xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 
38 struct redist_region {
39 	void __iomem		*redist_base;
40 	phys_addr_t		phys_base;
41 	bool			single_redist;
42 };
43 
44 struct gic_chip_data {
45 	struct fwnode_handle	*fwnode;
46 	void __iomem		*dist_base;
47 	struct redist_region	*redist_regions;
48 	struct rdists		rdists;
49 	struct irq_domain	*domain;
50 	u64			redist_stride;
51 	u32			nr_redist_regions;
52 	u64			flags;
53 	bool			has_rss;
54 	unsigned int		ppi_nr;
55 	struct partition_desc	**ppi_descs;
56 };
57 
58 static struct gic_chip_data gic_data __read_mostly;
59 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
60 
61 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
62 #define GIC_LINE_NR	max(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
63 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
64 
65 /*
66  * The behaviours of RPR and PMR registers differ depending on the value of
67  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
68  * distributor and redistributors depends on whether security is enabled in the
69  * GIC.
70  *
71  * When security is enabled, non-secure priority values from the (re)distributor
72  * are presented to the GIC CPUIF as follow:
73  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
74  *
75  * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
76  * EL1 are subject to a similar operation thus matching the priorities presented
77  * from the (re)distributor when security is enabled.
78  *
79  * see GICv3/GICv4 Architecture Specification (IHI0069D):
80  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
81  *   priorities.
82  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
83  *   interrupt.
84  *
85  * For now, we only support pseudo-NMIs if we have non-secure view of
86  * priorities.
87  */
88 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
89 
90 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
91 static refcount_t *ppi_nmi_refs;
92 
93 static struct gic_kvm_info gic_v3_kvm_info;
94 static DEFINE_PER_CPU(bool, has_rss);
95 
96 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
97 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
98 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
99 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
100 
101 /* Our default, arbitrary priority value. Linux only uses one anyway. */
102 #define DEFAULT_PMR_VALUE	0xf0
103 
104 enum gic_intid_range {
105 	PPI_RANGE,
106 	SPI_RANGE,
107 	EPPI_RANGE,
108 	ESPI_RANGE,
109 	LPI_RANGE,
110 	__INVALID_RANGE__
111 };
112 
113 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
114 {
115 	switch (hwirq) {
116 	case 16 ... 31:
117 		return PPI_RANGE;
118 	case 32 ... 1019:
119 		return SPI_RANGE;
120 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
121 		return EPPI_RANGE;
122 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
123 		return ESPI_RANGE;
124 	case 8192 ... GENMASK(23, 0):
125 		return LPI_RANGE;
126 	default:
127 		return __INVALID_RANGE__;
128 	}
129 }
130 
131 static enum gic_intid_range get_intid_range(struct irq_data *d)
132 {
133 	return __get_intid_range(d->hwirq);
134 }
135 
136 static inline unsigned int gic_irq(struct irq_data *d)
137 {
138 	return d->hwirq;
139 }
140 
141 static inline int gic_irq_in_rdist(struct irq_data *d)
142 {
143 	enum gic_intid_range range = get_intid_range(d);
144 	return range == PPI_RANGE || range == EPPI_RANGE;
145 }
146 
147 static inline void __iomem *gic_dist_base(struct irq_data *d)
148 {
149 	switch (get_intid_range(d)) {
150 	case PPI_RANGE:
151 	case EPPI_RANGE:
152 		/* SGI+PPI -> SGI_base for this CPU */
153 		return gic_data_rdist_sgi_base();
154 
155 	case SPI_RANGE:
156 	case ESPI_RANGE:
157 		/* SPI -> dist_base */
158 		return gic_data.dist_base;
159 
160 	default:
161 		return NULL;
162 	}
163 }
164 
165 static void gic_do_wait_for_rwp(void __iomem *base)
166 {
167 	u32 count = 1000000;	/* 1s! */
168 
169 	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
170 		count--;
171 		if (!count) {
172 			pr_err_ratelimited("RWP timeout, gone fishing\n");
173 			return;
174 		}
175 		cpu_relax();
176 		udelay(1);
177 	};
178 }
179 
180 /* Wait for completion of a distributor change */
181 static void gic_dist_wait_for_rwp(void)
182 {
183 	gic_do_wait_for_rwp(gic_data.dist_base);
184 }
185 
186 /* Wait for completion of a redistributor change */
187 static void gic_redist_wait_for_rwp(void)
188 {
189 	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
190 }
191 
192 #ifdef CONFIG_ARM64
193 
194 static u64 __maybe_unused gic_read_iar(void)
195 {
196 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
197 		return gic_read_iar_cavium_thunderx();
198 	else
199 		return gic_read_iar_common();
200 }
201 #endif
202 
203 static void gic_enable_redist(bool enable)
204 {
205 	void __iomem *rbase;
206 	u32 count = 1000000;	/* 1s! */
207 	u32 val;
208 
209 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
210 		return;
211 
212 	rbase = gic_data_rdist_rd_base();
213 
214 	val = readl_relaxed(rbase + GICR_WAKER);
215 	if (enable)
216 		/* Wake up this CPU redistributor */
217 		val &= ~GICR_WAKER_ProcessorSleep;
218 	else
219 		val |= GICR_WAKER_ProcessorSleep;
220 	writel_relaxed(val, rbase + GICR_WAKER);
221 
222 	if (!enable) {		/* Check that GICR_WAKER is writeable */
223 		val = readl_relaxed(rbase + GICR_WAKER);
224 		if (!(val & GICR_WAKER_ProcessorSleep))
225 			return;	/* No PM support in this redistributor */
226 	}
227 
228 	while (--count) {
229 		val = readl_relaxed(rbase + GICR_WAKER);
230 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
231 			break;
232 		cpu_relax();
233 		udelay(1);
234 	};
235 	if (!count)
236 		pr_err_ratelimited("redistributor failed to %s...\n",
237 				   enable ? "wakeup" : "sleep");
238 }
239 
240 /*
241  * Routines to disable, enable, EOI and route interrupts
242  */
243 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
244 {
245 	switch (get_intid_range(d)) {
246 	case PPI_RANGE:
247 	case SPI_RANGE:
248 		*index = d->hwirq;
249 		return offset;
250 	case EPPI_RANGE:
251 		/*
252 		 * Contrary to the ESPI range, the EPPI range is contiguous
253 		 * to the PPI range in the registers, so let's adjust the
254 		 * displacement accordingly. Consistency is overrated.
