xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 #include <linux/syscore_ops.h>
37 
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/arm-gic-v3.h>
40 #include <linux/irqchip/arm-gic-v4.h>
41 
42 #include <asm/cputype.h>
43 #include <asm/exception.h>
44 
45 #include "irq-gic-common.h"
46 
47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
50 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
51 
52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
53 
54 static u32 lpi_id_bits;
55 
56 /*
57  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
58  * deal with (one configuration byte per interrupt). PENDBASE has to
59  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
60  */
61 #define LPI_NRBITS		lpi_id_bits
62 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
63 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
64 
65 #define LPI_PROP_DEFAULT_PRIO	0xa0
66 
67 /*
68  * Collection structure - just an ID, and a redistributor address to
69  * ping. We use one per CPU as a bag of interrupts assigned to this
70  * CPU.
71  */
72 struct its_collection {
73 	u64			target_address;
74 	u16			col_id;
75 };
76 
77 /*
78  * The ITS_BASER structure - contains memory information, cached
79  * value of BASER register configuration and ITS page size.
80  */
81 struct its_baser {
82 	void		*base;
83 	u64		val;
84 	u32		order;
85 	u32		psz;
86 };
87 
88 struct its_device;
89 
90 /*
91  * The ITS structure - contains most of the infrastructure, with the
92  * top-level MSI domain, the command queue, the collections, and the
93  * list of devices writing to it.
94  */
95 struct its_node {
96 	raw_spinlock_t		lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	phys_addr_t		phys_base;
100 	struct its_cmd_block	*cmd_base;
101 	struct its_cmd_block	*cmd_write;
102 	struct its_baser	tables[GITS_BASER_NR_REGS];
103 	struct its_collection	*collections;
104 	struct fwnode_handle	*fwnode_handle;
105 	u64			(*get_msi_base)(struct its_device *its_dev);
106 	u64			cbaser_save;
107 	u32			ctlr_save;
108 	struct list_head	its_device_list;
109 	u64			flags;
110 	unsigned long		list_nr;
111 	u32			ite_size;
112 	u32			device_ids;
113 	int			numa_node;
114 	unsigned int		msi_domain_flags;
115 	u32			pre_its_base; /* for Socionext Synquacer */
116 	bool			is_v4;
117 	int			vlpi_redist_offset;
118 };
119 
120 #define ITS_ITT_ALIGN		SZ_256
121 
122 /* The maximum number of VPEID bits supported by VLPI commands */
123 #define ITS_MAX_VPEID_BITS	(16)
124 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
125 
126 /* Convert page order to size in bytes */
127 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
128 
129 struct event_lpi_map {
130 	unsigned long		*lpi_map;
131 	u16			*col_map;
132 	irq_hw_number_t		lpi_base;
133 	int			nr_lpis;
134 	struct mutex		vlpi_lock;
135 	struct its_vm		*vm;
136 	struct its_vlpi_map	*vlpi_maps;
137 	int			nr_vlpis;
138 };
139 
140 /*
141  * The ITS view of a device - belongs to an ITS, owns an interrupt
142  * translation table, and a list of interrupts.  If it some of its
143  * LPIs are injected into a guest (GICv4), the event_map.vm field
144  * indicates which one.
145  */
146 struct its_device {
147 	struct list_head	entry;
148 	struct its_node		*its;
149 	struct event_lpi_map	event_map;
150 	void			*itt;
151 	u32			nr_ites;
152 	u32			device_id;
153 };
154 
155 static struct {
156 	raw_spinlock_t		lock;
157 	struct its_device	*dev;
158 	struct its_vpe		**vpes;
159 	int			next_victim;
160 } vpe_proxy;
161 
162 static LIST_HEAD(its_nodes);
163 static DEFINE_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166 
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170 
171 static DEFINE_IDA(its_vpeid_ida);
172 
173 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
175 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
176 
177 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
178 					       u32 event)
179 {
180 	struct its_node *its = its_dev->its;
181 
182 	return its->collections + its_dev->event_map.col_map[event];
183 }
184 
185 /*
186  * ITS command descriptors - parameters to be encoded in a command
187  * block.
188  */
189 struct its_cmd_desc {
190 	union {
191 		struct {
192 			struct its_device *dev;
193 			u32 event_id;
194 		} its_inv_cmd;
195 
196 		struct {
197 			struct its_device *dev;
198 			u32 event_id;
199 		} its_clear_cmd;
200 
201 		struct {
202 			struct its_device *dev;
203 			u32 event_id;
204 		} its_int_cmd;
205 
206 		struct {
207 			struct its_device *dev;
208 			int valid;
209 		} its_mapd_cmd;
210 
211 		struct {
212 			struct its_collection *col;
213 			int valid;
214 		} its_mapc_cmd;
215 
216 		struct {
217 			struct its_device *dev;
218 			u32 phys_id;
219 			u32 event_id;
220 		} its_mapti_cmd;
221 
222 		struct {
223 			struct its_device *dev;
224 			struct its_collection *col;
225 			u32 event_id;
226 		} its_movi_cmd;
227 
228 		struct {
229 			struct its_device *dev;
230 			u32 event_id;
231 		} its_discard_cmd;
232 
233 		struct {
234 			struct its_collection *col;
235 		} its_invall_cmd;
236 
237 		struct {
238 			struct its_vpe *vpe;
239 		} its_vinvall_cmd;
240 
241 		struct {
242 			struct its_vpe *vpe;
243 			struct its_collection *col;
244 			bool valid;
245 		} its_vmapp_cmd;
246 
247 		struct {
248 			struct its_vpe *vpe;
249 			struct its_device *dev;
250 			u32 virt_id;
251 			u32 event_id;
252 			bool db_enabled;
253 		} its_vmapti_cmd;
254 
255 		struct {
256 			struct its_vpe *vpe;
257 			struct its_device *dev;
258 			u32 event_id;
259 			bool db_enabled;
260 		} its_vmovi_cmd;
261 
262 		struct {
263 			struct its_vpe *vpe;
264 			struct its_collection *col;
265 			u16 seq_num;
266 			u16 its_list;
267 		} its_vmovp_cmd;
268 	};
269 };
270 
271 /*
272  * The ITS command block, which is what the ITS actually parses.
273  */
274 struct its_cmd_block {
275 	u64	raw_cmd[4];
276 };
277 
278 #define ITS_CMD_QUEUE_SZ		SZ_64K
279 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
280 
281 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
282 						    struct its_cmd_block *,
283 						    struct its_cmd_desc *);
284 
285 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
286 					      struct its_cmd_block *,
287 					      struct its_cmd_desc *);
288 
289 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
290 {
291 	u64 mask = GENMASK_ULL(h, l);
292 	*raw_cmd &= ~mask;
293 	*raw_cmd |= (val << l) & mask;
294 }
295 
296 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
297 {
298 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
299 }
300 
301 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
302 {
303 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
304 }
305 
306 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
307 {
308 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
309 }
310 
311 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
312 {
313 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
314 }
315 
316 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
317 {
318 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
319 }
320 
321 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
322 {
323 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
324 }
325 
326 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
327 {
328 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
329 }
330 
331 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
332 {
333 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
334 }
335 
336 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
337 {
338 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
339 }
340 
341 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
342 {
343 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
344 }
345 
346 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
347 {
348 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
349 }
350 
351 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
352 {
353 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
354 }
355 
356 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
357 {
358 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
359 }
360 
361 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
362 {
363 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
364 }
365 
366 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
367 {
368 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
369 }
370 
371 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
372 {
373 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
374 }
375 
376 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
377 {
378 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
379 }
380 
381 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
382 {
383 	/* Let's fixup BE commands */
384 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
385 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
386 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
387 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
388 }
389 
390 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
391 						 struct its_cmd_block *cmd,
392 						 struct its_cmd_desc *desc)
393 {
394 	unsigned long itt_addr;
395 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
396 
397 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
398 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
399 
400 	its_encode_cmd(cmd, GITS_CMD_MAPD);
401 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
402 	its_encode_size(cmd, size - 1);
403 	its_encode_itt(cmd, itt_addr);
404 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
405 
406 	its_fixup_cmd(cmd);
407 
408 	return NULL;
409 }
410 
411 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
412 						 struct its_cmd_block *cmd,
413 						 struct its_cmd_desc *desc)
414 {
415 	its_encode_cmd(cmd, GITS_CMD_MAPC);
416 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
417 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
418 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
419 
420 	its_fixup_cmd(cmd);
421 
422 	return desc->its_mapc_cmd.col;
423 }
424 
425 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
426 						  struct its_cmd_block *cmd,
427 						  struct its_cmd_desc *desc)
428 {
429 	struct its_collection *col;
430 
431 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
432 			       desc->its_mapti_cmd.event_id);
433 
434 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
435 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
436 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
437 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
438 	its_encode_collection(cmd, col->col_id);
439 
440 	its_fixup_cmd(cmd);
441 
442 	return col;
443 }
444 
445 static struct its_collection *its_build_movi_cmd(struct its_node *its,
446 						 struct its_cmd_block *cmd,
447 						 struct its_cmd_desc *desc)
448 {
449 	struct its_collection *col;
450 
451 	col = dev_event_to_col(desc->its_movi_cmd.dev,
452 			       desc->its_movi_cmd.event_id);
453 
454 	its_encode_cmd(cmd, GITS_CMD_MOVI);
455 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
456 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
457 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
458 
459 	its_fixup_cmd(cmd);
460 
461 	return col;
462 }
463 
464 static struct its_collection *its_build_discard_cmd(struct its_node *its,
465 						    struct its_cmd_block *cmd,
466 						    struct its_cmd_desc *desc)
467 {
468 	struct its_collection *col;
469 
470 	col = dev_event_to_col(desc->its_discard_cmd.dev,
471 			       desc->its_discard_cmd.event_id);
472 
473 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
474 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
475 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
476 
477 	its_fixup_cmd(cmd);
478 
479 	return col;
480 }
481 
482 static struct its_collection *its_build_inv_cmd(struct its_node *its,
483 						struct its_cmd_block *cmd,
484 						struct its_cmd_desc *desc)
485 {
486 	struct its_collection *col;
487 
488 	col = dev_event_to_col(desc->its_inv_cmd.dev,
489 			       desc->its_inv_cmd.event_id);
490 
491 	its_encode_cmd(cmd, GITS_CMD_INV);
492 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
493 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
494 
495 	its_fixup_cmd(cmd);
496 
497 	return col;
498 }
499 
500 static struct its_collection *its_build_int_cmd(struct its_node *its,
501 						struct its_cmd_block *cmd,
502 						struct its_cmd_desc *desc)
503 {
504 	struct its_collection *col;
505 
506 	col = dev_event_to_col(desc->its_int_cmd.dev,
507 			       desc->its_int_cmd.event_id);
508 
509 	its_encode_cmd(cmd, GITS_CMD_INT);
510 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
511 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
512 
513 	its_fixup_cmd(cmd);
514 
515 	return col;
516 }
517 
518 static struct its_collection *its_build_clear_cmd(struct its_node *its,
519 						  struct its_cmd_block *cmd,
520 						  struct its_cmd_desc *desc)
521 {
522 	struct its_collection *col;
523 
524 	col = dev_event_to_col(desc->its_clear_cmd.dev,
525 			       desc->its_clear_cmd.event_id);
526 
527 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
528 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
529 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
530 
531 	its_fixup_cmd(cmd);
532 
533 	return col;
534 }
535 
536 static struct its_collection *its_build_invall_cmd(struct its_node *its,
537 						   struct its_cmd_block *cmd,
538 						   struct its_cmd_desc *desc)
539 {
540 	its_encode_cmd(cmd, GITS_CMD_INVALL);
541 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
542 
543 	its_fixup_cmd(cmd);
544 
545 	return NULL;
546 }
547 
548 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
549 					     struct its_cmd_block *cmd,
550 					     struct its_cmd_desc *desc)
551 {
552 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
553 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
554 
555 	its_fixup_cmd(cmd);
556 
557 	return desc->its_vinvall_cmd.vpe;
558 }
559 
560 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
561 					   struct its_cmd_block *cmd,
562 					   struct its_cmd_desc *desc)
563 {
564 	unsigned long vpt_addr;
565 	u64 target;
566 
567 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
568 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
569 
570 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
571 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
572 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
573 	its_encode_target(cmd, target);
574 	its_encode_vpt_addr(cmd, vpt_addr);
575 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
576 
577 	its_fixup_cmd(cmd);
578 
579 	return desc->its_vmapp_cmd.vpe;
580 }
581 
582 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
583 					    struct its_cmd_block *cmd,
584 					    struct its_cmd_desc *desc)
585 {
586 	u32 db;
587 
588 	if (desc->its_vmapti_cmd.db_enabled)
589 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
590 	else
591 		db = 1023;
592 
593 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
594 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
595 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
596 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
597 	its_encode_db_phys_id(cmd, db);
598 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
599 
600 	its_fixup_cmd(cmd);
601 
602 	return desc->its_vmapti_cmd.vpe;
603 }
604 
605 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
606 					   struct its_cmd_block *cmd,
607 					   struct its_cmd_desc *desc)
608 {
609 	u32 db;
610 
611 	if (desc->its_vmovi_cmd.db_enabled)
612 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
613 	else
614 		db = 1023;
615 
616 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
617 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
618 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
619 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
620 	its_encode_db_phys_id(cmd, db);
621 	its_encode_db_valid(cmd, true);
622 
623 	its_fixup_cmd(cmd);
624 
625 	return desc->its_vmovi_cmd.vpe;
626 }
627 
628 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
629 					   struct its_cmd_block *cmd,
630 					   struct its_cmd_desc *desc)
631 {
632 	u64 target;
633 
634 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
635 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
636 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
637 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
638 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
639 	its_encode_target(cmd, target);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return desc->its_vmovp_cmd.vpe;
644 }
645 
646 static u64 its_cmd_ptr_to_offset(struct its_node *its,
647 				 struct its_cmd_block *ptr)
648 {
649 	return (ptr - its->cmd_base) * sizeof(*ptr);
650 }
651 
652 static int its_queue_full(struct its_node *its)
653 {
654 	int widx;
655 	int ridx;
656 
657 	widx = its->cmd_write - its->cmd_base;
658 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
659 
660 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
661 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
662 		return 1;
663 
664 	return 0;
665 }
666 
667 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
668 {
669 	struct its_cmd_block *cmd;
670 	u32 count = 1000000;	/* 1s! */
671 
672 	while (its_queue_full(its)) {
673 		count--;
674 		if (!count) {
675 			pr_err_ratelimited("ITS queue not draining\n");
676 			return NULL;
677 		}
678 		cpu_relax();
679 		udelay(1);
680 	}
681 
682 	cmd = its->cmd_write++;
683 
684 	/* Handle queue wrapping */
685 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
686 		its->cmd_write = its->cmd_base;
687 
688 	/* Clear command  */
689 	cmd->raw_cmd[0] = 0;
690 	cmd->raw_cmd[1] = 0;
691 	cmd->raw_cmd[2] = 0;
692 	cmd->raw_cmd[3] = 0;
693 
694 	return cmd;
695 }
696 
697 static struct its_cmd_block *its_post_commands(struct its_node *its)
698 {
699 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
700 
701 	writel_relaxed(wr, its->base + GITS_CWRITER);
702 
703 	return its->cmd_write;
704 }
705 
706 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
707 {
708 	/*
709 	 * Make sure the commands written to memory are observable by
710 	 * the ITS.
