xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)					\
116 	({								\
117 		u32 __priority = (priority);				\
118 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
119 			__priority = 0x80 | (__priority >> 1);		\
120 									\
121 		__priority;						\
122 	})
123 
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126 
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129 
130 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
134 
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE	0xf0
137 
138 enum gic_intid_range {
139 	SGI_RANGE,
140 	PPI_RANGE,
141 	SPI_RANGE,
142 	EPPI_RANGE,
143 	ESPI_RANGE,
144 	LPI_RANGE,
145 	__INVALID_RANGE__
146 };
147 
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 	switch (hwirq) {
151 	case 0 ... 15:
152 		return SGI_RANGE;
153 	case 16 ... 31:
154 		return PPI_RANGE;
155 	case 32 ... 1019:
156 		return SPI_RANGE;
157 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 		return EPPI_RANGE;
159 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 		return ESPI_RANGE;
161 	case 8192 ... GENMASK(23, 0):
162 		return LPI_RANGE;
163 	default:
164 		return __INVALID_RANGE__;
165 	}
166 }
167 
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 	return __get_intid_range(d->hwirq);
171 }
172 
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 	return d->hwirq;
176 }
177 
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 	switch (get_intid_range(d)) {
181 	case SGI_RANGE:
182 	case PPI_RANGE:
183 	case EPPI_RANGE:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192 	switch (get_intid_range(d)) {
193 	case SGI_RANGE:
194 	case PPI_RANGE:
195 	case EPPI_RANGE:
196 		/* SGI+PPI -> SGI_base for this CPU */
197 		return gic_data_rdist_sgi_base();
198 
199 	case SPI_RANGE:
200 	case ESPI_RANGE:
201 		/* SPI -> dist_base */
202 		return gic_data.dist_base;
203 
204 	default:
205 		return NULL;
206 	}
207 }
208 
209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
210 {
211 	u32 count = 1000000;	/* 1s! */
212 
213 	while (readl_relaxed(base + GICD_CTLR) & bit) {
214 		count--;
215 		if (!count) {
216 			pr_err_ratelimited("RWP timeout, gone fishing\n");
217 			return;
218 		}
219 		cpu_relax();
220 		udelay(1);
221 	}
222 }
223 
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
226 {
227 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
228 }
229 
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
232 {
233 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
234 }
235 
236 #ifdef CONFIG_ARM64
237 
238 static u64 __maybe_unused gic_read_iar(void)
239 {
240 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 		return gic_read_iar_cavium_thunderx();
242 	else
243 		return gic_read_iar_common();
244 }
245 #endif
246 
247 static void gic_enable_redist(bool enable)
248 {
249 	void __iomem *rbase;
250 	u32 count = 1000000;	/* 1s! */
251 	u32 val;
252 
253 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254 		return;
255 
256 	rbase = gic_data_rdist_rd_base();
257 
258 	val = readl_relaxed(rbase + GICR_WAKER);
259 	if (enable)
260 		/* Wake up this CPU redistributor */
261 		val &= ~GICR_WAKER_ProcessorSleep;
262 	else
263 		val |= GICR_WAKER_ProcessorSleep;
264 	writel_relaxed(val, rbase + GICR_WAKER);
265 
266 	if (!enable) {		/* Check that GICR_WAKER is writeable */
267 		val = readl_relaxed(rbase + GICR_WAKER);
268 		if (!(val & GICR_WAKER_ProcessorSleep))
269 			return;	/* No PM support in this redistributor */
270 	}
271 
272 	while (--count) {
273 		val = readl_relaxed(rbase + GICR_WAKER);
274 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275 			break;
276 		cpu_relax();
277 		udelay(1);
278 	}
279 	if (!count)
280 		pr_err_ratelimited("redistributor failed to %s...\n",
281 				   enable ? "wakeup" : "sleep");
282 }
283 
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289 	switch (get_intid_range(d)) {
290 	case SGI_RANGE:
291 	case PPI_RANGE:
292 	case SPI_RANGE:
293 		*index = d->hwirq;
294 		return offset;
295 	case EPPI_RANGE:
296 		/*
297 		 * Contrary to the ESPI range, the EPPI range is contiguous
298 		 * to the PPI range in the registers, so let's adjust the
299 		 * displacement accordingly. Consistency is overrated.
300 		 */
301 		*index = d->hwirq - EPPI_BASE_INTID + 32;
302 		return offset;
303 	case ESPI_RANGE:
304 		*index = d->hwirq - ESPI_BASE_INTID;
305 		switch (offset) {
306 		case GICD_ISENABLER:
307 			return GICD_ISENABLERnE;
308 		case GICD_ICENABLER:
309 			return GICD_ICENABLERnE;
310 		case GICD_ISPENDR:
311 			return GICD_ISPENDRnE;
312 		case GICD_ICPENDR:
313 			return GICD_ICPENDRnE;
314 		case GICD_ISACTIVER:
315 			return GICD_ISACTIVERnE;
316 		case GICD_ICACTIVER:
317 			return GICD_ICACTIVERnE;
318 		case GICD_IPRIORITYR:
319 			return GICD_IPRIORITYRnE;
320 		case GICD_ICFGR:
321 			return GICD_ICFGRnE;
322 		case GICD_IROUTER:
323 			return GICD_IROUTERnE;
324 		default:
325 			break;
326 		}
327 		break;
328 	default:
329 		break;
330 	}
331 
332 	WARN_ON(1);
333 	*index = d->hwirq;
334 	return offset;
335 }
336 
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339 	void __iomem *base;
340 	u32 index, mask;
341 
342 	offset = convert_offset_index(d, offset, &index);
343 	mask = 1 << (index % 32);
344 
345 	if (gic_irq_in_rdist(d))
346 		base = gic_data_rdist_sgi_base();
347 	else
348 		base = gic_data.dist_base;
349 
350 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352 
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355 	void __iomem *base;
356 	u32 index, mask;
357 
358 	offset = convert_offset_index(d, offset, &index);
359 	mask = 1 << (index % 32);
360 
361 	if (gic_irq_in_rdist(d))
362 		base = gic_data_rdist_sgi_base();
363 	else
364 		base = gic_data.dist_base;
365 
366 	writel_relaxed(mask, base + offset + (index / 32) * 4);
367 }
368 
369 static void gic_mask_irq(struct irq_data *d)
370 {
371 	gic_poke_irq(d, GICD_ICENABLER);
372 	if (gic_irq_in_rdist(d))
373 		gic_redist_wait_for_rwp();
374 	else
375 		gic_dist_wait_for_rwp();
376 }
377 
378 static void gic_eoimode1_mask_irq(struct irq_data *d)
379 {
380 	gic_mask_irq(d);
381 	/*
382 	 * When masking a forwarded interrupt, make sure it is
383 	 * deactivated as well.
384 	 *
385 	 * This ensures that an interrupt that is getting
386 	 * disabled/masked will not get "stuck", because there is
387 	 * noone to deactivate it (guest is being terminated).
