xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 #include <linux/syscore_ops.h>
37 
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/arm-gic-v3.h>
40 #include <linux/irqchip/arm-gic-v4.h>
41 
42 #include <asm/cputype.h>
43 #include <asm/exception.h>
44 
45 #include "irq-gic-common.h"
46 
47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
50 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
51 
52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
53 
54 static u32 lpi_id_bits;
55 
56 /*
57  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
58  * deal with (one configuration byte per interrupt). PENDBASE has to
59  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
60  */
61 #define LPI_NRBITS		lpi_id_bits
62 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
63 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
64 
65 #define LPI_PROP_DEFAULT_PRIO	0xa0
66 
67 /*
68  * Collection structure - just an ID, and a redistributor address to
69  * ping. We use one per CPU as a bag of interrupts assigned to this
70  * CPU.
71  */
72 struct its_collection {
73 	u64			target_address;
74 	u16			col_id;
75 };
76 
77 /*
78  * The ITS_BASER structure - contains memory information, cached
79  * value of BASER register configuration and ITS page size.
80  */
81 struct its_baser {
82 	void		*base;
83 	u64		val;
84 	u32		order;
85 	u32		psz;
86 };
87 
88 struct its_device;
89 
90 /*
91  * The ITS structure - contains most of the infrastructure, with the
92  * top-level MSI domain, the command queue, the collections, and the
93  * list of devices writing to it.
94  */
95 struct its_node {
96 	raw_spinlock_t		lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	phys_addr_t		phys_base;
100 	struct its_cmd_block	*cmd_base;
101 	struct its_cmd_block	*cmd_write;
102 	struct its_baser	tables[GITS_BASER_NR_REGS];
103 	struct its_collection	*collections;
104 	struct fwnode_handle	*fwnode_handle;
105 	u64			(*get_msi_base)(struct its_device *its_dev);
106 	u64			cbaser_save;
107 	u32			ctlr_save;
108 	struct list_head	its_device_list;
109 	u64			flags;
110 	unsigned long		list_nr;
111 	u32			ite_size;
112 	u32			device_ids;
113 	int			numa_node;
114 	unsigned int		msi_domain_flags;
115 	u32			pre_its_base; /* for Socionext Synquacer */
116 	bool			is_v4;
117 	int			vlpi_redist_offset;
118 };
119 
120 #define ITS_ITT_ALIGN		SZ_256
121 
122 /* The maximum number of VPEID bits supported by VLPI commands */
123 #define ITS_MAX_VPEID_BITS	(16)
124 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
125 
126 /* Convert page order to size in bytes */
127 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
128 
129 struct event_lpi_map {
130 	unsigned long		*lpi_map;
131 	u16			*col_map;
132 	irq_hw_number_t		lpi_base;
133 	int			nr_lpis;
134 	struct mutex		vlpi_lock;
135 	struct its_vm		*vm;
136 	struct its_vlpi_map	*vlpi_maps;
137 	int			nr_vlpis;
138 };
139 
140 /*
141  * The ITS view of a device - belongs to an ITS, owns an interrupt
142  * translation table, and a list of interrupts.  If it some of its
143  * LPIs are injected into a guest (GICv4), the event_map.vm field
144  * indicates which one.
145  */
146 struct its_device {
147 	struct list_head	entry;
148 	struct its_node		*its;
149 	struct event_lpi_map	event_map;
150 	void			*itt;
151 	u32			nr_ites;
152 	u32			device_id;
153 };
154 
155 static struct {
156 	raw_spinlock_t		lock;
157 	struct its_device	*dev;
158 	struct its_vpe		**vpes;
159 	int			next_victim;
160 } vpe_proxy;
161 
162 static LIST_HEAD(its_nodes);
163 static DEFINE_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166 
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170 
171 static DEFINE_IDA(its_vpeid_ida);
172 
173 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
175 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
176 
177 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
178 					       u32 event)
179 {
180 	struct its_node *its = its_dev->its;
181 
182 	return its->collections + its_dev->event_map.col_map[event];
183 }
184 
185 /*
186  * ITS command descriptors - parameters to be encoded in a command
187  * block.
188  */
189 struct its_cmd_desc {
190 	union {
191 		struct {
192 			struct its_device *dev;
193 			u32 event_id;
194 		} its_inv_cmd;
195 
196 		struct {
197 			struct its_device *dev;
198 			u32 event_id;
199 		} its_clear_cmd;
200 
201 		struct {
202 			struct its_device *dev;
203 			u32 event_id;
204 		} its_int_cmd;
205 
206 		struct {
207 			struct its_device *dev;
208 			int valid;
209 		} its_mapd_cmd;
210 
211 		struct {
212 			struct its_collection *col;
213 			int valid;
214 		} its_mapc_cmd;
215 
216 		struct {
217 			struct its_device *dev;
218 			u32 phys_id;
219 			u32 event_id;
220 		} its_mapti_cmd;
221 
222 		struct {
223 			struct its_device *dev;
224 			struct its_collection *col;
225 			u32 event_id;
226 		} its_movi_cmd;
227 
228 		struct {
229 			struct its_device *dev;
230 			u32 event_id;
231 		} its_discard_cmd;
232 
233 		struct {
234 			struct its_collection *col;
235 		} its_invall_cmd;
236 
237 		struct {
238 			struct its_vpe *vpe;
239 		} its_vinvall_cmd;
240 
241 		struct {
242 			struct its_vpe *vpe;
243 			struct its_collection *col;
244 			bool valid;
245 		} its_vmapp_cmd;
246 
247 		struct {
248 			struct its_vpe *vpe;
249 			struct its_device *dev;
250 			u32 virt_id;
251 			u32 event_id;
252 			bool db_enabled;
253 		} its_vmapti_cmd;
254 
255 		struct {
256 			struct its_vpe *vpe;
257 			struct its_device *dev;
258 			u32 event_id;
259 			bool db_enabled;
260 		} its_vmovi_cmd;
261 
262 		struct {
263 			struct its_vpe *vpe;
264 			struct its_collection *col;
265 			u16 seq_num;
266 			u16 its_list;
267 		} its_vmovp_cmd;
268 	};
269 };
270 
271 /*
272  * The ITS command block, which is what the ITS actually parses.
273  */
274 struct its_cmd_block {
275 	u64	raw_cmd[4];
276 };
277 
278 #define ITS_CMD_QUEUE_SZ		SZ_64K
279 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
280 
281 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
282 						    struct its_cmd_block *,
283 						    struct its_cmd_desc *);
284 
285 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
286 					      struct its_cmd_block *,
287 					      struct its_cmd_desc *);
288 
289 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
290 {
291 	u64 mask = GENMASK_ULL(h, l);
292 	*raw_cmd &= ~mask;
293 	*raw_cmd |= (val << l) & mask;
294 }
295 
296 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
297 {
298 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
299 }
300 
301 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
302 {
303 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
304 }
305 
306 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
307 {
308 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
309 }
310 
311 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
312 {
313 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
314 }
315 
316 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
317 {
318 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
319 }
320 
321 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
322 {
323 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
324 }
325 
326 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
327 {
328 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
329 }
330 
331 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
332 {
333 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
334 }
335 
336 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
337 {
338 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
339 }
340 
341 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
342 {
343 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
344 }
345 
346 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
347 {
348 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
349 }
350 
351 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
352 {
353 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
354 }
355 
356 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
357 {
358 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
359 }
360 
361 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
362 {
363 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
364 }
365 
366 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
367 {
368 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
369 }
370 
371 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
372 {
373 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
374 }
375 
376 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
377 {
378 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
379 }
380 
381 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
382 {
383 	/* Let's fixup BE commands */
384 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
385 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
386 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
387 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
388 }
389 
390 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
391 						 struct its_cmd_block *cmd,
392 						 struct its_cmd_desc *desc)
393 {
394 	unsigned long itt_addr;
395 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
396 
397 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
398 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
399 
400 	its_encode_cmd(cmd, GITS_CMD_MAPD);
401 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
402 	its_encode_size(cmd, size - 1);
403 	its_encode_itt(cmd, itt_addr);
404 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
405 
406 	its_fixup_cmd(cmd);
407 
408 	return NULL;
409 }
410 
411 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
412 						 struct its_cmd_block *cmd,
413 						 struct its_cmd_desc *desc)
414 {
415 	its_encode_cmd(cmd, GITS_CMD_MAPC);
416 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
417 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
418 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
419 
420 	its_fixup_cmd(cmd);
421 
422 	return desc->its_mapc_cmd.col;
423 }
424 
425 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
426 						  struct its_cmd_block *cmd,
427 						  struct its_cmd_desc *desc)
428 {
429 	struct its_collection *col;
430 
431 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
432 			       desc->its_mapti_cmd.event_id);
433 
434 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
435 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
436 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
437 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
438 	its_encode_collection(cmd, col->col_id);
439 
440 	its_fixup_cmd(cmd);
441 
442 	return col;
443 }
444 
445 static struct its_collection *its_build_movi_cmd(struct its_node *its,
446 						 struct its_cmd_block *cmd,
447 						 struct its_cmd_desc *desc)
448 {
449 	struct its_collection *col;
450 
451 	col = dev_event_to_col(desc->its_movi_cmd.dev,
452 			       desc->its_movi_cmd.event_id);
453 
454 	its_encode_cmd(cmd, GITS_CMD_MOVI);
455 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
456 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
457 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
458 
459 	its_fixup_cmd(cmd);
460 
461 	return col;
462 }
463 
464 static struct its_collection *its_build_discard_cmd(struct its_node *its,
465 						    struct its_cmd_block *cmd,
466 						    struct its_cmd_desc *desc)
467 {
468 	struct its_collection *col;
469 
470 	col = dev_event_to_col(desc->its_discard_cmd.dev,
471 			       desc->its_discard_cmd.event_id);
472 
473 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
474 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
475 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
476 
477 	its_fixup_cmd(cmd);
478 
479 	return col;
480 }
481 
482 static struct its_collection *its_build_inv_cmd(struct its_node *its,
483 						struct its_cmd_block *cmd,
484 						struct its_cmd_desc *desc)
485 {
486 	struct its_collection *col;
487 
488 	col = dev_event_to_col(desc->its_inv_cmd.dev,
489 			       desc->its_inv_cmd.event_id);
490 
491 	its_encode_cmd(cmd, GITS_CMD_INV);
492 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
493 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
494 
495 	its_fixup_cmd(cmd);
496 
497 	return col;
498 }
499 
500 static struct its_collection *its_build_int_cmd(struct its_node *its,
501 						struct its_cmd_block *cmd,
502 						struct its_cmd_desc *desc)
503 {
504 	struct its_collection *col;
505 
506 	col = dev_event_to_col(desc->its_int_cmd.dev,
507 			       desc->its_int_cmd.event_id);
508 
509 	its_encode_cmd(cmd, GITS_CMD_INT);
510 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
511 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
512 
513 	its_fixup_cmd(cmd);
514 
515 	return col;
516 }
517 
518 static struct its_collection *its_build_clear_cmd(struct its_node *its,
519 						  struct its_cmd_block *cmd,
520 						  struct its_cmd_desc *desc)
521 {
522 	struct its_collection *col;
523 
524 	col = dev_event_to_col(desc->its_clear_cmd.dev,
525 			       desc->its_clear_cmd.event_id);
526 
527 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
528 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
529 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
530 
531 	its_fixup_cmd(cmd);
532 
533 	return col;
534 }
535 
536 static struct its_collection *its_build_invall_cmd(struct its_node *its,
537 						   struct its_cmd_block *cmd,
538 						   struct its_cmd_desc *desc)
539 {
540 	its_encode_cmd(cmd, GITS_CMD_INVALL);
541 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
542 
543 	its_fixup_cmd(cmd);
544 
545 	return NULL;
546 }
547 
548 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
549 					     struct its_cmd_block *cmd,
550 					     struct its_cmd_desc *desc)
551 {
552 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
553 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
554 
555 	its_fixup_cmd(cmd);
556 
557 	return desc->its_vinvall_cmd.vpe;
558 }
559 
560 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
561 					   struct its_cmd_block *cmd,
562 					   struct its_cmd_desc *desc)
563 {
564 	unsigned long vpt_addr;
565 	u64 target;
566 
567 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
568 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
569 
570 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
571 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
572 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
573 	its_encode_target(cmd, target);
574 	its_encode_vpt_addr(cmd, vpt_addr);
575 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
576 
577 	its_fixup_cmd(cmd);
578 
579 	return desc->its_vmapp_cmd.vpe;
580 }
581 
582 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
583 					    struct its_cmd_block *cmd,
584 					    struct its_cmd_desc *desc)
585 {
586 	u32 db;
587 
588 	if (desc->its_vmapti_cmd.db_enabled)
589 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
590 	else
591 		db = 1023;
592 
593 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
594 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
595 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
596 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
597 	its_encode_db_phys_id(cmd, db);
598 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
599 
600 	its_fixup_cmd(cmd);
601 
602 	return desc->its_vmapti_cmd.vpe;
603 }
604 
605 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
606 					   struct its_cmd_block *cmd,
607 					   struct its_cmd_desc *desc)
608 {
609 	u32 db;
610 
611 	if (desc->its_vmovi_cmd.db_enabled)
612 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
613 	else
614 		db = 1023;
615 
616 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
617 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
618 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
619 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
620 	its_encode_db_phys_id(cmd, db);
621 	its_encode_db_valid(cmd, true);
622 
623 	its_fixup_cmd(cmd);
624 
625 	return desc->its_vmovi_cmd.vpe;
626 }
627 
628 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
629 					   struct its_cmd_block *cmd,
630 					   struct its_cmd_desc *desc)
631 {
632 	u64 target;
633 
634 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
635 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
636 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
637 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
638 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
639 	its_encode_target(cmd, target);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return desc->its_vmovp_cmd.vpe;
644 }
645 
646 static u64 its_cmd_ptr_to_offset(struct its_node *its,
647 				 struct its_cmd_block *ptr)
648 {
649 	return (ptr - its->cmd_base) * sizeof(*ptr);
650 }
651 
652 static int its_queue_full(struct its_node *its)
653 {
654 	int widx;
655 	int ridx;
656 
657 	widx = its->cmd_write - its->cmd_base;
658 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
659 
660 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
661 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
662 		return 1;
663 
664 	return 0;
665 }
666 
667 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
668 {
669 	struct its_cmd_block *cmd;
670 	u32 count = 1000000;	/* 1s! */
671 
672 	while (its_queue_full(its)) {
673 		count--;
674 		if (!count) {
675 			pr_err_ratelimited("ITS queue not draining\n");
676 			return NULL;
677 		}
678 		cpu_relax();
679 		udelay(1);
680 	}
681 
682 	cmd = its->cmd_write++;
683 
684 	/* Handle queue wrapping */
685 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
686 		its->cmd_write = its->cmd_base;
687 
688 	/* Clear command  */
689 	cmd->raw_cmd[0] = 0;
690 	cmd->raw_cmd[1] = 0;
691 	cmd->raw_cmd[2] = 0;
692 	cmd->raw_cmd[3] = 0;
693 
694 	return cmd;
695 }
696 
697 static struct its_cmd_block *its_post_commands(struct its_node *its)
698 {
699 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
700 
701 	writel_relaxed(wr, its->base + GITS_CWRITER);
702 
703 	return its->cmd_write;
704 }
705 
706 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
707 {
708 	/*
709 	 * Make sure the commands written to memory are observable by
710 	 * the ITS.