711 	 */
712 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
713 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
714 	else
715 		dsb(ishst);
716 }
717 
718 static int its_wait_for_range_completion(struct its_node *its,
719 					 struct its_cmd_block *from,
720 					 struct its_cmd_block *to)
721 {
722 	u64 rd_idx, from_idx, to_idx;
723 	u32 count = 1000000;	/* 1s! */
724 
725 	from_idx = its_cmd_ptr_to_offset(its, from);
726 	to_idx = its_cmd_ptr_to_offset(its, to);
727 
728 	while (1) {
729 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
730 
731 		/* Direct case */
732 		if (from_idx < to_idx && rd_idx >= to_idx)
733 			break;
734 
735 		/* Wrapped case */
736 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
737 			break;
738 
739 		count--;
740 		if (!count) {
741 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
742 					   from_idx, to_idx, rd_idx);
743 			return -1;
744 		}
745 		cpu_relax();
746 		udelay(1);
747 	}
748 
749 	return 0;
750 }
751 
752 /* Warning, macro hell follows */
753 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
754 void name(struct its_node *its,						\
755 	  buildtype builder,						\
756 	  struct its_cmd_desc *desc)					\
757 {									\
758 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
759 	synctype *sync_obj;						\
760 	unsigned long flags;						\
761 									\
762 	raw_spin_lock_irqsave(&its->lock, flags);			\
763 									\
764 	cmd = its_allocate_entry(its);					\
765 	if (!cmd) {		/* We're soooooo screewed... */		\
766 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
767 		return;							\
768 	}								\
769 	sync_obj = builder(its, cmd, desc);				\
770 	its_flush_cmd(its, cmd);					\
771 									\
772 	if (sync_obj) {							\
773 		sync_cmd = its_allocate_entry(its);			\
774 		if (!sync_cmd)						\
775 			goto post;					\
776 									\
777 		buildfn(its, sync_cmd, sync_obj);			\
778 		its_flush_cmd(its, sync_cmd);				\
779 	}								\
780 									\
781 post:									\
782 	next_cmd = its_post_commands(its);				\
783 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
784 									\
785 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
786 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
787 }
788 
789 static void its_build_sync_cmd(struct its_node *its,
790 			       struct its_cmd_block *sync_cmd,
791 			       struct its_collection *sync_col)
792 {
793 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
794 	its_encode_target(sync_cmd, sync_col->target_address);
795 
796 	its_fixup_cmd(sync_cmd);
797 }
798 
799 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
800 			     struct its_collection, its_build_sync_cmd)
801 
802 static void its_build_vsync_cmd(struct its_node *its,
803 				struct its_cmd_block *sync_cmd,
804 				struct its_vpe *sync_vpe)
805 {
806 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
807 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
808 
809 	its_fixup_cmd(sync_cmd);
810 }
811 
812 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
813 			     struct its_vpe, its_build_vsync_cmd)
814 
815 static void its_send_int(struct its_device *dev, u32 event_id)
816 {
817 	struct its_cmd_desc desc;
818 
819 	desc.its_int_cmd.dev = dev;
820 	desc.its_int_cmd.event_id = event_id;
821 
822 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
823 }
824 
825 static void its_send_clear(struct its_device *dev, u32 event_id)
826 {
827 	struct its_cmd_desc desc;
828 
829 	desc.its_clear_cmd.dev = dev;
830 	desc.its_clear_cmd.event_id = event_id;
831 
832 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
833 }
834 
835 static void its_send_inv(struct its_device *dev, u32 event_id)
836 {
837 	struct its_cmd_desc desc;
838 
839 	desc.its_inv_cmd.dev = dev;
840 	desc.its_inv_cmd.event_id = event_id;
841 
842 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
843 }
844 
845 static void its_send_mapd(struct its_device *dev, int valid)
846 {
847 	struct its_cmd_desc desc;
848 
849 	desc.its_mapd_cmd.dev = dev;
850 	desc.its_mapd_cmd.valid = !!valid;
851 
852 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
853 }
854 
855 static void its_send_mapc(struct its_node *its, struct its_collection *col,
856 			  int valid)
857 {
858 	struct its_cmd_desc desc;
859 
860 	desc.its_mapc_cmd.col = col;
861 	desc.its_mapc_cmd.valid = !!valid;
862 
863 	its_send_single_command(its, its_build_mapc_cmd, &desc);
864 }
865 
866 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
867 {
868 	struct its_cmd_desc desc;
869 
870 	desc.its_mapti_cmd.dev = dev;
871 	desc.its_mapti_cmd.phys_id = irq_id;
872 	desc.its_mapti_cmd.event_id = id;
873 
874 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
875 }
876 
877 static void its_send_movi(struct its_device *dev,
878 			  struct its_collection *col, u32 id)
879 {
880 	struct its_cmd_desc desc;
881 
882 	desc.its_movi_cmd.dev = dev;
883 	desc.its_movi_cmd.col = col;
884 	desc.its_movi_cmd.event_id = id;
885 
886 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
887 }
888 
889 static void its_send_discard(struct its_device *dev, u32 id)
890 {
891 	struct its_cmd_desc desc;
892 
893 	desc.its_discard_cmd.dev = dev;
894 	desc.its_discard_cmd.event_id = id;
895 
896 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
897 }
898 
899 static void its_send_invall(struct its_node *its, struct its_collection *col)
900 {
901 	struct its_cmd_desc desc;
902 
903 	desc.its_invall_cmd.col = col;
904 
905 	its_send_single_command(its, its_build_invall_cmd, &desc);
906 }
907 
908 static void its_send_vmapti(struct its_device *dev, u32 id)
909 {
910 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
911 	struct its_cmd_desc desc;
912 
913 	desc.its_vmapti_cmd.vpe = map->vpe;
914 	desc.its_vmapti_cmd.dev = dev;
915 	desc.its_vmapti_cmd.virt_id = map->vintid;
916 	desc.its_vmapti_cmd.event_id = id;
917 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
918 
919 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
920 }
921 
922 static void its_send_vmovi(struct its_device *dev, u32 id)
923 {
924 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
925 	struct its_cmd_desc desc;
926 
927 	desc.its_vmovi_cmd.vpe = map->vpe;
928 	desc.its_vmovi_cmd.dev = dev;
929 	desc.its_vmovi_cmd.event_id = id;
930 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
931 
932 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
933 }
934 
935 static void its_send_vmapp(struct its_node *its,
936 			   struct its_vpe *vpe, bool valid)
937 {
938 	struct its_cmd_desc desc;
939 
940 	desc.its_vmapp_cmd.vpe = vpe;
941 	desc.its_vmapp_cmd.valid = valid;
942 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
943 
944 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
945 }
946 
947 static void its_send_vmovp(struct its_vpe *vpe)
948 {
949 	struct its_cmd_desc desc;
950 	struct its_node *its;
951 	unsigned long flags;
952 	int col_id = vpe->col_idx;
953 
954 	desc.its_vmovp_cmd.vpe = vpe;
955 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
956 
957 	if (!its_list_map) {
958 		its = list_first_entry(&its_nodes, struct its_node, entry);
959 		desc.its_vmovp_cmd.seq_num = 0;
960 		desc.its_vmovp_cmd.col = &its->collections[col_id];
961 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
962 		return;
963 	}
964 
965 	/*
966 	 * Yet another marvel of the architecture. If using the
967 	 * its_list "feature", we need to make sure that all ITSs
968 	 * receive all VMOVP commands in the same order. The only way
969 	 * to guarantee this is to make vmovp a serialization point.
970 	 *
971 	 * Wall <-- Head.
972 	 */
973 	raw_spin_lock_irqsave(&vmovp_lock, flags);
974 
975 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
976 
977 	/* Emit VMOVPs */
978 	list_for_each_entry(its, &its_nodes, entry) {
979 		if (!its->is_v4)
980 			continue;
981 
982 		if (!vpe->its_vm->vlpi_count[its->list_nr])
983 			continue;
984 
985 		desc.its_vmovp_cmd.col = &its->collections[col_id];
986 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
987 	}
988 
989 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
990 }
991 
992 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
993 {
994 	struct its_cmd_desc desc;
995 
996 	desc.its_vinvall_cmd.vpe = vpe;
997 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
998 }
999 
1000 /*
1001  * irqchip functions - assumes MSI, mostly.
1002  */
1003 
1004 static inline u32 its_get_event_id(struct irq_data *d)
1005 {
1006 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1007 	return d->hwirq - its_dev->event_map.lpi_base;
1008 }
1009 
1010 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1011 {
1012 	irq_hw_number_t hwirq;
1013 	struct page *prop_page;
1014 	u8 *cfg;
1015 
1016 	if (irqd_is_forwarded_to_vcpu(d)) {
1017 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1018 		u32 event = its_get_event_id(d);
1019 		struct its_vlpi_map *map;
1020 
1021 		prop_page = its_dev->event_map.vm->vprop_page;
1022 		map = &its_dev->event_map.vlpi_maps[event];
1023 		hwirq = map->vintid;
1024 
1025 		/* Remember the updated property */
1026 		map->properties &= ~clr;
1027 		map->properties |= set | LPI_PROP_GROUP1;
1028 	} else {
1029 		prop_page = gic_rdists->prop_page;
1030 		hwirq = d->hwirq;
1031 	}
1032 
1033 	cfg = page_address(prop_page) + hwirq - 8192;
1034 	*cfg &= ~clr;
1035 	*cfg |= set | LPI_PROP_GROUP1;
1036 
1037 	/*
1038 	 * Make the above write visible to the redistributors.
