1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqdomain.h>
18 #include <linux/list.h>
19 #include <linux/log2.h>
20 #include <linux/memblock.h>
21 #include <linux/mm.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_pci.h>
27 #include <linux/of_platform.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/syscore_ops.h>
31 
32 #include <linux/irqchip.h>
33 #include <linux/irqchip/arm-gic-v3.h>
34 #include <linux/irqchip/arm-gic-v4.h>
35 
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 
39 #include "irq-gic-common.h"
40 
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
44 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	phys_addr_t		phys_base;
100 	struct its_cmd_block	*cmd_base;
101 	struct its_cmd_block	*cmd_write;
102 	struct its_baser	tables[GITS_BASER_NR_REGS];
103 	struct its_collection	*collections;
104 	struct fwnode_handle	*fwnode_handle;
105 	u64			(*get_msi_base)(struct its_device *its_dev);
106 	u64			typer;
107 	u64			cbaser_save;
108 	u32			ctlr_save;
109 	struct list_head	its_device_list;
110 	u64			flags;
111 	unsigned long		list_nr;
112 	int			numa_node;
113 	unsigned int		msi_domain_flags;
114 	u32			pre_its_base; /* for Socionext Synquacer */
115 	int			vlpi_redist_offset;
116 };
117 
118 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
119 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
120 
121 #define ITS_ITT_ALIGN		SZ_256
122 
123 /* The maximum number of VPEID bits supported by VLPI commands */
124 #define ITS_MAX_VPEID_BITS	(16)
125 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
126 
127 /* Convert page order to size in bytes */
128 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
129 
130 struct event_lpi_map {
131 	unsigned long		*lpi_map;
132 	u16			*col_map;
133 	irq_hw_number_t		lpi_base;
134 	int			nr_lpis;
135 	raw_spinlock_t		vlpi_lock;
136 	struct its_vm		*vm;
137 	struct its_vlpi_map	*vlpi_maps;
138 	int			nr_vlpis;
139 };
140 
141 /*
142  * The ITS view of a device - belongs to an ITS, owns an interrupt
143  * translation table, and a list of interrupts.  If it some of its
144  * LPIs are injected into a guest (GICv4), the event_map.vm field
145  * indicates which one.
146  */
147 struct its_device {
148 	struct list_head	entry;
149 	struct its_node		*its;
150 	struct event_lpi_map	event_map;
151 	void			*itt;
152 	u32			nr_ites;
153 	u32			device_id;
154 	bool			shared;
155 };
156 
157 static struct {
158 	raw_spinlock_t		lock;
159 	struct its_device	*dev;
160 	struct its_vpe		**vpes;
161 	int			next_victim;
162 } vpe_proxy;
163 
164 static LIST_HEAD(its_nodes);
165 static DEFINE_RAW_SPINLOCK(its_lock);
166 static struct rdists *gic_rdists;
167 static struct irq_domain *its_parent;
168 
169 static unsigned long its_list_map;
170 static u16 vmovp_seq_num;
171 static DEFINE_RAW_SPINLOCK(vmovp_lock);
172 
173 static DEFINE_IDA(its_vpeid_ida);
174 
175 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
176 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
177 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
178 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
179 
180 static u16 get_its_list(struct its_vm *vm)
181 {
182 	struct its_node *its;
183 	unsigned long its_list = 0;
184 
185 	list_for_each_entry(its, &its_nodes, entry) {
186 		if (!is_v4(its))
187 			continue;
188 
189 		if (vm->vlpi_count[its->list_nr])
190 			__set_bit(its->list_nr, &its_list);
191 	}
192 
193 	return (u16)its_list;
194 }
195 
196 static inline u32 its_get_event_id(struct irq_data *d)
197 {
198 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
199 	return d->hwirq - its_dev->event_map.lpi_base;
200 }
201 
202 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
203 					       u32 event)
204 {
205 	struct its_node *its = its_dev->its;
206 
207 	return its->collections + its_dev->event_map.col_map[event];
208 }
209 
210 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
211 					       u32 event)
212 {
213 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
214 		return NULL;
215 
216 	return &its_dev->event_map.vlpi_maps[event];
217 }
218 
219 static struct its_collection *irq_to_col(struct irq_data *d)
220 {
221 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
222 
223 	return dev_event_to_col(its_dev, its_get_event_id(d));
224 }
225 
226 static struct its_collection *valid_col(struct its_collection *col)
227 {
228 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
229 		return NULL;
230 
231 	return col;
232 }
233 
234 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
235 {
236 	if (valid_col(its->collections + vpe->col_idx))
237 		return vpe;
238 
239 	return NULL;
240 }
241 
242 /*
243  * ITS command descriptors - parameters to be encoded in a command
244  * block.