711 	 */
712 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
713 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
714 	else
715 		dsb(ishst);
716 }
717 
718 static int its_wait_for_range_completion(struct its_node *its,
719 					 struct its_cmd_block *from,
720 					 struct its_cmd_block *to)
721 {
722 	u64 rd_idx, from_idx, to_idx;
723 	u32 count = 1000000;	/* 1s! */
724 
725 	from_idx = its_cmd_ptr_to_offset(its, from);
726 	to_idx = its_cmd_ptr_to_offset(its, to);
727 
728 	while (1) {
729 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
730 
731 		/* Direct case */
732 		if (from_idx < to_idx && rd_idx >= to_idx)
733 			break;
734 
735 		/* Wrapped case */
736 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
737 			break;
738 
739 		count--;
740 		if (!count) {
741 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
742 					   from_idx, to_idx, rd_idx);
743 			return -1;
744 		}
745 		cpu_relax();
746 		udelay(1);
747 	}
748 
749 	return 0;
750 }
751 
752 /* Warning, macro hell follows */
753 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
754 void name(struct its_node *its,						\
755 	  buildtype builder,						\
756 	  struct its_cmd_desc *desc)					\
757 {									\
758 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
759 	synctype *sync_obj;						\
760 	unsigned long flags;						\
761 									\
762 	raw_spin_lock_irqsave(&its->lock, flags);			\
763 									\
764 	cmd = its_allocate_entry(its);					\
765 	if (!cmd) {		/* We're soooooo screewed... */		\
766 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
767 		return;							\
768 	}								\
769 	sync_obj = builder(its, cmd, desc);				\
770 	its_flush_cmd(its, cmd);					\
771 									\
772 	if (sync_obj) {							\
773 		sync_cmd = its_allocate_entry(its);			\
774 		if (!sync_cmd)						\
775 			goto post;					\
776 									\
777 		buildfn(its, sync_cmd, sync_obj);			\
778 		its_flush_cmd(its, sync_cmd);				\
779 	}								\
780 									\
781 post:									\
782 	next_cmd = its_post_commands(its);				\
783 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
784 									\
785 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
786 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
787 }
788 
789 static void its_build_sync_cmd(struct its_node *its,
790 			       struct its_cmd_block *sync_cmd,
791 			       struct its_collection *sync_col)
792 {
793 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
794 	its_encode_target(sync_cmd, sync_col->target_address);
795 
796 	its_fixup_cmd(sync_cmd);
797 }
798 
799 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
800 			     struct its_collection, its_build_sync_cmd)
801 
802 static void its_build_vsync_cmd(struct its_node *its,
803 				struct its_cmd_block *sync_cmd,
804 				struct its_vpe *sync_vpe)
805 {
806 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
807 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
808 
809 	its_fixup_cmd(sync_cmd);
810 }
811 
812 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
813 			     struct its_vpe, its_build_vsync_cmd)
814 
815 static void its_send_int(struct its_device *dev, u32 event_id)
816 {
817 	struct its_cmd_desc desc;
818 
819 	desc.its_int_cmd.dev = dev;
820 	desc.its_int_cmd.event_id = event_id;
821 
822 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
823 }
824 
825 static void its_send_clear(struct its_device *dev, u32 event_id)
826 {
827 	struct its_cmd_desc desc;
828 
829 	desc.its_clear_cmd.dev = dev;
830 	desc.its_clear_cmd.event_id = event_id;
831 
832 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
833 }
834 
835 static void its_send_inv(struct its_device *dev, u32 event_id)
836 {
837 	struct its_cmd_desc desc;
838 
839 	desc.its_inv_cmd.dev = dev;
840 	desc.its_inv_cmd.event_id = event_id;
841 
842 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
843 }
844 
845 static void its_send_mapd(struct its_device *dev, int valid)
846 {
847 	struct its_cmd_desc desc;
848 
849 	desc.its_mapd_cmd.dev = dev;
850 	desc.its_mapd_cmd.valid = !!valid;
851 
852 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
853 }
854 
855 static void its_send_mapc(struct its_node *its, struct its_collection *col,
856 			  int valid)
857 {
858 	struct its_cmd_desc desc;
859 
860 	desc.its_mapc_cmd.col = col;
861 	desc.its_mapc_cmd.valid = !!valid;
862 
863 	its_send_single_command(its, its_build_mapc_cmd, &desc);
864 }
865 
866 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
867 {
868 	struct its_cmd_desc desc;
869 
870 	desc.its_mapti_cmd.dev = dev;
871 	desc.its_mapti_cmd.phys_id = irq_id;
872 	desc.its_mapti_cmd.event_id = id;
873 
874 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
875 }
876 
877 static void its_send_movi(struct its_device *dev,
878 			  struct its_collection *col, u32 id)
879 {
880 	struct its_cmd_desc desc;
881 
882 	desc.its_movi_cmd.dev = dev;
883 	desc.its_movi_cmd.col = col;
884 	desc.its_movi_cmd.event_id = id;
885 
886 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
887 }
888 
889 static void its_send_discard(struct its_device *dev, u32 id)
890 {
891 	struct its_cmd_desc desc;
892 
893 	desc.its_discard_cmd.dev = dev;
894 	desc.its_discard_cmd.event_id = id;
895 
896 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
897 }
898 
899 static void its_send_invall(struct its_node *its, struct its_collection *col)
900 {
901 	struct its_cmd_desc desc;
902 
903 	desc.its_invall_cmd.col = col;
904 
905 	its_send_single_command(its, its_build_invall_cmd, &desc);
906 }
907 
908 static void its_send_vmapti(struct its_device *dev, u32 id)
909 {
910 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
911 	struct its_cmd_desc desc;
912 
913 	desc.its_vmapti_cmd.vpe = map->vpe;
914 	desc.its_vmapti_cmd.dev = dev;
915 	desc.its_vmapti_cmd.virt_id = map->vintid;
916 	desc.its_vmapti_cmd.event_id = id;
917 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
918 
919 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
920 }
921 
922 static void its_send_vmovi(struct its_device *dev, u32 id)
923 {
924 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
925 	struct its_cmd_desc desc;
926 
927 	desc.its_vmovi_cmd.vpe = map->vpe;
928 	desc.its_vmovi_cmd.dev = dev;
929 	desc.its_vmovi_cmd.event_id = id;
930 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
931 
932 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
933 }
934 
935 static void its_send_vmapp(struct its_node *its,
936 			   struct its_vpe *vpe, bool valid)
937 {
938 	struct its_cmd_desc desc;
939 
940 	desc.its_vmapp_cmd.vpe = vpe;
941 	desc.its_vmapp_cmd.valid = valid;
942 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
943 
944 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
945 }
946 
947 static void its_send_vmovp(struct its_vpe *vpe)
948 {
949 	struct its_cmd_desc desc;
950 	struct its_node *its;
951 	unsigned long flags;
952 	int col_id = vpe->col_idx;
953 
954 	desc.its_vmovp_cmd.vpe = vpe;
955 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
956 
957 	if (!its_list_map) {
958 		its = list_first_entry(&its_nodes, struct its_node, entry);
959 		desc.its_vmovp_cmd.seq_num = 0;
960 		desc.its_vmovp_cmd.col = &its->collections[col_id];
961 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
962 		return;
963 	}
964 
965 	/*
966 	 * Yet another marvel of the architecture. If using the
967 	 * its_list "feature", we need to make sure that all ITSs
968 	 * receive all VMOVP commands in the same order. The only way
969 	 * to guarantee this is to make vmovp a serialization point.
970 	 *
971 	 * Wall <-- Head.
972 	 */
973 	raw_spin_lock_irqsave(&vmovp_lock, flags);
974 
975 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
976 
977 	/* Emit VMOVPs */
978 	list_for_each_entry(its, &its_nodes, entry) {
979 		if (!its->is_v4)
980 			continue;
981 
982 		if (!vpe->its_vm->vlpi_count[its->list_nr])
983 			continue;
984 
985 		desc.its_vmovp_cmd.col = &its->collections[col_id];
986 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
987 	}
988 
989 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
990 }
991 
992 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
993 {
994 	struct its_cmd_desc desc;
995 
996 	desc.its_vinvall_cmd.vpe = vpe;
997 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
998 }
999 
1000 /*
1001  * irqchip functions - assumes MSI, mostly.
1002  */
1003 
1004 static inline u32 its_get_event_id(struct irq_data *d)
1005 {
1006 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1007 	return d->hwirq - its_dev->event_map.lpi_base;
1008 }
1009 
1010 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1011 {
1012 	irq_hw_number_t hwirq;
1013 	struct page *prop_page;
1014 	u8 *cfg;
1015 
1016 	if (irqd_is_forwarded_to_vcpu(d)) {
1017 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1018 		u32 event = its_get_event_id(d);
1019 		struct its_vlpi_map *map;
1020 
1021 		prop_page = its_dev->event_map.vm->vprop_page;
1022 		map = &its_dev->event_map.vlpi_maps[event];
1023 		hwirq = map->vintid;
1024 
1025 		/* Remember the updated property */
1026 		map->properties &= ~clr;
1027 		map->properties |= set | LPI_PROP_GROUP1;
1028 	} else {
1029 		prop_page = gic_rdists->prop_page;
1030 		hwirq = d->hwirq;
1031 	}
1032 
1033 	cfg = page_address(prop_page) + hwirq - 8192;
1034 	*cfg &= ~clr;
1035 	*cfg |= set | LPI_PROP_GROUP1;
1036 
1037 	/*
1038 	 * Make the above write visible to the redistributors.