1039 	 * And yes, we're flushing exactly: One. Single. Byte.
1040 	 * Humpf...
1041 	 */
1042 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1043 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1044 	else
1045 		dsb(ishst);
1046 }
1047 
1048 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1049 {
1050 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1051 
1052 	lpi_write_config(d, clr, set);
1053 	its_send_inv(its_dev, its_get_event_id(d));
1054 }
1055 
1056 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1057 {
1058 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059 	u32 event = its_get_event_id(d);
1060 
1061 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1062 		return;
1063 
1064 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1065 
1066 	/*
1067 	 * More fun with the architecture:
1068 	 *
1069 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1070 	 * value or to 1023, depending on the enable bit. But that
1071 	 * would be issueing a mapping for an /existing/ DevID+EventID
1072 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1073 	 * to the /same/ vPE, using this opportunity to adjust the
1074 	 * doorbell. Mouahahahaha. We loves it, Precious.
1075 	 */
1076 	its_send_vmovi(its_dev, event);
1077 }
1078 
1079 static void its_mask_irq(struct irq_data *d)
1080 {
1081 	if (irqd_is_forwarded_to_vcpu(d))
1082 		its_vlpi_set_doorbell(d, false);
1083 
1084 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1085 }
1086 
1087 static void its_unmask_irq(struct irq_data *d)
1088 {
1089 	if (irqd_is_forwarded_to_vcpu(d))
1090 		its_vlpi_set_doorbell(d, true);
1091 
1092 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1093 }
1094 
1095 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1096 			    bool force)
1097 {
1098 	unsigned int cpu;
1099 	const struct cpumask *cpu_mask = cpu_online_mask;
1100 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101 	struct its_collection *target_col;
1102 	u32 id = its_get_event_id(d);
1103 
1104 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1105 	if (irqd_is_forwarded_to_vcpu(d))
1106 		return -EINVAL;
1107 
1108        /* lpi cannot be routed to a redistributor that is on a foreign node */
1109 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1110 		if (its_dev->its->numa_node >= 0) {
1111 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1112 			if (!cpumask_intersects(mask_val, cpu_mask))
1113 				return -EINVAL;
1114 		}
1115 	}
1116 
1117 	cpu = cpumask_any_and(mask_val, cpu_mask);
1118 
1119 	if (cpu >= nr_cpu_ids)
1120 		return -EINVAL;
1121 
1122 	/* don't set the affinity when the target cpu is same as current one */
1123 	if (cpu != its_dev->event_map.col_map[id]) {
1124 		target_col = &its_dev->its->collections[cpu];
1125 		its_send_movi(its_dev, target_col, id);
1126 		its_dev->event_map.col_map[id] = cpu;
1127 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1128 	}
1129 
1130 	return IRQ_SET_MASK_OK_DONE;
1131 }
1132 
1133 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1134 {
1135 	struct its_node *its = its_dev->its;
1136 
1137 	return its->phys_base + GITS_TRANSLATER;
1138 }
1139 
1140 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1141 {
1142 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1143 	struct its_node *its;
1144 	u64 addr;
1145 
1146 	its = its_dev->its;
1147 	addr = its->get_msi_base(its_dev);
1148 
1149 	msg->address_lo		= lower_32_bits(addr);
1150 	msg->address_hi		= upper_32_bits(addr);
1151 	msg->data		= its_get_event_id(d);
1152 
1153 	iommu_dma_map_msi_msg(d->irq, msg);
1154 }
1155 
1156 static int its_irq_set_irqchip_state(struct irq_data *d,
1157 				     enum irqchip_irq_state which,
1158 				     bool state)
1159 {
1160 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161 	u32 event = its_get_event_id(d);
1162 
1163 	if (which != IRQCHIP_STATE_PENDING)
1164 		return -EINVAL;
1165 
1166 	if (state)
1167 		its_send_int(its_dev, event);
1168 	else
1169 		its_send_clear(its_dev, event);
1170 
1171 	return 0;
1172 }
1173 
1174 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1175 {
1176 	unsigned long flags;
1177 
1178 	/* Not using the ITS list? Everything is always mapped. */
1179 	if (!its_list_map)
1180 		return;
1181 
1182 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1183 
1184 	/*
1185 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1186 	 * them mapped now.
1187 	 */
1188 	vm->vlpi_count[its->list_nr]++;
1189 
1190 	if (vm->vlpi_count[its->list_nr] == 1) {
1191 		int i;
1192 
1193 		for (i = 0; i < vm->nr_vpes; i++) {
1194 			struct its_vpe *vpe = vm->vpes[i];
1195 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1196 
1197 			/* Map the VPE to the first possible CPU */
1198 			vpe->col_idx = cpumask_first(cpu_online_mask);
1199 			its_send_vmapp(its, vpe, true);
1200 			its_send_vinvall(its, vpe);
1201 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1202 		}
1203 	}
1204 
1205 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1206 }
1207 
1208 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1209 {
1210 	unsigned long flags;
1211 
1212 	/* Not using the ITS list? Everything is always mapped. */
1213 	if (!its_list_map)
1214 		return;
1215 
1216 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1217 
1218 	if (!--vm->vlpi_count[its->list_nr]) {
1219 		int i;
1220 
1221 		for (i = 0; i < vm->nr_vpes; i++)
1222 			its_send_vmapp(its, vm->vpes[i], false);
1223 	}
1224 
1225 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1226 }
1227 
1228 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1229 {
1230 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1231 	u32 event = its_get_event_id(d);
1232 	int ret = 0;
1233 
1234 	if (!info->map)
1235 		return -EINVAL;
1236 
1237 	mutex_lock(&its_dev->event_map.vlpi_lock);
1238 
1239 	if (!its_dev->event_map.vm) {
1240 		struct its_vlpi_map *maps;
1241 
1242 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1243 			       GFP_KERNEL);
1244 		if (!maps) {
1245 			ret = -ENOMEM;
1246 			goto out;
1247 		}
1248 
1249 		its_dev->event_map.vm = info->map->vm;
1250 		its_dev->event_map.vlpi_maps = maps;
1251 	} else if (its_dev->event_map.vm != info->map->vm) {
1252 		ret = -EINVAL;
1253 		goto out;
1254 	}
1255 
1256 	/* Get our private copy of the mapping information */
1257 	its_dev->event_map.vlpi_maps[event] = *info->map;
1258 
1259 	if (irqd_is_forwarded_to_vcpu(d)) {
1260 		/* Already mapped, move it around */
1261 		its_send_vmovi(its_dev, event);
1262 	} else {
1263 		/* Ensure all the VPEs are mapped on this ITS */
1264 		its_map_vm(its_dev->its, info->map->vm);
1265 
1266 		/*
1267 		 * Flag the interrupt as forwarded so that we can
1268 		 * start poking the virtual property table.
1269 		 */
1270 		irqd_set_forwarded_to_vcpu(d);
1271 
1272 		/* Write out the property to the prop table */
1273 		lpi_write_config(d, 0xff, info->map->properties);
1274 
1275 		/* Drop the physical mapping */
1276 		its_send_discard(its_dev, event);
1277 
1278 		/* and install the virtual one */
1279 		its_send_vmapti(its_dev, event);
1280 
1281 		/* Increment the number of VLPIs */
1282 		its_dev->event_map.nr_vlpis++;
1283 	}
1284 
1285 out:
1286 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1287 	return ret;
1288 }
1289 
1290 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1291 {
1292 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1293 	u32 event = its_get_event_id(d);
1294 	int ret = 0;
1295 
1296 	mutex_lock(&its_dev->event_map.vlpi_lock);
1297 
1298 	if (!its_dev->event_map.vm ||
1299 	    !its_dev->event_map.vlpi_maps[event].vm) {
1300 		ret = -EINVAL;
1301 		goto out;
1302 	}
1303 
1304 	/* Copy our mapping information to the incoming request */
1305 	*info->map = its_dev->event_map.vlpi_maps[event];
1306 
1307 out:
1308 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1309 	return ret;
1310 }
1311 
1312 static int its_vlpi_unmap(struct irq_data *d)
1313 {
1314 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315 	u32 event = its_get_event_id(d);
1316 	int ret = 0;
1317 
1318 	mutex_lock(&its_dev->event_map.vlpi_lock);
1319 
1320 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1321 		ret = -EINVAL;
1322 		goto out;
1323 	}
1324 
1325 	/* Drop the virtual mapping */
1326 	its_send_discard(its_dev, event);
1327 
1328 	/* and restore the physical one */
1329 	irqd_clr_forwarded_to_vcpu(d);
1330 	its_send_mapti(its_dev, d->hwirq, event);
1331 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1332 				    LPI_PROP_ENABLED |
1333 				    LPI_PROP_GROUP1));
1334 
1335 	/* Potentially unmap the VM from this ITS */
1336 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1337 
1338 	/*
1339 	 * Drop the refcount and make the device available again if
1340 	 * this was the last VLPI.
1341 	 */
1342 	if (!--its_dev->event_map.nr_vlpis) {
1343 		its_dev->event_map.vm = NULL;
1344 		kfree(its_dev->event_map.vlpi_maps);
1345 	}
1346 
1347 out:
1348 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1349 	return ret;
1350 }
1351 
1352 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1353 {
1354 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1355 
1356 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1357 		return -EINVAL;
1358 
1359 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1360 		lpi_update_config(d, 0xff, info->config);
1361 	else
1362 		lpi_write_config(d, 0xff, info->config);
1363 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1364 
1365 	return 0;
1366 }
1367 
1368 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1369 {
1370 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371 	struct its_cmd_info *info = vcpu_info;
1372 
1373 	/* Need a v4 ITS */
1374 	if (!its_dev->its->is_v4)
1375 		return -EINVAL;
1376 
1377 	/* Unmap request? */
1378 	if (!info)
1379 		return its_vlpi_unmap(d);
1380 
1381 	switch (info->cmd_type) {
1382 	case MAP_VLPI:
1383 		return its_vlpi_map(d, info);
1384 
1385 	case GET_VLPI:
1386 		return its_vlpi_get(d, info);
1387 
1388 	case PROP_UPDATE_VLPI:
1389 	case PROP_UPDATE_AND_INV_VLPI:
1390 		return its_vlpi_prop_update(d, info);
1391 
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 }
1396 
1397 static struct irq_chip its_irq_chip = {
1398 	.name			= "ITS",
1399 	.irq_mask		= its_mask_irq,
1400 	.irq_unmask		= its_unmask_irq,
1401 	.irq_eoi		= irq_chip_eoi_parent,
1402 	.irq_set_affinity	= its_set_affinity,
1403 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1404 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1405 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1406 };
1407 
1408 /*
1409  * How we allocate LPIs:
1410  *
1411  * The GIC has id_bits bits for interrupt identifiers. From there, we
1412  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1413  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1414  * bits to the right.
