1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 #include <linux/syscore_ops.h> 37 38 #include <linux/irqchip.h> 39 #include <linux/irqchip/arm-gic-v3.h> 40 #include <linux/irqchip/arm-gic-v4.h> 41 42 #include <asm/cputype.h> 43 #include <asm/exception.h> 44 45 #include "irq-gic-common.h" 46 47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 50 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 51 52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 53 54 static u32 lpi_id_bits; 55 56 /* 57 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 58 * deal with (one configuration byte per interrupt). PENDBASE has to 59 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 60 */ 61 #define LPI_NRBITS lpi_id_bits 62 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 63 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 64 65 #define LPI_PROP_DEFAULT_PRIO 0xa0 66 67 /* 68 * Collection structure - just an ID, and a redistributor address to 69 * ping. We use one per CPU as a bag of interrupts assigned to this 70 * CPU. 71 */ 72 struct its_collection { 73 u64 target_address; 74 u16 col_id; 75 }; 76 77 /* 78 * The ITS_BASER structure - contains memory information, cached 79 * value of BASER register configuration and ITS page size. 80 */ 81 struct its_baser { 82 void *base; 83 u64 val; 84 u32 order; 85 u32 psz; 86 }; 87 88 struct its_device; 89 90 /* 91 * The ITS structure - contains most of the infrastructure, with the 92 * top-level MSI domain, the command queue, the collections, and the 93 * list of devices writing to it. 94 */ 95 struct its_node { 96 raw_spinlock_t lock; 97 struct list_head entry; 98 void __iomem *base; 99 phys_addr_t phys_base; 100 struct its_cmd_block *cmd_base; 101 struct its_cmd_block *cmd_write; 102 struct its_baser tables[GITS_BASER_NR_REGS]; 103 struct its_collection *collections; 104 struct fwnode_handle *fwnode_handle; 105 u64 (*get_msi_base)(struct its_device *its_dev); 106 u64 cbaser_save; 107 u32 ctlr_save; 108 struct list_head its_device_list; 109 u64 flags; 110 unsigned long list_nr; 111 u32 ite_size; 112 u32 device_ids; 113 int numa_node; 114 unsigned int msi_domain_flags; 115 u32 pre_its_base; /* for Socionext Synquacer */ 116 bool is_v4; 117 int vlpi_redist_offset; 118 }; 119 120 #define ITS_ITT_ALIGN SZ_256 121 122 /* The maximum number of VPEID bits supported by VLPI commands */ 123 #define ITS_MAX_VPEID_BITS (16) 124 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 125 126 /* Convert page order to size in bytes */ 127 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 128 129 struct event_lpi_map { 130 unsigned long *lpi_map; 131 u16 *col_map; 132 irq_hw_number_t lpi_base; 133 int nr_lpis; 134 struct mutex vlpi_lock; 135 struct its_vm *vm; 136 struct its_vlpi_map *vlpi_maps; 137 int nr_vlpis; 138 }; 139 140 /* 141 * The ITS view of a device - belongs to an ITS, owns an interrupt 142 * translation table, and a list of interrupts. If it some of its 143 * LPIs are injected into a guest (GICv4), the event_map.vm field 144 * indicates which one. 145 */ 146 struct its_device { 147 struct list_head entry; 148 struct its_node *its; 149 struct event_lpi_map event_map; 150 void *itt; 151 u32 nr_ites; 152 u32 device_id; 153 }; 154 155 static struct { 156 raw_spinlock_t lock; 157 struct its_device *dev; 158 struct its_vpe **vpes; 159 int next_victim; 160 } vpe_proxy; 161 162 static LIST_HEAD(its_nodes); 163 static DEFINE_SPINLOCK(its_lock); 164 static struct rdists *gic_rdists; 165 static struct irq_domain *its_parent; 166 167 static unsigned long its_list_map; 168 static u16 vmovp_seq_num; 169 static DEFINE_RAW_SPINLOCK(vmovp_lock); 170 171 static DEFINE_IDA(its_vpeid_ida); 172 173 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 174 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 175 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 176 177 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 178 u32 event) 179 { 180 struct its_node *its = its_dev->its; 181 182 return its->collections + its_dev->event_map.col_map[event]; 183 } 184 185 /* 186 * ITS command descriptors - parameters to be encoded in a command 187 * block. 188 */ 189 struct its_cmd_desc { 190 union { 191 struct { 192 struct its_device *dev; 193 u32 event_id; 194 } its_inv_cmd; 195 196 struct { 197 struct its_device *dev; 198 u32 event_id; 199 } its_clear_cmd; 200 201 struct { 202 struct its_device *dev; 203 u32 event_id; 204 } its_int_cmd; 205 206 struct { 207 struct its_device *dev; 208 int valid; 209 } its_mapd_cmd; 210 211 struct { 212 struct its_collection *col; 213 int valid; 214 } its_mapc_cmd; 215 216 struct { 217 struct its_device *dev; 218 u32 phys_id; 219 u32 event_id; 220 } its_mapti_cmd; 221 222 struct { 223 struct its_device *dev; 224 struct its_collection *col; 225 u32 event_id; 226 } its_movi_cmd; 227 228 struct { 229 struct its_device *dev; 230 u32 event_id; 231 } its_discard_cmd; 232 233 struct { 234 struct its_collection *col; 235 } its_invall_cmd; 236 237 struct { 238 struct its_vpe *vpe; 239 } its_vinvall_cmd; 240 241 struct { 242 struct its_vpe *vpe; 243 struct its_collection *col; 244 bool valid; 245 } its_vmapp_cmd; 246 247 struct { 248 struct its_vpe *vpe; 249 struct its_device *dev; 250 u32 virt_id; 251 u32 event_id; 252 bool db_enabled; 253 } its_vmapti_cmd; 254 255 struct { 256 struct its_vpe *vpe; 257 struct its_device *dev; 258 u32 event_id; 259 bool db_enabled; 260 } its_vmovi_cmd; 261 262 struct { 263 struct its_vpe *vpe; 264 struct its_collection *col; 265 u16 seq_num; 266 u16 its_list; 267 } its_vmovp_cmd; 268 }; 269 }; 270 271 /* 272 * The ITS command block, which is what the ITS actually parses. 273 */ 274 struct its_cmd_block { 275 u64 raw_cmd[4]; 276 }; 277 278 #define ITS_CMD_QUEUE_SZ SZ_64K 279 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 280 281 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 282 struct its_cmd_block *, 283 struct its_cmd_desc *); 284 285 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 286 struct its_cmd_block *, 287 struct its_cmd_desc *); 288 289 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 290 { 291 u64 mask = GENMASK_ULL(h, l); 292 *raw_cmd &= ~mask; 293 *raw_cmd |= (val << l) & mask; 294 } 295 296 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 297 { 298 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 299 } 300 301 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 302 { 303 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 304 } 305 306 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 307 { 308 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 309 } 310 311 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 312 { 313 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 314 } 315 316 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 317 { 318 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 319 } 320 321 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 322 { 323 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 324 } 325 326 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 327 { 328 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 329 } 330 331 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 332 { 333 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 334 } 335 336 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 337 { 338 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 339 } 340 341 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 342 { 343 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 344 } 345 346 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 347 { 348 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 349 } 350 351 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 352 { 353 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 354 } 355 356 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 357 { 358 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 359 } 360 361 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 362 { 363 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 364 } 365 366 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 367 { 368 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 369 } 370 371 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 372 { 373 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 374 } 375 376 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 377 { 378 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 379 } 380 381 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 382 { 383 /* Let's fixup BE commands */ 384 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 385 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 386 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 387 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 388 } 389 390 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 391 struct its_cmd_block *cmd, 392 struct its_cmd_desc *desc) 393 { 394 unsigned long itt_addr; 395 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 396 397 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 398 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 399 400 its_encode_cmd(cmd, GITS_CMD_MAPD); 401 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 402 its_encode_size(cmd, size - 1); 403 its_encode_itt(cmd, itt_addr); 404 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 405 406 its_fixup_cmd(cmd); 407 408 return NULL; 409 } 410 411 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 412 struct its_cmd_block *cmd, 413 struct its_cmd_desc *desc) 414 { 415 its_encode_cmd(cmd, GITS_CMD_MAPC); 416 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 417 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 418 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 419 420 its_fixup_cmd(cmd); 421 422 return desc->its_mapc_cmd.col; 423 } 424 425 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 426 struct its_cmd_block *cmd, 427 struct its_cmd_desc *desc) 428 { 429 struct its_collection *col; 430 431 col = dev_event_to_col(desc->its_mapti_cmd.dev, 432 desc->its_mapti_cmd.event_id); 433 434 its_encode_cmd(cmd, GITS_CMD_MAPTI); 435 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 436 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 437 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 438 its_encode_collection(cmd, col->col_id); 439 440 its_fixup_cmd(cmd); 441 442 return col; 443 } 444 445 static struct its_collection *its_build_movi_cmd(struct its_node *its, 446 struct its_cmd_block *cmd, 447 struct its_cmd_desc *desc) 448 { 449 struct its_collection *col; 450 451 col = dev_event_to_col(desc->its_movi_cmd.dev, 452 desc->its_movi_cmd.event_id); 453 454 its_encode_cmd(cmd, GITS_CMD_MOVI); 455 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 456 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 457 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 458 459 its_fixup_cmd(cmd); 460 461 return col; 462 } 463 464 static struct its_collection *its_build_discard_cmd(struct its_node *its, 465 struct its_cmd_block *cmd, 466 struct its_cmd_desc *desc) 467 { 468 struct its_collection *col; 469 470 col = dev_event_to_col(desc->its_discard_cmd.dev, 471 desc->its_discard_cmd.event_id); 472 473 its_encode_cmd(cmd, GITS_CMD_DISCARD); 474 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 475 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 476 477 its_fixup_cmd(cmd); 478 479 return col; 480 } 481 482 static struct its_collection *its_build_inv_cmd(struct its_node *its, 483 struct its_cmd_block *cmd, 484 struct its_cmd_desc *desc) 485 { 486 struct its_collection *col; 487 488 col = dev_event_to_col(desc->its_inv_cmd.dev, 489 desc->its_inv_cmd.event_id); 490 491 its_encode_cmd(cmd, GITS_CMD_INV); 492 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 493 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 494 495 its_fixup_cmd(cmd); 496 497 return col; 498 } 499 500 static struct its_collection *its_build_int_cmd(struct its_node *its, 501 struct its_cmd_block *cmd, 502 struct its_cmd_desc *desc) 503 { 504 struct its_collection *col; 505 506 col = dev_event_to_col(desc->its_int_cmd.dev, 507 desc->its_int_cmd.event_id); 508 509 its_encode_cmd(cmd, GITS_CMD_INT); 510 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 511 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 512 513 its_fixup_cmd(cmd); 514 515 return col; 516 } 517 518 static struct its_collection *its_build_clear_cmd(struct its_node *its, 519 struct its_cmd_block *cmd, 520 struct its_cmd_desc *desc) 521 { 522 