xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1 << 0)
41 
42 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
43 
44 /*
45  * Collection structure - just an ID, and a redistributor address to
46  * ping. We use one per CPU as a bag of interrupts assigned to this
47  * CPU.
48  */
49 struct its_collection {
50 	u64			target_address;
51 	u16			col_id;
52 };
53 
54 /*
55  * The ITS structure - contains most of the infrastructure, with the
56  * top-level MSI domain, the command queue, the collections, and the
57  * list of devices writing to it.
58  */
59 struct its_node {
60 	raw_spinlock_t		lock;
61 	struct list_head	entry;
62 	void __iomem		*base;
63 	unsigned long		phys_base;
64 	struct its_cmd_block	*cmd_base;
65 	struct its_cmd_block	*cmd_write;
66 	void			*tables[GITS_BASER_NR_REGS];
67 	struct its_collection	*collections;
68 	struct list_head	its_device_list;
69 	u64			flags;
70 	u32			ite_size;
71 };
72 
73 #define ITS_ITT_ALIGN		SZ_256
74 
75 struct event_lpi_map {
76 	unsigned long		*lpi_map;
77 	u16			*col_map;
78 	irq_hw_number_t		lpi_base;
79 	int			nr_lpis;
80 };
81 
82 /*
83  * The ITS view of a device - belongs to an ITS, a collection, owns an
84  * interrupt translation table, and a list of interrupts.
85  */
86 struct its_device {
87 	struct list_head	entry;
88 	struct its_node		*its;
89 	struct event_lpi_map	event_map;
90 	void			*itt;
91 	u32			nr_ites;
92 	u32			device_id;
93 };
94 
95 static LIST_HEAD(its_nodes);
96 static DEFINE_SPINLOCK(its_lock);
97 static struct device_node *gic_root_node;
98 static struct rdists *gic_rdists;
99 
100 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
101 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
102 
103 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
104 					       u32 event)
105 {
106 	struct its_node *its = its_dev->its;
107 
108 	return its->collections + its_dev->event_map.col_map[event];
109 }
110 
111 /*
112  * ITS command descriptors - parameters to be encoded in a command
113  * block.
114  */
115 struct its_cmd_desc {
116 	union {
117 		struct {
118 			struct its_device *dev;
119 			u32 event_id;
120 		} its_inv_cmd;
121 
122 		struct {
123 			struct its_device *dev;
124 			u32 event_id;
125 		} its_int_cmd;
126 
127 		struct {
128 			struct its_device *dev;
129 			int valid;
130 		} its_mapd_cmd;
131 
132 		struct {
133 			struct its_collection *col;
134 			int valid;
135 		} its_mapc_cmd;
136 
137 		struct {
138 			struct its_device *dev;
139 			u32 phys_id;
140 			u32 event_id;
141 		} its_mapvi_cmd;
142 
143 		struct {
144 			struct its_device *dev;
145 			struct its_collection *col;
146 			u32 event_id;
147 		} its_movi_cmd;
148 
149 		struct {
150 			struct its_device *dev;
151 			u32 event_id;
152 		} its_discard_cmd;
153 
154 		struct {
155 			struct its_collection *col;
156 		} its_invall_cmd;
157 	};
158 };
159 
160 /*
161  * The ITS command block, which is what the ITS actually parses.
162  */
163 struct its_cmd_block {
164 	u64	raw_cmd[4];
165 };
166 
167 #define ITS_CMD_QUEUE_SZ		SZ_64K
168 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
169 
170 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
171 						    struct its_cmd_desc *);
172 
173 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
174 {
175 	cmd->raw_cmd[0] &= ~0xffUL;
176 	cmd->raw_cmd[0] |= cmd_nr;
177 }
178 
179 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
180 {
181 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
182 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
183 }
184 
185 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
186 {
187 	cmd->raw_cmd[1] &= ~0xffffffffUL;
188 	cmd->raw_cmd[1] |= id;
189 }
190 
191 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
192 {
193 	cmd->raw_cmd[1] &= 0xffffffffUL;
194 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
195 }
196 
197 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
198 {
199 	cmd->raw_cmd[1] &= ~0x1fUL;
200 	cmd->raw_cmd[1] |= size & 0x1f;
201 }
202 
203 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
204 {
205 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
206 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
207 }
208 
209 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
210 {
211 	cmd->raw_cmd[2] &= ~(1UL << 63);
212 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
213 }
214 
215 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
216 {
217 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
218 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
219 }
220 
221 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
222 {
223 	cmd->raw_cmd[2] &= ~0xffffUL;
224 	cmd->raw_cmd[2] |= col;
225 }
226 
227 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
228 {
229 	/* Let's fixup BE commands */
230 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
231 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
232 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
233 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
234 }
235 
236 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
237 						 struct its_cmd_desc *desc)
238 {
239 	unsigned long itt_addr;
240 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
241 
242 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
243 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
244 
245 	its_encode_cmd(cmd, GITS_CMD_MAPD);
