xref: /openbmc/linux/drivers/irqchip/irq-gic-v3.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanched by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
104 static refcount_t *ppi_nmi_refs;
105 
106 static struct gic_kvm_info gic_v3_kvm_info;
107 static DEFINE_PER_CPU(bool, has_rss);
108 
109 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
110 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
111 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
112 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
113 
114 /* Our default, arbitrary priority value. Linux only uses one anyway. */
115 #define DEFAULT_PMR_VALUE	0xf0
116 
117 enum gic_intid_range {
118 	SGI_RANGE,
119 	PPI_RANGE,
120 	SPI_RANGE,
121 	EPPI_RANGE,
122 	ESPI_RANGE,
123 	LPI_RANGE,
124 	__INVALID_RANGE__
125 };
126 
127 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
128 {
129 	switch (hwirq) {
130 	case 0 ... 15:
131 		return SGI_RANGE;
132 	case 16 ... 31:
133 		return PPI_RANGE;
134 	case 32 ... 1019:
135 		return SPI_RANGE;
136 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
137 		return EPPI_RANGE;
138 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
139 		return ESPI_RANGE;
140 	case 8192 ... GENMASK(23, 0):
141 		return LPI_RANGE;
142 	default:
143 		return __INVALID_RANGE__;
144 	}
145 }
146 
147 static enum gic_intid_range get_intid_range(struct irq_data *d)
148 {
149 	return __get_intid_range(d->hwirq);
150 }
151 
152 static inline unsigned int gic_irq(struct irq_data *d)
153 {
154 	return d->hwirq;
155 }
156 
157 static inline bool gic_irq_in_rdist(struct irq_data *d)
158 {
159 	switch (get_intid_range(d)) {
160 	case SGI_RANGE:
161 	case PPI_RANGE:
162 	case EPPI_RANGE:
163 		return true;
164 	default:
165 		return false;
166 	}
167 }
168 
169 static inline void __iomem *gic_dist_base(struct irq_data *d)
170 {
171 	switch (get_intid_range(d)) {
172 	case SGI_RANGE:
173 	case PPI_RANGE:
174 	case EPPI_RANGE:
175 		/* SGI+PPI -> SGI_base for this CPU */
176 		return gic_data_rdist_sgi_base();
177 
178 	case SPI_RANGE:
179 	case ESPI_RANGE:
180 		/* SPI -> dist_base */
181 		return gic_data.dist_base;
182 
183 	default:
184 		return NULL;
185 	}
186 }
187 
188 static void gic_do_wait_for_rwp(void __iomem *base)
189 {
190 	u32 count = 1000000;	/* 1s! */
191 
192 	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
193 		count--;
194 		if (!count) {
195 			pr_err_ratelimited("RWP timeout, gone fishing\n");
196 			return;
197 		}
198 		cpu_relax();
199 		udelay(1);
200 	}
201 }
202 
203 /* Wait for completion of a distributor change */
204 static void gic_dist_wait_for_rwp(void)
205 {
206 	gic_do_wait_for_rwp(gic_data.dist_base);
207 }
208 
209 /* Wait for completion of a redistributor change */
210 static void gic_redist_wait_for_rwp(void)
211 {
212 	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
213 }
214 
215 #ifdef CONFIG_ARM64
216 
217 static u64 __maybe_unused gic_read_iar(void)
218 {
219 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
220 		return gic_read_iar_cavium_thunderx();
221 	else
222 		return gic_read_iar_common();
223 }
224 #endif
225 
226 static void gic_enable_redist(bool enable)
227 {
228 	void __iomem *rbase;
229 	u32 count = 1000000;	/* 1s! */
230 	u32 val;
231 
232 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
233 		return;
234 
235 	rbase = gic_data_rdist_rd_base();
236 
237 	val = readl_relaxed(rbase + GICR_WAKER);
238 	if (enable)
239 		/* Wake up this CPU redistributor */
240 		val &= ~GICR_WAKER_ProcessorSleep;
241 	else
242 		val |= GICR_WAKER_ProcessorSleep;
243 	writel_relaxed(val, rbase + GICR_WAKER);
244 
245 	if (!enable) {		/* Check that GICR_WAKER is writeable */
246 		val = readl_relaxed(rbase + GICR_WAKER);
247 		if (!(val & GICR_WAKER_ProcessorSleep))
248 			return;	/* No PM support in this redistributor */
249 	}
250 
251 	while (--count) {
252 		val = readl_relaxed(rbase + GICR_WAKER);
253 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
254 			break;
255 		cpu_relax();
256 		udelay(1);
257 	}
258 	if (!count)
259 		pr_err_ratelimited("redistributor failed to %s...\n",
260 				   enable ? "wakeup" : "sleep");
261 }
262 
263 /*
264  * Routines to disable, enable, EOI and route interrupts
265  */
266 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
267 {
268 	switch (get_intid_range(d)) {
269 	case SGI_RANGE:
270 	case PPI_RANGE:
271 	case SPI_RANGE:
272 		*index = d->hwirq;
273 		return offset;
274 	case EPPI_RANGE:
275 		/*
276 		 * Contrary to the ESPI range, the EPPI range is contiguous
277 		 * to the PPI range in the registers, so let's adjust the
278 		 * displacement accordingly. Consistency is overrated.
279 		 */
280 		*index = d->hwirq - EPPI_BASE_INTID + 32;
281 		return offset;
282 	case ESPI_RANGE:
283 		*index = d->hwirq - ESPI_BASE_INTID;
284 		switch (offset) {
285 		case GICD_ISENABLER:
286 			return GICD_ISENABLERnE;
287 		case GICD_ICENABLER:
288 			return GICD_ICENABLERnE;
289 		case GICD_ISPENDR:
290 			return GICD_ISPENDRnE;
291 		case GICD_ICPENDR:
292 			return GICD_ICPENDRnE;
293 		case GICD_ISACTIVER:
294 			return GICD_ISACTIVERnE;
295 		case GICD_ICACTIVER:
296 			return GICD_ICACTIVERnE;
297 		case GICD_IPRIORITYR:
298 			return GICD_IPRIORITYRnE;
299 		case GICD_ICFGR:
300 			return GICD_ICFGRnE;
301 		case GICD_IROUTER:
302 			return GICD_IROUTERnE;
303 		default:
304 			break;
305 		}
306 		break;
307 	default:
308 		break;
309 	}
310 
311 	WARN_ON(1);
312 	*index = d->hwirq;
313 	return offset;
314 }
315 
316 static int gic_peek_irq(struct irq_data *d, u32 offset)
317 {
318 	void __iomem *base;
319 	u32 index, mask;
320 
321 	offset = convert_offset_index(d, offset, &index);
322 	mask = 1 << (index % 32);
323 
324 	if (gic_irq_in_rdist(d))
325 		base = gic_data_rdist_sgi_base();
326 	else
327 		base = gic_data.dist_base;
328 
329 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
330 }
331 
332 static void gic_poke_irq(struct irq_data *d, u32 offset)
333 {
334 	void (*rwp_wait)(void);
335 	void __iomem *base;
336 	u32 index, mask;
337 
338 	offset = convert_offset_index(d, offset, &index);
339 	mask = 1 << (index % 32);
340 
341 	if (gic_irq_in_rdist(d)) {
342 		base = gic_data_rdist_sgi_base();
343 		rwp_wait = gic_redist_wait_for_rwp;
344 	} else {
345 		base = gic_data.dist_base;
346 		rwp_wait = gic_dist_wait_for_rwp;
347 	}
348 
349 	writel_relaxed(mask, base + offset + (index / 32) * 4);
350 	rwp_wait();
351 }
352 
353 static void gic_mask_irq(struct irq_data *d)
354 {
355 	gic_poke_irq(d, GICD_ICENABLER);
356 }
357 
358 static void gic_eoimode1_mask_irq(struct irq_data *d)
359 {
360 	gic_mask_irq(d);
361 	/*
362 	 * When masking a forwarded interrupt, make sure it is
363 	 * deactivated as well.
