1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 #include <linux/syscore_ops.h> 37 38 #include <linux/irqchip.h> 39 #include <linux/irqchip/arm-gic-v3.h> 40 #include <linux/irqchip/arm-gic-v4.h> 41 42 #include <asm/cputype.h> 43 #include <asm/exception.h> 44 45 #include "irq-gic-common.h" 46 47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 50 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 51 52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 53 54 static u32 lpi_id_bits; 55 56 /* 57 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 58 * deal with (one configuration byte per interrupt). PENDBASE has to 59 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 60 */ 61 #define LPI_NRBITS lpi_id_bits 62 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 63 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 64 65 #define LPI_PROP_DEFAULT_PRIO 0xa0 66 67 /* 68 * Collection structure - just an ID, and a redistributor address to 69 * ping. We use one per CPU as a bag of interrupts assigned to this 70 * CPU. 71 */ 72 struct its_collection { 73 u64 target_address; 74 u16 col_id; 75 }; 76 77 /* 78 * The ITS_BASER structure - contains memory information, cached 79 * value of BASER register configuration and ITS page size. 80 */ 81 struct its_baser { 82 void *base; 83 u64 val; 84 u32 order; 85 u32 psz; 86 }; 87 88 struct its_device; 89 90 /* 91 * The ITS structure - contains most of the infrastructure, with the 92 * top-level MSI domain, the command queue, the collections, and the 93 * list of devices writing to it. 94 */ 95 struct its_node { 96 raw_spinlock_t lock; 97 struct list_head entry; 98 void __iomem *base; 99 phys_addr_t phys_base; 100 struct its_cmd_block *cmd_base; 101 struct its_cmd_block *cmd_write; 102 struct its_baser tables[GITS_BASER_NR_REGS]; 103 struct its_collection *collections; 104 struct fwnode_handle *fwnode_handle; 105 u64 (*get_msi_base)(struct its_device *its_dev); 106 u64 cbaser_save; 107 u32 ctlr_save; 108 struct list_head its_device_list; 109 u64 flags; 110 unsigned long list_nr; 111 u32 ite_size; 112 u32 device_ids; 113 int numa_node; 114 unsigned int msi_domain_flags; 115 u32 pre_its_base; /* for Socionext Synquacer */ 116 bool is_v4; 117 int vlpi_redist_offset; 118 }; 119 120 #define ITS_ITT_ALIGN SZ_256 121 122 /* The maximum number of VPEID bits supported by VLPI commands */ 123 #define ITS_MAX_VPEID_BITS (16) 124 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 125 126 /* Convert page order to size in bytes */ 127 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 128 129 struct event_lpi_map { 130 unsigned long *lpi_map; 131 u16 *col_map; 132 irq_hw_number_t lpi_base; 133 int nr_lpis; 134 struct mutex vlpi_lock; 135 struct its_vm *vm; 136 struct its_vlpi_map *vlpi_maps; 137 int nr_vlpis; 138 }; 139 140 /* 141 * The ITS view of a device - belongs to an ITS, owns an interrupt 142 * translation table, and a list of interrupts. If it some of its 143 * LPIs are injected into a guest (GICv4), the event_map.vm field 144 * indicates which one. 145 */ 146 struct its_device { 147 struct list_head entry; 148 struct its_node *its; 149 struct event_lpi_map event_map; 150 void *itt; 151 u32 nr_ites; 152 u32 device_id; 153 }; 154 155 static struct { 156 raw_spinlock_t lock; 157 struct its_device *dev; 158 struct its_vpe **vpes; 159 int next_victim; 160 } vpe_proxy; 161 162 static LIST_HEAD(its_nodes); 163 static DEFINE_SPINLOCK(its_lock); 164 static struct rdists *gic_rdists; 165 static struct irq_domain *its_parent; 166 167 static unsigned long its_list_map; 168 static u16 vmovp_seq_num; 169 static DEFINE_RAW_SPINLOCK(vmovp_lock); 170 171 static DEFINE_IDA(its_vpeid_ida); 172 173 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 174 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 175 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 176 177 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 178 u32 event) 179 { 180 struct its_node *its = its_dev->its; 181 182 return its->collections + its_dev->event_map.col_map[event]; 183 } 184 185 /* 186 * ITS command descriptors - parameters to be encoded in a command 187 * block. 188 */ 189 struct its_cmd_desc { 190 union { 191 struct { 192 struct its_device *dev; 193 u32 event_id; 194 } its_inv_cmd; 195 196 struct { 197 struct its_device *dev; 198 u32 event_id; 199 } its_clear_cmd; 200 201 struct { 202 struct its_device *dev; 203 u32 event_id; 204 } its_int_cmd; 205 206 struct { 207 struct its_device *dev; 208 int valid; 209 } its_mapd_cmd; 210 211 struct { 212 struct its_collection *col; 213 int valid; 214 } its_mapc_cmd; 215 216 struct { 217 struct its_device *dev; 218 u32 phys_id; 219 u32 event_id; 220 } its_mapti_cmd; 221 222 struct { 223 struct its_device *dev; 224 struct its_collection *col; 225 u32 event_id; 226 } its_movi_cmd; 227 228 struct { 229 struct its_device *dev; 230 u32 event_id; 231 } its_discard_cmd; 232 233 struct { 234 struct its_collection *col; 235 } its_invall_cmd; 236 237 struct { 238 struct its_vpe *vpe; 239 } its_vinvall_cmd; 240 241 struct { 242 struct its_vpe *vpe; 243 struct its_collection *col; 244 bool valid; 245 } its_vmapp_cmd; 246 247 struct { 248 struct its_vpe *vpe; 249 struct its_device *dev; 250 u32 virt_id; 251 u32 event_id; 252 bool db_enabled; 253 } its_vmapti_cmd; 254 255 struct { 256 struct its_vpe *vpe; 257 struct its_device *dev; 258 u32 event_id; 259 bool db_enabled; 260 } its_vmovi_cmd; 261 262 struct { 263 struct its_vpe *vpe; 264 struct its_collection *col; 265 u16 seq_num; 266 u16 its_list; 267 } its_vmovp_cmd; 268 }; 269 }; 270 271 /* 272 * The ITS command block, which is what the ITS actually parses. 273 */ 274 struct its_cmd_block { 275 u64 raw_cmd[4]; 276 }; 277 278 #define ITS_CMD_QUEUE_SZ SZ_64K 279 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 280 281 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 282 struct its_cmd_block *, 283 struct its_cmd_desc *); 284 285 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 286 struct its_cmd_block *, 287 struct its_cmd_desc *); 288 289 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 290 { 291 u64 mask = GENMASK_ULL(h, l); 292 *raw_cmd &= ~mask; 293 *raw_cmd |= (val << l) & mask; 294 } 295 296 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 297 { 298 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 299 } 300 301 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 302 { 303 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 304 } 305 306 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 307 { 308 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 309 } 310 311 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 312 { 313 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 314 } 315 316 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 317 { 318 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 319 } 320 321 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 322 { 323 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 324 } 325 326 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 327 { 328 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 329 } 330 331 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 332 { 333 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 334 } 335 336 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 337 { 338 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 339 } 340 341 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 342 { 343 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 344 } 345 346 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 347 { 348 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 349 } 350 351 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 352 { 353 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 354 } 355 356 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 357 { 358 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 359 } 360 361 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 362 { 363 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 364 } 365 366 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 367 { 368 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 369 } 370 371 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 372 { 373 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 374 } 375 376 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 377 { 378 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 379 } 380 381 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 382 { 383 /* Let's fixup BE commands */ 384 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 385 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 386 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 387 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 388 } 389 390 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 391 struct its_cmd_block *cmd, 392 struct its_cmd_desc *desc) 393 { 394 unsigned long itt_addr; 395 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 396 397 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 398 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 399 400 its_encode_cmd(cmd, GITS_CMD_MAPD); 401 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 402 its_encode_size(cmd, size - 1); 403 its_encode_itt(cmd, itt_addr); 404 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 405 406 its_fixup_cmd(cmd); 407 408 return NULL; 409 } 410 411 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 412 struct its_cmd_block *cmd, 413 struct its_cmd_desc *desc) 414 { 415 its_encode_cmd(cmd, GITS_CMD_MAPC); 416 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 417 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 418 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 419 420 its_fixup_cmd(cmd); 421 422 return desc->its_mapc_cmd.col; 423 } 424 425 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 426 struct its_cmd_block *cmd, 427 struct its_cmd_desc *desc) 428 { 429 struct its_collection *col; 430 431 col = dev_event_to_col(desc->its_mapti_cmd.dev, 432 desc->its_mapti_cmd.event_id); 433 434 its_encode_cmd(cmd, GITS_CMD_MAPTI); 435 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 436 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 437 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 438 its_encode_collection(cmd, col->col_id); 439 440 its_fixup_cmd(cmd); 441 442 return col; 443 } 444 445 static struct its_collection *its_build_movi_cmd(struct its_node *its, 446 struct its_cmd_block *cmd, 447 struct its_cmd_desc *desc) 448 { 449 struct its_collection *col; 450 451 col = dev_event_to_col(desc->its_movi_cmd.dev, 452 desc->its_movi_cmd.event_id); 453 454 its_encode_cmd(cmd, GITS_CMD_MOVI); 455 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 456 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 457 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 458 459 its_fixup_cmd(cmd); 460 461 return col; 462 } 463 464 static struct its_collection *its_build_discard_cmd(struct its_node *its, 465 struct its_cmd_block *cmd, 466 struct its_cmd_desc *desc) 467 { 468 struct its_collection *col; 469 470 col = dev_event_to_col(desc->its_discard_cmd.dev, 471 desc->its_discard_cmd.event_id); 472 473 its_encode_cmd(cmd, GITS_CMD_DISCARD); 474 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 475 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 476 477 its_fixup_cmd(cmd); 478 479 return col; 480 } 481 482 static struct its_collection *its_build_inv_cmd(struct its_node *its, 483 struct its_cmd_block *cmd, 484 struct its_cmd_desc *desc) 485 { 486 struct its_collection *col; 487 488 col = dev_event_to_col(desc->its_inv_cmd.dev, 489 desc->its_inv_cmd.event_id); 490 491 its_encode_cmd(cmd, GITS_CMD_INV); 492 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 493 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 494 495 its_fixup_cmd(cmd); 496 497 return col; 498 } 499 500 static struct its_collection *its_build_int_cmd(struct its_node *its, 501 struct its_cmd_block *cmd, 502 struct its_cmd_desc *desc) 503 { 504 struct its_collection *col; 505 506 col = dev_event_to_col(desc->its_int_cmd.dev, 507 desc->its_int_cmd.event_id); 508 509 its_encode_cmd(cmd, GITS_CMD_INT); 510 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 511 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 512 513 its_fixup_cmd(cmd); 514 515 return col; 516 } 517 518 static struct its_collection *its_build_clear_cmd(struct its_node *its, 519 struct its_cmd_block *cmd, 520 struct its_cmd_desc *desc) 521 { 522 