246 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
247 	its_encode_size(cmd, size - 1);
248 	its_encode_itt(cmd, itt_addr);
249 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
250 
251 	its_fixup_cmd(cmd);
252 
253 	return NULL;
254 }
255 
256 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
257 						 struct its_cmd_desc *desc)
258 {
259 	its_encode_cmd(cmd, GITS_CMD_MAPC);
260 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
261 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
262 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
263 
264 	its_fixup_cmd(cmd);
265 
266 	return desc->its_mapc_cmd.col;
267 }
268 
269 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
270 						  struct its_cmd_desc *desc)
271 {
272 	struct its_collection *col;
273 
274 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
275 			       desc->its_mapvi_cmd.event_id);
276 
277 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
278 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
279 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
280 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
281 	its_encode_collection(cmd, col->col_id);
282 
283 	its_fixup_cmd(cmd);
284 
285 	return col;
286 }
287 
288 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
289 						 struct its_cmd_desc *desc)
290 {
291 	struct its_collection *col;
292 
293 	col = dev_event_to_col(desc->its_movi_cmd.dev,
294 			       desc->its_movi_cmd.event_id);
295 
296 	its_encode_cmd(cmd, GITS_CMD_MOVI);
297 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
298 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
299 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
300 
301 	its_fixup_cmd(cmd);
302 
303 	return col;
304 }
305 
306 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
307 						    struct its_cmd_desc *desc)
308 {
309 	struct its_collection *col;
310 
311 	col = dev_event_to_col(desc->its_discard_cmd.dev,
312 			       desc->its_discard_cmd.event_id);
313 
314 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
315 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
316 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
317 
318 	its_fixup_cmd(cmd);
319 
320 	return col;
321 }
322 
323 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
324 						struct its_cmd_desc *desc)
325 {
326 	struct its_collection *col;
327 
328 	col = dev_event_to_col(desc->its_inv_cmd.dev,
329 			       desc->its_inv_cmd.event_id);
330 
331 	its_encode_cmd(cmd, GITS_CMD_INV);
332 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
333 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
334 
335 	its_fixup_cmd(cmd);
336 
337 	return col;
338 }
339 
340 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
341 						   struct its_cmd_desc *desc)
342 {
343 	its_encode_cmd(cmd, GITS_CMD_INVALL);
344 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
345 
346 	its_fixup_cmd(cmd);
347 
348 	return NULL;
349 }
350 
351 static u64 its_cmd_ptr_to_offset(struct its_node *its,
352 				 struct its_cmd_block *ptr)
353 {
354 	return (ptr - its->cmd_base) * sizeof(*ptr);
355 }
356 
357 static int its_queue_full(struct its_node *its)
358 {
359 	int widx;
360 	int ridx;
361 
362 	widx = its->cmd_write - its->cmd_base;
363 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
364 
365 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
366 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
373 {
374 	struct its_cmd_block *cmd;
375 	u32 count = 1000000;	/* 1s! */
376 
377 	while (its_queue_full(its)) {
378 		count--;
379 		if (!count) {
380 			pr_err_ratelimited("ITS queue not draining\n");
381 			return NULL;
382 		}
383 		cpu_relax();
384 		udelay(1);
385 	}
386 
387 	cmd = its->cmd_write++;
388 
389 	/* Handle queue wrapping */
390 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
391 		its->cmd_write = its->cmd_base;
392 
393 	return cmd;
394 }
395 
396 static struct its_cmd_block *its_post_commands(struct its_node *its)
397 {
398 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
399 
400 	writel_relaxed(wr, its->base + GITS_CWRITER);
401 
402 	return its->cmd_write;
403 }
404 
405 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
406 {
407 	/*
408 	 * Make sure the commands written to memory are observable by
409 	 * the ITS.
410 	 */
411 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
412 		__flush_dcache_area(cmd, sizeof(*cmd));
413 	else
414 		dsb(ishst);
415 }
416 
417 static void its_wait_for_range_completion(struct its_node *its,
418 					  struct its_cmd_block *from,
419 					  struct its_cmd_block *to)
420 {
421 	u64 rd_idx, from_idx, to_idx;
422 	u32 count = 1000000;	/* 1s! */
423 
424 	from_idx = its_cmd_ptr_to_offset(its, from);
425 	to_idx = its_cmd_ptr_to_offset(its, to);
426 
427 	while (1) {
428 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
429 		if (rd_idx >= to_idx || rd_idx < from_idx)
430 			break;
431 
432 		count--;
433 		if (!count) {
434 			pr_err_ratelimited("ITS queue timeout\n");
435 			return;
436 		}
437 		cpu_relax();
438 		udelay(1);
439 	}
440 }
441 
442 static void its_send_single_command(struct its_node *its,
443 				    its_cmd_builder_t builder,
444 				    struct its_cmd_desc *desc)
445 {
446 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
447 	struct its_collection *sync_col;
448 	unsigned long flags;
449 
450 	raw_spin_lock_irqsave(&its->lock, flags);
451 