struct its_collection *col; 523 524 col = dev_event_to_col(desc->its_clear_cmd.dev, 525 desc->its_clear_cmd.event_id); 526 527 its_encode_cmd(cmd, GITS_CMD_CLEAR); 528 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 529 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 530 531 its_fixup_cmd(cmd); 532 533 return col; 534 } 535 536 static struct its_collection *its_build_invall_cmd(struct its_node *its, 537 struct its_cmd_block *cmd, 538 struct its_cmd_desc *desc) 539 { 540 its_encode_cmd(cmd, GITS_CMD_INVALL); 541 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 542 543 its_fixup_cmd(cmd); 544 545 return NULL; 546 } 547 548 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 549 struct its_cmd_block *cmd, 550 struct its_cmd_desc *desc) 551 { 552 its_encode_cmd(cmd, GITS_CMD_VINVALL); 553 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 554 555 its_fixup_cmd(cmd); 556 557 return desc->its_vinvall_cmd.vpe; 558 } 559 560 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 561 struct its_cmd_block *cmd, 562 struct its_cmd_desc *desc) 563 { 564 unsigned long vpt_addr; 565 u64 target; 566 567 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 568 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 569 570 its_encode_cmd(cmd, GITS_CMD_VMAPP); 571 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 572 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 573 its_encode_target(cmd, target); 574 its_encode_vpt_addr(cmd, vpt_addr); 575 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 576 577 its_fixup_cmd(cmd); 578 579 return desc->its_vmapp_cmd.vpe; 580 } 581 582 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 583 struct its_cmd_block *cmd, 584 struct its_cmd_desc *desc) 585 { 586 u32 db; 587 588 if (desc->its_vmapti_cmd.db_enabled) 589 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 590 else 591 db = 1023; 592 593 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 594 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 595 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 596 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 597 its_encode_db_phys_id(cmd, db); 598 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 599 600 its_fixup_cmd(cmd); 601 602 return desc->its_vmapti_cmd.vpe; 603 } 604 605 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 606 struct its_cmd_block *cmd, 607 struct its_cmd_desc *desc) 608 { 609 u32 db; 610 611 if (desc->its_vmovi_cmd.db_enabled) 612 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 613 else 614 db = 1023; 615 616 its_encode_cmd(cmd, GITS_CMD_VMOVI); 617 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 618 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 619 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 620 its_encode_db_phys_id(cmd, db); 621 its_encode_db_valid(cmd, true); 622 623 its_fixup_cmd(cmd); 624 625 return desc->its_vmovi_cmd.vpe; 626 } 627 628 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 629 struct its_cmd_block *cmd, 630 struct its_cmd_desc *desc) 631 { 632 u64 target; 633 634 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 635 its_encode_cmd(cmd, GITS_CMD_VMOVP); 636 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 637 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 638 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 639 its_encode_target(cmd, target); 640 641 its_fixup_cmd(cmd); 642 643 return desc->its_vmovp_cmd.vpe; 644 } 645 646 static u64 its_cmd_ptr_to_offset(struct its_node *its, 647 struct its_cmd_block *ptr) 648 { 649 return (ptr - its->cmd_base) * sizeof(*ptr); 650 } 651 652 static int its_queue_full(struct its_node *its) 653 { 654 int widx; 655 int ridx; 656 657 widx = its->cmd_write - its->cmd_base; 658 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 659 660 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 661 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 662 return 1; 663 664 return 0; 665 } 666 667 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 668 { 669 struct its_cmd_block *cmd; 670 u32 count = 1000000; /* 1s! */ 671 672 while (its_queue_full(its)) { 673 count--; 674 if (!count) { 675 pr_err_ratelimited("ITS queue not draining\n"); 676 return NULL; 677 } 678 cpu_relax(); 679 udelay(1); 680 } 681 682 cmd = its->cmd_write++; 683 684 /* Handle queue wrapping */ 685 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 686 its->cmd_write = its->cmd_base; 687 688 /* Clear command */ 689 cmd->raw_cmd[0] = 0; 690 cmd->raw_cmd[1] = 0; 691 cmd->raw_cmd[2] = 0; 692 cmd->raw_cmd[3] = 0; 693 694 return cmd; 695 } 696 697 static struct its_cmd_block *its_post_commands(struct its_node *its) 698 { 699 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 700 701 writel_relaxed(wr, its->base + GITS_CWRITER); 702 703 return its->cmd_write; 704 } 705 706 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 707 { 708 /* 709 * Make sure the commands written to memory are observable by 710 * the ITS. 711 */ 712 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 713 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 714 else 715 dsb(ishst); 716 } 717 718 static int its_wait_for_range_completion(struct its_node *its, 719 struct its_cmd_block *from, 720 struct its_cmd_block *to) 721 { 722 u64 rd_idx, from_idx, to_idx; 723 u32 count = 1000000; /* 1s! */ 724 725 from_idx = its_cmd_ptr_to_offset(its, from); 726 to_idx = its_cmd_ptr_to_offset(its, to); 727 728 while (1) { 729 rd_idx = readl_relaxed(its->base + GITS_CREADR); 730 731 /* Direct case */ 732 if (from_idx < to_idx && rd_idx >= to_idx) 733 break; 734 735 /* Wrapped case */ 736 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 737 break; 738 739 count--; 740 if (!count) { 741 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", 742 from_idx, to_idx, rd_idx); 743 return -1; 744 } 745 cpu_relax(); 746 udelay(1); 747 } 748 749 return 0; 750 } 751 752 /* Warning, macro hell follows */ 753 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 754 void name(struct its_node *its, \ 755 buildtype builder, \ 756 struct its_cmd_desc *desc) \ 757 { \ 758 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 759 synctype *sync_obj; \ 760 unsigned long flags; \ 761 \ 762 raw_spin_lock_irqsave(&its->lock, flags); \ 763 \ 764 cmd = its_allocate_entry(its); \ 765 if (!cmd) { /* We're soooooo screewed... */ \ 766 raw_spin_unlock_irqrestore(&its->lock, flags); \ 767 return; \ 768 } \ 769 sync_obj = builder(its, cmd, desc); \ 770 its_flush_cmd(its, cmd); \ 771 \ 772 if (sync_obj) { \ 773 sync_cmd = its_allocate_entry(its); \ 774 if (!sync_cmd) \ 775 goto post; \ 776 \ 777 buildfn(its, sync_cmd, sync_obj); \ 778 its_flush_cmd(its, sync_cmd); \ 779 } \ 780 \ 781 post: \ 782 next_cmd = its_post_commands(its); \ 783 raw_spin_unlock_irqrestore(&its->lock, flags); \ 784 \ 785 if (its_wait_for_range_completion(its, cmd, next_cmd)) \ 786 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 787 } 788 789 static void its_build_sync_cmd(struct its_node *its, 790 struct its_cmd_block *sync_cmd, 791 struct its_collection *sync_col) 792 { 793 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 794 its_encode_target(sync_cmd, sync_col->target_address); 795 796 its_fixup_cmd(sync_cmd); 797 } 798 799 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 800 struct its_collection, its_build_sync_cmd) 801 802 static void its_build_vsync_cmd(struct its_node *its, 803 struct its_cmd_block *sync_cmd, 804 struct its_vpe *sync_vpe) 805 { 806 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 807 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 808 809 its_fixup_cmd(sync_cmd); 810 } 811 812 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 813 struct its_vpe, its_build_vsync_cmd) 814 815 static void its_send_int(struct its_device *dev, u32 event_id) 816 { 817 struct its_cmd_desc desc; 818 819 desc.its_int_cmd.dev = dev; 820 desc.its_int_cmd.event_id = event_id; 821 822 its_send_single_command(dev->its, its_build_int_cmd, &desc); 823 } 824 825 static void its_send_clear(struct its_device *dev, u32 event_id) 826 { 827 struct its_cmd_desc desc; 828 829 desc.its_clear_cmd.dev = dev; 830 desc.its_clear_cmd.event_id = event_id; 831 832 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 833 } 834 835 static void its_send_inv(struct its_device *dev, u32 event_id) 836 { 837 struct its_cmd_desc desc; 838 839 desc.its_inv_cmd.dev = dev; 840 desc.its_inv_cmd.event_id = event_id; 841 842 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 843 } 844 845 static void its_send_mapd(struct its_device *dev, int valid) 846 { 847 struct its_cmd_desc desc; 848 849 desc.its_mapd_cmd.dev = dev; 850 desc.its_mapd_cmd.valid = !!valid; 851 852 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 853 } 854 855 static void its_send_mapc(struct its_node *its, struct its_collection *col, 856 int valid) 857 { 858 struct its_cmd_desc desc; 859 860 desc.its_mapc_cmd.col = col; 861 desc.its_mapc_cmd.valid = !!valid; 862 863 its_send_single_command(its, its_build_mapc_cmd, &desc); 864 } 865 866 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 867 { 868 struct its_cmd_desc desc; 869 870 desc.its_mapti_cmd.dev = dev; 871 desc.its_mapti_cmd.phys_id = irq_id; 872 desc.its_mapti_cmd.event_id = id; 873 874 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 875 } 876 877 static void its_send_movi(struct its_device *dev, 878 struct its_collection *col, u32 id) 879 { 880 struct its_cmd_desc desc; 881 882 desc.its_movi_cmd.dev = dev; 883 desc.its_movi_cmd.col = col; 884 desc.its_movi_cmd.event_id = id; 885 886 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 887 } 888 889 static void its_send_discard(struct its_device *dev, u32 id) 890 { 891 struct its_cmd_desc desc; 892 893 desc.its_discard_cmd.dev = dev; 894 desc.its_discard_cmd.event_id = id; 895 896 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 897 } 898 899 static void its_send_invall(struct its_node *its, struct its_collection *col) 900 { 901 struct its_cmd_desc desc; 902 903 desc.its_invall_cmd.col = col; 904 905 its_send_single_command(its, its_build_invall_cmd, &desc); 906 } 907 908 static void its_send_vmapti(struct its_device *dev, u32 id) 909 { 910 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 911 struct its_cmd_desc desc; 912 913 desc.its_vmapti_cmd.vpe = map->vpe; 914 desc.its_vmapti_cmd.dev = dev; 915 desc.its_vmapti_cmd.virt_id = map->vintid; 916 desc.its_vmapti_cmd.event_id = id; 917 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 918 919 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 920 } 921 922 static void its_send_vmovi(struct its_device *dev, u32 id) 923 { 924 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 925 struct its_cmd_desc desc; 926 927 desc.its_vmovi_cmd.vpe = map->vpe; 928 desc.its_vmovi_cmd.dev = dev; 929 desc.its_vmovi_cmd.event_id = id; 930 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 931 932 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 933 } 934 935 static void its_send_vmapp(struct its_node *its, 936 struct its_vpe *vpe, bool valid) 937 { 938 struct its_cmd_desc desc; 939 940 desc.its_vmapp_cmd.vpe = vpe; 941 desc.its_vmapp_cmd.valid = valid; 942 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 943 944 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 945 } 946 947 static void its_send_vmovp(struct its_vpe *vpe) 948 { 949 struct its_cmd_desc desc; 950 struct its_node *its; 951 unsigned long flags; 952 int col_id = vpe->col_idx; 953 954 desc.its_vmovp_cmd.vpe = vpe; 955 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 956 957 if (!its_list_map) { 958 its = list_first_entry(&its_nodes, struct its_node, entry); 959 desc.its_vmovp_cmd.seq_num = 0; 960 desc.its_vmovp_cmd.col = &its->collections[col_id]; 961 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 962 return; 963 } 964 965 /* 966 * Yet another marvel of the architecture. If using the 967 * its_list "feature", we need to make sure that all ITSs 968 * receive all VMOVP commands in the same order. The only way 969 * to guarantee this is to make vmovp a serialization point. 970 * 971 * Wall <-- Head. 972 */ 973 raw_spin_lock_irqsave(&vmovp_lock, flags); 974 975 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 976 977 /* Emit VMOVPs */ 978 list_for_each_entry(its, &its_nodes, entry) { 979 if (!its->is_v4) 980 continue; 981 982 if (!vpe->its_vm->vlpi_count[its->list_nr]) 983 continue; 984 985 desc.its_vmovp_cmd.col = &its->collections[col_id]; 986 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 987 } 988 989 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 990 } 991 992 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 993 { 994 struct its_cmd_desc desc; 995 996 desc.its_vinvall_cmd.vpe = vpe; 997 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 998 } 999 1000 /* 1001 * irqchip functions - assumes MSI, mostly. 