1039 	 * And yes, we're flushing exactly: One. Single. Byte.
1040 	 * Humpf...
1041 	 */
1042 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1043 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1044 	else
1045 		dsb(ishst);
1046 }
1047 
1048 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1049 {
1050 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1051 
1052 	lpi_write_config(d, clr, set);
1053 	its_send_inv(its_dev, its_get_event_id(d));
1054 }
1055 
1056 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1057 {
1058 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059 	u32 event = its_get_event_id(d);
1060 
1061 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1062 		return;
1063 
1064 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1065 
1066 	/*
1067 	 * More fun with the architecture:
1068 	 *
1069 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1070 	 * value or to 1023, depending on the enable bit. But that
1071 	 * would be issueing a mapping for an /existing/ DevID+EventID
1072 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1073 	 * to the /same/ vPE, using this opportunity to adjust the
1074 	 * doorbell. Mouahahahaha. We loves it, Precious.
1075 	 */
1076 	its_send_vmovi(its_dev, event);
1077 }
1078 
1079 static void its_mask_irq(struct irq_data *d)
1080 {
1081 	if (irqd_is_forwarded_to_vcpu(d))
1082 		its_vlpi_set_doorbell(d, false);
1083 
1084 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1085 }
1086 
1087 static void its_unmask_irq(struct irq_data *d)
1088 {
1089 	if (irqd_is_forwarded_to_vcpu(d))
1090 		its_vlpi_set_doorbell(d, true);
1091 
1092 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1093 }
1094 
1095 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1096 			    bool force)
1097 {
1098 	unsigned int cpu;
1099 	const struct cpumask *cpu_mask = cpu_online_mask;
1100 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101 	struct its_collection *target_col;
1102 	u32 id = its_get_event_id(d);
1103 
1104 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1105 	if (irqd_is_forwarded_to_vcpu(d))
1106 		return -EINVAL;
1107 
1108        /* lpi cannot be routed to a redistributor that is on a foreign node */
1109 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1110 		if (its_dev->its->numa_node >= 0) {
1111 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1112 			if (!cpumask_intersects(mask_val, cpu_mask))
1113 				return -EINVAL;
1114 		}
1115 	}
1116 
1117 	cpu = cpumask_any_and(mask_val, cpu_mask);
1118 
1119 	if (cpu >= nr_cpu_ids)
1120 		return -EINVAL;
1121 
1122 	/* don't set the affinity when the target cpu is same as current one */
1123 	if (cpu != its_dev->event_map.col_map[id]) {
1124 		target_col = &its_dev->its->collections[cpu];
1125 		its_send_movi(its_dev, target_col, id);
1126 		its_dev->event_map.col_map[id] = cpu;
1127 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1128 	}
1129 
1130 	return IRQ_SET_MASK_OK_DONE;
1131 }
1132 
1133 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1134 {
1135 	struct its_node *its = its_dev->its;
1136 
1137 	return its->phys_base + GITS_TRANSLATER;
1138 }
1139 
1140 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1141 {
1142 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1143 	struct its_node *its;
1144 	u64 addr;
1145 
1146 	its = its_dev->its;
1147 	addr = its->get_msi_base(its_dev);
1148 
1149 	msg->address_lo		= lower_32_bits(addr);
1150 	msg->address_hi		= upper_32_bits(addr);
1151 	msg->data		= its_get_event_id(d);
1152 
1153 	iommu_dma_map_msi_msg(d->irq, msg);
1154 }
1155 
1156 static int its_irq_set_irqchip_state(struct irq_data *d,
1157 				     enum irqchip_irq_state which,
1158 				     bool state)
1159 {
1160 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161 	u32 event = its_get_event_id(d);
1162 
1163 	if (which != IRQCHIP_STATE_PENDING)
1164 		return -EINVAL;
1165 
1166 	if (state)
1167 		its_send_int(its_dev, event);
1168 	else
1169 		its_send_clear(its_dev, event);
1170 
1171 	return 0;
1172 }
1173 
1174 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1175 {
1176 	unsigned long flags;
1177 
1178 	/* Not using the ITS list? Everything is always mapped. */
1179 	if (!its_list_map)
1180 		return;
1181 
1182 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1183 
1184 	/*
1185 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1186 	 * them mapped now.
1187 	 */
1188 	vm->vlpi_count[its->list_nr]++;
1189 
1190 	if (vm->vlpi_count[its->list_nr] == 1) {
1191 		int i;
1192 
1193 		for (i = 0; i < vm->nr_vpes; i++) {
1194 			struct its_vpe *vpe = vm->vpes[i];
1195 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1196 
1197 			/* Map the VPE to the first possible CPU */
1198 			vpe->col_idx = cpumask_first(cpu_online_mask);
1199 			its_send_vmapp(its, vpe, true);
1200 			its_send_vinvall(its, vpe);
1201 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1202 		}
1203 	}
1204 
1205 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1206 }
1207 
1208 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1209 {
1210 	unsigned long flags;
1211 
1212 	/* Not using the ITS list? Everything is always mapped. */
1213 	if (!its_list_map)
1214 		return;
1215 
1216 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1217 
1218 	if (!--vm->vlpi_count[its->list_nr]) {
1219 		int i;
1220 
1221 		for (i = 0; i < vm->nr_vpes; i++)
1222 			its_send_vmapp(its, vm->vpes[i], false);
1223 	}
1224 
1225 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1226 }
1227 
1228 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1229 {
1230 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1231 	u32 event = its_get_event_id(d);
1232 	int ret = 0;
1233 
1234 	if (!info->map)
1235 		return -EINVAL;
1236 
1237 	mutex_lock(&its_dev->event_map.vlpi_lock);
1238 
1239 	if (!its_dev->event_map.vm) {
1240 		struct its_vlpi_map *maps;
1241 
1242 		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1243 			       GFP_KERNEL);
1244 		if (!maps) {
1245 			ret = -ENOMEM;
1246 			goto out;
1247 		}
1248 
1249 		its_dev->event_map.vm = info->map->vm;
1250 		its_dev->event_map.vlpi_maps = maps;
1251 	} else if (its_dev->event_map.vm != info->map->vm) {
1252 		ret = -EINVAL;
1253 		goto out;
1254 	}
1255 
1256 	/* Get our private copy of the mapping information */
1257 	its_dev->event_map.vlpi_maps[event] = *info->map;
1258 
1259 	if (irqd_is_forwarded_to_vcpu(d)) {
1260 		/* Already mapped, move it around */
1261 		its_send_vmovi(its_dev, event);
1262 	} else {
1263 		/* Ensure all the VPEs are mapped on this ITS */
1264 		its_map_vm(its_dev->its, info->map->vm);
1265 
1266 		/*
1267 		 * Flag the interrupt as forwarded so that we can
1268 		 * start poking the virtual property table.
1269 		 */
1270 		irqd_set_forwarded_to_vcpu(d);
1271 
1272 		/* Write out the property to the prop table */
1273 		lpi_write_config(d, 0xff, info->map->properties);
1274 
1275 		/* Drop the physical mapping */
1276 		its_send_discard(its_dev, event);
1277 
1278 		/* and install the virtual one */
1279 		its_send_vmapti(its_dev, event);
1280 
1281 		/* Increment the number of VLPIs */
1282 		its_dev->event_map.nr_vlpis++;
1283 	}
1284 
1285 out:
1286 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1287 	return ret;
1288 }
1289 
1290 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1291 {
1292 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1293 	u32 event = its_get_event_id(d);
1294 	int ret = 0;
1295 
1296 	mutex_lock(&its_dev->event_map.vlpi_lock);
1297 
1298 	if (!its_dev->event_map.vm ||
1299 	    !its_dev->event_map.vlpi_maps[event].vm) {
1300 		ret = -EINVAL;
1301 		goto out;
1302 	}
1303 
1304 	/* Copy our mapping information to the incoming request */
1305 	*info->map = its_dev->event_map.vlpi_maps[event];
1306 
1307 out:
1308 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1309 	return ret;
1310 }
1311 
1312 static int its_vlpi_unmap(struct irq_data *d)
1313 {
1314 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315 	u32 event = its_get_event_id(d);
1316 	int ret = 0;
1317 
1318 	mutex_lock(&its_dev->event_map.vlpi_lock);
1319 
1320 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1321 		ret = -EINVAL;
1322 		goto out;
1323 	}
1324 
1325 	/* Drop the virtual mapping */
1326 	its_send_discard(its_dev, event);
1327 
1328 	/* and restore the physical one */
1329 	irqd_clr_forwarded_to_vcpu(d);
1330 	its_send_mapti(its_dev, d->hwirq, event);
1331 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1332 				    LPI_PROP_ENABLED |
1333 				    LPI_PROP_GROUP1));
1334 
1335 	/* Potentially unmap the VM from this ITS */
1336 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1337 
1338 	/*
1339 	 * Drop the refcount and make the device available again if
1340 	 * this was the last VLPI.
1341 	 */
1342 	if (!--its_dev->event_map.nr_vlpis) {
1343 		its_dev->event_map.vm = NULL;
1344 		kfree(its_dev->event_map.vlpi_maps);
1345 	}
1346 
1347 out:
1348 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1349 	return ret;
1350 }
1351 
1352 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1353 {
1354 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1355 
1356 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1357 		return -EINVAL;
1358 
1359 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1360 		lpi_update_config(d, 0xff, info->config);
1361 	else
1362 		lpi_write_config(d, 0xff, info->config);
1363 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1364 
1365 	return 0;
1366 }
1367 
1368 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1369 {
1370 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371 	struct its_cmd_info *info = vcpu_info;
1372 
1373 	/* Need a v4 ITS */
1374 	if (!its_dev->its->is_v4)
1375 		return -EINVAL;
1376 
1377 	/* Unmap request? */
1378 	if (!info)
1379 		return its_vlpi_unmap(d);
1380 
1381 	switch (info->cmd_type) {
1382 	case MAP_VLPI:
1383 		return its_vlpi_map(d, info);
1384 
1385 	case GET_VLPI:
1386 		return its_vlpi_get(d, info);
1387 
1388 	case PROP_UPDATE_VLPI:
1389 	case PROP_UPDATE_AND_INV_VLPI:
1390 		return its_vlpi_prop_update(d, info);
1391 
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 }
1396 
1397 static struct irq_chip its_irq_chip = {
1398 	.name			= "ITS",
1399 	.irq_mask		= its_mask_irq,
1400 	.irq_unmask		= its_unmask_irq,
1401 	.irq_eoi		= irq_chip_eoi_parent,
1402 	.irq_set_affinity	= its_set_affinity,
1403 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1404 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1405 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1406 };
1407 
1408 /*
1409  * How we allocate LPIs:
1410  *
1411  * The GIC has id_bits bits for interrupt identifiers. From there, we
1412  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1413  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1414  * bits to the right.
