 613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 614 { 615 if (get_intid_range(d) == SGI_RANGE) 616 return -EINVAL; 617 618 if (vcpu) 619 irqd_set_forwarded_to_vcpu(d); 620 else 621 irqd_clr_forwarded_to_vcpu(d); 622 return 0; 623 } 624 625 static u64 gic_mpidr_to_affinity(unsigned long mpidr) 626 { 627 u64 aff; 628 629 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | 630 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 631 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 632 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 633 634 return aff; 635 } 636 637 static void gic_deactivate_unhandled(u32 irqnr) 638 { 639 if (static_branch_likely(&supports_deactivate_key)) { 640 if (irqnr < 8192) 641 gic_write_dir(irqnr); 642 } else { 643 write_gicreg(irqnr, ICC_EOIR1_EL1); 644 isb(); 645 } 646 } 647 648 /* 649 * Follow a read of the IAR with any HW maintenance that needs to happen prior 650 * to invoking the relevant IRQ handler. We must do two things: 651 * 652 * (1) Ensure instruction ordering between a read of IAR and subsequent 653 * instructions in the IRQ handler using an ISB. 654 * 655 * It is possible for the IAR to report an IRQ which was signalled *after* 656 * the CPU took an IRQ exception as multiple interrupts can race to be 657 * recognized by the GIC, earlier interrupts could be withdrawn, and/or 658 * later interrupts could be prioritized by the GIC. 659 * 660 * For devices which are tightly coupled to the CPU, such as PMUs, a 661 * context synchronization event is necessary to ensure that system 662 * register state is not stale, as these may have been indirectly written 663 * *after* exception entry. 664 * 665 * (2) Deactivate the interrupt when EOI mode 1 is in use. 666 */ 667 static inline void gic_complete_ack(u32 irqnr) 668 { 669 if (static_branch_likely(&supports_deactivate_key)) 670 write_gicreg(irqnr, ICC_EOIR1_EL1); 671 672 isb(); 673 } 674 675 static bool gic_rpr_is_nmi_prio(void) 676 { 677 if (!gic_supports_nmi()) 678 return false; 679 680 return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI)); 681 } 682 683 static bool gic_irqnr_is_special(u32 irqnr) 684 { 685 return irqnr >= 1020 && irqnr <= 1023; 686 } 687 688 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) 689 { 690 if (gic_irqnr_is_special(irqnr)) 691 return; 692 693 gic_complete_ack(irqnr); 694 695 if (generic_handle_domain_irq(gic_data.domain, irqnr)) { 696 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); 697 gic_deactivate_unhandled(irqnr); 698 } 699 } 700 701 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) 702 { 703 if (gic_irqnr_is_special(irqnr)) 704 return; 705 706 gic_complete_ack(irqnr); 707 708 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { 709 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); 710 gic_deactivate_unhandled(irqnr); 711 } 712 } 713 714 /* 715 * An exception has been taken from a context with IRQs enabled, and this could 716 * be an IRQ or an NMI. 717 * 718 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear 719 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, 720 * after handling any NMI but before handling any IRQ. 721 * 722 * The entry code has performed IRQ entry, and if an NMI is detected we must 723 * perform NMI entry/exit around invoking the handler. 724 */ 725 static void __gic_handle_irq_from_irqson(struct pt_regs *regs) 726 { 727 bool is_nmi; 728 u32 irqnr; 729 730 irqnr = gic_read_iar(); 731 732 is_nmi = gic_rpr_is_nmi_prio(); 733 734 if (is_nmi) { 735 nmi_enter(); 736 __gic_handle_nmi(irqnr, regs); 737 nmi_exit(); 738 } 739 740 if (gic_prio_masking_enabled()) { 741 gic_pmr_mask_irqs(); 742 gic_arch_enable_irqs(); 743 } 744 745 if (!is_nmi) 746 __gic_handle_irq(irqnr, regs); 747 } 748 749 /* 750 * An exception has been taken from a context with IRQs disabled, which can only 751 * be an NMI. 752 * 753 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave 754 * DAIF.IF (and ICC_PMR_EL1) unchanged. 755 * 756 * The entry code has performed NMI entry. 757 */ 758 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) 759 { 760 u64 pmr; 761 u32 irqnr; 762 763 /* 764 * We were in a context with IRQs disabled. However, the 765 * entry code has set PMR to a value that allows any 766 * interrupt to be acknowledged, and not just NMIs. This can 767 * lead to surprising effects if the NMI has been retired in 768 * the meantime, and that there is an IRQ pending. The IRQ 769 * would then be taken in NMI context, something that nobody 770 * wants to debug twice. 771 * 772 * Until we sort this, drop PMR again to a level that will 773 * actually only allow NMIs before reading IAR, and then 774 * restore it to what it was. 775 */ 776 pmr = gic_read_pmr(); 777 gic_pmr_mask_irqs(); 778 isb(); 779 irqnr = gic_read_iar(); 780 gic_write_pmr(pmr); 781 782 __gic_handle_nmi(irqnr, regs); 783 } 784 785 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 786 { 787 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) 788 __gic_handle_irq_from_irqsoff(regs); 789 else 790 __gic_handle_irq_from_irqson(regs); 791 } 792 793 static u32 gic_get_pribits(void) 794 { 795 u32 pribits; 796 797 pribits = gic_read_ctlr(); 798 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; 799 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; 800 pribits++; 801 802 return pribits; 803 } 804 805 static bool gic_has_group0(void) 806 { 807 u32 val; 808 u32 old_pmr; 809 810 old_pmr = gic_read_pmr(); 811 812 /* 813 * Let's find out if Group0 is under control of EL3 or not by 814 * setting the highest possible, non-zero priority in PMR. 815 * 816 * If SCR_EL3.FIQ is set, the priority gets shifted down in 817 * order for the CPU interface to set bit 7, and keep the 818 * actual priority in the non-secure range. In the process, it 819 * looses the least significant bit and the actual priority 820 * becomes 0x80. Reading it back returns 0, indicating that 821 * we're don't have access to Group0. 822 */ 823 gic_write_pmr(BIT(8 - gic_get_pribits())); 824 val = gic_read_pmr(); 825 826 gic_write_pmr(old_pmr); 827 828 return val != 0; 829 } 830 831 static void __init gic_dist_init(void) 832 { 833 unsigned int i; 834 u64 affinity; 835 void __iomem *base = gic_data.dist_base; 836 u32 val; 837 838 /* Disable the distributor */ 839 writel_relaxed(0, base + GICD_CTLR); 840 gic_dist_wait_for_rwp(); 841 842 /* 843 * Configure SPIs as non-secure Group-1. This will only matter 844 * if the GIC only has a single security state. This will not 845 * do the right thing if the kernel is running in secure mode, 846 * but that's not the intended use case anyway. 