255 		 */
256 		*index = d->hwirq - EPPI_BASE_INTID + 32;
257 		return offset;
258 	case ESPI_RANGE:
259 		*index = d->hwirq - ESPI_BASE_INTID;
260 		switch (offset) {
261 		case GICD_ISENABLER:
262 			return GICD_ISENABLERnE;
263 		case GICD_ICENABLER:
264 			return GICD_ICENABLERnE;
265 		case GICD_ISPENDR:
266 			return GICD_ISPENDRnE;
267 		case GICD_ICPENDR:
268 			return GICD_ICPENDRnE;
269 		case GICD_ISACTIVER:
270 			return GICD_ISACTIVERnE;
271 		case GICD_ICACTIVER:
272 			return GICD_ICACTIVERnE;
273 		case GICD_IPRIORITYR:
274 			return GICD_IPRIORITYRnE;
275 		case GICD_ICFGR:
276 			return GICD_ICFGRnE;
277 		case GICD_IROUTER:
278 			return GICD_IROUTERnE;
279 		default:
280 			break;
281 		}
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	WARN_ON(1);
288 	*index = d->hwirq;
289 	return offset;
290 }
291 
292 static int gic_peek_irq(struct irq_data *d, u32 offset)
293 {
294 	void __iomem *base;
295 	u32 index, mask;
296 
297 	offset = convert_offset_index(d, offset, &index);
298 	mask = 1 << (index % 32);
299 
300 	if (gic_irq_in_rdist(d))
301 		base = gic_data_rdist_sgi_base();
302 	else
303 		base = gic_data.dist_base;
304 
305 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
306 }
307 
308 static void gic_poke_irq(struct irq_data *d, u32 offset)
309 {
310 	void (*rwp_wait)(void);
311 	void __iomem *base;
312 	u32 index, mask;
313 
314 	offset = convert_offset_index(d, offset, &index);
315 	mask = 1 << (index % 32);
316 
317 	if (gic_irq_in_rdist(d)) {
318 		base = gic_data_rdist_sgi_base();
319 		rwp_wait = gic_redist_wait_for_rwp;
320 	} else {
321 		base = gic_data.dist_base;
322 		rwp_wait = gic_dist_wait_for_rwp;
323 	}
324 
325 	writel_relaxed(mask, base + offset + (index / 32) * 4);
326 	rwp_wait();
327 }
328 
329 static void gic_mask_irq(struct irq_data *d)
330 {
331 	gic_poke_irq(d, GICD_ICENABLER);
332 }
333 
334 static void gic_eoimode1_mask_irq(struct irq_data *d)
335 {
336 	gic_mask_irq(d);
337 	/*
338 	 * When masking a forwarded interrupt, make sure it is
339 	 * deactivated as well.
340 	 *
341 	 * This ensures that an interrupt that is getting
342 	 * disabled/masked will not get "stuck", because there is
343 	 * noone to deactivate it (guest is being terminated).
344 	 */
345 	if (irqd_is_forwarded_to_vcpu(d))
346 		gic_poke_irq(d, GICD_ICACTIVER);
347 }
348 
349 static void gic_unmask_irq(struct irq_data *d)
350 {
351 	gic_poke_irq(d, GICD_ISENABLER);
352 }
353 
354 static inline bool gic_supports_nmi(void)
355 {
356 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
357 	       static_branch_likely(&supports_pseudo_nmis);
358 }
359 
360 static int gic_irq_set_irqchip_state(struct irq_data *d,
361 				     enum irqchip_irq_state which, bool val)
362 {
363 	u32 reg;
364 
365 	if (d->hwirq >= 8192) /* PPI/SPI only */
366 		return -EINVAL;
367 
368 	switch (which) {
369 	case IRQCHIP_STATE_PENDING:
370 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
371 		break;
372 
373 	case IRQCHIP_STATE_ACTIVE:
374 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
375 		break;
376 
377 	case IRQCHIP_STATE_MASKED:
378 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
379 		break;
380 
381 	default:
382 		return -EINVAL;
383 	}
384 
385 	gic_poke_irq(d, reg);
386 	return 0;
387 }
388 
389 static int gic_irq_get_irqchip_state(struct irq_data *d,
390 				     enum irqchip_irq_state which, bool *val)
391 {
392 	if (d->hwirq >= 8192) /* PPI/SPI only */
393 		return -EINVAL;
394 
395 	switch (which) {
396 	case IRQCHIP_STATE_PENDING:
397 		*val = gic_peek_irq(d, GICD_ISPENDR);
398 		break;
399 
400 	case IRQCHIP_STATE_ACTIVE:
401 		*val = gic_peek_irq(d, GICD_ISACTIVER);
402 		break;
403 
404 	case IRQCHIP_STATE_MASKED:
405 		*val = !gic_peek_irq(d, GICD_ISENABLER);
406 		break;
407 
408 	default:
409 		return -EINVAL;
410 	}
411 
412 	return 0;
413 }
414 
415 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
416 {
417 	void __iomem *base = gic_dist_base(d);
418 	u32 offset, index;
419 
420 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
421 
422 	writeb_relaxed(prio, base + offset + index);
423 }
424 
425 static u32 gic_get_ppi_index(struct irq_data *d)
426 {
427 	switch (get_intid_range(d)) {
428 	case PPI_RANGE:
429 		return d->hwirq - 16;
430 	case EPPI_RANGE:
431 		return d->hwirq - EPPI_BASE_INTID + 16;
432 	default:
433 		unreachable();
434 	}
435 }
436 
437 static int gic_irq_nmi_setup(struct irq_data *d)
438 {
439 	struct irq_desc *desc = irq_to_desc(d->irq);
440 
441 	if (!gic_supports_nmi())
442 		return -EINVAL;
443 
444 	if (gic_peek_irq(d, GICD_ISENABLER)) {
445 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
446 		return -EINVAL;
447 	}
448 
449 	/*
450 	 * A secondary irq_chip should be in charge of LPI request,
451 	 * it should not be possible to get there
452 	 */
453 	if (WARN_ON(gic_irq(d) >= 8192))
454 		return -EINVAL;
455 
456 	/* desc lock should already be held */
457 	if (gic_irq_in_rdist(d)) {
458 		u32 idx = gic_get_ppi_index(d);
459 
460 		/* Setting up PPI as NMI, only switch handler for first NMI */
461 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
462 			refcount_set(&ppi_nmi_refs[idx], 1);
463 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
464 		}
465 	} else {
466 		desc->handle_irq = handle_fasteoi_nmi;
467 	}
468 
469 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
470 
471 	return 0;
472 }
473 
474 static void gic_irq_nmi_teardown(struct irq_data *d)
475 {
476 	struct irq_desc *desc = irq_to_desc(d->irq);
477 
478 	if (WARN_ON(!gic_supports_nmi()))
479 		return;
480 
481 	if (gic_peek_irq(d, GICD_ISENABLER)) {
482 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
483 		return;
484 	}
485 
486 	/*
487 	 * A secondary irq_chip should be in charge of LPI request,
488 	 * it should not be possible to get there
489 	 */
490 	if (WARN_ON(gic_irq(d) >= 8192))
491 		return;
492 
493 	/* desc lock should already be held */
494 	if (gic_irq_in_rdist(d)) {
495 		u32 idx = gic_get_ppi_index(d);
496 
497 		/* Tearing down NMI, only switch handler for last NMI */
498 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
499 			desc->handle_irq = handle_percpu_devid_irq;
500 	} else {
501 		desc->handle_irq = handle_fasteoi_irq;
502 	}
503 
504 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
505 }
506 
507 static void gic_eoi_irq(struct irq_data *d)
508 {
509 	gic_write_eoir(gic_irq(d));
510 }
511 
512 static void gic_eoimode1_eoi_irq(struct irq_data *d)
513 {
514 	/*
515 	 * No need to deactivate an LPI, or an interrupt that
516 	 * is is getting forwarded to a vcpu.