388 	 */
389 	if (irqd_is_forwarded_to_vcpu(d))
390 		gic_poke_irq(d, GICD_ICACTIVER);
391 }
392 
393 static void gic_unmask_irq(struct irq_data *d)
394 {
395 	gic_poke_irq(d, GICD_ISENABLER);
396 }
397 
398 static inline bool gic_supports_nmi(void)
399 {
400 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
401 	       static_branch_likely(&supports_pseudo_nmis);
402 }
403 
404 static int gic_irq_set_irqchip_state(struct irq_data *d,
405 				     enum irqchip_irq_state which, bool val)
406 {
407 	u32 reg;
408 
409 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
410 		return -EINVAL;
411 
412 	switch (which) {
413 	case IRQCHIP_STATE_PENDING:
414 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
415 		break;
416 
417 	case IRQCHIP_STATE_ACTIVE:
418 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
419 		break;
420 
421 	case IRQCHIP_STATE_MASKED:
422 		if (val) {
423 			gic_mask_irq(d);
424 			return 0;
425 		}
426 		reg = GICD_ISENABLER;
427 		break;
428 
429 	default:
430 		return -EINVAL;
431 	}
432 
433 	gic_poke_irq(d, reg);
434 	return 0;
435 }
436 
437 static int gic_irq_get_irqchip_state(struct irq_data *d,
438 				     enum irqchip_irq_state which, bool *val)
439 {
440 	if (d->hwirq >= 8192) /* PPI/SPI only */
441 		return -EINVAL;
442 
443 	switch (which) {
444 	case IRQCHIP_STATE_PENDING:
445 		*val = gic_peek_irq(d, GICD_ISPENDR);
446 		break;
447 
448 	case IRQCHIP_STATE_ACTIVE:
449 		*val = gic_peek_irq(d, GICD_ISACTIVER);
450 		break;
451 
452 	case IRQCHIP_STATE_MASKED:
453 		*val = !gic_peek_irq(d, GICD_ISENABLER);
454 		break;
455 
456 	default:
457 		return -EINVAL;
458 	}
459 
460 	return 0;
461 }
462 
463 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
464 {
465 	void __iomem *base = gic_dist_base(d);
466 	u32 offset, index;
467 
468 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
469 
470 	writeb_relaxed(prio, base + offset + index);
471 }
472 
473 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
474 {
475 	switch (__get_intid_range(hwirq)) {
476 	case PPI_RANGE:
477 		return hwirq - 16;
478 	case EPPI_RANGE:
479 		return hwirq - EPPI_BASE_INTID + 16;
480 	default:
481 		unreachable();
482 	}
483 }
484 
485 static u32 gic_get_ppi_index(struct irq_data *d)
486 {
487 	return __gic_get_ppi_index(d->hwirq);
488 }
489 
490 static int gic_irq_nmi_setup(struct irq_data *d)
491 {
492 	struct irq_desc *desc = irq_to_desc(d->irq);
493 
494 	if (!gic_supports_nmi())
495 		return -EINVAL;
496 
497 	if (gic_peek_irq(d, GICD_ISENABLER)) {
498 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
499 		return -EINVAL;
500 	}
501 
502 	/*
503 	 * A secondary irq_chip should be in charge of LPI request,
504 	 * it should not be possible to get there
505 	 */
506 	if (WARN_ON(gic_irq(d) >= 8192))
507 		return -EINVAL;
508 
509 	/* desc lock should already be held */
510 	if (gic_irq_in_rdist(d)) {
511 		u32 idx = gic_get_ppi_index(d);
512 
513 		/* Setting up PPI as NMI, only switch handler for first NMI */
514 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
515 			refcount_set(&ppi_nmi_refs[idx], 1);
516 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
517 		}
518 	} else {
519 		desc->handle_irq = handle_fasteoi_nmi;
520 	}
521 
522 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
523 
524 	return 0;
525 }
526 
527 static void gic_irq_nmi_teardown(struct irq_data *d)
528 {
529 	struct irq_desc *desc = irq_to_desc(d->irq);
530 
531 	if (WARN_ON(!gic_supports_nmi()))
532 		return;
533 
534 	if (gic_peek_irq(d, GICD_ISENABLER)) {
535 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
536 		return;
537 	}
538 
539 	/*
540 	 * A secondary irq_chip should be in charge of LPI request,
541 	 * it should not be possible to get there
542 	 */
543 	if (WARN_ON(gic_irq(d) >= 8192))
544 		return;
545 
546 	/* desc lock should already be held */
547 	if (gic_irq_in_rdist(d)) {
548 		u32 idx = gic_get_ppi_index(d);
549 
550 		/* Tearing down NMI, only switch handler for last NMI */
551 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
552 			desc->handle_irq = handle_percpu_devid_irq;
553 	} else {
554 		desc->handle_irq = handle_fasteoi_irq;
555 	}
556 
557 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
558 }
559 
560 static void gic_eoi_irq(struct irq_data *d)
561 {
562 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
563 	isb();
564 }
565 
566 static void gic_eoimode1_eoi_irq(struct irq_data *d)
567 {
568 	/*
569 	 * No need to deactivate an LPI, or an interrupt that
570 	 * is is getting forwarded to a vcpu.
571 	 */
572 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
573 		return;
574 	gic_write_dir(gic_irq(d));
575 }
576 
577 static int gic_set_type(struct irq_data *d, unsigned int type)
578 {
579 	enum gic_intid_range range;
580 	unsigned int irq = gic_irq(d);
581 	void __iomem *base;
582 	u32 offset, index;
583 	int ret;
584 
585 	range = get_intid_range(d);
586 
587 	/* Interrupt configuration for SGIs can't be changed */
588 	if (range == SGI_RANGE)
589 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
590 
591 	/* SPIs have restrictions on the supported types */
592 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
593 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
594 		return -EINVAL;
595 
596 	if (gic_irq_in_rdist(d))
597 		base = gic_data_rdist_sgi_base();
598 	else
599 		base = gic_data.dist_base;
600 
601 	offset = convert_offset_index(d, GICD_ICFGR, &index);
602 
603 	ret = gic_configure_irq(index, type, base + offset, NULL);
604 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605 		/* Misconfigured PPIs are usually not fatal */
606 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607 		ret = 0;
608 	}
609 
610 	return ret;
611 }
612 
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615 	if (get_intid_range(d) == SGI_RANGE)
616 		return -EINVAL;
617 
618 	if (vcpu)
619 		irqd_set_forwarded_to_vcpu(d);
620 	else
621 		irqd_clr_forwarded_to_vcpu(d);
622 	return 0;
623 }
624 
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627 	u64 aff;
628 
629 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
632 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
633 
634 	return aff;
635 }
636 
637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639 	if (static_branch_likely(&supports_deactivate_key)) {
640 		if (irqnr < 8192)
641 			gic_write_dir(irqnr);
642 	} else {
643 		write_gicreg(irqnr, ICC_EOIR1_EL1);
644 		isb();
645 	}
646 }
647 
648 /*
649  * Follow a read of the IAR with any HW maintenance that needs to happen prior
650  * to invoking the relevant IRQ handler. We must do two things:
651  *
652  * (1) Ensure instruction ordering between a read of IAR and subsequent
653  *     instructions in the IRQ handler using an ISB.
654  *
655  *     It is possible for the IAR to report an IRQ which was signalled *after*
656  *     the CPU took an IRQ exception as multiple interrupts can race to be
657  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
658  *     later interrupts could be prioritized by the GIC.
659  *
660  *     For devices which are tightly coupled to the CPU, such as PMUs, a
661  *     context synchronization event is necessary to ensure that system
662  *     register state is not stale, as these may have been indirectly written
663  *     *after* exception entry.
664  *
665  * (2) Deactivate the interrupt when EOI mode 1 is in use.
666  */
667 static inline void gic_complete_ack(u32 irqnr)
668 {
669 	if (static_branch_likely(&supports_deactivate_key))
670 		write_gicreg(irqnr, ICC_EOIR1_EL1);
671 
672 	isb();
673 }
674 
675 static bool gic_rpr_is_nmi_prio(void)
676 {
677 	if (!gic_supports_nmi())
678 		return false;
679 
680 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
681 }
682 
683 static bool gic_irqnr_is_special(u32 irqnr)
684 {
685 	return irqnr >= 1020 && irqnr <= 1023;
686 }
687 
688 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
689 {
690 	if (gic_irqnr_is_special(irqnr))
691 		return;
692 
693 	gic_complete_ack(irqnr);
694 
695 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
696 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
697 		gic_deactivate_unhandled(irqnr);
698 	}
699 }
700 
701 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
702 {
703 	if (gic_irqnr_is_special(irqnr))
704 		return;
705 
706 	gic_complete_ack(irqnr);
707 
708 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
709 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
710 		gic_deactivate_unhandled(irqnr);
711 	}
712 }
713 
714 /*
715  * An exception has been taken from a context with IRQs enabled, and this could
716  * be an IRQ or an NMI.
717  *
718  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
719  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
720  * after handling any NMI but before handling any IRQ.
721  *
722  * The entry code has performed IRQ entry, and if an NMI is detected we must
723  * perform NMI entry/exit around invoking the handler.
724  */
725 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
726 {
727 	bool is_nmi;
728 	u32 irqnr;
729 
730 	irqnr = gic_read_iar();
731 
732 	is_nmi = gic_rpr_is_nmi_prio();
733 
734 	if (is_nmi) {
735 		nmi_enter();
736 		__gic_handle_nmi(irqnr, regs);
737 		nmi_exit();
738 	}
739 
740 	if (gic_prio_masking_enabled()) {
741 		gic_pmr_mask_irqs();
742 		gic_arch_enable_irqs();
743 	}
744 
745 	if (!is_nmi)
746 		__gic_handle_irq(irqnr, regs);
747 }
748 
749 /*
750  * An exception has been taken from a context with IRQs disabled, which can only
751  * be an NMI.