847 */ 848 for (i = 32; i < GIC_LINE_NR; i += 32) 849 writel_relaxed(~0, base + GICD_IGROUPR + i / 8); 850 851 /* Extended SPI range, not handled by the GICv2/GICv3 common code */ 852 for (i = 0; i < GIC_ESPI_NR; i += 32) { 853 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); 854 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); 855 } 856 857 for (i = 0; i < GIC_ESPI_NR; i += 32) 858 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); 859 860 for (i = 0; i < GIC_ESPI_NR; i += 16) 861 writel_relaxed(0, base + GICD_ICFGRnE + i / 4); 862 863 for (i = 0; i < GIC_ESPI_NR; i += 4) 864 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i); 865 866 /* Now do the common stuff */ 867 gic_dist_config(base, GIC_LINE_NR, NULL); 868 869 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; 870 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { 871 pr_info("Enabling SGIs without active state\n"); 872 val |= GICD_CTLR_nASSGIreq; 873 } 874 875 /* Enable distributor with ARE, Group1, and wait for it to drain */ 876 writel_relaxed(val, base + GICD_CTLR); 877 gic_dist_wait_for_rwp(); 878 879 /* 880 * Set all global interrupts to the boot CPU only. ARE must be 881 * enabled. 882 */ 883 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id())); 884 for (i = 32; i < GIC_LINE_NR; i++) 885 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); 886 887 for (i = 0; i < GIC_ESPI_NR; i++) 888 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); 889 } 890 891 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) 892 { 893 int ret = -ENODEV; 894 int i; 895 896 for (i = 0; i < gic_data.nr_redist_regions; i++) { 897 void __iomem *ptr = gic_data.redist_regions[i].redist_base; 898 u64 typer; 899 u32 reg; 900 901 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; 902 if (reg != GIC_PIDR2_ARCH_GICv3 && 903 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ 904 pr_warn("No redistributor present @%p\n", ptr); 905 break; 906 } 907 908 do { 909 typer = gic_read_typer(ptr + GICR_TYPER); 910 ret = fn(gic_data.redist_regions + i, ptr); 911 if (!ret) 912 return 0; 913 914 if (gic_data.redist_regions[i].single_redist) 915 break; 916 917 if (gic_data.redist_stride) { 918 ptr += gic_data.redist_stride; 919 } else { 920 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ 921 if (typer & GICR_TYPER_VLPIS) 922 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ 923 } 924 } while (!(typer & GICR_TYPER_LAST)); 925 } 926 927 return ret ? -ENODEV : 0; 928 } 929 930 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) 931 { 932 unsigned long mpidr = cpu_logical_map(smp_processor_id()); 933 u64 typer; 934 u32 aff; 935 936 /* 937 * Convert affinity to a 32bit value that can be matched to 938 * GICR_TYPER bits [63:32]. 939 */ 940 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | 941 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 942 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 943 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 944 945 typer = gic_read_typer(ptr + GICR_TYPER); 946 if ((typer >> 32) == aff) { 947 u64 offset = ptr - region->redist_base; 948 raw_spin_lock_init(&gic_data_rdist()->rd_lock); 949 gic_data_rdist_rd_base() = ptr; 950 gic_data_rdist()->phys_base = region->phys_base + offset; 951 952 pr_info("CPU%d: found redistributor %lx region %d:%pa\n", 953 smp_processor_id(), mpidr, 954 (int)(region - gic_data.redist_regions), 955 &gic_data_rdist()->phys_base); 956 return 0; 957 } 958 959 /* Try next one */ 960 return 1; 961 } 962 963 static int gic_populate_rdist(void) 964 { 965 if (gic_iterate_rdists(__gic_populate_rdist) == 0) 966 return 0; 967 968 /* We couldn't even deal with ourselves... */ 969 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", 970 smp_processor_id(), 971 (unsigned long)cpu_logical_map(smp_processor_id())); 972 return -ENODEV; 973 } 974 975 static int __gic_update_rdist_properties(struct redist_region *region, 976 void __iomem *ptr) 977 { 978 u64 typer = gic_read_typer(ptr + GICR_TYPER); 979 u32 ctlr = readl_relaxed(ptr + GICR_CTLR); 980 981 /* Boot-time cleanip */ 982 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { 983 u64 val; 984 985 /* Deactivate any present vPE */ 986 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); 987 if (val & GICR_VPENDBASER_Valid) 988 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 989 ptr + SZ_128K + GICR_VPENDBASER); 990 991 /* Mark the VPE table as invalid */ 992 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); 993 val &= ~GICR_VPROPBASER_4_1_VALID; 994 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); 995 } 996 997 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); 998 999 /* 1000 * TYPER.RVPEID implies some form of DirectLPI, no matter what the 1001 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI 1002 * that the ITS driver can make use of for LPIs (and not VLPIs). 1003 * 1004 * These are 3 different ways to express the same thing, depending 1005 * on the revision of the architecture and its relaxations over 1006 * time. Just group them under the 'direct_lpi' banner. 1007 */ 1008 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); 1009 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | 1010 !!(ctlr & GICR_CTLR_IR) | 1011 gic_data.rdists.has_rvpeid); 1012 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); 1013 1014 /* Detect non-sensical configurations */ 1015 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { 1016 gic_data.rdists.has_direct_lpi = false; 1017 gic_data.rdists.has_vlpis = false; 1018 gic_data.rdists.has_rvpeid = false; 1019 } 1020 1021 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); 1022 1023 return 1; 1024 } 1025 1026 static void gic_update_rdist_properties(void) 1027 { 1028 gic_data.ppi_nr = UINT_MAX; 1029 gic_iterate_rdists(__gic_update_rdist_properties); 1030 if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) 1031 gic_data.ppi_nr = 0; 1032 pr_info("GICv3 features: %d PPIs%s%s\n", 1033 gic_data.ppi_nr, 1034 gic_data.has_rss ? ", RSS" : "", 1035 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); 1036 1037 if (gic_data.rdists.has_vlpis) 1038 pr_info("GICv4 features: %s%s%s\n", 1039 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", 1040 gic_data.rdists.has_rvpeid ? "RVPEID " : "", 1041 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); 1042 } 1043 1044 /* Check whether it's single security state view */ 1045 static inline bool gic_dist_security_disabled(void) 1046 { 1047 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; 1048 } 1049 1050 static void gic_cpu_sys_reg_init(void) 1051 { 1052 int i, cpu = smp_processor_id(); 1053 u64 mpidr = cpu_logical_map(cpu); 1054 u64 need_rss = MPIDR_RS(mpidr); 1055 bool group0; 1056 u32 pribits; 1057 1058 /* 1059 * Need to check that the SRE bit has actually been set. If 1060 * not, it means that SRE is disabled at EL2. We're going to 1061 * die painfully, and there is nothing we can do about it. 1062 * 1063 * Kindly inform the luser. 