1002 */ 1003 1004 static inline u32 its_get_event_id(struct irq_data *d) 1005 { 1006 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1007 return d->hwirq - its_dev->event_map.lpi_base; 1008 } 1009 1010 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1011 { 1012 irq_hw_number_t hwirq; 1013 struct page *prop_page; 1014 u8 *cfg; 1015 1016 if (irqd_is_forwarded_to_vcpu(d)) { 1017 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1018 u32 event = its_get_event_id(d); 1019 struct its_vlpi_map *map; 1020 1021 prop_page = its_dev->event_map.vm->vprop_page; 1022 map = &its_dev->event_map.vlpi_maps[event]; 1023 hwirq = map->vintid; 1024 1025 /* Remember the updated property */ 1026 map->properties &= ~clr; 1027 map->properties |= set | LPI_PROP_GROUP1; 1028 } else { 1029 prop_page = gic_rdists->prop_page; 1030 hwirq = d->hwirq; 1031 } 1032 1033 cfg = page_address(prop_page) + hwirq - 8192; 1034 *cfg &= ~clr; 1035 *cfg |= set | LPI_PROP_GROUP1; 1036 1037 /* 1038 * Make the above write visible to the redistributors. 1039 * And yes, we're flushing exactly: One. Single. Byte. 1040 * Humpf... 1041 */ 1042 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1043 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1044 else 1045 dsb(ishst); 1046 } 1047 1048 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1049 { 1050 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1051 1052 lpi_write_config(d, clr, set); 1053 its_send_inv(its_dev, its_get_event_id(d)); 1054 } 1055 1056 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1057 { 1058 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1059 u32 event = its_get_event_id(d); 1060 1061 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1062 return; 1063 1064 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1065 1066 /* 1067 * More fun with the architecture: 1068 * 1069 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1070 * value or to 1023, depending on the enable bit. But that 1071 * would be issueing a mapping for an /existing/ DevID+EventID 1072 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1073 * to the /same/ vPE, using this opportunity to adjust the 1074 * doorbell. Mouahahahaha. We loves it, Precious. 1075 */ 1076 its_send_vmovi(its_dev, event); 1077 } 1078 1079 static void its_mask_irq(struct irq_data *d) 1080 { 1081 if (irqd_is_forwarded_to_vcpu(d)) 1082 its_vlpi_set_doorbell(d, false); 1083 1084 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1085 } 1086 1087 static void its_unmask_irq(struct irq_data *d) 1088 { 1089 if (irqd_is_forwarded_to_vcpu(d)) 1090 its_vlpi_set_doorbell(d, true); 1091 1092 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1093 } 1094 1095 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1096 bool force) 1097 { 1098 unsigned int cpu; 1099 const struct cpumask *cpu_mask = cpu_online_mask; 1100 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1101 struct its_collection *target_col; 1102 u32 id = its_get_event_id(d); 1103 1104 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1105 if (irqd_is_forwarded_to_vcpu(d)) 1106 return -EINVAL; 1107 1108 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1109 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1110 if (its_dev->its->numa_node >= 0) { 1111 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1112 if (!cpumask_intersects(mask_val, cpu_mask)) 1113 return -EINVAL; 1114 } 1115 } 1116 1117 cpu = cpumask_any_and(mask_val, cpu_mask); 1118 1119 if (cpu >= nr_cpu_ids) 1120 return -EINVAL; 1121 1122 /* don't set the affinity when the target cpu is same as current one */ 1123 if (cpu != its_dev->event_map.col_map[id]) { 1124 target_col = &its_dev->its->collections[cpu]; 1125 its_send_movi(its_dev, target_col, id); 1126 its_dev->event_map.col_map[id] = cpu; 1127 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1128 } 1129 1130 return IRQ_SET_MASK_OK_DONE; 1131 } 1132 1133 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1134 { 1135 struct its_node *its = its_dev->its; 1136 1137 return its->phys_base + GITS_TRANSLATER; 1138 } 1139 1140 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1141 { 1142 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1143 struct its_node *its; 1144 u64 addr; 1145 1146 its = its_dev->its; 1147 addr = its->get_msi_base(its_dev); 1148 1149 msg->address_lo = lower_32_bits(addr); 1150 msg->address_hi = upper_32_bits(addr); 1151 msg->data = its_get_event_id(d); 1152 1153 iommu_dma_map_msi_msg(d->irq, msg); 1154 } 1155 1156 static int its_irq_set_irqchip_state(struct irq_data *d, 1157 enum irqchip_irq_state which, 1158 bool state) 1159 { 1160 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1161 u32 event = its_get_event_id(d); 1162 1163 if (which != IRQCHIP_STATE_PENDING) 1164 return -EINVAL; 1165 1166 if (state) 1167 its_send_int(its_dev, event); 1168 else 1169 its_send_clear(its_dev, event); 1170 1171 return 0; 1172 } 1173 1174 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1175 { 1176 unsigned long flags; 1177 1178 /* Not using the ITS list? Everything is always mapped. */ 1179 if (!its_list_map) 1180 return; 1181 1182 raw_spin_lock_irqsave(&vmovp_lock, flags); 1183 1184 /* 1185 * If the VM wasn't mapped yet, iterate over the vpes and get 1186 * them mapped now. 1187 */ 1188 vm->vlpi_count[its->list_nr]++; 1189 1190 if (vm->vlpi_count[its->list_nr] == 1) { 1191 int i; 1192 1193 for (i = 0; i < vm->nr_vpes; i++) { 1194 struct its_vpe *vpe = vm->vpes[i]; 1195 struct irq_data *d = irq_get_irq_data(vpe->irq); 1196 1197 /* Map the VPE to the first possible CPU */ 1198 vpe->col_idx = cpumask_first(cpu_online_mask); 1199 its_send_vmapp(its, vpe, true); 1200 its_send_vinvall(its, vpe); 1201 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1202 } 1203 } 1204 1205 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1206 } 1207 1208 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1209 { 1210 unsigned long flags; 1211 1212 /* Not using the ITS list? Everything is always mapped. */ 1213 if (!its_list_map) 1214 return; 1215 1216 raw_spin_lock_irqsave(&vmovp_lock, flags); 1217 1218 if (!--vm->vlpi_count[its->list_nr]) { 1219 int i; 1220 1221 for (i = 0; i < vm->nr_vpes; i++) 1222 its_send_vmapp(its, vm->vpes[i], false); 1223 } 1224 1225 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1226 } 1227 1228 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1229 { 1230 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1231 u32 event = its_get_event_id(d); 1232 int ret = 0; 1233 1234 if (!info->map) 1235 return -EINVAL; 1236 1237 mutex_lock(&its_dev->event_map.vlpi_lock); 1238 1239 if (!its_dev->event_map.vm) { 1240 struct its_vlpi_map *maps; 1241 1242 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis, 1243 GFP_KERNEL); 1244 if (!maps) { 1245 ret = -ENOMEM; 1246 goto out; 1247 } 1248 1249 its_dev->event_map.vm = info->map->vm; 1250 its_dev->event_map.vlpi_maps = maps; 1251 } else if (its_dev->event_map.vm != info->map->vm) { 1252 ret = -EINVAL; 1253 goto out; 1254 } 1255 1256 /* Get our private copy of the mapping information */ 1257 its_dev->event_map.vlpi_maps[event] = *info->map; 1258 1259 if (irqd_is_forwarded_to_vcpu(d)) { 1260 /* Already mapped, move it around */ 1261 its_send_vmovi(its_dev, event); 1262 } else { 1263 /* Ensure all the VPEs are mapped on this ITS */ 1264 its_map_vm(its_dev->its, info->map->vm); 1265 1266 /* 1267 * Flag the interrupt as forwarded so that we can 1268 * start poking the virtual property table. 1269 */ 1270 irqd_set_forwarded_to_vcpu(d); 1271 1272 /* Write out the property to the prop table */ 1273 lpi_write_config(d, 0xff, info->map->properties); 1274 1275 /* Drop the physical mapping */ 1276 its_send_discard(its_dev, event); 1277 1278 /* and install the virtual one */ 1279 its_send_vmapti(its_dev, event); 1280 1281 /* Increment the number of VLPIs */ 1282 its_dev->event_map.nr_vlpis++; 1283 } 1284 1285 out: 1286 mutex_unlock(&its_dev->event_map.vlpi_lock); 1287 return ret; 1288 } 1289 1290 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1291 { 1292 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1293 u32 event = its_get_event_id(d); 1294 int ret = 0; 1295 1296 mutex_lock(&its_dev->event_map.vlpi_lock); 1297 1298 if (!its_dev->event_map.vm || 1299 !its_dev->event_map.vlpi_maps[event].vm) { 1300 ret = -EINVAL; 1301 goto out; 1302 } 1303 1304 /* Copy our mapping information to the incoming request */ 1305 *info->map = its_dev->event_map.vlpi_maps[event]; 1306 1307 out: 1308 mutex_unlock(&its_dev->event_map.vlpi_lock); 1309 return ret; 1310 } 1311 1312 static int its_vlpi_unmap(struct irq_data *d) 1313 { 1314 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1315 u32 event = its_get_event_id(d); 1316 int ret = 0; 1317 1318 mutex_lock(&its_dev->event_map.vlpi_lock); 1319 1320 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1321 ret = -EINVAL; 1322 goto out; 1323 } 1324 1325 /* Drop the virtual mapping */ 1326 its_send_discard(its_dev, event); 1327 1328 /* and restore the physical one */ 1329 irqd_clr_forwarded_to_vcpu(d); 1330 its_send_mapti(its_dev, d->hwirq, event); 1331 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1332 LPI_PROP_ENABLED | 1333 LPI_PROP_GROUP1)); 1334 1335 /* Potentially unmap the VM from this ITS */ 1336 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1337 1338 /* 1339 * Drop the refcount and make the device available again if 1340 * this was the last VLPI. 1341 */ 1342 if (!--its_dev->event_map.nr_vlpis) { 1343 its_dev->event_map.vm = NULL; 1344 kfree(its_dev->event_map.vlpi_maps); 1345 } 1346 1347 out: 1348 mutex_unlock(&its_dev->event_map.vlpi_lock); 1349 return ret; 1350 } 1351 1352 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1353 { 1354 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1355 1356 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1357 return -EINVAL; 1358 1359 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1360 lpi_update_config(d, 0xff, info->config); 1361 else 1362 lpi_write_config(d, 0xff, info->config); 1363 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1364 1365 return 0; 1366 } 1367 1368 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1369 { 1370 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1371 struct its_cmd_info *info = vcpu_info; 1372 1373 /* Need a v4 ITS */ 1374 if (!its_dev->its->is_v4) 1375 return -EINVAL; 1376 1377 /* Unmap request? */ 1378 if (!info) 1379 return its_vlpi_unmap(d); 1380 1381 switch (info->cmd_type) { 1382 case MAP_VLPI: 1383 return its_vlpi_map(d, info); 1384 1385 case GET_VLPI: 1386 return its_vlpi_get(d, info); 1387 1388 case PROP_UPDATE_VLPI: 1389 case PROP_UPDATE_AND_INV_VLPI: 1390 return its_vlpi_prop_update(d, info); 1391 1392 default: 1393 return -EINVAL; 1394 } 1395 } 1396 1397 static struct irq_chip its_irq_chip = { 1398 .name = "ITS", 1399 .irq_mask = its_mask_irq, 1400 .irq_unmask = its_unmask_irq, 1401 .irq_eoi = irq_chip_eoi_parent, 1402 .irq_set_affinity = its_set_affinity, 1403 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1404 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1405 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1406 }; 1407 1408 /* 1409 * How we allocate LPIs: 1410 * 1411 * The GIC has id_bits bits for interrupt identifiers. From there, we 1412 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 1413 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 1414 * bits to the right. 