752  *
753  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
754  * DAIF.IF (and ICC_PMR_EL1) unchanged.
755  *
756  * The entry code has performed NMI entry.
757  */
758 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
759 {
760 	u64 pmr;
761 	u32 irqnr;
762 
763 	/*
764 	 * We were in a context with IRQs disabled. However, the
765 	 * entry code has set PMR to a value that allows any
766 	 * interrupt to be acknowledged, and not just NMIs. This can
767 	 * lead to surprising effects if the NMI has been retired in
768 	 * the meantime, and that there is an IRQ pending. The IRQ
769 	 * would then be taken in NMI context, something that nobody
770 	 * wants to debug twice.
771 	 *
772 	 * Until we sort this, drop PMR again to a level that will
773 	 * actually only allow NMIs before reading IAR, and then
774 	 * restore it to what it was.
775 	 */
776 	pmr = gic_read_pmr();
777 	gic_pmr_mask_irqs();
778 	isb();
779 	irqnr = gic_read_iar();
780 	gic_write_pmr(pmr);
781 
782 	__gic_handle_nmi(irqnr, regs);
783 }
784 
785 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
786 {
787 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
788 		__gic_handle_irq_from_irqsoff(regs);
789 	else
790 		__gic_handle_irq_from_irqson(regs);
791 }
792 
793 static u32 gic_get_pribits(void)
794 {
795 	u32 pribits;
796 
797 	pribits = gic_read_ctlr();
798 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
799 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
800 	pribits++;
801 
802 	return pribits;
803 }
804 
805 static bool gic_has_group0(void)
806 {
807 	u32 val;
808 	u32 old_pmr;
809 
810 	old_pmr = gic_read_pmr();
811 
812 	/*
813 	 * Let's find out if Group0 is under control of EL3 or not by
814 	 * setting the highest possible, non-zero priority in PMR.
815 	 *
816 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
817 	 * order for the CPU interface to set bit 7, and keep the
818 	 * actual priority in the non-secure range. In the process, it
819 	 * looses the least significant bit and the actual priority
820 	 * becomes 0x80. Reading it back returns 0, indicating that
821 	 * we're don't have access to Group0.
822 	 */
823 	gic_write_pmr(BIT(8 - gic_get_pribits()));
824 	val = gic_read_pmr();
825 
826 	gic_write_pmr(old_pmr);
827 
828 	return val != 0;
829 }
830 
831 static void __init gic_dist_init(void)
832 {
833 	unsigned int i;
834 	u64 affinity;
835 	void __iomem *base = gic_data.dist_base;
836 	u32 val;
837 
838 	/* Disable the distributor */
839 	writel_relaxed(0, base + GICD_CTLR);
840 	gic_dist_wait_for_rwp();
841 
842 	/*
843 	 * Configure SPIs as non-secure Group-1. This will only matter
844 	 * if the GIC only has a single security state. This will not
845 	 * do the right thing if the kernel is running in secure mode,
846 	 * but that's not the intended use case anyway.
847 	 */
848 	for (i = 32; i < GIC_LINE_NR; i += 32)
849 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
850 
851 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
852 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
853 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
854 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
855 	}
856 
857 	for (i = 0; i < GIC_ESPI_NR; i += 32)
858 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
859 
860 	for (i = 0; i < GIC_ESPI_NR; i += 16)
861 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
862 
863 	for (i = 0; i < GIC_ESPI_NR; i += 4)
864 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
865 
866 	/* Now do the common stuff */
867 	gic_dist_config(base, GIC_LINE_NR, NULL);
868 
869 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
870 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
871 		pr_info("Enabling SGIs without active state\n");
872 		val |= GICD_CTLR_nASSGIreq;
873 	}
874 
875 	/* Enable distributor with ARE, Group1, and wait for it to drain */
876 	writel_relaxed(val, base + GICD_CTLR);
877 	gic_dist_wait_for_rwp();
878 
879 	/*
880 	 * Set all global interrupts to the boot CPU only. ARE must be
881 	 * enabled.
882 	 */
883 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
884 	for (i = 32; i < GIC_LINE_NR; i++)
885 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
886 
887 	for (i = 0; i < GIC_ESPI_NR; i++)
888 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
889 }
890 
891 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
892 {
893 	int ret = -ENODEV;
894 	int i;
895 
896 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
897 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
898 		u64 typer;
899 		u32 reg;
900 
901 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
902 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
903 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
904 			pr_warn("No redistributor present @%p\n", ptr);
905 			break;
906 		}
907 
908 		do {
909 			typer = gic_read_typer(ptr + GICR_TYPER);
910 			ret = fn(gic_data.redist_regions + i, ptr);
911 			if (!ret)
912 				return 0;
913 
914 			if (gic_data.redist_regions[i].single_redist)
915 				break;
916 
917 			if (gic_data.redist_stride) {
918 				ptr += gic_data.redist_stride;
919 			} else {
920 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
921 				if (typer & GICR_TYPER_VLPIS)
922 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
923 			}
924 		} while (!(typer & GICR_TYPER_LAST));
925 	}
926 
927 	return ret ? -ENODEV : 0;
928 }
929 
930 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
931 {
932 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
933 	u64 typer;
934 	u32 aff;
935 
936 	/*
937 	 * Convert affinity to a 32bit value that can be matched to
938 	 * GICR_TYPER bits [63:32].
939 	 */
940 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
941 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
942 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
943 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
944 
945 	typer = gic_read_typer(ptr + GICR_TYPER);
946 	if ((typer >> 32) == aff) {
947 		u64 offset = ptr - region->redist_base;
948 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
949 		gic_data_rdist_rd_base() = ptr;
950 		gic_data_rdist()->phys_base = region->phys_base + offset;
951 
952 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
953 			smp_processor_id(), mpidr,
954 			(int)(region - gic_data.redist_regions),
955 			&gic_data_rdist()->phys_base);
956 		return 0;
957 	}
958 
959 	/* Try next one */
960 	return 1;
961 }
962 
963 static int gic_populate_rdist(void)
964 {
965 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
966 		return 0;
967 
968 	/* We couldn't even deal with ourselves... */
969 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
970 	     smp_processor_id(),
971 	     (unsigned long)cpu_logical_map(smp_processor_id()));
972 	return -ENODEV;
973 }
974 
975 static int __gic_update_rdist_properties(struct redist_region *region,
976 					 void __iomem *ptr)
977 {
978 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
979 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
980 
981 	/* Boot-time cleanip */
982 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
983 		u64 val;
984 
985 		/* Deactivate any present vPE */
986 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
987 		if (val & GICR_VPENDBASER_Valid)
988 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
989 					      ptr + SZ_128K + GICR_VPENDBASER);
990 
991 		/* Mark the VPE table as invalid */
992 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
993 		val &= ~GICR_VPROPBASER_4_1_VALID;
994 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
995 	}
996 
997 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
998 
999 	/*
1000 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1001 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1002 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1003 	 *
1004 	 * These are 3 different ways to express the same thing, depending
1005 	 * on the revision of the architecture and its relaxations over
1006 	 * time. Just group them under the 'direct_lpi' banner.
1007 	 */
1008 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1009 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1010 					   !!(ctlr & GICR_CTLR_IR) |
1011 					   gic_data.rdists.has_rvpeid);
1012 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1013 
1014 	/* Detect non-sensical configurations */
1015 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1016 		gic_data.rdists.has_direct_lpi = false;
1017 		gic_data.rdists.has_vlpis = false;
1018 		gic_data.rdists.has_rvpeid = false;
1019 	}
1020 
1021 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1022 
1023 	return 1;
1024 }
1025 
1026 static void gic_update_rdist_properties(void)
1027 {
1028 	gic_data.ppi_nr = UINT_MAX;
1029 	gic_iterate_rdists(__gic_update_rdist_properties);
1030 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1031 		gic_data.ppi_nr = 0;
1032 	pr_info("GICv3 features: %d PPIs%s%s\n",
1033 		gic_data.ppi_nr,
1034 		gic_data.has_rss ? ", RSS" : "",
1035 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1036 
1037 	if (gic_data.rdists.has_vlpis)
1038 		pr_info("GICv4 features: %s%s%s\n",
1039 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1040 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1041 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1042 }
1043 
1044 /* Check whether it's single security state view */
1045 static inline bool gic_dist_security_disabled(void)
1046 {
1047 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1048 }
1049 
1050 static void gic_cpu_sys_reg_init(void)
1051 {
1052 	int i, cpu = smp_processor_id();
1053 	u64 mpidr = cpu_logical_map(cpu);
1054 	u64 need_rss = MPIDR_RS(mpidr);
1055 	bool group0;
1056 	u32 pribits;
1057 
1058 	/*
1059 	 * Need to check that the SRE bit has actually been set. If
1060 	 * not, it means that SRE is disabled at EL2. We're going to
1061 	 * die painfully, and there is nothing we can do about it.