struct its_collection *col; 523 524 col = dev_event_to_col(desc->its_clear_cmd.dev, 525 desc->its_clear_cmd.event_id); 526 527 its_encode_cmd(cmd, GITS_CMD_CLEAR); 528 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 529 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 530 531 its_fixup_cmd(cmd); 532 533 return col; 534 } 535 536 static struct its_collection *its_build_invall_cmd(struct its_node *its, 537 struct its_cmd_block *cmd, 538 struct its_cmd_desc *desc) 539 { 540 its_encode_cmd(cmd, GITS_CMD_INVALL); 541 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 542 543 its_fixup_cmd(cmd); 544 545 return NULL; 546 } 547 548 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 549 struct its_cmd_block *cmd, 550 struct its_cmd_desc *desc) 551 { 552 its_encode_cmd(cmd, GITS_CMD_VINVALL); 553 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 554 555 its_fixup_cmd(cmd); 556 557 return desc->its_vinvall_cmd.vpe; 558 } 559 560 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 561 struct its_cmd_block *cmd, 562 struct its_cmd_desc *desc) 563 { 564 unsigned long vpt_addr; 565 u64 target; 566 567 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 568 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 569 570 its_encode_cmd(cmd, GITS_CMD_VMAPP); 571 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 572 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 573 its_encode_target(cmd, target); 574 its_encode_vpt_addr(cmd, vpt_addr); 575 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 576 577 its_fixup_cmd(cmd); 578 579 return desc->its_vmapp_cmd.vpe; 580 } 581 582 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 583 struct its_cmd_block *cmd, 584 struct its_cmd_desc *desc) 585 { 586 u32 db; 587 588 if (desc->its_vmapti_cmd.db_enabled) 589 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 590 else 591 db = 1023; 592 593 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 594 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 595 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 596 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 597 its_encode_db_phys_id(cmd, db); 598 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 599 600 its_fixup_cmd(cmd); 601 602 return desc->its_vmapti_cmd.vpe; 603 } 604 605 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 606 struct its_cmd_block *cmd, 607 struct its_cmd_desc *desc) 608 { 609 u32 db; 610 611 if (desc->its_vmovi_cmd.db_enabled) 612 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 613 else 614 db = 1023; 615 616 its_encode_cmd(cmd, GITS_CMD_VMOVI); 617 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 618 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 619 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 620 its_encode_db_phys_id(cmd, db); 621 its_encode_db_valid(cmd, true); 622 623 its_fixup_cmd(cmd); 624 625 return desc->its_vmovi_cmd.vpe; 626 } 627 628 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 629 struct its_cmd_block *cmd, 630 struct its_cmd_desc *desc) 631 { 632 u64 target; 633 634 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 635 its_encode_cmd(cmd, GITS_CMD_VMOVP); 636 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 637 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 638 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 639 its_encode_target(cmd, target); 640 641 its_fixup_cmd(cmd); 642 643 return desc->its_vmovp_cmd.vpe; 644 } 645 646 static u64 its_cmd_ptr_to_offset(struct its_node *its, 647 struct its_cmd_block *ptr) 648 { 649 return (ptr - its->cmd_base) * sizeof(*ptr); 650 } 651 652 static int its_queue_full(struct its_node *its) 653 { 654 int widx; 655 int ridx; 656 657 widx = its->cmd_write - its->cmd_base; 658 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 659 660 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 661 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 662 return 1; 663 664 return 0; 665 } 666 667 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 668 { 669 struct its_cmd_block *cmd; 670 u32 count = 1000000; /* 1s! */ 671 672 while (its_queue_full(its)) { 673 count--; 674 if (!count) { 675 pr_err_ratelimited("ITS queue not draining\n"); 676 return NULL; 677 } 678 cpu_relax(); 679 udelay(1); 680 } 681 682 cmd = its->cmd_write++; 683 684 /* Handle queue wrapping */ 685 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 686 its->cmd_write = its->cmd_base; 687 688 /* Clear command */ 689 cmd->raw_cmd[0] = 0; 690 cmd->raw_cmd[1] = 0; 691 cmd->raw_cmd[2] = 0; 692 cmd->raw_cmd[3] = 0; 693 694 return cmd; 695 } 696 697 static struct its_cmd_block *its_post_commands(struct its_node *its) 698 { 699 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 700 701 writel_relaxed(wr, its->base + GITS_CWRITER); 702 703 return its->cmd_write; 704 } 705 706 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 707 { 708 /* 709 * Make sure the commands written to memory are observable by 710 * the ITS. 711 */ 712 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 713 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 714 else 715 dsb(ishst); 716 } 717 718 static int its_wait_for_range_completion(struct its_node *its, 719 struct its_cmd_block *from, 720 struct its_cmd_block *to) 721 { 722 u64 rd_idx, from_idx, to_idx; 723 u32 count = 1000000; /* 1s! */ 724 725 from_idx = its_cmd_ptr_to_offset(its, from); 726 to_idx = its_cmd_ptr_to_offset(its, to); 727 728 while (1) { 729 rd_idx = readl_relaxed(its->base + GITS_CREADR); 730 731 /* Direct case */ 732 if (from_idx < to_idx && rd_idx >= to_idx) 733 break; 734 735 /* Wrapped case */ 736 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 737 break; 738 739 count--; 740 if (!count) { 741 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", 742 from_idx, to_idx, rd_idx); 743 return -1; 744 } 745 cpu_relax(); 746 udelay(1); 747 } 748 749 return 0; 750 } 751 752 /* Warning, macro hell follows */ 753 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 754 void name(struct its_node *its, \ 755 buildtype builder, \ 756 struct its_cmd_desc *desc) \ 757 { \ 758 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 759 synctype *sync_obj; \ 760 unsigned long flags; \ 761 \ 762 raw_spin_lock_irqsave(&its->lock, flags); \ 763 \ 764 cmd = its_allocate_entry(its); \ 765 if (!cmd) { /* We're soooooo screewed... */ \ 766 raw_spin_unlock_irqrestore(&its->lock, flags); \ 767 return; \ 768 } \ 769 sync_obj = builder(its, cmd, desc); \ 770 its_flush_cmd(its, cmd); \ 771 \ 772 if (sync_obj) { \ 773 sync_cmd = its_allocate_entry(its); \ 774 if (!sync_cmd) \ 775 goto post; \ 776 \ 777 buildfn(its, sync_cmd, sync_obj); \ 778 its_flush_cmd(its, sync_cmd); \ 779 } \ 780 \ 781 post: \ 782 next_cmd = its_post_commands(its); \ 783 raw_spin_unlock_irqrestore(&its->lock, flags); \ 784 \ 785 if (its_wait_for_range_completion(its, cmd, next_cmd)) \ 786 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 787 } 788 789 static void its_build_sync_cmd(struct its_node *its, 790 struct its_cmd_block *sync_cmd, 791 struct its_collection *sync_col) 792 { 793 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 794 its_encode_target(sync_cmd, sync_col->target_address); 795 796 its_fixup_cmd(sync_cmd); 797 } 798 799 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 800 struct its_collection, its_build_sync_cmd) 801 802 static void its_build_vsync_cmd(struct its_node *its, 803 struct its_cmd_block *sync_cmd, 804 struct its_vpe *sync_vpe) 805 { 806 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 807 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 808 809 its_fixup_cmd(sync_cmd); 810 } 811 812 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 813 struct its_vpe, its_build_vsync_cmd) 814 815 static void its_send_int(struct its_device *dev, u32 event_id) 816 { 817 struct its_cmd_desc desc; 818 819 desc.its_int_cmd.dev = dev; 820 desc.its_int_cmd.event_id = event_id; 821 822 its_send_single_command(dev->its, its_build_int_cmd, &desc); 823 } 824 825 static void its_send_clear(struct its_device *dev, u32 event_id) 826 { 827 struct its_cmd_desc desc; 828 829 desc.its_clear_cmd.dev = dev; 830 desc.its_clear_cmd.event_id = event_id; 831 832 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 833 } 834 835 static void its_send_inv(struct its_device *dev, u32 event_id) 836 { 837 struct its_cmd_desc desc; 838 839 desc.its_inv_cmd.dev = dev; 840 desc.its_inv_cmd.event_id = event_id; 841 842 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 843 } 844 845 static void its_send_mapd(struct its_device *dev, int valid) 846 { 847 struct its_cmd_desc desc; 848 849 desc.its_mapd_cmd.dev = dev; 850 desc.its_mapd_cmd.valid = !!valid; 851 852 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 853 } 854 855 static void its_send_mapc(struct its_node *its, struct its_collection *col, 856 int valid) 857 { 858 struct its_cmd_desc desc; 859 860 desc.its_mapc_cmd.col = col; 861 desc.its_mapc_cmd.valid = !!valid; 862 863 its_send_single_command(its, its_build_mapc_cmd, &desc); 864 } 865 866 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 867 { 868 struct its_cmd_desc desc; 869 870 desc.its_mapti_cmd.dev = dev; 871 desc.its_mapti_cmd.phys_id = irq_id; 872 desc.its_mapti_cmd.event_id = id; 873 874 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 875 } 876 877 static void its_send_movi(struct its_device *dev, 878 struct its_collection *col, u32 id) 879 { 880 struct its_cmd_desc desc; 881 882 desc.its_movi_cmd.dev = dev; 883 desc.its_movi_cmd.col = col; 884 desc.its_movi_cmd.event_id = id; 885 886 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 887 } 888 889 static void its_send_discard(struct its_device *dev, u32 id) 890 { 891 struct its_cmd_desc desc; 892 893 desc.its_discard_cmd.dev = dev; 894 desc.its_discard_cmd.event_id = id; 895 896 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 897 } 898 899 static void its_send_invall(struct its_node *its, struct its_collection *col) 900 { 901 struct its_cmd_desc desc; 902 903 desc.its_invall_cmd.col = col; 904 905 its_send_single_command(its, its_build_invall_cmd, &desc); 906 } 907 908 static void its_send_vmapti(struct its_device *dev, u32 id) 909 { 910 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 911 struct its_cmd_desc desc; 912 913 desc.its_vmapti_cmd.vpe = map->vpe; 914 desc.its_vmapti_cmd.dev = dev; 915 desc.its_vmapti_cmd.virt_id = map->vintid; 916 desc.its_vmapti_cmd.event_id = id; 917 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 918 919 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 920 } 921 922 static void its_send_vmovi(struct its_device *dev, u32 id) 923 { 924 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 925 struct its_cmd_desc desc; 926 927 desc.its_vmovi_cmd.vpe = map->vpe; 928 desc.its_vmovi_cmd.dev = dev; 929 desc.its_vmovi_cmd.event_id = id; 930 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 931 932 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 933 } 934 935 static void its_send_vmapp(struct its_node *its, 936 struct its_vpe *vpe, bool valid) 937 { 938 struct its_cmd_desc desc; 939 940 desc.its_vmapp_cmd.vpe = vpe; 941 desc.its_vmapp_cmd.valid = valid; 942 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 943 944 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 945 } 946 947 static void its_send_vmovp(struct its_vpe *vpe) 948 { 949 struct its_cmd_desc desc; 950 struct its_node *its; 951 unsigned long flags; 952 int col_id = vpe->col_idx; 953 954 desc.its_vmovp_cmd.vpe = vpe; 955 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 956 957 if (!its_list_map) { 958 its = list_first_entry(&its_nodes, struct its_node, entry); 959 desc.its_vmovp_cmd.seq_num = 0; 960 desc.its_vmovp_cmd.col = &its->collections[col_id]; 961 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 962 return; 963 } 964 965 /* 966 * Yet another marvel of the architecture. If using the 967 * its_list "feature", we need to make sure that all ITSs 968 * receive all VMOVP commands in the same order. The only way 969 * to guarantee this is to make vmovp a serialization point. 970 * 971 * Wall <-- Head. 972 */ 973 raw_spin_lock_irqsave(&vmovp_lock, flags); 974 975 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 976 977 /* Emit VMOVPs */ 978 list_for_each_entry(its, &its_nodes, entry) { 979 if (!its->is_v4) 980 continue; 981 982 if (!vpe->its_vm->vlpi_count[its->list_nr]) 983 continue; 984 985 desc.its_vmovp_cmd.col = &its->collections[col_id]; 986 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 987 } 988 989 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 990 } 991 992 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 993 { 994 struct its_cmd_desc desc; 995 996 desc.its_vinvall_cmd.vpe = vpe; 997 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 998 } 999 1000 /* 1001 * irqchip functions - assumes MSI, mostly. 