1064 */ 1065 if (!gic_enable_sre()) 1066 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); 1067 1068 pribits = gic_get_pribits(); 1069 1070 group0 = gic_has_group0(); 1071 1072 /* Set priority mask register */ 1073 if (!gic_prio_masking_enabled()) { 1074 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); 1075 } else if (gic_supports_nmi()) { 1076 /* 1077 * Mismatch configuration with boot CPU, the system is likely 1078 * to die as interrupt masking will not work properly on all 1079 * CPUs 1080 * 1081 * The boot CPU calls this function before enabling NMI support, 1082 * and as a result we'll never see this warning in the boot path 1083 * for that CPU. 1084 */ 1085 if (static_branch_unlikely(&gic_nonsecure_priorities)) 1086 WARN_ON(!group0 || gic_dist_security_disabled()); 1087 else 1088 WARN_ON(group0 && !gic_dist_security_disabled()); 1089 } 1090 1091 /* 1092 * Some firmwares hand over to the kernel with the BPR changed from 1093 * its reset value (and with a value large enough to prevent 1094 * any pre-emptive interrupts from working at all). Writing a zero 1095 * to BPR restores is reset value. 1096 */ 1097 gic_write_bpr1(0); 1098 1099 if (static_branch_likely(&supports_deactivate_key)) { 1100 /* EOI drops priority only (mode 1) */ 1101 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); 1102 } else { 1103 /* EOI deactivates interrupt too (mode 0) */ 1104 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); 1105 } 1106 1107 /* Always whack Group0 before Group1 */ 1108 if (group0) { 1109 switch(pribits) { 1110 case 8: 1111 case 7: 1112 write_gicreg(0, ICC_AP0R3_EL1); 1113 write_gicreg(0, ICC_AP0R2_EL1); 1114 fallthrough; 1115 case 6: 1116 write_gicreg(0, ICC_AP0R1_EL1); 1117 fallthrough; 1118 case 5: 1119 case 4: 1120 write_gicreg(0, ICC_AP0R0_EL1); 1121 } 1122 1123 isb(); 1124 } 1125 1126 switch(pribits) { 1127 case 8: 1128 case 7: 1129 write_gicreg(0, ICC_AP1R3_EL1); 1130 write_gicreg(0, ICC_AP1R2_EL1); 1131 fallthrough; 1132 case 6: 1133 write_gicreg(0, ICC_AP1R1_EL1); 1134 fallthrough; 1135 case 5: 1136 case 4: 1137 write_gicreg(0, ICC_AP1R0_EL1); 1138 } 1139 1140 isb(); 1141 1142 /* ... and let's hit the road... */ 1143 gic_write_grpen1(1); 1144 1145 /* Keep the RSS capability status in per_cpu variable */ 1146 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); 1147 1148 /* Check all the CPUs have capable of sending SGIs to other CPUs */ 1149 for_each_online_cpu(i) { 1150 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); 1151 1152 need_rss |= MPIDR_RS(cpu_logical_map(i)); 1153 if (need_rss && (!have_rss)) 1154 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", 1155 cpu, (unsigned long)mpidr, 1156 i, (unsigned long)cpu_logical_map(i)); 1157 } 1158 1159 /** 1160 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, 1161 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED 1162 * UNPREDICTABLE choice of : 1163 * - The write is ignored. 1164 * - The RS field is treated as 0. 1165 */ 1166 if (need_rss && (!gic_data.has_rss)) 1167 pr_crit_once("RSS is required but GICD doesn't support it\n"); 1168 } 1169 1170 static bool gicv3_nolpi; 1171 1172 static int __init gicv3_nolpi_cfg(char *buf) 1173 { 1174 return strtobool(buf, &gicv3_nolpi); 1175 } 1176 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); 1177 1178 static int gic_dist_supports_lpis(void) 1179 { 1180 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && 1181 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && 1182 !gicv3_nolpi); 1183 } 1184 1185 static void gic_cpu_init(void) 1186 { 1187 void __iomem *rbase; 1188 int i; 1189 1190 /* Register ourselves with the rest of the world */ 1191 if (gic_populate_rdist()) 1192 return; 1193 1194 gic_enable_redist(true); 1195 1196 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && 1197 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), 1198 "Distributor has extended ranges, but CPU%d doesn't\n", 1199 smp_processor_id()); 1200 1201 rbase = gic_data_rdist_sgi_base(); 1202 1203 /* Configure SGIs/PPIs as non-secure Group-1 */ 1204 for (i = 0; i < gic_data.ppi_nr + 16; i += 32) 1205 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); 1206 1207 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp); 1208 1209 /* initialise system registers */ 1210 gic_cpu_sys_reg_init(); 1211 } 1212 1213 #ifdef CONFIG_SMP 1214 1215 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) 1216 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) 1217 1218 static int gic_starting_cpu(unsigned int cpu) 1219 { 1220 gic_cpu_init(); 1221 1222 if (gic_dist_supports_lpis()) 1223 its_cpu_init(); 1224 1225 return 0; 1226 } 1227 1228 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, 1229 unsigned long cluster_id) 1230 { 1231 int next_cpu, cpu = *base_cpu; 1232 unsigned long mpidr = cpu_logical_map(cpu); 1233 u16 tlist = 0; 1234 1235 while (cpu < nr_cpu_ids) { 1236 tlist |= 1 << (mpidr & 0xf); 1237 1238 next_cpu = cpumask_next(cpu, mask); 1239 if (next_cpu >= nr_cpu_ids) 1240 goto out; 1241 cpu = next_cpu; 1242 1243 mpidr = cpu_logical_map(cpu); 1244 1245 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { 1246 cpu--; 1247 goto out; 1248 } 1249 } 1250 out: 1251 *base_cpu = cpu; 1252 return tlist; 1253 } 1254 1255 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ 1256 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ 1257 << ICC_SGI1R_AFFINITY_## level ##_SHIFT) 1258 1259 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) 1260 { 1261 u64 val; 1262 1263 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | 1264 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | 1265 irq << ICC_SGI1R_SGI_ID_SHIFT | 1266 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | 1267 MPIDR_TO_SGI_RS(cluster_id) | 1268 tlist << ICC_SGI1R_TARGET_LIST_SHIFT); 1269 1270 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); 1271 gic_write_sgi1r(val); 1272 } 1273 1274 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 1275 { 1276 int cpu; 1277 1278 if (WARN_ON(d->hwirq >= 16)) 1279 return; 1280 1281 /* 1282 * Ensure