517 	 */
518 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
519 		return;
520 	gic_write_dir(gic_irq(d));
521 }
522 
523 static int gic_set_type(struct irq_data *d, unsigned int type)
524 {
525 	enum gic_intid_range range;
526 	unsigned int irq = gic_irq(d);
527 	void (*rwp_wait)(void);
528 	void __iomem *base;
529 	u32 offset, index;
530 	int ret;
531 
532 	/* Interrupt configuration for SGIs can't be changed */
533 	if (irq < 16)
534 		return -EINVAL;
535 
536 	range = get_intid_range(d);
537 
538 	/* SPIs have restrictions on the supported types */
539 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
540 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
541 		return -EINVAL;
542 
543 	if (gic_irq_in_rdist(d)) {
544 		base = gic_data_rdist_sgi_base();
545 		rwp_wait = gic_redist_wait_for_rwp;
546 	} else {
547 		base = gic_data.dist_base;
548 		rwp_wait = gic_dist_wait_for_rwp;
549 	}
550 
551 	offset = convert_offset_index(d, GICD_ICFGR, &index);
552 
553 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
554 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
555 		/* Misconfigured PPIs are usually not fatal */
556 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
557 		ret = 0;
558 	}
559 
560 	return ret;
561 }
562 
563 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
564 {
565 	if (vcpu)
566 		irqd_set_forwarded_to_vcpu(d);
567 	else
568 		irqd_clr_forwarded_to_vcpu(d);
569 	return 0;
570 }
571 
572 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
573 {
574 	u64 aff;
575 
576 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
577 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
578 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
579 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
580 
581 	return aff;
582 }
583 
584 static void gic_deactivate_unhandled(u32 irqnr)
585 {
586 	if (static_branch_likely(&supports_deactivate_key)) {
587 		if (irqnr < 8192)
588 			gic_write_dir(irqnr);
589 	} else {
590 		gic_write_eoir(irqnr);
591 	}
592 }
593 
594 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
595 {
596 	bool irqs_enabled = interrupts_enabled(regs);
597 	int err;
598 
599 	if (irqs_enabled)
600 		nmi_enter();
601 
602 	if (static_branch_likely(&supports_deactivate_key))
603 		gic_write_eoir(irqnr);
604 	/*
605 	 * Leave the PSR.I bit set to prevent other NMIs to be
606 	 * received while handling this one.
607 	 * PSR.I will be restored when we ERET to the
608 	 * interrupted context.
609 	 */
610 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
611 	if (err)
612 		gic_deactivate_unhandled(irqnr);
613 
614 	if (irqs_enabled)
615 		nmi_exit();
616 }
617 
618 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
619 {
620 	u32 irqnr;
621 
622 	irqnr = gic_read_iar();
623 
624 	if (gic_supports_nmi() &&
625 	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
626 		gic_handle_nmi(irqnr, regs);
627 		return;
628 	}
629 
630 	if (gic_prio_masking_enabled()) {
631 		gic_pmr_mask_irqs();
632 		gic_arch_enable_irqs();
633 	}
634 
635 	/* Check for special IDs first */
636 	if ((irqnr >= 1020 && irqnr <= 1023))
637 		return;
638 
639 	/* Treat anything but SGIs in a uniform way */
640 	if (likely(irqnr > 15)) {
641 		int err;
642 
643 		if (static_branch_likely(&supports_deactivate_key))
644 			gic_write_eoir(irqnr);
645 		else
646 			isb();
647 
648 		err = handle_domain_irq(gic_data.domain, irqnr, regs);
649 		if (err) {
650 			WARN_ONCE(true, "Unexpected interrupt received!\n");
651 			gic_deactivate_unhandled(irqnr);
652 		}
653 		return;
654 	}
655 	if (irqnr < 16) {
656 		gic_write_eoir(irqnr);
657 		if (static_branch_likely(&supports_deactivate_key))
658 			gic_write_dir(irqnr);
659 #ifdef CONFIG_SMP
660 		/*
661 		 * Unlike GICv2, we don't need an smp_rmb() here.
662 		 * The control dependency from gic_read_iar to
663 		 * the ISB in gic_write_eoir is enough to ensure
664 		 * that any shared data read by handle_IPI will
665 		 * be read after the ACK.
666 		 */
667 		handle_IPI(irqnr, regs);
668 #else
669 		WARN_ONCE(true, "Unexpected SGI received!\n");
670 #endif
671 	}
672 }
673 
674 static u32 gic_get_pribits(void)
675 {
676 	u32 pribits;
677 
678 	pribits = gic_read_ctlr();
679 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
680 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
681 	pribits++;
682 
683 	return pribits;
684 }
685 
686 static bool gic_has_group0(void)
687 {
688 	u32 val;
689 	u32 old_pmr;
690 
691 	old_pmr = gic_read_pmr();
692 
693 	/*
694 	 * Let's find out if Group0 is under control of EL3 or not by
695 	 * setting the highest possible, non-zero priority in PMR.
696 	 *
697 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
698 	 * order for the CPU interface to set bit 7, and keep the
699 	 * actual priority in the non-secure range. In the process, it
700 	 * looses the least significant bit and the actual priority
701 	 * becomes 0x80. Reading it back returns 0, indicating that
702 	 * we're don't have access to Group0.
703 	 */
704 	gic_write_pmr(BIT(8 - gic_get_pribits()));
705 	val = gic_read_pmr();
706 
707 	gic_write_pmr(old_pmr);
708 
709 	return val != 0;
710 }
711 
712 static void __init gic_dist_init(void)
713 {
714 	unsigned int i;
715 	u64 affinity;
716 	void __iomem *base = gic_data.dist_base;
717 
718 	/* Disable the distributor */
719 	writel_relaxed(0, base + GICD_CTLR);
720 	gic_dist_wait_for_rwp();
721 
722 	/*
723 	 * Configure SPIs as non-secure Group-1. This will only matter
724 	 * if the GIC only has a single security state. This will not
725 	 * do the right thing if the kernel is running in secure mode,
726 	 * but that's not the intended use case anyway.
727 	 */
728 	for (i = 32; i < GIC_LINE_NR; i += 32)
729 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
730 
731 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
732 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
733 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
734 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
735 	}
736 
737 	for (i = 0; i < GIC_ESPI_NR; i += 32)
738 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
739 
740 	for (i = 0; i < GIC_ESPI_NR; i += 16)
741 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
742 
743 	for (i = 0; i < GIC_ESPI_NR; i += 4)
744 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
745 
746 	/* Now do the common stuff, and wait for the distributor to drain */
747 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
748 
749 	/* Enable distributor with ARE, Group1 */
750 	writel_relaxed(GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1,
751 		       base + GICD_CTLR);
752 
753 	/*
754 	 * Set all global interrupts to the boot CPU only. ARE must be
755 	 * enabled.
756 	 */
757 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
758 	for (i = 32; i < GIC_LINE_NR; i++)
759 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
760 
761 	for (i = 0; i < GIC_ESPI_NR; i++)
762 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
763 }
764 
765 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
766 {
767 	int ret = -ENODEV;
768 	int i;
769 
770 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
771 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
772 		u64 typer;
773 		u32 reg;
774 
775 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
776 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
777 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
778 			pr_warn("No redistributor present @%p\n", ptr);
779 			break;
780 		}
781 
782 		do {
783 			typer = gic_read_typer(ptr + GICR_TYPER);
784 			ret = fn(gic_data.redist_regions + i, ptr);
785 			if (!ret)
786 				return 0;
787 
788 			if (gic_data.redist_regions[i].single_redist)
789 				break;
790 
791 			if (gic_data.redist_stride) {
792 				ptr += gic_data.redist_stride;
793 			} else {
794 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
795 				if (typer & GICR_TYPER_VLPIS)
796 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
797 			}
798 		} while (!(typer & GICR_TYPER_LAST));
799 	}
800 
801 	return ret ? -ENODEV : 0;
802 }
803 
804 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
805 {
806 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
807 	u64 typer;
808 	u32 aff;
809 
810 	/*
811 	 * Convert affinity to a 32bit value that can be matched to
812 	 * GICR_TYPER bits [63:32].