1062 	 *
1063 	 * Kindly inform the luser.
1064 	 */
1065 	if (!gic_enable_sre())
1066 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1067 
1068 	pribits = gic_get_pribits();
1069 
1070 	group0 = gic_has_group0();
1071 
1072 	/* Set priority mask register */
1073 	if (!gic_prio_masking_enabled()) {
1074 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1075 	} else if (gic_supports_nmi()) {
1076 		/*
1077 		 * Mismatch configuration with boot CPU, the system is likely
1078 		 * to die as interrupt masking will not work properly on all
1079 		 * CPUs
1080 		 *
1081 		 * The boot CPU calls this function before enabling NMI support,
1082 		 * and as a result we'll never see this warning in the boot path
1083 		 * for that CPU.
1084 		 */
1085 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1086 			WARN_ON(!group0 || gic_dist_security_disabled());
1087 		else
1088 			WARN_ON(group0 && !gic_dist_security_disabled());
1089 	}
1090 
1091 	/*
1092 	 * Some firmwares hand over to the kernel with the BPR changed from
1093 	 * its reset value (and with a value large enough to prevent
1094 	 * any pre-emptive interrupts from working at all). Writing a zero
1095 	 * to BPR restores is reset value.
1096 	 */
1097 	gic_write_bpr1(0);
1098 
1099 	if (static_branch_likely(&supports_deactivate_key)) {
1100 		/* EOI drops priority only (mode 1) */
1101 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1102 	} else {
1103 		/* EOI deactivates interrupt too (mode 0) */
1104 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1105 	}
1106 
1107 	/* Always whack Group0 before Group1 */
1108 	if (group0) {
1109 		switch(pribits) {
1110 		case 8:
1111 		case 7:
1112 			write_gicreg(0, ICC_AP0R3_EL1);
1113 			write_gicreg(0, ICC_AP0R2_EL1);
1114 			fallthrough;
1115 		case 6:
1116 			write_gicreg(0, ICC_AP0R1_EL1);
1117 			fallthrough;
1118 		case 5:
1119 		case 4:
1120 			write_gicreg(0, ICC_AP0R0_EL1);
1121 		}
1122 
1123 		isb();
1124 	}
1125 
1126 	switch(pribits) {
1127 	case 8:
1128 	case 7:
1129 		write_gicreg(0, ICC_AP1R3_EL1);
1130 		write_gicreg(0, ICC_AP1R2_EL1);
1131 		fallthrough;
1132 	case 6:
1133 		write_gicreg(0, ICC_AP1R1_EL1);
1134 		fallthrough;
1135 	case 5:
1136 	case 4:
1137 		write_gicreg(0, ICC_AP1R0_EL1);
1138 	}
1139 
1140 	isb();
1141 
1142 	/* ... and let's hit the road... */
1143 	gic_write_grpen1(1);
1144 
1145 	/* Keep the RSS capability status in per_cpu variable */
1146 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1147 
1148 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1149 	for_each_online_cpu(i) {
1150 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1151 
1152 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1153 		if (need_rss && (!have_rss))
1154 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1155 				cpu, (unsigned long)mpidr,
1156 				i, (unsigned long)cpu_logical_map(i));
1157 	}
1158 
1159 	/**
1160 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1161 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1162 	 * UNPREDICTABLE choice of :
1163 	 *   - The write is ignored.
1164 	 *   - The RS field is treated as 0.
1165 	 */
1166 	if (need_rss && (!gic_data.has_rss))
1167 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1168 }
1169 
1170 static bool gicv3_nolpi;
1171 
1172 static int __init gicv3_nolpi_cfg(char *buf)
1173 {
1174 	return strtobool(buf, &gicv3_nolpi);
1175 }
1176 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1177 
1178 static int gic_dist_supports_lpis(void)
1179 {
1180 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1181 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1182 		!gicv3_nolpi);
1183 }
1184 
1185 static void gic_cpu_init(void)
1186 {
1187 	void __iomem *rbase;
1188 	int i;
1189 
1190 	/* Register ourselves with the rest of the world */
1191 	if (gic_populate_rdist())
1192 		return;
1193 
1194 	gic_enable_redist(true);
1195 
1196 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1197 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1198 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1199 	     smp_processor_id());
1200 
1201 	rbase = gic_data_rdist_sgi_base();
1202 
1203 	/* Configure SGIs/PPIs as non-secure Group-1 */
1204 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1205 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1206 
1207 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1208 
1209 	/* initialise system registers */
1210 	gic_cpu_sys_reg_init();
1211 }
1212 
1213 #ifdef CONFIG_SMP
1214 
1215 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1216 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1217 
1218 static int gic_starting_cpu(unsigned int cpu)
1219 {
1220 	gic_cpu_init();
1221 
1222 	if (gic_dist_supports_lpis())
1223 		its_cpu_init();
1224 
1225 	return 0;
1226 }
1227 
1228 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1229 				   unsigned long cluster_id)
1230 {
1231 	int next_cpu, cpu = *base_cpu;
1232 	unsigned long mpidr = cpu_logical_map(cpu);
1233 	u16 tlist = 0;
1234 
1235 	while (cpu < nr_cpu_ids) {
1236 		tlist |= 1 << (mpidr & 0xf);
1237 
1238 		next_cpu = cpumask_next(cpu, mask);
1239 		if (next_cpu >= nr_cpu_ids)
1240 			goto out;
1241 		cpu = next_cpu;
1242 
1243 		mpidr = cpu_logical_map(cpu);
1244 
1245 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1246 			cpu--;
1247 			goto out;
1248 		}
1249 	}
1250 out:
1251 	*base_cpu = cpu;
1252 	return tlist;
1253 }
1254 
1255 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1256 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1257 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1258 
1259 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1260 {
1261 	u64 val;
1262 
1263 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1264 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1265 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1266 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1267 	       MPIDR_TO_SGI_RS(cluster_id)		|
1268 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1269 
1270 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1271 	gic_write_sgi1r(val);
1272 }
1273 
1274 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1275 {
1276 	int cpu;
1277 
1278 	if (WARN_ON(d->hwirq >= 16))
1279 		return;
1280 
1281 	/*
1282 	 * Ensure that stores to Normal memory are visible to the
1283 	 * other CPUs before issuing the IPI.
1284 	 */
1285 	dsb(ishst);
1286 
1287 	for_each_cpu(cpu, mask) {
1288 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1289 		u16 tlist;
1290 
1291 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1292 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1293 	}
1294 
1295 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1296 	isb();
1297 }
1298 
1299 static void __init gic_smp_init(void)
1300 {
1301 	struct irq_fwspec sgi_fwspec = {
1302 		.fwnode		= gic_data.fwnode,
1303 		.param_count	= 1,
1304 	};
1305 	int base_sgi;
1306 
1307 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1308 				  "irqchip/arm/gicv3:starting",
1309 				  gic_starting_cpu, NULL);
1310 
1311 	/* Register all 8 non-secure SGIs */
1312 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1313 					   NUMA_NO_NODE, &sgi_fwspec,
1314 					   false, NULL);
1315 	if (WARN_ON(base_sgi <= 0))
1316 		return;
1317 
1318 	set_smp_ipi_range(base_sgi, 8);
1319 }
1320 
1321 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1322 			    bool force)
1323 {
1324 	unsigned int cpu;
1325 	u32 offset, index;
1326 	void __iomem *reg;
1327 	int enabled;
1328 	u64 val;
1329 
1330 	if (force)
1331 		cpu = cpumask_first(mask_val);
1332 	else
1333 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1334 
1335 	if (cpu >= nr_cpu_ids)
1336 		return -EINVAL;
1337 
1338 	if (gic_irq_in_rdist(d))
1339 		return -EINVAL;
1340 
1341 	/* If interrupt was enabled, disable it first */
1342 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1343 	if (enabled)
1344 		gic_mask_irq(d);
1345 
1346 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1347 	reg = gic_dist_base(d) + offset + (index * 8);
1348 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1349 
1350 	gic_write_irouter(val, reg);
1351 
1352 	/*
1353 	 * If the interrupt was enabled, enabled it again. Otherwise,
1354 	 * just wait for the distributor to have digested our changes.