245  */
246 struct its_cmd_desc {
247 	union {
248 		struct {
249 			struct its_device *dev;
250 			u32 event_id;
251 		} its_inv_cmd;
252 
253 		struct {
254 			struct its_device *dev;
255 			u32 event_id;
256 		} its_clear_cmd;
257 
258 		struct {
259 			struct its_device *dev;
260 			u32 event_id;
261 		} its_int_cmd;
262 
263 		struct {
264 			struct its_device *dev;
265 			int valid;
266 		} its_mapd_cmd;
267 
268 		struct {
269 			struct its_collection *col;
270 			int valid;
271 		} its_mapc_cmd;
272 
273 		struct {
274 			struct its_device *dev;
275 			u32 phys_id;
276 			u32 event_id;
277 		} its_mapti_cmd;
278 
279 		struct {
280 			struct its_device *dev;
281 			struct its_collection *col;
282 			u32 event_id;
283 		} its_movi_cmd;
284 
285 		struct {
286 			struct its_device *dev;
287 			u32 event_id;
288 		} its_discard_cmd;
289 
290 		struct {
291 			struct its_collection *col;
292 		} its_invall_cmd;
293 
294 		struct {
295 			struct its_vpe *vpe;
296 		} its_vinvall_cmd;
297 
298 		struct {
299 			struct its_vpe *vpe;
300 			struct its_collection *col;
301 			bool valid;
302 		} its_vmapp_cmd;
303 
304 		struct {
305 			struct its_vpe *vpe;
306 			struct its_device *dev;
307 			u32 virt_id;
308 			u32 event_id;
309 			bool db_enabled;
310 		} its_vmapti_cmd;
311 
312 		struct {
313 			struct its_vpe *vpe;
314 			struct its_device *dev;
315 			u32 event_id;
316 			bool db_enabled;
317 		} its_vmovi_cmd;
318 
319 		struct {
320 			struct its_vpe *vpe;
321 			struct its_collection *col;
322 			u16 seq_num;
323 			u16 its_list;
324 		} its_vmovp_cmd;
325 	};
326 };
327 
328 /*
329  * The ITS command block, which is what the ITS actually parses.
330  */
331 struct its_cmd_block {
332 	union {
333 		u64	raw_cmd[4];
334 		__le64	raw_cmd_le[4];
335 	};
336 };
337 
338 #define ITS_CMD_QUEUE_SZ		SZ_64K
339 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
340 
341 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
342 						    struct its_cmd_block *,
343 						    struct its_cmd_desc *);
344 
345 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
346 					      struct its_cmd_block *,
347 					      struct its_cmd_desc *);
348 
349 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
350 {
351 	u64 mask = GENMASK_ULL(h, l);
352 	*raw_cmd &= ~mask;
353 	*raw_cmd |= (val << l) & mask;
354 }
355 
356 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
357 {
358 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
359 }
360 
361 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
362 {
363 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
364 }
365 
366 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
367 {
368 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
369 }
370 
371 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
372 {
373 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
374 }
375 
376 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
377 {
378 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
379 }
380 
381 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
382 {
383 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
384 }
385 
386 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
387 {
388 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
389 }
390 
391 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
392 {
393 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
394 }
395 
396 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
397 {
398 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
399 }
400 
401 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
402 {
403 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
404 }
405 
406 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
407 {
408 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
409 }
410 
411 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
412 {
413 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
414 }
415 
416 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
417 {
418 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
419 }
420 
421 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
422 {
423 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
424 }
425 
426 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
427 {
428 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
429 }
430 
431 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
432 {
433 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
434 }
435 
436 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
437 {
438 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
439 }
440 
441 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
442 {
443 	/* Let's fixup BE commands */
444 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
445 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
446 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
447 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
448 }
449 
450 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
451 						 struct its_cmd_block *cmd,
452 						 struct its_cmd_desc *desc)
453 {
454 	unsigned long itt_addr;
455 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
456 
457 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
458 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
459 
460 	its_encode_cmd(cmd, GITS_CMD_MAPD);
461 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
462 	its_encode_size(cmd, size - 1);
463 	its_encode_itt(cmd, itt_addr);
464 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