813 	 */
814 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
815 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
816 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
817 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
818 
819 	typer = gic_read_typer(ptr + GICR_TYPER);
820 	if ((typer >> 32) == aff) {
821 		u64 offset = ptr - region->redist_base;
822 		gic_data_rdist_rd_base() = ptr;
823 		gic_data_rdist()->phys_base = region->phys_base + offset;
824 
825 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
826 			smp_processor_id(), mpidr,
827 			(int)(region - gic_data.redist_regions),
828 			&gic_data_rdist()->phys_base);
829 		return 0;
830 	}
831 
832 	/* Try next one */
833 	return 1;
834 }
835 
836 static int gic_populate_rdist(void)
837 {
838 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
839 		return 0;
840 
841 	/* We couldn't even deal with ourselves... */
842 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
843 	     smp_processor_id(),
844 	     (unsigned long)cpu_logical_map(smp_processor_id()));
845 	return -ENODEV;
846 }
847 
848 static int __gic_update_rdist_properties(struct redist_region *region,
849 					 void __iomem *ptr)
850 {
851 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
852 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
853 	gic_data.rdists.has_direct_lpi &= !!(typer & GICR_TYPER_DirectLPIS);
854 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
855 
856 	return 1;
857 }
858 
859 static void gic_update_rdist_properties(void)
860 {
861 	gic_data.ppi_nr = UINT_MAX;
862 	gic_iterate_rdists(__gic_update_rdist_properties);
863 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
864 		gic_data.ppi_nr = 0;
865 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
866 	pr_info("%sVLPI support, %sdirect LPI support\n",
867 		!gic_data.rdists.has_vlpis ? "no " : "",
868 		!gic_data.rdists.has_direct_lpi ? "no " : "");
869 }
870 
871 /* Check whether it's single security state view */
872 static inline bool gic_dist_security_disabled(void)
873 {
874 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
875 }
876 
877 static void gic_cpu_sys_reg_init(void)
878 {
879 	int i, cpu = smp_processor_id();
880 	u64 mpidr = cpu_logical_map(cpu);
881 	u64 need_rss = MPIDR_RS(mpidr);
882 	bool group0;
883 	u32 pribits;
884 
885 	/*
886 	 * Need to check that the SRE bit has actually been set. If
887 	 * not, it means that SRE is disabled at EL2. We're going to
888 	 * die painfully, and there is nothing we can do about it.
889 	 *
890 	 * Kindly inform the luser.
891 	 */
892 	if (!gic_enable_sre())
893 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
894 
895 	pribits = gic_get_pribits();
896 
897 	group0 = gic_has_group0();
898 
899 	/* Set priority mask register */
900 	if (!gic_prio_masking_enabled()) {
901 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
902 	} else {
903 		/*
904 		 * Mismatch configuration with boot CPU, the system is likely
905 		 * to die as interrupt masking will not work properly on all
906 		 * CPUs
907 		 */
908 		WARN_ON(gic_supports_nmi() && group0 &&
909 			!gic_dist_security_disabled());
910 	}
911 
912 	/*
913 	 * Some firmwares hand over to the kernel with the BPR changed from
914 	 * its reset value (and with a value large enough to prevent
915 	 * any pre-emptive interrupts from working at all). Writing a zero
916 	 * to BPR restores is reset value.
917 	 */
918 	gic_write_bpr1(0);
919 
920 	if (static_branch_likely(&supports_deactivate_key)) {
921 		/* EOI drops priority only (mode 1) */
922 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
923 	} else {
924 		/* EOI deactivates interrupt too (mode 0) */
925 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
926 	}
927 
928 	/* Always whack Group0 before Group1 */
929 	if (group0) {
930 		switch(pribits) {
931 		case 8:
932 		case 7:
933 			write_gicreg(0, ICC_AP0R3_EL1);
934 			write_gicreg(0, ICC_AP0R2_EL1);
935 		/* Fall through */
936 		case 6:
937 			write_gicreg(0, ICC_AP0R1_EL1);
938 		/* Fall through */
939 		case 5:
940 		case 4:
941 			write_gicreg(0, ICC_AP0R0_EL1);
942 		}
943 
944 		isb();
945 	}
946 
947 	switch(pribits) {
948 	case 8:
949 	case 7:
950 		write_gicreg(0, ICC_AP1R3_EL1);
951 		write_gicreg(0, ICC_AP1R2_EL1);
952 		/* Fall through */
953 	case 6:
954 		write_gicreg(0, ICC_AP1R1_EL1);
955 		/* Fall through */
956 	case 5:
957 	case 4:
958 		write_gicreg(0, ICC_AP1R0_EL1);
959 	}
960 
961 	isb();
962 
963 	/* ... and let's hit the road... */
964 	gic_write_grpen1(1);
965 
966 	/* Keep the RSS capability status in per_cpu variable */
967 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
968 
969 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
970 	for_each_online_cpu(i) {
971 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
972 
973 		need_rss |= MPIDR_RS(cpu_logical_map(i));
974 		if (need_rss && (!have_rss))
975 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
976 				cpu, (unsigned long)mpidr,
977 				i, (unsigned long)cpu_logical_map(i));
978 	}
979 
980 	/**
981 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
982 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
983 	 * UNPREDICTABLE choice of :
984 	 *   - The write is ignored.
985 	 *   - The RS field is treated as 0.
986 	 */
987 	if (need_rss && (!gic_data.has_rss))
988 		pr_crit_once("RSS is required but GICD doesn't support it\n");
989 }
990 
991 static bool gicv3_nolpi;
992 
993 static int __init gicv3_nolpi_cfg(char *buf)
994 {
995 	return strtobool(buf, &gicv3_nolpi);
996 }
997 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
998 
999 static int gic_dist_supports_lpis(void)
1000 {
1001 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1002 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1003 		!gicv3_nolpi);
1004 }
1005 
1006 static void gic_cpu_init(void)
1007 {
1008 	void __iomem *rbase;
1009 	int i;
1010 
1011 	/* Register ourselves with the rest of the world */
1012 	if (gic_populate_rdist())
1013 		return;
1014 
1015 	gic_enable_redist(true);
1016 
1017 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1018 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1019 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1020 	     smp_processor_id());
1021 
1022 	rbase = gic_data_rdist_sgi_base();
1023 
1024 	/* Configure SGIs/PPIs as non-secure Group-1 */
1025 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1026 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1027 
1028 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1029 
1030 	/* initialise system registers */
1031 	gic_cpu_sys_reg_init();
1032 }
1033 
1034 #ifdef CONFIG_SMP
1035 
1036 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1037 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1038 
1039 static int gic_starting_cpu(unsigned int cpu)
1040 {
1041 	gic_cpu_init();
1042 
1043 	if (gic_dist_supports_lpis())
1044 		its_cpu_init();
1045 
1046 	return 0;
1047 }
1048 
1049 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1050 				   unsigned long cluster_id)
1051 {
1052 	int next_cpu, cpu = *base_cpu;
1053 	unsigned long mpidr = cpu_logical_map(cpu);
1054 	u16 tlist = 0;
1055 
1056 	while (cpu < nr_cpu_ids) {
1057 		tlist |= 1 << (mpidr & 0xf);
1058 
1059 		next_cpu = cpumask_next(cpu, mask);
1060 		if (next_cpu >= nr_cpu_ids)
1061 			goto out;
1062 		cpu = next_cpu;
1063 
1064 		mpidr = cpu_logical_map(cpu);
1065 
1066 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1067 			cpu--;
1068 			goto out;
1069 		}
1070 	}
1071 out:
1072 	*base_cpu = cpu;
1073 	return tlist;
1074 }
1075 
1076 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1077 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1078 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1079 
1080 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1081 {
1082 	u64 val;
1083 
1084 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1085 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1086 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1087 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1088 	       MPIDR_TO_SGI_RS(cluster_id)		|
1089 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1090 
1091 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1092 	gic_write_sgi1r(val);
1093 }
1094 
1095 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
1096 {
1097 	int cpu;
1098 
1099 	if (WARN_ON(irq >= 16))
1100 		return;
1101 
1102 	/*
1103 	 * Ensure that stores to Normal memory are visible to the
1104 	 * other CPUs before issuing the IPI.