1415 * 1416 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 1417 */ 1418 #define IRQS_PER_CHUNK_SHIFT 5 1419 #define IRQS_PER_CHUNK (1UL << IRQS_PER_CHUNK_SHIFT) 1420 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1421 1422 static unsigned long *lpi_bitmap; 1423 static u32 lpi_chunks; 1424 static DEFINE_SPINLOCK(lpi_lock); 1425 1426 static int its_lpi_to_chunk(int lpi) 1427 { 1428 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 1429 } 1430 1431 static int its_chunk_to_lpi(int chunk) 1432 { 1433 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 1434 } 1435 1436 static int __init its_lpi_init(u32 id_bits) 1437 { 1438 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 1439 1440 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 1441 GFP_KERNEL); 1442 if (!lpi_bitmap) { 1443 lpi_chunks = 0; 1444 return -ENOMEM; 1445 } 1446 1447 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 1448 return 0; 1449 } 1450 1451 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 1452 { 1453 unsigned long *bitmap = NULL; 1454 int chunk_id; 1455 int nr_chunks; 1456 int i; 1457 1458 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 1459 1460 spin_lock(&lpi_lock); 1461 1462 do { 1463 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 1464 0, nr_chunks, 0); 1465 if (chunk_id < lpi_chunks) 1466 break; 1467 1468 nr_chunks--; 1469 } while (nr_chunks > 0); 1470 1471 if (!nr_chunks) 1472 goto out; 1473 1474 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 1475 GFP_ATOMIC); 1476 if (!bitmap) 1477 goto out; 1478 1479 for (i = 0; i < nr_chunks; i++) 1480 set_bit(chunk_id + i, lpi_bitmap); 1481 1482 *base = its_chunk_to_lpi(chunk_id); 1483 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 1484 1485 out: 1486 spin_unlock(&lpi_lock); 1487 1488 if (!bitmap) 1489 *base = *nr_ids = 0; 1490 1491 return bitmap; 1492 } 1493 1494 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids) 1495 { 1496 int lpi; 1497 1498 spin_lock(&lpi_lock); 1499 1500 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 1501 int chunk = its_lpi_to_chunk(lpi); 1502 1503 BUG_ON(chunk > lpi_chunks); 1504 if (test_bit(chunk, lpi_bitmap)) { 1505 clear_bit(chunk, lpi_bitmap); 1506 } else { 1507 pr_err("Bad LPI chunk %d\n", chunk); 1508 } 1509 } 1510 1511 spin_unlock(&lpi_lock); 1512 1513 kfree(bitmap); 1514 } 1515 1516 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1517 { 1518 struct page *prop_page; 1519 1520 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1521 if (!prop_page) 1522 return NULL; 1523 1524 /* Priority 0xa0, Group-1, disabled */ 1525 memset(page_address(prop_page), 1526 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1527 LPI_PROPBASE_SZ); 1528 1529 /* Make sure the GIC will observe the written configuration */ 1530 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1531 1532 return prop_page; 1533 } 1534 1535 static void its_free_prop_table(struct page *prop_page) 1536 { 1537 free_pages((unsigned long)page_address(prop_page), 1538 get_order(LPI_PROPBASE_SZ)); 1539 } 1540 1541 static int __init its_alloc_lpi_tables(void) 1542 { 1543 phys_addr_t paddr; 1544 1545 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS); 1546 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1547 if (!gic_rdists->prop_page) { 1548 pr_err("Failed to allocate PROPBASE\n"); 1549 return -ENOMEM; 1550 } 1551 1552 paddr = page_to_phys(gic_rdists->prop_page); 1553 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1554 1555 return its_lpi_init(lpi_id_bits); 1556 } 1557 1558 static const char *its_base_type_string[] = { 1559 [GITS_BASER_TYPE_DEVICE] = "Devices", 1560 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1561 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1562 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1563 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1564 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1565 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1566 }; 1567 1568 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1569 { 1570 u32 idx = baser - its->tables; 1571 1572 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1573 } 1574 1575 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1576 u64 val) 1577 { 1578 u32 idx = baser - its->tables; 1579 1580 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1581 baser->val = its_read_baser(its, baser); 1582 } 1583 1584 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1585 u64 cache, u64 shr, u32 psz, u32 order, 1586 bool indirect) 1587 { 1588 u64 val = its_read_baser(its, baser); 1589 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1590 u64 type = GITS_BASER_TYPE(val); 1591 u64 baser_phys, tmp; 1592 u32 alloc_pages; 1593 void *base; 1594 1595 retry_alloc_baser: 1596 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1597 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1598 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1599 &its->phys_base, its_base_type_string[type], 1600 alloc_pages, GITS_BASER_PAGES_MAX); 1601 alloc_pages = GITS_BASER_PAGES_MAX; 1602 order = get_order(GITS_BASER_PAGES_MAX * psz); 1603 } 1604 1605 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1606 if (!base) 1607 return -ENOMEM; 1608 1609 baser_phys = virt_to_phys(base); 1610 1611 /* Check if the physical address of the memory is above 48bits */ 1612 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1613 1614 /* 52bit PA is supported only when PageSize=64K */ 1615 if (psz != SZ_64K) { 1616 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1617 free_pages((unsigned long)base, order); 1618 return -ENXIO; 1619 } 1620 1621 /* Convert 52bit PA to 48bit field */ 1622 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1623 } 1624 1625 retry_baser: 1626 val = (baser_phys | 1627 (type << GITS_BASER_TYPE_SHIFT) | 1628 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1629 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1630 cache | 1631 shr | 1632 GITS_BASER_VALID); 1633 1634 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1635 1636 switch (psz) { 1637 case SZ_4K: 1638 val |= GITS_BASER_PAGE_SIZE_4K; 1639 break; 1640 case SZ_16K: 1641 val |= GITS_BASER_PAGE_SIZE_16K; 1642 break; 1643 case SZ_64K: 1644 val |= GITS_BASER_PAGE_SIZE_64K; 1645 break; 1646 } 1647 1648 its_write_baser(its, baser, val); 1649 tmp = baser->val; 1650 1651 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1652 /* 1653 * Shareability didn't stick. Just use 1654 * whatever the read reported, which is likely 1655 * to be the only thing this redistributor 1656 * supports. If that's zero, make it 1657 * non-cacheable as well. 1658 */ 1659 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1660 if (!shr) { 1661 cache = GITS_BASER_nC; 1662 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1663 } 1664 goto retry_baser; 1665 } 1666 1667 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1668 /* 1669 * Page size didn't stick. Let's try a smaller 1670 * size and retry. If we reach 4K, then 1671 * something is horribly wrong... 1672 */ 1673 free_pages((unsigned long)base, order); 1674 baser->base = NULL; 1675 1676 switch (psz) { 1677 case SZ_16K: 1678 psz = SZ_4K; 1679 goto retry_alloc_baser; 1680 case SZ_64K: 1681 psz = SZ_16K; 1682 goto retry_alloc_baser; 1683 } 1684 } 1685 1686 if (val != tmp) { 1687 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1688 &its->phys_base, its_base_type_string[type], 1689 val, tmp); 1690 free_pages((unsigned long)base, order); 1691 return -ENXIO; 1692 } 1693 1694 baser->order = order; 1695 baser->base = base; 1696 baser->psz = psz; 1697 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1698 1699 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1700 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1701 its_base_type_string[type], 1702 (unsigned long)virt_to_phys(base), 1703 indirect ? "indirect" : "flat", (int)esz, 1704 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1705 1706 return 0; 1707 } 1708 1709 static bool its_parse_indirect_baser(struct its_node *its, 1710 struct its_baser *baser, 1711 u32 psz, u32 *order, u32 ids) 1712 { 1713 u64 tmp = its_read_baser(its, baser); 1714 u64 type = GITS_BASER_TYPE(tmp); 1715 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1716 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1717 u32 new_order = *order; 1718 bool indirect = false; 1719 1720 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1721 if ((esz << ids) > (psz * 2)) { 1722 /* 1723 * Find out whether hw supports a single or two-level table by 1724 * table by reading bit at offset '62' after writing '1' to it. 1725 */ 1726 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1727 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1728 1729 if (indirect) { 1730 /* 1731 * The size of the lvl2 table is equal to ITS page size 1732 * which is 'psz'. For computing lvl1 table size, 1733 * subtract ID bits that sparse lvl2 table from 'ids' 1734 * which is reported by ITS hardware times lvl1 table 1735 * entry size. 1736 */ 1737 ids -= ilog2(psz / (int)esz); 1738 esz = GITS_LVL1_ENTRY_SIZE; 1739 } 1740 } 1741 1742 /* 1743 * Allocate as many entries as required to fit the 1744 * range of device IDs that the ITS can grok... The ID 1745 * space being incredibly sparse, this results in a 1746 * massive waste of memory if two-level device table 1747 * feature is not supported by hardware. 1748 */ 1749 new_order = max_t(u32, get_order(esz << ids), new_order); 1750 if (new_order >= MAX_ORDER) { 1751 new_order = MAX_ORDER - 1; 1752 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1753 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1754 &its->phys_base, its_base_type_string[type], 1755 its->device_ids, ids); 1756 } 1757 1758 *order = new_order; 1759 1760 return indirect; 1761 } 1762 1763 static void its_free_tables(struct its_node *its) 1764 { 1765 int i; 1766 1767 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1768 if (its->tables[i].base) { 1769 free_pages((unsigned long)its->tables[i].base, 1770 its->tables[i].order); 1771 its->tables[i].base = NULL; 1772 } 1773 } 1774 } 1775 1776 static int its_alloc_tables(struct its_node *its) 1777 { 1778 u64 shr = GITS_BASER_InnerShareable; 1779 u64 cache = GITS_BASER_RaWaWb; 1780 u32 psz = SZ_64K; 1781 int err, i; 1782 1783 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1784 /* erratum 24313: ignore memory access type */ 1785 cache = GITS_BASER_nCnB; 1786 1787 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1788 struct its_baser *baser = its->tables + i; 1789 u64 val = its_read_baser(its, baser); 1790 u64 type = GITS_BASER_TYPE(val); 1791 u32 order = get_order(psz); 1792 bool indirect = false; 1793 1794 switch (type) { 1795 case GITS_BASER_TYPE_NONE: 1796 continue; 1797 1798 case GITS_BASER_TYPE_DEVICE: 1799 indirect = its_parse_indirect_baser(its, baser, 1800 psz, &order, 1801 its->device_ids); 1802 case GITS_BASER_TYPE_VCPU: 1803 indirect = its_parse_indirect_baser(its, baser, 1804 psz, &order, 1805 ITS_MAX_VPEID_BITS); 1806 break; 1807 } 1808 1809 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1810 if (err < 0) { 1811 its_free_tables(its); 1812 return err; 1813 } 1814 1815 /* Update settings which will be used for next BASERn */ 1816 psz = baser->psz; 1817 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1818 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1819 } 1820 1821 return 0; 1822 } 1823 1824 static int its_alloc_collections(struct its_node *its) 1825 { 1826 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1827 GFP_KERNEL); 1828 if (!its->collections) 1829 return -ENOMEM; 1830 1831 return 0; 1832 } 1833 1834 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1835 { 1836 struct page *pend_page; 1837 /* 1838 * The pending pages have to be at least 64kB aligned, 1839 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1840 */ 1841 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1842 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1843 if (!pend_page) 1844 return NULL; 1845 1846 /* Make sure the GIC will observe the zero-ed page */ 1847 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1848 1849 return pend_page; 1850 } 1851 1852 static void its_free_pending_table(struct page *pt) 1853 { 1854 free_pages((unsigned long)page_address(pt), 1855 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1856 } 1857 1858 static void its_cpu_init_lpis(void) 1859 { 1860 void __iomem *rbase = gic_data_rdist_rd_base(); 1861 struct page *pend_page; 1862 u64 val, tmp; 1863 1864 /* If we didn't allocate the pending table yet, do it now */ 1865 pend_page = gic_data_rdist()->pend_page; 1866 if (!pend_page) { 1867 phys_addr_t paddr; 1868 1869 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1870 if (!pend_page) { 1871 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1872 smp_processor_id()); 1873 return; 1874 } 1875 1876 paddr = page_to_phys(pend_page); 1877 pr_info("CPU%d: using LPI pending table @%pa\n", 1878 smp_processor_id(), &paddr); 1879 gic_data_rdist()->pend_page = pend_page; 1880 } 1881 1882 /* set PROPBASE */ 1883 val = (page_to_phys(gic_rdists->prop_page) | 1884 GICR_PROPBASER_InnerShareable | 1885 GICR_PROPBASER_RaWaWb | 1886 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1887 1888 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1889 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1890 1891 