1002 */ 1003 1004 static inline u32 its_get_event_id(struct irq_data *d) 1005 { 1006 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1007 return d->hwirq - its_dev->event_map.lpi_base; 1008 } 1009 1010 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1011 { 1012 irq_hw_number_t hwirq; 1013 struct page *prop_page; 1014 u8 *cfg; 1015 1016 if (irqd_is_forwarded_to_vcpu(d)) { 1017 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1018 u32 event = its_get_event_id(d); 1019 struct its_vlpi_map *map; 1020 1021 prop_page = its_dev->event_map.vm->vprop_page; 1022 map = &its_dev->event_map.vlpi_maps[event]; 1023 hwirq = map->vintid; 1024 1025 /* Remember the updated property */ 1026 map->properties &= ~clr; 1027 map->properties |= set | LPI_PROP_GROUP1; 1028 } else { 1029 prop_page = gic_rdists->prop_page; 1030 hwirq = d->hwirq; 1031 } 1032 1033 cfg = page_address(prop_page) + hwirq - 8192; 1034 *cfg &= ~clr; 1035 *cfg |= set | LPI_PROP_GROUP1; 1036 1037 /* 1038 * Make the above write visible to the redistributors. 1039 * And yes, we're flushing exactly: One. Single. Byte. 1040 * Humpf... 1041 */ 1042 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1043 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1044 else 1045 dsb(ishst); 1046 } 1047 1048 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1049 { 1050 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1051 1052 lpi_write_config(d, clr, set); 1053 its_send_inv(its_dev, its_get_event_id(d)); 1054 } 1055 1056 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1057 { 1058 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1059 u32 event = its_get_event_id(d); 1060 1061 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1062 return; 1063 1064 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1065 1066 /* 1067 * More fun with the architecture: 1068 * 1069 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1070 * value or to 1023, depending on the enable bit. But that 1071 * would be issueing a mapping for an /existing/ DevID+EventID 1072 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1073 * to the /same/ vPE, using this opportunity to adjust the 1074 * doorbell. Mouahahahaha. We loves it, Precious. 1075 */ 1076 its_send_vmovi(its_dev, event); 1077 } 1078 1079 static void its_mask_irq(struct irq_data *d) 1080 { 1081 if (irqd_is_forwarded_to_vcpu(d)) 1082 its_vlpi_set_doorbell(d, false); 1083 1084 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1085 } 1086 1087 static void its_unmask_irq(struct irq_data *d) 1088 { 1089 if (irqd_is_forwarded_to_vcpu(d)) 1090 its_vlpi_set_doorbell(d, true); 1091 1092 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1093 } 1094 1095 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1096 bool force) 1097 { 1098 unsigned int cpu; 1099 const struct cpumask *cpu_mask = cpu_online_mask; 1100 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1101 struct its_collection *target_col; 1102 u32 id = its_get_event_id(d); 1103 1104 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1105 if (irqd_is_forwarded_to_vcpu(d)) 1106 return -EINVAL; 1107 1108 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1109 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1110 if (its_dev->its->numa_node >= 0) { 1111 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1112 if (!cpumask_intersects(mask_val, cpu_mask)) 1113 return -EINVAL; 1114 } 1115 } 1116 1117 cpu = cpumask_any_and(mask_val, cpu_mask); 1118 1119 if (cpu >= nr_cpu_ids) 1120 return -EINVAL; 1121 1122 /* don't set the affinity when the target cpu is same as current one */ 1123 if (cpu != its_dev->event_map.col_map[id]) { 1124 target_col = &its_dev->its->collections[cpu]; 1125 its_send_movi(its_dev, target_col, id); 1126 its_dev->event_map.col_map[id] = cpu; 1127 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1128 } 1129 1130 return IRQ_SET_MASK_OK_DONE; 1131 } 1132 1133 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1134 { 1135 struct its_node *its = its_dev->its; 1136 1137 return its->phys_base + GITS_TRANSLATER; 1138 } 1139 1140 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1141 { 1142 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1143 struct its_node *its; 1144 u64 addr; 1145 1146 its = its_dev->its; 1147 addr = its->get_msi_base(its_dev); 1148 1149 msg->address_lo = lower_32_bits(addr); 1150 msg->address_hi = upper_32_bits(addr); 1151 msg->data = its_get_event_id(d); 1152 1153 iommu_dma_map_msi_msg(d->irq, msg); 1154 } 1155 1156 static int its_irq_set_irqchip_state(struct irq_data *d, 1157 enum irqchip_irq_state which, 1158 bool state) 1159 { 1160 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1161 u32 event = its_get_event_id(d); 1162 1163 if (which != IRQCHIP_STATE_PENDING) 1164 return -EINVAL; 1165 1166 if (state) 1167 its_send_int(its_dev, event); 1168 else 1169 its_send_clear(its_dev, event); 1170 1171 return 0; 1172 } 1173 1174 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1175 { 1176 unsigned long flags; 1177 1178 /* Not using the ITS list? Everything is always mapped. */ 1179 if (!its_list_map) 1180 return; 1181 1182 raw_spin_lock_irqsave(&vmovp_lock, flags); 1183 1184 /* 1185 * If the VM wasn't mapped yet, iterate over the vpes and get 1186 * them mapped now. 1187 */ 1188 vm->vlpi_count[its->list_nr]++; 1189 1190 if (vm->vlpi_count[its->list_nr] == 1) { 1191 int i; 1192 1193 for (i = 0; i < vm->nr_vpes; i++) { 1194 struct its_vpe *vpe = vm->vpes[i]; 1195 struct irq_data *d = irq_get_irq_data(vpe->irq); 1196 1197 /* Map the VPE to the first possible CPU */ 1198 vpe->col_idx = cpumask_first(cpu_online_mask); 1199 its_send_vmapp(its, vpe, true); 1200 its_send_vinvall(its, vpe); 1201 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1202 } 1203 } 1204 1205 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1206 } 1207 1208 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1209 { 1210 unsigned long flags; 1211 1212 /* Not using the ITS list? Everything is always mapped. */ 1213 if (!its_list_map) 1214 return; 1215 1216 raw_spin_lock_irqsave(&vmovp_lock, flags); 1217 1218 if (!--vm->vlpi_count[its->list_nr]) { 1219 int i; 1220 1221 for (i = 0; i < vm->nr_vpes; i++) 1222 its_send_vmapp(its, vm->vpes[i], false); 1223 } 1224 1225 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1226 } 1227 1228 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1229 { 1230 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1231 u32 event = its_get_event_id(d); 1232 int ret = 0; 1233 1234 if (!info->map) 1235 return -EINVAL; 1236 1237 mutex_lock(&its_dev->event_map.vlpi_lock); 1238 1239 if (!its_dev->event_map.vm) { 1240 struct its_vlpi_map *maps; 1241 1242 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1243 GFP_KERNEL); 1244 if (!maps) { 1245 ret = -ENOMEM; 1246 goto out; 1247 } 1248 1249 its_dev->event_map.vm = info->map->vm; 1250 its_dev->event_map.vlpi_maps = maps; 1251 } else if (its_dev->event_map.vm != info->map->vm) { 1252 ret = -EINVAL; 1253 goto out; 1254 } 1255 1256 /* Get our private copy of the mapping information */ 1257 its_dev->event_map.vlpi_maps[event] = *info->map; 1258 1259 if (irqd_is_forwarded_to_vcpu(d)) { 1260 /* Already mapped, move it around */ 1261 its_send_vmovi(its_dev, event); 1262 } else { 1263 /* Ensure all the VPEs are mapped on this ITS */ 1264 its_map_vm(its_dev->its, info->map->vm); 1265 1266 /* 1267 * Flag the interrupt as forwarded so that we can 1268 * start poking the virtual property table. 1269 */ 1270 irqd_set_forwarded_to_vcpu(d); 1271 1272 /* Write out the property to the prop table */ 1273 lpi_write_config(d, 0xff, info->map->properties); 1274 1275 /* Drop the physical mapping */ 1276 its_send_discard(its_dev, event); 1277 1278 /* and install the virtual one */ 1279 its_send_vmapti(its_dev, event); 1280 1281 /* Increment the number of VLPIs */ 1282 its_dev->event_map.nr_vlpis++; 1283 } 1284 1285 out: 1286 mutex_unlock(&its_dev->event_map.vlpi_lock); 1287 return ret; 1288 } 1289 1290 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1291 { 1292 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1293 u32 event = its_get_event_id(d); 1294 int ret = 0; 1295 1296 mutex_lock(&its_dev->event_map.vlpi_lock); 1297 1298 if (!its_dev->event_map.vm || 1299 !its_dev->event_map.vlpi_maps[event].vm) { 1300 ret = -EINVAL; 1301 goto out; 1302 } 1303 1304 /* Copy our mapping information to the incoming request */ 1305 *info->map = its_dev->event_map.vlpi_maps[event]; 1306 1307 out: 1308 mutex_unlock(&its_dev->event_map.vlpi_lock); 1309 return ret; 1310 } 1311 1312 static int its_vlpi_unmap(struct irq_data *d) 1313 { 1314 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1315 u32 event = its_get_event_id(d); 1316 int ret = 0; 1317 1318 mutex_lock(&its_dev->event_map.vlpi_lock); 1319 1320 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1321 ret = -EINVAL; 1322 goto out; 1323 } 1324 1325 /* Drop the virtual mapping */ 1326 its_send_discard(its_dev, event); 1327 1328 /* and restore the physical one */ 1329 irqd_clr_forwarded_to_vcpu(d); 1330 its_send_mapti(its_dev, d->hwirq, event); 1331 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1332 LPI_PROP_ENABLED | 1333 LPI_PROP_GROUP1)); 1334 1335 /* Potentially unmap the VM from this ITS */ 1336 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1337 1338 /* 1339 * Drop the refcount and make the device available again if 1340 * this was the last VLPI. 1341 */ 1342 if (!--its_dev->event_map.nr_vlpis) { 1343 its_dev->event_map.vm = NULL; 1344 kfree(its_dev->event_map.vlpi_maps); 1345 } 1346 1347 out: 1348 mutex_unlock(&its_dev->event_map.vlpi_lock); 1349 return ret; 1350 } 1351 1352 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1353 { 1354 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1355 1356 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1357 return -EINVAL; 1358 1359 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1360 lpi_update_config(d, 0xff, info->config); 1361 else 1362 lpi_write_config(d, 0xff, info->config); 1363 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1364 1365 return 0; 1366 } 1367 1368 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1369 { 1370 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1371 struct its_cmd_info *info = vcpu_info; 1372 1373 /* Need a v4 ITS */ 1374 if (!its_dev->its->is_v4) 1375 return -EINVAL; 1376 1377 /* Unmap request? */ 1378 if (!info) 1379 return its_vlpi_unmap(d); 1380 1381 switch (info->cmd_type) { 1382 case MAP_VLPI: 1383 return its_vlpi_map(d, info); 1384 1385 case GET_VLPI: 1386 return its_vlpi_get(d, info); 1387 1388 case PROP_UPDATE_VLPI: 1389 case PROP_UPDATE_AND_INV_VLPI: 1390 return its_vlpi_prop_update(d, info); 1391 1392 default: 1393 return -EINVAL; 1394 } 1395 } 1396 1397 static struct irq_chip its_irq_chip = { 1398 .name = "ITS", 1399 .irq_mask = its_mask_irq, 1400 .irq_unmask = its_unmask_irq, 1401 .irq_eoi = irq_chip_eoi_parent, 1402 .irq_set_affinity = its_set_affinity, 1403 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1404 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1405 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1406 }; 1407 1408 /* 1409 * How we allocate LPIs: 1410 * 1411 * The GIC has id_bits bits for interrupt identifiers. From there, we 1412 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 1413 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 1414 * bits to the right. 