1415  *
1416  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1417  */
1418 #define IRQS_PER_CHUNK_SHIFT	5
1419 #define IRQS_PER_CHUNK		(1UL << IRQS_PER_CHUNK_SHIFT)
1420 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1421 
1422 static unsigned long *lpi_bitmap;
1423 static u32 lpi_chunks;
1424 static DEFINE_SPINLOCK(lpi_lock);
1425 
1426 static int its_lpi_to_chunk(int lpi)
1427 {
1428 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1429 }
1430 
1431 static int its_chunk_to_lpi(int chunk)
1432 {
1433 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1434 }
1435 
1436 static int __init its_lpi_init(u32 id_bits)
1437 {
1438 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1439 
1440 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1441 			     GFP_KERNEL);
1442 	if (!lpi_bitmap) {
1443 		lpi_chunks = 0;
1444 		return -ENOMEM;
1445 	}
1446 
1447 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1448 	return 0;
1449 }
1450 
1451 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1452 {
1453 	unsigned long *bitmap = NULL;
1454 	int chunk_id;
1455 	int nr_chunks;
1456 	int i;
1457 
1458 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1459 
1460 	spin_lock(&lpi_lock);
1461 
1462 	do {
1463 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1464 						      0, nr_chunks, 0);
1465 		if (chunk_id < lpi_chunks)
1466 			break;
1467 
1468 		nr_chunks--;
1469 	} while (nr_chunks > 0);
1470 
1471 	if (!nr_chunks)
1472 		goto out;
1473 
1474 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1475 			 GFP_ATOMIC);
1476 	if (!bitmap)
1477 		goto out;
1478 
1479 	for (i = 0; i < nr_chunks; i++)
1480 		set_bit(chunk_id + i, lpi_bitmap);
1481 
1482 	*base = its_chunk_to_lpi(chunk_id);
1483 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1484 
1485 out:
1486 	spin_unlock(&lpi_lock);
1487 
1488 	if (!bitmap)
1489 		*base = *nr_ids = 0;
1490 
1491 	return bitmap;
1492 }
1493 
1494 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1495 {
1496 	int lpi;
1497 
1498 	spin_lock(&lpi_lock);
1499 
1500 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1501 		int chunk = its_lpi_to_chunk(lpi);
1502 
1503 		BUG_ON(chunk > lpi_chunks);
1504 		if (test_bit(chunk, lpi_bitmap)) {
1505 			clear_bit(chunk, lpi_bitmap);
1506 		} else {
1507 			pr_err("Bad LPI chunk %d\n", chunk);
1508 		}
1509 	}
1510 
1511 	spin_unlock(&lpi_lock);
1512 
1513 	kfree(bitmap);
1514 }
1515 
1516 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1517 {
1518 	struct page *prop_page;
1519 
1520 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1521 	if (!prop_page)
1522 		return NULL;
1523 
1524 	/* Priority 0xa0, Group-1, disabled */
1525 	memset(page_address(prop_page),
1526 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1527 	       LPI_PROPBASE_SZ);
1528 
1529 	/* Make sure the GIC will observe the written configuration */
1530 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1531 
1532 	return prop_page;
1533 }
1534 
1535 static void its_free_prop_table(struct page *prop_page)
1536 {
1537 	free_pages((unsigned long)page_address(prop_page),
1538 		   get_order(LPI_PROPBASE_SZ));
1539 }
1540 
1541 static int __init its_alloc_lpi_tables(void)
1542 {
1543 	phys_addr_t paddr;
1544 
1545 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1546 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1547 	if (!gic_rdists->prop_page) {
1548 		pr_err("Failed to allocate PROPBASE\n");
1549 		return -ENOMEM;
1550 	}
1551 
1552 	paddr = page_to_phys(gic_rdists->prop_page);
1553 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1554 
1555 	return its_lpi_init(lpi_id_bits);
1556 }
1557 
1558 static const char *its_base_type_string[] = {
1559 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1560 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1561 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1562 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1563 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1564 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1565 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1566 };
1567 
1568 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1569 {
1570 	u32 idx = baser - its->tables;
1571 
1572 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1573 }
1574 
1575 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1576 			    u64 val)
1577 {
1578 	u32 idx = baser - its->tables;
1579 
1580 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1581 	baser->val = its_read_baser(its, baser);
1582 }
1583 
1584 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1585 			   u64 cache, u64 shr, u32 psz, u32 order,
1586 			   bool indirect)
1587 {
1588 	u64 val = its_read_baser(its, baser);
1589 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1590 	u64 type = GITS_BASER_TYPE(val);
1591 	u64 baser_phys, tmp;
1592 	u32 alloc_pages;
1593 	void *base;
1594 
1595 retry_alloc_baser:
1596 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1597 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1598 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1599 			&its->phys_base, its_base_type_string[type],
1600 			alloc_pages, GITS_BASER_PAGES_MAX);
1601 		alloc_pages = GITS_BASER_PAGES_MAX;
1602 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1603 	}
1604 
1605 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1606 	if (!base)
1607 		return -ENOMEM;
1608 
1609 	baser_phys = virt_to_phys(base);
1610 
1611 	/* Check if the physical address of the memory is above 48bits */
1612 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1613 
1614 		/* 52bit PA is supported only when PageSize=64K */
1615 		if (psz != SZ_64K) {
1616 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1617 			free_pages((unsigned long)base, order);
1618 			return -ENXIO;
1619 		}
1620 
1621 		/* Convert 52bit PA to 48bit field */
1622 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1623 	}
1624 
1625 retry_baser:
1626 	val = (baser_phys					 |
1627 		(type << GITS_BASER_TYPE_SHIFT)			 |
1628 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1629 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1630 		cache						 |
1631 		shr						 |
1632 		GITS_BASER_VALID);
1633 
1634 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1635 
1636 	switch (psz) {
1637 	case SZ_4K:
1638 		val |= GITS_BASER_PAGE_SIZE_4K;
1639 		break;
1640 	case SZ_16K:
1641 		val |= GITS_BASER_PAGE_SIZE_16K;
1642 		break;
1643 	case SZ_64K:
1644 		val |= GITS_BASER_PAGE_SIZE_64K;
1645 		break;
1646 	}
1647 
1648 	its_write_baser(its, baser, val);
1649 	tmp = baser->val;
1650 
1651 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1652 		/*
1653 		 * Shareability didn't stick. Just use
1654 		 * whatever the read reported, which is likely
1655 		 * to be the only thing this redistributor
1656 		 * supports. If that's zero, make it
1657 		 * non-cacheable as well.
1658 		 */
1659 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1660 		if (!shr) {
1661 			cache = GITS_BASER_nC;
1662 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1663 		}
1664 		goto retry_baser;
1665 	}
1666 
1667 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1668 		/*
1669 		 * Page size didn't stick. Let's try a smaller
1670 		 * size and retry. If we reach 4K, then
1671 		 * something is horribly wrong...
1672 		 */
1673 		free_pages((unsigned long)base, order);
1674 		baser->base = NULL;
1675 
1676 		switch (psz) {
1677 		case SZ_16K:
1678 			psz = SZ_4K;
1679 			goto retry_alloc_baser;
1680 		case SZ_64K:
1681 			psz = SZ_16K;
1682 			goto retry_alloc_baser;
1683 		}
1684 	}
1685 
1686 	if (val != tmp) {
1687 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1688 		       &its->phys_base, its_base_type_string[type],
1689 		       val, tmp);
1690 		free_pages((unsigned long)base, order);
1691 		return -ENXIO;
1692 	}
1693 
1694 	baser->order = order;
1695 	baser->base = base;
1696 	baser->psz = psz;
1697 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1698 
1699 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1700 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1701 		its_base_type_string[type],
1702 		(unsigned long)virt_to_phys(base),
1703 		indirect ? "indirect" : "flat", (int)esz,
1704 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1705 
1706 	return 0;
1707 }
1708 
1709 static bool its_parse_indirect_baser(struct its_node *its,
1710 				     struct its_baser *baser,
1711 				     u32 psz, u32 *order, u32 ids)
1712 {
1713 	u64 tmp = its_read_baser(its, baser);
1714 	u64 type = GITS_BASER_TYPE(tmp);
1715 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1716 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1717 	u32 new_order = *order;
1718 	bool indirect = false;
1719 
1720 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1721 	if ((esz << ids) > (psz * 2)) {
1722 		/*
1723 		 * Find out whether hw supports a single or two-level table by
1724 		 * table by reading bit at offset '62' after writing '1' to it.
1725 		 */
1726 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1727 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1728 
1729 		if (indirect) {
1730 			/*
1731 			 * The size of the lvl2 table is equal to ITS page size
1732 			 * which is 'psz'. For computing lvl1 table size,
1733 			 * subtract ID bits that sparse lvl2 table from 'ids'
1734 			 * which is reported by ITS hardware times lvl1 table
1735 			 * entry size.
1736 			 */
1737 			ids -= ilog2(psz / (int)esz);
1738 			esz = GITS_LVL1_ENTRY_SIZE;
1739 		}
1740 	}
1741 
1742 	/*
1743 	 * Allocate as many entries as required to fit the
1744 	 * range of device IDs that the ITS can grok... The ID
1745 	 * space being incredibly sparse, this results in a
1746 	 * massive waste of memory if two-level device table
1747 	 * feature is not supported by hardware.
1748 	 */
1749 	new_order = max_t(u32, get_order(esz << ids), new_order);
1750 	if (new_order >= MAX_ORDER) {
1751 		new_order = MAX_ORDER - 1;
1752 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1753 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1754 			&its->phys_base, its_base_type_string[type],
1755 			its->device_ids, ids);
1756 	}
1757 
1758 	*order = new_order;
1759 
1760 	return indirect;
1761 }
1762 
1763 static void its_free_tables(struct its_node *its)
1764 {
1765 	int i;
1766 
1767 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1768 		if (its->tables[i].base) {
1769 			free_pages((unsigned long)its->tables[i].base,
1770 				   its->tables[i].order);
1771 			its->tables[i].base = NULL;
1772 		}
1773 	}
1774 }
1775 
1776 static int its_alloc_tables(struct its_node *its)
1777 {
1778 	u64 shr = GITS_BASER_InnerShareable;
1779 	u64 cache = GITS_BASER_RaWaWb;
1780 	u32 psz = SZ_64K;
1781 	int err, i;
1782 
1783 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1784 		/* erratum 24313: ignore memory access type */
1785 		cache = GITS_BASER_nCnB;
1786 
1787 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1788 		struct its_baser *baser = its->tables + i;
1789 		u64 val = its_read_baser(its, baser);
1790 		u64 type = GITS_BASER_TYPE(val);
1791 		u32 order = get_order(psz);
1792 		bool indirect = false;
1793 
1794 		switch (type) {
1795 		case GITS_BASER_TYPE_NONE:
1796 			continue;
1797 
1798 		case GITS_BASER_TYPE_DEVICE:
1799 			indirect = its_parse_indirect_baser(its, baser,
1800 							    psz, &order,
1801 							    its->device_ids);
1802 		case GITS_BASER_TYPE_VCPU:
1803 			indirect = its_parse_indirect_baser(its, baser,
1804 							    psz, &order,
1805 							    ITS_MAX_VPEID_BITS);
1806 			break;
1807 		}
1808 
1809 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1810 		if (err < 0) {
1811 			its_free_tables(its);
1812 			return err;
1813 		}
1814 
1815 		/* Update settings which will be used for next BASERn */
1816 		psz = baser->psz;
1817 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1818 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 static int its_alloc_collections(struct its_node *its)
1825 {
1826 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1827 				   GFP_KERNEL);
1828 	if (!its->collections)
1829 		return -ENOMEM;
1830 
1831 	return 0;
1832 }
1833 
1834 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1835 {
1836 	struct page *pend_page;
1837 	/*
1838 	 * The pending pages have to be at least 64kB aligned,
1839 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1840 	 */
1841 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1842 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1843 	if (!pend_page)
1844 		return NULL;
1845 
1846 	/* Make sure the GIC will observe the zero-ed page */
1847 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1848 
1849 	return pend_page;
1850 }
1851 
1852 static void its_free_pending_table(struct page *pt)
1853 {
1854 	free_pages((unsigned long)page_address(pt),
1855 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1856 }
1857 
1858 static void its_cpu_init_lpis(void)
1859 {
1860 	void __iomem *rbase = gic_data_rdist_rd_base();
1861 	struct page *pend_page;
1862 	u64 val, tmp;
1863 
1864 	/* If we didn't allocate the pending table yet, do it now */
1865 	pend_page = gic_data_rdist()->pend_page;
1866 	if (!pend_page) {
1867 		phys_addr_t paddr;
1868 
1869 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1870 		if (!pend_page) {
1871 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1872 			       smp_processor_id());
1873 			return;
1874 		}
1875 
1876 		paddr = page_to_phys(pend_page);
1877 		pr_info("CPU%d: using LPI pending table @%pa\n",
1878 			smp_processor_id(), &paddr);
1879 		gic_data_rdist()->pend_page = pend_page;
1880 	}
1881 
1882 	/* set PROPBASE */
1883 	val = (page_to_phys(gic_rdists->prop_page) |
1884 	       GICR_PROPBASER_InnerShareable |
1885 	       GICR_PROPBASER_RaWaWb |
1886 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1887 
1888 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1889 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1890 
1891 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1892 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1893 			/*
1894 			 * The HW reports non-shareable, we must
1895 			 * remove the cacheability attributes as
1896 			 * well.
1897 			 */
1898 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1899 				 GICR_PROPBASER_CACHEABILITY_MASK);
1900 			val |= GICR_PROPBASER_nC;
1901 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1902 		}
1903 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1904 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1905 	}
1906 
1907 	/* set PENDBASE */
1908 	val = (page_to_phys(pend_page) |
1909 	       GICR_PENDBASER_InnerShareable |
1910 	       GICR_PENDBASER_RaWaWb);
1911 
1912 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1913 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1914 
1915 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1916 		/*
1917 		 * The HW reports non-shareable, we must remove the
1918 		 * cacheability attributes as well.