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1892 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1893 /* 1894 * The HW reports non-shareable, we must 1895 * remove the cacheability attributes as 1896 * well. 1897 */ 1898 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1899 GICR_PROPBASER_CACHEABILITY_MASK); 1900 val |= GICR_PROPBASER_nC; 1901 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1902 } 1903 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1904 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1905 } 1906 1907 /* set PENDBASE */ 1908 val = (page_to_phys(pend_page) | 1909 GICR_PENDBASER_InnerShareable | 1910 GICR_PENDBASER_RaWaWb); 1911 1912 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1913 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 1914 1915 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1916 /* 1917 * The HW reports non-shareable, we must remove the 1918 * cacheability attributes as well. 1919 */ 1920 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1921 GICR_PENDBASER_CACHEABILITY_MASK); 1922 val |= GICR_PENDBASER_nC; 1923 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1924 } 1925 1926 /* Enable LPIs */ 1927 val = readl_relaxed(rbase + GICR_CTLR); 1928 val |= GICR_CTLR_ENABLE_LPIS; 1929 writel_relaxed(val, rbase + GICR_CTLR); 1930 1931 /* Make sure the GIC has seen the above */ 1932 dsb(sy); 1933 } 1934 1935 static void its_cpu_init_collection(struct its_node *its) 1936 { 1937 int cpu = smp_processor_id(); 1938 u64 target; 1939 1940 /* avoid cross node collections and its mapping */ 1941 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1942 struct device_node *cpu_node; 1943 1944 cpu_node = of_get_cpu_node(cpu, NULL); 1945 if (its->numa_node != NUMA_NO_NODE && 1946 its->numa_node != of_node_to_nid(cpu_node)) 1947 return; 1948 } 1949 1950 /* 1951 * We now have to bind each collection to its target 1952 * redistributor. 1953 */ 1954 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1955 /* 1956 * This ITS wants the physical address of the 1957 * redistributor. 1958 */ 1959 target = gic_data_rdist()->phys_base; 1960 } else { 1961 /* This ITS wants a linear CPU number. */ 1962 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1963 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1964 } 1965 1966 /* Perform collection mapping */ 1967 its->collections[cpu].target_address = target; 1968 its->collections[cpu].col_id = cpu; 1969 1970 its_send_mapc(its, &its->collections[cpu], 1); 1971 its_send_invall(its, &its->collections[cpu]); 1972 } 1973 1974 static void its_cpu_init_collections(void) 1975 { 1976 struct its_node *its; 1977 1978 spin_lock(&its_lock); 1979 1980 list_for_each_entry(its, &its_nodes, entry) 1981 its_cpu_init_collection(its); 1982 1983 spin_unlock(&its_lock); 1984 } 1985 1986 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1987 { 1988 struct its_device *its_dev = NULL, *tmp; 1989 unsigned long flags; 1990 1991 raw_spin_lock_irqsave(&its->lock, flags); 1992 1993 list_for_each_entry(tmp, &its->its_device_list, entry) { 1994 if (tmp->device_id == dev_id) { 1995 its_dev = tmp; 1996 break; 1997 } 1998 } 1999 2000 raw_spin_unlock_irqrestore(&its->lock, flags); 2001 2002 return its_dev; 2003 } 2004 2005 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2006 { 2007 int i; 2008 2009 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2010 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2011 return &its->tables[i]; 2012 } 2013 2014 return NULL; 2015 } 2016 2017 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 2018 { 2019 struct page *page; 2020 u32 esz, idx; 2021 __le64 *table; 2022 2023 /* Don't allow device id that exceeds single, flat table limit */ 2024 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2025 if (!(baser->val & GITS_BASER_INDIRECT)) 2026 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2027 2028 /* Compute 1st level table index & check if that exceeds table limit */ 2029 idx = id >> ilog2(baser->psz / esz); 2030 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2031 return false; 2032 2033 table = baser->base; 2034 2035 /* Allocate memory for 2nd level table */ 2036 if (!table[idx]) { 2037 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 2038 if (!page) 2039 return false; 2040 2041 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2042 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2043 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2044 2045 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2046 2047 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2048 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2049 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2050 2051 /* Ensure updated table contents are visible to ITS hardware */ 2052 dsb(sy); 2053 } 2054 2055 return true; 2056 } 2057 2058 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2059 { 2060 struct its_baser *baser; 2061 2062 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2063 2064 /* Don't allow device id that exceeds ITS hardware limit */ 2065 if (!baser) 2066 return (ilog2(dev_id) < its->device_ids); 2067 2068 return its_alloc_table_entry(baser, dev_id); 2069 } 2070 2071 static bool its_alloc_vpe_table(u32 vpe_id) 2072 { 2073 struct its_node *its; 2074 2075 /* 2076 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2077 * could try and only do it on ITSs corresponding to devices 2078 * that have interrupts targeted at this VPE, but the 2079 * complexity becomes crazy (and you have tons of memory 2080 * anyway, right?). 2081 */ 2082 list_for_each_entry(its, &its_nodes, entry) { 2083 struct its_baser *baser; 2084 2085 if (!its->is_v4) 2086 continue; 2087 2088 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2089 if (!baser) 2090 return false; 2091 2092 if (!its_alloc_table_entry(baser, vpe_id)) 2093 return false; 2094 } 2095 2096 return true; 2097 } 2098 2099 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2100 int nvecs, bool alloc_lpis) 2101 { 2102 struct its_device *dev; 2103 unsigned long *lpi_map = NULL; 2104 unsigned long flags; 2105 u16 *col_map = NULL; 2106 void *itt; 2107 int lpi_base; 2108 int nr_lpis; 2109 int nr_ites; 2110 int sz; 2111 2112 if (!its_alloc_device_table(its, dev_id)) 2113 return NULL; 2114 2115 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2116 /* 2117 * We allocate at least one chunk worth of LPIs bet device, 2118 * and thus that many ITEs. The device may require less though. 2119 */ 2120 nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs)); 2121 sz = nr_ites * its->ite_size; 2122 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2123 itt = kzalloc(sz, GFP_KERNEL); 2124 if (alloc_lpis) { 2125 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 2126 if (lpi_map) 2127 col_map = kzalloc(sizeof(*col_map) * nr_lpis, 2128 GFP_KERNEL); 2129 } else { 2130 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL); 2131 nr_lpis = 0; 2132 lpi_base = 0; 2133 } 2134 2135 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2136 kfree(dev); 2137 kfree(itt); 2138 kfree(lpi_map); 2139 kfree(col_map); 2140 return NULL; 2141 } 2142 2143 gic_flush_dcache_to_poc(itt, sz); 2144 2145 dev->its = its; 2146 dev->itt = itt; 2147 dev->nr_ites = nr_ites; 2148 dev->event_map.lpi_map = lpi_map; 2149 dev->event_map.col_map = col_map; 2150 dev->event_map.lpi_base = lpi_base; 2151 dev->event_map.nr_lpis = nr_lpis; 2152 mutex_init(&dev->event_map.vlpi_lock); 2153 dev->device_id = dev_id; 2154 INIT_LIST_HEAD(&dev->entry); 2155 2156 raw_spin_lock_irqsave(&its->lock, flags); 2157 list_add(&dev->entry, &its->its_device_list); 2158 raw_spin_unlock_irqrestore(&its->lock, flags); 2159 2160 /* Map device to its ITT */ 2161 its_send_mapd(dev, 1); 2162 2163 return dev; 2164 } 2165 2166 static void its_free_device(struct its_device *its_dev) 2167 { 2168 unsigned long flags; 2169 2170 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2171 list_del(&its_dev->entry); 2172 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2173 kfree(its_dev->itt); 2174 kfree(its_dev); 2175 } 2176 2177 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2178 { 2179 int idx; 2180 2181 idx = find_first_zero_bit(dev->event_map.lpi_map, 2182 dev->event_map.nr_lpis); 2183 if (idx == dev->event_map.nr_lpis) 2184 return -ENOSPC; 2185 2186 *hwirq = dev->event_map.lpi_base + idx; 2187 set_bit(idx, dev->event_map.lpi_map); 2188 2189 return 0; 2190 } 2191 2192 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2193 int nvec, msi_alloc_info_t *info) 2194 { 2195 struct its_node *its; 2196 struct its_device *its_dev; 2197 struct msi_domain_info *msi_info; 2198 u32 dev_id; 2199 2200 /* 2201 * We ignore "dev" entierely, and rely on the dev_id that has 2202 * been passed via the scratchpad. This limits this domain's 2203 * usefulness to upper layers that definitely know that they 2204 * are built on top of the ITS. 2205 */ 2206 dev_id = info->scratchpad[0].ul; 2207 2208 msi_info = msi_get_domain_info(domain); 2209 its = msi_info->data; 2210 2211 if (!gic_rdists->has_direct_lpi && 2212 vpe_proxy.dev && 2213 vpe_proxy.dev->its == its && 2214 dev_id == vpe_proxy.dev->device_id) { 2215 /* Bad luck. Get yourself a better implementation */ 2216 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2217 dev_id); 2218 return -EINVAL; 2219 } 2220 2221 its_dev = its_find_device(its, dev_id); 2222 if (its_dev) { 2223 /* 2224 * We already have seen this ID, probably through 2225 * another alias (PCI bridge of some sort). No need to 2226 * create the device. 2227 */ 2228 pr_debug("Reusing ITT for devID %x\n", dev_id); 2229 goto out; 2230 } 2231 2232 its_dev = its_create_device(its, dev_id, nvec, true); 2233 if (!its_dev) 2234 return -ENOMEM; 2235 2236 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2237 out: 2238 info->scratchpad[0].ptr = its_dev; 2239 return 0; 2240 } 2241 2242 static struct msi_domain_ops its_msi_domain_ops = { 2243 .msi_prepare = its_msi_prepare, 2244 }; 2245 2246 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2247 unsigned int virq, 2248 irq_hw_number_t hwirq) 2249 { 2250 struct irq_fwspec fwspec; 2251 2252 if (irq_domain_get_of_node(domain->parent)) { 2253 fwspec.fwnode = domain->parent->fwnode; 2254 fwspec.param_count = 3; 2255 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2256 fwspec.param[1] = hwirq; 2257 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2258 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2259 fwspec.fwnode = domain->parent->fwnode; 2260 fwspec.param_count = 2; 2261 fwspec.param[0] = hwirq; 2262 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2263 } else { 2264 return -EINVAL; 2265 } 2266 2267 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2268 } 2269 2270 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2271 unsigned int nr_irqs, void *args) 2272 { 2273 msi_alloc_info_t *info = args; 2274 struct its_device *its_dev = info->scratchpad[0].ptr; 2275 irq_hw_number_t hwirq; 2276 int err; 2277 int i; 2278 2279 for (i = 0; i < nr_irqs; i++) { 2280 err = its_alloc_device_irq(its_dev, &hwirq); 2281 if (err) 2282 return err; 2283 2284 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2285 if (err) 2286 return err; 2287 2288 irq_domain_set_hwirq_and_chip(domain, virq + i, 2289 hwirq, &its_irq_chip, its_dev); 2290 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2291 pr_debug("ID:%d pID:%d vID:%d\n", 2292 (int)(hwirq - its_dev->event_map.lpi_base), 2293 (int) hwirq, virq + i); 2294 } 2295 2296 return 0; 2297 } 2298 2299 static int its_irq_domain_activate(struct irq_domain *domain, 2300 struct irq_data *d, bool reserve) 2301 { 2302 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2303 u32 event = its_get_event_id(d); 2304 const struct cpumask *cpu_mask = cpu_online_mask; 2305 int cpu; 2306 2307 /* get the cpu_mask of local node */ 2308 if (its_dev->its->numa_node >= 0) 2309 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2310 2311 /* Bind the LPI to the first possible CPU */ 2312 cpu = cpumask_first(cpu_mask); 2313 its_dev->event_map.col_map[event] = cpu; 2314 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2315 2316 /* Map the GIC IRQ and event to the device */ 2317 its_send_mapti(its_dev, d->hwirq, event); 2318 return 0; 2319 } 2320 2321 static void its_irq_domain_deactivate(struct irq_domain *domain, 2322 struct irq_data *d) 2323 { 2324 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2325 u32 event = its_get_event_id(d); 2326 2327 /* Stop the delivery of interrupts */ 2328 its_send_discard(its_dev, event); 2329 } 2330 2331 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2332 unsigned int nr_irqs) 2333 { 2334 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2335 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2336 int i; 2337 2338 for (i = 0; i < nr_irqs; i++) { 2339 struct irq_data *data = irq_domain_get_irq_data(domain, 2340 virq + i); 2341 u32 event = its_get_event_id(data); 2342 2343 /* Mark interrupt index as unused */ 2344 clear_bit(event, its_dev->event_map.lpi_map); 2345 2346 /* Nuke the entry in the domain */ 2347 irq_domain_reset_irq_data(data); 2348 } 2349 2350 /* If all interrupts have been freed, start mopping the floor */ 2351 if (bitmap_empty(its_dev->event_map.lpi_map, 2352 its_dev->event_map.nr_lpis)) { 2353 its_lpi_free_chunks(its_dev->event_map.lpi_map, 2354 its_dev->event_map.lpi_base, 2355 its_dev->event_map.nr_lpis); 2356 kfree(its_dev->event_map.col_map); 2357 2358 /* Unmap device/itt */ 2359 its_send_mapd(its_dev, 0); 2360 its_free_device(its_dev); 2361 } 2362 2363 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2364 } 2365 2366 static const struct irq_domain_ops its_domain_ops = { 2367 .alloc = its_irq_domain_alloc, 2368 .free = its_irq_domain_free, 2369 .activate = its_irq_domain_activate, 2370 .deactivate = its_irq_domain_deactivate, 2371 }; 2372 2373 /* 2374 * This is insane. 