1415 * 1416 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 1417 */ 1418 #define IRQS_PER_CHUNK_SHIFT 5 1419 #define IRQS_PER_CHUNK (1UL << IRQS_PER_CHUNK_SHIFT) 1420 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1421 1422 static unsigned long *lpi_bitmap; 1423 static u32 lpi_chunks; 1424 static DEFINE_SPINLOCK(lpi_lock); 1425 1426 static int its_lpi_to_chunk(int lpi) 1427 { 1428 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 1429 } 1430 1431 static int its_chunk_to_lpi(int chunk) 1432 { 1433 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 1434 } 1435 1436 static int __init its_lpi_init(u32 id_bits) 1437 { 1438 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 1439 1440 lpi_bitmap = kcalloc(BITS_TO_LONGS(lpi_chunks), sizeof(long), 1441 GFP_KERNEL); 1442 if (!lpi_bitmap) { 1443 lpi_chunks = 0; 1444 return -ENOMEM; 1445 } 1446 1447 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 1448 return 0; 1449 } 1450 1451 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 1452 { 1453 unsigned long *bitmap = NULL; 1454 int chunk_id; 1455 int nr_chunks; 1456 int i; 1457 1458 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 1459 1460 spin_lock(&lpi_lock); 1461 1462 do { 1463 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 1464 0, nr_chunks, 0); 1465 if (chunk_id < lpi_chunks) 1466 break; 1467 1468 nr_chunks--; 1469 } while (nr_chunks > 0); 1470 1471 if (!nr_chunks) 1472 goto out; 1473 1474 bitmap = kcalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK), 1475 sizeof(long), 1476 GFP_ATOMIC); 1477 if (!bitmap) 1478 goto out; 1479 1480 for (i = 0; i < nr_chunks; i++) 1481 set_bit(chunk_id + i, lpi_bitmap); 1482 1483 *base = its_chunk_to_lpi(chunk_id); 1484 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 1485 1486 out: 1487 spin_unlock(&lpi_lock); 1488 1489 if (!bitmap) 1490 *base = *nr_ids = 0; 1491 1492 return bitmap; 1493 } 1494 1495 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids) 1496 { 1497 int lpi; 1498 1499 spin_lock(&lpi_lock); 1500 1501 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 1502 int chunk = its_lpi_to_chunk(lpi); 1503 1504 BUG_ON(chunk > lpi_chunks); 1505 if (test_bit(chunk, lpi_bitmap)) { 1506 clear_bit(chunk, lpi_bitmap); 1507 } else { 1508 pr_err("Bad LPI chunk %d\n", chunk); 1509 } 1510 } 1511 1512 spin_unlock(&lpi_lock); 1513 1514 kfree(bitmap); 1515 } 1516 1517 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1518 { 1519 struct page *prop_page; 1520 1521 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1522 if (!prop_page) 1523 return NULL; 1524 1525 /* Priority 0xa0, Group-1, disabled */ 1526 memset(page_address(prop_page), 1527 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1528 LPI_PROPBASE_SZ); 1529 1530 /* Make sure the GIC will observe the written configuration */ 1531 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1532 1533 return prop_page; 1534 } 1535 1536 static void its_free_prop_table(struct page *prop_page) 1537 { 1538 free_pages((unsigned long)page_address(prop_page), 1539 get_order(LPI_PROPBASE_SZ)); 1540 } 1541 1542 static int __init its_alloc_lpi_tables(void) 1543 { 1544 phys_addr_t paddr; 1545 1546 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS); 1547 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1548 if (!gic_rdists->prop_page) { 1549 pr_err("Failed to allocate PROPBASE\n"); 1550 return -ENOMEM; 1551 } 1552 1553 paddr = page_to_phys(gic_rdists->prop_page); 1554 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1555 1556 return its_lpi_init(lpi_id_bits); 1557 } 1558 1559 static const char *its_base_type_string[] = { 1560 [GITS_BASER_TYPE_DEVICE] = "Devices", 1561 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1562 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1563 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1564 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1565 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1566 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1567 }; 1568 1569 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1570 { 1571 u32 idx = baser - its->tables; 1572 1573 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1574 } 1575 1576 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1577 u64 val) 1578 { 1579 u32 idx = baser - its->tables; 1580 1581 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1582 baser->val = its_read_baser(its, baser); 1583 } 1584 1585 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1586 u64 cache, u64 shr, u32 psz, u32 order, 1587 bool indirect) 1588 { 1589 u64 val = its_read_baser(its, baser); 1590 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1591 u64 type = GITS_BASER_TYPE(val); 1592 u64 baser_phys, tmp; 1593 u32 alloc_pages; 1594 void *base; 1595 1596 retry_alloc_baser: 1597 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1598 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1599 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1600 &its->phys_base, its_base_type_string[type], 1601 alloc_pages, GITS_BASER_PAGES_MAX); 1602 alloc_pages = GITS_BASER_PAGES_MAX; 1603 order = get_order(GITS_BASER_PAGES_MAX * psz); 1604 } 1605 1606 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1607 if (!base) 1608 return -ENOMEM; 1609 1610 baser_phys = virt_to_phys(base); 1611 1612 /* Check if the physical address of the memory is above 48bits */ 1613 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1614 1615 /* 52bit PA is supported only when PageSize=64K */ 1616 if (psz != SZ_64K) { 1617 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1618 free_pages((unsigned long)base, order); 1619 return -ENXIO; 1620 } 1621 1622 /* Convert 52bit PA to 48bit field */ 1623 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1624 } 1625 1626 retry_baser: 1627 val = (baser_phys | 1628 (type << GITS_BASER_TYPE_SHIFT) | 1629 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1630 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1631 cache | 1632 shr | 1633 GITS_BASER_VALID); 1634 1635 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1636 1637 switch (psz) { 1638 case SZ_4K: 1639 val |= GITS_BASER_PAGE_SIZE_4K; 1640 break; 1641 case SZ_16K: 1642 val |= GITS_BASER_PAGE_SIZE_16K; 1643 break; 1644 case SZ_64K: 1645 val |= GITS_BASER_PAGE_SIZE_64K; 1646 break; 1647 } 1648 1649 its_write_baser(its, baser, val); 1650 tmp = baser->val; 1651 1652 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1653 /* 1654 * Shareability didn't stick. Just use 1655 * whatever the read reported, which is likely 1656 * to be the only thing this redistributor 1657 * supports. If that's zero, make it 1658 * non-cacheable as well. 1659 */ 1660 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1661 if (!shr) { 1662 cache = GITS_BASER_nC; 1663 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1664 } 1665 goto retry_baser; 1666 } 1667 1668 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1669 /* 1670 * Page size didn't stick. Let's try a smaller 1671 * size and retry. If we reach 4K, then 1672 * something is horribly wrong... 1673 */ 1674 free_pages((unsigned long)base, order); 1675 baser->base = NULL; 1676 1677 switch (psz) { 1678 case SZ_16K: 1679 psz = SZ_4K; 1680 goto retry_alloc_baser; 1681 case SZ_64K: 1682 psz = SZ_16K; 1683 goto retry_alloc_baser; 1684 } 1685 } 1686 1687 if (val != tmp) { 1688 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1689 &its->phys_base, its_base_type_string[type], 1690 val, tmp); 1691 free_pages((unsigned long)base, order); 1692 return -ENXIO; 1693 } 1694 1695 baser->order = order; 1696 baser->base = base; 1697 baser->psz = psz; 1698 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1699 1700 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1701 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1702 its_base_type_string[type], 1703 (unsigned long)virt_to_phys(base), 1704 indirect ? "indirect" : "flat", (int)esz, 1705 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1706 1707 return 0; 1708 } 1709 1710 static bool its_parse_indirect_baser(struct its_node *its, 1711 struct its_baser *baser, 1712 u32 psz, u32 *order, u32 ids) 1713 { 1714 u64 tmp = its_read_baser(its, baser); 1715 u64 type = GITS_BASER_TYPE(tmp); 1716 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1717 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1718 u32 new_order = *order; 1719 bool indirect = false; 1720 1721 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1722 if ((esz << ids) > (psz * 2)) { 1723 /* 1724 * Find out whether hw supports a single or two-level table by 1725 * table by reading bit at offset '62' after writing '1' to it. 1726 */ 1727 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1728 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1729 1730 if (indirect) { 1731 /* 1732 * The size of the lvl2 table is equal to ITS page size 1733 * which is 'psz'. For computing lvl1 table size, 1734 * subtract ID bits that sparse lvl2 table from 'ids' 1735 * which is reported by ITS hardware times lvl1 table 1736 * entry size. 1737 */ 1738 ids -= ilog2(psz / (int)esz); 1739 esz = GITS_LVL1_ENTRY_SIZE; 1740 } 1741 } 1742 1743 /* 1744 * Allocate as many entries as required to fit the 1745 * range of device IDs that the ITS can grok... The ID 1746 * space being incredibly sparse, this results in a 1747 * massive waste of memory if two-level device table 1748 * feature is not supported by hardware. 1749 */ 1750 new_order = max_t(u32, get_order(esz << ids), new_order); 1751 if (new_order >= MAX_ORDER) { 1752 new_order = MAX_ORDER - 1; 1753 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1754 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1755 &its->phys_base, its_base_type_string[type], 1756 its->device_ids, ids); 1757 } 1758 1759 *order = new_order; 1760 1761 return indirect; 1762 } 1763 1764 static void its_free_tables(struct its_node *its) 1765 { 1766 int i; 1767 1768 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1769 if (its->tables[i].base) { 1770 free_pages((unsigned long)its->tables[i].base, 1771 its->tables[i].order); 1772 its->tables[i].base = NULL; 1773 } 1774 } 1775 } 1776 1777 static int its_alloc_tables(struct its_node *its) 1778 { 1779 u64 shr = GITS_BASER_InnerShareable; 1780 u64 cache = GITS_BASER_RaWaWb; 1781 u32 psz = SZ_64K; 1782 int err, i; 1783 1784 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1785 /* erratum 24313: ignore memory access type */ 1786 cache = GITS_BASER_nCnB; 1787 1788 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1789 struct its_baser *baser = its->tables + i; 1790 u64 val = its_read_baser(its, baser); 1791 u64 type = GITS_BASER_TYPE(val); 1792 u32 order = get_order(psz); 1793 bool indirect = false; 1794 1795 switch (type) { 1796 case GITS_BASER_TYPE_NONE: 1797 continue; 1798 1799 case GITS_BASER_TYPE_DEVICE: 1800 indirect = its_parse_indirect_baser(its, baser, 1801 psz, &order, 1802 its->device_ids); 1803 case GITS_BASER_TYPE_VCPU: 1804 indirect = its_parse_indirect_baser(its, baser, 1805 psz, &order, 1806 ITS_MAX_VPEID_BITS); 1807 break; 1808 } 1809 1810 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1811 if (err < 0) { 1812 its_free_tables(its); 1813 return err; 1814 } 1815 1816 /* Update settings which will be used for next BASERn */ 1817 psz = baser->psz; 1818 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1819 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static int its_alloc_collections(struct its_node *its) 1826 { 1827 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 1828 GFP_KERNEL); 1829 if (!its->collections) 1830 return -ENOMEM; 1831 1832 return 0; 1833 } 1834 1835 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1836 { 1837 struct page *pend_page; 1838 /* 1839 * The pending pages have to be at least 64kB aligned, 1840 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1841 */ 1842 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1843 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1844 if (!pend_page) 1845 return NULL; 1846 1847 /* Make sure the GIC will observe the zero-ed page */ 1848 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1849 1850 return pend_page; 1851 } 1852 1853 static void its_free_pending_table(struct page *pt) 1854 { 1855 free_pages((unsigned long)page_address(pt), 1856 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1857 } 1858 1859 static void its_cpu_init_lpis(void) 1860 { 1861 void __iomem *rbase = gic_data_rdist_rd_base(); 1862 struct page *pend_page; 1863 u64 val, tmp; 1864 1865 /* If we didn't allocate the pending table yet, do it now */ 1866 pend_page = gic_data_rdist()->pend_page; 1867 if (!pend_page) { 1868 phys_addr_t paddr; 1869 1870 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1871 if (!pend_page) { 1872 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1873 smp_processor_id()); 1874 return; 1875 } 1876 1877 paddr = page_to_phys(pend_page); 1878 pr_info("CPU%d: using LPI pending table @%pa\n", 1879 smp_processor_id(), &paddr); 1880 gic_data_rdist()->pend_page = pend_page; 1881 } 1882 1883 /* set PROPBASE */ 1884 val = (page_to_phys(gic_rdists->prop_page) | 1885 GICR_PROPBASER_InnerShareable | 1886 GICR_PROPBASER_RaWaWb | 1887 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1888 1889 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1890 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1891 