452 	cmd = its_allocate_entry(its);
453 	if (!cmd) {		/* We're soooooo screewed... */
454 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
455 		raw_spin_unlock_irqrestore(&its->lock, flags);
456 		return;
457 	}
458 	sync_col = builder(cmd, desc);
459 	its_flush_cmd(its, cmd);
460 
461 	if (sync_col) {
462 		sync_cmd = its_allocate_entry(its);
463 		if (!sync_cmd) {
464 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
465 			goto post;
466 		}
467 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
468 		its_encode_target(sync_cmd, sync_col->target_address);
469 		its_fixup_cmd(sync_cmd);
470 		its_flush_cmd(its, sync_cmd);
471 	}
472 
473 post:
474 	next_cmd = its_post_commands(its);
475 	raw_spin_unlock_irqrestore(&its->lock, flags);
476 
477 	its_wait_for_range_completion(its, cmd, next_cmd);
478 }
479 
480 static void its_send_inv(struct its_device *dev, u32 event_id)
481 {
482 	struct its_cmd_desc desc;
483 
484 	desc.its_inv_cmd.dev = dev;
485 	desc.its_inv_cmd.event_id = event_id;
486 
487 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
488 }
489 
490 static void its_send_mapd(struct its_device *dev, int valid)
491 {
492 	struct its_cmd_desc desc;
493 
494 	desc.its_mapd_cmd.dev = dev;
495 	desc.its_mapd_cmd.valid = !!valid;
496 
497 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
498 }
499 
500 static void its_send_mapc(struct its_node *its, struct its_collection *col,
501 			  int valid)
502 {
503 	struct its_cmd_desc desc;
504 
505 	desc.its_mapc_cmd.col = col;
506 	desc.its_mapc_cmd.valid = !!valid;
507 
508 	its_send_single_command(its, its_build_mapc_cmd, &desc);
509 }
510 
511 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
512 {
513 	struct its_cmd_desc desc;
514 
515 	desc.its_mapvi_cmd.dev = dev;
516 	desc.its_mapvi_cmd.phys_id = irq_id;
517 	desc.its_mapvi_cmd.event_id = id;
518 
519 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
520 }
521 
522 static void its_send_movi(struct its_device *dev,
523 			  struct its_collection *col, u32 id)
524 {
525 	struct its_cmd_desc desc;
526 
527 	desc.its_movi_cmd.dev = dev;
528 	desc.its_movi_cmd.col = col;
529 	desc.its_movi_cmd.event_id = id;
530 
531 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
532 }
533 
534 static void its_send_discard(struct its_device *dev, u32 id)
535 {
536 	struct its_cmd_desc desc;
537 
538 	desc.its_discard_cmd.dev = dev;
539 	desc.its_discard_cmd.event_id = id;
540 
541 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
542 }
543 
544 static void its_send_invall(struct its_node *its, struct its_collection *col)
545 {
546 	struct its_cmd_desc desc;
547 
548 	desc.its_invall_cmd.col = col;
549 
550 	its_send_single_command(its, its_build_invall_cmd, &desc);
551 }
552 
553 /*
554  * irqchip functions - assumes MSI, mostly.
555  */
556 
557 static inline u32 its_get_event_id(struct irq_data *d)
558 {
559 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
560 	return d->hwirq - its_dev->event_map.lpi_base;
561 }
562 
563 static void lpi_set_config(struct irq_data *d, bool enable)
564 {
565 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
566 	irq_hw_number_t hwirq = d->hwirq;
567 	u32 id = its_get_event_id(d);
568 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
569 
570 	if (enable)
571 		*cfg |= LPI_PROP_ENABLED;
572 	else
573 		*cfg &= ~LPI_PROP_ENABLED;
574 
575 	/*
576 	 * Make the above write visible to the redistributors.
577 	 * And yes, we're flushing exactly: One. Single. Byte.
578 	 * Humpf...
579 	 */
580 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
581 		__flush_dcache_area(cfg, sizeof(*cfg));
582 	else
583 		dsb(ishst);
584 	its_send_inv(its_dev, id);
585 }
586 
587 static void its_mask_irq(struct irq_data *d)
588 {
589 	lpi_set_config(d, false);
590 }
591 
592 static void its_unmask_irq(struct irq_data *d)
593 {
594 	lpi_set_config(d, true);
595 }
596 
597 static void its_eoi_irq(struct irq_data *d)
598 {
599 	gic_write_eoir(d->hwirq);
600 }
601 
602 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
603 			    bool force)
604 {
605 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
606 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
607 	struct its_collection *target_col;
608 	u32 id = its_get_event_id(d);
609 
610 	if (cpu >= nr_cpu_ids)
611 		return -EINVAL;
612 
613 	target_col = &its_dev->its->collections[cpu];
614 	its_send_movi(its_dev, target_col, id);
615 	its_dev->event_map.col_map[id] = cpu;
616 
617 	return IRQ_SET_MASK_OK_DONE;
618 }
619 
620 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
621 {
622 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
623 	struct its_node *its;
624 	u64 addr;
625 
626 	its = its_dev->its;
627 	addr = its->phys_base + GITS_TRANSLATER;
628 
629 	msg->address_lo		= addr & ((1UL << 32) - 1);
630 	msg->address_hi		= addr >> 32;
631 	msg->data		= its_get_event_id(d);
632 }
633 
634 static struct irq_chip its_irq_chip = {
635 	.name			= "ITS",
636 	.irq_mask		= its_mask_irq,
637 	.irq_unmask		= its_unmask_irq,
638 	.irq_eoi		= its_eoi_irq,
639 	.irq_set_affinity	= its_set_affinity,
640 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
641 };
642 
643 /*
644  * How we allocate LPIs:
645  *
646  * The GIC has id_bits bits for interrupt identifiers. From there, we
647  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
648  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
649  * bits to the right.