that stores to Normal memory are visible to the 1283 * other CPUs before issuing the IPI. 1284 */ 1285 dsb(ishst); 1286 1287 for_each_cpu(cpu, mask) { 1288 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu)); 1289 u16 tlist; 1290 1291 tlist = gic_compute_target_list(&cpu, mask, cluster_id); 1292 gic_send_sgi(cluster_id, tlist, d->hwirq); 1293 } 1294 1295 /* Force the above writes to ICC_SGI1R_EL1 to be executed */ 1296 isb(); 1297 } 1298 1299 static void __init gic_smp_init(void) 1300 { 1301 struct irq_fwspec sgi_fwspec = { 1302 .fwnode = gic_data.fwnode, 1303 .param_count = 1, 1304 }; 1305 int base_sgi; 1306 1307 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 1308 "irqchip/arm/gicv3:starting", 1309 gic_starting_cpu, NULL); 1310 1311 /* Register all 8 non-secure SGIs */ 1312 base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8, 1313 NUMA_NO_NODE, &sgi_fwspec, 1314 false, NULL); 1315 if (WARN_ON(base_sgi <= 0)) 1316 return; 1317 1318 set_smp_ipi_range(base_sgi, 8); 1319 } 1320 1321 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1322 bool force) 1323 { 1324 unsigned int cpu; 1325 u32 offset, index; 1326 void __iomem *reg; 1327 int enabled; 1328 u64 val; 1329 1330 if (force) 1331 cpu = cpumask_first(mask_val); 1332 else 1333 cpu = cpumask_any_and(mask_val, cpu_online_mask); 1334 1335 if (cpu >= nr_cpu_ids) 1336 return -EINVAL; 1337 1338 if (gic_irq_in_rdist(d)) 1339 return -EINVAL; 1340 1341 /* If interrupt was enabled, disable it first */ 1342 enabled = gic_peek_irq(d, GICD_ISENABLER); 1343 if (enabled) 1344 gic_mask_irq(d); 1345 1346 offset = convert_offset_index(d, GICD_IROUTER, &index); 1347 reg = gic_dist_base(d) + offset + (index * 8); 1348 val = gic_mpidr_to_affinity(cpu_logical_map(cpu)); 1349 1350 gic_write_irouter(val, reg); 1351 1352 /* 1353 * If the interrupt was enabled, enabled it again. Otherwise, 1354 * just wait for the distributor to have digested our changes. 1355 */ 1356 if (enabled) 1357 gic_unmask_irq(d); 1358 1359 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1360 1361 return IRQ_SET_MASK_OK_DONE; 1362 } 1363 #else 1364 #define gic_set_affinity NULL 1365 #define gic_ipi_send_mask NULL 1366 #define gic_smp_init() do { } while(0) 1367 #endif 1368 1369 static int gic_retrigger(struct irq_data *data) 1370 { 1371 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 1372 } 1373 1374 #ifdef CONFIG_CPU_PM 1375 static int gic_cpu_pm_notifier(struct notifier_block *self, 1376 unsigned long cmd, void *v) 1377 { 1378 if (cmd == CPU_PM_EXIT) { 1379 if (gic_dist_security_disabled()) 1380 gic_enable_redist(true); 1381 gic_cpu_sys_reg_init(); 1382 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { 1383 gic_write_grpen1(0); 1384 gic_enable_redist(false); 1385 } 1386 return NOTIFY_OK; 1387 } 1388 1389 static struct notifier_block gic_cpu_pm_notifier_block = { 1390 .notifier_call = gic_cpu_pm_notifier, 1391 }; 1392 1393 static void gic_cpu_pm_init(void) 1394 { 1395 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); 1396 } 1397 1398 #else 1399 static inline void gic_cpu_pm_init(void) { } 1400 #endif /* CONFIG_CPU_PM */ 1401 1402 static struct irq_chip gic_chip = { 1403 .name = "GICv3", 1404 .irq_mask = gic_mask_irq, 1405 .irq_unmask = gic_unmask_irq, 1406 .irq_eoi = gic_eoi_irq, 1407 .irq_set_type = gic_set_type, 1408 .irq_set_affinity = gic_set_affinity, 1409 .irq_retrigger = gic_retrigger, 1410 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1411 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1412 .irq_nmi_setup = gic_irq_nmi_setup, 1413 .irq_nmi_teardown = gic_irq_nmi_teardown, 1414 .ipi_send_mask = gic_ipi_send_mask, 1415 .flags = IRQCHIP_SET_TYPE_MASKED | 1416 IRQCHIP_SKIP_SET_WAKE | 1417 IRQCHIP_MASK_ON_SUSPEND, 1418 }; 1419 1420 static struct irq_chip gic_eoimode1_chip = { 1421 .name = "GICv3", 1422 .irq_mask = gic_eoimode1_mask_irq, 1423 .irq_unmask = gic_unmask_irq, 1424 .irq_eoi = gic_eoimode1_eoi_irq, 1425 .irq_set_type = gic_set_type, 1426 .irq_set_affinity = gic_set_affinity, 1427 .irq_retrigger = gic_retrigger, 1428 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1429 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1430 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 1431 .irq_nmi_setup = gic_irq_nmi_setup, 1432 .irq_nmi_teardown = gic_irq_nmi_teardown, 1433 .ipi_send_mask = gic_ipi_send_mask, 1434 .flags = IRQCHIP_SET_TYPE_MASKED | 1435 IRQCHIP_SKIP_SET_WAKE | 1436 IRQCHIP_MASK_ON_SUSPEND, 1437 }; 1438 1439 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1440 irq_hw_number_t hw) 1441 { 1442 struct irq_chip *chip = &gic_chip; 1443 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1444 1445 if (static_branch_likely(&supports_deactivate_key)) 1446 chip = &gic_eoimode1_chip; 1447 1448 switch (__get_intid_range(hw)) { 1449 case SGI_RANGE: 1450 case PPI_RANGE: 1451 case EPPI_RANGE: 1452 irq_set_percpu_devid(irq); 1453 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1454 handle_percpu_devid_irq, NULL, NULL); 1455 break; 1456 1457 case SPI_RANGE: 1458 case ESPI_RANGE: 1459 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1460 handle_fasteoi_irq, NULL, NULL); 1461 irq_set_probe(irq); 1462 irqd_set_single_target(irqd); 1463 break; 1464 1465 case LPI_RANGE: 1466 if (!gic_dist_supports_lpis()) 1467 return -EPERM; 1468 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1469 handle_fasteoi_irq, NULL, NULL); 1470 break; 1471 1472 default: 1473 return -EPERM; 1474 } 1475 1476 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1477 irqd_set_handle_enforce_irqctx(irqd); 1478 return 0; 1479 } 1480 1481 static int gic_irq_domain_translate(struct irq_domain *d, 1482 struct irq_fwspec *fwspec, 1483 unsigned long *hwirq, 1484 unsigned int *type) 1485 { 1486 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1487 *hwirq = fwspec->param[0]; 1488 *type = IRQ_TYPE_EDGE_RISING; 1489 return 0; 1490 } 1491 1492 if (is_of_node(fwspec->fwnode)) { 1493 if (fwspec->param_count < 3) 1494 return -EINVAL; 1495 1496 switch (fwspec->param[0]) { 1497 case 0: /* SPI */ 1498 *hwirq = fwspec->param[1] + 32; 1499 break; 1500 case 1: /* PPI */ 1501 *hwirq = fwspec->param[1] + 16; 1502 break; 1503 case 2: /* ESPI */ 1504 *hwirq = fwspec->param[1] + ESPI_BASE_INTID; 1505 break; 1506 case 3: /* EPPI */ 1507 *hwirq = fwspec->param[1] + EPPI_BASE_INTID; 1508 break; 1509 case GIC_IRQ_TYPE_LPI: /* LPI */ 1510 *hwirq = fwspec->param[1]; 1511 break; 1512 case GIC_IRQ_TYPE_PARTITION: 1513 *hwirq = fwspec->param[1]; 1514 if (fwspec->param[1] >= 16) 1515 *hwirq += EPPI_BASE_INTID - 16; 1516 else 1517 *hwirq += 16; 1518 break; 1519 default: 1520 return -EINVAL; 1521 } 1522 1523 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1524 1525 /* 1526 * Make it clear that broken DTs are... broken. 