364 	 *
365 	 * This ensures that an interrupt that is getting
366 	 * disabled/masked will not get "stuck", because there is
367 	 * noone to deactivate it (guest is being terminated).
368 	 */
369 	if (irqd_is_forwarded_to_vcpu(d))
370 		gic_poke_irq(d, GICD_ICACTIVER);
371 }
372 
373 static void gic_unmask_irq(struct irq_data *d)
374 {
375 	gic_poke_irq(d, GICD_ISENABLER);
376 }
377 
378 static inline bool gic_supports_nmi(void)
379 {
380 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
381 	       static_branch_likely(&supports_pseudo_nmis);
382 }
383 
384 static int gic_irq_set_irqchip_state(struct irq_data *d,
385 				     enum irqchip_irq_state which, bool val)
386 {
387 	u32 reg;
388 
389 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
390 		return -EINVAL;
391 
392 	switch (which) {
393 	case IRQCHIP_STATE_PENDING:
394 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
395 		break;
396 
397 	case IRQCHIP_STATE_ACTIVE:
398 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
399 		break;
400 
401 	case IRQCHIP_STATE_MASKED:
402 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
403 		break;
404 
405 	default:
406 		return -EINVAL;
407 	}
408 
409 	gic_poke_irq(d, reg);
410 	return 0;
411 }
412 
413 static int gic_irq_get_irqchip_state(struct irq_data *d,
414 				     enum irqchip_irq_state which, bool *val)
415 {
416 	if (d->hwirq >= 8192) /* PPI/SPI only */
417 		return -EINVAL;
418 
419 	switch (which) {
420 	case IRQCHIP_STATE_PENDING:
421 		*val = gic_peek_irq(d, GICD_ISPENDR);
422 		break;
423 
424 	case IRQCHIP_STATE_ACTIVE:
425 		*val = gic_peek_irq(d, GICD_ISACTIVER);
426 		break;
427 
428 	case IRQCHIP_STATE_MASKED:
429 		*val = !gic_peek_irq(d, GICD_ISENABLER);
430 		break;
431 
432 	default:
433 		return -EINVAL;
434 	}
435 
436 	return 0;
437 }
438 
439 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
440 {
441 	void __iomem *base = gic_dist_base(d);
442 	u32 offset, index;
443 
444 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
445 
446 	writeb_relaxed(prio, base + offset + index);
447 }
448 
449 static u32 gic_get_ppi_index(struct irq_data *d)
450 {
451 	switch (get_intid_range(d)) {
452 	case PPI_RANGE:
453 		return d->hwirq - 16;
454 	case EPPI_RANGE:
455 		return d->hwirq - EPPI_BASE_INTID + 16;
456 	default:
457 		unreachable();
458 	}
459 }
460 
461 static int gic_irq_nmi_setup(struct irq_data *d)
462 {
463 	struct irq_desc *desc = irq_to_desc(d->irq);
464 
465 	if (!gic_supports_nmi())
466 		return -EINVAL;
467 
468 	if (gic_peek_irq(d, GICD_ISENABLER)) {
469 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
470 		return -EINVAL;
471 	}
472 
473 	/*
474 	 * A secondary irq_chip should be in charge of LPI request,
475 	 * it should not be possible to get there
476 	 */
477 	if (WARN_ON(gic_irq(d) >= 8192))
478 		return -EINVAL;
479 
480 	/* desc lock should already be held */
481 	if (gic_irq_in_rdist(d)) {
482 		u32 idx = gic_get_ppi_index(d);
483 
484 		/* Setting up PPI as NMI, only switch handler for first NMI */
485 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
486 			refcount_set(&ppi_nmi_refs[idx], 1);
487 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
488 		}
489 	} else {
490 		desc->handle_irq = handle_fasteoi_nmi;
491 	}
492 
493 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
494 
495 	return 0;
496 }
497 
498 static void gic_irq_nmi_teardown(struct irq_data *d)
499 {
500 	struct irq_desc *desc = irq_to_desc(d->irq);
501 
502 	if (WARN_ON(!gic_supports_nmi()))
503 		return;
504 
505 	if (gic_peek_irq(d, GICD_ISENABLER)) {
506 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
507 		return;
508 	}
509 
510 	/*
511 	 * A secondary irq_chip should be in charge of LPI request,
512 	 * it should not be possible to get there
513 	 */
514 	if (WARN_ON(gic_irq(d) >= 8192))
515 		return;
516 
517 	/* desc lock should already be held */
518 	if (gic_irq_in_rdist(d)) {
519 		u32 idx = gic_get_ppi_index(d);
520 
521 		/* Tearing down NMI, only switch handler for last NMI */
522 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
523 			desc->handle_irq = handle_percpu_devid_irq;
524 	} else {
525 		desc->handle_irq = handle_fasteoi_irq;
526 	}
527 
528 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
529 }
530 
531 static void gic_eoi_irq(struct irq_data *d)
532 {
533 	gic_write_eoir(gic_irq(d));
534 }
535 
536 static void gic_eoimode1_eoi_irq(struct irq_data *d)
537 {
538 	/*
539 	 * No need to deactivate an LPI, or an interrupt that
540 	 * is is getting forwarded to a vcpu.
541 	 */
542 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
543 		return;
544 	gic_write_dir(gic_irq(d));
545 }
546 
547 static int gic_set_type(struct irq_data *d, unsigned int type)
548 {
549 	enum gic_intid_range range;
550 	unsigned int irq = gic_irq(d);
551 	void (*rwp_wait)(void);
552 	void __iomem *base;
553 	u32 offset, index;
554 	int ret;
555 
556 	range = get_intid_range(d);
557 
558 	/* Interrupt configuration for SGIs can't be changed */
559 	if (range == SGI_RANGE)
560 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
561 
562 	/* SPIs have restrictions on the supported types */
563 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
564 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
565 		return -EINVAL;
566 
567 	if (gic_irq_in_rdist(d)) {
568 		base = gic_data_rdist_sgi_base();
569 		rwp_wait = gic_redist_wait_for_rwp;
570 	} else {
571 		base = gic_data.dist_base;
572 		rwp_wait = gic_dist_wait_for_rwp;
573 	}
574 
575 	offset = convert_offset_index(d, GICD_ICFGR, &index);
576 
577 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
578 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
579 		/* Misconfigured PPIs are usually not fatal */
580 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
581 		ret = 0;
582 	}
583 
584 	return ret;
585 }
586 
587 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
588 {
589 	if (get_intid_range(d) == SGI_RANGE)
590 		return -EINVAL;
591 
592 	if (vcpu)
593 		irqd_set_forwarded_to_vcpu(d);
594 	else
595 		irqd_clr_forwarded_to_vcpu(d);
596 	return 0;
597 }
598 
599 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
600 {
601 	u64 aff;
602 
603 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
604 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
605 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
606 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
607 
608 	return aff;
609 }
610 
611 static void gic_deactivate_unhandled(u32 irqnr)
612 {
613 	if (static_branch_likely(&supports_deactivate_key)) {
614 		if (irqnr < 8192)
615 			gic_write_dir(irqnr);
616 	} else {
617 		gic_write_eoir(irqnr);
618 	}
619 }
620 
621 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
622 {
623 	bool irqs_enabled = interrupts_enabled(regs);
624 	int err;
625 
626 	if (irqs_enabled)
627 		nmi_enter();
628 
629 	if (static_branch_likely(&supports_deactivate_key))
630 		gic_write_eoir(irqnr);
631 	/*
632 	 * Leave the PSR.I bit set to prevent other NMIs to be
633 	 * received while handling this one.
634 	 * PSR.I will be restored when we ERET to the
635 	 * interrupted context.