465 
466 	its_fixup_cmd(cmd);
467 
468 	return NULL;
469 }
470 
471 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
472 						 struct its_cmd_block *cmd,
473 						 struct its_cmd_desc *desc)
474 {
475 	its_encode_cmd(cmd, GITS_CMD_MAPC);
476 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
477 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
478 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
479 
480 	its_fixup_cmd(cmd);
481 
482 	return desc->its_mapc_cmd.col;
483 }
484 
485 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
486 						  struct its_cmd_block *cmd,
487 						  struct its_cmd_desc *desc)
488 {
489 	struct its_collection *col;
490 
491 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
492 			       desc->its_mapti_cmd.event_id);
493 
494 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
495 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
496 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
497 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
498 	its_encode_collection(cmd, col->col_id);
499 
500 	its_fixup_cmd(cmd);
501 
502 	return valid_col(col);
503 }
504 
505 static struct its_collection *its_build_movi_cmd(struct its_node *its,
506 						 struct its_cmd_block *cmd,
507 						 struct its_cmd_desc *desc)
508 {
509 	struct its_collection *col;
510 
511 	col = dev_event_to_col(desc->its_movi_cmd.dev,
512 			       desc->its_movi_cmd.event_id);
513 
514 	its_encode_cmd(cmd, GITS_CMD_MOVI);
515 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
516 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
517 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
518 
519 	its_fixup_cmd(cmd);
520 
521 	return valid_col(col);
522 }
523 
524 static struct its_collection *its_build_discard_cmd(struct its_node *its,
525 						    struct its_cmd_block *cmd,
526 						    struct its_cmd_desc *desc)
527 {
528 	struct its_collection *col;
529 
530 	col = dev_event_to_col(desc->its_discard_cmd.dev,
531 			       desc->its_discard_cmd.event_id);
532 
533 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
534 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
535 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
536 
537 	its_fixup_cmd(cmd);
538 
539 	return valid_col(col);
540 }
541 
542 static struct its_collection *its_build_inv_cmd(struct its_node *its,
543 						struct its_cmd_block *cmd,
544 						struct its_cmd_desc *desc)
545 {
546 	struct its_collection *col;
547 
548 	col = dev_event_to_col(desc->its_inv_cmd.dev,
549 			       desc->its_inv_cmd.event_id);
550 
551 	its_encode_cmd(cmd, GITS_CMD_INV);
552 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
553 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
554 
555 	its_fixup_cmd(cmd);
556 
557 	return valid_col(col);
558 }
559 
560 static struct its_collection *its_build_int_cmd(struct its_node *its,
561 						struct its_cmd_block *cmd,
562 						struct its_cmd_desc *desc)
563 {
564 	struct its_collection *col;
565 
566 	col = dev_event_to_col(desc->its_int_cmd.dev,
567 			       desc->its_int_cmd.event_id);
568 
569 	its_encode_cmd(cmd, GITS_CMD_INT);
570 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
571 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
572 
573 	its_fixup_cmd(cmd);
574 
575 	return valid_col(col);
576 }
577 
578 static struct its_collection *its_build_clear_cmd(struct its_node *its,
579 						  struct its_cmd_block *cmd,
580 						  struct its_cmd_desc *desc)
581 {
582 	struct its_collection *col;
583 
584 	col = dev_event_to_col(desc->its_clear_cmd.dev,
585 			       desc->its_clear_cmd.event_id);
586 
587 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
588 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
589 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
590 
591 	its_fixup_cmd(cmd);
592 
593 	return valid_col(col);
594 }
595 
596 static struct its_collection *its_build_invall_cmd(struct its_node *its,
597 						   struct its_cmd_block *cmd,
598 						   struct its_cmd_desc *desc)
599 {
600 	its_encode_cmd(cmd, GITS_CMD_INVALL);
601 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
602 
603 	its_fixup_cmd(cmd);
604 
605 	return NULL;
606 }
607 
608 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
609 					     struct its_cmd_block *cmd,
610 					     struct its_cmd_desc *desc)
611 {
612 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
613 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
614 
615 	its_fixup_cmd(cmd);
616 
617 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
618 }
619 
620 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
621 					   struct its_cmd_block *cmd,
622 					   struct its_cmd_desc *desc)
623 {
624 	unsigned long vpt_addr;
625 	u64 target;
626 
627 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
628 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
629 
630 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
631 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
632 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
633 	its_encode_target(cmd, target);
634 	its_encode_vpt_addr(cmd, vpt_addr);
635 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
636 
637 	its_fixup_cmd(cmd);
638 
639 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
640 }
641 
642 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
643 					    struct its_cmd_block *cmd,
644 					    struct its_cmd_desc *desc)
645 {
646 	u32 db;
647 
648 	if (desc->its_vmapti_cmd.db_enabled)