1105 	 */
1106 	wmb();
1107 
1108 	for_each_cpu(cpu, mask) {
1109 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1110 		u16 tlist;
1111 
1112 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1113 		gic_send_sgi(cluster_id, tlist, irq);
1114 	}
1115 
1116 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1117 	isb();
1118 }
1119 
1120 static void gic_smp_init(void)
1121 {
1122 	set_smp_cross_call(gic_raise_softirq);
1123 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1124 				  "irqchip/arm/gicv3:starting",
1125 				  gic_starting_cpu, NULL);
1126 }
1127 
1128 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1129 			    bool force)
1130 {
1131 	unsigned int cpu;
1132 	u32 offset, index;
1133 	void __iomem *reg;
1134 	int enabled;
1135 	u64 val;
1136 
1137 	if (force)
1138 		cpu = cpumask_first(mask_val);
1139 	else
1140 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1141 
1142 	if (cpu >= nr_cpu_ids)
1143 		return -EINVAL;
1144 
1145 	if (gic_irq_in_rdist(d))
1146 		return -EINVAL;
1147 
1148 	/* If interrupt was enabled, disable it first */
1149 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1150 	if (enabled)
1151 		gic_mask_irq(d);
1152 
1153 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1154 	reg = gic_dist_base(d) + offset + (index * 8);
1155 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1156 
1157 	gic_write_irouter(val, reg);
1158 
1159 	/*
1160 	 * If the interrupt was enabled, enabled it again. Otherwise,
1161 	 * just wait for the distributor to have digested our changes.
1162 	 */
1163 	if (enabled)
1164 		gic_unmask_irq(d);
1165 	else
1166 		gic_dist_wait_for_rwp();
1167 
1168 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1169 
1170 	return IRQ_SET_MASK_OK_DONE;
1171 }
1172 #else
1173 #define gic_set_affinity	NULL
1174 #define gic_smp_init()		do { } while(0)
1175 #endif
1176 
1177 #ifdef CONFIG_CPU_PM
1178 static int gic_cpu_pm_notifier(struct notifier_block *self,
1179 			       unsigned long cmd, void *v)
1180 {
1181 	if (cmd == CPU_PM_EXIT) {
1182 		if (gic_dist_security_disabled())
1183 			gic_enable_redist(true);
1184 		gic_cpu_sys_reg_init();
1185 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1186 		gic_write_grpen1(0);
1187 		gic_enable_redist(false);
1188 	}
1189 	return NOTIFY_OK;
1190 }
1191 
1192 static struct notifier_block gic_cpu_pm_notifier_block = {
1193 	.notifier_call = gic_cpu_pm_notifier,
1194 };
1195 
1196 static void gic_cpu_pm_init(void)
1197 {
1198 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1199 }
1200 
1201 #else
1202 static inline void gic_cpu_pm_init(void) { }
1203 #endif /* CONFIG_CPU_PM */
1204 
1205 static struct irq_chip gic_chip = {
1206 	.name			= "GICv3",
1207 	.irq_mask		= gic_mask_irq,
1208 	.irq_unmask		= gic_unmask_irq,
1209 	.irq_eoi		= gic_eoi_irq,
1210 	.irq_set_type		= gic_set_type,
1211 	.irq_set_affinity	= gic_set_affinity,
1212 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1213 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1214 	.irq_nmi_setup		= gic_irq_nmi_setup,
1215 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1216 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1217 				  IRQCHIP_SKIP_SET_WAKE |
1218 				  IRQCHIP_MASK_ON_SUSPEND,
1219 };
1220 
1221 static struct irq_chip gic_eoimode1_chip = {
1222 	.name			= "GICv3",
1223 	.irq_mask		= gic_eoimode1_mask_irq,
1224 	.irq_unmask		= gic_unmask_irq,
1225 	.irq_eoi		= gic_eoimode1_eoi_irq,
1226 	.irq_set_type		= gic_set_type,
1227 	.irq_set_affinity	= gic_set_affinity,
1228 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1229 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1230 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1231 	.irq_nmi_setup		= gic_irq_nmi_setup,
1232 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1233 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1234 				  IRQCHIP_SKIP_SET_WAKE |
1235 				  IRQCHIP_MASK_ON_SUSPEND,
1236 };
1237 
1238 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1239 			      irq_hw_number_t hw)
1240 {
1241 	struct irq_chip *chip = &gic_chip;
1242 
1243 	if (static_branch_likely(&supports_deactivate_key))
1244 		chip = &gic_eoimode1_chip;
1245 
1246 	switch (__get_intid_range(hw)) {
1247 	case PPI_RANGE:
1248 	case EPPI_RANGE:
1249 		irq_set_percpu_devid(irq);
1250 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1251 				    handle_percpu_devid_irq, NULL, NULL);
1252 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
1253 		break;
1254 
1255 	case SPI_RANGE:
1256 	case ESPI_RANGE:
1257 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1258 				    handle_fasteoi_irq, NULL, NULL);
1259 		irq_set_probe(irq);
1260 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
1261 		break;
1262 
1263 	case LPI_RANGE:
1264 		if (!gic_dist_supports_lpis())
1265 			return -EPERM;
1266 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1267 				    handle_fasteoi_irq, NULL, NULL);
1268 		break;
1269 
1270 	default:
1271 		return -EPERM;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
1278 
1279 static int gic_irq_domain_translate(struct irq_domain *d,
1280 				    struct irq_fwspec *fwspec,
1281 				    unsigned long *hwirq,
1282 				    unsigned int *type)
1283 {
1284 	if (is_of_node(fwspec->fwnode)) {
1285 		if (fwspec->param_count < 3)
1286 			return -EINVAL;
1287 
1288 		switch (fwspec->param[0]) {
1289 		case 0:			/* SPI */
1290 			*hwirq = fwspec->param[1] + 32;
1291 			break;
1292 		case 1:			/* PPI */
1293 			*hwirq = fwspec->param[1] + 16;
1294 			break;
1295 		case 2:			/* ESPI */
1296 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1297 			break;
1298 		case 3:			/* EPPI */
1299 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1300 			break;
1301 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1302 			*hwirq = fwspec->param[1];
1303 			break;
1304 		case GIC_IRQ_TYPE_PARTITION:
1305 			*hwirq = fwspec->param[1];
1306 			if (fwspec->param[1] >= 16)
1307 				*hwirq += EPPI_BASE_INTID - 16;
1308 			else
1309 				*hwirq += 16;
1310 			break;
1311 		default:
1312 			return -EINVAL;
1313 		}
1314 
1315 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1316 
1317 		/*
1318 		 * Make it clear that broken DTs are... broken.
1319 		 * Partitionned PPIs are an unfortunate exception.