1527 * Partitioned PPIs are an unfortunate exception. 1528 */ 1529 WARN_ON(*type == IRQ_TYPE_NONE && 1530 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); 1531 return 0; 1532 } 1533 1534 if (is_fwnode_irqchip(fwspec->fwnode)) { 1535 if(fwspec->param_count != 2) 1536 return -EINVAL; 1537 1538 if (fwspec->param[0] < 16) { 1539 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1540 fwspec->param[0]); 1541 return -EINVAL; 1542 } 1543 1544 *hwirq = fwspec->param[0]; 1545 *type = fwspec->param[1]; 1546 1547 WARN_ON(*type == IRQ_TYPE_NONE); 1548 return 0; 1549 } 1550 1551 return -EINVAL; 1552 } 1553 1554 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1555 unsigned int nr_irqs, void *arg) 1556 { 1557 int i, ret; 1558 irq_hw_number_t hwirq; 1559 unsigned int type = IRQ_TYPE_NONE; 1560 struct irq_fwspec *fwspec = arg; 1561 1562 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1563 if (ret) 1564 return ret; 1565 1566 for (i = 0; i < nr_irqs; i++) { 1567 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1568 if (ret) 1569 return ret; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1576 unsigned int nr_irqs) 1577 { 1578 int i; 1579 1580 for (i = 0; i < nr_irqs; i++) { 1581 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 1582 irq_set_handler(virq + i, NULL); 1583 irq_domain_reset_irq_data(d); 1584 } 1585 } 1586 1587 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, 1588 irq_hw_number_t hwirq) 1589 { 1590 enum gic_intid_range range; 1591 1592 if (!gic_data.ppi_descs) 1593 return false; 1594 1595 if (!is_of_node(fwspec->fwnode)) 1596 return false; 1597 1598 if (fwspec->param_count < 4 || !fwspec->param[3]) 1599 return false; 1600 1601 range = __get_intid_range(hwirq); 1602 if (range != PPI_RANGE && range != EPPI_RANGE) 1603 return false; 1604 1605 return true; 1606 } 1607 1608 static int gic_irq_domain_select(struct irq_domain *d, 1609 struct irq_fwspec *fwspec, 1610 enum irq_domain_bus_token bus_token) 1611 { 1612 unsigned int type, ret, ppi_idx; 1613 irq_hw_number_t hwirq; 1614 1615 /* Not for us */ 1616 if (fwspec->fwnode != d->fwnode) 1617 return 0; 1618 1619 /* If this is not DT, then we have a single domain */ 1620 if (!is_of_node(fwspec->fwnode)) 1621 return 1; 1622 1623 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); 1624 if (WARN_ON_ONCE(ret)) 1625 return 0; 1626 1627 if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) 1628 return d == gic_data.domain; 1629 1630 /* 1631 * If this is a PPI and we have a 4th (non-null) parameter, 1632 * then we need to match the partition domain. 1633 */ 1634 ppi_idx = __gic_get_ppi_index(hwirq); 1635 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); 1636 } 1637 1638 static const struct irq_domain_ops gic_irq_domain_ops = { 1639 .translate = gic_irq_domain_translate, 1640 .alloc = gic_irq_domain_alloc, 1641 .free = gic_irq_domain_free, 1642 .select = gic_irq_domain_select, 1643 }; 1644 1645 static int partition_domain_translate(struct irq_domain *d, 1646 struct irq_fwspec *fwspec, 1647 unsigned long *hwirq, 1648 unsigned int *type) 1649 { 1650 unsigned long ppi_intid; 1651 struct device_node *np; 1652 unsigned int ppi_idx; 1653 int ret; 1654 1655 if (!gic_data.ppi_descs) 1656 return -ENOMEM; 1657 1658 np = of_find_node_by_phandle(fwspec->param[3]); 1659 if (WARN_ON(!np)) 1660 return -EINVAL; 1661 1662 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); 1663 if (WARN_ON_ONCE(ret)) 1664 return 0; 1665 1666 ppi_idx = __gic_get_ppi_index(ppi_intid); 1667 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], 1668 of_node_to_fwnode(np)); 1669 if (ret < 0) 1670 return ret; 1671 1672 *hwirq = ret; 1673 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1674 1675 return 0; 1676 } 1677 1678 static const struct irq_domain_ops partition_domain_ops = { 1679 .translate = partition_domain_translate, 1680 .select = gic_irq_domain_select, 1681 }; 1682 1683 static bool gic_enable_quirk_msm8996(void *data) 1684 { 1685 struct gic_chip_data *d = data; 1686 1687 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; 1688 1689 return true; 1690 } 1691 1692 static bool gic_enable_quirk_cavium_38539(void *data) 1693 { 1694 struct gic_chip_data *d = data; 1695 1696 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; 1697 1698 return true; 1699 } 1700 1701 static bool gic_enable_quirk_hip06_07(void *data) 1702 { 1703 struct gic_chip_data *d = data; 1704 1705 /* 1706 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite 1707 * not being an actual ARM implementation). The saving grace is 1708 * that GIC-600 doesn't have ESPI, so nothing to do in that case. 1709 * HIP07 doesn't even have a proper IIDR, and still pretends to 1710 * have ESPI. In both cases, put them right. 1711 */ 1712 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { 1713 /* Zero both ESPI and the RES0 field next to it... */ 1714 d->rdists.gicd_typer &= ~GENMASK(9, 8); 1715 return true; 1716 } 1717 1718 return false; 1719 } 1720 1721 static const struct gic_quirk gic_quirks[] = { 1722 { 1723 .desc = "GICv3: Qualcomm MSM8996 broken firmware", 1724 .compatible = "qcom,msm8996-gic-v3", 1725 .init = gic_enable_quirk_msm8996, 1726 }, 1727 { 1728 .desc = "GICv3: HIP06 erratum 161010803", 1729 .iidr = 0x0204043b, 1730 .mask = 0xffffffff, 1731 .init = gic_enable_quirk_hip06_07, 1732 }, 1733 { 1734 .desc = "GICv3: HIP07 erratum 161010803", 1735 .iidr = 0x00000000, 1736 .mask = 0xffffffff, 1737 .init = gic_enable_quirk_hip06_07, 1738 }, 1739 { 1740 /* 1741 * Reserved register accesses generate a Synchronous 1742 * External Abort. This erratum applies to: 1743 * - ThunderX: CN88xx 1744 * - OCTEON TX: CN83xx, CN81xx 1745 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* 1746 */ 1747 .desc = "GICv3: Cavium erratum 38539", 1748 .iidr = 0xa000034c, 1749 .mask = 0xe8f00fff, 1750 .init = gic_enable_quirk_cavium_38539, 1751 }, 1752 { 1753 } 1754 }; 1755 1756 static void gic_enable_nmi_support(void) 1757 { 1758 int i; 1759 1760 if (!gic_prio_masking_enabled()) 1761 return; 1762 1763 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL); 1764 if (!ppi_nmi_refs) 1765 return; 1766 1767 for (i = 0; i < gic_data.ppi_nr; i++) 1768 refcount_set(&ppi_nmi_refs[i], 0); 1769 1770 /* 1771 * Linux itself doesn't use 1:N distribution, so has no need to 1772 * set PMHE. The only reason to have it set is if EL3 requires it 1773 * (and we can't change it). 