1919 		 */
1920 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1921 			 GICR_PENDBASER_CACHEABILITY_MASK);
1922 		val |= GICR_PENDBASER_nC;
1923 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1924 	}
1925 
1926 	/* Enable LPIs */
1927 	val = readl_relaxed(rbase + GICR_CTLR);
1928 	val |= GICR_CTLR_ENABLE_LPIS;
1929 	writel_relaxed(val, rbase + GICR_CTLR);
1930 
1931 	/* Make sure the GIC has seen the above */
1932 	dsb(sy);
1933 }
1934 
1935 static void its_cpu_init_collection(struct its_node *its)
1936 {
1937 	int cpu = smp_processor_id();
1938 	u64 target;
1939 
1940 	/* avoid cross node collections and its mapping */
1941 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1942 		struct device_node *cpu_node;
1943 
1944 		cpu_node = of_get_cpu_node(cpu, NULL);
1945 		if (its->numa_node != NUMA_NO_NODE &&
1946 			its->numa_node != of_node_to_nid(cpu_node))
1947 			return;
1948 	}
1949 
1950 	/*
1951 	 * We now have to bind each collection to its target
1952 	 * redistributor.
1953 	 */
1954 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1955 		/*
1956 		 * This ITS wants the physical address of the
1957 		 * redistributor.
1958 		 */
1959 		target = gic_data_rdist()->phys_base;
1960 	} else {
1961 		/* This ITS wants a linear CPU number. */
1962 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1963 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
1964 	}
1965 
1966 	/* Perform collection mapping */
1967 	its->collections[cpu].target_address = target;
1968 	its->collections[cpu].col_id = cpu;
1969 
1970 	its_send_mapc(its, &its->collections[cpu], 1);
1971 	its_send_invall(its, &its->collections[cpu]);
1972 }
1973 
1974 static void its_cpu_init_collections(void)
1975 {
1976 	struct its_node *its;
1977 
1978 	spin_lock(&its_lock);
1979 
1980 	list_for_each_entry(its, &its_nodes, entry)
1981 		its_cpu_init_collection(its);
1982 
1983 	spin_unlock(&its_lock);
1984 }
1985 
1986 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1987 {
1988 	struct its_device *its_dev = NULL, *tmp;
1989 	unsigned long flags;
1990 
1991 	raw_spin_lock_irqsave(&its->lock, flags);
1992 
1993 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1994 		if (tmp->device_id == dev_id) {
1995 			its_dev = tmp;
1996 			break;
1997 		}
1998 	}
1999 
2000 	raw_spin_unlock_irqrestore(&its->lock, flags);
2001 
2002 	return its_dev;
2003 }
2004 
2005 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2006 {
2007 	int i;
2008 
2009 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2010 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2011 			return &its->tables[i];
2012 	}
2013 
2014 	return NULL;
2015 }
2016 
2017 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2018 {
2019 	struct page *page;
2020 	u32 esz, idx;
2021 	__le64 *table;
2022 
2023 	/* Don't allow device id that exceeds single, flat table limit */
2024 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2025 	if (!(baser->val & GITS_BASER_INDIRECT))
2026 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2027 
2028 	/* Compute 1st level table index & check if that exceeds table limit */
2029 	idx = id >> ilog2(baser->psz / esz);
2030 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2031 		return false;
2032 
2033 	table = baser->base;
2034 
2035 	/* Allocate memory for 2nd level table */
2036 	if (!table[idx]) {
2037 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2038 		if (!page)
2039 			return false;
2040 
2041 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2042 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2043 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2044 
2045 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2046 
2047 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2048 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2049 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2050 
2051 		/* Ensure updated table contents are visible to ITS hardware */
2052 		dsb(sy);
2053 	}
2054 
2055 	return true;
2056 }
2057 
2058 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2059 {
2060 	struct its_baser *baser;
2061 
2062 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2063 
2064 	/* Don't allow device id that exceeds ITS hardware limit */
2065 	if (!baser)
2066 		return (ilog2(dev_id) < its->device_ids);
2067 
2068 	return its_alloc_table_entry(baser, dev_id);
2069 }
2070 
2071 static bool its_alloc_vpe_table(u32 vpe_id)
2072 {
2073 	struct its_node *its;
2074 
2075 	/*
2076 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2077 	 * could try and only do it on ITSs corresponding to devices
2078 	 * that have interrupts targeted at this VPE, but the
2079 	 * complexity becomes crazy (and you have tons of memory
2080 	 * anyway, right?).
2081 	 */
2082 	list_for_each_entry(its, &its_nodes, entry) {
2083 		struct its_baser *baser;
2084 
2085 		if (!its->is_v4)
2086 			continue;
2087 
2088 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2089 		if (!baser)
2090 			return false;
2091 
2092 		if (!its_alloc_table_entry(baser, vpe_id))
2093 			return false;
2094 	}
2095 
2096 	return true;
2097 }
2098 
2099 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2100 					    int nvecs, bool alloc_lpis)
2101 {
2102 	struct its_device *dev;
2103 	unsigned long *lpi_map = NULL;
2104 	unsigned long flags;
2105 	u16 *col_map = NULL;
2106 	void *itt;
2107 	int lpi_base;
2108 	int nr_lpis;
2109 	int nr_ites;
2110 	int sz;
2111 
2112 	if (!its_alloc_device_table(its, dev_id))
2113 		return NULL;
2114 
2115 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2116 	/*
2117 	 * We allocate at least one chunk worth of LPIs bet device,
2118 	 * and thus that many ITEs. The device may require less though.
2119 	 */
2120 	nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2121 	sz = nr_ites * its->ite_size;
2122 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2123 	itt = kzalloc(sz, GFP_KERNEL);
2124 	if (alloc_lpis) {
2125 		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2126 		if (lpi_map)
2127 			col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2128 					  GFP_KERNEL);
2129 	} else {
2130 		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2131 		nr_lpis = 0;
2132 		lpi_base = 0;
2133 	}
2134 
2135 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2136 		kfree(dev);
2137 		kfree(itt);
2138 		kfree(lpi_map);
2139 		kfree(col_map);
2140 		return NULL;
2141 	}
2142 
2143 	gic_flush_dcache_to_poc(itt, sz);
2144 
2145 	dev->its = its;
2146 	dev->itt = itt;
2147 	dev->nr_ites = nr_ites;
2148 	dev->event_map.lpi_map = lpi_map;
2149 	dev->event_map.col_map = col_map;
2150 	dev->event_map.lpi_base = lpi_base;
2151 	dev->event_map.nr_lpis = nr_lpis;
2152 	mutex_init(&dev->event_map.vlpi_lock);
2153 	dev->device_id = dev_id;
2154 	INIT_LIST_HEAD(&dev->entry);
2155 
2156 	raw_spin_lock_irqsave(&its->lock, flags);
2157 	list_add(&dev->entry, &its->its_device_list);
2158 	raw_spin_unlock_irqrestore(&its->lock, flags);
2159 
2160 	/* Map device to its ITT */
2161 	its_send_mapd(dev, 1);
2162 
2163 	return dev;
2164 }
2165 
2166 static void its_free_device(struct its_device *its_dev)
2167 {
2168 	unsigned long flags;
2169 
2170 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2171 	list_del(&its_dev->entry);
2172 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2173 	kfree(its_dev->itt);
2174 	kfree(its_dev);
2175 }
2176 
2177 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2178 {
2179 	int idx;
2180 
2181 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2182 				  dev->event_map.nr_lpis);
2183 	if (idx == dev->event_map.nr_lpis)
2184 		return -ENOSPC;
2185 
2186 	*hwirq = dev->event_map.lpi_base + idx;
2187 	set_bit(idx, dev->event_map.lpi_map);
2188 
2189 	return 0;
2190 }
2191 
2192 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2193 			   int nvec, msi_alloc_info_t *info)
2194 {
2195 	struct its_node *its;
2196 	struct its_device *its_dev;
2197 	struct msi_domain_info *msi_info;
2198 	u32 dev_id;
2199 
2200 	/*
2201 	 * We ignore "dev" entierely, and rely on the dev_id that has
2202 	 * been passed via the scratchpad. This limits this domain's
2203 	 * usefulness to upper layers that definitely know that they
2204 	 * are built on top of the ITS.
2205 	 */
2206 	dev_id = info->scratchpad[0].ul;
2207 
2208 	msi_info = msi_get_domain_info(domain);
2209 	its = msi_info->data;
2210 
2211 	if (!gic_rdists->has_direct_lpi &&
2212 	    vpe_proxy.dev &&
2213 	    vpe_proxy.dev->its == its &&
2214 	    dev_id == vpe_proxy.dev->device_id) {
2215 		/* Bad luck. Get yourself a better implementation */
2216 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2217 			  dev_id);
2218 		return -EINVAL;
2219 	}
2220 
2221 	its_dev = its_find_device(its, dev_id);
2222 	if (its_dev) {
2223 		/*
2224 		 * We already have seen this ID, probably through
2225 		 * another alias (PCI bridge of some sort). No need to
2226 		 * create the device.
2227 		 */
2228 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2229 		goto out;
2230 	}
2231 
2232 	its_dev = its_create_device(its, dev_id, nvec, true);
2233 	if (!its_dev)
2234 		return -ENOMEM;
2235 
2236 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2237 out:
2238 	info->scratchpad[0].ptr = its_dev;
2239 	return 0;
2240 }
2241 
2242 static struct msi_domain_ops its_msi_domain_ops = {
2243 	.msi_prepare	= its_msi_prepare,
2244 };
2245 
2246 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2247 				    unsigned int virq,
2248 				    irq_hw_number_t hwirq)
2249 {
2250 	struct irq_fwspec fwspec;
2251 
2252 	if (irq_domain_get_of_node(domain->parent)) {
2253 		fwspec.fwnode = domain->parent->fwnode;
2254 		fwspec.param_count = 3;
2255 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2256 		fwspec.param[1] = hwirq;
2257 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2258 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2259 		fwspec.fwnode = domain->parent->fwnode;
2260 		fwspec.param_count = 2;
2261 		fwspec.param[0] = hwirq;
2262 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2263 	} else {
2264 		return -EINVAL;
2265 	}
2266 
2267 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2268 }
2269 
2270 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2271 				unsigned int nr_irqs, void *args)
2272 {
2273 	msi_alloc_info_t *info = args;
2274 	struct its_device *its_dev = info->scratchpad[0].ptr;
2275 	irq_hw_number_t hwirq;
2276 	int err;
2277 	int i;
2278 
2279 	for (i = 0; i < nr_irqs; i++) {
2280 		err = its_alloc_device_irq(its_dev, &hwirq);
2281 		if (err)
2282 			return err;
2283 
2284 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2285 		if (err)
2286 			return err;
2287 
2288 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2289 					      hwirq, &its_irq_chip, its_dev);
2290 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2291 		pr_debug("ID:%d pID:%d vID:%d\n",
2292 			 (int)(hwirq - its_dev->event_map.lpi_base),
2293 			 (int) hwirq, virq + i);
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 static int its_irq_domain_activate(struct irq_domain *domain,
2300 				   struct irq_data *d, bool reserve)
2301 {
2302 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2303 	u32 event = its_get_event_id(d);
2304 	const struct cpumask *cpu_mask = cpu_online_mask;
2305 	int cpu;
2306 
2307 	/* get the cpu_mask of local node */
2308 	if (its_dev->its->numa_node >= 0)
2309 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2310 
2311 	/* Bind the LPI to the first possible CPU */
2312 	cpu = cpumask_first(cpu_mask);
2313 	its_dev->event_map.col_map[event] = cpu;
2314 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2315 
2316 	/* Map the GIC IRQ and event to the device */
2317 	its_send_mapti(its_dev, d->hwirq, event);
2318 	return 0;
2319 }
2320 
2321 static void its_irq_domain_deactivate(struct irq_domain *domain,
2322 				      struct irq_data *d)
2323 {
2324 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2325 	u32 event = its_get_event_id(d);
2326 
2327 	/* Stop the delivery of interrupts */
2328 	its_send_discard(its_dev, event);
2329 }
2330 
2331 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2332 				unsigned int nr_irqs)
2333 {
2334 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2335 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2336 	int i;
2337 
2338 	for (i = 0; i < nr_irqs; i++) {
2339 		struct irq_data *data = irq_domain_get_irq_data(domain,
2340 								virq + i);
2341 		u32 event = its_get_event_id(data);
2342 
2343 		/* Mark interrupt index as unused */
2344 		clear_bit(event, its_dev->event_map.lpi_map);
2345 
2346 		/* Nuke the entry in the domain */
2347 		irq_domain_reset_irq_data(data);
2348 	}
2349 
2350 	/* If all interrupts have been freed, start mopping the floor */
2351 	if (bitmap_empty(its_dev->event_map.lpi_map,
2352 			 its_dev->event_map.nr_lpis)) {
2353 		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2354 				    its_dev->event_map.lpi_base,
2355 				    its_dev->event_map.nr_lpis);
2356 		kfree(its_dev->event_map.col_map);
2357 
2358 		/* Unmap device/itt */
2359 		its_send_mapd(its_dev, 0);
2360 		its_free_device(its_dev);
2361 	}
2362 
2363 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2364 }
2365 
2366 static const struct irq_domain_ops its_domain_ops = {
2367 	.alloc			= its_irq_domain_alloc,
2368 	.free			= its_irq_domain_free,
2369 	.activate		= its_irq_domain_activate,
2370 	.deactivate		= its_irq_domain_deactivate,
2371 };
2372 
2373 /*
2374  * This is insane.