636 	 */
637 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
638 	if (err)
639 		gic_deactivate_unhandled(irqnr);
640 
641 	if (irqs_enabled)
642 		nmi_exit();
643 }
644 
645 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
646 {
647 	u32 irqnr;
648 
649 	irqnr = gic_read_iar();
650 
651 	if (gic_supports_nmi() &&
652 	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
653 		gic_handle_nmi(irqnr, regs);
654 		return;
655 	}
656 
657 	if (gic_prio_masking_enabled()) {
658 		gic_pmr_mask_irqs();
659 		gic_arch_enable_irqs();
660 	}
661 
662 	/* Check for special IDs first */
663 	if ((irqnr >= 1020 && irqnr <= 1023))
664 		return;
665 
666 	if (static_branch_likely(&supports_deactivate_key))
667 		gic_write_eoir(irqnr);
668 	else
669 		isb();
670 
671 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
672 		WARN_ONCE(true, "Unexpected interrupt received!\n");
673 		gic_deactivate_unhandled(irqnr);
674 	}
675 }
676 
677 static u32 gic_get_pribits(void)
678 {
679 	u32 pribits;
680 
681 	pribits = gic_read_ctlr();
682 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
683 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
684 	pribits++;
685 
686 	return pribits;
687 }
688 
689 static bool gic_has_group0(void)
690 {
691 	u32 val;
692 	u32 old_pmr;
693 
694 	old_pmr = gic_read_pmr();
695 
696 	/*
697 	 * Let's find out if Group0 is under control of EL3 or not by
698 	 * setting the highest possible, non-zero priority in PMR.
699 	 *
700 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
701 	 * order for the CPU interface to set bit 7, and keep the
702 	 * actual priority in the non-secure range. In the process, it
703 	 * looses the least significant bit and the actual priority
704 	 * becomes 0x80. Reading it back returns 0, indicating that
705 	 * we're don't have access to Group0.
706 	 */
707 	gic_write_pmr(BIT(8 - gic_get_pribits()));
708 	val = gic_read_pmr();
709 
710 	gic_write_pmr(old_pmr);
711 
712 	return val != 0;
713 }
714 
715 static void __init gic_dist_init(void)
716 {
717 	unsigned int i;
718 	u64 affinity;
719 	void __iomem *base = gic_data.dist_base;
720 	u32 val;
721 
722 	/* Disable the distributor */
723 	writel_relaxed(0, base + GICD_CTLR);
724 	gic_dist_wait_for_rwp();
725 
726 	/*
727 	 * Configure SPIs as non-secure Group-1. This will only matter
728 	 * if the GIC only has a single security state. This will not
729 	 * do the right thing if the kernel is running in secure mode,
730 	 * but that's not the intended use case anyway.
731 	 */
732 	for (i = 32; i < GIC_LINE_NR; i += 32)
733 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
734 
735 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
736 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
737 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
738 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
739 	}
740 
741 	for (i = 0; i < GIC_ESPI_NR; i += 32)
742 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
743 
744 	for (i = 0; i < GIC_ESPI_NR; i += 16)
745 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
746 
747 	for (i = 0; i < GIC_ESPI_NR; i += 4)
748 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
749 
750 	/* Now do the common stuff, and wait for the distributor to drain */
751 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
752 
753 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
754 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
755 		pr_info("Enabling SGIs without active state\n");
756 		val |= GICD_CTLR_nASSGIreq;
757 	}
758 
759 	/* Enable distributor with ARE, Group1 */
760 	writel_relaxed(val, base + GICD_CTLR);
761 
762 	/*
763 	 * Set all global interrupts to the boot CPU only. ARE must be
764 	 * enabled.
765 	 */
766 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
767 	for (i = 32; i < GIC_LINE_NR; i++)
768 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
769 
770 	for (i = 0; i < GIC_ESPI_NR; i++)
771 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
772 }
773 
774 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
775 {
776 	int ret = -ENODEV;
777 	int i;
778 
779 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
780 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
781 		u64 typer;
782 		u32 reg;
783 
784 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
785 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
786 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
787 			pr_warn("No redistributor present @%p\n", ptr);
788 			break;
789 		}
790 
791 		do {
792 			typer = gic_read_typer(ptr + GICR_TYPER);
793 			ret = fn(gic_data.redist_regions + i, ptr);
794 			if (!ret)
795 				return 0;
796 
797 			if (gic_data.redist_regions[i].single_redist)
798 				break;
799 
800 			if (gic_data.redist_stride) {
801 				ptr += gic_data.redist_stride;
802 			} else {
803 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
804 				if (typer & GICR_TYPER_VLPIS)
805 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
806 			}
807 		} while (!(typer & GICR_TYPER_LAST));
808 	}
809 
810 	return ret ? -ENODEV : 0;
811 }
812 
813 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
814 {
815 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
816 	u64 typer;
817 	u32 aff;
818 
819 	/*
820 	 * Convert affinity to a 32bit value that can be matched to
821 	 * GICR_TYPER bits [63:32].
822 	 */
823 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
824 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
825 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
826 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
827 
828 	typer = gic_read_typer(ptr + GICR_TYPER);
829 	if ((typer >> 32) == aff) {
830 		u64 offset = ptr - region->redist_base;
831 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
832 		gic_data_rdist_rd_base() = ptr;
833 		gic_data_rdist()->phys_base = region->phys_base + offset;
834 
835 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
836 			smp_processor_id(), mpidr,
837 			(int)(region - gic_data.redist_regions),
838 			&gic_data_rdist()->phys_base);
839 		return 0;
840 	}
841 
842 	/* Try next one */
843 	return 1;
844 }
845 
846 static int gic_populate_rdist(void)
847 {
848 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
849 		return 0;
850 
851 	/* We couldn't even deal with ourselves... */
852 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
853 	     smp_processor_id(),
854 	     (unsigned long)cpu_logical_map(smp_processor_id()));
855 	return -ENODEV;
856 }
857 
858 static int __gic_update_rdist_properties(struct redist_region *region,
859 					 void __iomem *ptr)
860 {
861 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
862 
863 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
864 
865 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
866 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
867 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
868 					   gic_data.rdists.has_rvpeid);
869 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
870 
871 	/* Detect non-sensical configurations */
872 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
873 		gic_data.rdists.has_direct_lpi = false;
874 		gic_data.rdists.has_vlpis = false;
875 		gic_data.rdists.has_rvpeid = false;
876 	}
877 
878 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
879 
880 	return 1;
881 }
882 
883 static void gic_update_rdist_properties(void)
884 {
885 	gic_data.ppi_nr = UINT_MAX;
886 	gic_iterate_rdists(__gic_update_rdist_properties);
887 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
888 		gic_data.ppi_nr = 0;
889 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
890 	if (gic_data.rdists.has_vlpis)
891 		pr_info("GICv4 features: %s%s%s\n",
892 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
893 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
894 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
895 }
896 
897 /* Check whether it's single security state view */
898 static inline bool gic_dist_security_disabled(void)
899 {
900 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
901 }
902 
903 static void gic_cpu_sys_reg_init(void)
904 {
905 	int i, cpu = smp_processor_id();
906 	u64 mpidr = cpu_logical_map(cpu);
907 	u64 need_rss = MPIDR_RS(mpidr);
908 	bool group0;
909 	u32 pribits;
910 
911 	/*
912 	 * Need to check that the SRE bit has actually been set. If
913 	 * not, it means that SRE is disabled at EL2. We're going to
914 	 * die painfully, and there is nothing we can do about it.
915 	 *
916 	 * Kindly inform the luser.
917 	 */
918 	if (!gic_enable_sre())
919 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
920 
921 	pribits = gic_get_pribits();
922 
923 	group0 = gic_has_group0();
924 
925 	/* Set priority mask register */
926 	if (!gic_prio_masking_enabled()) {
927 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
928 	} else if (gic_supports_nmi()) {
929 		/*
930 		 * Mismatch configuration with boot CPU, the system is likely
931 		 * to die as interrupt masking will not work properly on all
932 		 * CPUs
933 		 *
934 		 * The boot CPU calls this function before enabling NMI support,
935 		 * and as a result we'll never see this warning in the boot path
936 		 * for that CPU.