1415  *
1416  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1417  */
1418 #define IRQS_PER_CHUNK_SHIFT	5
1419 #define IRQS_PER_CHUNK		(1UL << IRQS_PER_CHUNK_SHIFT)
1420 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1421 
1422 static unsigned long *lpi_bitmap;
1423 static u32 lpi_chunks;
1424 static DEFINE_SPINLOCK(lpi_lock);
1425 
1426 static int its_lpi_to_chunk(int lpi)
1427 {
1428 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1429 }
1430 
1431 static int its_chunk_to_lpi(int chunk)
1432 {
1433 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1434 }
1435 
1436 static int __init its_lpi_init(u32 id_bits)
1437 {
1438 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1439 
1440 	lpi_bitmap = kcalloc(BITS_TO_LONGS(lpi_chunks), sizeof(long),
1441 			     GFP_KERNEL);
1442 	if (!lpi_bitmap) {
1443 		lpi_chunks = 0;
1444 		return -ENOMEM;
1445 	}
1446 
1447 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1448 	return 0;
1449 }
1450 
1451 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1452 {
1453 	unsigned long *bitmap = NULL;
1454 	int chunk_id;
1455 	int nr_chunks;
1456 	int i;
1457 
1458 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1459 
1460 	spin_lock(&lpi_lock);
1461 
1462 	do {
1463 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1464 						      0, nr_chunks, 0);
1465 		if (chunk_id < lpi_chunks)
1466 			break;
1467 
1468 		nr_chunks--;
1469 	} while (nr_chunks > 0);
1470 
1471 	if (!nr_chunks)
1472 		goto out;
1473 
1474 	bitmap = kcalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK),
1475 			 sizeof(long),
1476 			 GFP_ATOMIC);
1477 	if (!bitmap)
1478 		goto out;
1479 
1480 	for (i = 0; i < nr_chunks; i++)
1481 		set_bit(chunk_id + i, lpi_bitmap);
1482 
1483 	*base = its_chunk_to_lpi(chunk_id);
1484 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1485 
1486 out:
1487 	spin_unlock(&lpi_lock);
1488 
1489 	if (!bitmap)
1490 		*base = *nr_ids = 0;
1491 
1492 	return bitmap;
1493 }
1494 
1495 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1496 {
1497 	int lpi;
1498 
1499 	spin_lock(&lpi_lock);
1500 
1501 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1502 		int chunk = its_lpi_to_chunk(lpi);
1503 
1504 		BUG_ON(chunk > lpi_chunks);
1505 		if (test_bit(chunk, lpi_bitmap)) {
1506 			clear_bit(chunk, lpi_bitmap);
1507 		} else {
1508 			pr_err("Bad LPI chunk %d\n", chunk);
1509 		}
1510 	}
1511 
1512 	spin_unlock(&lpi_lock);
1513 
1514 	kfree(bitmap);
1515 }
1516 
1517 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1518 {
1519 	struct page *prop_page;
1520 
1521 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1522 	if (!prop_page)
1523 		return NULL;
1524 
1525 	/* Priority 0xa0, Group-1, disabled */
1526 	memset(page_address(prop_page),
1527 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1528 	       LPI_PROPBASE_SZ);
1529 
1530 	/* Make sure the GIC will observe the written configuration */
1531 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1532 
1533 	return prop_page;
1534 }
1535 
1536 static void its_free_prop_table(struct page *prop_page)
1537 {
1538 	free_pages((unsigned long)page_address(prop_page),
1539 		   get_order(LPI_PROPBASE_SZ));
1540 }
1541 
1542 static int __init its_alloc_lpi_tables(void)
1543 {
1544 	phys_addr_t paddr;
1545 
1546 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1547 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1548 	if (!gic_rdists->prop_page) {
1549 		pr_err("Failed to allocate PROPBASE\n");
1550 		return -ENOMEM;
1551 	}
1552 
1553 	paddr = page_to_phys(gic_rdists->prop_page);
1554 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1555 
1556 	return its_lpi_init(lpi_id_bits);
1557 }
1558 
1559 static const char *its_base_type_string[] = {
1560 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1561 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1562 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1563 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1564 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1565 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1566 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1567 };
1568 
1569 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1570 {
1571 	u32 idx = baser - its->tables;
1572 
1573 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1574 }
1575 
1576 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1577 			    u64 val)
1578 {
1579 	u32 idx = baser - its->tables;
1580 
1581 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1582 	baser->val = its_read_baser(its, baser);
1583 }
1584 
1585 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1586 			   u64 cache, u64 shr, u32 psz, u32 order,
1587 			   bool indirect)
1588 {
1589 	u64 val = its_read_baser(its, baser);
1590 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1591 	u64 type = GITS_BASER_TYPE(val);
1592 	u64 baser_phys, tmp;
1593 	u32 alloc_pages;
1594 	void *base;
1595 
1596 retry_alloc_baser:
1597 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1598 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1599 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1600 			&its->phys_base, its_base_type_string[type],
1601 			alloc_pages, GITS_BASER_PAGES_MAX);
1602 		alloc_pages = GITS_BASER_PAGES_MAX;
1603 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1604 	}
1605 
1606 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1607 	if (!base)
1608 		return -ENOMEM;
1609 
1610 	baser_phys = virt_to_phys(base);
1611 
1612 	/* Check if the physical address of the memory is above 48bits */
1613 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1614 
1615 		/* 52bit PA is supported only when PageSize=64K */
1616 		if (psz != SZ_64K) {
1617 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1618 			free_pages((unsigned long)base, order);
1619 			return -ENXIO;
1620 		}
1621 
1622 		/* Convert 52bit PA to 48bit field */
1623 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1624 	}
1625 
1626 retry_baser:
1627 	val = (baser_phys					 |
1628 		(type << GITS_BASER_TYPE_SHIFT)			 |
1629 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1630 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1631 		cache						 |
1632 		shr						 |
1633 		GITS_BASER_VALID);
1634 
1635 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1636 
1637 	switch (psz) {
1638 	case SZ_4K:
1639 		val |= GITS_BASER_PAGE_SIZE_4K;
1640 		break;
1641 	case SZ_16K:
1642 		val |= GITS_BASER_PAGE_SIZE_16K;
1643 		break;
1644 	case SZ_64K:
1645 		val |= GITS_BASER_PAGE_SIZE_64K;
1646 		break;
1647 	}
1648 
1649 	its_write_baser(its, baser, val);
1650 	tmp = baser->val;
1651 
1652 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1653 		/*
1654 		 * Shareability didn't stick. Just use
1655 		 * whatever the read reported, which is likely
1656 		 * to be the only thing this redistributor
1657 		 * supports. If that's zero, make it
1658 		 * non-cacheable as well.
1659 		 */
1660 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1661 		if (!shr) {
1662 			cache = GITS_BASER_nC;
1663 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1664 		}
1665 		goto retry_baser;
1666 	}
1667 
1668 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1669 		/*
1670 		 * Page size didn't stick. Let's try a smaller
1671 		 * size and retry. If we reach 4K, then
1672 		 * something is horribly wrong...
1673 		 */
1674 		free_pages((unsigned long)base, order);
1675 		baser->base = NULL;
1676 
1677 		switch (psz) {
1678 		case SZ_16K:
1679 			psz = SZ_4K;
1680 			goto retry_alloc_baser;
1681 		case SZ_64K:
1682 			psz = SZ_16K;
1683 			goto retry_alloc_baser;
1684 		}
1685 	}
1686 
1687 	if (val != tmp) {
1688 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1689 		       &its->phys_base, its_base_type_string[type],
1690 		       val, tmp);
1691 		free_pages((unsigned long)base, order);
1692 		return -ENXIO;
1693 	}
1694 
1695 	baser->order = order;
1696 	baser->base = base;
1697 	baser->psz = psz;
1698 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1699 
1700 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1701 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1702 		its_base_type_string[type],
1703 		(unsigned long)virt_to_phys(base),
1704 		indirect ? "indirect" : "flat", (int)esz,
1705 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1706 
1707 	return 0;
1708 }
1709 
1710 static bool its_parse_indirect_baser(struct its_node *its,
1711 				     struct its_baser *baser,
1712 				     u32 psz, u32 *order, u32 ids)
1713 {
1714 	u64 tmp = its_read_baser(its, baser);
1715 	u64 type = GITS_BASER_TYPE(tmp);
1716 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1717 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1718 	u32 new_order = *order;
1719 	bool indirect = false;
1720 
1721 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1722 	if ((esz << ids) > (psz * 2)) {
1723 		/*
1724 		 * Find out whether hw supports a single or two-level table by
1725 		 * table by reading bit at offset '62' after writing '1' to it.
1726 		 */
1727 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1728 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1729 
1730 		if (indirect) {
1731 			/*
1732 			 * The size of the lvl2 table is equal to ITS page size
1733 			 * which is 'psz'. For computing lvl1 table size,
1734 			 * subtract ID bits that sparse lvl2 table from 'ids'
1735 			 * which is reported by ITS hardware times lvl1 table
1736 			 * entry size.
1737 			 */
1738 			ids -= ilog2(psz / (int)esz);
1739 			esz = GITS_LVL1_ENTRY_SIZE;
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * Allocate as many entries as required to fit the
1745 	 * range of device IDs that the ITS can grok... The ID
1746 	 * space being incredibly sparse, this results in a
1747 	 * massive waste of memory if two-level device table
1748 	 * feature is not supported by hardware.
1749 	 */
1750 	new_order = max_t(u32, get_order(esz << ids), new_order);
1751 	if (new_order >= MAX_ORDER) {
1752 		new_order = MAX_ORDER - 1;
1753 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1754 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1755 			&its->phys_base, its_base_type_string[type],
1756 			its->device_ids, ids);
1757 	}
1758 
1759 	*order = new_order;
1760 
1761 	return indirect;
1762 }
1763 
1764 static void its_free_tables(struct its_node *its)
1765 {
1766 	int i;
1767 
1768 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1769 		if (its->tables[i].base) {
1770 			free_pages((unsigned long)its->tables[i].base,
1771 				   its->tables[i].order);
1772 			its->tables[i].base = NULL;
1773 		}
1774 	}
1775 }
1776 
1777 static int its_alloc_tables(struct its_node *its)
1778 {
1779 	u64 shr = GITS_BASER_InnerShareable;
1780 	u64 cache = GITS_BASER_RaWaWb;
1781 	u32 psz = SZ_64K;
1782 	int err, i;
1783 
1784 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1785 		/* erratum 24313: ignore memory access type */
1786 		cache = GITS_BASER_nCnB;
1787 
1788 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1789 		struct its_baser *baser = its->tables + i;
1790 		u64 val = its_read_baser(its, baser);
1791 		u64 type = GITS_BASER_TYPE(val);
1792 		u32 order = get_order(psz);
1793 		bool indirect = false;
1794 
1795 		switch (type) {
1796 		case GITS_BASER_TYPE_NONE:
1797 			continue;
1798 
1799 		case GITS_BASER_TYPE_DEVICE:
1800 			indirect = its_parse_indirect_baser(its, baser,
1801 							    psz, &order,
1802 							    its->device_ids);
1803 		case GITS_BASER_TYPE_VCPU:
1804 			indirect = its_parse_indirect_baser(its, baser,
1805 							    psz, &order,
1806 							    ITS_MAX_VPEID_BITS);
1807 			break;
1808 		}
1809 
1810 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1811 		if (err < 0) {
1812 			its_free_tables(its);
1813 			return err;
1814 		}
1815 
1816 		/* Update settings which will be used for next BASERn */
1817 		psz = baser->psz;
1818 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1819 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static int its_alloc_collections(struct its_node *its)
1826 {
1827 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1828 				   GFP_KERNEL);
1829 	if (!its->collections)
1830 		return -ENOMEM;
1831 
1832 	return 0;
1833 }
1834 
1835 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1836 {
1837 	struct page *pend_page;
1838 	/*
1839 	 * The pending pages have to be at least 64kB aligned,
1840 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1841 	 */
1842 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1843 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1844 	if (!pend_page)
1845 		return NULL;
1846 
1847 	/* Make sure the GIC will observe the zero-ed page */
1848 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1849 
1850 	return pend_page;
1851 }
1852 
1853 static void its_free_pending_table(struct page *pt)
1854 {
1855 	free_pages((unsigned long)page_address(pt),
1856 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1857 }
1858 
1859 static void its_cpu_init_lpis(void)
1860 {
1861 	void __iomem *rbase = gic_data_rdist_rd_base();
1862 	struct page *pend_page;
1863 	u64 val, tmp;
1864 
1865 	/* If we didn't allocate the pending table yet, do it now */
1866 	pend_page = gic_data_rdist()->pend_page;
1867 	if (!pend_page) {
1868 		phys_addr_t paddr;
1869 
1870 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1871 		if (!pend_page) {
1872 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1873 			       smp_processor_id());
1874 			return;
1875 		}
1876 
1877 		paddr = page_to_phys(pend_page);
1878 		pr_info("CPU%d: using LPI pending table @%pa\n",
1879 			smp_processor_id(), &paddr);
1880 		gic_data_rdist()->pend_page = pend_page;
1881 	}
1882 
1883 	/* set PROPBASE */
1884 	val = (page_to_phys(gic_rdists->prop_page) |
1885 	       GICR_PROPBASER_InnerShareable |
1886 	       GICR_PROPBASER_RaWaWb |
1887 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1888 
1889 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1890 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1891 
1892 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1893 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1894 			/*
1895 			 * The HW reports non-shareable, we must
1896 			 * remove the cacheability attributes as
1897 			 * well.
1898 			 */
1899 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1900 				 GICR_PROPBASER_CACHEABILITY_MASK);
1901 			val |= GICR_PROPBASER_nC;
1902 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1903 		}
1904 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1905 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1906 	}
1907 
1908 	/* set PENDBASE */
1909 	val = (page_to_phys(pend_page) |
1910 	       GICR_PENDBASER_InnerShareable |
1911 	       GICR_PENDBASER_RaWaWb);
1912 
1913 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1914 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1915 
1916 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1917 		/*
1918 		 * The HW reports non-shareable, we must remove the
1919 		 * cacheability attributes as well.