2375  *
2376  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2377  * likely), the only way to perform an invalidate is to use a fake
2378  * device to issue an INV command, implying that the LPI has first
2379  * been mapped to some event on that device. Since this is not exactly
2380  * cheap, we try to keep that mapping around as long as possible, and
2381  * only issue an UNMAP if we're short on available slots.
2382  *
2383  * Broken by design(tm).
2384  */
2385 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2386 {
2387 	/* Already unmapped? */
2388 	if (vpe->vpe_proxy_event == -1)
2389 		return;
2390 
2391 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2392 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2393 
2394 	/*
2395 	 * We don't track empty slots at all, so let's move the
2396 	 * next_victim pointer if we can quickly reuse that slot
2397 	 * instead of nuking an existing entry. Not clear that this is
2398 	 * always a win though, and this might just generate a ripple
2399 	 * effect... Let's just hope VPEs don't migrate too often.
2400 	 */
2401 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2402 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2403 
2404 	vpe->vpe_proxy_event = -1;
2405 }
2406 
2407 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2408 {
2409 	if (!gic_rdists->has_direct_lpi) {
2410 		unsigned long flags;
2411 
2412 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2413 		its_vpe_db_proxy_unmap_locked(vpe);
2414 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2415 	}
2416 }
2417 
2418 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2419 {
2420 	/* Already mapped? */
2421 	if (vpe->vpe_proxy_event != -1)
2422 		return;
2423 
2424 	/* This slot was already allocated. Kick the other VPE out. */
2425 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2426 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2427 
2428 	/* Map the new VPE instead */
2429 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2430 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2431 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2432 
2433 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2434 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2435 }
2436 
2437 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2438 {
2439 	unsigned long flags;
2440 	struct its_collection *target_col;
2441 
2442 	if (gic_rdists->has_direct_lpi) {
2443 		void __iomem *rdbase;
2444 
2445 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2446 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2447 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2448 			cpu_relax();
2449 
2450 		return;
2451 	}
2452 
2453 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2454 
2455 	its_vpe_db_proxy_map_locked(vpe);
2456 
2457 	target_col = &vpe_proxy.dev->its->collections[to];
2458 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2459 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2460 
2461 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2462 }
2463 
2464 static int its_vpe_set_affinity(struct irq_data *d,
2465 				const struct cpumask *mask_val,
2466 				bool force)
2467 {
2468 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2469 	int cpu = cpumask_first(mask_val);
2470 
2471 	/*
2472 	 * Changing affinity is mega expensive, so let's be as lazy as
2473 	 * we can and only do it if we really have to. Also, if mapped
2474 	 * into the proxy device, we need to move the doorbell
2475 	 * interrupt to its new location.
2476 	 */
2477 	if (vpe->col_idx != cpu) {
2478 		int from = vpe->col_idx;
2479 
2480 		vpe->col_idx = cpu;
2481 		its_send_vmovp(vpe);
2482 		its_vpe_db_proxy_move(vpe, from, cpu);
2483 	}
2484 
2485 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2486 
2487 	return IRQ_SET_MASK_OK_DONE;
2488 }
2489 
2490 static void its_vpe_schedule(struct its_vpe *vpe)
2491 {
2492 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2493 	u64 val;
2494 
2495 	/* Schedule the VPE */
2496 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2497 		GENMASK_ULL(51, 12);
2498 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2499 	val |= GICR_VPROPBASER_RaWb;
2500 	val |= GICR_VPROPBASER_InnerShareable;
2501 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2502 
2503 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2504 		GENMASK_ULL(51, 16);
2505 	val |= GICR_VPENDBASER_RaWaWb;
2506 	val |= GICR_VPENDBASER_NonShareable;
2507 	/*
2508 	 * There is no good way of finding out if the pending table is
2509 	 * empty as we can race against the doorbell interrupt very
2510 	 * easily. So in the end, vpe->pending_last is only an
2511 	 * indication that the vcpu has something pending, not one
2512 	 * that the pending table is empty. A good implementation
2513 	 * would be able to read its coarse map pretty quickly anyway,
2514 	 * making this a tolerable issue.
2515 	 */
2516 	val |= GICR_VPENDBASER_PendingLast;
2517 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2518 	val |= GICR_VPENDBASER_Valid;
2519 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2520 }
2521 
2522 static void its_vpe_deschedule(struct its_vpe *vpe)
2523 {
2524 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2525 	u32 count = 1000000;	/* 1s! */
2526 	bool clean;
2527 	u64 val;
2528 
2529 	/* We're being scheduled out */
2530 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2531 	val &= ~GICR_VPENDBASER_Valid;
2532 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2533 
2534 	do {
2535 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2536 		clean = !(val & GICR_VPENDBASER_Dirty);
2537 		if (!clean) {
2538 			count--;
2539 			cpu_relax();
2540 			udelay(1);
2541 		}
2542 	} while (!clean && count);
2543 
2544 	if (unlikely(!clean && !count)) {
2545 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2546 		vpe->idai = false;
2547 		vpe->pending_last = true;
2548 	} else {
2549 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2550 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2551 	}
2552 }
2553 
2554 static void its_vpe_invall(struct its_vpe *vpe)
2555 {
2556 	struct its_node *its;
2557 
2558 	list_for_each_entry(its, &its_nodes, entry) {
2559 		if (!its->is_v4)
2560 			continue;
2561 
2562 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2563 			continue;
2564 
2565 		/*
2566 		 * Sending a VINVALL to a single ITS is enough, as all
2567 		 * we need is to reach the redistributors.
2568 		 */
2569 		its_send_vinvall(its, vpe);
2570 		return;
2571 	}
2572 }
2573 
2574 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2575 {
2576 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2577 	struct its_cmd_info *info = vcpu_info;
2578 
2579 	switch (info->cmd_type) {
2580 	case SCHEDULE_VPE:
2581 		its_vpe_schedule(vpe);
2582 		return 0;
2583 
2584 	case DESCHEDULE_VPE:
2585 		its_vpe_deschedule(vpe);
2586 		return 0;
2587 
2588 	case INVALL_VPE:
2589 		its_vpe_invall(vpe);
2590 		return 0;
2591 
2592 	default:
2593 		return -EINVAL;
2594 	}
2595 }
2596 
2597 static void its_vpe_send_cmd(struct its_vpe *vpe,
2598 			     void (*cmd)(struct its_device *, u32))
2599 {
2600 	unsigned long flags;
2601 
2602 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2603 
2604 	its_vpe_db_proxy_map_locked(vpe);
2605 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2606 
2607 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2608 }
2609 
2610 static void its_vpe_send_inv(struct irq_data *d)
2611 {
2612 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2613 
2614 	if (gic_rdists->has_direct_lpi) {
2615 		void __iomem *rdbase;
2616 
2617 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2618 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2619 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2620 			cpu_relax();
2621 	} else {
2622 		its_vpe_send_cmd(vpe, its_send_inv);
2623 	}
2624 }
2625 
2626 static void its_vpe_mask_irq(struct irq_data *d)
2627 {
2628 	/*
2629 	 * We need to unmask the LPI, which is described by the parent
2630 	 * irq_data. Instead of calling into the parent (which won't
2631 	 * exactly do the right thing, let's simply use the
2632 	 * parent_data pointer. Yes, I'm naughty.
2633 	 */
2634 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2635 	its_vpe_send_inv(d);
2636 }
2637 
2638 static void its_vpe_unmask_irq(struct irq_data *d)
2639 {
2640 	/* Same hack as above... */
2641 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2642 	its_vpe_send_inv(d);
2643 }
2644 
2645 static int its_vpe_set_irqchip_state(struct irq_data *d,
2646 				     enum irqchip_irq_state which,
2647 				     bool state)
2648 {
2649 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2650 
2651 	if (which != IRQCHIP_STATE_PENDING)
2652 		return -EINVAL;
2653 
2654 	if (gic_rdists->has_direct_lpi) {
2655 		void __iomem *rdbase;
2656 
2657 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2658 		if (state) {
2659 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2660 		} else {
2661 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2662 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2663 				cpu_relax();
2664 		}
2665 	} else {
2666 		if (state)
2667 			its_vpe_send_cmd(vpe, its_send_int);
2668 		else
2669 			its_vpe_send_cmd(vpe, its_send_clear);
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 static struct irq_chip its_vpe_irq_chip = {
2676 	.name			= "GICv4-vpe",
2677 	.irq_mask		= its_vpe_mask_irq,
2678 	.irq_unmask		= its_vpe_unmask_irq,
2679 	.irq_eoi		= irq_chip_eoi_parent,
2680 	.irq_set_affinity	= its_vpe_set_affinity,
2681 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2682 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2683 };
2684 
2685 static int its_vpe_id_alloc(void)
2686 {
2687 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2688 }
2689 
2690 static void its_vpe_id_free(u16 id)
2691 {
2692 	ida_simple_remove(&its_vpeid_ida, id);
2693 }
2694 
2695 static int its_vpe_init(struct its_vpe *vpe)
2696 {
2697 	struct page *vpt_page;
2698 	int vpe_id;
2699 
2700 	/* Allocate vpe_id */
2701 	vpe_id = its_vpe_id_alloc();
2702 	if (vpe_id < 0)
2703 		return vpe_id;
2704 
2705 	/* Allocate VPT */
2706 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2707 	if (!vpt_page) {
2708 		its_vpe_id_free(vpe_id);
2709 		return -ENOMEM;
2710 	}
2711 
2712 	if (!its_alloc_vpe_table(vpe_id)) {
2713 		its_vpe_id_free(vpe_id);
2714 		its_free_pending_table(vpe->vpt_page);
2715 		return -ENOMEM;
2716 	}
2717 
2718 	vpe->vpe_id = vpe_id;
2719 	vpe->vpt_page = vpt_page;
2720 	vpe->vpe_proxy_event = -1;
2721 
2722 	return 0;
2723 }
2724 
2725 static void its_vpe_teardown(struct its_vpe *vpe)
2726 {
2727 	its_vpe_db_proxy_unmap(vpe);
2728 	its_vpe_id_free(vpe->vpe_id);
2729 	its_free_pending_table(vpe->vpt_page);
2730 }
2731 
2732 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2733 				    unsigned int virq,
2734 				    unsigned int nr_irqs)
2735 {
2736 	struct its_vm *vm = domain->host_data;
2737 	int i;
2738 
2739 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2740 
2741 	for (i = 0; i < nr_irqs; i++) {
2742 		struct irq_data *data = irq_domain_get_irq_data(domain,
2743 								virq + i);
2744 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2745 
2746 		BUG_ON(vm != vpe->its_vm);
2747 
2748 		clear_bit(data->hwirq, vm->db_bitmap);
2749 		its_vpe_teardown(vpe);
2750 		irq_domain_reset_irq_data(data);
2751 	}
2752 
2753 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2754 		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2755 		its_free_prop_table(vm->vprop_page);
2756 	}
2757 }
2758 
2759 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2760 				    unsigned int nr_irqs, void *args)
2761 {
2762 	struct its_vm *vm = args;
2763 	unsigned long *bitmap;
2764 	struct page *vprop_page;
2765 	int base, nr_ids, i, err = 0;
2766 
2767 	BUG_ON(!vm);
2768 
2769 	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2770 	if (!bitmap)
2771 		return -ENOMEM;
2772 
2773 	if (nr_ids < nr_irqs) {
2774 		its_lpi_free_chunks(bitmap, base, nr_ids);
2775 		return -ENOMEM;
2776 	}
2777 
2778 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2779 	if (!vprop_page) {
2780 		its_lpi_free_chunks(bitmap, base, nr_ids);
2781 		return -ENOMEM;
2782 	}
2783 
2784 	vm->db_bitmap = bitmap;
2785 	vm->db_lpi_base = base;
2786 	vm->nr_db_lpis = nr_ids;
2787 	vm->vprop_page = vprop_page;
2788 
2789 	for (i = 0; i < nr_irqs; i++) {
2790 		vm->vpes[i]->vpe_db_lpi = base + i;
2791 		err = its_vpe_init(vm->vpes[i]);
2792 		if (err)
2793 			break;
2794 		err = its_irq_gic_domain_alloc(domain, virq + i,
2795 					       vm->vpes[i]->vpe_db_lpi);
2796 		if (err)
2797 			break;
2798 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2799 					      &its_vpe_irq_chip, vm->vpes[i]);
2800 		set_bit(i, bitmap);
2801 	}
2802 
2803 	if (err) {
2804 		if (i > 0)
2805 			its_vpe_irq_domain_free(domain, virq, i - 1);
2806 
2807 		its_lpi_free_chunks(bitmap, base, nr_ids);
2808 		its_free_prop_table(vprop_page);
2809 	}
2810 
2811 	return err;
2812 }
2813 
2814 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2815 				       struct irq_data *d, bool reserve)
2816 {
2817 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2818 	struct its_node *its;
2819 
2820 	/* If we use the list map, we issue VMAPP on demand... */
2821 	if (its_list_map)
2822 		return 0;
2823 
2824 	/* Map the VPE to the first possible CPU */
2825 	vpe->col_idx = cpumask_first(cpu_online_mask);
2826 
2827 	list_for_each_entry(its, &its_nodes, entry) {
2828 		if (!its->is_v4)
2829 			continue;
2830 
2831 		its_send_vmapp(its, vpe, true);
2832 		its_send_vinvall(its, vpe);
2833 	}
2834 
2835 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2836 
2837 	return 0;
2838 }
2839 
2840 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2841 					  struct irq_data *d)
2842 {
2843 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2844 	struct its_node *its;
2845 
2846 	/*
2847 	 * If we use the list map, we unmap the VPE once no VLPIs are
2848 	 * associated with the VM.