1892 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1893 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1894 /* 1895 * The HW reports non-shareable, we must 1896 * remove the cacheability attributes as 1897 * well. 1898 */ 1899 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1900 GICR_PROPBASER_CACHEABILITY_MASK); 1901 val |= GICR_PROPBASER_nC; 1902 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1903 } 1904 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1905 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1906 } 1907 1908 /* set PENDBASE */ 1909 val = (page_to_phys(pend_page) | 1910 GICR_PENDBASER_InnerShareable | 1911 GICR_PENDBASER_RaWaWb); 1912 1913 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1914 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 1915 1916 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1917 /* 1918 * The HW reports non-shareable, we must remove the 1919 * cacheability attributes as well. 1920 */ 1921 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1922 GICR_PENDBASER_CACHEABILITY_MASK); 1923 val |= GICR_PENDBASER_nC; 1924 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1925 } 1926 1927 /* Enable LPIs */ 1928 val = readl_relaxed(rbase + GICR_CTLR); 1929 val |= GICR_CTLR_ENABLE_LPIS; 1930 writel_relaxed(val, rbase + GICR_CTLR); 1931 1932 /* Make sure the GIC has seen the above */ 1933 dsb(sy); 1934 } 1935 1936 static void its_cpu_init_collection(struct its_node *its) 1937 { 1938 int cpu = smp_processor_id(); 1939 u64 target; 1940 1941 /* avoid cross node collections and its mapping */ 1942 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1943 struct device_node *cpu_node; 1944 1945 cpu_node = of_get_cpu_node(cpu, NULL); 1946 if (its->numa_node != NUMA_NO_NODE && 1947 its->numa_node != of_node_to_nid(cpu_node)) 1948 return; 1949 } 1950 1951 /* 1952 * We now have to bind each collection to its target 1953 * redistributor. 1954 */ 1955 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1956 /* 1957 * This ITS wants the physical address of the 1958 * redistributor. 1959 */ 1960 target = gic_data_rdist()->phys_base; 1961 } else { 1962 /* This ITS wants a linear CPU number. */ 1963 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1964 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1965 } 1966 1967 /* Perform collection mapping */ 1968 its->collections[cpu].target_address = target; 1969 its->collections[cpu].col_id = cpu; 1970 1971 its_send_mapc(its, &its->collections[cpu], 1); 1972 its_send_invall(its, &its->collections[cpu]); 1973 } 1974 1975 static void its_cpu_init_collections(void) 1976 { 1977 struct its_node *its; 1978 1979 spin_lock(&its_lock); 1980 1981 list_for_each_entry(its, &its_nodes, entry) 1982 its_cpu_init_collection(its); 1983 1984 spin_unlock(&its_lock); 1985 } 1986 1987 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1988 { 1989 struct its_device *its_dev = NULL, *tmp; 1990 unsigned long flags; 1991 1992 raw_spin_lock_irqsave(&its->lock, flags); 1993 1994 list_for_each_entry(tmp, &its->its_device_list, entry) { 1995 if (tmp->device_id == dev_id) { 1996 its_dev = tmp; 1997 break; 1998 } 1999 } 2000 2001 raw_spin_unlock_irqrestore(&its->lock, flags); 2002 2003 return its_dev; 2004 } 2005 2006 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2007 { 2008 int i; 2009 2010 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2011 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2012 return &its->tables[i]; 2013 } 2014 2015 return NULL; 2016 } 2017 2018 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 2019 { 2020 struct page *page; 2021 u32 esz, idx; 2022 __le64 *table; 2023 2024 /* Don't allow device id that exceeds single, flat table limit */ 2025 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2026 if (!(baser->val & GITS_BASER_INDIRECT)) 2027 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2028 2029 /* Compute 1st level table index & check if that exceeds table limit */ 2030 idx = id >> ilog2(baser->psz / esz); 2031 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2032 return false; 2033 2034 table = baser->base; 2035 2036 /* Allocate memory for 2nd level table */ 2037 if (!table[idx]) { 2038 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 2039 if (!page) 2040 return false; 2041 2042 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2043 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2044 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2045 2046 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2047 2048 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2049 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2050 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2051 2052 /* Ensure updated table contents are visible to ITS hardware */ 2053 dsb(sy); 2054 } 2055 2056 return true; 2057 } 2058 2059 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2060 { 2061 struct its_baser *baser; 2062 2063 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2064 2065 /* Don't allow device id that exceeds ITS hardware limit */ 2066 if (!baser) 2067 return (ilog2(dev_id) < its->device_ids); 2068 2069 return its_alloc_table_entry(baser, dev_id); 2070 } 2071 2072 static bool its_alloc_vpe_table(u32 vpe_id) 2073 { 2074 struct its_node *its; 2075 2076 /* 2077 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2078 * could try and only do it on ITSs corresponding to devices 2079 * that have interrupts targeted at this VPE, but the 2080 * complexity becomes crazy (and you have tons of memory 2081 * anyway, right?). 2082 */ 2083 list_for_each_entry(its, &its_nodes, entry) { 2084 struct its_baser *baser; 2085 2086 if (!its->is_v4) 2087 continue; 2088 2089 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2090 if (!baser) 2091 return false; 2092 2093 if (!its_alloc_table_entry(baser, vpe_id)) 2094 return false; 2095 } 2096 2097 return true; 2098 } 2099 2100 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2101 int nvecs, bool alloc_lpis) 2102 { 2103 struct its_device *dev; 2104 unsigned long *lpi_map = NULL; 2105 unsigned long flags; 2106 u16 *col_map = NULL; 2107 void *itt; 2108 int lpi_base; 2109 int nr_lpis; 2110 int nr_ites; 2111 int sz; 2112 2113 if (!its_alloc_device_table(its, dev_id)) 2114 return NULL; 2115 2116 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2117 /* 2118 * We allocate at least one chunk worth of LPIs bet device, 2119 * and thus that many ITEs. The device may require less though. 2120 */ 2121 nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs)); 2122 sz = nr_ites * its->ite_size; 2123 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2124 itt = kzalloc(sz, GFP_KERNEL); 2125 if (alloc_lpis) { 2126 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 2127 if (lpi_map) 2128 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2129 GFP_KERNEL); 2130 } else { 2131 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2132 nr_lpis = 0; 2133 lpi_base = 0; 2134 } 2135 2136 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2137 kfree(dev); 2138 kfree(itt); 2139 kfree(lpi_map); 2140 kfree(col_map); 2141 return NULL; 2142 } 2143 2144 gic_flush_dcache_to_poc(itt, sz); 2145 2146 dev->its = its; 2147 dev->itt = itt; 2148 dev->nr_ites = nr_ites; 2149 dev->event_map.lpi_map = lpi_map; 2150 dev->event_map.col_map = col_map; 2151 dev->event_map.lpi_base = lpi_base; 2152 dev->event_map.nr_lpis = nr_lpis; 2153 mutex_init(&dev->event_map.vlpi_lock); 2154 dev->device_id = dev_id; 2155 INIT_LIST_HEAD(&dev->entry); 2156 2157 raw_spin_lock_irqsave(&its->lock, flags); 2158 list_add(&dev->entry, &its->its_device_list); 2159 raw_spin_unlock_irqrestore(&its->lock, flags); 2160 2161 /* Map device to its ITT */ 2162 its_send_mapd(dev, 1); 2163 2164 return dev; 2165 } 2166 2167 static void its_free_device(struct its_device *its_dev) 2168 { 2169 unsigned long flags; 2170 2171 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2172 list_del(&its_dev->entry); 2173 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2174 kfree(its_dev->itt); 2175 kfree(its_dev); 2176 } 2177 2178 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2179 { 2180 int idx; 2181 2182 idx = find_first_zero_bit(dev->event_map.lpi_map, 2183 dev->event_map.nr_lpis); 2184 if (idx == dev->event_map.nr_lpis) 2185 return -ENOSPC; 2186 2187 *hwirq = dev->event_map.lpi_base + idx; 2188 set_bit(idx, dev->event_map.lpi_map); 2189 2190 return 0; 2191 } 2192 2193 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2194 int nvec, msi_alloc_info_t *info) 2195 { 2196 struct its_node *its; 2197 struct its_device *its_dev; 2198 struct msi_domain_info *msi_info; 2199 u32 dev_id; 2200 2201 /* 2202 * We ignore "dev" entierely, and rely on the dev_id that has 2203 * been passed via the scratchpad. This limits this domain's 2204 * usefulness to upper layers that definitely know that they 2205 * are built on top of the ITS. 2206 */ 2207 dev_id = info->scratchpad[0].ul; 2208 2209 msi_info = msi_get_domain_info(domain); 2210 its = msi_info->data; 2211 2212 if (!gic_rdists->has_direct_lpi && 2213 vpe_proxy.dev && 2214 vpe_proxy.dev->its == its && 2215 dev_id == vpe_proxy.dev->device_id) { 2216 /* Bad luck. Get yourself a better implementation */ 2217 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2218 dev_id); 2219 return -EINVAL; 2220 } 2221 2222 its_dev = its_find_device(its, dev_id); 2223 if (its_dev) { 2224 /* 2225 * We already have seen this ID, probably through 2226 * another alias (PCI bridge of some sort). No need to 2227 * create the device. 2228 */ 2229 pr_debug("Reusing ITT for devID %x\n", dev_id); 2230 goto out; 2231 } 2232 2233 its_dev = its_create_device(its, dev_id, nvec, true); 2234 if (!its_dev) 2235 return -ENOMEM; 2236 2237 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2238 out: 2239 info->scratchpad[0].ptr = its_dev; 2240 return 0; 2241 } 2242 2243 static struct msi_domain_ops its_msi_domain_ops = { 2244 .msi_prepare = its_msi_prepare, 2245 }; 2246 2247 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2248 unsigned int virq, 2249 irq_hw_number_t hwirq) 2250 { 2251 struct irq_fwspec fwspec; 2252 2253 if (irq_domain_get_of_node(domain->parent)) { 2254 fwspec.fwnode = domain->parent->fwnode; 2255 fwspec.param_count = 3; 2256 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2257 fwspec.param[1] = hwirq; 2258 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2259 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2260 fwspec.fwnode = domain->parent->fwnode; 2261 fwspec.param_count = 2; 2262 fwspec.param[0] = hwirq; 2263 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2264 } else { 2265 return -EINVAL; 2266 } 2267 2268 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2269 } 2270 2271 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2272 unsigned int nr_irqs, void *args) 2273 { 2274 msi_alloc_info_t *info = args; 2275 struct its_device *its_dev = info->scratchpad[0].ptr; 2276 irq_hw_number_t hwirq; 2277 int err; 2278 int i; 2279 2280 for (i = 0; i < nr_irqs; i++) { 2281 err = its_alloc_device_irq(its_dev, &hwirq); 2282 if (err) 2283 return err; 2284 2285 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2286 if (err) 2287 return err; 2288 2289 irq_domain_set_hwirq_and_chip(domain, virq + i, 2290 hwirq, &its_irq_chip, its_dev); 2291 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2292 pr_debug("ID:%d pID:%d vID:%d\n", 2293 (int)(hwirq - its_dev->event_map.lpi_base), 2294 (int) hwirq, virq + i); 2295 } 2296 2297 return 0; 2298 } 2299 2300 static int its_irq_domain_activate(struct irq_domain *domain, 2301 struct irq_data *d, bool reserve) 2302 { 2303 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2304 u32 event = its_get_event_id(d); 2305 const struct cpumask *cpu_mask = cpu_online_mask; 2306 int cpu; 2307 2308 /* get the cpu_mask of local node */ 2309 if (its_dev->its->numa_node >= 0) 2310 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2311 2312 /* Bind the LPI to the first possible CPU */ 2313 cpu = cpumask_first(cpu_mask); 2314 its_dev->event_map.col_map[event] = cpu; 2315 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2316 2317 /* Map the GIC IRQ and event to the device */ 2318 its_send_mapti(its_dev, d->hwirq, event); 2319 return 0; 2320 } 2321 2322 static void its_irq_domain_deactivate(struct irq_domain *domain, 2323 struct irq_data *d) 2324 { 2325 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2326 u32 event = its_get_event_id(d); 2327 2328 /* Stop the delivery of interrupts */ 2329 its_send_discard(its_dev, event); 2330 } 2331 2332 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2333 unsigned int nr_irqs) 2334 { 2335 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2336 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2337 int i; 2338 2339 for (i = 0; i < nr_irqs; i++) { 2340 struct irq_data *data = irq_domain_get_irq_data(domain, 2341 virq + i); 2342 u32 event = its_get_event_id(data); 2343 2344 /* Mark interrupt index as unused */ 2345 clear_bit(event, its_dev->event_map.lpi_map); 2346 2347 /* Nuke the entry in the domain */ 2348 irq_domain_reset_irq_data(data); 2349 } 2350 2351 /* If all interrupts have been freed, start mopping the floor */ 2352 if (bitmap_empty(its_dev->event_map.lpi_map, 2353 its_dev->event_map.nr_lpis)) { 2354 its_lpi_free_chunks(its_dev->event_map.lpi_map, 2355 its_dev->event_map.lpi_base, 2356 its_dev->event_map.nr_lpis); 2357 kfree(its_dev->event_map.col_map); 2358 2359 /* Unmap device/itt */ 2360 its_send_mapd(its_dev, 0); 2361 its_free_device(its_dev); 2362 } 2363 2364 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2365 } 2366 2367 static const struct irq_domain_ops its_domain_ops = { 2368 .alloc = its_irq_domain_alloc, 2369 .free = its_irq_domain_free, 2370 .activate = its_irq_domain_activate, 2371 .deactivate = its_irq_domain_deactivate, 2372 }; 2373 2374 /* 2375 * This is insane. 