649 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
650 	else
651 		db = 1023;
652 
653 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
654 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
655 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
656 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
657 	its_encode_db_phys_id(cmd, db);
658 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
663 }
664 
665 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
666 					   struct its_cmd_block *cmd,
667 					   struct its_cmd_desc *desc)
668 {
669 	u32 db;
670 
671 	if (desc->its_vmovi_cmd.db_enabled)
672 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
673 	else
674 		db = 1023;
675 
676 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
677 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
678 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
679 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
680 	its_encode_db_phys_id(cmd, db);
681 	its_encode_db_valid(cmd, true);
682 
683 	its_fixup_cmd(cmd);
684 
685 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
686 }
687 
688 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
689 					   struct its_cmd_block *cmd,
690 					   struct its_cmd_desc *desc)
691 {
692 	u64 target;
693 
694 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
695 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
696 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
697 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
698 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
699 	its_encode_target(cmd, target);
700 
701 	its_fixup_cmd(cmd);
702 
703 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
704 }
705 
706 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
707 					  struct its_cmd_block *cmd,
708 					  struct its_cmd_desc *desc)
709 {
710 	struct its_vlpi_map *map;
711 
712 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
713 				    desc->its_inv_cmd.event_id);
714 
715 	its_encode_cmd(cmd, GITS_CMD_INV);
716 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
718 
719 	its_fixup_cmd(cmd);
720 
721 	return valid_vpe(its, map->vpe);
722 }
723 
724 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
725 					  struct its_cmd_block *cmd,
726 					  struct its_cmd_desc *desc)
727 {
728 	struct its_vlpi_map *map;
729 
730 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
731 				    desc->its_int_cmd.event_id);
732 
733 	its_encode_cmd(cmd, GITS_CMD_INT);
734 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
736 
737 	its_fixup_cmd(cmd);
738 
739 	return valid_vpe(its, map->vpe);
740 }
741 
742 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
743 					    struct its_cmd_block *cmd,
744 					    struct its_cmd_desc *desc)
745 {
746 	struct its_vlpi_map *map;
747 
748 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
749 				    desc->its_clear_cmd.event_id);
750 
751 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
752 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
754 
755 	its_fixup_cmd(cmd);
756 
757 	return valid_vpe(its, map->vpe);
758 }
759 
760 static u64 its_cmd_ptr_to_offset(struct its_node *its,
761 				 struct its_cmd_block *ptr)
762 {
763 	return (ptr - its->cmd_base) * sizeof(*ptr);
764 }
765 
766 static int its_queue_full(struct its_node *its)
767 {
768 	int widx;
769 	int ridx;
770 
771 	widx = its->cmd_write - its->cmd_base;
772 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
773 
774 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
775 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
776 		return 1;
777 
778 	return 0;
779 }
780 
781 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
782 {
783 	struct its_cmd_block *cmd;
784 	u32 count = 1000000;	/* 1s! */
785 
786 	while (its_queue_full(its)) {
787 		count--;
788 		if (!count) {
789 			pr_err_ratelimited("ITS queue not draining\n");
790 			return NULL;
791 		}
792 		cpu_relax();
793 		udelay(1);
794 	}
795 
796 	cmd = its->cmd_write++;
797 
798 	/* Handle queue wrapping */
799 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
800 		its->cmd_write = its->cmd_base;
801 
802 	/* Clear command  */
803 	cmd->raw_cmd[0] = 0;
804 	cmd->raw_cmd[1] = 0;
805 	cmd->raw_cmd[2] = 0;
806 	cmd->raw_cmd[3] = 0;
807 
808 	return cmd;
809 }
810 
811 static struct its_cmd_block *its_post_commands(struct its_node *its)
812 {
813 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
814 
815 	writel_relaxed(wr, its->base + GITS_CWRITER);
816 
817 	return its->cmd_write;
818 }
819 
820 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
821 {
822 	/*
823 	 * Make sure the commands written to memory are observable by
824 	 * the ITS.
825 	 */
826 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
827 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
828 	else
829 		dsb(ishst);
830 }
831 
832 static int its_wait_for_range_completion(struct its_node *its,
833 					 u64	prev_idx,
834 					 struct its_cmd_block *to)
835 {
836 	u64 rd_idx, to_idx, linear_idx;
837 	u32 count = 1000000;	/* 1s! */
838 
839 	/* Linearize to_idx if the command set has wrapped around */
840 	to_idx = its_cmd_ptr_to_offset(its, to);
841 	if (to_idx < prev_idx)
842 		to_idx += ITS_CMD_QUEUE_SZ;
843 
844 	linear_idx = prev_idx;
845 
846 	while (1) {
847 		s64 delta;
848 
849 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
850 
851 		/*
852 		 * Compute the read pointer progress, taking the
853 		 * potential wrap-around into account.