2849 	 */
2850 	if (its_list_map)
2851 		return;
2852 
2853 	list_for_each_entry(its, &its_nodes, entry) {
2854 		if (!its->is_v4)
2855 			continue;
2856 
2857 		its_send_vmapp(its, vpe, false);
2858 	}
2859 }
2860 
2861 static const struct irq_domain_ops its_vpe_domain_ops = {
2862 	.alloc			= its_vpe_irq_domain_alloc,
2863 	.free			= its_vpe_irq_domain_free,
2864 	.activate		= its_vpe_irq_domain_activate,
2865 	.deactivate		= its_vpe_irq_domain_deactivate,
2866 };
2867 
2868 static int its_force_quiescent(void __iomem *base)
2869 {
2870 	u32 count = 1000000;	/* 1s */
2871 	u32 val;
2872 
2873 	val = readl_relaxed(base + GITS_CTLR);
2874 	/*
2875 	 * GIC architecture specification requires the ITS to be both
2876 	 * disabled and quiescent for writes to GITS_BASER<n> or
2877 	 * GITS_CBASER to not have UNPREDICTABLE results.
2878 	 */
2879 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2880 		return 0;
2881 
2882 	/* Disable the generation of all interrupts to this ITS */
2883 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2884 	writel_relaxed(val, base + GITS_CTLR);
2885 
2886 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2887 	while (1) {
2888 		val = readl_relaxed(base + GITS_CTLR);
2889 		if (val & GITS_CTLR_QUIESCENT)
2890 			return 0;
2891 
2892 		count--;
2893 		if (!count)
2894 			return -EBUSY;
2895 
2896 		cpu_relax();
2897 		udelay(1);
2898 	}
2899 }
2900 
2901 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2902 {
2903 	struct its_node *its = data;
2904 
2905 	/* erratum 22375: only alloc 8MB table size */
2906 	its->device_ids = 0x14;		/* 20 bits, 8MB */
2907 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2908 
2909 	return true;
2910 }
2911 
2912 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2913 {
2914 	struct its_node *its = data;
2915 
2916 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2917 
2918 	return true;
2919 }
2920 
2921 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2922 {
2923 	struct its_node *its = data;
2924 
2925 	/* On QDF2400, the size of the ITE is 16Bytes */
2926 	its->ite_size = 16;
2927 
2928 	return true;
2929 }
2930 
2931 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2932 {
2933 	struct its_node *its = its_dev->its;
2934 
2935 	/*
2936 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2937 	 * which maps 32-bit writes targeted at a separate window of
2938 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2939 	 * with device ID taken from bits [device_id_bits + 1:2] of
2940 	 * the window offset.
2941 	 */
2942 	return its->pre_its_base + (its_dev->device_id << 2);
2943 }
2944 
2945 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2946 {
2947 	struct its_node *its = data;
2948 	u32 pre_its_window[2];
2949 	u32 ids;
2950 
2951 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
2952 					   "socionext,synquacer-pre-its",
2953 					   pre_its_window,
2954 					   ARRAY_SIZE(pre_its_window))) {
2955 
2956 		its->pre_its_base = pre_its_window[0];
2957 		its->get_msi_base = its_irq_get_msi_base_pre_its;
2958 
2959 		ids = ilog2(pre_its_window[1]) - 2;
2960 		if (its->device_ids > ids)
2961 			its->device_ids = ids;
2962 
2963 		/* the pre-ITS breaks isolation, so disable MSI remapping */
2964 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2965 		return true;
2966 	}
2967 	return false;
2968 }
2969 
2970 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2971 {
2972 	struct its_node *its = data;
2973 
2974 	/*
2975 	 * Hip07 insists on using the wrong address for the VLPI
2976 	 * page. Trick it into doing the right thing...
2977 	 */
2978 	its->vlpi_redist_offset = SZ_128K;
2979 	return true;
2980 }
2981 
2982 static const struct gic_quirk its_quirks[] = {
2983 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2984 	{
2985 		.desc	= "ITS: Cavium errata 22375, 24313",
2986 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2987 		.mask	= 0xffff0fff,
2988 		.init	= its_enable_quirk_cavium_22375,
2989 	},
2990 #endif
2991 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2992 	{
2993 		.desc	= "ITS: Cavium erratum 23144",
2994 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2995 		.mask	= 0xffff0fff,
2996 		.init	= its_enable_quirk_cavium_23144,
2997 	},
2998 #endif
2999 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3000 	{
3001 		.desc	= "ITS: QDF2400 erratum 0065",
3002 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3003 		.mask	= 0xffffffff,
3004 		.init	= its_enable_quirk_qdf2400_e0065,
3005 	},
3006 #endif
3007 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3008 	{
3009 		/*
3010 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3011 		 * implementation, but with a 'pre-ITS' added that requires
3012 		 * special handling in software.
3013 		 */
3014 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3015 		.iidr	= 0x0001143b,
3016 		.mask	= 0xffffffff,
3017 		.init	= its_enable_quirk_socionext_synquacer,
3018 	},
3019 #endif
3020 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3021 	{
3022 		.desc	= "ITS: Hip07 erratum 161600802",
3023 		.iidr	= 0x00000004,
3024 		.mask	= 0xffffffff,
3025 		.init	= its_enable_quirk_hip07_161600802,
3026 	},
3027 #endif
3028 	{
3029 	}
3030 };
3031 
3032 static void its_enable_quirks(struct its_node *its)
3033 {
3034 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3035 
3036 	gic_enable_quirks(iidr, its_quirks, its);
3037 }
3038 
3039 static int its_save_disable(void)
3040 {
3041 	struct its_node *its;
3042 	int err = 0;
3043 
3044 	spin_lock(&its_lock);
3045 	list_for_each_entry(its, &its_nodes, entry) {
3046 		void __iomem *base;
3047 
3048 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3049 			continue;
3050 
3051 		base = its->base;
3052 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3053 		err = its_force_quiescent(base);
3054 		if (err) {
3055 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3056 			       &its->phys_base, err);
3057 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3058 			goto err;
3059 		}
3060 
3061 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3062 	}
3063 
3064 err:
3065 	if (err) {
3066 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3067 			void __iomem *base;
3068 
3069 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3070 				continue;
3071 
3072 			base = its->base;
3073 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3074 		}
3075 	}
3076 	spin_unlock(&its_lock);
3077 
3078 	return err;
3079 }
3080 
3081 static void its_restore_enable(void)
3082 {
3083 	struct its_node *its;
3084 	int ret;
3085 
3086 	spin_lock(&its_lock);
3087 	list_for_each_entry(its, &its_nodes, entry) {
3088 		void __iomem *base;
3089 		int i;
3090 
3091 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3092 			continue;
3093 
3094 		base = its->base;
3095 
3096 		/*
3097 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3098 		 * don't restore it since writing to CBASER or BASER<n>
3099 		 * registers is undefined according to the GIC v3 ITS
3100 		 * Specification.
3101 		 */
3102 		ret = its_force_quiescent(base);
3103 		if (ret) {
3104 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3105 			       &its->phys_base, ret);
3106 			continue;
3107 		}
3108 
3109 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3110 
3111 		/*
3112 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3113 		 * cmd_write line up with it.
3114 		 */
3115 		its->cmd_write = its->cmd_base;
3116 		gits_write_cwriter(0, base + GITS_CWRITER);
3117 
3118 		/* Restore GITS_BASER from the value cache. */
3119 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3120 			struct its_baser *baser = &its->tables[i];
3121 
3122 			if (!(baser->val & GITS_BASER_VALID))
3123 				continue;
3124 
3125 			its_write_baser(its, baser, baser->val);
3126 		}
3127 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3128 
3129 		/*
3130 		 * Reinit the collection if it's stored in the ITS. This is
3131 		 * indicated by the col_id being less than the HCC field.
3132 		 * CID < HCC as specified in the GIC v3 Documentation.
3133 		 */
3134 		if (its->collections[smp_processor_id()].col_id <
3135 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3136 			its_cpu_init_collection(its);
3137 	}
3138 	spin_unlock(&its_lock);
3139 }
3140 
3141 static struct syscore_ops its_syscore_ops = {
3142 	.suspend = its_save_disable,
3143 	.resume = its_restore_enable,
3144 };
3145 
3146 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3147 {
3148 	struct irq_domain *inner_domain;
3149 	struct msi_domain_info *info;
3150 
3151 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3152 	if (!info)
3153 		return -ENOMEM;
3154 
3155 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3156 	if (!inner_domain) {
3157 		kfree(info);
3158 		return -ENOMEM;
3159 	}
3160 
3161 	inner_domain->parent = its_parent;
3162 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3163 	inner_domain->flags |= its->msi_domain_flags;
3164 	info->ops = &its_msi_domain_ops;
3165 	info->data = its;
3166 	inner_domain->host_data = info;
3167 
3168 	return 0;
3169 }
3170 
3171 static int its_init_vpe_domain(void)
3172 {
3173 	struct its_node *its;
3174 	u32 devid;
3175 	int entries;
3176 
3177 	if (gic_rdists->has_direct_lpi) {
3178 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3179 		return 0;
3180 	}
3181 
3182 	/* Any ITS will do, even if not v4 */
3183 	its = list_first_entry(&its_nodes, struct its_node, entry);
3184 
3185 	entries = roundup_pow_of_two(nr_cpu_ids);
3186 	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3187 				 GFP_KERNEL);
3188 	if (!vpe_proxy.vpes) {
3189 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3190 		return -ENOMEM;
3191 	}
3192 
3193 	/* Use the last possible DevID */
3194 	devid = GENMASK(its->device_ids - 1, 0);
3195 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3196 	if (!vpe_proxy.dev) {
3197 		kfree(vpe_proxy.vpes);
3198 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3199 		return -ENOMEM;
3200 	}
3201 
3202 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3203 
3204 	raw_spin_lock_init(&vpe_proxy.lock);
3205 	vpe_proxy.next_victim = 0;
3206 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3207 		devid, vpe_proxy.dev->nr_ites);
3208 
3209 	return 0;
3210 }
3211 
3212 static int __init its_compute_its_list_map(struct resource *res,
3213 					   void __iomem *its_base)
3214 {
3215 	int its_number;
3216 	u32 ctlr;
3217 
3218 	/*
3219 	 * This is assumed to be done early enough that we're
3220 	 * guaranteed to be single-threaded, hence no
3221 	 * locking. Should this change, we should address
3222 	 * this.