2375 * 2376 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2377 * likely), the only way to perform an invalidate is to use a fake 2378 * device to issue an INV command, implying that the LPI has first 2379 * been mapped to some event on that device. Since this is not exactly 2380 * cheap, we try to keep that mapping around as long as possible, and 2381 * only issue an UNMAP if we're short on available slots. 2382 * 2383 * Broken by design(tm). 2384 */ 2385 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2386 { 2387 /* Already unmapped? */ 2388 if (vpe->vpe_proxy_event == -1) 2389 return; 2390 2391 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2392 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2393 2394 /* 2395 * We don't track empty slots at all, so let's move the 2396 * next_victim pointer if we can quickly reuse that slot 2397 * instead of nuking an existing entry. Not clear that this is 2398 * always a win though, and this might just generate a ripple 2399 * effect... Let's just hope VPEs don't migrate too often. 2400 */ 2401 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2402 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2403 2404 vpe->vpe_proxy_event = -1; 2405 } 2406 2407 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2408 { 2409 if (!gic_rdists->has_direct_lpi) { 2410 unsigned long flags; 2411 2412 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2413 its_vpe_db_proxy_unmap_locked(vpe); 2414 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2415 } 2416 } 2417 2418 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2419 { 2420 /* Already mapped? */ 2421 if (vpe->vpe_proxy_event != -1) 2422 return; 2423 2424 /* This slot was already allocated. Kick the other VPE out. */ 2425 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2426 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2427 2428 /* Map the new VPE instead */ 2429 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2430 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2431 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2432 2433 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2434 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2435 } 2436 2437 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2438 { 2439 unsigned long flags; 2440 struct its_collection *target_col; 2441 2442 if (gic_rdists->has_direct_lpi) { 2443 void __iomem *rdbase; 2444 2445 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2446 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2447 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2448 cpu_relax(); 2449 2450 return; 2451 } 2452 2453 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2454 2455 its_vpe_db_proxy_map_locked(vpe); 2456 2457 target_col = &vpe_proxy.dev->its->collections[to]; 2458 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2459 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2460 2461 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2462 } 2463 2464 static int its_vpe_set_affinity(struct irq_data *d, 2465 const struct cpumask *mask_val, 2466 bool force) 2467 { 2468 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2469 int cpu = cpumask_first(mask_val); 2470 2471 /* 2472 * Changing affinity is mega expensive, so let's be as lazy as 2473 * we can and only do it if we really have to. Also, if mapped 2474 * into the proxy device, we need to move the doorbell 2475 * interrupt to its new location. 2476 */ 2477 if (vpe->col_idx != cpu) { 2478 int from = vpe->col_idx; 2479 2480 vpe->col_idx = cpu; 2481 its_send_vmovp(vpe); 2482 its_vpe_db_proxy_move(vpe, from, cpu); 2483 } 2484 2485 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2486 2487 return IRQ_SET_MASK_OK_DONE; 2488 } 2489 2490 static void its_vpe_schedule(struct its_vpe *vpe) 2491 { 2492 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2493 u64 val; 2494 2495 /* Schedule the VPE */ 2496 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2497 GENMASK_ULL(51, 12); 2498 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2499 val |= GICR_VPROPBASER_RaWb; 2500 val |= GICR_VPROPBASER_InnerShareable; 2501 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2502 2503 val = virt_to_phys(page_address(vpe->vpt_page)) & 2504 GENMASK_ULL(51, 16); 2505 val |= GICR_VPENDBASER_RaWaWb; 2506 val |= GICR_VPENDBASER_NonShareable; 2507 /* 2508 * There is no good way of finding out if the pending table is 2509 * empty as we can race against the doorbell interrupt very 2510 * easily. So in the end, vpe->pending_last is only an 2511 * indication that the vcpu has something pending, not one 2512 * that the pending table is empty. A good implementation 2513 * would be able to read its coarse map pretty quickly anyway, 2514 * making this a tolerable issue. 2515 */ 2516 val |= GICR_VPENDBASER_PendingLast; 2517 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2518 val |= GICR_VPENDBASER_Valid; 2519 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2520 } 2521 2522 static void its_vpe_deschedule(struct its_vpe *vpe) 2523 { 2524 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2525 u32 count = 1000000; /* 1s! */ 2526 bool clean; 2527 u64 val; 2528 2529 /* We're being scheduled out */ 2530 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2531 val &= ~GICR_VPENDBASER_Valid; 2532 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2533 2534 do { 2535 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2536 clean = !(val & GICR_VPENDBASER_Dirty); 2537 if (!clean) { 2538 count--; 2539 cpu_relax(); 2540 udelay(1); 2541 } 2542 } while (!clean && count); 2543 2544 if (unlikely(!clean && !count)) { 2545 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2546 vpe->idai = false; 2547 vpe->pending_last = true; 2548 } else { 2549 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2550 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2551 } 2552 } 2553 2554 static void its_vpe_invall(struct its_vpe *vpe) 2555 { 2556 struct its_node *its; 2557 2558 list_for_each_entry(its, &its_nodes, entry) { 2559 if (!its->is_v4) 2560 continue; 2561 2562 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2563 continue; 2564 2565 /* 2566 * Sending a VINVALL to a single ITS is enough, as all 2567 * we need is to reach the redistributors. 2568 */ 2569 its_send_vinvall(its, vpe); 2570 return; 2571 } 2572 } 2573 2574 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2575 { 2576 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2577 struct its_cmd_info *info = vcpu_info; 2578 2579 switch (info->cmd_type) { 2580 case SCHEDULE_VPE: 2581 its_vpe_schedule(vpe); 2582 return 0; 2583 2584 case DESCHEDULE_VPE: 2585 its_vpe_deschedule(vpe); 2586 return 0; 2587 2588 case INVALL_VPE: 2589 its_vpe_invall(vpe); 2590 return 0; 2591 2592 default: 2593 return -EINVAL; 2594 } 2595 } 2596 2597 static void its_vpe_send_cmd(struct its_vpe *vpe, 2598 void (*cmd)(struct its_device *, u32)) 2599 { 2600 unsigned long flags; 2601 2602 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2603 2604 its_vpe_db_proxy_map_locked(vpe); 2605 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2606 2607 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2608 } 2609 2610 static void its_vpe_send_inv(struct irq_data *d) 2611 { 2612 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2613 2614 if (gic_rdists->has_direct_lpi) { 2615 void __iomem *rdbase; 2616 2617 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2618 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2619 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2620 cpu_relax(); 2621 } else { 2622 its_vpe_send_cmd(vpe, its_send_inv); 2623 } 2624 } 2625 2626 static void its_vpe_mask_irq(struct irq_data *d) 2627 { 2628 /* 2629 * We need to unmask the LPI, which is described by the parent 2630 * irq_data. Instead of calling into the parent (which won't 2631 * exactly do the right thing, let's simply use the 2632 * parent_data pointer. Yes, I'm naughty. 2633 */ 2634 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2635 its_vpe_send_inv(d); 2636 } 2637 2638 static void its_vpe_unmask_irq(struct irq_data *d) 2639 { 2640 /* Same hack as above... */ 2641 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2642 its_vpe_send_inv(d); 2643 } 2644 2645 static int its_vpe_set_irqchip_state(struct irq_data *d, 2646 enum irqchip_irq_state which, 2647 bool state) 2648 { 2649 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2650 2651 if (which != IRQCHIP_STATE_PENDING) 2652 return -EINVAL; 2653 2654 if (gic_rdists->has_direct_lpi) { 2655 void __iomem *rdbase; 2656 2657 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2658 if (state) { 2659 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2660 } else { 2661 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2662 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2663 cpu_relax(); 2664 } 2665 } else { 2666 if (state) 2667 its_vpe_send_cmd(vpe, its_send_int); 2668 else 2669 its_vpe_send_cmd(vpe, its_send_clear); 2670 } 2671 2672 return 0; 2673 } 2674 2675 static struct irq_chip its_vpe_irq_chip = { 2676 .name = "GICv4-vpe", 2677 .irq_mask = its_vpe_mask_irq, 2678 .irq_unmask = its_vpe_unmask_irq, 2679 .irq_eoi = irq_chip_eoi_parent, 2680 .irq_set_affinity = its_vpe_set_affinity, 2681 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2682 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2683 }; 2684 2685 static int its_vpe_id_alloc(void) 2686 { 2687 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2688 } 2689 2690 static void its_vpe_id_free(u16 id) 2691 { 2692 ida_simple_remove(&its_vpeid_ida, id); 2693 } 2694 2695 static int its_vpe_init(struct its_vpe *vpe) 2696 { 2697 struct page *vpt_page; 2698 int vpe_id; 2699 2700 /* Allocate vpe_id */ 2701 vpe_id = its_vpe_id_alloc(); 2702 if (vpe_id < 0) 2703 return vpe_id; 2704 2705 /* Allocate VPT */ 2706 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2707 if (!vpt_page) { 2708 its_vpe_id_free(vpe_id); 2709 return -ENOMEM; 2710 } 2711 2712 if (!its_alloc_vpe_table(vpe_id)) { 2713 its_vpe_id_free(vpe_id); 2714 its_free_pending_table(vpe->vpt_page); 2715 return -ENOMEM; 2716 } 2717 2718 vpe->vpe_id = vpe_id; 2719 vpe->vpt_page = vpt_page; 2720 vpe->vpe_proxy_event = -1; 2721 2722 return 0; 2723 } 2724 2725 static void its_vpe_teardown(struct its_vpe *vpe) 2726 { 2727 its_vpe_db_proxy_unmap(vpe); 2728 its_vpe_id_free(vpe->vpe_id); 2729 its_free_pending_table(vpe->vpt_page); 2730 } 2731 2732 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2733 unsigned int virq, 2734 unsigned int nr_irqs) 2735 { 2736 struct its_vm *vm = domain->host_data; 2737 int i; 2738 2739 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2740 2741 for (i = 0; i < nr_irqs; i++) { 2742 struct irq_data *data = irq_domain_get_irq_data(domain, 2743 virq + i); 2744 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2745 2746 BUG_ON(vm != vpe->its_vm); 2747 2748 clear_bit(data->hwirq, vm->db_bitmap); 2749 its_vpe_teardown(vpe); 2750 irq_domain_reset_irq_data(data); 2751 } 2752 2753 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2754 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2755 its_free_prop_table(vm->vprop_page); 2756 } 2757 } 2758 2759 