854 		 */
855 		delta = rd_idx - prev_idx;
856 		if (rd_idx < prev_idx)
857 			delta += ITS_CMD_QUEUE_SZ;
858 
859 		linear_idx += delta;
860 		if (linear_idx >= to_idx)
861 			break;
862 
863 		count--;
864 		if (!count) {
865 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
866 					   to_idx, linear_idx);
867 			return -1;
868 		}
869 		prev_idx = rd_idx;
870 		cpu_relax();
871 		udelay(1);
872 	}
873 
874 	return 0;
875 }
876 
877 /* Warning, macro hell follows */
878 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
879 void name(struct its_node *its,						\
880 	  buildtype builder,						\
881 	  struct its_cmd_desc *desc)					\
882 {									\
883 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
884 	synctype *sync_obj;						\
885 	unsigned long flags;						\
886 	u64 rd_idx;							\
887 									\
888 	raw_spin_lock_irqsave(&its->lock, flags);			\
889 									\
890 	cmd = its_allocate_entry(its);					\
891 	if (!cmd) {		/* We're soooooo screewed... */		\
892 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
893 		return;							\
894 	}								\
895 	sync_obj = builder(its, cmd, desc);				\
896 	its_flush_cmd(its, cmd);					\
897 									\
898 	if (sync_obj) {							\
899 		sync_cmd = its_allocate_entry(its);			\
900 		if (!sync_cmd)						\
901 			goto post;					\
902 									\
903 		buildfn(its, sync_cmd, sync_obj);			\
904 		its_flush_cmd(its, sync_cmd);				\
905 	}								\
906 									\
907 post:									\
908 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
909 	next_cmd = its_post_commands(its);				\
910 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
911 									\
912 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
913 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
914 }
915 
916 static void its_build_sync_cmd(struct its_node *its,
917 			       struct its_cmd_block *sync_cmd,
918 			       struct its_collection *sync_col)
919 {
920 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
921 	its_encode_target(sync_cmd, sync_col->target_address);
922 
923 	its_fixup_cmd(sync_cmd);
924 }
925 
926 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
927 			     struct its_collection, its_build_sync_cmd)
928 
929 static void its_build_vsync_cmd(struct its_node *its,
930 				struct its_cmd_block *sync_cmd,
931 				struct its_vpe *sync_vpe)
932 {
933 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
934 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
935 
936 	its_fixup_cmd(sync_cmd);
937 }
938 
939 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
940 			     struct its_vpe, its_build_vsync_cmd)
941 
942 static void its_send_int(struct its_device *dev, u32 event_id)
943 {
944 	struct its_cmd_desc desc;
945 
946 	desc.its_int_cmd.dev = dev;
947 	desc.its_int_cmd.event_id = event_id;
948 
949 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
950 }
951 
952 static void its_send_clear(struct its_device *dev, u32 event_id)
953 {
954 	struct its_cmd_desc desc;
955 
956 	desc.its_clear_cmd.dev = dev;
957 	desc.its_clear_cmd.event_id = event_id;
958 
959 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
960 }
961 
962 static void its_send_inv(struct its_device *dev, u32 event_id)
963 {
964 	struct its_cmd_desc desc;
965 
966 	desc.its_inv_cmd.dev = dev;
967 	desc.its_inv_cmd.event_id = event_id;
968 
969 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
970 }
971 
972 static void its_send_mapd(struct its_device *dev, int valid)
973 {
974 	struct its_cmd_desc desc;
975 
976 	desc.its_mapd_cmd.dev = dev;
977 	desc.its_mapd_cmd.valid = !!valid;
978 
979 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
980 }
981 
982 static void its_send_mapc(struct its_node *its, struct its_collection *col,
983 			  int valid)
984 {
985 	struct its_cmd_desc desc;
986 
987 	desc.its_mapc_cmd.col = col;
988 	desc.its_mapc_cmd.valid = !!valid;
989 
990 	its_send_single_command(its, its_build_mapc_cmd, &desc);
991 }
992 
993 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
994 {
995 	struct its_cmd_desc desc;
996 
997 	desc.its_mapti_cmd.dev = dev;
998 	desc.its_mapti_cmd.phys_id = irq_id;
999 	desc.its_mapti_cmd.event_id = id;
1000 
1001 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1002 }
1003 
1004 static void its_send_movi(struct its_device *dev,
1005 			  struct its_collection *col, u32 id)
1006 {
1007 	struct its_cmd_desc desc;
1008 
1009 	desc.its_movi_cmd.dev = dev;
1010 	desc.its_movi_cmd.col = col;
1011 	desc.its_movi_cmd.event_id = id;
1012 
1013 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1014 }
1015 
1016 static void its_send_discard(struct its_device *dev, u32 id)
1017 {
1018 	struct its_cmd_desc desc;
1019 
1020 	desc.its_discard_cmd.dev = dev;
1021 	desc.its_discard_cmd.event_id = id;
1022 
1023 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1024 }
1025 
1026 static void its_send_invall(struct its_node *its, struct its_collection *col)
1027 {
1028 	struct its_cmd_desc desc;
1029 
1030 	desc.its_invall_cmd.col = col;
1031 
1032 	its_send_single_command(its, its_build_invall_cmd, &desc);
1033 }
1034 
1035 static void its_send_vmapti(struct its_device *dev, u32 id)
1036 {
1037 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1038 	struct its_cmd_desc desc;
1039 
1040 	desc.its_vmapti_cmd.vpe = map->vpe;
1041 	desc.its_vmapti_cmd.dev = dev;
1042 	desc.its_vmapti_cmd.virt_id = map->vintid;
1043 	desc.its_vmapti_cmd.event_id = id;
1044 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1045 
1046 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1047 }
1048 
1049 static void its_send_vmovi(struct its_device *dev, u32 id)
1050 {
1051 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1052 	struct its_cmd_desc desc;
1053 
1054 	desc.its_vmovi_cmd.vpe = map->vpe;
1055 	desc.its_vmovi_cmd.dev = dev;
1056 	desc.its_vmovi_cmd.event_id = id;
1057 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1058 
1059 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1060 }
1061 
1062 static void its_send_vmapp(struct its_node *its,
1063 			   struct its_vpe *vpe, bool valid)
1064 {
1065 	struct its_cmd_desc desc;
1066 
1067 	desc.its_vmapp_cmd.vpe = vpe;
1068 	desc.its_vmapp_cmd.valid = valid;
1069 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1070 
1071 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1072 }
1073 
1074 static void its_send_vmovp(struct its_vpe *vpe)
1075 {
1076 	struct its_cmd_desc desc = {};
1077 	struct its_node *its;
1078 	unsigned long flags;
1079 	int col_id = vpe->col_idx;
1080 
1081 	desc.its_vmovp_cmd.vpe = vpe;
1082 
1083 	if (!its_list_map) {
1084 		its = list_first_entry(&its_nodes, struct its_node, entry);
1085 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1086 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * Yet another marvel of the architecture. If using the
1092 	 * its_list "feature", we need to make sure that all ITSs
1093 	 * receive all VMOVP commands in the same order. The only way
1094 	 * to guarantee this is to make vmovp a serialization point.