1774 */ 1775 if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) 1776 static_branch_enable(&gic_pmr_sync); 1777 1778 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", 1779 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed"); 1780 1781 /* 1782 * How priority values are used by the GIC depends on two things: 1783 * the security state of the GIC (controlled by the GICD_CTRL.DS bit) 1784 * and if Group 0 interrupts can be delivered to Linux in the non-secure 1785 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the 1786 * the ICC_PMR_EL1 register and the priority that software assigns to 1787 * interrupts: 1788 * 1789 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority 1790 * ----------------------------------------------------------- 1791 * 1 | - | unchanged | unchanged 1792 * ----------------------------------------------------------- 1793 * 0 | 1 | non-secure | non-secure 1794 * ----------------------------------------------------------- 1795 * 0 | 0 | unchanged | non-secure 1796 * 1797 * where non-secure means that the value is right-shifted by one and the 1798 * MSB bit set, to make it fit in the non-secure priority range. 1799 * 1800 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority 1801 * are both either modified or unchanged, we can use the same set of 1802 * priorities. 1803 * 1804 * In the last case, where only the interrupt priorities are modified to 1805 * be in the non-secure range, we use a different PMR value to mask IRQs 1806 * and the rest of the values that we use remain unchanged. 1807 */ 1808 if (gic_has_group0() && !gic_dist_security_disabled()) 1809 static_branch_enable(&gic_nonsecure_priorities); 1810 1811 static_branch_enable(&supports_pseudo_nmis); 1812 1813 if (static_branch_likely(&supports_deactivate_key)) 1814 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; 1815 else 1816 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; 1817 } 1818 1819 static int __init gic_init_bases(void __iomem *dist_base, 1820 struct redist_region *rdist_regs, 1821 u32 nr_redist_regions, 1822 u64 redist_stride, 1823 struct fwnode_handle *handle) 1824 { 1825 u32 typer; 1826 int err; 1827 1828 if (!is_hyp_mode_available()) 1829 static_branch_disable(&supports_deactivate_key); 1830 1831 if (static_branch_likely(&supports_deactivate_key)) 1832 pr_info("GIC: Using split EOI/Deactivate mode\n"); 1833 1834 gic_data.fwnode = handle; 1835 gic_data.dist_base = dist_base; 1836 gic_data.redist_regions = rdist_regs; 1837 gic_data.nr_redist_regions = nr_redist_regions; 1838 gic_data.redist_stride = redist_stride; 1839 1840 /* 1841 * Find out how many interrupts are supported. 1842 */ 1843 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); 1844 gic_data.rdists.gicd_typer = typer; 1845 1846 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), 1847 gic_quirks, &gic_data); 1848 1849 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); 1850 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); 1851 1852 /* 1853 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the 1854 * architecture spec (which says that reserved registers are RES0). 1855 */ 1856 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) 1857 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); 1858 1859 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, 1860 &gic_data); 1861 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); 1862 gic_data.rdists.has_rvpeid = true; 1863 gic_data.rdists.has_vlpis = true; 1864 gic_data.rdists.has_direct_lpi = true; 1865 gic_data.rdists.has_vpend_valid_dirty = true; 1866 1867 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { 1868 err = -ENOMEM; 1869 goto out_free; 1870 } 1871 1872 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); 1873 1874 gic_data.has_rss = !!(typer & GICD_TYPER_RSS); 1875 1876 if (typer & GICD_TYPER_MBIS) { 1877 err = mbi_init(handle, gic_data.domain); 1878 if (err) 1879 pr_err("Failed to initialize MBIs\n"); 1880 } 1881 1882 set_handle_irq(gic_handle_irq); 1883 1884 gic_update_rdist_properties(); 1885 1886 gic_dist_init(); 1887 gic_cpu_init(); 1888 gic_smp_init(); 1889 gic_cpu_pm_init(); 1890 1891 if (gic_dist_supports_lpis()) { 1892 its_init(handle, &gic_data.rdists, gic_data.domain); 1893 its_cpu_init(); 1894 its_lpi_memreserve_init(); 1895 } else { 1896 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 1897 gicv2m_init(handle, gic_data.domain); 1898 } 1899 1900 gic_enable_nmi_support(); 1901 1902 return 0; 1903 1904 out_free: 1905 if (gic_data.domain) 1906 irq_domain_remove(gic_data.domain); 1907 free_percpu(gic_data.rdists.rdist); 1908 return err; 1909 } 1910 1911 static int __init gic_validate_dist_version(void __iomem *dist_base) 1912 { 1913 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 1914 1915 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) 1916 return -ENODEV; 1917 1918 return 0; 1919 } 1920 1921 /* Create all possible partitions at boot time */ 1922 static void __init gic_populate_ppi_partitions(struct device_node *gic_node) 1923 { 1924 struct device_node *parts_node, *child_part; 1925 int part_idx = 0, i; 1926 int nr_parts; 1927 struct partition_affinity *parts; 1928 1929 parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); 1930 if (!parts_node) 1931 return; 1932 1933 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); 1934 if (!gic_data.ppi_descs) 1935 goto out_put_node; 1936 1937 nr_parts = of_get_child_count(parts_node); 1938 1939 if (!nr_parts) 1940 goto out_put_node; 1941 1942 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); 1943 if (WARN_ON(!parts)) 1944 goto out_put_node; 1945 1946 for_each_child_of_node(parts_node, child_part) { 1947 struct partition_affinity *part; 1948 int n; 1949 1950 part = &parts[part_idx]; 1951 1952 part->partition_id = of_node_to_fwnode(child_part); 1953 1954 pr_info("GIC: PPI partition %pOFn[%d] { ", 1955 child_part, part_idx); 1956 1957 n = of_property_count_elems_of_size(child_part, "affinity", 1958 sizeof(u32)); 1959 WARN_ON(n <= 0); 1960 1961 for (i = 0; i < n; i++) { 1962 int err, cpu; 1963 u32 cpu_phandle; 1964 struct device_node *cpu_node; 1965 1966 err = of_property_read_u32_index(child_part, "affinity", 1967 i, &cpu_phandle); 1968 if (WARN_ON(err)) 1969 continue; 1970 1971 cpu_node = of_find_node_by_phandle(cpu_phandle); 1972 if (WARN_ON(!cpu_node)) 1973 continue; 1974 1975 cpu = of_cpu_node_to_id(cpu_node); 1976 if (WARN_ON(cpu < 0)) { 1977 of_node_put(cpu_node); 1978 continue; 1979 } 1980 1981 