650  *
651  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
652  */
653 #define IRQS_PER_CHUNK_SHIFT	5
654 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
655 
656 static unsigned long *lpi_bitmap;
657 static u32 lpi_chunks;
658 static DEFINE_SPINLOCK(lpi_lock);
659 
660 static int its_lpi_to_chunk(int lpi)
661 {
662 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
663 }
664 
665 static int its_chunk_to_lpi(int chunk)
666 {
667 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
668 }
669 
670 static int its_lpi_init(u32 id_bits)
671 {
672 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
673 
674 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
675 			     GFP_KERNEL);
676 	if (!lpi_bitmap) {
677 		lpi_chunks = 0;
678 		return -ENOMEM;
679 	}
680 
681 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
682 	return 0;
683 }
684 
685 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
686 {
687 	unsigned long *bitmap = NULL;
688 	int chunk_id;
689 	int nr_chunks;
690 	int i;
691 
692 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
693 
694 	spin_lock(&lpi_lock);
695 
696 	do {
697 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
698 						      0, nr_chunks, 0);
699 		if (chunk_id < lpi_chunks)
700 			break;
701 
702 		nr_chunks--;
703 	} while (nr_chunks > 0);
704 
705 	if (!nr_chunks)
706 		goto out;
707 
708 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
709 			 GFP_ATOMIC);
710 	if (!bitmap)
711 		goto out;
712 
713 	for (i = 0; i < nr_chunks; i++)
714 		set_bit(chunk_id + i, lpi_bitmap);
715 
716 	*base = its_chunk_to_lpi(chunk_id);
717 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
718 
719 out:
720 	spin_unlock(&lpi_lock);
721 
722 	return bitmap;
723 }
724 
725 static void its_lpi_free(struct event_lpi_map *map)
726 {
727 	int base = map->lpi_base;
728 	int nr_ids = map->nr_lpis;
729 	int lpi;
730 
731 	spin_lock(&lpi_lock);
732 
733 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
734 		int chunk = its_lpi_to_chunk(lpi);
735 		BUG_ON(chunk > lpi_chunks);
736 		if (test_bit(chunk, lpi_bitmap)) {
737 			clear_bit(chunk, lpi_bitmap);
738 		} else {
739 			pr_err("Bad LPI chunk %d\n", chunk);
740 		}
741 	}
742 
743 	spin_unlock(&lpi_lock);
744 
745 	kfree(map->lpi_map);
746 	kfree(map->col_map);
747 }
748 
749 /*
750  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
751  * deal with (one configuration byte per interrupt). PENDBASE has to
752  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
753  */
754 #define LPI_PROPBASE_SZ		SZ_64K
755 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
756 
757 /*
758  * This is how many bits of ID we need, including the useless ones.
759  */
760 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
761 
762 #define LPI_PROP_DEFAULT_PRIO	0xa0
763 
764 static int __init its_alloc_lpi_tables(void)
765 {
766 	phys_addr_t paddr;
767 
768 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
769 					   get_order(LPI_PROPBASE_SZ));
770 	if (!gic_rdists->prop_page) {
771 		pr_err("Failed to allocate PROPBASE\n");
772 		return -ENOMEM;
773 	}
774 
775 	paddr = page_to_phys(gic_rdists->prop_page);
776 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
777 
778 	/* Priority 0xa0, Group-1, disabled */
779 	memset(page_address(gic_rdists->prop_page),
780 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
781 	       LPI_PROPBASE_SZ);
782 
783 	/* Make sure the GIC will observe the written configuration */
784 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
785 
786 	return 0;
787 }
788 
789 static const char *its_base_type_string[] = {
790 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
791 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
792 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
793 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
794 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
795 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
796 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
797 };
798 
799 static void its_free_tables(struct its_node *its)
800 {
801 	int i;
802 
803 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
804 		if (its->tables[i]) {
805 			free_page((unsigned long)its->tables[i]);
806 			its->tables[i] = NULL;
807 		}
808 	}
809 }
810 
811 static int its_alloc_tables(const char *node_name, struct its_node *its)
812 {
813 	int err;
814 	int i;
815 	int psz = SZ_64K;
816 	u64 shr = GITS_BASER_InnerShareable;
817 	u64 cache = GITS_BASER_WaWb;
818 
819 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
820 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
821 		u64 type = GITS_BASER_TYPE(val);
822 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
823 		int order = get_order(psz);
824 		int alloc_size;
825 		u64 tmp;
826 		void *base;
827 
828 		if (type == GITS_BASER_TYPE_NONE)
829 			continue;
830 
831 		/*
832 		 * Allocate as many entries as required to fit the
833 		 * range of device IDs that the ITS can grok... The ID
834 		 * space being incredibly sparse, this results in a
835 		 * massive waste of memory.
836 		 *
837 		 * For other tables, only allocate a single page.
838 		 */
839 		if (type == GITS_BASER_TYPE_DEVICE) {
840 			u64 typer = readq_relaxed(its->base + GITS_TYPER);
841 			u32 ids = GITS_TYPER_DEVBITS(typer);
842 
843 			/*
844 			 * 'order' was initialized earlier to the default page
845 			 * granule of the the ITS.  We can't have an allocation
846 			 * smaller than that.  If the requested allocation
847 			 * is smaller, round up to the default page granule.