1355 	 */
1356 	if (enabled)
1357 		gic_unmask_irq(d);
1358 
1359 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1360 
1361 	return IRQ_SET_MASK_OK_DONE;
1362 }
1363 #else
1364 #define gic_set_affinity	NULL
1365 #define gic_ipi_send_mask	NULL
1366 #define gic_smp_init()		do { } while(0)
1367 #endif
1368 
1369 static int gic_retrigger(struct irq_data *data)
1370 {
1371 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1372 }
1373 
1374 #ifdef CONFIG_CPU_PM
1375 static int gic_cpu_pm_notifier(struct notifier_block *self,
1376 			       unsigned long cmd, void *v)
1377 {
1378 	if (cmd == CPU_PM_EXIT) {
1379 		if (gic_dist_security_disabled())
1380 			gic_enable_redist(true);
1381 		gic_cpu_sys_reg_init();
1382 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1383 		gic_write_grpen1(0);
1384 		gic_enable_redist(false);
1385 	}
1386 	return NOTIFY_OK;
1387 }
1388 
1389 static struct notifier_block gic_cpu_pm_notifier_block = {
1390 	.notifier_call = gic_cpu_pm_notifier,
1391 };
1392 
1393 static void gic_cpu_pm_init(void)
1394 {
1395 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1396 }
1397 
1398 #else
1399 static inline void gic_cpu_pm_init(void) { }
1400 #endif /* CONFIG_CPU_PM */
1401 
1402 static struct irq_chip gic_chip = {
1403 	.name			= "GICv3",
1404 	.irq_mask		= gic_mask_irq,
1405 	.irq_unmask		= gic_unmask_irq,
1406 	.irq_eoi		= gic_eoi_irq,
1407 	.irq_set_type		= gic_set_type,
1408 	.irq_set_affinity	= gic_set_affinity,
1409 	.irq_retrigger          = gic_retrigger,
1410 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1411 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1412 	.irq_nmi_setup		= gic_irq_nmi_setup,
1413 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1414 	.ipi_send_mask		= gic_ipi_send_mask,
1415 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1416 				  IRQCHIP_SKIP_SET_WAKE |
1417 				  IRQCHIP_MASK_ON_SUSPEND,
1418 };
1419 
1420 static struct irq_chip gic_eoimode1_chip = {
1421 	.name			= "GICv3",
1422 	.irq_mask		= gic_eoimode1_mask_irq,
1423 	.irq_unmask		= gic_unmask_irq,
1424 	.irq_eoi		= gic_eoimode1_eoi_irq,
1425 	.irq_set_type		= gic_set_type,
1426 	.irq_set_affinity	= gic_set_affinity,
1427 	.irq_retrigger          = gic_retrigger,
1428 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1429 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1430 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1431 	.irq_nmi_setup		= gic_irq_nmi_setup,
1432 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1433 	.ipi_send_mask		= gic_ipi_send_mask,
1434 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1435 				  IRQCHIP_SKIP_SET_WAKE |
1436 				  IRQCHIP_MASK_ON_SUSPEND,
1437 };
1438 
1439 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1440 			      irq_hw_number_t hw)
1441 {
1442 	struct irq_chip *chip = &gic_chip;
1443 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1444 
1445 	if (static_branch_likely(&supports_deactivate_key))
1446 		chip = &gic_eoimode1_chip;
1447 
1448 	switch (__get_intid_range(hw)) {
1449 	case SGI_RANGE:
1450 	case PPI_RANGE:
1451 	case EPPI_RANGE:
1452 		irq_set_percpu_devid(irq);
1453 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1454 				    handle_percpu_devid_irq, NULL, NULL);
1455 		break;
1456 
1457 	case SPI_RANGE:
1458 	case ESPI_RANGE:
1459 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1460 				    handle_fasteoi_irq, NULL, NULL);
1461 		irq_set_probe(irq);
1462 		irqd_set_single_target(irqd);
1463 		break;
1464 
1465 	case LPI_RANGE:
1466 		if (!gic_dist_supports_lpis())
1467 			return -EPERM;
1468 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1469 				    handle_fasteoi_irq, NULL, NULL);
1470 		break;
1471 
1472 	default:
1473 		return -EPERM;
1474 	}
1475 
1476 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1477 	irqd_set_handle_enforce_irqctx(irqd);
1478 	return 0;
1479 }
1480 
1481 static int gic_irq_domain_translate(struct irq_domain *d,
1482 				    struct irq_fwspec *fwspec,
1483 				    unsigned long *hwirq,
1484 				    unsigned int *type)
1485 {
1486 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1487 		*hwirq = fwspec->param[0];
1488 		*type = IRQ_TYPE_EDGE_RISING;
1489 		return 0;
1490 	}
1491 
1492 	if (is_of_node(fwspec->fwnode)) {
1493 		if (fwspec->param_count < 3)
1494 			return -EINVAL;
1495 
1496 		switch (fwspec->param[0]) {
1497 		case 0:			/* SPI */
1498 			*hwirq = fwspec->param[1] + 32;
1499 			break;
1500 		case 1:			/* PPI */
1501 			*hwirq = fwspec->param[1] + 16;
1502 			break;
1503 		case 2:			/* ESPI */
1504 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1505 			break;
1506 		case 3:			/* EPPI */
1507 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1508 			break;
1509 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1510 			*hwirq = fwspec->param[1];
1511 			break;
1512 		case GIC_IRQ_TYPE_PARTITION:
1513 			*hwirq = fwspec->param[1];
1514 			if (fwspec->param[1] >= 16)
1515 				*hwirq += EPPI_BASE_INTID - 16;
1516 			else
1517 				*hwirq += 16;
1518 			break;
1519 		default:
1520 			return -EINVAL;
1521 		}
1522 
1523 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1524 
1525 		/*
1526 		 * Make it clear that broken DTs are... broken.
1527 		 * Partitioned PPIs are an unfortunate exception.
1528 		 */
1529 		WARN_ON(*type == IRQ_TYPE_NONE &&
1530 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1531 		return 0;
1532 	}
1533 
1534 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1535 		if(fwspec->param_count != 2)
1536 			return -EINVAL;
1537 
1538 		if (fwspec->param[0] < 16) {
1539 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1540 			       fwspec->param[0]);
1541 			return -EINVAL;
1542 		}
1543 
1544 		*hwirq = fwspec->param[0];
1545 		*type = fwspec->param[1];
1546 
1547 		WARN_ON(*type == IRQ_TYPE_NONE);
1548 		return 0;
1549 	}
1550 
1551 	return -EINVAL;
1552 }
1553 
1554 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1555 				unsigned int nr_irqs, void *arg)
1556 {
1557 	int i, ret;
1558 	irq_hw_number_t hwirq;
1559 	unsigned int type = IRQ_TYPE_NONE;
1560 	struct irq_fwspec *fwspec = arg;
1561 
1562 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1563 	if (ret)
1564 		return ret;
1565 
1566 	for (i = 0; i < nr_irqs; i++) {
1567 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1568 		if (ret)
1569 			return ret;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1576 				unsigned int nr_irqs)
1577 {
1578 	int i;
1579 
1580 	for (i = 0; i < nr_irqs; i++) {
1581 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1582 		irq_set_handler(virq + i, NULL);
1583 		irq_domain_reset_irq_data(d);
1584 	}
1585 }
1586 
1587 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1588 				      irq_hw_number_t hwirq)
1589 {
1590 	enum gic_intid_range range;
1591 
1592 	if (!gic_data.ppi_descs)
1593 		return false;
1594 
1595 	if (!is_of_node(fwspec->fwnode))
1596 		return false;
1597 
1598 	if (fwspec->param_count < 4 || !fwspec->param[3])
1599 		return false;
1600 
1601 	range = __get_intid_range(hwirq);
1602 	if (range != PPI_RANGE && range != EPPI_RANGE)
1603 		return false;
1604 
1605 	return true;
1606 }
1607 
1608 static int gic_irq_domain_select(struct irq_domain *d,
1609 				 struct irq_fwspec *fwspec,
1610 				 enum irq_domain_bus_token bus_token)
1611 {
1612 	unsigned int type, ret, ppi_idx;
1613 	irq_hw_number_t hwirq;
1614 
1615 	/* Not for us */
1616         if (fwspec->fwnode != d->fwnode)
1617 		return 0;
1618 
1619 	/* If this is not DT, then we have a single domain */
1620 	if (!is_of_node(fwspec->fwnode))
1621 		return 1;
1622 
1623 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1624 	if (WARN_ON_ONCE(ret))
1625 		return 0;
1626 
1627 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1628 		return d == gic_data.domain;
1629 
1630 	/*
1631 	 * If this is a PPI and we have a 4th (non-null) parameter,
1632 	 * then we need to match the partition domain.