pr_cont("%pOF[%d] ", cpu_node, cpu); 1982 1983 cpumask_set_cpu(cpu, &part->mask); 1984 of_node_put(cpu_node); 1985 } 1986 1987 pr_cont("}\n"); 1988 part_idx++; 1989 } 1990 1991 for (i = 0; i < gic_data.ppi_nr; i++) { 1992 unsigned int irq; 1993 struct partition_desc *desc; 1994 struct irq_fwspec ppi_fwspec = { 1995 .fwnode = gic_data.fwnode, 1996 .param_count = 3, 1997 .param = { 1998 [0] = GIC_IRQ_TYPE_PARTITION, 1999 [1] = i, 2000 [2] = IRQ_TYPE_NONE, 2001 }, 2002 }; 2003 2004 irq = irq_create_fwspec_mapping(&ppi_fwspec); 2005 if (WARN_ON(!irq)) 2006 continue; 2007 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, 2008 irq, &partition_domain_ops); 2009 if (WARN_ON(!desc)) 2010 continue; 2011 2012 gic_data.ppi_descs[i] = desc; 2013 } 2014 2015 out_put_node: 2016 of_node_put(parts_node); 2017 } 2018 2019 static void __init gic_of_setup_kvm_info(struct device_node *node) 2020 { 2021 int ret; 2022 struct resource r; 2023 u32 gicv_idx; 2024 2025 gic_v3_kvm_info.type = GIC_V3; 2026 2027 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 2028 if (!gic_v3_kvm_info.maint_irq) 2029 return; 2030 2031 if (of_property_read_u32(node, "#redistributor-regions", 2032 &gicv_idx)) 2033 gicv_idx = 1; 2034 2035 gicv_idx += 3; /* Also skip GICD, GICC, GICH */ 2036 ret = of_address_to_resource(node, gicv_idx, &r); 2037 if (!ret) 2038 gic_v3_kvm_info.vcpu = r; 2039 2040 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2041 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2042 vgic_set_kvm_info(&gic_v3_kvm_info); 2043 } 2044 2045 static int __init gic_of_init(struct device_node *node, struct device_node *parent) 2046 { 2047 void __iomem *dist_base; 2048 struct redist_region *rdist_regs; 2049 u64 redist_stride; 2050 u32 nr_redist_regions; 2051 int err, i; 2052 2053 dist_base = of_io_request_and_map(node, 0, "GICD"); 2054 if (IS_ERR(dist_base)) { 2055 pr_err("%pOF: unable to map gic dist registers\n", node); 2056 return PTR_ERR(dist_base); 2057 } 2058 2059 err = gic_validate_dist_version(dist_base); 2060 if (err) { 2061 pr_err("%pOF: no distributor detected, giving up\n", node); 2062 goto out_unmap_dist; 2063 } 2064 2065 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) 2066 nr_redist_regions = 1; 2067 2068 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), 2069 GFP_KERNEL); 2070 if (!rdist_regs) { 2071 err = -ENOMEM; 2072 goto out_unmap_dist; 2073 } 2074 2075 for (i = 0; i < nr_redist_regions; i++) { 2076 struct resource res; 2077 int ret; 2078 2079 ret = of_address_to_resource(node, 1 + i, &res); 2080 rdist_regs[i].redist_base = of_io_request_and_map(node, 1 + i, "GICR"); 2081 if (ret || IS_ERR(rdist_regs[i].redist_base)) { 2082 pr_err("%pOF: couldn't map region %d\n", node, i); 2083 err = -ENODEV; 2084 goto out_unmap_rdist; 2085 } 2086 rdist_regs[i].phys_base = res.start; 2087 } 2088 2089 if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) 2090 redist_stride = 0; 2091 2092 gic_enable_of_quirks(node, gic_quirks, &gic_data); 2093 2094 err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions, 2095 redist_stride, &node->fwnode); 2096 if (err) 2097 goto out_unmap_rdist; 2098 2099 gic_populate_ppi_partitions(node); 2100 2101 if (static_branch_likely(&supports_deactivate_key)) 2102 gic_of_setup_kvm_info(node); 2103 return 0; 2104 2105 out_unmap_rdist: 2106 for (i = 0; i < nr_redist_regions; i++) 2107 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) 2108 iounmap(rdist_regs[i].redist_base); 2109 kfree(rdist_regs); 2110 out_unmap_dist: 2111 iounmap(dist_base); 2112 return err; 2113 } 2114 2115 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); 2116 2117 #ifdef CONFIG_ACPI 2118 static struct 2119 { 2120 void __iomem *dist_base; 2121 struct redist_region *redist_regs; 2122 u32 nr_redist_regions; 2123 bool single_redist; 2124 int enabled_rdists; 2125 u32 maint_irq; 2126 int maint_irq_mode; 2127 phys_addr_t vcpu_base; 2128 } acpi_data __initdata; 2129 2130 static void __init 2131 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) 2132 { 2133 static int count = 0; 2134 2135 acpi_data.redist_regs[count].phys_base = phys_base; 2136 acpi_data.redist_regs[count].redist_base = redist_base; 2137 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; 2138 count++; 2139 } 2140 2141 static int __init 2142 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, 2143 const unsigned long end) 2144 { 2145 struct acpi_madt_generic_redistributor *redist = 2146 (struct acpi_madt_generic_redistributor *)header; 2147 void __iomem *redist_base; 2148 2149 redist_base = ioremap(redist->base_address, redist->length); 2150 if (!redist_base) { 2151 pr_err("Couldn't map GICR region @%llx\n", redist->base_address); 2152 return -ENOMEM; 2153 } 2154 request_mem_region(redist->base_address, redist->length, "GICR"); 2155 2156 gic_acpi_register_redist(redist->base_address, redist_base); 2157 return 0; 2158 } 2159 2160 static int __init 2161 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, 2162 const unsigned long end) 2163 { 2164 struct acpi_madt_generic_interrupt *gicc = 2165 (struct acpi_madt_generic_interrupt *)header; 2166 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2167 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; 2168 void __iomem *redist_base; 2169 2170 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */ 2171 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2172 return 0; 2173 2174 redist_base = ioremap(gicc->gicr_base_address, size); 2175 if (!redist_base) 2176 return -ENOMEM; 2177 request_mem_region(gicc->gicr_base_address, size, "GICR"); 2178 2179 gic_acpi_register_redist(gicc->gicr_base_address, redist_base); 2180 return 0; 2181 } 2182 2183 static int __init gic_acpi_collect_gicr_base(void) 2184 { 2185 acpi_tbl_entry_handler redist_parser; 2186 enum acpi_madt_type type; 2187 2188 if (acpi_data.single_redist) { 2189 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; 2190 redist_parser = gic_acpi_parse_madt_gicc; 2191 } else { 2192 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; 2193 redist_parser = gic_acpi_parse_madt_redist; 2194 } 2195 2196 /* Collect redistributor base addresses in GICR entries */ 2197 if (acpi_table_parse_madt(type, redist_parser, 0) > 0) 2198 return 0; 2199 2200 pr_info("No valid GICR entries exist\n"); 2201 return -ENODEV; 2202 } 2203 2204 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, 2205 const unsigned long end) 2206 { 2207 /* Subtable presence means that redist exists, that's it */ 2208 return 0; 2209 } 2210 2211 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, 2212 const unsigned long end) 2213 { 2214 struct acpi_madt_generic_interrupt *gicc = 2215 (struct acpi_madt_generic_interrupt *)header; 2216 2217 /* 2218 * If GICC is enabled and has valid gicr base address, then it means 2219 * GICR base is presented via GICC 2220 */ 2221 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) { 2222 acpi_data.enabled_rdists++; 2223 return 0; 2224 } 2225 2226 /* 2227 * It's perfectly valid firmware can pass disabled GICC entry, driver 2228 * should not treat as errors, skip the entry instead of probe fail. 2229 */ 2230 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2231 return 0; 2232 2233 return -ENODEV; 2234 } 2235 2236 static int __init gic_acpi_count_gicr_regions(void) 2237 { 2238 int count; 2239 2240 /* 2241 * Count how many redistributor regions we have. It is not allowed 2242 * to mix redistributor description, GICR and GICC subtables have to be 2243 * mutually exclusive. 