937 		 */
938 		if (static_branch_unlikely(&gic_nonsecure_priorities))
939 			WARN_ON(!group0 || gic_dist_security_disabled());
940 		else
941 			WARN_ON(group0 && !gic_dist_security_disabled());
942 	}
943 
944 	/*
945 	 * Some firmwares hand over to the kernel with the BPR changed from
946 	 * its reset value (and with a value large enough to prevent
947 	 * any pre-emptive interrupts from working at all). Writing a zero
948 	 * to BPR restores is reset value.
949 	 */
950 	gic_write_bpr1(0);
951 
952 	if (static_branch_likely(&supports_deactivate_key)) {
953 		/* EOI drops priority only (mode 1) */
954 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
955 	} else {
956 		/* EOI deactivates interrupt too (mode 0) */
957 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
958 	}
959 
960 	/* Always whack Group0 before Group1 */
961 	if (group0) {
962 		switch(pribits) {
963 		case 8:
964 		case 7:
965 			write_gicreg(0, ICC_AP0R3_EL1);
966 			write_gicreg(0, ICC_AP0R2_EL1);
967 			fallthrough;
968 		case 6:
969 			write_gicreg(0, ICC_AP0R1_EL1);
970 			fallthrough;
971 		case 5:
972 		case 4:
973 			write_gicreg(0, ICC_AP0R0_EL1);
974 		}
975 
976 		isb();
977 	}
978 
979 	switch(pribits) {
980 	case 8:
981 	case 7:
982 		write_gicreg(0, ICC_AP1R3_EL1);
983 		write_gicreg(0, ICC_AP1R2_EL1);
984 		fallthrough;
985 	case 6:
986 		write_gicreg(0, ICC_AP1R1_EL1);
987 		fallthrough;
988 	case 5:
989 	case 4:
990 		write_gicreg(0, ICC_AP1R0_EL1);
991 	}
992 
993 	isb();
994 
995 	/* ... and let's hit the road... */
996 	gic_write_grpen1(1);
997 
998 	/* Keep the RSS capability status in per_cpu variable */
999 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1000 
1001 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1002 	for_each_online_cpu(i) {
1003 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1004 
1005 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1006 		if (need_rss && (!have_rss))
1007 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1008 				cpu, (unsigned long)mpidr,
1009 				i, (unsigned long)cpu_logical_map(i));
1010 	}
1011 
1012 	/**
1013 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1014 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1015 	 * UNPREDICTABLE choice of :
1016 	 *   - The write is ignored.
1017 	 *   - The RS field is treated as 0.
1018 	 */
1019 	if (need_rss && (!gic_data.has_rss))
1020 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1021 }
1022 
1023 static bool gicv3_nolpi;
1024 
1025 static int __init gicv3_nolpi_cfg(char *buf)
1026 {
1027 	return strtobool(buf, &gicv3_nolpi);
1028 }
1029 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1030 
1031 static int gic_dist_supports_lpis(void)
1032 {
1033 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1034 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1035 		!gicv3_nolpi);
1036 }
1037 
1038 static void gic_cpu_init(void)
1039 {
1040 	void __iomem *rbase;
1041 	int i;
1042 
1043 	/* Register ourselves with the rest of the world */
1044 	if (gic_populate_rdist())
1045 		return;
1046 
1047 	gic_enable_redist(true);
1048 
1049 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1050 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1051 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1052 	     smp_processor_id());
1053 
1054 	rbase = gic_data_rdist_sgi_base();
1055 
1056 	/* Configure SGIs/PPIs as non-secure Group-1 */
1057 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1058 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1059 
1060 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1061 
1062 	/* initialise system registers */
1063 	gic_cpu_sys_reg_init();
1064 }
1065 
1066 #ifdef CONFIG_SMP
1067 
1068 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1069 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1070 
1071 static int gic_starting_cpu(unsigned int cpu)
1072 {
1073 	gic_cpu_init();
1074 
1075 	if (gic_dist_supports_lpis())
1076 		its_cpu_init();
1077 
1078 	return 0;
1079 }
1080 
1081 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1082 				   unsigned long cluster_id)
1083 {
1084 	int next_cpu, cpu = *base_cpu;
1085 	unsigned long mpidr = cpu_logical_map(cpu);
1086 	u16 tlist = 0;
1087 
1088 	while (cpu < nr_cpu_ids) {
1089 		tlist |= 1 << (mpidr & 0xf);
1090 
1091 		next_cpu = cpumask_next(cpu, mask);
1092 		if (next_cpu >= nr_cpu_ids)
1093 			goto out;
1094 		cpu = next_cpu;
1095 
1096 		mpidr = cpu_logical_map(cpu);
1097 
1098 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1099 			cpu--;
1100 			goto out;
1101 		}
1102 	}
1103 out:
1104 	*base_cpu = cpu;
1105 	return tlist;
1106 }
1107 
1108 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1109 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1110 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1111 
1112 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1113 {
1114 	u64 val;
1115 
1116 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1117 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1118 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1119 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1120 	       MPIDR_TO_SGI_RS(cluster_id)		|
1121 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1122 
1123 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1124 	gic_write_sgi1r(val);
1125 }
1126 
1127 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1128 {
1129 	int cpu;
1130 
1131 	if (WARN_ON(d->hwirq >= 16))
1132 		return;
1133 
1134 	/*
1135 	 * Ensure that stores to Normal memory are visible to the
1136 	 * other CPUs before issuing the IPI.
1137 	 */
1138 	wmb();
1139 
1140 	for_each_cpu(cpu, mask) {
1141 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1142 		u16 tlist;
1143 
1144 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1145 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1146 	}
1147 
1148 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1149 	isb();
1150 }
1151 
1152 static void __init gic_smp_init(void)
1153 {
1154 	struct irq_fwspec sgi_fwspec = {
1155 		.fwnode		= gic_data.fwnode,
1156 		.param_count	= 1,
1157 	};
1158 	int base_sgi;
1159 
1160 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1161 				  "irqchip/arm/gicv3:starting",
1162 				  gic_starting_cpu, NULL);
1163 
1164 	/* Register all 8 non-secure SGIs */
1165 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1166 					   NUMA_NO_NODE, &sgi_fwspec,
1167 					   false, NULL);
1168 	if (WARN_ON(base_sgi <= 0))
1169 		return;
1170 
1171 	set_smp_ipi_range(base_sgi, 8);
1172 }
1173 
1174 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1175 			    bool force)
1176 {
1177 	unsigned int cpu;
1178 	u32 offset, index;
1179 	void __iomem *reg;
1180 	int enabled;
1181 	u64 val;
1182 
1183 	if (force)
1184 		cpu = cpumask_first(mask_val);
1185 	else
1186 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1187 
1188 	if (cpu >= nr_cpu_ids)
1189 		return -EINVAL;
1190 
1191 	if (gic_irq_in_rdist(d))
1192 		return -EINVAL;
1193 
1194 	/* If interrupt was enabled, disable it first */
1195 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1196 	if (enabled)
1197 		gic_mask_irq(d);
1198 
1199 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1200 	reg = gic_dist_base(d) + offset + (index * 8);
1201 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1202 
1203 	gic_write_irouter(val, reg);
1204 
1205 	/*
1206 	 * If the interrupt was enabled, enabled it again. Otherwise,
1207 	 * just wait for the distributor to have digested our changes.