1920 		 */
1921 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1922 			 GICR_PENDBASER_CACHEABILITY_MASK);
1923 		val |= GICR_PENDBASER_nC;
1924 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1925 	}
1926 
1927 	/* Enable LPIs */
1928 	val = readl_relaxed(rbase + GICR_CTLR);
1929 	val |= GICR_CTLR_ENABLE_LPIS;
1930 	writel_relaxed(val, rbase + GICR_CTLR);
1931 
1932 	/* Make sure the GIC has seen the above */
1933 	dsb(sy);
1934 }
1935 
1936 static void its_cpu_init_collection(struct its_node *its)
1937 {
1938 	int cpu = smp_processor_id();
1939 	u64 target;
1940 
1941 	/* avoid cross node collections and its mapping */
1942 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1943 		struct device_node *cpu_node;
1944 
1945 		cpu_node = of_get_cpu_node(cpu, NULL);
1946 		if (its->numa_node != NUMA_NO_NODE &&
1947 			its->numa_node != of_node_to_nid(cpu_node))
1948 			return;
1949 	}
1950 
1951 	/*
1952 	 * We now have to bind each collection to its target
1953 	 * redistributor.
1954 	 */
1955 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1956 		/*
1957 		 * This ITS wants the physical address of the
1958 		 * redistributor.
1959 		 */
1960 		target = gic_data_rdist()->phys_base;
1961 	} else {
1962 		/* This ITS wants a linear CPU number. */
1963 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1964 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
1965 	}
1966 
1967 	/* Perform collection mapping */
1968 	its->collections[cpu].target_address = target;
1969 	its->collections[cpu].col_id = cpu;
1970 
1971 	its_send_mapc(its, &its->collections[cpu], 1);
1972 	its_send_invall(its, &its->collections[cpu]);
1973 }
1974 
1975 static void its_cpu_init_collections(void)
1976 {
1977 	struct its_node *its;
1978 
1979 	spin_lock(&its_lock);
1980 
1981 	list_for_each_entry(its, &its_nodes, entry)
1982 		its_cpu_init_collection(its);
1983 
1984 	spin_unlock(&its_lock);
1985 }
1986 
1987 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1988 {
1989 	struct its_device *its_dev = NULL, *tmp;
1990 	unsigned long flags;
1991 
1992 	raw_spin_lock_irqsave(&its->lock, flags);
1993 
1994 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1995 		if (tmp->device_id == dev_id) {
1996 			its_dev = tmp;
1997 			break;
1998 		}
1999 	}
2000 
2001 	raw_spin_unlock_irqrestore(&its->lock, flags);
2002 
2003 	return its_dev;
2004 }
2005 
2006 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2007 {
2008 	int i;
2009 
2010 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2011 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2012 			return &its->tables[i];
2013 	}
2014 
2015 	return NULL;
2016 }
2017 
2018 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2019 {
2020 	struct page *page;
2021 	u32 esz, idx;
2022 	__le64 *table;
2023 
2024 	/* Don't allow device id that exceeds single, flat table limit */
2025 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2026 	if (!(baser->val & GITS_BASER_INDIRECT))
2027 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2028 
2029 	/* Compute 1st level table index & check if that exceeds table limit */
2030 	idx = id >> ilog2(baser->psz / esz);
2031 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2032 		return false;
2033 
2034 	table = baser->base;
2035 
2036 	/* Allocate memory for 2nd level table */
2037 	if (!table[idx]) {
2038 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2039 		if (!page)
2040 			return false;
2041 
2042 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2043 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2044 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2045 
2046 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2047 
2048 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2049 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2050 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2051 
2052 		/* Ensure updated table contents are visible to ITS hardware */
2053 		dsb(sy);
2054 	}
2055 
2056 	return true;
2057 }
2058 
2059 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2060 {
2061 	struct its_baser *baser;
2062 
2063 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2064 
2065 	/* Don't allow device id that exceeds ITS hardware limit */
2066 	if (!baser)
2067 		return (ilog2(dev_id) < its->device_ids);
2068 
2069 	return its_alloc_table_entry(baser, dev_id);
2070 }
2071 
2072 static bool its_alloc_vpe_table(u32 vpe_id)
2073 {
2074 	struct its_node *its;
2075 
2076 	/*
2077 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2078 	 * could try and only do it on ITSs corresponding to devices
2079 	 * that have interrupts targeted at this VPE, but the
2080 	 * complexity becomes crazy (and you have tons of memory
2081 	 * anyway, right?).
2082 	 */
2083 	list_for_each_entry(its, &its_nodes, entry) {
2084 		struct its_baser *baser;
2085 
2086 		if (!its->is_v4)
2087 			continue;
2088 
2089 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2090 		if (!baser)
2091 			return false;
2092 
2093 		if (!its_alloc_table_entry(baser, vpe_id))
2094 			return false;
2095 	}
2096 
2097 	return true;
2098 }
2099 
2100 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2101 					    int nvecs, bool alloc_lpis)
2102 {
2103 	struct its_device *dev;
2104 	unsigned long *lpi_map = NULL;
2105 	unsigned long flags;
2106 	u16 *col_map = NULL;
2107 	void *itt;
2108 	int lpi_base;
2109 	int nr_lpis;
2110 	int nr_ites;
2111 	int sz;
2112 
2113 	if (!its_alloc_device_table(its, dev_id))
2114 		return NULL;
2115 
2116 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2117 	/*
2118 	 * We allocate at least one chunk worth of LPIs bet device,
2119 	 * and thus that many ITEs. The device may require less though.
2120 	 */
2121 	nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2122 	sz = nr_ites * its->ite_size;
2123 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2124 	itt = kzalloc(sz, GFP_KERNEL);
2125 	if (alloc_lpis) {
2126 		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2127 		if (lpi_map)
2128 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2129 					  GFP_KERNEL);
2130 	} else {
2131 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2132 		nr_lpis = 0;
2133 		lpi_base = 0;
2134 	}
2135 
2136 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2137 		kfree(dev);
2138 		kfree(itt);
2139 		kfree(lpi_map);
2140 		kfree(col_map);
2141 		return NULL;
2142 	}
2143 
2144 	gic_flush_dcache_to_poc(itt, sz);
2145 
2146 	dev->its = its;
2147 	dev->itt = itt;
2148 	dev->nr_ites = nr_ites;
2149 	dev->event_map.lpi_map = lpi_map;
2150 	dev->event_map.col_map = col_map;
2151 	dev->event_map.lpi_base = lpi_base;
2152 	dev->event_map.nr_lpis = nr_lpis;
2153 	mutex_init(&dev->event_map.vlpi_lock);
2154 	dev->device_id = dev_id;
2155 	INIT_LIST_HEAD(&dev->entry);
2156 
2157 	raw_spin_lock_irqsave(&its->lock, flags);
2158 	list_add(&dev->entry, &its->its_device_list);
2159 	raw_spin_unlock_irqrestore(&its->lock, flags);
2160 
2161 	/* Map device to its ITT */
2162 	its_send_mapd(dev, 1);
2163 
2164 	return dev;
2165 }
2166 
2167 static void its_free_device(struct its_device *its_dev)
2168 {
2169 	unsigned long flags;
2170 
2171 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2172 	list_del(&its_dev->entry);
2173 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2174 	kfree(its_dev->itt);
2175 	kfree(its_dev);
2176 }
2177 
2178 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2179 {
2180 	int idx;
2181 
2182 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2183 				  dev->event_map.nr_lpis);
2184 	if (idx == dev->event_map.nr_lpis)
2185 		return -ENOSPC;
2186 
2187 	*hwirq = dev->event_map.lpi_base + idx;
2188 	set_bit(idx, dev->event_map.lpi_map);
2189 
2190 	return 0;
2191 }
2192 
2193 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2194 			   int nvec, msi_alloc_info_t *info)
2195 {
2196 	struct its_node *its;
2197 	struct its_device *its_dev;
2198 	struct msi_domain_info *msi_info;
2199 	u32 dev_id;
2200 
2201 	/*
2202 	 * We ignore "dev" entierely, and rely on the dev_id that has
2203 	 * been passed via the scratchpad. This limits this domain's
2204 	 * usefulness to upper layers that definitely know that they
2205 	 * are built on top of the ITS.
2206 	 */
2207 	dev_id = info->scratchpad[0].ul;
2208 
2209 	msi_info = msi_get_domain_info(domain);
2210 	its = msi_info->data;
2211 
2212 	if (!gic_rdists->has_direct_lpi &&
2213 	    vpe_proxy.dev &&
2214 	    vpe_proxy.dev->its == its &&
2215 	    dev_id == vpe_proxy.dev->device_id) {
2216 		/* Bad luck. Get yourself a better implementation */
2217 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2218 			  dev_id);
2219 		return -EINVAL;
2220 	}
2221 
2222 	its_dev = its_find_device(its, dev_id);
2223 	if (its_dev) {
2224 		/*
2225 		 * We already have seen this ID, probably through
2226 		 * another alias (PCI bridge of some sort). No need to
2227 		 * create the device.
2228 		 */
2229 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2230 		goto out;
2231 	}
2232 
2233 	its_dev = its_create_device(its, dev_id, nvec, true);
2234 	if (!its_dev)
2235 		return -ENOMEM;
2236 
2237 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2238 out:
2239 	info->scratchpad[0].ptr = its_dev;
2240 	return 0;
2241 }
2242 
2243 static struct msi_domain_ops its_msi_domain_ops = {
2244 	.msi_prepare	= its_msi_prepare,
2245 };
2246 
2247 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2248 				    unsigned int virq,
2249 				    irq_hw_number_t hwirq)
2250 {
2251 	struct irq_fwspec fwspec;
2252 
2253 	if (irq_domain_get_of_node(domain->parent)) {
2254 		fwspec.fwnode = domain->parent->fwnode;
2255 		fwspec.param_count = 3;
2256 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2257 		fwspec.param[1] = hwirq;
2258 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2259 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2260 		fwspec.fwnode = domain->parent->fwnode;
2261 		fwspec.param_count = 2;
2262 		fwspec.param[0] = hwirq;
2263 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2264 	} else {
2265 		return -EINVAL;
2266 	}
2267 
2268 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2269 }
2270 
2271 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2272 				unsigned int nr_irqs, void *args)
2273 {
2274 	msi_alloc_info_t *info = args;
2275 	struct its_device *its_dev = info->scratchpad[0].ptr;
2276 	irq_hw_number_t hwirq;
2277 	int err;
2278 	int i;
2279 
2280 	for (i = 0; i < nr_irqs; i++) {
2281 		err = its_alloc_device_irq(its_dev, &hwirq);
2282 		if (err)
2283 			return err;
2284 
2285 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2286 		if (err)
2287 			return err;
2288 
2289 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2290 					      hwirq, &its_irq_chip, its_dev);
2291 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2292 		pr_debug("ID:%d pID:%d vID:%d\n",
2293 			 (int)(hwirq - its_dev->event_map.lpi_base),
2294 			 (int) hwirq, virq + i);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int its_irq_domain_activate(struct irq_domain *domain,
2301 				   struct irq_data *d, bool reserve)
2302 {
2303 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2304 	u32 event = its_get_event_id(d);
2305 	const struct cpumask *cpu_mask = cpu_online_mask;
2306 	int cpu;
2307 
2308 	/* get the cpu_mask of local node */
2309 	if (its_dev->its->numa_node >= 0)
2310 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2311 
2312 	/* Bind the LPI to the first possible CPU */
2313 	cpu = cpumask_first(cpu_mask);
2314 	its_dev->event_map.col_map[event] = cpu;
2315 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2316 
2317 	/* Map the GIC IRQ and event to the device */
2318 	its_send_mapti(its_dev, d->hwirq, event);
2319 	return 0;
2320 }
2321 
2322 static void its_irq_domain_deactivate(struct irq_domain *domain,
2323 				      struct irq_data *d)
2324 {
2325 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2326 	u32 event = its_get_event_id(d);
2327 
2328 	/* Stop the delivery of interrupts */
2329 	its_send_discard(its_dev, event);
2330 }
2331 
2332 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2333 				unsigned int nr_irqs)
2334 {
2335 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2336 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2337 	int i;
2338 
2339 	for (i = 0; i < nr_irqs; i++) {
2340 		struct irq_data *data = irq_domain_get_irq_data(domain,
2341 								virq + i);
2342 		u32 event = its_get_event_id(data);
2343 
2344 		/* Mark interrupt index as unused */
2345 		clear_bit(event, its_dev->event_map.lpi_map);
2346 
2347 		/* Nuke the entry in the domain */
2348 		irq_domain_reset_irq_data(data);
2349 	}
2350 
2351 	/* If all interrupts have been freed, start mopping the floor */
2352 	if (bitmap_empty(its_dev->event_map.lpi_map,
2353 			 its_dev->event_map.nr_lpis)) {
2354 		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2355 				    its_dev->event_map.lpi_base,
2356 				    its_dev->event_map.nr_lpis);
2357 		kfree(its_dev->event_map.col_map);
2358 
2359 		/* Unmap device/itt */
2360 		its_send_mapd(its_dev, 0);
2361 		its_free_device(its_dev);
2362 	}
2363 
2364 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2365 }
2366 
2367 static const struct irq_domain_ops its_domain_ops = {
2368 	.alloc			= its_irq_domain_alloc,
2369 	.free			= its_irq_domain_free,
2370 	.activate		= its_irq_domain_activate,
2371 	.deactivate		= its_irq_domain_deactivate,
2372 };
2373 
2374 /*
2375  * This is insane.