1095 	 *
1096 	 * Wall <-- Head.
1097 	 */
1098 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1099 
1100 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1101 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1102 
1103 	/* Emit VMOVPs */
1104 	list_for_each_entry(its, &its_nodes, entry) {
1105 		if (!is_v4(its))
1106 			continue;
1107 
1108 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1109 			continue;
1110 
1111 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1112 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1113 	}
1114 
1115 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1116 }
1117 
1118 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1119 {
1120 	struct its_cmd_desc desc;
1121 
1122 	desc.its_vinvall_cmd.vpe = vpe;
1123 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1124 }
1125 
1126 static void its_send_vinv(struct its_device *dev, u32 event_id)
1127 {
1128 	struct its_cmd_desc desc;
1129 
1130 	/*
1131 	 * There is no real VINV command. This is just a normal INV,
1132 	 * with a VSYNC instead of a SYNC.
1133 	 */
1134 	desc.its_inv_cmd.dev = dev;
1135 	desc.its_inv_cmd.event_id = event_id;
1136 
1137 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1138 }
1139 
1140 static void its_send_vint(struct its_device *dev, u32 event_id)
1141 {
1142 	struct its_cmd_desc desc;
1143 
1144 	/*
1145 	 * There is no real VINT command. This is just a normal INT,
1146 	 * with a VSYNC instead of a SYNC.
1147 	 */
1148 	desc.its_int_cmd.dev = dev;
1149 	desc.its_int_cmd.event_id = event_id;
1150 
1151 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1152 }
1153 
1154 static void its_send_vclear(struct its_device *dev, u32 event_id)
1155 {
1156 	struct its_cmd_desc desc;
1157 
1158 	/*
1159 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1160 	 * with a VSYNC instead of a SYNC.
1161 	 */
1162 	desc.its_clear_cmd.dev = dev;
1163 	desc.its_clear_cmd.event_id = event_id;
1164 
1165 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1166 }
1167 
1168 /*
1169  * irqchip functions - assumes MSI, mostly.
1170  */
1171 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
1172 {
1173 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1174 	u32 event = its_get_event_id(d);
1175 
1176 	if (!irqd_is_forwarded_to_vcpu(d))
1177 		return NULL;
1178 
1179 	return dev_event_to_vlpi_map(its_dev, event);
1180 }
1181 
1182 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1183 {
1184 	struct its_vlpi_map *map = get_vlpi_map(d);
1185 	irq_hw_number_t hwirq;
1186 	void *va;
1187 	u8 *cfg;
1188 
1189 	if (map) {
1190 		va = page_address(map->vm->vprop_page);
1191 		hwirq = map->vintid;
1192 
1193 		/* Remember the updated property */
1194 		map->properties &= ~clr;
1195 		map->properties |= set | LPI_PROP_GROUP1;
1196 	} else {
1197 		va = gic_rdists->prop_table_va;
1198 		hwirq = d->hwirq;
1199 	}
1200 
1201 	cfg = va + hwirq - 8192;
1202 	*cfg &= ~clr;
1203 	*cfg |= set | LPI_PROP_GROUP1;
1204 
1205 	/*
1206 	 * Make the above write visible to the redistributors.
1207 	 * And yes, we're flushing exactly: One. Single. Byte.
1208 	 * Humpf...