1208 	 */
1209 	if (enabled)
1210 		gic_unmask_irq(d);
1211 	else
1212 		gic_dist_wait_for_rwp();
1213 
1214 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1215 
1216 	return IRQ_SET_MASK_OK_DONE;
1217 }
1218 #else
1219 #define gic_set_affinity	NULL
1220 #define gic_ipi_send_mask	NULL
1221 #define gic_smp_init()		do { } while(0)
1222 #endif
1223 
1224 static int gic_retrigger(struct irq_data *data)
1225 {
1226 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1227 }
1228 
1229 #ifdef CONFIG_CPU_PM
1230 static int gic_cpu_pm_notifier(struct notifier_block *self,
1231 			       unsigned long cmd, void *v)
1232 {
1233 	if (cmd == CPU_PM_EXIT) {
1234 		if (gic_dist_security_disabled())
1235 			gic_enable_redist(true);
1236 		gic_cpu_sys_reg_init();
1237 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1238 		gic_write_grpen1(0);
1239 		gic_enable_redist(false);
1240 	}
1241 	return NOTIFY_OK;
1242 }
1243 
1244 static struct notifier_block gic_cpu_pm_notifier_block = {
1245 	.notifier_call = gic_cpu_pm_notifier,
1246 };
1247 
1248 static void gic_cpu_pm_init(void)
1249 {
1250 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1251 }
1252 
1253 #else
1254 static inline void gic_cpu_pm_init(void) { }
1255 #endif /* CONFIG_CPU_PM */
1256 
1257 static struct irq_chip gic_chip = {
1258 	.name			= "GICv3",
1259 	.irq_mask		= gic_mask_irq,
1260 	.irq_unmask		= gic_unmask_irq,
1261 	.irq_eoi		= gic_eoi_irq,
1262 	.irq_set_type		= gic_set_type,
1263 	.irq_set_affinity	= gic_set_affinity,
1264 	.irq_retrigger          = gic_retrigger,
1265 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1266 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1267 	.irq_nmi_setup		= gic_irq_nmi_setup,
1268 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1269 	.ipi_send_mask		= gic_ipi_send_mask,
1270 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1271 				  IRQCHIP_SKIP_SET_WAKE |
1272 				  IRQCHIP_MASK_ON_SUSPEND,
1273 };
1274 
1275 static struct irq_chip gic_eoimode1_chip = {
1276 	.name			= "GICv3",
1277 	.irq_mask		= gic_eoimode1_mask_irq,
1278 	.irq_unmask		= gic_unmask_irq,
1279 	.irq_eoi		= gic_eoimode1_eoi_irq,
1280 	.irq_set_type		= gic_set_type,
1281 	.irq_set_affinity	= gic_set_affinity,
1282 	.irq_retrigger          = gic_retrigger,
1283 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1284 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1285 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1286 	.irq_nmi_setup		= gic_irq_nmi_setup,
1287 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1288 	.ipi_send_mask		= gic_ipi_send_mask,
1289 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1290 				  IRQCHIP_SKIP_SET_WAKE |
1291 				  IRQCHIP_MASK_ON_SUSPEND,
1292 };
1293 
1294 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1295 			      irq_hw_number_t hw)
1296 {
1297 	struct irq_chip *chip = &gic_chip;
1298 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1299 
1300 	if (static_branch_likely(&supports_deactivate_key))
1301 		chip = &gic_eoimode1_chip;
1302 
1303 	switch (__get_intid_range(hw)) {
1304 	case SGI_RANGE:
1305 		irq_set_percpu_devid(irq);
1306 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1307 				    handle_percpu_devid_fasteoi_ipi,
1308 				    NULL, NULL);
1309 		break;
1310 
1311 	case PPI_RANGE:
1312 	case EPPI_RANGE:
1313 		irq_set_percpu_devid(irq);
1314 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1315 				    handle_percpu_devid_irq, NULL, NULL);
1316 		break;
1317 
1318 	case SPI_RANGE:
1319 	case ESPI_RANGE:
1320 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1321 				    handle_fasteoi_irq, NULL, NULL);
1322 		irq_set_probe(irq);
1323 		irqd_set_single_target(irqd);
1324 		break;
1325 
1326 	case LPI_RANGE:
1327 		if (!gic_dist_supports_lpis())
1328 			return -EPERM;
1329 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1330 				    handle_fasteoi_irq, NULL, NULL);
1331 		break;
1332 
1333 	default:
1334 		return -EPERM;
1335 	}
1336 
1337 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1338 	irqd_set_handle_enforce_irqctx(irqd);
1339 	return 0;
1340 }
1341 
1342 static int gic_irq_domain_translate(struct irq_domain *d,
1343 				    struct irq_fwspec *fwspec,
1344 				    unsigned long *hwirq,
1345 				    unsigned int *type)
1346 {
1347 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1348 		*hwirq = fwspec->param[0];
1349 		*type = IRQ_TYPE_EDGE_RISING;
1350 		return 0;
1351 	}
1352 
1353 	if (is_of_node(fwspec->fwnode)) {
1354 		if (fwspec->param_count < 3)
1355 			return -EINVAL;
1356 
1357 		switch (fwspec->param[0]) {
1358 		case 0:			/* SPI */
1359 			*hwirq = fwspec->param[1] + 32;
1360 			break;
1361 		case 1:			/* PPI */
1362 			*hwirq = fwspec->param[1] + 16;
1363 			break;
1364 		case 2:			/* ESPI */
1365 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1366 			break;
1367 		case 3:			/* EPPI */
1368 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1369 			break;
1370 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1371 			*hwirq = fwspec->param[1];
1372 			break;
1373 		case GIC_IRQ_TYPE_PARTITION:
1374 			*hwirq = fwspec->param[1];
1375 			if (fwspec->param[1] >= 16)
1376 				*hwirq += EPPI_BASE_INTID - 16;
1377 			else
1378 				*hwirq += 16;
1379 			break;
1380 		default:
1381 			return -EINVAL;
1382 		}
1383 
1384 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1385 
1386 		/*
1387 		 * Make it clear that broken DTs are... broken.
1388 		 * Partitionned PPIs are an unfortunate exception.
1389 		 */
1390 		WARN_ON(*type == IRQ_TYPE_NONE &&
1391 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1392 		return 0;
1393 	}
1394 
1395 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1396 		if(fwspec->param_count != 2)
1397 			return -EINVAL;
1398 
1399 		*hwirq = fwspec->param[0];
1400 		*type = fwspec->param[1];
1401 
1402 		WARN_ON(*type == IRQ_TYPE_NONE);
1403 		return 0;
1404 	}
1405 
1406 	return -EINVAL;
1407 }
1408 
1409 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1410 				unsigned int nr_irqs, void *arg)
1411 {
1412 	int i, ret;
1413 	irq_hw_number_t hwirq;
1414 	unsigned int type = IRQ_TYPE_NONE;
1415 	struct irq_fwspec *fwspec = arg;
1416 
1417 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1418 	if (ret)
1419 		return ret;
1420 
1421 	for (i = 0; i < nr_irqs; i++) {
1422 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1423 		if (ret)
1424 			return ret;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1431 				unsigned int nr_irqs)
1432 {
1433 	int i;
1434 
1435 	for (i = 0; i < nr_irqs; i++) {
1436 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1437 		irq_set_handler(virq + i, NULL);
1438 		irq_domain_reset_irq_data(d);
1439 	}
1440 }
1441 
1442 static int gic_irq_domain_select(struct irq_domain *d,
1443 				 struct irq_fwspec *fwspec,
1444 				 enum irq_domain_bus_token bus_token)
1445 {
1446 	/* Not for us */
1447         if (fwspec->fwnode != d->fwnode)
1448 		return 0;
1449 
1450 	/* If this is not DT, then we have a single domain */
1451 	if (!is_of_node(fwspec->fwnode))
1452 		return 1;
1453 
1454 	/*
1455 	 * If this is a PPI and we have a 4th (non-null) parameter,
1456 	 * then we need to match the partition domain.