848 			 */
849 			order = max(get_order((1UL << ids) * entry_size),
850 				    order);
851 			if (order >= MAX_ORDER) {
852 				order = MAX_ORDER - 1;
853 				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
854 					node_name, order);
855 			}
856 		}
857 
858 		alloc_size = (1 << order) * PAGE_SIZE;
859 		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
860 		if (!base) {
861 			err = -ENOMEM;
862 			goto out_free;
863 		}
864 
865 		its->tables[i] = base;
866 
867 retry_baser:
868 		val = (virt_to_phys(base) 				 |
869 		       (type << GITS_BASER_TYPE_SHIFT)			 |
870 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
871 		       cache						 |
872 		       shr						 |
873 		       GITS_BASER_VALID);
874 
875 		switch (psz) {
876 		case SZ_4K:
877 			val |= GITS_BASER_PAGE_SIZE_4K;
878 			break;
879 		case SZ_16K:
880 			val |= GITS_BASER_PAGE_SIZE_16K;
881 			break;
882 		case SZ_64K:
883 			val |= GITS_BASER_PAGE_SIZE_64K;
884 			break;
885 		}
886 
887 		val |= (alloc_size / psz) - 1;
888 
889 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
890 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
891 
892 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
893 			/*
894 			 * Shareability didn't stick. Just use
895 			 * whatever the read reported, which is likely
896 			 * to be the only thing this redistributor
897 			 * supports. If that's zero, make it
898 			 * non-cacheable as well.
899 			 */
900 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
901 			if (!shr) {
902 				cache = GITS_BASER_nC;
903 				__flush_dcache_area(base, alloc_size);
904 			}
905 			goto retry_baser;
906 		}
907 
908 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
909 			/*
910 			 * Page size didn't stick. Let's try a smaller
911 			 * size and retry. If we reach 4K, then
912 			 * something is horribly wrong...
913 			 */
914 			switch (psz) {
915 			case SZ_16K:
916 				psz = SZ_4K;
917 				goto retry_baser;
918 			case SZ_64K:
919 				psz = SZ_16K;
920 				goto retry_baser;
921 			}
922 		}
923 
924 		if (val != tmp) {
925 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
926 			       node_name, i,
927 			       (unsigned long) val, (unsigned long) tmp);
928 			err = -ENXIO;
929 			goto out_free;
930 		}
931 
932 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
933 			(int)(alloc_size / entry_size),
934 			its_base_type_string[type],
935 			(unsigned long)virt_to_phys(base),
936 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
937 	}
938 
939 	return 0;
940 
941 out_free:
942 	its_free_tables(its);
943 
944 	return err;
945 }
946 
947 static int its_alloc_collections(struct its_node *its)
948 {
949 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
950 				   GFP_KERNEL);
951 	if (!its->collections)
952 		return -ENOMEM;
953 
954 	return 0;
955 }
956 
957 static void its_cpu_init_lpis(void)
958 {
959 	void __iomem *rbase = gic_data_rdist_rd_base();
960 	struct page *pend_page;
961 	u64 val, tmp;
962 
963 	/* If we didn't allocate the pending table yet, do it now */
964 	pend_page = gic_data_rdist()->pend_page;
965 	if (!pend_page) {
966 		phys_addr_t paddr;
967 		/*
968 		 * The pending pages have to be at least 64kB aligned,
969 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
970 		 */
971 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
972 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
973 		if (!pend_page) {
974 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
975 			       smp_processor_id());
976 			return;
977 		}
978 
979 		/* Make sure the GIC will observe the zero-ed page */
980 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
981 
982 		paddr = page_to_phys(pend_page);
983 		pr_info("CPU%d: using LPI pending table @%pa\n",
984 			smp_processor_id(), &paddr);
985 		gic_data_rdist()->pend_page = pend_page;
986 	}
987 
988 	/* Disable LPIs */
989 	val = readl_relaxed(rbase + GICR_CTLR);
990 	val &= ~GICR_CTLR_ENABLE_LPIS;
991 	writel_relaxed(val, rbase + GICR_CTLR);
992 
993 	/*
994 	 * Make sure any change to the table is observable by the GIC.
995 	 */
996 	dsb(sy);
997 
998 	/* set PROPBASE */
999 	val = (page_to_phys(gic_rdists->prop_page) |
1000 	       GICR_PROPBASER_InnerShareable |
1001 	       GICR_PROPBASER_WaWb |
1002 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1003 
1004 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1005 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1006 
1007 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1008 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1009 			/*
1010 			 * The HW reports non-shareable, we must
1011 			 * remove the cacheability attributes as
1012 			 * well.
1013 			 */
1014 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1015 				 GICR_PROPBASER_CACHEABILITY_MASK);
1016 			val |= GICR_PROPBASER_nC;
1017 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1018 		}
1019 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1020 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1021 	}
1022 
1023 	/* set PENDBASE */
1024 	val = (page_to_phys(pend_page) |
1025 	       GICR_PENDBASER_InnerShareable |
1026 	       GICR_PENDBASER_WaWb);
1027 
1028 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1029 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1030 
1031 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1032 		/*
1033 		 * The HW reports non-shareable, we must remove the
1034 		 * cacheability attributes as well.