2376  *
2377  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2378  * likely), the only way to perform an invalidate is to use a fake
2379  * device to issue an INV command, implying that the LPI has first
2380  * been mapped to some event on that device. Since this is not exactly
2381  * cheap, we try to keep that mapping around as long as possible, and
2382  * only issue an UNMAP if we're short on available slots.
2383  *
2384  * Broken by design(tm).
2385  */
2386 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2387 {
2388 	/* Already unmapped? */
2389 	if (vpe->vpe_proxy_event == -1)
2390 		return;
2391 
2392 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2393 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2394 
2395 	/*
2396 	 * We don't track empty slots at all, so let's move the
2397 	 * next_victim pointer if we can quickly reuse that slot
2398 	 * instead of nuking an existing entry. Not clear that this is
2399 	 * always a win though, and this might just generate a ripple
2400 	 * effect... Let's just hope VPEs don't migrate too often.
2401 	 */
2402 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2403 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2404 
2405 	vpe->vpe_proxy_event = -1;
2406 }
2407 
2408 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2409 {
2410 	if (!gic_rdists->has_direct_lpi) {
2411 		unsigned long flags;
2412 
2413 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2414 		its_vpe_db_proxy_unmap_locked(vpe);
2415 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2416 	}
2417 }
2418 
2419 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2420 {
2421 	/* Already mapped? */
2422 	if (vpe->vpe_proxy_event != -1)
2423 		return;
2424 
2425 	/* This slot was already allocated. Kick the other VPE out. */
2426 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2427 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2428 
2429 	/* Map the new VPE instead */
2430 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2431 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2432 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2433 
2434 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2435 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2436 }
2437 
2438 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2439 {
2440 	unsigned long flags;
2441 	struct its_collection *target_col;
2442 
2443 	if (gic_rdists->has_direct_lpi) {
2444 		void __iomem *rdbase;
2445 
2446 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2447 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2448 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2449 			cpu_relax();
2450 
2451 		return;
2452 	}
2453 
2454 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2455 
2456 	its_vpe_db_proxy_map_locked(vpe);
2457 
2458 	target_col = &vpe_proxy.dev->its->collections[to];
2459 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2460 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2461 
2462 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2463 }
2464 
2465 static int its_vpe_set_affinity(struct irq_data *d,
2466 				const struct cpumask *mask_val,
2467 				bool force)
2468 {
2469 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2470 	int cpu = cpumask_first(mask_val);
2471 
2472 	/*
2473 	 * Changing affinity is mega expensive, so let's be as lazy as
2474 	 * we can and only do it if we really have to. Also, if mapped
2475 	 * into the proxy device, we need to move the doorbell
2476 	 * interrupt to its new location.
2477 	 */
2478 	if (vpe->col_idx != cpu) {
2479 		int from = vpe->col_idx;
2480 
2481 		vpe->col_idx = cpu;
2482 		its_send_vmovp(vpe);
2483 		its_vpe_db_proxy_move(vpe, from, cpu);
2484 	}
2485 
2486 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2487 
2488 	return IRQ_SET_MASK_OK_DONE;
2489 }
2490 
2491 static void its_vpe_schedule(struct its_vpe *vpe)
2492 {
2493 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2494 	u64 val;
2495 
2496 	/* Schedule the VPE */
2497 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2498 		GENMASK_ULL(51, 12);
2499 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2500 	val |= GICR_VPROPBASER_RaWb;
2501 	val |= GICR_VPROPBASER_InnerShareable;
2502 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2503 
2504 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2505 		GENMASK_ULL(51, 16);
2506 	val |= GICR_VPENDBASER_RaWaWb;
2507 	val |= GICR_VPENDBASER_NonShareable;
2508 	/*
2509 	 * There is no good way of finding out if the pending table is
2510 	 * empty as we can race against the doorbell interrupt very
2511 	 * easily. So in the end, vpe->pending_last is only an
2512 	 * indication that the vcpu has something pending, not one
2513 	 * that the pending table is empty. A good implementation
2514 	 * would be able to read its coarse map pretty quickly anyway,
2515 	 * making this a tolerable issue.
2516 	 */
2517 	val |= GICR_VPENDBASER_PendingLast;
2518 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2519 	val |= GICR_VPENDBASER_Valid;
2520 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2521 }
2522 
2523 static void its_vpe_deschedule(struct its_vpe *vpe)
2524 {
2525 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2526 	u32 count = 1000000;	/* 1s! */
2527 	bool clean;
2528 	u64 val;
2529 
2530 	/* We're being scheduled out */
2531 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2532 	val &= ~GICR_VPENDBASER_Valid;
2533 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2534 
2535 	do {
2536 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2537 		clean = !(val & GICR_VPENDBASER_Dirty);
2538 		if (!clean) {
2539 			count--;
2540 			cpu_relax();
2541 			udelay(1);
2542 		}
2543 	} while (!clean && count);
2544 
2545 	if (unlikely(!clean && !count)) {
2546 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2547 		vpe->idai = false;
2548 		vpe->pending_last = true;
2549 	} else {
2550 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2551 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2552 	}
2553 }
2554 
2555 static void its_vpe_invall(struct its_vpe *vpe)
2556 {
2557 	struct its_node *its;
2558 
2559 	list_for_each_entry(its, &its_nodes, entry) {
2560 		if (!its->is_v4)
2561 			continue;
2562 
2563 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2564 			continue;
2565 
2566 		/*
2567 		 * Sending a VINVALL to a single ITS is enough, as all
2568 		 * we need is to reach the redistributors.
2569 		 */
2570 		its_send_vinvall(its, vpe);
2571 		return;
2572 	}
2573 }
2574 
2575 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2576 {
2577 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2578 	struct its_cmd_info *info = vcpu_info;
2579 
2580 	switch (info->cmd_type) {
2581 	case SCHEDULE_VPE:
2582 		its_vpe_schedule(vpe);
2583 		return 0;
2584 
2585 	case DESCHEDULE_VPE:
2586 		its_vpe_deschedule(vpe);
2587 		return 0;
2588 
2589 	case INVALL_VPE:
2590 		its_vpe_invall(vpe);
2591 		return 0;
2592 
2593 	default:
2594 		return -EINVAL;
2595 	}
2596 }
2597 
2598 static void its_vpe_send_cmd(struct its_vpe *vpe,
2599 			     void (*cmd)(struct its_device *, u32))
2600 {
2601 	unsigned long flags;
2602 
2603 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2604 
2605 	its_vpe_db_proxy_map_locked(vpe);
2606 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2607 
2608 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2609 }
2610 
2611 static void its_vpe_send_inv(struct irq_data *d)
2612 {
2613 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2614 
2615 	if (gic_rdists->has_direct_lpi) {
2616 		void __iomem *rdbase;
2617 
2618 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2619 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2620 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2621 			cpu_relax();
2622 	} else {
2623 		its_vpe_send_cmd(vpe, its_send_inv);
2624 	}
2625 }
2626 
2627 static void its_vpe_mask_irq(struct irq_data *d)
2628 {
2629 	/*
2630 	 * We need to unmask the LPI, which is described by the parent
2631 	 * irq_data. Instead of calling into the parent (which won't
2632 	 * exactly do the right thing, let's simply use the
2633 	 * parent_data pointer. Yes, I'm naughty.
2634 	 */
2635 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2636 	its_vpe_send_inv(d);
2637 }
2638 
2639 static void its_vpe_unmask_irq(struct irq_data *d)
2640 {
2641 	/* Same hack as above... */
2642 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2643 	its_vpe_send_inv(d);
2644 }
2645 
2646 static int its_vpe_set_irqchip_state(struct irq_data *d,
2647 				     enum irqchip_irq_state which,
2648 				     bool state)
2649 {
2650 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2651 
2652 	if (which != IRQCHIP_STATE_PENDING)
2653 		return -EINVAL;
2654 
2655 	if (gic_rdists->has_direct_lpi) {
2656 		void __iomem *rdbase;
2657 
2658 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2659 		if (state) {
2660 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2661 		} else {
2662 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2663 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2664 				cpu_relax();
2665 		}
2666 	} else {
2667 		if (state)
2668 			its_vpe_send_cmd(vpe, its_send_int);
2669 		else
2670 			its_vpe_send_cmd(vpe, its_send_clear);
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 static struct irq_chip its_vpe_irq_chip = {
2677 	.name			= "GICv4-vpe",
2678 	.irq_mask		= its_vpe_mask_irq,
2679 	.irq_unmask		= its_vpe_unmask_irq,
2680 	.irq_eoi		= irq_chip_eoi_parent,
2681 	.irq_set_affinity	= its_vpe_set_affinity,
2682 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2683 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2684 };
2685 
2686 static int its_vpe_id_alloc(void)
2687 {
2688 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2689 }
2690 
2691 static void its_vpe_id_free(u16 id)
2692 {
2693 	ida_simple_remove(&its_vpeid_ida, id);
2694 }
2695 
2696 static int its_vpe_init(struct its_vpe *vpe)
2697 {
2698 	struct page *vpt_page;
2699 	int vpe_id;
2700 
2701 	/* Allocate vpe_id */
2702 	vpe_id = its_vpe_id_alloc();
2703 	if (vpe_id < 0)
2704 		return vpe_id;
2705 
2706 	/* Allocate VPT */
2707 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2708 	if (!vpt_page) {
2709 		its_vpe_id_free(vpe_id);
2710 		return -ENOMEM;
2711 	}
2712 
2713 	if (!its_alloc_vpe_table(vpe_id)) {
2714 		its_vpe_id_free(vpe_id);
2715 		its_free_pending_table(vpe->vpt_page);
2716 		return -ENOMEM;
2717 	}
2718 
2719 	vpe->vpe_id = vpe_id;
2720 	vpe->vpt_page = vpt_page;
2721 	vpe->vpe_proxy_event = -1;
2722 
2723 	return 0;
2724 }
2725 
2726 static void its_vpe_teardown(struct its_vpe *vpe)
2727 {
2728 	its_vpe_db_proxy_unmap(vpe);
2729 	its_vpe_id_free(vpe->vpe_id);
2730 	its_free_pending_table(vpe->vpt_page);
2731 }
2732 
2733 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2734 				    unsigned int virq,
2735 				    unsigned int nr_irqs)
2736 {
2737 	struct its_vm *vm = domain->host_data;
2738 	int i;
2739 
2740 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2741 
2742 	for (i = 0; i < nr_irqs; i++) {
2743 		struct irq_data *data = irq_domain_get_irq_data(domain,
2744 								virq + i);
2745 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2746 
2747 		BUG_ON(vm != vpe->its_vm);
2748 
2749 		clear_bit(data->hwirq, vm->db_bitmap);
2750 		its_vpe_teardown(vpe);
2751 		irq_domain_reset_irq_data(data);
2752 	}
2753 
2754 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2755 		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2756 		its_free_prop_table(vm->vprop_page);
2757 	}
2758 }
2759 
2760 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2761 				    unsigned int nr_irqs, void *args)
2762 {
2763 	struct its_vm *vm = args;
2764 	unsigned long *bitmap;
2765 	struct page *vprop_page;
2766 	int base, nr_ids, i, err = 0;
2767 
2768 	BUG_ON(!vm);
2769 
2770 	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2771 	if (!bitmap)
2772 		return -ENOMEM;
2773 
2774 	if (nr_ids < nr_irqs) {
2775 		its_lpi_free_chunks(bitmap, base, nr_ids);
2776 		return -ENOMEM;
2777 	}
2778 
2779 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2780 	if (!vprop_page) {
2781 		its_lpi_free_chunks(bitmap, base, nr_ids);
2782 		return -ENOMEM;
2783 	}
2784 
2785 	vm->db_bitmap = bitmap;
2786 	vm->db_lpi_base = base;
2787 	vm->nr_db_lpis = nr_ids;
2788 	vm->vprop_page = vprop_page;
2789 
2790 	for (i = 0; i < nr_irqs; i++) {
2791 		vm->vpes[i]->vpe_db_lpi = base + i;
2792 		err = its_vpe_init(vm->vpes[i]);
2793 		if (err)
2794 			break;
2795 		err = its_irq_gic_domain_alloc(domain, virq + i,
2796 					       vm->vpes[i]->vpe_db_lpi);
2797 		if (err)
2798 			break;
2799 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2800 					      &its_vpe_irq_chip, vm->vpes[i]);
2801 		set_bit(i, bitmap);
2802 	}
2803 
2804 	if (err) {
2805 		if (i > 0)
2806 			its_vpe_irq_domain_free(domain, virq, i - 1);
2807 
2808 		its_lpi_free_chunks(bitmap, base, nr_ids);
2809 		its_free_prop_table(vprop_page);
2810 	}
2811 
2812 	return err;
2813 }
2814 
2815 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2816 				       struct irq_data *d, bool reserve)
2817 {
2818 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2819 	struct its_node *its;
2820 
2821 	/* If we use the list map, we issue VMAPP on demand... */
2822 	if (its_list_map)
2823 		return 0;
2824 
2825 	/* Map the VPE to the first possible CPU */
2826 	vpe->col_idx = cpumask_first(cpu_online_mask);
2827 
2828 	list_for_each_entry(its, &its_nodes, entry) {
2829 		if (!its->is_v4)
2830 			continue;
2831 
2832 		its_send_vmapp(its, vpe, true);
2833 		its_send_vinvall(its, vpe);
2834 	}
2835 
2836 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2837 
2838 	return 0;
2839 }
2840 
2841 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2842 					  struct irq_data *d)
2843 {
2844 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2845 	struct its_node *its;
2846 
2847 	/*
2848 	 * If we use the list map, we unmap the VPE once no VLPIs are
2849 	 * associated with the VM.