1320 		 */
1321 		WARN_ON(*type == IRQ_TYPE_NONE &&
1322 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1323 		return 0;
1324 	}
1325 
1326 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1327 		if(fwspec->param_count != 2)
1328 			return -EINVAL;
1329 
1330 		*hwirq = fwspec->param[0];
1331 		*type = fwspec->param[1];
1332 
1333 		WARN_ON(*type == IRQ_TYPE_NONE);
1334 		return 0;
1335 	}
1336 
1337 	return -EINVAL;
1338 }
1339 
1340 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1341 				unsigned int nr_irqs, void *arg)
1342 {
1343 	int i, ret;
1344 	irq_hw_number_t hwirq;
1345 	unsigned int type = IRQ_TYPE_NONE;
1346 	struct irq_fwspec *fwspec = arg;
1347 
1348 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1349 	if (ret)
1350 		return ret;
1351 
1352 	for (i = 0; i < nr_irqs; i++) {
1353 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1354 		if (ret)
1355 			return ret;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1362 				unsigned int nr_irqs)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < nr_irqs; i++) {
1367 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1368 		irq_set_handler(virq + i, NULL);
1369 		irq_domain_reset_irq_data(d);
1370 	}
1371 }
1372 
1373 static int gic_irq_domain_select(struct irq_domain *d,
1374 				 struct irq_fwspec *fwspec,
1375 				 enum irq_domain_bus_token bus_token)
1376 {
1377 	/* Not for us */
1378         if (fwspec->fwnode != d->fwnode)
1379 		return 0;
1380 
1381 	/* If this is not DT, then we have a single domain */
1382 	if (!is_of_node(fwspec->fwnode))
1383 		return 1;
1384 
1385 	/*
1386 	 * If this is a PPI and we have a 4th (non-null) parameter,
1387 	 * then we need to match the partition domain.
1388 	 */
1389 	if (fwspec->param_count >= 4 &&
1390 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1391 	    gic_data.ppi_descs)
1392 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1393 
1394 	return d == gic_data.domain;
1395 }
1396 
1397 static const struct irq_domain_ops gic_irq_domain_ops = {
1398 	.translate = gic_irq_domain_translate,
1399 	.alloc = gic_irq_domain_alloc,
1400 	.free = gic_irq_domain_free,
1401 	.select = gic_irq_domain_select,
1402 };
1403 
1404 static int partition_domain_translate(struct irq_domain *d,
1405 				      struct irq_fwspec *fwspec,
1406 				      unsigned long *hwirq,
1407 				      unsigned int *type)
1408 {
1409 	struct device_node *np;
1410 	int ret;
1411 
1412 	if (!gic_data.ppi_descs)
1413 		return -ENOMEM;
1414 
1415 	np = of_find_node_by_phandle(fwspec->param[3]);
1416 	if (WARN_ON(!np))
1417 		return -EINVAL;
1418 
1419 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1420 				     of_node_to_fwnode(np));
1421 	if (ret < 0)
1422 		return ret;
1423 
1424 	*hwirq = ret;
1425 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1426 
1427 	return 0;
1428 }
1429 
1430 static const struct irq_domain_ops partition_domain_ops = {
1431 	.translate = partition_domain_translate,
1432 	.select = gic_irq_domain_select,
1433 };
1434 
1435 static bool gic_enable_quirk_msm8996(void *data)
1436 {
1437 	struct gic_chip_data *d = data;
1438 
1439 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1440 
1441 	return true;
1442 }
1443 
1444 static bool gic_enable_quirk_hip06_07(void *data)
1445 {
1446 	struct gic_chip_data *d = data;
1447 
1448 	/*
1449 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1450 	 * not being an actual ARM implementation). The saving grace is
1451 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1452 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1453 	 * have ESPI. In both cases, put them right.
1454 	 */
1455 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1456 		/* Zero both ESPI and the RES0 field next to it... */
1457 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1458 		return true;
1459 	}
1460 
1461 	return false;
1462 }
1463 
1464 static const struct gic_quirk gic_quirks[] = {
1465 	{
1466 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1467 		.compatible = "qcom,msm8996-gic-v3",
1468 		.init	= gic_enable_quirk_msm8996,
1469 	},
1470 	{
1471 		.desc	= "GICv3: HIP06 erratum 161010803",
1472 		.iidr	= 0x0204043b,
1473 		.mask	= 0xffffffff,
1474 		.init	= gic_enable_quirk_hip06_07,
1475 	},
1476 	{
1477 		.desc	= "GICv3: HIP07 erratum 161010803",
1478 		.iidr	= 0x00000000,
1479 		.mask	= 0xffffffff,
1480 		.init	= gic_enable_quirk_hip06_07,
1481 	},
1482 	{
1483 	}
1484 };
1485 
1486 static void gic_enable_nmi_support(void)
1487 {
1488 	int i;
1489 
1490 	if (!gic_prio_masking_enabled())
1491 		return;
1492 
1493 	if (gic_has_group0() && !gic_dist_security_disabled()) {
1494 		pr_warn("SCR_EL3.FIQ is cleared, cannot enable use of pseudo-NMIs\n");
1495 		return;
1496 	}
1497 
1498 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1499 	if (!ppi_nmi_refs)
1500 		return;
1501 
1502 	for (i = 0; i < gic_data.ppi_nr; i++)
1503 		refcount_set(&ppi_nmi_refs[i], 0);
1504 
1505 	static_branch_enable(&supports_pseudo_nmis);
1506 
1507 	if (static_branch_likely(&supports_deactivate_key))
1508 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1509 	else
1510 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1511 }
1512 
1513 static int __init gic_init_bases(void __iomem *dist_base,
1514 				 struct redist_region *rdist_regs,
1515 				 u32 nr_redist_regions,
1516 				 u64 redist_stride,
1517 				 struct fwnode_handle *handle)
1518 {
1519 	u32 typer;
1520 	int err;
1521 
1522 	if (!is_hyp_mode_available())
1523 		static_branch_disable(&supports_deactivate_key);
1524 
1525 	if (static_branch_likely(&supports_deactivate_key))
1526 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1527 
1528 	gic_data.fwnode = handle;
1529 	gic_data.dist_base = dist_base;
1530 	gic_data.redist_regions = rdist_regs;
1531 	gic_data.nr_redist_regions = nr_redist_regions;
1532 	gic_data.redist_stride = redist_stride;
1533 
1534 	/*
1535 	 * Find out how many interrupts are supported.