1035 		 */
1036 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1037 			 GICR_PENDBASER_CACHEABILITY_MASK);
1038 		val |= GICR_PENDBASER_nC;
1039 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1040 	}
1041 
1042 	/* Enable LPIs */
1043 	val = readl_relaxed(rbase + GICR_CTLR);
1044 	val |= GICR_CTLR_ENABLE_LPIS;
1045 	writel_relaxed(val, rbase + GICR_CTLR);
1046 
1047 	/* Make sure the GIC has seen the above */
1048 	dsb(sy);
1049 }
1050 
1051 static void its_cpu_init_collection(void)
1052 {
1053 	struct its_node *its;
1054 	int cpu;
1055 
1056 	spin_lock(&its_lock);
1057 	cpu = smp_processor_id();
1058 
1059 	list_for_each_entry(its, &its_nodes, entry) {
1060 		u64 target;
1061 
1062 		/*
1063 		 * We now have to bind each collection to its target
1064 		 * redistributor.
1065 		 */
1066 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1067 			/*
1068 			 * This ITS wants the physical address of the
1069 			 * redistributor.
1070 			 */
1071 			target = gic_data_rdist()->phys_base;
1072 		} else {
1073 			/*
1074 			 * This ITS wants a linear CPU number.
1075 			 */
1076 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1077 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1078 		}
1079 
1080 		/* Perform collection mapping */
1081 		its->collections[cpu].target_address = target;
1082 		its->collections[cpu].col_id = cpu;
1083 
1084 		its_send_mapc(its, &its->collections[cpu], 1);
1085 		its_send_invall(its, &its->collections[cpu]);
1086 	}
1087 
1088 	spin_unlock(&its_lock);
1089 }
1090 
1091 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1092 {
1093 	struct its_device *its_dev = NULL, *tmp;
1094 	unsigned long flags;
1095 
1096 	raw_spin_lock_irqsave(&its->lock, flags);
1097 
1098 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1099 		if (tmp->device_id == dev_id) {
1100 			its_dev = tmp;
1101 			break;
1102 		}
1103 	}
1104 
1105 	raw_spin_unlock_irqrestore(&its->lock, flags);
1106 
1107 	return its_dev;
1108 }
1109 
1110 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1111 					    int nvecs)
1112 {
1113 	struct its_device *dev;
1114 	unsigned long *lpi_map;
1115 	unsigned long flags;
1116 	u16 *col_map = NULL;
1117 	void *itt;
1118 	int lpi_base;
1119 	int nr_lpis;
1120 	int nr_ites;
1121 	int sz;
1122 
1123 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1124 	/*
1125 	 * At least one bit of EventID is being used, hence a minimum
1126 	 * of two entries. No, the architecture doesn't let you
1127 	 * express an ITT with a single entry.
1128 	 */
1129 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1130 	sz = nr_ites * its->ite_size;
1131 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1132 	itt = kzalloc(sz, GFP_KERNEL);
1133 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1134 	if (lpi_map)
1135 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1136 
1137 	if (!dev || !itt || !lpi_map || !col_map) {
1138 		kfree(dev);
1139 		kfree(itt);
1140 		kfree(lpi_map);
1141 		kfree(col_map);
1142 		return NULL;
1143 	}
1144 
1145 	__flush_dcache_area(itt, sz);
1146 
1147 	dev->its = its;
1148 	dev->itt = itt;
1149 	dev->nr_ites = nr_ites;
1150 	dev->event_map.lpi_map = lpi_map;
1151 	dev->event_map.col_map = col_map;
1152 	dev->event_map.lpi_base = lpi_base;
1153 	dev->event_map.nr_lpis = nr_lpis;
1154 	dev->device_id = dev_id;
1155 	INIT_LIST_HEAD(&dev->entry);
1156 
1157 	raw_spin_lock_irqsave(&its->lock, flags);
1158 	list_add(&dev->entry, &its->its_device_list);
1159 	raw_spin_unlock_irqrestore(&its->lock, flags);
1160 
1161 	/* Map device to its ITT */
1162 	its_send_mapd(dev, 1);
1163 
1164 	return dev;
1165 }
1166 
1167 static void its_free_device(struct its_device *its_dev)
1168 {
1169 	unsigned long flags;
1170 
1171 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1172 	list_del(&its_dev->entry);
1173 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1174 	kfree(its_dev->itt);
1175 	kfree(its_dev);
1176 }
1177 
1178 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1179 {
1180 	int idx;
1181 
1182 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1183 				  dev->event_map.nr_lpis);
1184 	if (idx == dev->event_map.nr_lpis)
1185 		return -ENOSPC;
1186 
1187 	*hwirq = dev->event_map.lpi_base + idx;
1188 	set_bit(idx, dev->event_map.lpi_map);
1189 
1190 	return 0;
1191 }
1192 
1193 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1194 			   int nvec, msi_alloc_info_t *info)
1195 {
1196 	struct its_node *its;
1197 	struct its_device *its_dev;
1198 	struct msi_domain_info *msi_info;
1199 	u32 dev_id;
1200 
1201 	/*
1202 	 * We ignore "dev" entierely, and rely on the dev_id that has
1203 	 * been passed via the scratchpad. This limits this domain's
1204 	 * usefulness to upper layers that definitely know that they
1205 	 * are built on top of the ITS.