3223 	 */
3224 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3225 	if (its_number >= GICv4_ITS_LIST_MAX) {
3226 		pr_err("ITS@%pa: No ITSList entry available!\n",
3227 		       &res->start);
3228 		return -EINVAL;
3229 	}
3230 
3231 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3232 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3233 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3234 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3235 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3236 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3237 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3238 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3239 	}
3240 
3241 	if (test_and_set_bit(its_number, &its_list_map)) {
3242 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3243 		       &res->start, its_number);
3244 		return -EINVAL;
3245 	}
3246 
3247 	return its_number;
3248 }
3249 
3250 static int __init its_probe_one(struct resource *res,
3251 				struct fwnode_handle *handle, int numa_node)
3252 {
3253 	struct its_node *its;
3254 	void __iomem *its_base;
3255 	u32 val, ctlr;
3256 	u64 baser, tmp, typer;
3257 	int err;
3258 
3259 	its_base = ioremap(res->start, resource_size(res));
3260 	if (!its_base) {
3261 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3262 		return -ENOMEM;
3263 	}
3264 
3265 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3266 	if (val != 0x30 && val != 0x40) {
3267 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3268 		err = -ENODEV;
3269 		goto out_unmap;
3270 	}
3271 
3272 	err = its_force_quiescent(its_base);
3273 	if (err) {
3274 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3275 		goto out_unmap;
3276 	}
3277 
3278 	pr_info("ITS %pR\n", res);
3279 
3280 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3281 	if (!its) {
3282 		err = -ENOMEM;
3283 		goto out_unmap;
3284 	}
3285 
3286 	raw_spin_lock_init(&its->lock);
3287 	INIT_LIST_HEAD(&its->entry);
3288 	INIT_LIST_HEAD(&its->its_device_list);
3289 	typer = gic_read_typer(its_base + GITS_TYPER);
3290 	its->base = its_base;
3291 	its->phys_base = res->start;
3292 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3293 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3294 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3295 	if (its->is_v4) {
3296 		if (!(typer & GITS_TYPER_VMOVP)) {
3297 			err = its_compute_its_list_map(res, its_base);
3298 			if (err < 0)
3299 				goto out_free_its;
3300 
3301 			its->list_nr = err;
3302 
3303 			pr_info("ITS@%pa: Using ITS number %d\n",
3304 				&res->start, err);
3305 		} else {
3306 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3307 		}
3308 	}
3309 
3310 	its->numa_node = numa_node;
3311 
3312 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3313 						get_order(ITS_CMD_QUEUE_SZ));
3314 	if (!its->cmd_base) {
3315 		err = -ENOMEM;
3316 		goto out_free_its;
3317 	}
3318 	its->cmd_write = its->cmd_base;
3319 	its->fwnode_handle = handle;
3320 	its->get_msi_base = its_irq_get_msi_base;
3321 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3322 
3323 	its_enable_quirks(its);
3324 
3325 	err = its_alloc_tables(its);
3326 	if (err)
3327 		goto out_free_cmd;
3328 
3329 	err = its_alloc_collections(its);
3330 	if (err)
3331 		goto out_free_tables;
3332 
3333 	baser = (virt_to_phys(its->cmd_base)	|
3334 		 GITS_CBASER_RaWaWb		|
3335 		 GITS_CBASER_InnerShareable	|
3336 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3337 		 GITS_CBASER_VALID);
3338 
3339 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3340 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3341 
3342 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3343 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3344 			/*
3345 			 * The HW reports non-shareable, we must
3346 			 * remove the cacheability attributes as
3347 			 * well.
3348 			 */
3349 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3350 				   GITS_CBASER_CACHEABILITY_MASK);
3351 			baser |= GITS_CBASER_nC;
3352 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3353 		}
3354 		pr_info("ITS: using cache flushing for cmd queue\n");
3355 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3356 	}
3357 
3358 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3359 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3360 	ctlr |= GITS_CTLR_ENABLE;
3361 	if (its->is_v4)
3362 		ctlr |= GITS_CTLR_ImDe;
3363 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3364 
3365 	if (GITS_TYPER_HCC(typer))
3366 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3367 
3368 	err = its_init_domain(handle, its);
3369 	if (err)
3370 		goto out_free_tables;
3371 
3372 	spin_lock(&its_lock);
3373 	list_add(&its->entry, &its_nodes);
3374 	spin_unlock(&its_lock);
3375 
3376 	return 0;
3377 
3378 out_free_tables:
3379 	its_free_tables(its);
3380 out_free_cmd:
3381 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3382 out_free_its:
3383 	kfree(its);
3384 out_unmap:
3385 	iounmap(its_base);
3386 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3387 	return err;
3388 }
3389 
3390 static bool gic_rdists_supports_plpis(void)
3391 {
3392 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3393 }
3394 
3395 static int redist_disable_lpis(void)
3396 {
3397 	void __iomem *rbase = gic_data_rdist_rd_base();
3398 	u64 timeout = USEC_PER_SEC;
3399 	u64 val;
3400 
3401 	if (!gic_rdists_supports_plpis()) {
3402 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3403 		return -ENXIO;
3404 	}
3405 
3406 	val = readl_relaxed(rbase + GICR_CTLR);
3407 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3408 		return 0;
3409 
3410 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3411 		smp_processor_id());
3412 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3413 
3414 	/* Disable LPIs */
3415 	val &= ~GICR_CTLR_ENABLE_LPIS;
3416 	writel_relaxed(val, rbase + GICR_CTLR);
3417 
3418 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3419 	dsb(sy);
3420 
3421 	/*
3422 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3423 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3424 	 * Error out if we time out waiting for RWP to clear.
3425 	 */
3426 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3427 		if (!timeout) {
3428 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3429 			       smp_processor_id());
3430 			return -ETIMEDOUT;
3431 		}
3432 		udelay(1);
3433 		timeout--;
3434 	}
3435 
3436 	/*
3437 	 * After it has been written to 1, it is IMPLEMENTATION
3438 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3439 	 * cleared to 0. Error out if clearing the bit failed.
3440 	 */
3441 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3442 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3443 		return -EBUSY;
3444 	}
3445 
3446 	return 0;
3447 }
3448 
3449 int its_cpu_init(void)
3450 {
3451 	if (!list_empty(&its_nodes)) {
3452 		int ret;
3453 
3454 		ret = redist_disable_lpis();
3455 		if (ret)
3456 			return ret;
3457 
3458 		its_cpu_init_lpis();
3459 		its_cpu_init_collections();
3460 	}
3461 
3462 	return 0;
3463 }
3464 
3465 static const struct of_device_id its_device_id[] = {
3466 	{	.compatible	= "arm,gic-v3-its",	},
3467 	{},
3468 };
3469 
3470 static int __init its_of_probe(struct device_node *node)
3471 {
3472 	struct device_node *np;
3473 	struct resource res;
3474 
3475 	for (np = of_find_matching_node(node, its_device_id); np;
3476 	     np = of_find_matching_node(np, its_device_id)) {
3477 		if (!of_device_is_available(np))
3478 			continue;
3479 		if (!of_property_read_bool(np, "msi-controller")) {
3480 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3481 				np);
3482 			continue;
3483 		}
3484 
3485 		if (of_address_to_resource(np, 0, &res)) {
3486 			pr_warn("%pOF: no regs?\n", np);
3487 			continue;
3488 		}
3489 
3490 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3491 	}
3492 	return 0;
3493 }
3494 
3495 #ifdef CONFIG_ACPI
3496 
3497 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3498 
3499 #ifdef CONFIG_ACPI_NUMA
3500 struct its_srat_map {
3501 	/* numa node id */
3502 	u32	numa_node;
3503 	/* GIC ITS ID */
3504 	u32	its_id;
3505 };
3506 
3507 static struct its_srat_map *its_srat_maps __initdata;
3508 static int its_in_srat __initdata;
3509 
3510 static int __init acpi_get_its_numa_node(u32 its_id)
3511 {
3512 	int i;
3513 
3514 	for (i = 0; i < its_in_srat; i++) {
3515 		if (its_id == its_srat_maps[i].its_id)
3516 			return its_srat_maps[i].numa_node;
3517 	}
3518 	return NUMA_NO_NODE;
3519 }
3520 
3521 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3522 					  const unsigned long end)
3523 {
3524 	return 0;
3525 }
3526 
3527 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3528 			 const unsigned long end)
3529 {
3530 	int node;
3531 	struct acpi_srat_gic_its_affinity *its_affinity;
3532 
3533 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3534 	if (!its_affinity)
3535 		return -EINVAL;
3536 
3537 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3538 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3539 			its_affinity->header.length);
3540 		return -EINVAL;
3541 	}
3542 
3543 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3544 
3545 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3546 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3547 		return 0;
3548 	}
3549 
3550 	its_srat_maps[its_in_srat].numa_node = node;
3551 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3552 	its_in_srat++;
3553 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3554 		its_affinity->proximity_domain, its_affinity->its_id, node);
3555 
3556 	return 0;
3557 }
3558 
3559 static void __init acpi_table_parse_srat_its(void)
3560 {
3561 	int count;
3562 
3563 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3564 			sizeof(struct acpi_table_srat),
3565 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3566 			gic_acpi_match_srat_its, 0);
3567 	if (count <= 0)
3568 		return;
3569 
3570 	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3571 				GFP_KERNEL);
3572 	if (!its_srat_maps) {
3573 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3574 		return;
3575 	}
3576 
3577 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3578 			sizeof(struct acpi_table_srat),
3579 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3580 			gic_acpi_parse_srat_its, 0);
3581 }
3582 
3583 /* free the its_srat_maps after ITS probing */
3584 static void __init acpi_its_srat_maps_free(void)
3585 {
3586 	kfree(its_srat_maps);
3587 }
3588 #else
3589 static void __init acpi_table_parse_srat_its(void)	{ }
3590 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3591 static void __init acpi_its_srat_maps_free(void) { }
3592 #endif
3593 
3594 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3595 					  const unsigned long end)
3596 {
3597 	struct acpi_madt_generic_translator *its_entry;
3598 	struct fwnode_handle *dom_handle;
3599 	struct resource res;
3600 	int err;
3601 
3602 	its_entry = (struct acpi_madt_generic_translator *)header;
3603 	memset(&res, 0, sizeof(res));
3604 	res.start = its_entry->base_address;
3605 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3606 	res.flags = IORESOURCE_MEM;
3607 
3608 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3609 	if (!dom_handle) {
3610 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3611 		       &res.start);
3612 		return -ENOMEM;
3613 	}
3614 
3615 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3616 					 dom_handle);
3617 	if (err) {
3618 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3619 		       &res.start, its_entry->translation_id);
3620 		goto dom_err;
3621 	}
3622 
3623 	err = its_probe_one(&res, dom_handle,
3624 			acpi_get_its_numa_node(its_entry->translation_id));
3625 	if (!err)
3626 		return 0;
3627 
3628 	iort_deregister_domain_token(its_entry->translation_id);
3629 dom_err:
3630 	irq_domain_free_fwnode(dom_handle);
3631 	return err;
3632 }
3633 
3634 static void __init its_acpi_probe(void)
3635 {
3636 	acpi_table_parse_srat_its();
3637 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3638 			      gic_acpi_parse_madt_its, 0);
3639 	acpi_its_srat_maps_free();
3640 }
3641 #else
3642 static void __init its_acpi_probe(void) { }
3643 #endif
3644 
3645 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3646 		    struct irq_domain *parent_domain)
3647 {
3648 	struct device_node *of_node;
3649 	struct its_node *its;
3650 	bool has_v4 = false;
3651 	int err;
3652 
3653 	its_parent = parent_domain;
3654 	of_node = to_of_node(handle);
3655 	if (of_node)
3656 		its_of_probe(of_node);
3657 	else
3658 		its_acpi_probe();
3659 
3660 	if (list_empty(&its_nodes)) {
3661 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3662 		return -ENXIO;
3663 	}
3664 
3665 	gic_rdists = rdists;
3666 	err = its_alloc_lpi_tables();
3667 	if (err)
3668 		return err;
3669 
3670 	list_for_each_entry(its, &its_nodes, entry)
3671 		has_v4 |= its->is_v4;
3672 
3673 	if (has_v4 & rdists->has_vlpis) {
3674 		if (its_init_vpe_domain() ||
3675 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3676 			rdists->has_vlpis = false;
3677 			pr_err("ITS: Disabling GICv4 support\n");
3678 		}
3679 	}
3680 
3681 	register_syscore_ops(&its_syscore_ops);
3682 
3683 	return 0;
3684 }
3685