1536 	 */
1537 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1538 	gic_data.rdists.gicd_typer = typer;
1539 
1540 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1541 			  gic_quirks, &gic_data);
1542 
1543 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1544 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1545 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1546 						 &gic_data);
1547 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1548 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1549 	gic_data.rdists.has_vlpis = true;
1550 	gic_data.rdists.has_direct_lpi = true;
1551 
1552 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1553 		err = -ENOMEM;
1554 		goto out_free;
1555 	}
1556 
1557 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1558 	pr_info("Distributor has %sRange Selector support\n",
1559 		gic_data.has_rss ? "" : "no ");
1560 
1561 	if (typer & GICD_TYPER_MBIS) {
1562 		err = mbi_init(handle, gic_data.domain);
1563 		if (err)
1564 			pr_err("Failed to initialize MBIs\n");
1565 	}
1566 
1567 	set_handle_irq(gic_handle_irq);
1568 
1569 	gic_update_rdist_properties();
1570 
1571 	gic_smp_init();
1572 	gic_dist_init();
1573 	gic_cpu_init();
1574 	gic_cpu_pm_init();
1575 
1576 	if (gic_dist_supports_lpis()) {
1577 		its_init(handle, &gic_data.rdists, gic_data.domain);
1578 		its_cpu_init();
1579 	} else {
1580 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1581 			gicv2m_init(handle, gic_data.domain);
1582 	}
1583 
1584 	gic_enable_nmi_support();
1585 
1586 	return 0;
1587 
1588 out_free:
1589 	if (gic_data.domain)
1590 		irq_domain_remove(gic_data.domain);
1591 	free_percpu(gic_data.rdists.rdist);
1592 	return err;
1593 }
1594 
1595 static int __init gic_validate_dist_version(void __iomem *dist_base)
1596 {
1597 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1598 
1599 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1600 		return -ENODEV;
1601 
1602 	return 0;
1603 }
1604 
1605 /* Create all possible partitions at boot time */
1606 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1607 {
1608 	struct device_node *parts_node, *child_part;
1609 	int part_idx = 0, i;
1610 	int nr_parts;
1611 	struct partition_affinity *parts;
1612 
1613 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1614 	if (!parts_node)
1615 		return;
1616 
1617 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1618 	if (!gic_data.ppi_descs)
1619 		return;
1620 
1621 	nr_parts = of_get_child_count(parts_node);
1622 
1623 	if (!nr_parts)
1624 		goto out_put_node;
1625 
1626 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1627 	if (WARN_ON(!parts))
1628 		goto out_put_node;
1629 
1630 	for_each_child_of_node(parts_node, child_part) {
1631 		struct partition_affinity *part;
1632 		int n;
1633 
1634 		part = &parts[part_idx];
1635 
1636 		part->partition_id = of_node_to_fwnode(child_part);
1637 
1638 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1639 			child_part, part_idx);
1640 
1641 		n = of_property_count_elems_of_size(child_part, "affinity",
1642 						    sizeof(u32));
1643 		WARN_ON(n <= 0);
1644 
1645 		for (i = 0; i < n; i++) {
1646 			int err, cpu;
1647 			u32 cpu_phandle;
1648 			struct device_node *cpu_node;
1649 
1650 			err = of_property_read_u32_index(child_part, "affinity",
1651 							 i, &cpu_phandle);
1652 			if (WARN_ON(err))
1653 				continue;
1654 
1655 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1656 			if (WARN_ON(!cpu_node))
1657 				continue;
1658 
1659 			cpu = of_cpu_node_to_id(cpu_node);
1660 			if (WARN_ON(cpu < 0))
1661 				continue;
1662 
1663 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1664 
1665 			cpumask_set_cpu(cpu, &part->mask);
1666 		}
1667 
1668 		pr_cont("}\n");
1669 		part_idx++;
1670 	}
1671 
1672 	for (i = 0; i < gic_data.ppi_nr; i++) {
1673 		unsigned int irq;
1674 		struct partition_desc *desc;
1675 		struct irq_fwspec ppi_fwspec = {
1676 			.fwnode		= gic_data.fwnode,
1677 			.param_count	= 3,
1678 			.param		= {
1679 				[0]	= GIC_IRQ_TYPE_PARTITION,
1680 				[1]	= i,
1681 				[2]	= IRQ_TYPE_NONE,
1682 			},
1683 		};
1684 
1685 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1686 		if (WARN_ON(!irq))
1687 			continue;
1688 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1689 					     irq, &partition_domain_ops);
1690 		if (WARN_ON(!desc))
1691 			continue;
1692 
1693 		gic_data.ppi_descs[i] = desc;
1694 	}
1695 
1696 out_put_node:
1697 	of_node_put(parts_node);
1698 }
1699 
1700 static void __init gic_of_setup_kvm_info(struct device_node *node)
1701 {
1702 	int ret;
1703 	struct resource r;
1704 	u32 gicv_idx;
1705 
1706 	gic_v3_kvm_info.type = GIC_V3;
1707 
1708 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1709 	if (!gic_v3_kvm_info.maint_irq)
1710 		return;
1711 
1712 	if (of_property_read_u32(node, "#redistributor-regions",
1713 				 &gicv_idx))
1714 		gicv_idx = 1;
1715 
1716 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1717 	ret = of_address_to_resource(node, gicv_idx, &r);
1718 	if (!ret)
1719 		gic_v3_kvm_info.vcpu = r;
1720 
1721 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1722 	gic_set_kvm_info(&gic_v3_kvm_info);
1723 }
1724 
1725 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1726 {
1727 	void __iomem *dist_base;
1728 	struct redist_region *rdist_regs;
1729 	u64 redist_stride;
1730 	u32 nr_redist_regions;
1731 	int err, i;
1732 
1733 	dist_base = of_iomap(node, 0);
1734 	if (!dist_base) {
1735 		pr_err("%pOF: unable to map gic dist registers\n", node);
1736 		return -ENXIO;
1737 	}
1738 
1739 	err = gic_validate_dist_version(dist_base);
1740 	if (err) {
1741 		pr_err("%pOF: no distributor detected, giving up\n", node);
1742 		goto out_unmap_dist;
1743 	}
1744 
1745 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1746 		nr_redist_regions = 1;
1747 
1748 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1749 			     GFP_KERNEL);
1750 	if (!rdist_regs) {
1751 		err = -ENOMEM;
1752 		goto out_unmap_dist;
1753 	}
1754 
1755 	for (i = 0; i < nr_redist_regions; i++) {
1756 		struct resource res;
1757 		int ret;
1758 
1759 		ret = of_address_to_resource(node, 1 + i, &res);
1760 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1761 		if (ret || !rdist_regs[i].redist_base) {
1762 			pr_err("%pOF: couldn't map region %d\n", node, i);
1763 			err = -ENODEV;
1764 			goto out_unmap_rdist;
1765 		}
1766 		rdist_regs[i].phys_base = res.start;
1767 	}
1768 
1769 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1770 		redist_stride = 0;
1771 
1772 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
1773 
1774 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1775 			     redist_stride, &node->fwnode);
1776 	if (err)
1777 		goto out_unmap_rdist;
1778 
1779 	gic_populate_ppi_partitions(node);
1780 
1781 	if (static_branch_likely(&supports_deactivate_key))
1782 		gic_of_setup_kvm_info(node);
1783 	return 0;
1784 
1785 out_unmap_rdist:
1786 	for (i = 0; i < nr_redist_regions; i++)
1787 		if (rdist_regs[i].redist_base)
1788 			iounmap(rdist_regs[i].redist_base);
1789 	kfree(rdist_regs);
1790 out_unmap_dist:
1791 	iounmap(dist_base);
1792 	return err;
1793 }
1794 
1795 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1796 
1797 #ifdef CONFIG_ACPI
1798 static struct
1799 {
1800 	void __iomem *dist_base;
1801 	struct redist_region *redist_regs;
1802 	u32 nr_redist_regions;
1803 	bool single_redist;
1804 	u32 maint_irq;
1805 	int maint_irq_mode;
1806 	phys_addr_t vcpu_base;
1807 } acpi_data __initdata;
1808 
1809 static void __init
1810 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
1811 {
1812 	static int count = 0;
1813 
1814 	acpi_data.redist_regs[count].phys_base = phys_base;
1815 	acpi_data.redist_regs[count].redist_base = redist_base;
1816 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1817 	count++;
1818 }
1819 
1820 static int __init
1821 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1822 			   const unsigned long end)
1823 {
1824 	struct acpi_madt_generic_redistributor *redist =
1825 			(struct acpi_madt_generic_redistributor *)header;
1826 	void __iomem *redist_base;
1827 
1828 	redist_base = ioremap(redist->base_address, redist->length);
1829 	if (!redist_base) {
1830 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
1831 		return -ENOMEM;
1832 	}
1833 
1834 	gic_acpi_register_redist(redist->base_address, redist_base);
1835 	return 0;
1836 }
1837 
1838 static int __init
1839 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1840 			 const unsigned long end)
1841 {
1842 	struct acpi_madt_generic_interrupt *gicc =
1843 				(struct acpi_madt_generic_interrupt *)header;
1844 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1845 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
1846 	void __iomem *redist_base;
1847 
1848 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
1849 	if (!(gicc->flags & ACPI_MADT_ENABLED))
1850 		return 0;
1851 
1852 	redist_base = ioremap(gicc->gicr_base_address, size);
1853 	if (!redist_base)
1854 		return -ENOMEM;
1855 
1856 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
1857 	return 0;
1858 }
1859 
1860 static int __init gic_acpi_collect_gicr_base(void)
1861 {
1862 	acpi_tbl_entry_handler redist_parser;
1863 	enum acpi_madt_type type;
1864 
1865 	if (acpi_data.single_redist) {
1866 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
1867 		redist_parser = gic_acpi_parse_madt_gicc;
1868 	} else {
1869 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
1870 		redist_parser = gic_acpi_parse_madt_redist;
1871 	}
1872 
1873 	/* Collect redistributor base addresses in GICR entries */
1874 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
1875 		return 0;
1876 
1877 	pr_info("No valid GICR entries exist\n");
1878 	return -ENODEV;
1879 }
1880 
1881 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
1882 				  const unsigned long end)
1883 {
1884 	/* Subtable presence means that redist exists, that's it */
1885 	return 0;
1886 }
1887 
1888 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
1889 				      const unsigned long end)
1890 {
1891 	struct acpi_madt_generic_interrupt *gicc =
1892 				(struct acpi_madt_generic_interrupt *)header;
1893 
1894 	/*
1895 	 * If GICC is enabled and has valid gicr base address, then it means
1896 	 * GICR base is presented via GICC
1897 	 */
1898 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address)
1899 		return 0;
1900 
1901 	/*
1902 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
1903 	 * should not treat as errors, skip the entry instead of probe fail.