1206 	 */
1207 	dev_id = info->scratchpad[0].ul;
1208 
1209 	msi_info = msi_get_domain_info(domain);
1210 	its = msi_info->data;
1211 
1212 	its_dev = its_find_device(its, dev_id);
1213 	if (its_dev) {
1214 		/*
1215 		 * We already have seen this ID, probably through
1216 		 * another alias (PCI bridge of some sort). No need to
1217 		 * create the device.
1218 		 */
1219 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1220 		goto out;
1221 	}
1222 
1223 	its_dev = its_create_device(its, dev_id, nvec);
1224 	if (!its_dev)
1225 		return -ENOMEM;
1226 
1227 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1228 out:
1229 	info->scratchpad[0].ptr = its_dev;
1230 	return 0;
1231 }
1232 
1233 static struct msi_domain_ops its_msi_domain_ops = {
1234 	.msi_prepare	= its_msi_prepare,
1235 };
1236 
1237 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1238 				    unsigned int virq,
1239 				    irq_hw_number_t hwirq)
1240 {
1241 	struct of_phandle_args args;
1242 
1243 	args.np = domain->parent->of_node;
1244 	args.args_count = 3;
1245 	args.args[0] = GIC_IRQ_TYPE_LPI;
1246 	args.args[1] = hwirq;
1247 	args.args[2] = IRQ_TYPE_EDGE_RISING;
1248 
1249 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &args);
1250 }
1251 
1252 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1253 				unsigned int nr_irqs, void *args)
1254 {
1255 	msi_alloc_info_t *info = args;
1256 	struct its_device *its_dev = info->scratchpad[0].ptr;
1257 	irq_hw_number_t hwirq;
1258 	int err;
1259 	int i;
1260 
1261 	for (i = 0; i < nr_irqs; i++) {
1262 		err = its_alloc_device_irq(its_dev, &hwirq);
1263 		if (err)
1264 			return err;
1265 
1266 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1267 		if (err)
1268 			return err;
1269 
1270 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1271 					      hwirq, &its_irq_chip, its_dev);
1272 		pr_debug("ID:%d pID:%d vID:%d\n",
1273 			 (int)(hwirq - its_dev->event_map.lpi_base),
1274 			 (int) hwirq, virq + i);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static void its_irq_domain_activate(struct irq_domain *domain,
1281 				    struct irq_data *d)
1282 {
1283 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1284 	u32 event = its_get_event_id(d);
1285 
1286 	/* Bind the LPI to the first possible CPU */
1287 	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1288 
1289 	/* Map the GIC IRQ and event to the device */
1290 	its_send_mapvi(its_dev, d->hwirq, event);
1291 }
1292 
1293 static void its_irq_domain_deactivate(struct irq_domain *domain,
1294 				      struct irq_data *d)
1295 {
1296 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1297 	u32 event = its_get_event_id(d);
1298 
1299 	/* Stop the delivery of interrupts */
1300 	its_send_discard(its_dev, event);
1301 }
1302 
1303 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1304 				unsigned int nr_irqs)
1305 {
1306 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1307 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1308 	int i;
1309 
1310 	for (i = 0; i < nr_irqs; i++) {
1311 		struct irq_data *data = irq_domain_get_irq_data(domain,
1312 								virq + i);
1313 		u32 event = its_get_event_id(data);
1314 
1315 		/* Mark interrupt index as unused */
1316 		clear_bit(event, its_dev->event_map.lpi_map);
1317 
1318 		/* Nuke the entry in the domain */
1319 		irq_domain_reset_irq_data(data);
1320 	}
1321 
1322 	/* If all interrupts have been freed, start mopping the floor */
1323 	if (bitmap_empty(its_dev->event_map.lpi_map,
1324 			 its_dev->event_map.nr_lpis)) {
1325 		its_lpi_free(&its_dev->event_map);
1326 
1327 		/* Unmap device/itt */
1328 		its_send_mapd(its_dev, 0);
1329 		its_free_device(its_dev);
1330 	}
1331 
1332 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1333 }
1334 
1335 static const struct irq_domain_ops its_domain_ops = {
1336 	.alloc			= its_irq_domain_alloc,
1337 	.free			= its_irq_domain_free,
1338 	.activate		= its_irq_domain_activate,
1339 	.deactivate		= its_irq_domain_deactivate,
1340 };
1341 
1342 static int its_force_quiescent(void __iomem *base)
1343 {
1344 	u32 count = 1000000;	/* 1s */
1345 	u32 val;
1346 
1347 	val = readl_relaxed(base + GITS_CTLR);
1348 	if (val & GITS_CTLR_QUIESCENT)
1349 		return 0;
1350 
1351 	/* Disable the generation of all interrupts to this ITS */
1352 	val &= ~GITS_CTLR_ENABLE;
1353 	writel_relaxed(val, base + GITS_CTLR);
1354 
1355 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1356 	while (1) {
1357 		val = readl_relaxed(base + GITS_CTLR);
1358 		if (val & GITS_CTLR_QUIESCENT)
1359 			return 0;
1360 
1361 		count--;
1362 		if (!count)
1363 			return -EBUSY;
1364 
1365 		cpu_relax();
1366 		udelay(1);
1367 	}
1368 }
1369 
1370 static int its_probe(struct device_node *node, struct irq_domain *parent)
1371 {
1372 	struct resource res;
1373 	struct its_node *its;
1374 	void __iomem *its_base;