2850 	 */
2851 	if (its_list_map)
2852 		return;
2853 
2854 	list_for_each_entry(its, &its_nodes, entry) {
2855 		if (!its->is_v4)
2856 			continue;
2857 
2858 		its_send_vmapp(its, vpe, false);
2859 	}
2860 }
2861 
2862 static const struct irq_domain_ops its_vpe_domain_ops = {
2863 	.alloc			= its_vpe_irq_domain_alloc,
2864 	.free			= its_vpe_irq_domain_free,
2865 	.activate		= its_vpe_irq_domain_activate,
2866 	.deactivate		= its_vpe_irq_domain_deactivate,
2867 };
2868 
2869 static int its_force_quiescent(void __iomem *base)
2870 {
2871 	u32 count = 1000000;	/* 1s */
2872 	u32 val;
2873 
2874 	val = readl_relaxed(base + GITS_CTLR);
2875 	/*
2876 	 * GIC architecture specification requires the ITS to be both
2877 	 * disabled and quiescent for writes to GITS_BASER<n> or
2878 	 * GITS_CBASER to not have UNPREDICTABLE results.
2879 	 */
2880 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2881 		return 0;
2882 
2883 	/* Disable the generation of all interrupts to this ITS */
2884 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2885 	writel_relaxed(val, base + GITS_CTLR);
2886 
2887 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2888 	while (1) {
2889 		val = readl_relaxed(base + GITS_CTLR);
2890 		if (val & GITS_CTLR_QUIESCENT)
2891 			return 0;
2892 
2893 		count--;
2894 		if (!count)
2895 			return -EBUSY;
2896 
2897 		cpu_relax();
2898 		udelay(1);
2899 	}
2900 }
2901 
2902 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2903 {
2904 	struct its_node *its = data;
2905 
2906 	/* erratum 22375: only alloc 8MB table size */
2907 	its->device_ids = 0x14;		/* 20 bits, 8MB */
2908 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2909 
2910 	return true;
2911 }
2912 
2913 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2914 {
2915 	struct its_node *its = data;
2916 
2917 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2918 
2919 	return true;
2920 }
2921 
2922 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2923 {
2924 	struct its_node *its = data;
2925 
2926 	/* On QDF2400, the size of the ITE is 16Bytes */
2927 	its->ite_size = 16;
2928 
2929 	return true;
2930 }
2931 
2932 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2933 {
2934 	struct its_node *its = its_dev->its;
2935 
2936 	/*
2937 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2938 	 * which maps 32-bit writes targeted at a separate window of
2939 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2940 	 * with device ID taken from bits [device_id_bits + 1:2] of
2941 	 * the window offset.
2942 	 */
2943 	return its->pre_its_base + (its_dev->device_id << 2);
2944 }
2945 
2946 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2947 {
2948 	struct its_node *its = data;
2949 	u32 pre_its_window[2];
2950 	u32 ids;
2951 
2952 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
2953 					   "socionext,synquacer-pre-its",
2954 					   pre_its_window,
2955 					   ARRAY_SIZE(pre_its_window))) {
2956 
2957 		its->pre_its_base = pre_its_window[0];
2958 		its->get_msi_base = its_irq_get_msi_base_pre_its;
2959 
2960 		ids = ilog2(pre_its_window[1]) - 2;
2961 		if (its->device_ids > ids)
2962 			its->device_ids = ids;
2963 
2964 		/* the pre-ITS breaks isolation, so disable MSI remapping */
2965 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2966 		return true;
2967 	}
2968 	return false;
2969 }
2970 
2971 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2972 {
2973 	struct its_node *its = data;
2974 
2975 	/*
2976 	 * Hip07 insists on using the wrong address for the VLPI
2977 	 * page. Trick it into doing the right thing...
2978 	 */
2979 	its->vlpi_redist_offset = SZ_128K;
2980 	return true;
2981 }
2982 
2983 static const struct gic_quirk its_quirks[] = {
2984 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2985 	{
2986 		.desc	= "ITS: Cavium errata 22375, 24313",
2987 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2988 		.mask	= 0xffff0fff,
2989 		.init	= its_enable_quirk_cavium_22375,
2990 	},
2991 #endif
2992 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2993 	{
2994 		.desc	= "ITS: Cavium erratum 23144",
2995 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2996 		.mask	= 0xffff0fff,
2997 		.init	= its_enable_quirk_cavium_23144,
2998 	},
2999 #endif
3000 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3001 	{
3002 		.desc	= "ITS: QDF2400 erratum 0065",
3003 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3004 		.mask	= 0xffffffff,
3005 		.init	= its_enable_quirk_qdf2400_e0065,
3006 	},
3007 #endif
3008 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3009 	{
3010 		/*
3011 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3012 		 * implementation, but with a 'pre-ITS' added that requires
3013 		 * special handling in software.
3014 		 */
3015 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3016 		.iidr	= 0x0001143b,
3017 		.mask	= 0xffffffff,
3018 		.init	= its_enable_quirk_socionext_synquacer,
3019 	},
3020 #endif
3021 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3022 	{
3023 		.desc	= "ITS: Hip07 erratum 161600802",
3024 		.iidr	= 0x00000004,
3025 		.mask	= 0xffffffff,
3026 		.init	= its_enable_quirk_hip07_161600802,
3027 	},
3028 #endif
3029 	{
3030 	}
3031 };
3032 
3033 static void its_enable_quirks(struct its_node *its)
3034 {
3035 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3036 
3037 	gic_enable_quirks(iidr, its_quirks, its);
3038 }
3039 
3040 static int its_save_disable(void)
3041 {
3042 	struct its_node *its;
3043 	int err = 0;
3044 
3045 	spin_lock(&its_lock);
3046 	list_for_each_entry(its, &its_nodes, entry) {
3047 		void __iomem *base;
3048 
3049 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3050 			continue;
3051 
3052 		base = its->base;
3053 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3054 		err = its_force_quiescent(base);
3055 		if (err) {
3056 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3057 			       &its->phys_base, err);
3058 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3059 			goto err;
3060 		}
3061 
3062 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3063 	}
3064 
3065 err:
3066 	if (err) {
3067 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3068 			void __iomem *base;
3069 
3070 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3071 				continue;
3072 
3073 			base = its->base;
3074 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3075 		}
3076 	}
3077 	spin_unlock(&its_lock);
3078 
3079 	return err;
3080 }
3081 
3082 static void its_restore_enable(void)
3083 {
3084 	struct its_node *its;
3085 	int ret;
3086 
3087 	spin_lock(&its_lock);
3088 	list_for_each_entry(its, &its_nodes, entry) {
3089 		void __iomem *base;
3090 		int i;
3091 
3092 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3093 			continue;
3094 
3095 		base = its->base;
3096 
3097 		/*
3098 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3099 		 * don't restore it since writing to CBASER or BASER<n>
3100 		 * registers is undefined according to the GIC v3 ITS
3101 		 * Specification.
3102 		 */
3103 		ret = its_force_quiescent(base);
3104 		if (ret) {
3105 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3106 			       &its->phys_base, ret);
3107 			continue;
3108 		}
3109 
3110 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3111 
3112 		/*
3113 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3114 		 * cmd_write line up with it.
3115 		 */
3116 		its->cmd_write = its->cmd_base;
3117 		gits_write_cwriter(0, base + GITS_CWRITER);
3118 
3119 		/* Restore GITS_BASER from the value cache. */
3120 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3121 			struct its_baser *baser = &its->tables[i];
3122 
3123 			if (!(baser->val & GITS_BASER_VALID))
3124 				continue;
3125 
3126 			its_write_baser(its, baser, baser->val);
3127 		}
3128 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3129 
3130 		/*
3131 		 * Reinit the collection if it's stored in the ITS. This is
3132 		 * indicated by the col_id being less than the HCC field.
3133 		 * CID < HCC as specified in the GIC v3 Documentation.
3134 		 */
3135 		if (its->collections[smp_processor_id()].col_id <
3136 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3137 			its_cpu_init_collection(its);
3138 	}
3139 	spin_unlock(&its_lock);
3140 }
3141 
3142 static struct syscore_ops its_syscore_ops = {
3143 	.suspend = its_save_disable,
3144 	.resume = its_restore_enable,
3145 };
3146 
3147 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3148 {
3149 	struct irq_domain *inner_domain;
3150 	struct msi_domain_info *info;
3151 
3152 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3153 	if (!info)
3154 		return -ENOMEM;
3155 
3156 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3157 	if (!inner_domain) {
3158 		kfree(info);
3159 		return -ENOMEM;
3160 	}
3161 
3162 	inner_domain->parent = its_parent;
3163 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3164 	inner_domain->flags |= its->msi_domain_flags;
3165 	info->ops = &its_msi_domain_ops;
3166 	info->data = its;
3167 	inner_domain->host_data = info;
3168 
3169 	return 0;
3170 }
3171 
3172 static int its_init_vpe_domain(void)
3173 {
3174 	struct its_node *its;
3175 	u32 devid;
3176 	int entries;
3177 
3178 	if (gic_rdists->has_direct_lpi) {
3179 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3180 		return 0;
3181 	}
3182 
3183 	/* Any ITS will do, even if not v4 */
3184 	its = list_first_entry(&its_nodes, struct its_node, entry);
3185 
3186 	entries = roundup_pow_of_two(nr_cpu_ids);
3187 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3188 				 GFP_KERNEL);
3189 	if (!vpe_proxy.vpes) {
3190 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3191 		return -ENOMEM;
3192 	}
3193 
3194 	/* Use the last possible DevID */
3195 	devid = GENMASK(its->device_ids - 1, 0);
3196 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3197 	if (!vpe_proxy.dev) {
3198 		kfree(vpe_proxy.vpes);
3199 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3200 		return -ENOMEM;
3201 	}
3202 
3203 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3204 
3205 	raw_spin_lock_init(&vpe_proxy.lock);
3206 	vpe_proxy.next_victim = 0;
3207 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3208 		devid, vpe_proxy.dev->nr_ites);
3209 
3210 	return 0;
3211 }
3212 
3213 static int __init its_compute_its_list_map(struct resource *res,
3214 					   void __iomem *its_base)
3215 {
3216 	int its_number;
3217 	u32 ctlr;
3218 
3219 	/*
3220 	 * This is assumed to be done early enough that we're
3221 	 * guaranteed to be single-threaded, hence no
3222 	 * locking. Should this change, we should address
3223 	 * this.