1457 	 */
1458 	if (fwspec->param_count >= 4 &&
1459 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1460 	    gic_data.ppi_descs)
1461 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1462 
1463 	return d == gic_data.domain;
1464 }
1465 
1466 static const struct irq_domain_ops gic_irq_domain_ops = {
1467 	.translate = gic_irq_domain_translate,
1468 	.alloc = gic_irq_domain_alloc,
1469 	.free = gic_irq_domain_free,
1470 	.select = gic_irq_domain_select,
1471 };
1472 
1473 static int partition_domain_translate(struct irq_domain *d,
1474 				      struct irq_fwspec *fwspec,
1475 				      unsigned long *hwirq,
1476 				      unsigned int *type)
1477 {
1478 	struct device_node *np;
1479 	int ret;
1480 
1481 	if (!gic_data.ppi_descs)
1482 		return -ENOMEM;
1483 
1484 	np = of_find_node_by_phandle(fwspec->param[3]);
1485 	if (WARN_ON(!np))
1486 		return -EINVAL;
1487 
1488 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1489 				     of_node_to_fwnode(np));
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	*hwirq = ret;
1494 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1495 
1496 	return 0;
1497 }
1498 
1499 static const struct irq_domain_ops partition_domain_ops = {
1500 	.translate = partition_domain_translate,
1501 	.select = gic_irq_domain_select,
1502 };
1503 
1504 static bool gic_enable_quirk_msm8996(void *data)
1505 {
1506 	struct gic_chip_data *d = data;
1507 
1508 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1509 
1510 	return true;
1511 }
1512 
1513 static bool gic_enable_quirk_cavium_38539(void *data)
1514 {
1515 	struct gic_chip_data *d = data;
1516 
1517 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1518 
1519 	return true;
1520 }
1521 
1522 static bool gic_enable_quirk_hip06_07(void *data)
1523 {
1524 	struct gic_chip_data *d = data;
1525 
1526 	/*
1527 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1528 	 * not being an actual ARM implementation). The saving grace is
1529 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1530 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1531 	 * have ESPI. In both cases, put them right.
1532 	 */
1533 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1534 		/* Zero both ESPI and the RES0 field next to it... */
1535 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1536 		return true;
1537 	}
1538 
1539 	return false;
1540 }
1541 
1542 static const struct gic_quirk gic_quirks[] = {
1543 	{
1544 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1545 		.compatible = "qcom,msm8996-gic-v3",
1546 		.init	= gic_enable_quirk_msm8996,
1547 	},
1548 	{
1549 		.desc	= "GICv3: HIP06 erratum 161010803",
1550 		.iidr	= 0x0204043b,
1551 		.mask	= 0xffffffff,
1552 		.init	= gic_enable_quirk_hip06_07,
1553 	},
1554 	{
1555 		.desc	= "GICv3: HIP07 erratum 161010803",
1556 		.iidr	= 0x00000000,
1557 		.mask	= 0xffffffff,
1558 		.init	= gic_enable_quirk_hip06_07,
1559 	},
1560 	{
1561 		/*
1562 		 * Reserved register accesses generate a Synchronous
1563 		 * External Abort. This erratum applies to:
1564 		 * - ThunderX: CN88xx
1565 		 * - OCTEON TX: CN83xx, CN81xx
1566 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1567 		 */
1568 		.desc	= "GICv3: Cavium erratum 38539",
1569 		.iidr	= 0xa000034c,
1570 		.mask	= 0xe8f00fff,
1571 		.init	= gic_enable_quirk_cavium_38539,
1572 	},
1573 	{
1574 	}
1575 };
1576 
1577 static void gic_enable_nmi_support(void)
1578 {
1579 	int i;
1580 
1581 	if (!gic_prio_masking_enabled())
1582 		return;
1583 
1584 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1585 	if (!ppi_nmi_refs)
1586 		return;
1587 
1588 	for (i = 0; i < gic_data.ppi_nr; i++)
1589 		refcount_set(&ppi_nmi_refs[i], 0);
1590 
1591 	/*
1592 	 * Linux itself doesn't use 1:N distribution, so has no need to
1593 	 * set PMHE. The only reason to have it set is if EL3 requires it
1594 	 * (and we can't change it).
1595 	 */
1596 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1597 		static_branch_enable(&gic_pmr_sync);
1598 
1599 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1600 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1601 
1602 	/*
1603 	 * How priority values are used by the GIC depends on two things:
1604 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1605 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1606 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1607 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1608 	 * interrupts:
1609 	 *
1610 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1611 	 * -----------------------------------------------------------
1612 	 *      1       |      -      |  unchanged  |    unchanged
1613 	 * -----------------------------------------------------------
1614 	 *      0       |      1      |  non-secure |    non-secure
1615 	 * -----------------------------------------------------------
1616 	 *      0       |      0      |  unchanged  |    non-secure
1617 	 *
1618 	 * where non-secure means that the value is right-shifted by one and the
1619 	 * MSB bit set, to make it fit in the non-secure priority range.
1620 	 *
1621 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1622 	 * are both either modified or unchanged, we can use the same set of
1623 	 * priorities.
1624 	 *
1625 	 * In the last case, where only the interrupt priorities are modified to
1626 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1627 	 * and the rest of the values that we use remain unchanged.
1628 	 */
1629 	if (gic_has_group0() && !gic_dist_security_disabled())
1630 		static_branch_enable(&gic_nonsecure_priorities);
1631 
1632 	static_branch_enable(&supports_pseudo_nmis);
1633 
1634 	if (static_branch_likely(&supports_deactivate_key))
1635 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1636 	else
1637 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1638 }
1639 
1640 static int __init gic_init_bases(void __iomem *dist_base,
1641 				 struct redist_region *rdist_regs,
1642 				 u32 nr_redist_regions,
1643 				 u64 redist_stride,
1644 				 struct fwnode_handle *handle)
1645 {
1646 	u32 typer;
1647 	int err;
1648 
1649 	if (!is_hyp_mode_available())
1650 		static_branch_disable(&supports_deactivate_key);
1651 
1652 	if (static_branch_likely(&supports_deactivate_key))
1653 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1654 
1655 	gic_data.fwnode = handle;
1656 	gic_data.dist_base = dist_base;
1657 	gic_data.redist_regions = rdist_regs;
1658 	gic_data.nr_redist_regions = nr_redist_regions;
1659 	gic_data.redist_stride = redist_stride;
1660 
1661 	/*
1662 	 * Find out how many interrupts are supported.
1663 	 */
1664 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1665 	gic_data.rdists.gicd_typer = typer;
1666 
1667 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1668 			  gic_quirks, &gic_data);
1669 
1670 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1671 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1672 
1673 	/*
1674 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1675 	 * architecture spec (which says that reserved registers are RES0).