2244 */ 2245 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 2246 gic_acpi_match_gicr, 0); 2247 if (count > 0) { 2248 acpi_data.single_redist = false; 2249 return count; 2250 } 2251 2252 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2253 gic_acpi_match_gicc, 0); 2254 if (count > 0) { 2255 acpi_data.single_redist = true; 2256 count = acpi_data.enabled_rdists; 2257 } 2258 2259 return count; 2260 } 2261 2262 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, 2263 struct acpi_probe_entry *ape) 2264 { 2265 struct acpi_madt_generic_distributor *dist; 2266 int count; 2267 2268 dist = (struct acpi_madt_generic_distributor *)header; 2269 if (dist->version != ape->driver_data) 2270 return false; 2271 2272 /* We need to do that exercise anyway, the sooner the better */ 2273 count = gic_acpi_count_gicr_regions(); 2274 if (count <= 0) 2275 return false; 2276 2277 acpi_data.nr_redist_regions = count; 2278 return true; 2279 } 2280 2281 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, 2282 const unsigned long end) 2283 { 2284 struct acpi_madt_generic_interrupt *gicc = 2285 (struct acpi_madt_generic_interrupt *)header; 2286 int maint_irq_mode; 2287 static int first_madt = true; 2288 2289 /* Skip unusable CPUs */ 2290 if (!(gicc->flags & ACPI_MADT_ENABLED)) 2291 return 0; 2292 2293 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 2294 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 2295 2296 if (first_madt) { 2297 first_madt = false; 2298 2299 acpi_data.maint_irq = gicc->vgic_interrupt; 2300 acpi_data.maint_irq_mode = maint_irq_mode; 2301 acpi_data.vcpu_base = gicc->gicv_base_address; 2302 2303 return 0; 2304 } 2305 2306 /* 2307 * The maintenance interrupt and GICV should be the same for every CPU 2308 */ 2309 if ((acpi_data.maint_irq != gicc->vgic_interrupt) || 2310 (acpi_data.maint_irq_mode != maint_irq_mode) || 2311 (acpi_data.vcpu_base != gicc->gicv_base_address)) 2312 return -EINVAL; 2313 2314 return 0; 2315 } 2316 2317 static bool __init gic_acpi_collect_virt_info(void) 2318 { 2319 int count; 2320 2321 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2322 gic_acpi_parse_virt_madt_gicc, 0); 2323 2324 return (count > 0); 2325 } 2326 2327 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) 2328 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 2329 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 2330 2331 static void __init gic_acpi_setup_kvm_info(void) 2332 { 2333 int irq; 2334 2335 if (!gic_acpi_collect_virt_info()) { 2336 pr_warn("Unable to get hardware information used for virtualization\n"); 2337 return; 2338 } 2339 2340 gic_v3_kvm_info.type = GIC_V3; 2341 2342 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 2343 acpi_data.maint_irq_mode, 2344 ACPI_ACTIVE_HIGH); 2345 if (irq <= 0) 2346 return; 2347 2348 gic_v3_kvm_info.maint_irq = irq; 2349 2350 if (acpi_data.vcpu_base) { 2351 struct resource *vcpu = &gic_v3_kvm_info.vcpu; 2352 2353 vcpu->flags = IORESOURCE_MEM; 2354 vcpu->start = acpi_data.vcpu_base; 2355 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 2356 } 2357 2358 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2359 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2360 vgic_set_kvm_info(&gic_v3_kvm_info); 2361 } 2362 2363 static int __init 2364 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) 2365 { 2366 struct acpi_madt_generic_distributor *dist; 2367 struct fwnode_handle *domain_handle; 2368 size_t size; 2369 int i, err; 2370 2371 /* Get distributor base address */ 2372 dist = (struct acpi_madt_generic_distributor *)header; 2373 acpi_data.dist_base = ioremap(dist->base_address, 2374 ACPI_GICV3_DIST_MEM_SIZE); 2375 if (!acpi_data.dist_base) { 2376 pr_err("Unable to map GICD registers\n"); 2377 return -ENOMEM; 2378 } 2379 request_mem_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); 2380 2381 err = gic_validate_dist_version(acpi_data.dist_base); 2382 if (err) { 2383 pr_err("No distributor detected at @%p, giving up\n", 2384 acpi_data.dist_base); 2385 goto out_dist_unmap; 2386 } 2387 2388 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; 2389 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); 2390 if (!acpi_data.redist_regs) { 2391 err = -ENOMEM; 2392 goto out_dist_unmap; 2393 } 2394 2395 err = gic_acpi_collect_gicr_base(); 2396 if (err) 2397 goto out_redist_unmap; 2398 2399 domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 2400 if (!domain_handle) { 2401 err = -ENOMEM; 2402 goto out_redist_unmap; 2403 } 2404 2405 err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs, 2406 acpi_data.nr_redist_regions, 0, domain_handle); 2407 if (err) 2408 goto out_fwhandle_free; 2409 2410 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle); 2411 2412 if (static_branch_likely(&supports_deactivate_key)) 2413 gic_acpi_setup_kvm_info(); 2414 2415 return 0; 2416 2417 out_fwhandle_free: 2418 irq_domain_free_fwnode(domain_handle); 2419 out_redist_unmap: 2420 for (i = 0; i < acpi_data.nr_redist_regions; i++) 2421 if (acpi_data.redist_regs[i].redist_base) 2422 iounmap(acpi_data.redist_regs[i].redist_base); 2423 kfree(acpi_data.redist_regs); 2424 out_dist_unmap: 2425 iounmap(acpi_data.dist_base); 2426 return err; 2427 } 2428 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2429 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, 2430 gic_acpi_init); 2431 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2432 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, 2433 gic_acpi_init); 2434 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2435 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, 2436 gic_acpi_init); 2437 #endif 2438