1904 	 */
1905 	if (!(gicc->flags & ACPI_MADT_ENABLED))
1906 		return 0;
1907 
1908 	return -ENODEV;
1909 }
1910 
1911 static int __init gic_acpi_count_gicr_regions(void)
1912 {
1913 	int count;
1914 
1915 	/*
1916 	 * Count how many redistributor regions we have. It is not allowed
1917 	 * to mix redistributor description, GICR and GICC subtables have to be
1918 	 * mutually exclusive.
1919 	 */
1920 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1921 				      gic_acpi_match_gicr, 0);
1922 	if (count > 0) {
1923 		acpi_data.single_redist = false;
1924 		return count;
1925 	}
1926 
1927 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1928 				      gic_acpi_match_gicc, 0);
1929 	if (count > 0)
1930 		acpi_data.single_redist = true;
1931 
1932 	return count;
1933 }
1934 
1935 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
1936 					   struct acpi_probe_entry *ape)
1937 {
1938 	struct acpi_madt_generic_distributor *dist;
1939 	int count;
1940 
1941 	dist = (struct acpi_madt_generic_distributor *)header;
1942 	if (dist->version != ape->driver_data)
1943 		return false;
1944 
1945 	/* We need to do that exercise anyway, the sooner the better */
1946 	count = gic_acpi_count_gicr_regions();
1947 	if (count <= 0)
1948 		return false;
1949 
1950 	acpi_data.nr_redist_regions = count;
1951 	return true;
1952 }
1953 
1954 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
1955 						const unsigned long end)
1956 {
1957 	struct acpi_madt_generic_interrupt *gicc =
1958 		(struct acpi_madt_generic_interrupt *)header;
1959 	int maint_irq_mode;
1960 	static int first_madt = true;
1961 
1962 	/* Skip unusable CPUs */
1963 	if (!(gicc->flags & ACPI_MADT_ENABLED))
1964 		return 0;
1965 
1966 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1967 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1968 
1969 	if (first_madt) {
1970 		first_madt = false;
1971 
1972 		acpi_data.maint_irq = gicc->vgic_interrupt;
1973 		acpi_data.maint_irq_mode = maint_irq_mode;
1974 		acpi_data.vcpu_base = gicc->gicv_base_address;
1975 
1976 		return 0;
1977 	}
1978 
1979 	/*
1980 	 * The maintenance interrupt and GICV should be the same for every CPU
1981 	 */
1982 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
1983 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
1984 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
1985 		return -EINVAL;
1986 
1987 	return 0;
1988 }
1989 
1990 static bool __init gic_acpi_collect_virt_info(void)
1991 {
1992 	int count;
1993 
1994 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1995 				      gic_acpi_parse_virt_madt_gicc, 0);
1996 
1997 	return (count > 0);
1998 }
1999 
2000 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2001 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2002 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2003 
2004 static void __init gic_acpi_setup_kvm_info(void)
2005 {
2006 	int irq;
2007 
2008 	if (!gic_acpi_collect_virt_info()) {
2009 		pr_warn("Unable to get hardware information used for virtualization\n");
2010 		return;
2011 	}
2012 
2013 	gic_v3_kvm_info.type = GIC_V3;
2014 
2015 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2016 				acpi_data.maint_irq_mode,
2017 				ACPI_ACTIVE_HIGH);
2018 	if (irq <= 0)
2019 		return;
2020 
2021 	gic_v3_kvm_info.maint_irq = irq;
2022 
2023 	if (acpi_data.vcpu_base) {
2024 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2025 
2026 		vcpu->flags = IORESOURCE_MEM;
2027 		vcpu->start = acpi_data.vcpu_base;
2028 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2029 	}
2030 
2031 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2032 	gic_set_kvm_info(&gic_v3_kvm_info);
2033 }
2034 
2035 static int __init
2036 gic_acpi_init(struct acpi_subtable_header *header, const unsigned long end)
2037 {
2038 	struct acpi_madt_generic_distributor *dist;
2039 	struct fwnode_handle *domain_handle;
2040 	size_t size;
2041 	int i, err;
2042 
2043 	/* Get distributor base address */
2044 	dist = (struct acpi_madt_generic_distributor *)header;
2045 	acpi_data.dist_base = ioremap(dist->base_address,
2046 				      ACPI_GICV3_DIST_MEM_SIZE);
2047 	if (!acpi_data.dist_base) {
2048 		pr_err("Unable to map GICD registers\n");
2049 		return -ENOMEM;
2050 	}
2051 
2052 	err = gic_validate_dist_version(acpi_data.dist_base);
2053 	if (err) {
2054 		pr_err("No distributor detected at @%p, giving up\n",
2055 		       acpi_data.dist_base);
2056 		goto out_dist_unmap;
2057 	}
2058 
2059 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2060 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2061 	if (!acpi_data.redist_regs) {
2062 		err = -ENOMEM;
2063 		goto out_dist_unmap;
2064 	}
2065 
2066 	err = gic_acpi_collect_gicr_base();
2067 	if (err)
2068 		goto out_redist_unmap;
2069 
2070 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2071 	if (!domain_handle) {
2072 		err = -ENOMEM;
2073 		goto out_redist_unmap;
2074 	}
2075 
2076 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2077 			     acpi_data.nr_redist_regions, 0, domain_handle);
2078 	if (err)
2079 		goto out_fwhandle_free;
2080 
2081 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2082 
2083 	if (static_branch_likely(&supports_deactivate_key))
2084 		gic_acpi_setup_kvm_info();
2085 
2086 	return 0;
2087 
2088 out_fwhandle_free:
2089 	irq_domain_free_fwnode(domain_handle);
2090 out_redist_unmap:
2091 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2092 		if (acpi_data.redist_regs[i].redist_base)
2093 			iounmap(acpi_data.redist_regs[i].redist_base);
2094 	kfree(acpi_data.redist_regs);
2095 out_dist_unmap:
2096 	iounmap(acpi_data.dist_base);
2097 	return err;
2098 }
2099 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2100 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2101 		     gic_acpi_init);
2102 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2103 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2104 		     gic_acpi_init);
2105 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2106 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2107 		     gic_acpi_init);
2108 #endif
2109