3224 	 */
3225 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3226 	if (its_number >= GICv4_ITS_LIST_MAX) {
3227 		pr_err("ITS@%pa: No ITSList entry available!\n",
3228 		       &res->start);
3229 		return -EINVAL;
3230 	}
3231 
3232 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3233 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3234 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3235 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3236 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3237 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3238 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3239 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3240 	}
3241 
3242 	if (test_and_set_bit(its_number, &its_list_map)) {
3243 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3244 		       &res->start, its_number);
3245 		return -EINVAL;
3246 	}
3247 
3248 	return its_number;
3249 }
3250 
3251 static int __init its_probe_one(struct resource *res,
3252 				struct fwnode_handle *handle, int numa_node)
3253 {
3254 	struct its_node *its;
3255 	void __iomem *its_base;
3256 	u32 val, ctlr;
3257 	u64 baser, tmp, typer;
3258 	int err;
3259 
3260 	its_base = ioremap(res->start, resource_size(res));
3261 	if (!its_base) {
3262 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3263 		return -ENOMEM;
3264 	}
3265 
3266 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3267 	if (val != 0x30 && val != 0x40) {
3268 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3269 		err = -ENODEV;
3270 		goto out_unmap;
3271 	}
3272 
3273 	err = its_force_quiescent(its_base);
3274 	if (err) {
3275 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3276 		goto out_unmap;
3277 	}
3278 
3279 	pr_info("ITS %pR\n", res);
3280 
3281 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3282 	if (!its) {
3283 		err = -ENOMEM;
3284 		goto out_unmap;
3285 	}
3286 
3287 	raw_spin_lock_init(&its->lock);
3288 	INIT_LIST_HEAD(&its->entry);
3289 	INIT_LIST_HEAD(&its->its_device_list);
3290 	typer = gic_read_typer(its_base + GITS_TYPER);
3291 	its->base = its_base;
3292 	its->phys_base = res->start;
3293 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3294 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3295 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3296 	if (its->is_v4) {
3297 		if (!(typer & GITS_TYPER_VMOVP)) {
3298 			err = its_compute_its_list_map(res, its_base);
3299 			if (err < 0)
3300 				goto out_free_its;
3301 
3302 			its->list_nr = err;
3303 
3304 			pr_info("ITS@%pa: Using ITS number %d\n",
3305 				&res->start, err);
3306 		} else {
3307 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3308 		}
3309 	}
3310 
3311 	its->numa_node = numa_node;
3312 
3313 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3314 						get_order(ITS_CMD_QUEUE_SZ));
3315 	if (!its->cmd_base) {
3316 		err = -ENOMEM;
3317 		goto out_free_its;
3318 	}
3319 	its->cmd_write = its->cmd_base;
3320 	its->fwnode_handle = handle;
3321 	its->get_msi_base = its_irq_get_msi_base;
3322 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3323 
3324 	its_enable_quirks(its);
3325 
3326 	err = its_alloc_tables(its);
3327 	if (err)
3328 		goto out_free_cmd;
3329 
3330 	err = its_alloc_collections(its);
3331 	if (err)
3332 		goto out_free_tables;
3333 
3334 	baser = (virt_to_phys(its->cmd_base)	|
3335 		 GITS_CBASER_RaWaWb		|
3336 		 GITS_CBASER_InnerShareable	|
3337 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3338 		 GITS_CBASER_VALID);
3339 
3340 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3341 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3342 
3343 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3344 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3345 			/*
3346 			 * The HW reports non-shareable, we must
3347 			 * remove the cacheability attributes as
3348 			 * well.
3349 			 */
3350 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3351 				   GITS_CBASER_CACHEABILITY_MASK);
3352 			baser |= GITS_CBASER_nC;
3353 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3354 		}
3355 		pr_info("ITS: using cache flushing for cmd queue\n");
3356 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3357 	}
3358 
3359 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3360 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3361 	ctlr |= GITS_CTLR_ENABLE;
3362 	if (its->is_v4)
3363 		ctlr |= GITS_CTLR_ImDe;
3364 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3365 
3366 	if (GITS_TYPER_HCC(typer))
3367 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3368 
3369 	err = its_init_domain(handle, its);
3370 	if (err)
3371 		goto out_free_tables;
3372 
3373 	spin_lock(&its_lock);
3374 	list_add(&its->entry, &its_nodes);
3375 	spin_unlock(&its_lock);
3376 
3377 	return 0;
3378 
3379 out_free_tables:
3380 	its_free_tables(its);
3381 out_free_cmd:
3382 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3383 out_free_its:
3384 	kfree(its);
3385 out_unmap:
3386 	iounmap(its_base);
3387 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3388 	return err;
3389 }
3390 
3391 static bool gic_rdists_supports_plpis(void)
3392 {
3393 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3394 }
3395 
3396 static int redist_disable_lpis(void)
3397 {
3398 	void __iomem *rbase = gic_data_rdist_rd_base();
3399 	u64 timeout = USEC_PER_SEC;
3400 	u64 val;
3401 
3402 	if (!gic_rdists_supports_plpis()) {
3403 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3404 		return -ENXIO;
3405 	}
3406 
3407 	val = readl_relaxed(rbase + GICR_CTLR);
3408 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3409 		return 0;
3410 
3411 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3412 		smp_processor_id());
3413 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3414 
3415 	/* Disable LPIs */
3416 	val &= ~GICR_CTLR_ENABLE_LPIS;
3417 	writel_relaxed(val, rbase + GICR_CTLR);
3418 
3419 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3420 	dsb(sy);
3421 
3422 	/*
3423 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3424 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3425 	 * Error out if we time out waiting for RWP to clear.
3426 	 */
3427 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3428 		if (!timeout) {
3429 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3430 			       smp_processor_id());
3431 			return -ETIMEDOUT;
3432 		}
3433 		udelay(1);
3434 		timeout--;
3435 	}
3436 
3437 	/*
3438 	 * After it has been written to 1, it is IMPLEMENTATION
3439 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3440 	 * cleared to 0. Error out if clearing the bit failed.
3441 	 */
3442 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3443 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3444 		return -EBUSY;
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 int its_cpu_init(void)
3451 {
3452 	if (!list_empty(&its_nodes)) {
3453 		int ret;
3454 
3455 		ret = redist_disable_lpis();
3456 		if (ret)
3457 			return ret;
3458 
3459 		its_cpu_init_lpis();
3460 		its_cpu_init_collections();
3461 	}
3462 
3463 	return 0;
3464 }
3465 
3466 static const struct of_device_id its_device_id[] = {
3467 	{	.compatible	= "arm,gic-v3-its",	},
3468 	{},
3469 };
3470 
3471 static int __init its_of_probe(struct device_node *node)
3472 {
3473 	struct device_node *np;
3474 	struct resource res;
3475 
3476 	for (np = of_find_matching_node(node, its_device_id); np;
3477 	     np = of_find_matching_node(np, its_device_id)) {
3478 		if (!of_device_is_available(np))
3479 			continue;
3480 		if (!of_property_read_bool(np, "msi-controller")) {
3481 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3482 				np);
3483 			continue;
3484 		}
3485 
3486 		if (of_address_to_resource(np, 0, &res)) {
3487 			pr_warn("%pOF: no regs?\n", np);
3488 			continue;
3489 		}
3490 
3491 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3492 	}
3493 	return 0;
3494 }
3495 
3496 #ifdef CONFIG_ACPI
3497 
3498 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3499 
3500 #ifdef CONFIG_ACPI_NUMA
3501 struct its_srat_map {
3502 	/* numa node id */
3503 	u32	numa_node;
3504 	/* GIC ITS ID */
3505 	u32	its_id;
3506 };
3507 
3508 static struct its_srat_map *its_srat_maps __initdata;
3509 static int its_in_srat __initdata;
3510 
3511 static int __init acpi_get_its_numa_node(u32 its_id)
3512 {
3513 	int i;
3514 
3515 	for (i = 0; i < its_in_srat; i++) {
3516 		if (its_id == its_srat_maps[i].its_id)
3517 			return its_srat_maps[i].numa_node;
3518 	}
3519 	return NUMA_NO_NODE;
3520 }
3521 
3522 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3523 					  const unsigned long end)
3524 {
3525 	return 0;
3526 }
3527 
3528 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3529 			 const unsigned long end)
3530 {
3531 	int node;
3532 	struct acpi_srat_gic_its_affinity *its_affinity;
3533 
3534 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3535 	if (!its_affinity)
3536 		return -EINVAL;
3537 
3538 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3539 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3540 			its_affinity->header.length);
3541 		return -EINVAL;
3542 	}
3543 
3544 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3545 
3546 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3547 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3548 		return 0;
3549 	}
3550 
3551 	its_srat_maps[its_in_srat].numa_node = node;
3552 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3553 	its_in_srat++;
3554 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3555 		its_affinity->proximity_domain, its_affinity->its_id, node);
3556 
3557 	return 0;
3558 }
3559 
3560 static void __init acpi_table_parse_srat_its(void)
3561 {
3562 	int count;
3563 
3564 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3565 			sizeof(struct acpi_table_srat),
3566 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3567 			gic_acpi_match_srat_its, 0);
3568 	if (count <= 0)
3569 		return;
3570 
3571 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3572 				      GFP_KERNEL);
3573 	if (!its_srat_maps) {
3574 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3575 		return;
3576 	}
3577 
3578 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3579 			sizeof(struct acpi_table_srat),
3580 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3581 			gic_acpi_parse_srat_its, 0);
3582 }
3583 
3584 /* free the its_srat_maps after ITS probing */
3585 static void __init acpi_its_srat_maps_free(void)
3586 {
3587 	kfree(its_srat_maps);
3588 }
3589 #else
3590 static void __init acpi_table_parse_srat_its(void)	{ }
3591 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3592 static void __init acpi_its_srat_maps_free(void) { }
3593 #endif
3594 
3595 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3596 					  const unsigned long end)
3597 {
3598 	struct acpi_madt_generic_translator *its_entry;
3599 	struct fwnode_handle *dom_handle;
3600 	struct resource res;
3601 	int err;
3602 
3603 	its_entry = (struct acpi_madt_generic_translator *)header;
3604 	memset(&res, 0, sizeof(res));
3605 	res.start = its_entry->base_address;
3606 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3607 	res.flags = IORESOURCE_MEM;
3608 
3609 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3610 	if (!dom_handle) {
3611 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3612 		       &res.start);
3613 		return -ENOMEM;
3614 	}
3615 
3616 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3617 					 dom_handle);
3618 	if (err) {
3619 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3620 		       &res.start, its_entry->translation_id);
3621 		goto dom_err;
3622 	}
3623 
3624 	err = its_probe_one(&res, dom_handle,
3625 			acpi_get_its_numa_node(its_entry->translation_id));
3626 	if (!err)
3627 		return 0;
3628 
3629 	iort_deregister_domain_token(its_entry->translation_id);
3630 dom_err:
3631 	irq_domain_free_fwnode(dom_handle);
3632 	return err;
3633 }
3634 
3635 static void __init its_acpi_probe(void)
3636 {
3637 	acpi_table_parse_srat_its();
3638 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3639 			      gic_acpi_parse_madt_its, 0);
3640 	acpi_its_srat_maps_free();
3641 }
3642 #else
3643 static void __init its_acpi_probe(void) { }
3644 #endif
3645 
3646 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3647 		    struct irq_domain *parent_domain)
3648 {
3649 	struct device_node *of_node;
3650 	struct its_node *its;
3651 	bool has_v4 = false;
3652 	int err;
3653 
3654 	its_parent = parent_domain;
3655 	of_node = to_of_node(handle);
3656 	if (of_node)
3657 		its_of_probe(of_node);
3658 	else
3659 		its_acpi_probe();
3660 
3661 	if (list_empty(&its_nodes)) {
3662 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3663 		return -ENXIO;
3664 	}
3665 
3666 	gic_rdists = rdists;
3667 	err = its_alloc_lpi_tables();
3668 	if (err)
3669 		return err;
3670 
3671 	list_for_each_entry(its, &its_nodes, entry)
3672 		has_v4 |= its->is_v4;
3673 
3674 	if (has_v4 & rdists->has_vlpis) {
3675 		if (its_init_vpe_domain() ||
3676 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3677 			rdists->has_vlpis = false;
3678 			pr_err("ITS: Disabling GICv4 support\n");
3679 		}
3680 	}
3681 
3682 	register_syscore_ops(&its_syscore_ops);
3683 
3684 	return 0;
3685 }
3686