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2760 unsigned int nr_irqs, void *args) 2761 { 2762 struct its_vm *vm = args; 2763 unsigned long *bitmap; 2764 struct page *vprop_page; 2765 int base, nr_ids, i, err = 0; 2766 2767 BUG_ON(!vm); 2768 2769 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids); 2770 if (!bitmap) 2771 return -ENOMEM; 2772 2773 if (nr_ids < nr_irqs) { 2774 its_lpi_free_chunks(bitmap, base, nr_ids); 2775 return -ENOMEM; 2776 } 2777 2778 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2779 if (!vprop_page) { 2780 its_lpi_free_chunks(bitmap, base, nr_ids); 2781 return -ENOMEM; 2782 } 2783 2784 vm->db_bitmap = bitmap; 2785 vm->db_lpi_base = base; 2786 vm->nr_db_lpis = nr_ids; 2787 vm->vprop_page = vprop_page; 2788 2789 for (i = 0; i < nr_irqs; i++) { 2790 vm->vpes[i]->vpe_db_lpi = base + i; 2791 err = its_vpe_init(vm->vpes[i]); 2792 if (err) 2793 break; 2794 err = its_irq_gic_domain_alloc(domain, virq + i, 2795 vm->vpes[i]->vpe_db_lpi); 2796 if (err) 2797 break; 2798 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2799 &its_vpe_irq_chip, vm->vpes[i]); 2800 set_bit(i, bitmap); 2801 } 2802 2803 if (err) { 2804 if (i > 0) 2805 its_vpe_irq_domain_free(domain, virq, i - 1); 2806 2807 its_lpi_free_chunks(bitmap, base, nr_ids); 2808 its_free_prop_table(vprop_page); 2809 } 2810 2811 return err; 2812 } 2813 2814 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 2815 struct irq_data *d, bool reserve) 2816 { 2817 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2818 struct its_node *its; 2819 2820 /* If we use the list map, we issue VMAPP on demand... */ 2821 if (its_list_map) 2822 return 0; 2823 2824 /* Map the VPE to the first possible CPU */ 2825 vpe->col_idx = cpumask_first(cpu_online_mask); 2826 2827 list_for_each_entry(its, &its_nodes, entry) { 2828 if (!its->is_v4) 2829 continue; 2830 2831 its_send_vmapp(its, vpe, true); 2832 its_send_vinvall(its, vpe); 2833 } 2834 2835 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 2836 2837 return 0; 2838 } 2839 2840 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2841 struct irq_data *d) 2842 { 2843 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2844 struct its_node *its; 2845 2846 /* 2847 * If we use the list map, we unmap the VPE once no VLPIs are 2848 * associated with the VM. 2849 */ 2850 if (its_list_map) 2851 return; 2852 2853 list_for_each_entry(its, &its_nodes, entry) { 2854 if (!its->is_v4) 2855 continue; 2856 2857 its_send_vmapp(its, vpe, false); 2858 } 2859 } 2860 2861 static const struct irq_domain_ops its_vpe_domain_ops = { 2862 .alloc = its_vpe_irq_domain_alloc, 2863 .free = its_vpe_irq_domain_free, 2864 .activate = its_vpe_irq_domain_activate, 2865 .deactivate = its_vpe_irq_domain_deactivate, 2866 }; 2867 2868 static int its_force_quiescent(void __iomem *base) 2869 { 2870 u32 count = 1000000; /* 1s */ 2871 u32 val; 2872 2873 val = readl_relaxed(base + GITS_CTLR); 2874 /* 2875 * GIC architecture specification requires the ITS to be both 2876 * disabled and quiescent for writes to GITS_BASER<n> or 2877 * GITS_CBASER to not have UNPREDICTABLE results. 2878 */ 2879 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2880 return 0; 2881 2882 /* Disable the generation of all interrupts to this ITS */ 2883 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2884 writel_relaxed(val, base + GITS_CTLR); 2885 2886 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2887 while (1) { 2888 val = readl_relaxed(base + GITS_CTLR); 2889 if (val & GITS_CTLR_QUIESCENT) 2890 return 0; 2891 2892 count--; 2893 if (!count) 2894 return -EBUSY; 2895 2896 cpu_relax(); 2897 udelay(1); 2898 } 2899 } 2900 2901 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 2902 { 2903 struct its_node *its = data; 2904 2905 /* erratum 22375: only alloc 8MB table size */ 2906 its->device_ids = 0x14; /* 20 bits, 8MB */ 2907 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 2908 2909 return true; 2910 } 2911 2912 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 2913 { 2914 struct its_node *its = data; 2915 2916 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 2917 2918 return true; 2919 } 2920 2921 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 2922 { 2923 struct its_node *its = data; 2924 2925 /* On QDF2400, the size of the ITE is 16Bytes */ 2926 its->ite_size = 16; 2927 2928 return true; 2929 } 2930 2931 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 2932 { 2933 struct its_node *its = its_dev->its; 2934 2935 /* 2936 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 2937 * which maps 32-bit writes targeted at a separate window of 2938 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 2939 * with device ID taken from bits [device_id_bits + 1:2] of 2940 * the window offset. 2941 */ 2942 return its->pre_its_base + (its_dev->device_id << 2); 2943 } 2944 2945 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 2946 { 2947 struct its_node *its = data; 2948 u32 pre_its_window[2]; 2949 u32 ids; 2950 2951 if (!fwnode_property_read_u32_array(its->fwnode_handle, 2952 "socionext,synquacer-pre-its", 2953 pre_its_window, 2954 ARRAY_SIZE(pre_its_window))) { 2955 2956 its->pre_its_base = pre_its_window[0]; 2957 its->get_msi_base = its_irq_get_msi_base_pre_its; 2958 2959 ids = ilog2(pre_its_window[1]) - 2; 2960 if (its->device_ids > ids) 2961 its->device_ids = ids; 2962 2963 /* the pre-ITS breaks isolation, so disable MSI remapping */ 2964 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 2965 return true; 2966 } 2967 return false; 2968 } 2969 2970 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 2971 { 2972 struct its_node *its = data; 2973 2974 /* 2975 * Hip07 insists on using the wrong address for the VLPI 2976 * page. Trick it into doing the right thing... 2977 */ 2978 its->vlpi_redist_offset = SZ_128K; 2979 return true; 2980 } 2981 2982 static const struct gic_quirk its_quirks[] = { 2983 #ifdef CONFIG_CAVIUM_ERRATUM_22375 2984 { 2985 .desc = "ITS: Cavium errata 22375, 24313", 2986 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2987 .mask = 0xffff0fff, 2988 .init = its_enable_quirk_cavium_22375, 2989 }, 2990 #endif 2991 #ifdef CONFIG_CAVIUM_ERRATUM_23144 2992 { 2993 .desc = "ITS: Cavium erratum 23144", 2994 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2995 .mask = 0xffff0fff, 2996 .init = its_enable_quirk_cavium_23144, 2997 }, 2998 #endif 2999 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3000 { 3001 .desc = "ITS: QDF2400 erratum 0065", 3002 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3003 .mask = 0xffffffff, 3004 .init = its_enable_quirk_qdf2400_e0065, 3005 }, 3006 #endif 3007 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3008 { 3009 /* 3010 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3011 * implementation, but with a 'pre-ITS' added that requires 3012 * special handling in software. 3013 */ 3014 .desc = "ITS: Socionext Synquacer pre-ITS", 3015 .iidr = 0x0001143b, 3016 .mask = 0xffffffff, 3017 .init = its_enable_quirk_socionext_synquacer, 3018 }, 3019 #endif 3020 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3021 { 3022 .desc = "ITS: Hip07 erratum 161600802", 3023 .iidr = 0x00000004, 3024 .mask = 0xffffffff, 3025 .init = its_enable_quirk_hip07_161600802, 3026 }, 3027 #endif 3028 { 3029 } 3030 }; 3031 3032 static void its_enable_quirks(struct its_node *its) 3033 { 3034 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3035 3036 gic_enable_quirks(iidr, its_quirks, its); 3037 } 3038 3039 static int its_save_disable(void) 3040 { 3041 struct its_node *its; 3042 int err = 0; 3043 3044 spin_lock(&its_lock); 3045 list_for_each_entry(its, &its_nodes, entry) { 3046 void __iomem *base; 3047 3048 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3049 continue; 3050 3051 base = its->base; 3052 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3053 err = its_force_quiescent(base); 3054 if (err) { 3055 pr_err("ITS@%pa: failed to quiesce: %d\n", 3056 &its->phys_base, err); 3057 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3058 goto err; 3059 } 3060 3061 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3062 } 3063 3064 err: 3065 if (err) { 3066 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3067 void __iomem *base; 3068 3069 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3070 continue; 3071 3072 base = its->base; 3073 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3074 } 3075 } 3076 spin_unlock(&its_lock); 3077 3078 return err; 3079 } 3080 3081 static void its_restore_enable(void) 3082 { 3083 struct its_node *its; 3084 int ret; 3085 3086 spin_lock(&its_lock); 3087 list_for_each_entry(its, &its_nodes, entry) { 3088 void __iomem *base; 3089 int i; 3090 3091 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3092 continue; 3093 3094 base = its->base; 3095 3096 /* 3097 * Make sure that the ITS is disabled. If it fails to quiesce, 3098 * don't restore it since writing to CBASER or BASER<n> 3099 * registers is undefined according to the GIC v3 ITS 3100 * Specification. 3101 */ 3102 ret = its_force_quiescent(base); 3103 if (ret) { 3104 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3105 &its->phys_base, ret); 3106 continue; 3107 } 3108 3109 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3110 3111 /* 3112 * Writing CBASER resets CREADR to 0, so make CWRITER and 3113 * cmd_write line up with it. 3114 */ 3115 its->cmd_write = its->cmd_base; 3116 gits_write_cwriter(0, base + GITS_CWRITER); 3117 3118 /* Restore GITS_BASER from the value cache. */ 3119 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3120 struct its_baser *baser = &its->tables[i]; 3121 3122 if (!(baser->val & GITS_BASER_VALID)) 3123 continue; 3124 3125 its_write_baser(its, baser, baser->val); 3126 } 3127 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3128 3129 /* 3130 * Reinit the collection if it's stored in the ITS. This is 3131 * indicated by the col_id being less than the HCC field. 3132 * CID < HCC as specified in the GIC v3 Documentation. 3133 */ 3134 if (its->collections[smp_processor_id()].col_id < 3135 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3136 its_cpu_init_collection(its); 3137 } 3138 spin_unlock(&its_lock); 3139 } 3140 3141 static struct syscore_ops its_syscore_ops = { 3142 .suspend = its_save_disable, 3143 .resume = its_restore_enable, 3144 }; 3145 3146 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3147 { 3148 struct irq_domain *inner_domain; 3149 struct msi_domain_info *info; 3150 3151 info = kzalloc(sizeof(*info), GFP_KERNEL); 3152 if (!info) 3153 return -ENOMEM; 3154 3155 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3156 if (!inner_domain) { 3157 kfree(info); 3158 return -ENOMEM; 3159 } 3160 3161 inner_domain->parent = its_parent; 3162 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3163 inner_domain->flags |= its->msi_domain_flags; 3164 info->ops = &its_msi_domain_ops; 3165 info->data = its; 3166 inner_domain->host_data = info; 3167 3168 return 0; 3169 } 3170 3171 static int its_init_vpe_domain(void) 3172 { 3173 struct its_node *its; 3174 u32 devid; 3175 int entries; 3176 3177 if (gic_rdists->has_direct_lpi) { 3178 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3179 return 0; 3180 } 3181 3182 /* Any ITS will do, even if not v4 */ 3183 its = list_first_entry(&its_nodes, struct its_node, entry); 3184 3185 entries = roundup_pow_of_two(nr_cpu_ids); 3186 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries, 3187 GFP_KERNEL); 3188 if (!vpe_proxy.vpes) { 3189 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3190 return -ENOMEM; 3191 } 3192 3193 /* Use the last possible DevID */ 3194 devid = GENMASK(its->device_ids - 1, 0); 3195 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3196 if (!vpe_proxy.dev) { 3197 kfree(vpe_proxy.vpes); 3198 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3199 return -ENOMEM; 3200 } 3201 3202 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3203 3204 raw_spin_lock_init(&vpe_proxy.lock); 3205 vpe_proxy.next_victim = 0; 3206 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3207 devid, vpe_proxy.dev->nr_ites); 3208 3209 return 0; 3210 } 3211 3212 static int __init its_compute_its_list_map(struct resource *res, 3213 void __iomem *its_base) 3214 { 3215 int its_number; 3216 u32 ctlr; 3217 3218 /* 3219 * This is assumed to be done early enough that we're 3220 * guaranteed to be single-threaded, hence no 3221 * locking. Should this change, we should address 3222 * this. 3223 */ 3224 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3225 if (its_number >= GICv4_ITS_LIST_MAX) { 3226 pr_err("ITS@%pa: No ITSList entry available!