2376 * 2377 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2378 * likely), the only way to perform an invalidate is to use a fake 2379 * device to issue an INV command, implying that the LPI has first 2380 * been mapped to some event on that device. Since this is not exactly 2381 * cheap, we try to keep that mapping around as long as possible, and 2382 * only issue an UNMAP if we're short on available slots. 2383 * 2384 * Broken by design(tm). 2385 */ 2386 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2387 { 2388 /* Already unmapped? */ 2389 if (vpe->vpe_proxy_event == -1) 2390 return; 2391 2392 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2393 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2394 2395 /* 2396 * We don't track empty slots at all, so let's move the 2397 * next_victim pointer if we can quickly reuse that slot 2398 * instead of nuking an existing entry. Not clear that this is 2399 * always a win though, and this might just generate a ripple 2400 * effect... Let's just hope VPEs don't migrate too often. 2401 */ 2402 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2403 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2404 2405 vpe->vpe_proxy_event = -1; 2406 } 2407 2408 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2409 { 2410 if (!gic_rdists->has_direct_lpi) { 2411 unsigned long flags; 2412 2413 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2414 its_vpe_db_proxy_unmap_locked(vpe); 2415 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2416 } 2417 } 2418 2419 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2420 { 2421 /* Already mapped? */ 2422 if (vpe->vpe_proxy_event != -1) 2423 return; 2424 2425 /* This slot was already allocated. Kick the other VPE out. */ 2426 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2427 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2428 2429 /* Map the new VPE instead */ 2430 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2431 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2432 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2433 2434 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2435 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2436 } 2437 2438 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2439 { 2440 unsigned long flags; 2441 struct its_collection *target_col; 2442 2443 if (gic_rdists->has_direct_lpi) { 2444 void __iomem *rdbase; 2445 2446 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2447 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2448 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2449 cpu_relax(); 2450 2451 return; 2452 } 2453 2454 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2455 2456 its_vpe_db_proxy_map_locked(vpe); 2457 2458 target_col = &vpe_proxy.dev->its->collections[to]; 2459 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2460 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2461 2462 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2463 } 2464 2465 static int its_vpe_set_affinity(struct irq_data *d, 2466 const struct cpumask *mask_val, 2467 bool force) 2468 { 2469 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2470 int cpu = cpumask_first(mask_val); 2471 2472 /* 2473 * Changing affinity is mega expensive, so let's be as lazy as 2474 * we can and only do it if we really have to. Also, if mapped 2475 * into the proxy device, we need to move the doorbell 2476 * interrupt to its new location. 2477 */ 2478 if (vpe->col_idx != cpu) { 2479 int from = vpe->col_idx; 2480 2481 vpe->col_idx = cpu; 2482 its_send_vmovp(vpe); 2483 its_vpe_db_proxy_move(vpe, from, cpu); 2484 } 2485 2486 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2487 2488 return IRQ_SET_MASK_OK_DONE; 2489 } 2490 2491 static void its_vpe_schedule(struct its_vpe *vpe) 2492 { 2493 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2494 u64 val; 2495 2496 /* Schedule the VPE */ 2497 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2498 GENMASK_ULL(51, 12); 2499 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2500 val |= GICR_VPROPBASER_RaWb; 2501 val |= GICR_VPROPBASER_InnerShareable; 2502 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2503 2504 val = virt_to_phys(page_address(vpe->vpt_page)) & 2505 GENMASK_ULL(51, 16); 2506 val |= GICR_VPENDBASER_RaWaWb; 2507 val |= GICR_VPENDBASER_NonShareable; 2508 /* 2509 * There is no good way of finding out if the pending table is 2510 * empty as we can race against the doorbell interrupt very 2511 * easily. So in the end, vpe->pending_last is only an 2512 * indication that the vcpu has something pending, not one 2513 * that the pending table is empty. A good implementation 2514 * would be able to read its coarse map pretty quickly anyway, 2515 * making this a tolerable issue. 2516 */ 2517 val |= GICR_VPENDBASER_PendingLast; 2518 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2519 val |= GICR_VPENDBASER_Valid; 2520 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2521 } 2522 2523 static void its_vpe_deschedule(struct its_vpe *vpe) 2524 { 2525 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2526 u32 count = 1000000; /* 1s! */ 2527 bool clean; 2528 u64 val; 2529 2530 /* We're being scheduled out */ 2531 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2532 val &= ~GICR_VPENDBASER_Valid; 2533 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2534 2535 do { 2536 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2537 clean = !(val & GICR_VPENDBASER_Dirty); 2538 if (!clean) { 2539 count--; 2540 cpu_relax(); 2541 udelay(1); 2542 } 2543 } while (!clean && count); 2544 2545 if (unlikely(!clean && !count)) { 2546 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2547 vpe->idai = false; 2548 vpe->pending_last = true; 2549 } else { 2550 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2551 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2552 } 2553 } 2554 2555 static void its_vpe_invall(struct its_vpe *vpe) 2556 { 2557 struct its_node *its; 2558 2559 list_for_each_entry(its, &its_nodes, entry) { 2560 if (!its->is_v4) 2561 continue; 2562 2563 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2564 continue; 2565 2566 /* 2567 * Sending a VINVALL to a single ITS is enough, as all 2568 * we need is to reach the redistributors. 2569 */ 2570 its_send_vinvall(its, vpe); 2571 return; 2572 } 2573 } 2574 2575 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2576 { 2577 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2578 struct its_cmd_info *info = vcpu_info; 2579 2580 switch (info->cmd_type) { 2581 case SCHEDULE_VPE: 2582 its_vpe_schedule(vpe); 2583 return 0; 2584 2585 case DESCHEDULE_VPE: 2586 its_vpe_deschedule(vpe); 2587 return 0; 2588 2589 case INVALL_VPE: 2590 its_vpe_invall(vpe); 2591 return 0; 2592 2593 default: 2594 return -EINVAL; 2595 } 2596 } 2597 2598 static void its_vpe_send_cmd(struct its_vpe *vpe, 2599 void (*cmd)(struct its_device *, u32)) 2600 { 2601 unsigned long flags; 2602 2603 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2604 2605 its_vpe_db_proxy_map_locked(vpe); 2606 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2607 2608 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2609 } 2610 2611 static void its_vpe_send_inv(struct irq_data *d) 2612 { 2613 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2614 2615 if (gic_rdists->has_direct_lpi) { 2616 void __iomem *rdbase; 2617 2618 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2619 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2620 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2621 cpu_relax(); 2622 } else { 2623 its_vpe_send_cmd(vpe, its_send_inv); 2624 } 2625 } 2626 2627 static void its_vpe_mask_irq(struct irq_data *d) 2628 { 2629 /* 2630 * We need to unmask the LPI, which is described by the parent 2631 * irq_data. Instead of calling into the parent (which won't 2632 * exactly do the right thing, let's simply use the 2633 * parent_data pointer. Yes, I'm naughty. 2634 */ 2635 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2636 its_vpe_send_inv(d); 2637 } 2638 2639 static void its_vpe_unmask_irq(struct irq_data *d) 2640 { 2641 /* Same hack as above... */ 2642 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2643 its_vpe_send_inv(d); 2644 } 2645 2646 static int its_vpe_set_irqchip_state(struct irq_data *d, 2647 enum irqchip_irq_state which, 2648 bool state) 2649 { 2650 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2651 2652 if (which != IRQCHIP_STATE_PENDING) 2653 return -EINVAL; 2654 2655 if (gic_rdists->has_direct_lpi) { 2656 void __iomem *rdbase; 2657 2658 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2659 if (state) { 2660 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2661 } else { 2662 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2663 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2664 cpu_relax(); 2665 } 2666 } else { 2667 if (state) 2668 its_vpe_send_cmd(vpe, its_send_int); 2669 else 2670 its_vpe_send_cmd(vpe, its_send_clear); 2671 } 2672 2673 return 0; 2674 } 2675 2676 static struct irq_chip its_vpe_irq_chip = { 2677 .name = "GICv4-vpe", 2678 .irq_mask = its_vpe_mask_irq, 2679 .irq_unmask = its_vpe_unmask_irq, 2680 .irq_eoi = irq_chip_eoi_parent, 2681 .irq_set_affinity = its_vpe_set_affinity, 2682 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2683 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2684 }; 2685 2686 static int its_vpe_id_alloc(void) 2687 { 2688 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2689 } 2690 2691 static void its_vpe_id_free(u16 id) 2692 { 2693 ida_simple_remove(&its_vpeid_ida, id); 2694 } 2695 2696 static int its_vpe_init(struct its_vpe *vpe) 2697 { 2698 struct page *vpt_page; 2699 int vpe_id; 2700 2701 /* Allocate vpe_id */ 2702 vpe_id = its_vpe_id_alloc(); 2703 if (vpe_id < 0) 2704 return vpe_id; 2705 2706 /* Allocate VPT */ 2707 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2708 if (!vpt_page) { 2709 its_vpe_id_free(vpe_id); 2710 return -ENOMEM; 2711 } 2712 2713 if (!its_alloc_vpe_table(vpe_id)) { 2714 its_vpe_id_free(vpe_id); 2715 its_free_pending_table(vpe->vpt_page); 2716 return -ENOMEM; 2717 } 2718 2719 vpe->vpe_id = vpe_id; 2720 vpe->vpt_page = vpt_page; 2721 vpe->vpe_proxy_event = -1; 2722 2723 return 0; 2724 } 2725 2726 static void its_vpe_teardown(struct its_vpe *vpe) 2727 { 2728 its_vpe_db_proxy_unmap(vpe); 2729 its_vpe_id_free(vpe->vpe_id); 2730 its_free_pending_table(vpe->vpt_page); 2731 } 2732 2733 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2734 unsigned int virq, 2735 unsigned int nr_irqs) 2736 { 2737 struct its_vm *vm = domain->host_data; 2738 int i; 2739 2740 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2741 2742 for (i = 0; i < nr_irqs; i++) { 2743 struct irq_data *data = irq_domain_get_irq_data(domain, 2744 virq + i); 2745 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2746 2747 BUG_ON(vm != vpe->its_vm); 2748 2749 clear_bit(data->hwirq, vm->db_bitmap); 2750 its_vpe_teardown(vpe); 2751 irq_domain_reset_irq_data(data); 2752 } 2753 2754 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2755 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2756 its_free_prop_table(vm->vprop_page); 2757 } 2758 } 2759 2760 