1676 	 */
1677 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1678 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1679 
1680 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1681 						 &gic_data);
1682 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1683 	gic_data.rdists.has_rvpeid = true;
1684 	gic_data.rdists.has_vlpis = true;
1685 	gic_data.rdists.has_direct_lpi = true;
1686 	gic_data.rdists.has_vpend_valid_dirty = true;
1687 
1688 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1689 		err = -ENOMEM;
1690 		goto out_free;
1691 	}
1692 
1693 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1694 
1695 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1696 	pr_info("Distributor has %sRange Selector support\n",
1697 		gic_data.has_rss ? "" : "no ");
1698 
1699 	if (typer & GICD_TYPER_MBIS) {
1700 		err = mbi_init(handle, gic_data.domain);
1701 		if (err)
1702 			pr_err("Failed to initialize MBIs\n");
1703 	}
1704 
1705 	set_handle_irq(gic_handle_irq);
1706 
1707 	gic_update_rdist_properties();
1708 
1709 	gic_dist_init();
1710 	gic_cpu_init();
1711 	gic_smp_init();
1712 	gic_cpu_pm_init();
1713 
1714 	if (gic_dist_supports_lpis()) {
1715 		its_init(handle, &gic_data.rdists, gic_data.domain);
1716 		its_cpu_init();
1717 	} else {
1718 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1719 			gicv2m_init(handle, gic_data.domain);
1720 	}
1721 
1722 	gic_enable_nmi_support();
1723 
1724 	return 0;
1725 
1726 out_free:
1727 	if (gic_data.domain)
1728 		irq_domain_remove(gic_data.domain);
1729 	free_percpu(gic_data.rdists.rdist);
1730 	return err;
1731 }
1732 
1733 static int __init gic_validate_dist_version(void __iomem *dist_base)
1734 {
1735 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1736 
1737 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1738 		return -ENODEV;
1739 
1740 	return 0;
1741 }
1742 
1743 /* Create all possible partitions at boot time */
1744 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1745 {
1746 	struct device_node *parts_node, *child_part;
1747 	int part_idx = 0, i;
1748 	int nr_parts;
1749 	struct partition_affinity *parts;
1750 
1751 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1752 	if (!parts_node)
1753 		return;
1754 
1755 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1756 	if (!gic_data.ppi_descs)
1757 		return;
1758 
1759 	nr_parts = of_get_child_count(parts_node);
1760 
1761 	if (!nr_parts)
1762 		goto out_put_node;
1763 
1764 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1765 	if (WARN_ON(!parts))
1766 		goto out_put_node;
1767 
1768 	for_each_child_of_node(parts_node, child_part) {
1769 		struct partition_affinity *part;
1770 		int n;
1771 
1772 		part = &parts[part_idx];
1773 
1774 		part->partition_id = of_node_to_fwnode(child_part);
1775 
1776 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1777 			child_part, part_idx);
1778 
1779 		n = of_property_count_elems_of_size(child_part, "affinity",
1780 						    sizeof(u32));
1781 		WARN_ON(n <= 0);
1782 
1783 		for (i = 0; i < n; i++) {
1784 			int err, cpu;
1785 			u32 cpu_phandle;
1786 			struct device_node *cpu_node;
1787 
1788 			err = of_property_read_u32_index(child_part, "affinity",
1789 							 i, &cpu_phandle);
1790 			if (WARN_ON(err))
1791 				continue;
1792 
1793 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1794 			if (WARN_ON(!cpu_node))
1795 				continue;
1796 
1797 			cpu = of_cpu_node_to_id(cpu_node);
1798 			if (WARN_ON(cpu < 0))
1799 				continue;
1800 
1801 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1802 
1803 			cpumask_set_cpu(cpu, &part->mask);
1804 		}
1805 
1806 		pr_cont("}\n");
1807 		part_idx++;
1808 	}
1809 
1810 	for (i = 0; i < gic_data.ppi_nr; i++) {
1811 		unsigned int irq;
1812 		struct partition_desc *desc;
1813 		struct irq_fwspec ppi_fwspec = {
1814 			.fwnode		= gic_data.fwnode,
1815 			.param_count	= 3,
1816 			.param		= {
1817 				[0]	= GIC_IRQ_TYPE_PARTITION,
1818 				[1]	= i,
1819 				[2]	= IRQ_TYPE_NONE,
1820 			},
1821 		};
1822 
1823 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1824 		if (WARN_ON(!irq))
1825 			continue;
1826 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1827 					     irq, &partition_domain_ops);
1828 		if (WARN_ON(!desc))
1829 			continue;
1830 
1831 		gic_data.ppi_descs[i] = desc;
1832 	}
1833 
1834 out_put_node:
1835 	of_node_put(parts_node);
1836 }
1837 
1838 static void __init gic_of_setup_kvm_info(struct device_node *node)
1839 {
1840 	int ret;
1841 	struct resource r;
1842 	u32 gicv_idx;
1843 
1844 	gic_v3_kvm_info.type = GIC_V3;
1845 
1846 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1847 	if (!gic_v3_kvm_info.maint_irq)
1848 		return;
1849 
1850 	if (of_property_read_u32(node, "#redistributor-regions",
1851 				 &gicv_idx))
1852 		gicv_idx = 1;
1853 
1854 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1855 	ret = of_address_to_resource(node, gicv_idx, &r);
1856 	if (!ret)
1857 		gic_v3_kvm_info.vcpu = r;
1858 
1859 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1860 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1861 	gic_set_kvm_info(&gic_v3_kvm_info);
1862 }
1863 
1864 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1865 {
1866 	void __iomem *dist_base;
1867 	struct redist_region *rdist_regs;
1868 	u64 redist_stride;
1869 	u32 nr_redist_regions;
1870 	int err, i;
1871 
1872 	dist_base = of_iomap(node, 0);
1873 	if (!dist_base) {
1874 		pr_err("%pOF: unable to map gic dist registers\n", node);
1875 		return -ENXIO;
1876 	}
1877 
1878 	err = gic_validate_dist_version(dist_base);
1879 	if (err) {
1880 		pr_err("%pOF: no distributor detected, giving up\n", node);
1881 		goto out_unmap_dist;
1882 	}
1883 
1884 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1885 		nr_redist_regions = 1;
1886 
1887 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1888 			     GFP_KERNEL);
1889 	if (!rdist_regs) {
1890 		err = -ENOMEM;
1891 		goto out_unmap_dist;
1892 	}
1893 
1894 	for (i = 0; i < nr_redist_regions; i++) {
1895 		struct resource res;
1896 		int ret;
1897 
1898 		ret = of_address_to_resource(node, 1 + i, &res);
1899 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1900 		if (ret || !rdist_regs[i].redist_base) {
1901 			pr_err("%pOF: couldn't map region %d\n", node, i);
1902 			err = -ENODEV;
1903 			goto out_unmap_rdist;
1904 		}
1905 		rdist_regs[i].phys_base = res.start;
1906 	}
1907 
1908 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1909 		redist_stride = 0;
1910 
1911 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
1912 
1913 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1914 			     redist_stride, &node->fwnode);
1915 	if (err)
1916 		goto out_unmap_rdist;
1917 
1918 	gic_populate_ppi_partitions(node);
1919 
1920 	if (static_branch_likely(&supports_deactivate_key))
1921 		gic_of_setup_kvm_info(node);
1922 	return 0;
1923 
1924 out_unmap_rdist:
1925 	for (i = 0; i < nr_redist_regions; i++)
1926 		if (rdist_regs[i].redist_base)
1927 			iounmap(rdist_regs[i].redist_base);
1928 	kfree(rdist_regs);
1929 out_unmap_dist:
1930 	iounmap(dist_base);
1931 	return err;
1932 }
1933 
1934 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1935 
1936 #ifdef CONFIG_ACPI
1937 static struct
1938 {
1939 	void __iomem *dist_base;
1940 	struct redist_region *redist_regs;
1941 	u32 nr_redist_regions;
1942 	bool single_redist;
1943 	int enabled_rdists;
1944 	u32 maint_irq;
1945 	int maint_irq_mode;
1946 	phys_addr_t vcpu_base;
1947 } acpi_data __initdata;
1948 
1949 static void __init
1950 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
1951 {
1952 	static int count = 0;
1953 
1954 	acpi_data.redist_regs[count].phys_base = phys_base;
1955 	acpi_data.redist_regs[count].redist_base = redist_base;
1956 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1957 	count++;
1958 }
1959 
1960 static int __init
1961 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1962 			   const unsigned long end)
1963 {
1964 	struct acpi_madt_generic_redistributor *redist =
1965 			(struct acpi_madt_generic_redistributor *)header;
1966 	void __iomem *redist_base;
1967 
1968 	redist_base = ioremap(redist->base_address, redist->length);
1969 	if (!redist_base) {
1970 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
1971 		return -ENOMEM;
1972 	}
1973 
1974 	gic_acpi_register_redist(redist->base_address, redist_base);
1975 	return 0;
1976 }
1977 
1978 static int __init
1979 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1980 			 const unsigned long end)
1981 {
1982 	struct acpi_madt_generic_interrupt *gicc =
1983 				(struct acpi_madt_generic_interrupt *)header;
1984 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1985 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
1986 	void __iomem *redist_base;
1987 
1988 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
1989 	if (!(gicc->flags & ACPI_MADT_ENABLED))
1990 		return 0;
1991 
1992 	redist_base = ioremap(gicc->gicr_base_address, size);
1993 	if (!redist_base)
1994 		return -ENOMEM;
1995 
1996 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
1997 	return 0;
1998 }
1999 
2000 static int __init gic_acpi_collect_gicr_base(void)
2001 {
2002 	acpi_tbl_entry_handler redist_parser;
2003 	enum acpi_madt_type type;
2004 
2005 	if (acpi_data.single_redist) {
2006 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2007 		redist_parser = gic_acpi_parse_madt_gicc;
2008 	} else {
2009 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2010 		redist_parser = gic_acpi_parse_madt_redist;
2011 	}
2012 
2013 	/* Collect redistributor base addresses in GICR entries */
2014 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2015 		return 0;
2016 
2017 	pr_info("No valid GICR entries exist\n");
2018 	return -ENODEV;
2019 }
2020 
2021 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2022 				  const unsigned long end)
2023 {
2024 	/* Subtable presence means that redist exists, that's it */
2025 	return 0;
2026 }
2027 
2028 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2029 				      const unsigned long end)
2030 {
2031 	struct acpi_madt_generic_interrupt *gicc =
2032 				(struct acpi_madt_generic_interrupt *)header;
2033 
2034 	/*
2035 	 * If GICC is enabled and has valid gicr base address, then it means
2036 	 * GICR base is presented via GICC
2037 	 */
2038 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2039 		acpi_data.enabled_rdists++;
2040 		return 0;
2041 	}
2042 
2043 	/*
2044 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2045 	 * should not treat as errors, skip the entry instead of probe fail.