\n", 3227 &res->start); 3228 return -EINVAL; 3229 } 3230 3231 ctlr = readl_relaxed(its_base + GITS_CTLR); 3232 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3233 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3234 writel_relaxed(ctlr, its_base + GITS_CTLR); 3235 ctlr = readl_relaxed(its_base + GITS_CTLR); 3236 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3237 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3238 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3239 } 3240 3241 if (test_and_set_bit(its_number, &its_list_map)) { 3242 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3243 &res->start, its_number); 3244 return -EINVAL; 3245 } 3246 3247 return its_number; 3248 } 3249 3250 static int __init its_probe_one(struct resource *res, 3251 struct fwnode_handle *handle, int numa_node) 3252 { 3253 struct its_node *its; 3254 void __iomem *its_base; 3255 u32 val, ctlr; 3256 u64 baser, tmp, typer; 3257 int err; 3258 3259 its_base = ioremap(res->start, resource_size(res)); 3260 if (!its_base) { 3261 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3262 return -ENOMEM; 3263 } 3264 3265 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3266 if (val != 0x30 && val != 0x40) { 3267 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3268 err = -ENODEV; 3269 goto out_unmap; 3270 } 3271 3272 err = its_force_quiescent(its_base); 3273 if (err) { 3274 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3275 goto out_unmap; 3276 } 3277 3278 pr_info("ITS %pR\n", res); 3279 3280 its = kzalloc(sizeof(*its), GFP_KERNEL); 3281 if (!its) { 3282 err = -ENOMEM; 3283 goto out_unmap; 3284 } 3285 3286 raw_spin_lock_init(&its->lock); 3287 INIT_LIST_HEAD(&its->entry); 3288 INIT_LIST_HEAD(&its->its_device_list); 3289 typer = gic_read_typer(its_base + GITS_TYPER); 3290 its->base = its_base; 3291 its->phys_base = res->start; 3292 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3293 its->device_ids = GITS_TYPER_DEVBITS(typer); 3294 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3295 if (its->is_v4) { 3296 if (!(typer & GITS_TYPER_VMOVP)) { 3297 err = its_compute_its_list_map(res, its_base); 3298 if (err < 0) 3299 goto out_free_its; 3300 3301 its->list_nr = err; 3302 3303 pr_info("ITS@%pa: Using ITS number %d\n", 3304 &res->start, err); 3305 } else { 3306 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3307 } 3308 } 3309 3310 its->numa_node = numa_node; 3311 3312 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 3313 get_order(ITS_CMD_QUEUE_SZ)); 3314 if (!its->cmd_base) { 3315 err = -ENOMEM; 3316 goto out_free_its; 3317 } 3318 its->cmd_write = its->cmd_base; 3319 its->fwnode_handle = handle; 3320 its->get_msi_base = its_irq_get_msi_base; 3321 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3322 3323 its_enable_quirks(its); 3324 3325 err = its_alloc_tables(its); 3326 if (err) 3327 goto out_free_cmd; 3328 3329 err = its_alloc_collections(its); 3330 if (err) 3331 goto out_free_tables; 3332 3333 baser = (virt_to_phys(its->cmd_base) | 3334 GITS_CBASER_RaWaWb | 3335 GITS_CBASER_InnerShareable | 3336 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3337 GITS_CBASER_VALID); 3338 3339 gits_write_cbaser(baser, its->base + GITS_CBASER); 3340 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3341 3342 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3343 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3344 /* 3345 * The HW reports non-shareable, we must 3346 * remove the cacheability attributes as 3347 * well. 3348 */ 3349 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3350 GITS_CBASER_CACHEABILITY_MASK); 3351 baser |= GITS_CBASER_nC; 3352 gits_write_cbaser(baser, its->base + GITS_CBASER); 3353 } 3354 pr_info("ITS: using cache flushing for cmd queue\n"); 3355 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3356 } 3357 3358 gits_write_cwriter(0, its->base + GITS_CWRITER); 3359 ctlr = readl_relaxed(its->base + GITS_CTLR); 3360 ctlr |= GITS_CTLR_ENABLE; 3361 if (its->is_v4) 3362 ctlr |= GITS_CTLR_ImDe; 3363 writel_relaxed(ctlr, its->base + GITS_CTLR); 3364 3365 if (GITS_TYPER_HCC(typer)) 3366 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3367 3368 err = its_init_domain(handle, its); 3369 if (err) 3370 goto out_free_tables; 3371 3372 spin_lock(&its_lock); 3373 list_add(&its->entry, &its_nodes); 3374 spin_unlock(&its_lock); 3375 3376 return 0; 3377 3378 out_free_tables: 3379 its_free_tables(its); 3380 out_free_cmd: 3381 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3382 out_free_its: 3383 kfree(its); 3384 out_unmap: 3385 iounmap(its_base); 3386 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3387 return err; 3388 } 3389 3390 static bool gic_rdists_supports_plpis(void) 3391 { 3392 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3393 } 3394 3395 static int redist_disable_lpis(void) 3396 { 3397 void __iomem *rbase = gic_data_rdist_rd_base(); 3398 u64 timeout = USEC_PER_SEC; 3399 u64 val; 3400 3401 if (!gic_rdists_supports_plpis()) { 3402 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3403 return -ENXIO; 3404 } 3405 3406 val = readl_relaxed(rbase + GICR_CTLR); 3407 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3408 return 0; 3409 3410 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3411 smp_processor_id()); 3412 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3413 3414 /* Disable LPIs */ 3415 val &= ~GICR_CTLR_ENABLE_LPIS; 3416 writel_relaxed(val, rbase + GICR_CTLR); 3417 3418 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3419 dsb(sy); 3420 3421 /* 3422 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3423 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3424 * Error out if we time out waiting for RWP to clear. 3425 */ 3426 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3427 if (!timeout) { 3428 pr_err("CPU%d: Timeout while disabling LPIs\n", 3429 smp_processor_id()); 3430 return -ETIMEDOUT; 3431 } 3432 udelay(1); 3433 timeout--; 3434 } 3435 3436 /* 3437 * After it has been written to 1, it is IMPLEMENTATION 3438 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3439 * cleared to 0. Error out if clearing the bit failed. 3440 */ 3441 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3442 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3443 return -EBUSY; 3444 } 3445 3446 return 0; 3447 } 3448 3449 int its_cpu_init(void) 3450 { 3451 if (!list_empty(&its_nodes)) { 3452 int ret; 3453 3454 ret = redist_disable_lpis(); 3455 if (ret) 3456 return ret; 3457 3458 its_cpu_init_lpis(); 3459 its_cpu_init_collections(); 3460 } 3461 3462 return 0; 3463 } 3464 3465 static const struct of_device_id its_device_id[] = { 3466 { .compatible = "arm,gic-v3-its", }, 3467 {}, 3468 }; 3469 3470 static int __init its_of_probe(struct device_node *node) 3471 { 3472 struct device_node *np; 3473 struct resource res; 3474 3475 for (np = of_find_matching_node(node, its_device_id); np; 3476 np = of_find_matching_node(np, its_device_id)) { 3477 if (!of_device_is_available(np)) 3478 continue; 3479 if (!of_property_read_bool(np, "msi-controller")) { 3480 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3481 np); 3482 continue; 3483 } 3484 3485 if (of_address_to_resource(np, 0, &res)) { 3486 pr_warn("%pOF: no regs?\n", np); 3487 continue; 3488 } 3489 3490 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3491 } 3492 return 0; 3493 } 3494 3495 #ifdef CONFIG_ACPI 3496 3497 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3498 3499 #ifdef CONFIG_ACPI_NUMA 3500 struct its_srat_map { 3501 /* numa node id */ 3502 u32 numa_node; 3503 /* GIC ITS ID */ 3504 u32 its_id; 3505 }; 3506 3507 static struct its_srat_map *its_srat_maps __initdata; 3508 static int its_in_srat __initdata; 3509 3510 static int __init acpi_get_its_numa_node(u32 its_id) 3511 { 3512 int i; 3513 3514 for (i = 0; i < its_in_srat; i++) { 3515 if (its_id == its_srat_maps[i].its_id) 3516 return its_srat_maps[i].numa_node; 3517 } 3518 return NUMA_NO_NODE; 3519 } 3520 3521 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3522 const unsigned long end) 3523 { 3524 return 0; 3525 } 3526 3527 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3528 const unsigned long end) 3529 { 3530 int node; 3531 struct acpi_srat_gic_its_affinity *its_affinity; 3532 3533 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3534 if (!its_affinity) 3535 return -EINVAL; 3536 3537 if (its_affinity->header.length < sizeof(*its_affinity)) { 3538 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3539 its_affinity->header.length); 3540 return -EINVAL; 3541 } 3542 3543 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3544 3545 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3546 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3547 return 0; 3548 } 3549 3550 its_srat_maps[its_in_srat].numa_node = node; 3551 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3552 its_in_srat++; 3553 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3554 its_affinity->proximity_domain, its_affinity->its_id, node); 3555 3556 return 0; 3557 } 3558 3559 static void __init acpi_table_parse_srat_its(void) 3560 { 3561 int count; 3562 3563 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3564 sizeof(struct acpi_table_srat), 3565 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3566 gic_acpi_match_srat_its, 0); 3567 if (count <= 0) 3568 return; 3569 3570 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map), 3571 GFP_KERNEL); 3572 if (!its_srat_maps) { 3573 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3574 return; 3575 } 3576 3577 acpi_table_parse_entries(ACPI_SIG_SRAT, 3578 sizeof(struct acpi_table_srat), 3579 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3580 gic_acpi_parse_srat_its, 0); 3581 } 3582 3583 /* free the its_srat_maps after ITS probing */ 3584 static void __init acpi_its_srat_maps_free(void) 3585 { 3586 kfree(its_srat_maps); 3587 } 3588 #else 3589 static void __init acpi_table_parse_srat_its(void) { } 3590 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3591 static void __init acpi_its_srat_maps_free(void) { } 3592 #endif 3593 3594 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3595 const unsigned long end) 3596 { 3597 struct acpi_madt_generic_translator *its_entry; 3598 struct fwnode_handle *dom_handle; 3599 struct resource res; 3600 int err; 3601 3602 its_entry = (struct acpi_madt_generic_translator *)header; 3603 memset(&res, 0, sizeof(res)); 3604 res.start = its_entry->base_address; 3605 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3606 res.flags = IORESOURCE_MEM; 3607 3608 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3609 if (!dom_handle) { 3610 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3611 &res.start); 3612 return -ENOMEM; 3613 } 3614 3615 err = iort_register_domain_token(its_entry->translation_id, res.start, 3616 dom_handle); 3617 if (err) { 3618 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3619 &res.start, its_entry->translation_id); 3620 goto dom_err; 3621 } 3622 3623 err = its_probe_one(&res, dom_handle, 3624 acpi_get_its_numa_node(its_entry->translation_id)); 3625 if (!err) 3626 return 0; 3627 3628 iort_deregister_domain_token(its_entry->translation_id); 3629 dom_err: 3630 irq_domain_free_fwnode(dom_handle); 3631 return err; 3632 } 3633 3634 static void __init its_acpi_probe(void) 3635 { 3636 acpi_table_parse_srat_its(); 3637 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3638 gic_acpi_parse_madt_its, 0); 3639 acpi_its_srat_maps_free(); 3640 } 3641 #else 3642 static void __init its_acpi_probe(void) { } 3643 #endif 3644 3645 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3646 struct irq_domain *parent_domain) 3647 { 3648 struct device_node *of_node; 3649 struct its_node *its; 3650 bool has_v4 = false; 3651 int err; 3652 3653 its_parent = parent_domain; 3654 of_node = to_of_node(handle); 3655 if (of_node) 3656 its_of_probe(of_node); 3657 else 3658 its_acpi_probe(); 3659 3660 if (list_empty(&its_nodes)) { 3661 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3662 return -ENXIO; 3663 } 3664 3665 gic_rdists = rdists; 3666 err = its_alloc_lpi_tables(); 3667 if (err) 3668 return err; 3669 3670 list_for_each_entry(its, &its_nodes, entry) 3671 has_v4 |= its->is_v4; 3672 3673 if (has_v4 & rdists->has_vlpis) { 3674 if (its_init_vpe_domain() || 3675 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3676 rdists->has_vlpis = false; 3677 pr_err("ITS: Disabling GICv4 support\n"); 3678 } 3679 } 3680 3681 register_syscore_ops(&its_syscore_ops); 3682 3683 return 0; 3684 } 3685