1209 	 */
1210 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1211 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1212 	else
1213 		dsb(ishst);
1214 }
1215 
1216 static void wait_for_syncr(void __iomem *rdbase)
1217 {
1218 	while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
1219 		cpu_relax();
1220 }
1221 
1222 static void direct_lpi_inv(struct irq_data *d)
1223 {
1224 	struct its_collection *col;
1225 	void __iomem *rdbase;
1226 
1227 	/* Target the redistributor this LPI is currently routed to */
1228 	col = irq_to_col(d);
1229 	rdbase = per_cpu_ptr(gic_rdists->rdist, col->col_id)->rd_base;
1230 	gic_write_lpir(d->hwirq, rdbase + GICR_INVLPIR);
1231 
1232 	wait_for_syncr(rdbase);
1233 }
1234 
1235 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1236 {
1237 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1238 
1239 	lpi_write_config(d, clr, set);
1240 	if (gic_rdists->has_direct_lpi && !irqd_is_forwarded_to_vcpu(d))
1241 		direct_lpi_inv(d);
1242 	else if (!irqd_is_forwarded_to_vcpu(d))
1243 		its_send_inv(its_dev, its_get_event_id(d));
1244 	else
1245 		its_send_vinv(its_dev, its_get_event_id(d));
1246 }
1247 
1248 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1249 {
1250 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1251 	u32 event = its_get_event_id(d);
1252 	struct its_vlpi_map *map;
1253 
1254 	map = dev_event_to_vlpi_map(its_dev, event);
1255 
1256 	if (map->db_enabled == enable)
1257 		return;
1258 
1259 	map->db_enabled = enable;
1260 
1261 	/*
1262 	 * More fun with the architecture:
1263 	 *
1264 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1265 	 * value or to 1023, depending on the enable bit. But that
1266 	 * would be issueing a mapping for an /existing/ DevID+EventID
1267 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1268 	 * to the /same/ vPE, using this opportunity to adjust the
1269 	 * doorbell. Mouahahahaha. We loves it, Precious.
1270 	 */
1271 	its_send_vmovi(its_dev, event);
1272 }
1273 
1274 static void its_mask_irq(struct irq_data *d)
1275 {
1276 	if (irqd_is_forwarded_to_vcpu(d))
1277 		its_vlpi_set_doorbell(d, false);
1278 
1279 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1280 }
1281 
1282 static void its_unmask_irq(struct irq_data *d)
1283 {
1284 	if (irqd_is_forwarded_to_vcpu(d))
1285 		its_vlpi_set_doorbell(d, true);
1286 
1287 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1288 }
1289 
1290 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1291 			    bool force)
1292 {
1293 	unsigned int cpu;
1294 	const struct cpumask *cpu_mask = cpu_online_mask;
1295 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1296 	struct its_collection *target_col;
1297 	u32 id = its_get_event_id(d);
1298 
1299 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1300 	if (irqd_is_forwarded_to_vcpu(d))
1301 		return -EINVAL;
1302 
1303        /* lpi cannot be routed to a redistributor that is on a foreign node */
1304 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1305 		if (its_dev->its->numa_node >= 0) {
1306 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1307 			if (!cpumask_intersects(mask_val, cpu_mask))
1308 				return -EINVAL;
1309 		}
1310 	}
1311 
1312 	cpu = cpumask_any_and(mask_val, cpu_mask);
1313 
1314 	if (cpu >= nr_cpu_ids)
1315 		return -EINVAL;
1316 
1317 	/* don't set the affinity when the target cpu is same as current one */
1318 	if (cpu != its_dev->event_map.col_map[id]) {
1319 		target_col = &its_dev->its->collections[cpu];
1320 		its_send_movi(its_dev, target_col, id);
1321 		its_dev->event_map.col_map[id] = cpu;
1322 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1323 	}
1324 
1325 	return IRQ_SET_MASK_OK_DONE;
1326 }
1327 
1328 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1329 {
1330 	struct its_node *its = its_dev->its;
1331 
1332 	return its->phys_base + GITS_TRANSLATER;
1333 }
1334 
1335 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1336 {
1337 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338 	struct its_node *its;
1339 	u64 addr;
1340 
1341 	its = its_dev->its;
1342 	addr = its->get_msi_base(its_dev);
1343 
1344 	msg->address_lo		= lower_32_bits(addr);
1345 	msg->address_hi		= upper_32_bits(addr);
1346 	msg->data		= its_get_event_id(d);
1347 
1348 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1349 }
1350 
1351 static int its_irq_set_irqchip_state(struct irq_data *d,
1352 				     enum irqchip_irq_state which,
1353 				     bool state)
1354 {
1355 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1356 	u32 event = its_get_event_id(d);
1357 
1358 	if (which != IRQCHIP_STATE_PENDING)
1359 		return -EINVAL;
1360 
1361 	if (irqd_is_forwarded_to_vcpu(d)) {
1362 		if (state)
1363 			its_send_vint(its_dev, event);
1364 		else
1365 			its_send_vclear(its_dev, event);
1366 	} else {
1367 		if (state)
1368 			its_send_int(its_dev, event);
1369 		else
1370 			its_send_clear(its_dev, event);
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1377 {
1378 	unsigned long flags;
1379 
1380 	/* Not using the ITS list? Everything is always mapped. */
1381 	if (!its_list_map)
1382 		return;
1383 
1384 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1385 
1386 	/*
1387 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1388 	 * them mapped now.