1633 	 */
1634 	ppi_idx = __gic_get_ppi_index(hwirq);
1635 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1636 }
1637 
1638 static const struct irq_domain_ops gic_irq_domain_ops = {
1639 	.translate = gic_irq_domain_translate,
1640 	.alloc = gic_irq_domain_alloc,
1641 	.free = gic_irq_domain_free,
1642 	.select = gic_irq_domain_select,
1643 };
1644 
1645 static int partition_domain_translate(struct irq_domain *d,
1646 				      struct irq_fwspec *fwspec,
1647 				      unsigned long *hwirq,
1648 				      unsigned int *type)
1649 {
1650 	unsigned long ppi_intid;
1651 	struct device_node *np;
1652 	unsigned int ppi_idx;
1653 	int ret;
1654 
1655 	if (!gic_data.ppi_descs)
1656 		return -ENOMEM;
1657 
1658 	np = of_find_node_by_phandle(fwspec->param[3]);
1659 	if (WARN_ON(!np))
1660 		return -EINVAL;
1661 
1662 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1663 	if (WARN_ON_ONCE(ret))
1664 		return 0;
1665 
1666 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1667 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1668 				     of_node_to_fwnode(np));
1669 	if (ret < 0)
1670 		return ret;
1671 
1672 	*hwirq = ret;
1673 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1674 
1675 	return 0;
1676 }
1677 
1678 static const struct irq_domain_ops partition_domain_ops = {
1679 	.translate = partition_domain_translate,
1680 	.select = gic_irq_domain_select,
1681 };
1682 
1683 static bool gic_enable_quirk_msm8996(void *data)
1684 {
1685 	struct gic_chip_data *d = data;
1686 
1687 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1688 
1689 	return true;
1690 }
1691 
1692 static bool gic_enable_quirk_cavium_38539(void *data)
1693 {
1694 	struct gic_chip_data *d = data;
1695 
1696 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1697 
1698 	return true;
1699 }
1700 
1701 static bool gic_enable_quirk_hip06_07(void *data)
1702 {
1703 	struct gic_chip_data *d = data;
1704 
1705 	/*
1706 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1707 	 * not being an actual ARM implementation). The saving grace is
1708 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1709 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1710 	 * have ESPI. In both cases, put them right.
1711 	 */
1712 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1713 		/* Zero both ESPI and the RES0 field next to it... */
1714 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1715 		return true;
1716 	}
1717 
1718 	return false;
1719 }
1720 
1721 static const struct gic_quirk gic_quirks[] = {
1722 	{
1723 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1724 		.compatible = "qcom,msm8996-gic-v3",
1725 		.init	= gic_enable_quirk_msm8996,
1726 	},
1727 	{
1728 		.desc	= "GICv3: HIP06 erratum 161010803",
1729 		.iidr	= 0x0204043b,
1730 		.mask	= 0xffffffff,
1731 		.init	= gic_enable_quirk_hip06_07,
1732 	},
1733 	{
1734 		.desc	= "GICv3: HIP07 erratum 161010803",
1735 		.iidr	= 0x00000000,
1736 		.mask	= 0xffffffff,
1737 		.init	= gic_enable_quirk_hip06_07,
1738 	},
1739 	{
1740 		/*
1741 		 * Reserved register accesses generate a Synchronous
1742 		 * External Abort. This erratum applies to:
1743 		 * - ThunderX: CN88xx
1744 		 * - OCTEON TX: CN83xx, CN81xx
1745 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1746 		 */
1747 		.desc	= "GICv3: Cavium erratum 38539",
1748 		.iidr	= 0xa000034c,
1749 		.mask	= 0xe8f00fff,
1750 		.init	= gic_enable_quirk_cavium_38539,
1751 	},
1752 	{
1753 	}
1754 };
1755 
1756 static void gic_enable_nmi_support(void)
1757 {
1758 	int i;
1759 
1760 	if (!gic_prio_masking_enabled())
1761 		return;
1762 
1763 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1764 	if (!ppi_nmi_refs)
1765 		return;
1766 
1767 	for (i = 0; i < gic_data.ppi_nr; i++)
1768 		refcount_set(&ppi_nmi_refs[i], 0);
1769 
1770 	/*
1771 	 * Linux itself doesn't use 1:N distribution, so has no need to
1772 	 * set PMHE. The only reason to have it set is if EL3 requires it
1773 	 * (and we can't change it).
1774 	 */
1775 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1776 		static_branch_enable(&gic_pmr_sync);
1777 
1778 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1779 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1780 
1781 	/*
1782 	 * How priority values are used by the GIC depends on two things:
1783 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1784 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1785 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1786 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1787 	 * interrupts:
1788 	 *
1789 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1790 	 * -----------------------------------------------------------
1791 	 *      1       |      -      |  unchanged  |    unchanged
1792 	 * -----------------------------------------------------------
1793 	 *      0       |      1      |  non-secure |    non-secure
1794 	 * -----------------------------------------------------------
1795 	 *      0       |      0      |  unchanged  |    non-secure
1796 	 *
1797 	 * where non-secure means that the value is right-shifted by one and the
1798 	 * MSB bit set, to make it fit in the non-secure priority range.
1799 	 *
1800 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1801 	 * are both either modified or unchanged, we can use the same set of
1802 	 * priorities.
1803 	 *
1804 	 * In the last case, where only the interrupt priorities are modified to
1805 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1806 	 * and the rest of the values that we use remain unchanged.
1807 	 */
1808 	if (gic_has_group0() && !gic_dist_security_disabled())
1809 		static_branch_enable(&gic_nonsecure_priorities);
1810 
1811 	static_branch_enable(&supports_pseudo_nmis);
1812 
1813 	if (static_branch_likely(&supports_deactivate_key))
1814 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1815 	else
1816 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1817 }
1818 
1819 static int __init gic_init_bases(void __iomem *dist_base,
1820 				 struct redist_region *rdist_regs,
1821 				 u32 nr_redist_regions,
1822 				 u64 redist_stride,
1823 				 struct fwnode_handle *handle)
1824 {
1825 	u32 typer;
1826 	int err;
1827 
1828 	if (!is_hyp_mode_available())
1829 		static_branch_disable(&supports_deactivate_key);
1830 
1831 	if (static_branch_likely(&supports_deactivate_key))
1832 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1833 
1834 	gic_data.fwnode = handle;
1835 	gic_data.dist_base = dist_base;
1836 	gic_data.redist_regions = rdist_regs;
1837 	gic_data.nr_redist_regions = nr_redist_regions;
1838 	gic_data.redist_stride = redist_stride;
1839 
1840 	/*
1841 	 * Find out how many interrupts are supported.
1842 	 */
1843 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1844 	gic_data.rdists.gicd_typer = typer;
1845 
1846 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1847 			  gic_quirks, &gic_data);
1848 
1849 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1850 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1851 
1852 	/*
1853 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1854 	 * architecture spec (which says that reserved registers are RES0).