1375 	struct irq_domain *inner_domain;
1376 	u32 val;
1377 	u64 baser, tmp;
1378 	int err;
1379 
1380 	err = of_address_to_resource(node, 0, &res);
1381 	if (err) {
1382 		pr_warn("%s: no regs?\n", node->full_name);
1383 		return -ENXIO;
1384 	}
1385 
1386 	its_base = ioremap(res.start, resource_size(&res));
1387 	if (!its_base) {
1388 		pr_warn("%s: unable to map registers\n", node->full_name);
1389 		return -ENOMEM;
1390 	}
1391 
1392 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1393 	if (val != 0x30 && val != 0x40) {
1394 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1395 		err = -ENODEV;
1396 		goto out_unmap;
1397 	}
1398 
1399 	err = its_force_quiescent(its_base);
1400 	if (err) {
1401 		pr_warn("%s: failed to quiesce, giving up\n",
1402 			node->full_name);
1403 		goto out_unmap;
1404 	}
1405 
1406 	pr_info("ITS: %s\n", node->full_name);
1407 
1408 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1409 	if (!its) {
1410 		err = -ENOMEM;
1411 		goto out_unmap;
1412 	}
1413 
1414 	raw_spin_lock_init(&its->lock);
1415 	INIT_LIST_HEAD(&its->entry);
1416 	INIT_LIST_HEAD(&its->its_device_list);
1417 	its->base = its_base;
1418 	its->phys_base = res.start;
1419 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1420 
1421 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1422 	if (!its->cmd_base) {
1423 		err = -ENOMEM;
1424 		goto out_free_its;
1425 	}
1426 	its->cmd_write = its->cmd_base;
1427 
1428 	err = its_alloc_tables(node->full_name, its);
1429 	if (err)
1430 		goto out_free_cmd;
1431 
1432 	err = its_alloc_collections(its);
1433 	if (err)
1434 		goto out_free_tables;
1435 
1436 	baser = (virt_to_phys(its->cmd_base)	|
1437 		 GITS_CBASER_WaWb		|
1438 		 GITS_CBASER_InnerShareable	|
1439 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1440 		 GITS_CBASER_VALID);
1441 
1442 	writeq_relaxed(baser, its->base + GITS_CBASER);
1443 	tmp = readq_relaxed(its->base + GITS_CBASER);
1444 
1445 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1446 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1447 			/*
1448 			 * The HW reports non-shareable, we must
1449 			 * remove the cacheability attributes as
1450 			 * well.
1451 			 */
1452 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1453 				   GITS_CBASER_CACHEABILITY_MASK);
1454 			baser |= GITS_CBASER_nC;
1455 			writeq_relaxed(baser, its->base + GITS_CBASER);
1456 		}
1457 		pr_info("ITS: using cache flushing for cmd queue\n");
1458 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1459 	}
1460 
1461 	writeq_relaxed(0, its->base + GITS_CWRITER);
1462 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1463 
1464 	if (of_property_read_bool(node, "msi-controller")) {
1465 		struct msi_domain_info *info;
1466 
1467 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1468 		if (!info) {
1469 			err = -ENOMEM;
1470 			goto out_free_tables;
1471 		}
1472 
1473 		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1474 		if (!inner_domain) {
1475 			err = -ENOMEM;
1476 			kfree(info);
1477 			goto out_free_tables;
1478 		}
1479 
1480 		inner_domain->parent = parent;
1481 		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1482 		info->ops = &its_msi_domain_ops;
1483 		info->data = its;
1484 		inner_domain->host_data = info;
1485 	}
1486 
1487 	spin_lock(&its_lock);
1488 	list_add(&its->entry, &its_nodes);
1489 	spin_unlock(&its_lock);
1490 
1491 	return 0;
1492 
1493 out_free_tables:
1494 	its_free_tables(its);
1495 out_free_cmd:
1496 	kfree(its->cmd_base);
1497 out_free_its:
1498 	kfree(its);
1499 out_unmap:
1500 	iounmap(its_base);
1501 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1502 	return err;
1503 }
1504 
1505 static bool gic_rdists_supports_plpis(void)
1506 {
1507 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1508 }
1509 
1510 int its_cpu_init(void)
1511 {
1512 	if (!list_empty(&its_nodes)) {
1513 		if (!gic_rdists_supports_plpis()) {
1514 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1515 			return -ENXIO;
1516 		}
1517 		its_cpu_init_lpis();
1518 		its_cpu_init_collection();
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static struct of_device_id its_device_id[] = {
1525 	{	.compatible	= "arm,gic-v3-its",	},
1526 	{},
1527 };
1528 
1529 int its_init(struct device_node *node, struct rdists *rdists,
1530 	     struct irq_domain *parent_domain)
1531 {
1532 	struct device_node *np;
1533 
1534 	for (np = of_find_matching_node(node, its_device_id); np;
1535 	     np = of_find_matching_node(np, its_device_id)) {
1536 		its_probe(np, parent_domain);
1537 	}
1538 
1539 	if (list_empty(&its_nodes)) {
1540 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1541 		return -ENXIO;
1542 	}
1543 
1544 	gic_rdists = rdists;
1545 	gic_root_node = node;
1546 
1547 	its_alloc_lpi_tables();
1548 	its_lpi_init(rdists->id_bits);
1549 
1550 	return 0;
1551 }
1552