2046 	 */
2047 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2048 		return 0;
2049 
2050 	return -ENODEV;
2051 }
2052 
2053 static int __init gic_acpi_count_gicr_regions(void)
2054 {
2055 	int count;
2056 
2057 	/*
2058 	 * Count how many redistributor regions we have. It is not allowed
2059 	 * to mix redistributor description, GICR and GICC subtables have to be
2060 	 * mutually exclusive.
2061 	 */
2062 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2063 				      gic_acpi_match_gicr, 0);
2064 	if (count > 0) {
2065 		acpi_data.single_redist = false;
2066 		return count;
2067 	}
2068 
2069 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2070 				      gic_acpi_match_gicc, 0);
2071 	if (count > 0) {
2072 		acpi_data.single_redist = true;
2073 		count = acpi_data.enabled_rdists;
2074 	}
2075 
2076 	return count;
2077 }
2078 
2079 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2080 					   struct acpi_probe_entry *ape)
2081 {
2082 	struct acpi_madt_generic_distributor *dist;
2083 	int count;
2084 
2085 	dist = (struct acpi_madt_generic_distributor *)header;
2086 	if (dist->version != ape->driver_data)
2087 		return false;
2088 
2089 	/* We need to do that exercise anyway, the sooner the better */
2090 	count = gic_acpi_count_gicr_regions();
2091 	if (count <= 0)
2092 		return false;
2093 
2094 	acpi_data.nr_redist_regions = count;
2095 	return true;
2096 }
2097 
2098 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2099 						const unsigned long end)
2100 {
2101 	struct acpi_madt_generic_interrupt *gicc =
2102 		(struct acpi_madt_generic_interrupt *)header;
2103 	int maint_irq_mode;
2104 	static int first_madt = true;
2105 
2106 	/* Skip unusable CPUs */
2107 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2108 		return 0;
2109 
2110 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2111 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2112 
2113 	if (first_madt) {
2114 		first_madt = false;
2115 
2116 		acpi_data.maint_irq = gicc->vgic_interrupt;
2117 		acpi_data.maint_irq_mode = maint_irq_mode;
2118 		acpi_data.vcpu_base = gicc->gicv_base_address;
2119 
2120 		return 0;
2121 	}
2122 
2123 	/*
2124 	 * The maintenance interrupt and GICV should be the same for every CPU
2125 	 */
2126 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2127 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2128 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2129 		return -EINVAL;
2130 
2131 	return 0;
2132 }
2133 
2134 static bool __init gic_acpi_collect_virt_info(void)
2135 {
2136 	int count;
2137 
2138 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2139 				      gic_acpi_parse_virt_madt_gicc, 0);
2140 
2141 	return (count > 0);
2142 }
2143 
2144 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2145 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2146 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2147 
2148 static void __init gic_acpi_setup_kvm_info(void)
2149 {
2150 	int irq;
2151 
2152 	if (!gic_acpi_collect_virt_info()) {
2153 		pr_warn("Unable to get hardware information used for virtualization\n");
2154 		return;
2155 	}
2156 
2157 	gic_v3_kvm_info.type = GIC_V3;
2158 
2159 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2160 				acpi_data.maint_irq_mode,
2161 				ACPI_ACTIVE_HIGH);
2162 	if (irq <= 0)
2163 		return;
2164 
2165 	gic_v3_kvm_info.maint_irq = irq;
2166 
2167 	if (acpi_data.vcpu_base) {
2168 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2169 
2170 		vcpu->flags = IORESOURCE_MEM;
2171 		vcpu->start = acpi_data.vcpu_base;
2172 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2173 	}
2174 
2175 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2176 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2177 	gic_set_kvm_info(&gic_v3_kvm_info);
2178 }
2179 
2180 static int __init
2181 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2182 {
2183 	struct acpi_madt_generic_distributor *dist;
2184 	struct fwnode_handle *domain_handle;
2185 	size_t size;
2186 	int i, err;
2187 
2188 	/* Get distributor base address */
2189 	dist = (struct acpi_madt_generic_distributor *)header;
2190 	acpi_data.dist_base = ioremap(dist->base_address,
2191 				      ACPI_GICV3_DIST_MEM_SIZE);
2192 	if (!acpi_data.dist_base) {
2193 		pr_err("Unable to map GICD registers\n");
2194 		return -ENOMEM;
2195 	}
2196 
2197 	err = gic_validate_dist_version(acpi_data.dist_base);
2198 	if (err) {
2199 		pr_err("No distributor detected at @%p, giving up\n",
2200 		       acpi_data.dist_base);
2201 		goto out_dist_unmap;
2202 	}
2203 
2204 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2205 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2206 	if (!acpi_data.redist_regs) {
2207 		err = -ENOMEM;
2208 		goto out_dist_unmap;
2209 	}
2210 
2211 	err = gic_acpi_collect_gicr_base();
2212 	if (err)
2213 		goto out_redist_unmap;
2214 
2215 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2216 	if (!domain_handle) {
2217 		err = -ENOMEM;
2218 		goto out_redist_unmap;
2219 	}
2220 
2221 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2222 			     acpi_data.nr_redist_regions, 0, domain_handle);
2223 	if (err)
2224 		goto out_fwhandle_free;
2225 
2226 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2227 
2228 	if (static_branch_likely(&supports_deactivate_key))
2229 		gic_acpi_setup_kvm_info();
2230 
2231 	return 0;
2232 
2233 out_fwhandle_free:
2234 	irq_domain_free_fwnode(domain_handle);
2235 out_redist_unmap:
2236 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2237 		if (acpi_data.redist_regs[i].redist_base)
2238 			iounmap(acpi_data.redist_regs[i].redist_base);
2239 	kfree(acpi_data.redist_regs);
2240 out_dist_unmap:
2241 	iounmap(acpi_data.dist_base);
2242 	return err;
2243 }
2244 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2245 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2246 		     gic_acpi_init);
2247 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2248 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2249 		     gic_acpi_init);
2250 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2251 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2252 		     gic_acpi_init);
2253 #endif
2254