1855 	 */
1856 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1857 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1858 
1859 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1860 						 &gic_data);
1861 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1862 	gic_data.rdists.has_rvpeid = true;
1863 	gic_data.rdists.has_vlpis = true;
1864 	gic_data.rdists.has_direct_lpi = true;
1865 	gic_data.rdists.has_vpend_valid_dirty = true;
1866 
1867 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1868 		err = -ENOMEM;
1869 		goto out_free;
1870 	}
1871 
1872 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1873 
1874 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1875 
1876 	if (typer & GICD_TYPER_MBIS) {
1877 		err = mbi_init(handle, gic_data.domain);
1878 		if (err)
1879 			pr_err("Failed to initialize MBIs\n");
1880 	}
1881 
1882 	set_handle_irq(gic_handle_irq);
1883 
1884 	gic_update_rdist_properties();
1885 
1886 	gic_dist_init();
1887 	gic_cpu_init();
1888 	gic_smp_init();
1889 	gic_cpu_pm_init();
1890 
1891 	if (gic_dist_supports_lpis()) {
1892 		its_init(handle, &gic_data.rdists, gic_data.domain);
1893 		its_cpu_init();
1894 		its_lpi_memreserve_init();
1895 	} else {
1896 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1897 			gicv2m_init(handle, gic_data.domain);
1898 	}
1899 
1900 	gic_enable_nmi_support();
1901 
1902 	return 0;
1903 
1904 out_free:
1905 	if (gic_data.domain)
1906 		irq_domain_remove(gic_data.domain);
1907 	free_percpu(gic_data.rdists.rdist);
1908 	return err;
1909 }
1910 
1911 static int __init gic_validate_dist_version(void __iomem *dist_base)
1912 {
1913 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1914 
1915 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1916 		return -ENODEV;
1917 
1918 	return 0;
1919 }
1920 
1921 /* Create all possible partitions at boot time */
1922 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1923 {
1924 	struct device_node *parts_node, *child_part;
1925 	int part_idx = 0, i;
1926 	int nr_parts;
1927 	struct partition_affinity *parts;
1928 
1929 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1930 	if (!parts_node)
1931 		return;
1932 
1933 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1934 	if (!gic_data.ppi_descs)
1935 		goto out_put_node;
1936 
1937 	nr_parts = of_get_child_count(parts_node);
1938 
1939 	if (!nr_parts)
1940 		goto out_put_node;
1941 
1942 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1943 	if (WARN_ON(!parts))
1944 		goto out_put_node;
1945 
1946 	for_each_child_of_node(parts_node, child_part) {
1947 		struct partition_affinity *part;
1948 		int n;
1949 
1950 		part = &parts[part_idx];
1951 
1952 		part->partition_id = of_node_to_fwnode(child_part);
1953 
1954 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1955 			child_part, part_idx);
1956 
1957 		n = of_property_count_elems_of_size(child_part, "affinity",
1958 						    sizeof(u32));
1959 		WARN_ON(n <= 0);
1960 
1961 		for (i = 0; i < n; i++) {
1962 			int err, cpu;
1963 			u32 cpu_phandle;
1964 			struct device_node *cpu_node;
1965 
1966 			err = of_property_read_u32_index(child_part, "affinity",
1967 							 i, &cpu_phandle);
1968 			if (WARN_ON(err))
1969 				continue;
1970 
1971 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1972 			if (WARN_ON(!cpu_node))
1973 				continue;
1974 
1975 			cpu = of_cpu_node_to_id(cpu_node);
1976 			if (WARN_ON(cpu < 0)) {
1977 				of_node_put(cpu_node);
1978 				continue;
1979 			}
1980 
1981 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1982 
1983 			cpumask_set_cpu(cpu, &part->mask);
1984 			of_node_put(cpu_node);
1985 		}
1986 
1987 		pr_cont("}\n");
1988 		part_idx++;
1989 	}
1990 
1991 	for (i = 0; i < gic_data.ppi_nr; i++) {
1992 		unsigned int irq;
1993 		struct partition_desc *desc;
1994 		struct irq_fwspec ppi_fwspec = {
1995 			.fwnode		= gic_data.fwnode,
1996 			.param_count	= 3,
1997 			.param		= {
1998 				[0]	= GIC_IRQ_TYPE_PARTITION,
1999 				[1]	= i,
2000 				[2]	= IRQ_TYPE_NONE,
2001 			},
2002 		};
2003 
2004 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2005 		if (WARN_ON(!irq))
2006 			continue;
2007 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2008 					     irq, &partition_domain_ops);
2009 		if (WARN_ON(!desc))
2010 			continue;
2011 
2012 		gic_data.ppi_descs[i] = desc;
2013 	}
2014 
2015 out_put_node:
2016 	of_node_put(parts_node);
2017 }
2018 
2019 static void __init gic_of_setup_kvm_info(struct device_node *node)
2020 {
2021 	int ret;
2022 	struct resource r;
2023 	u32 gicv_idx;
2024 
2025 	gic_v3_kvm_info.type = GIC_V3;
2026 
2027 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2028 	if (!gic_v3_kvm_info.maint_irq)
2029 		return;
2030 
2031 	if (of_property_read_u32(node, "#redistributor-regions",
2032 				 &gicv_idx))
2033 		gicv_idx = 1;
2034 
2035 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2036 	ret = of_address_to_resource(node, gicv_idx, &r);
2037 	if (!ret)
2038 		gic_v3_kvm_info.vcpu = r;
2039 
2040 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2041 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2042 	vgic_set_kvm_info(&gic_v3_kvm_info);
2043 }
2044 
2045 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2046 {
2047 	void __iomem *dist_base;
2048 	struct redist_region *rdist_regs;
2049 	u64 redist_stride;
2050 	u32 nr_redist_regions;
2051 	int err, i;
2052 
2053 	dist_base = of_io_request_and_map(node, 0, "GICD");
2054 	if (IS_ERR(dist_base)) {
2055 		pr_err("%pOF: unable to map gic dist registers\n", node);
2056 		return PTR_ERR(dist_base);
2057 	}
2058 
2059 	err = gic_validate_dist_version(dist_base);
2060 	if (err) {
2061 		pr_err("%pOF: no distributor detected, giving up\n", node);
2062 		goto out_unmap_dist;
2063 	}
2064 
2065 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2066 		nr_redist_regions = 1;
2067 
2068 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2069 			     GFP_KERNEL);
2070 	if (!rdist_regs) {
2071 		err = -ENOMEM;
2072 		goto out_unmap_dist;
2073 	}
2074 
2075 	for (i = 0; i < nr_redist_regions; i++) {
2076 		struct resource res;
2077 		int ret;
2078 
2079 		ret = of_address_to_resource(node, 1 + i, &res);
2080 		rdist_regs[i].redist_base = of_io_request_and_map(node, 1 + i, "GICR");
2081 		if (ret || IS_ERR(rdist_regs[i].redist_base)) {
2082 			pr_err("%pOF: couldn't map region %d\n", node, i);
2083 			err = -ENODEV;
2084 			goto out_unmap_rdist;
2085 		}
2086 		rdist_regs[i].phys_base = res.start;
2087 	}
2088 
2089 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2090 		redist_stride = 0;
2091 
2092 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2093 
2094 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2095 			     redist_stride, &node->fwnode);
2096 	if (err)
2097 		goto out_unmap_rdist;
2098 
2099 	gic_populate_ppi_partitions(node);
2100 
2101 	if (static_branch_likely(&supports_deactivate_key))
2102 		gic_of_setup_kvm_info(node);
2103 	return 0;
2104 
2105 out_unmap_rdist:
2106 	for (i = 0; i < nr_redist_regions; i++)
2107 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2108 			iounmap(rdist_regs[i].redist_base);
2109 	kfree(rdist_regs);
2110 out_unmap_dist:
2111 	iounmap(dist_base);
2112 	return err;
2113 }
2114 
2115 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2116 
2117 #ifdef CONFIG_ACPI
2118 static struct
2119 {
2120 	void __iomem *dist_base;
2121 	struct redist_region *redist_regs;
2122 	u32 nr_redist_regions;
2123 	bool single_redist;
2124 	int enabled_rdists;
2125 	u32 maint_irq;
2126 	int maint_irq_mode;
2127 	phys_addr_t vcpu_base;
2128 } acpi_data __initdata;
2129 
2130 static void __init
2131 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2132 {
2133 	static int count = 0;
2134 
2135 	acpi_data.redist_regs[count].phys_base = phys_base;
2136 	acpi_data.redist_regs[count].redist_base = redist_base;
2137 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2138 	count++;
2139 }
2140 
2141 static int __init
2142 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2143 			   const unsigned long end)
2144 {
2145 	struct acpi_madt_generic_redistributor *redist =
2146 			(struct acpi_madt_generic_redistributor *)header;
2147 	void __iomem *redist_base;
2148 
2149 	redist_base = ioremap(redist->base_address, redist->length);
2150 	if (!redist_base) {
2151 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2152 		return -ENOMEM;
2153 	}
2154 	request_mem_region(redist->base_address, redist->length, "GICR");
2155 
2156 	gic_acpi_register_redist(redist->base_address, redist_base);
2157 	return 0;
2158 }
2159 
2160 static int __init
2161 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2162 			 const unsigned long end)
2163 {
2164 	struct acpi_madt_generic_interrupt *gicc =
2165 				(struct acpi_madt_generic_interrupt *)header;
2166 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2167 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2168 	void __iomem *redist_base;
2169 
2170 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2171 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2172 		return 0;
2173 
2174 	redist_base = ioremap(gicc->gicr_base_address, size);
2175 	if (!redist_base)
2176 		return -ENOMEM;
2177 	request_mem_region(gicc->gicr_base_address, size, "GICR");
2178 
2179 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2180 	return 0;
2181 }
2182 
2183 static int __init gic_acpi_collect_gicr_base(void)
2184 {
2185 	acpi_tbl_entry_handler redist_parser;
2186 	enum acpi_madt_type type;
2187 
2188 	if (acpi_data.single_redist) {
2189 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2190 		redist_parser = gic_acpi_parse_madt_gicc;
2191 	} else {
2192 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2193 		redist_parser = gic_acpi_parse_madt_redist;
2194 	}
2195 
2196 	/* Collect redistributor base addresses in GICR entries */
2197 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2198 		return 0;
2199 
2200 	pr_info("No valid GICR entries exist\n");
2201 	return -ENODEV;
2202 }
2203 
2204 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2205 				  const unsigned long end)
2206 {
2207 	/* Subtable presence means that redist exists, that's it */
2208 	return 0;
2209 }
2210 
2211 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2212 				      const unsigned long end)
2213 {
2214 	struct acpi_madt_generic_interrupt *gicc =
2215 				(struct acpi_madt_generic_interrupt *)header;
2216 
2217 	/*
2218 	 * If GICC is enabled and has valid gicr base address, then it means
2219 	 * GICR base is presented via GICC
2220 	 */
2221 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2222 		acpi_data.enabled_rdists++;
2223 		return 0;
2224 	}
2225 
2226 	/*
2227 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2228 	 * should not treat as errors, skip the entry instead of probe fail.