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2761 unsigned int nr_irqs, void *args) 2762 { 2763 struct its_vm *vm = args; 2764 unsigned long *bitmap; 2765 struct page *vprop_page; 2766 int base, nr_ids, i, err = 0; 2767 2768 BUG_ON(!vm); 2769 2770 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids); 2771 if (!bitmap) 2772 return -ENOMEM; 2773 2774 if (nr_ids < nr_irqs) { 2775 its_lpi_free_chunks(bitmap, base, nr_ids); 2776 return -ENOMEM; 2777 } 2778 2779 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2780 if (!vprop_page) { 2781 its_lpi_free_chunks(bitmap, base, nr_ids); 2782 return -ENOMEM; 2783 } 2784 2785 vm->db_bitmap = bitmap; 2786 vm->db_lpi_base = base; 2787 vm->nr_db_lpis = nr_ids; 2788 vm->vprop_page = vprop_page; 2789 2790 for (i = 0; i < nr_irqs; i++) { 2791 vm->vpes[i]->vpe_db_lpi = base + i; 2792 err = its_vpe_init(vm->vpes[i]); 2793 if (err) 2794 break; 2795 err = its_irq_gic_domain_alloc(domain, virq + i, 2796 vm->vpes[i]->vpe_db_lpi); 2797 if (err) 2798 break; 2799 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2800 &its_vpe_irq_chip, vm->vpes[i]); 2801 set_bit(i, bitmap); 2802 } 2803 2804 if (err) { 2805 if (i > 0) 2806 its_vpe_irq_domain_free(domain, virq, i - 1); 2807 2808 its_lpi_free_chunks(bitmap, base, nr_ids); 2809 its_free_prop_table(vprop_page); 2810 } 2811 2812 return err; 2813 } 2814 2815 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 2816 struct irq_data *d, bool reserve) 2817 { 2818 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2819 struct its_node *its; 2820 2821 /* If we use the list map, we issue VMAPP on demand... */ 2822 if (its_list_map) 2823 return 0; 2824 2825 /* Map the VPE to the first possible CPU */ 2826 vpe->col_idx = cpumask_first(cpu_online_mask); 2827 2828 list_for_each_entry(its, &its_nodes, entry) { 2829 if (!its->is_v4) 2830 continue; 2831 2832 its_send_vmapp(its, vpe, true); 2833 its_send_vinvall(its, vpe); 2834 } 2835 2836 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 2837 2838 return 0; 2839 } 2840 2841 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2842 struct irq_data *d) 2843 { 2844 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2845 struct its_node *its; 2846 2847 /* 2848 * If we use the list map, we unmap the VPE once no VLPIs are 2849 * associated with the VM. 2850 */ 2851 if (its_list_map) 2852 return; 2853 2854 list_for_each_entry(its, &its_nodes, entry) { 2855 if (!its->is_v4) 2856 continue; 2857 2858 its_send_vmapp(its, vpe, false); 2859 } 2860 } 2861 2862 static const struct irq_domain_ops its_vpe_domain_ops = { 2863 .alloc = its_vpe_irq_domain_alloc, 2864 .free = its_vpe_irq_domain_free, 2865 .activate = its_vpe_irq_domain_activate, 2866 .deactivate = its_vpe_irq_domain_deactivate, 2867 }; 2868 2869 static int its_force_quiescent(void __iomem *base) 2870 { 2871 u32 count = 1000000; /* 1s */ 2872 u32 val; 2873 2874 val = readl_relaxed(base + GITS_CTLR); 2875 /* 2876 * GIC architecture specification requires the ITS to be both 2877 * disabled and quiescent for writes to GITS_BASER<n> or 2878 * GITS_CBASER to not have UNPREDICTABLE results. 2879 */ 2880 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2881 return 0; 2882 2883 /* Disable the generation of all interrupts to this ITS */ 2884 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2885 writel_relaxed(val, base + GITS_CTLR); 2886 2887 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2888 while (1) { 2889 val = readl_relaxed(base + GITS_CTLR); 2890 if (val & GITS_CTLR_QUIESCENT) 2891 return 0; 2892 2893 count--; 2894 if (!count) 2895 return -EBUSY; 2896 2897 cpu_relax(); 2898 udelay(1); 2899 } 2900 } 2901 2902 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 2903 { 2904 struct its_node *its = data; 2905 2906 /* erratum 22375: only alloc 8MB table size */ 2907 its->device_ids = 0x14; /* 20 bits, 8MB */ 2908 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 2909 2910 return true; 2911 } 2912 2913 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 2914 { 2915 struct its_node *its = data; 2916 2917 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 2918 2919 return true; 2920 } 2921 2922 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 2923 { 2924 struct its_node *its = data; 2925 2926 /* On QDF2400, the size of the ITE is 16Bytes */ 2927 its->ite_size = 16; 2928 2929 return true; 2930 } 2931 2932 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 2933 { 2934 struct its_node *its = its_dev->its; 2935 2936 /* 2937 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 2938 * which maps 32-bit writes targeted at a separate window of 2939 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 2940 * with device ID taken from bits [device_id_bits + 1:2] of 2941 * the window offset. 2942 */ 2943 return its->pre_its_base + (its_dev->device_id << 2); 2944 } 2945 2946 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 2947 { 2948 struct its_node *its = data; 2949 u32 pre_its_window[2]; 2950 u32 ids; 2951 2952 if (!fwnode_property_read_u32_array(its->fwnode_handle, 2953 "socionext,synquacer-pre-its", 2954 pre_its_window, 2955 ARRAY_SIZE(pre_its_window))) { 2956 2957 its->pre_its_base = pre_its_window[0]; 2958 its->get_msi_base = its_irq_get_msi_base_pre_its; 2959 2960 ids = ilog2(pre_its_window[1]) - 2; 2961 if (its->device_ids > ids) 2962 its->device_ids = ids; 2963 2964 /* the pre-ITS breaks isolation, so disable MSI remapping */ 2965 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 2966 return true; 2967 } 2968 return false; 2969 } 2970 2971 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 2972 { 2973 struct its_node *its = data; 2974 2975 /* 2976 * Hip07 insists on using the wrong address for the VLPI 2977 * page. Trick it into doing the right thing... 2978 */ 2979 its->vlpi_redist_offset = SZ_128K; 2980 return true; 2981 } 2982 2983 static const struct gic_quirk its_quirks[] = { 2984 #ifdef CONFIG_CAVIUM_ERRATUM_22375 2985 { 2986 .desc = "ITS: Cavium errata 22375, 24313", 2987 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2988 .mask = 0xffff0fff, 2989 .init = its_enable_quirk_cavium_22375, 2990 }, 2991 #endif 2992 #ifdef CONFIG_CAVIUM_ERRATUM_23144 2993 { 2994 .desc = "ITS: Cavium erratum 23144", 2995 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2996 .mask = 0xffff0fff, 2997 .init = its_enable_quirk_cavium_23144, 2998 }, 2999 #endif 3000 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3001 { 3002 .desc = "ITS: QDF2400 erratum 0065", 3003 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3004 .mask = 0xffffffff, 3005 .init = its_enable_quirk_qdf2400_e0065, 3006 }, 3007 #endif 3008 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3009 { 3010 /* 3011 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3012 * implementation, but with a 'pre-ITS' added that requires 3013 * special handling in software. 3014 */ 3015 .desc = "ITS: Socionext Synquacer pre-ITS", 3016 .iidr = 0x0001143b, 3017 .mask = 0xffffffff, 3018 .init = its_enable_quirk_socionext_synquacer, 3019 }, 3020 #endif 3021 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3022 { 3023 .desc = "ITS: Hip07 erratum 161600802", 3024 .iidr = 0x00000004, 3025 .mask = 0xffffffff, 3026 .init = its_enable_quirk_hip07_161600802, 3027 }, 3028 #endif 3029 { 3030 } 3031 }; 3032 3033 static void its_enable_quirks(struct its_node *its) 3034 { 3035 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3036 3037 gic_enable_quirks(iidr, its_quirks, its); 3038 } 3039 3040 static int its_save_disable(void) 3041 { 3042 struct its_node *its; 3043 int err = 0; 3044 3045 spin_lock(&its_lock); 3046 list_for_each_entry(its, &its_nodes, entry) { 3047 void __iomem *base; 3048 3049 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3050 continue; 3051 3052 base = its->base; 3053 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3054 err = its_force_quiescent(base); 3055 if (err) { 3056 pr_err("ITS@%pa: failed to quiesce: %d\n", 3057 &its->phys_base, err); 3058 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3059 goto err; 3060 } 3061 3062 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3063 } 3064 3065 err: 3066 if (err) { 3067 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3068 void __iomem *base; 3069 3070 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3071 continue; 3072 3073 base = its->base; 3074 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3075 } 3076 } 3077 spin_unlock(&its_lock); 3078 3079 return err; 3080 } 3081 3082 static void its_restore_enable(void) 3083 { 3084 struct its_node *its; 3085 int ret; 3086 3087 spin_lock(&its_lock); 3088 list_for_each_entry(its, &its_nodes, entry) { 3089 void __iomem *base; 3090 int i; 3091 3092 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3093 continue; 3094 3095 base = its->base; 3096 3097 /* 3098 * Make sure that the ITS is disabled. If it fails to quiesce, 3099 * don't restore it since writing to CBASER or BASER<n> 3100 * registers is undefined according to the GIC v3 ITS 3101 * Specification. 3102 */ 3103 ret = its_force_quiescent(base); 3104 if (ret) { 3105 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3106 &its->phys_base, ret); 3107 continue; 3108 } 3109 3110 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3111 3112 /* 3113 * Writing CBASER resets CREADR to 0, so make CWRITER and 3114 * cmd_write line up with it. 3115 */ 3116 its->cmd_write = its->cmd_base; 3117 gits_write_cwriter(0, base + GITS_CWRITER); 3118 3119 /* Restore GITS_BASER from the value cache. */ 3120 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3121 struct its_baser *baser = &its->tables[i]; 3122 3123 if (!(baser->val & GITS_BASER_VALID)) 3124 continue; 3125 3126 its_write_baser(its, baser, baser->val); 3127 } 3128 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3129 3130 /* 3131 * Reinit the collection if it's stored in the ITS. This is 3132 * indicated by the col_id being less than the HCC field. 3133 * CID < HCC as specified in the GIC v3 Documentation. 3134 */ 3135 if (its->collections[smp_processor_id()].col_id < 3136 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3137 its_cpu_init_collection(its); 3138 } 3139 spin_unlock(&its_lock); 3140 } 3141 3142 static struct syscore_ops its_syscore_ops = { 3143 .suspend = its_save_disable, 3144 .resume = its_restore_enable, 3145 }; 3146 3147 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3148 { 3149 struct irq_domain *inner_domain; 3150 struct msi_domain_info *info; 3151 3152 info = kzalloc(sizeof(*info), GFP_KERNEL); 3153 if (!info) 3154 return -ENOMEM; 3155 3156 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3157 if (!inner_domain) { 3158 kfree(info); 3159 return -ENOMEM; 3160 } 3161 3162 inner_domain->parent = its_parent; 3163 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3164 inner_domain->flags |= its->msi_domain_flags; 3165 info->ops = &its_msi_domain_ops; 3166 info->data = its; 3167 inner_domain->host_data = info; 3168 3169 return 0; 3170 } 3171 3172 static int its_init_vpe_domain(void) 3173 { 3174 struct its_node *its; 3175 u32 devid; 3176 int entries; 3177 3178 if (gic_rdists->has_direct_lpi) { 3179 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3180 return 0; 3181 } 3182 3183 /* Any ITS will do, even if not v4 */ 3184 its = list_first_entry(&its_nodes, struct its_node, entry); 3185 3186 entries = roundup_pow_of_two(nr_cpu_ids); 3187 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3188 GFP_KERNEL); 3189 if (!vpe_proxy.vpes) { 3190 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3191 return -ENOMEM; 3192 } 3193 3194 /* Use the last possible DevID */ 3195 devid = GENMASK(its->device_ids - 1, 0); 3196 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3197 if (!vpe_proxy.dev) { 3198 kfree(vpe_proxy.vpes); 3199 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3200 return -ENOMEM; 3201 } 3202 3203 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3204 3205 raw_spin_lock_init(&vpe_proxy.lock); 3206 vpe_proxy.next_victim = 0; 3207 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3208 devid, vpe_proxy.dev->nr_ites); 3209 3210 return 0; 3211 } 3212 3213 static int __init its_compute_its_list_map(struct resource *res, 3214 void __iomem *its_base) 3215 { 3216 int its_number; 3217 u32 ctlr; 3218 3219 /* 3220 * This is assumed to be done early enough that we're 3221 * guaranteed to be single-threaded, hence no 3222 * locking. Should this change, we should address 3223 * this. 3224 */ 3225 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3226 if (its_number >= GICv4_ITS_LIST_MAX) { 3227 pr_err("ITS@%pa: No ITSList entry available!