2229 	 */
2230 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2231 		return 0;
2232 
2233 	return -ENODEV;
2234 }
2235 
2236 static int __init gic_acpi_count_gicr_regions(void)
2237 {
2238 	int count;
2239 
2240 	/*
2241 	 * Count how many redistributor regions we have. It is not allowed
2242 	 * to mix redistributor description, GICR and GICC subtables have to be
2243 	 * mutually exclusive.
2244 	 */
2245 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2246 				      gic_acpi_match_gicr, 0);
2247 	if (count > 0) {
2248 		acpi_data.single_redist = false;
2249 		return count;
2250 	}
2251 
2252 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2253 				      gic_acpi_match_gicc, 0);
2254 	if (count > 0) {
2255 		acpi_data.single_redist = true;
2256 		count = acpi_data.enabled_rdists;
2257 	}
2258 
2259 	return count;
2260 }
2261 
2262 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2263 					   struct acpi_probe_entry *ape)
2264 {
2265 	struct acpi_madt_generic_distributor *dist;
2266 	int count;
2267 
2268 	dist = (struct acpi_madt_generic_distributor *)header;
2269 	if (dist->version != ape->driver_data)
2270 		return false;
2271 
2272 	/* We need to do that exercise anyway, the sooner the better */
2273 	count = gic_acpi_count_gicr_regions();
2274 	if (count <= 0)
2275 		return false;
2276 
2277 	acpi_data.nr_redist_regions = count;
2278 	return true;
2279 }
2280 
2281 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2282 						const unsigned long end)
2283 {
2284 	struct acpi_madt_generic_interrupt *gicc =
2285 		(struct acpi_madt_generic_interrupt *)header;
2286 	int maint_irq_mode;
2287 	static int first_madt = true;
2288 
2289 	/* Skip unusable CPUs */
2290 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2291 		return 0;
2292 
2293 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2294 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2295 
2296 	if (first_madt) {
2297 		first_madt = false;
2298 
2299 		acpi_data.maint_irq = gicc->vgic_interrupt;
2300 		acpi_data.maint_irq_mode = maint_irq_mode;
2301 		acpi_data.vcpu_base = gicc->gicv_base_address;
2302 
2303 		return 0;
2304 	}
2305 
2306 	/*
2307 	 * The maintenance interrupt and GICV should be the same for every CPU
2308 	 */
2309 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2310 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2311 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2312 		return -EINVAL;
2313 
2314 	return 0;
2315 }
2316 
2317 static bool __init gic_acpi_collect_virt_info(void)
2318 {
2319 	int count;
2320 
2321 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2322 				      gic_acpi_parse_virt_madt_gicc, 0);
2323 
2324 	return (count > 0);
2325 }
2326 
2327 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2328 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2329 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2330 
2331 static void __init gic_acpi_setup_kvm_info(void)
2332 {
2333 	int irq;
2334 
2335 	if (!gic_acpi_collect_virt_info()) {
2336 		pr_warn("Unable to get hardware information used for virtualization\n");
2337 		return;
2338 	}
2339 
2340 	gic_v3_kvm_info.type = GIC_V3;
2341 
2342 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2343 				acpi_data.maint_irq_mode,
2344 				ACPI_ACTIVE_HIGH);
2345 	if (irq <= 0)
2346 		return;
2347 
2348 	gic_v3_kvm_info.maint_irq = irq;
2349 
2350 	if (acpi_data.vcpu_base) {
2351 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2352 
2353 		vcpu->flags = IORESOURCE_MEM;
2354 		vcpu->start = acpi_data.vcpu_base;
2355 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2356 	}
2357 
2358 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2359 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2360 	vgic_set_kvm_info(&gic_v3_kvm_info);
2361 }
2362 
2363 static int __init
2364 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2365 {
2366 	struct acpi_madt_generic_distributor *dist;
2367 	struct fwnode_handle *domain_handle;
2368 	size_t size;
2369 	int i, err;
2370 
2371 	/* Get distributor base address */
2372 	dist = (struct acpi_madt_generic_distributor *)header;
2373 	acpi_data.dist_base = ioremap(dist->base_address,
2374 				      ACPI_GICV3_DIST_MEM_SIZE);
2375 	if (!acpi_data.dist_base) {
2376 		pr_err("Unable to map GICD registers\n");
2377 		return -ENOMEM;
2378 	}
2379 	request_mem_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2380 
2381 	err = gic_validate_dist_version(acpi_data.dist_base);
2382 	if (err) {
2383 		pr_err("No distributor detected at @%p, giving up\n",
2384 		       acpi_data.dist_base);
2385 		goto out_dist_unmap;
2386 	}
2387 
2388 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2389 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2390 	if (!acpi_data.redist_regs) {
2391 		err = -ENOMEM;
2392 		goto out_dist_unmap;
2393 	}
2394 
2395 	err = gic_acpi_collect_gicr_base();
2396 	if (err)
2397 		goto out_redist_unmap;
2398 
2399 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2400 	if (!domain_handle) {
2401 		err = -ENOMEM;
2402 		goto out_redist_unmap;
2403 	}
2404 
2405 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2406 			     acpi_data.nr_redist_regions, 0, domain_handle);
2407 	if (err)
2408 		goto out_fwhandle_free;
2409 
2410 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2411 
2412 	if (static_branch_likely(&supports_deactivate_key))
2413 		gic_acpi_setup_kvm_info();
2414 
2415 	return 0;
2416 
2417 out_fwhandle_free:
2418 	irq_domain_free_fwnode(domain_handle);
2419 out_redist_unmap:
2420 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2421 		if (acpi_data.redist_regs[i].redist_base)
2422 			iounmap(acpi_data.redist_regs[i].redist_base);
2423 	kfree(acpi_data.redist_regs);
2424 out_dist_unmap:
2425 	iounmap(acpi_data.dist_base);
2426 	return err;
2427 }
2428 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2429 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2430 		     gic_acpi_init);
2431 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2432 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2433 		     gic_acpi_init);
2434 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2435 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2436 		     gic_acpi_init);
2437 #endif
2438