\n", 3228 &res->start); 3229 return -EINVAL; 3230 } 3231 3232 ctlr = readl_relaxed(its_base + GITS_CTLR); 3233 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3234 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3235 writel_relaxed(ctlr, its_base + GITS_CTLR); 3236 ctlr = readl_relaxed(its_base + GITS_CTLR); 3237 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3238 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3239 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3240 } 3241 3242 if (test_and_set_bit(its_number, &its_list_map)) { 3243 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3244 &res->start, its_number); 3245 return -EINVAL; 3246 } 3247 3248 return its_number; 3249 } 3250 3251 static int __init its_probe_one(struct resource *res, 3252 struct fwnode_handle *handle, int numa_node) 3253 { 3254 struct its_node *its; 3255 void __iomem *its_base; 3256 u32 val, ctlr; 3257 u64 baser, tmp, typer; 3258 int err; 3259 3260 its_base = ioremap(res->start, resource_size(res)); 3261 if (!its_base) { 3262 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3263 return -ENOMEM; 3264 } 3265 3266 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3267 if (val != 0x30 && val != 0x40) { 3268 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3269 err = -ENODEV; 3270 goto out_unmap; 3271 } 3272 3273 err = its_force_quiescent(its_base); 3274 if (err) { 3275 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3276 goto out_unmap; 3277 } 3278 3279 pr_info("ITS %pR\n", res); 3280 3281 its = kzalloc(sizeof(*its), GFP_KERNEL); 3282 if (!its) { 3283 err = -ENOMEM; 3284 goto out_unmap; 3285 } 3286 3287 raw_spin_lock_init(&its->lock); 3288 INIT_LIST_HEAD(&its->entry); 3289 INIT_LIST_HEAD(&its->its_device_list); 3290 typer = gic_read_typer(its_base + GITS_TYPER); 3291 its->base = its_base; 3292 its->phys_base = res->start; 3293 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3294 its->device_ids = GITS_TYPER_DEVBITS(typer); 3295 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3296 if (its->is_v4) { 3297 if (!(typer & GITS_TYPER_VMOVP)) { 3298 err = its_compute_its_list_map(res, its_base); 3299 if (err < 0) 3300 goto out_free_its; 3301 3302 its->list_nr = err; 3303 3304 pr_info("ITS@%pa: Using ITS number %d\n", 3305 &res->start, err); 3306 } else { 3307 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3308 } 3309 } 3310 3311 its->numa_node = numa_node; 3312 3313 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 3314 get_order(ITS_CMD_QUEUE_SZ)); 3315 if (!its->cmd_base) { 3316 err = -ENOMEM; 3317 goto out_free_its; 3318 } 3319 its->cmd_write = its->cmd_base; 3320 its->fwnode_handle = handle; 3321 its->get_msi_base = its_irq_get_msi_base; 3322 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3323 3324 its_enable_quirks(its); 3325 3326 err = its_alloc_tables(its); 3327 if (err) 3328 goto out_free_cmd; 3329 3330 err = its_alloc_collections(its); 3331 if (err) 3332 goto out_free_tables; 3333 3334 baser = (virt_to_phys(its->cmd_base) | 3335 GITS_CBASER_RaWaWb | 3336 GITS_CBASER_InnerShareable | 3337 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3338 GITS_CBASER_VALID); 3339 3340 gits_write_cbaser(baser, its->base + GITS_CBASER); 3341 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3342 3343 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3344 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3345 /* 3346 * The HW reports non-shareable, we must 3347 * remove the cacheability attributes as 3348 * well. 3349 */ 3350 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3351 GITS_CBASER_CACHEABILITY_MASK); 3352 baser |= GITS_CBASER_nC; 3353 gits_write_cbaser(baser, its->base + GITS_CBASER); 3354 } 3355 pr_info("ITS: using cache flushing for cmd queue\n"); 3356 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3357 } 3358 3359 gits_write_cwriter(0, its->base + GITS_CWRITER); 3360 ctlr = readl_relaxed(its->base + GITS_CTLR); 3361 ctlr |= GITS_CTLR_ENABLE; 3362 if (its->is_v4) 3363 ctlr |= GITS_CTLR_ImDe; 3364 writel_relaxed(ctlr, its->base + GITS_CTLR); 3365 3366 if (GITS_TYPER_HCC(typer)) 3367 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3368 3369 err = its_init_domain(handle, its); 3370 if (err) 3371 goto out_free_tables; 3372 3373 spin_lock(&its_lock); 3374 list_add(&its->entry, &its_nodes); 3375 spin_unlock(&its_lock); 3376 3377 return 0; 3378 3379 out_free_tables: 3380 its_free_tables(its); 3381 out_free_cmd: 3382 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3383 out_free_its: 3384 kfree(its); 3385 out_unmap: 3386 iounmap(its_base); 3387 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3388 return err; 3389 } 3390 3391 static bool gic_rdists_supports_plpis(void) 3392 { 3393 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3394 } 3395 3396 static int redist_disable_lpis(void) 3397 { 3398 void __iomem *rbase = gic_data_rdist_rd_base(); 3399 u64 timeout = USEC_PER_SEC; 3400 u64 val; 3401 3402 if (!gic_rdists_supports_plpis()) { 3403 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3404 return -ENXIO; 3405 } 3406 3407 val = readl_relaxed(rbase + GICR_CTLR); 3408 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3409 return 0; 3410 3411 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3412 smp_processor_id()); 3413 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3414 3415 /* Disable LPIs */ 3416 val &= ~GICR_CTLR_ENABLE_LPIS; 3417 writel_relaxed(val, rbase + GICR_CTLR); 3418 3419 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3420 dsb(sy); 3421 3422 /* 3423 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3424 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3425 * Error out if we time out waiting for RWP to clear. 3426 */ 3427 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3428 if (!timeout) { 3429 pr_err("CPU%d: Timeout while disabling LPIs\n", 3430 smp_processor_id()); 3431 return -ETIMEDOUT; 3432 } 3433 udelay(1); 3434 timeout--; 3435 } 3436 3437 /* 3438 * After it has been written to 1, it is IMPLEMENTATION 3439 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3440 * cleared to 0. Error out if clearing the bit failed. 3441 */ 3442 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3443 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3444 return -EBUSY; 3445 } 3446 3447 return 0; 3448 } 3449 3450 int its_cpu_init(void) 3451 { 3452 if (!list_empty(&its_nodes)) { 3453 int ret; 3454 3455 ret = redist_disable_lpis(); 3456 if (ret) 3457 return ret; 3458 3459 its_cpu_init_lpis(); 3460 its_cpu_init_collections(); 3461 } 3462 3463 return 0; 3464 } 3465 3466 static const struct of_device_id its_device_id[] = { 3467 { .compatible = "arm,gic-v3-its", }, 3468 {}, 3469 }; 3470 3471 static int __init its_of_probe(struct device_node *node) 3472 { 3473 struct device_node *np; 3474 struct resource res; 3475 3476 for (np = of_find_matching_node(node, its_device_id); np; 3477 np = of_find_matching_node(np, its_device_id)) { 3478 if (!of_device_is_available(np)) 3479 continue; 3480 if (!of_property_read_bool(np, "msi-controller")) { 3481 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3482 np); 3483 continue; 3484 } 3485 3486 if (of_address_to_resource(np, 0, &res)) { 3487 pr_warn("%pOF: no regs?\n", np); 3488 continue; 3489 } 3490 3491 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3492 } 3493 return 0; 3494 } 3495 3496 #ifdef CONFIG_ACPI 3497 3498 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3499 3500 #ifdef CONFIG_ACPI_NUMA 3501 struct its_srat_map { 3502 /* numa node id */ 3503 u32 numa_node; 3504 /* GIC ITS ID */ 3505 u32 its_id; 3506 }; 3507 3508 static struct its_srat_map *its_srat_maps __initdata; 3509 static int its_in_srat __initdata; 3510 3511 static int __init acpi_get_its_numa_node(u32 its_id) 3512 { 3513 int i; 3514 3515 for (i = 0; i < its_in_srat; i++) { 3516 if (its_id == its_srat_maps[i].its_id) 3517 return its_srat_maps[i].numa_node; 3518 } 3519 return NUMA_NO_NODE; 3520 } 3521 3522 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3523 const unsigned long end) 3524 { 3525 return 0; 3526 } 3527 3528 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3529 const unsigned long end) 3530 { 3531 int node; 3532 struct acpi_srat_gic_its_affinity *its_affinity; 3533 3534 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3535 if (!its_affinity) 3536 return -EINVAL; 3537 3538 if (its_affinity->header.length < sizeof(*its_affinity)) { 3539 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3540 its_affinity->header.length); 3541 return -EINVAL; 3542 } 3543 3544 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3545 3546 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3547 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3548 return 0; 3549 } 3550 3551 its_srat_maps[its_in_srat].numa_node = node; 3552 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3553 its_in_srat++; 3554 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3555 its_affinity->proximity_domain, its_affinity->its_id, node); 3556 3557 return 0; 3558 } 3559 3560 static void __init acpi_table_parse_srat_its(void) 3561 { 3562 int count; 3563 3564 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3565 sizeof(struct acpi_table_srat), 3566 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3567 gic_acpi_match_srat_its, 0); 3568 if (count <= 0) 3569 return; 3570 3571 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3572 GFP_KERNEL); 3573 if (!its_srat_maps) { 3574 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3575 return; 3576 } 3577 3578 acpi_table_parse_entries(ACPI_SIG_SRAT, 3579 sizeof(struct acpi_table_srat), 3580 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3581 gic_acpi_parse_srat_its, 0); 3582 } 3583 3584 /* free the its_srat_maps after ITS probing */ 3585 static void __init acpi_its_srat_maps_free(void) 3586 { 3587 kfree(its_srat_maps); 3588 } 3589 #else 3590 static void __init acpi_table_parse_srat_its(void) { } 3591 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3592 static void __init acpi_its_srat_maps_free(void) { } 3593 #endif 3594 3595 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3596 const unsigned long end) 3597 { 3598 struct acpi_madt_generic_translator *its_entry; 3599 struct fwnode_handle *dom_handle; 3600 struct resource res; 3601 int err; 3602 3603 its_entry = (struct acpi_madt_generic_translator *)header; 3604 memset(&res, 0, sizeof(res)); 3605 res.start = its_entry->base_address; 3606 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3607 res.flags = IORESOURCE_MEM; 3608 3609 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3610 if (!dom_handle) { 3611 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3612 &res.start); 3613 return -ENOMEM; 3614 } 3615 3616 err = iort_register_domain_token(its_entry->translation_id, res.start, 3617 dom_handle); 3618 if (err) { 3619 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3620 &res.start, its_entry->translation_id); 3621 goto dom_err; 3622 } 3623 3624 err = its_probe_one(&res, dom_handle, 3625 acpi_get_its_numa_node(its_entry->translation_id)); 3626 if (!err) 3627 return 0; 3628 3629 iort_deregister_domain_token(its_entry->translation_id); 3630 dom_err: 3631 irq_domain_free_fwnode(dom_handle); 3632 return err; 3633 } 3634 3635 static void __init its_acpi_probe(void) 3636 { 3637 acpi_table_parse_srat_its(); 3638 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3639 gic_acpi_parse_madt_its, 0); 3640 acpi_its_srat_maps_free(); 3641 } 3642 #else 3643 static void __init its_acpi_probe(void) { } 3644 #endif 3645 3646 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3647 struct irq_domain *parent_domain) 3648 { 3649 struct device_node *of_node; 3650 struct its_node *its; 3651 bool has_v4 = false; 3652 int err; 3653 3654 its_parent = parent_domain; 3655 of_node = to_of_node(handle); 3656 if (of_node) 3657 its_of_probe(of_node); 3658 else 3659 its_acpi_probe(); 3660 3661 if (list_empty(&its_nodes)) { 3662 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3663 return -ENXIO; 3664 } 3665 3666 gic_rdists = rdists; 3667 err = its_alloc_lpi_tables(); 3668 if (err) 3669 return err; 3670 3671 list_for_each_entry(its, &its_nodes, entry) 3672 has_v4 |= its->is_v4; 3673 3674 if (has_v4 & rdists->has_vlpis) { 3675 if (its_init_vpe_domain() || 3676 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3677 rdists->has_vlpis = false; 3678 pr_err("ITS: Disabling GICv4 support\n"); 3679 } 3680 } 3681 3682 register_syscore_ops(&its_syscore_ops); 3683 3684 return 0; 3685 } 3686