1389 	 */
1390 	vm->vlpi_count[its->list_nr]++;
1391 
1392 	if (vm->vlpi_count[its->list_nr] == 1) {
1393 		int i;
1394 
1395 		for (i = 0; i < vm->nr_vpes; i++) {
1396 			struct its_vpe *vpe = vm->vpes[i];
1397 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1398 
1399 			/* Map the VPE to the first possible CPU */
1400 			vpe->col_idx = cpumask_first(cpu_online_mask);
1401 			its_send_vmapp(its, vpe, true);
1402 			its_send_vinvall(its, vpe);
1403 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1404 		}
1405 	}
1406 
1407 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1408 }
1409 
1410 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1411 {
1412 	unsigned long flags;
1413 
1414 	/* Not using the ITS list? Everything is always mapped. */
1415 	if (!its_list_map)
1416 		return;
1417 
1418 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1419 
1420 	if (!--vm->vlpi_count[its->list_nr]) {
1421 		int i;
1422 
1423 		for (i = 0; i < vm->nr_vpes; i++)
1424 			its_send_vmapp(its, vm->vpes[i], false);
1425 	}
1426 
1427 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1428 }
1429 
1430 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1431 {
1432 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1433 	u32 event = its_get_event_id(d);
1434 	int ret = 0;
1435 
1436 	if (!info->map)
1437 		return -EINVAL;
1438 
1439 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1440 
1441 	if (!its_dev->event_map.vm) {
1442 		struct its_vlpi_map *maps;
1443 
1444 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1445 			       GFP_ATOMIC);
1446 		if (!maps) {
1447 			ret = -ENOMEM;
1448 			goto out;
1449 		}
1450 
1451 		its_dev->event_map.vm = info->map->vm;
1452 		its_dev->event_map.vlpi_maps = maps;
1453 	} else if (its_dev->event_map.vm != info->map->vm) {
1454 		ret = -EINVAL;
1455 		goto out;
1456 	}
1457 
1458 	/* Get our private copy of the mapping information */
1459 	its_dev->event_map.vlpi_maps[event] = *info->map;
1460 
1461 	if (irqd_is_forwarded_to_vcpu(d)) {
1462 		/* Already mapped, move it around */
1463 		its_send_vmovi(its_dev, event);
1464 	} else {
1465 		/* Ensure all the VPEs are mapped on this ITS */
1466 		its_map_vm(its_dev->its, info->map->vm);
1467 
1468 		/*
1469 		 * Flag the interrupt as forwarded so that we can
1470 		 * start poking the virtual property table.
1471 		 */
1472 		irqd_set_forwarded_to_vcpu(d);
1473 
1474 		/* Write out the property to the prop table */
1475 		lpi_write_config(d, 0xff, info->map->properties);
1476 
1477 		/* Drop the physical mapping */
1478 		its_send_discard(its_dev, event);
1479 
1480 		/* and install the virtual one */
1481 		its_send_vmapti(its_dev, event);
1482 
1483 		/* Increment the number of VLPIs */
1484 		its_dev->event_map.nr_vlpis++;
1485 	}
1486 
1487 out:
1488 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1489 	return ret;
1490 }
1491 
1492 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1493 {
1494 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1495 	struct its_vlpi_map *map;
1496 	int ret = 0;
1497 
1498 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1499 
1500 	map = get_vlpi_map(d);
1501 
1502 	if (!its_dev->event_map.vm || !map) {
1503 		ret = -EINVAL;
1504 		goto out;
1505 	}
1506 
1507 	/* Copy our mapping information to the incoming request */
1508 	*info->map = *map;
1509 
1510 out:
1511 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1512 	return ret;
1513 }
1514 
1515 static int its_vlpi_unmap(struct irq_data *d)
1516 {
1517 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1518 	u32 event = its_get_event_id(d);
1519 	int ret = 0;
1520 
1521 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1522 
1523 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1524 		ret = -EINVAL;
1525 		goto out;
1526 	}
1527 
1528 	/* Drop the virtual mapping */
1529 	its_send_discard(its_dev, event);
1530 
1531 	/* and restore the physical one */
1532 	irqd_clr_forwarded_to_vcpu(d);
1533 	its_send_mapti(its_dev, d->hwirq, event);
1534 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1535 				    LPI_PROP_ENABLED |
1536 				    LPI_PROP_GROUP1));
1537 
1538 	/* Potentially unmap the VM from this ITS */
1539 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1540 
1541 	/*
1542 	 * Drop the refcount and make the device available again if
1543 	 * this was the last VLPI.
1544 	 */
1545 	if (!--its_dev->event_map.nr_vlpis) {
1546 		its_dev->event_map.vm = NULL;
1547 		kfree(its_dev->event_map.vlpi_maps);
1548 	}
1549 
1550 out:
1551 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1552 	return ret;
1553 }
1554 
1555 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1556 {
1557 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1558 
1559 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1560 		return -EINVAL;
1561 
1562 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1563 		lpi_update_config(d, 0xff, info->config);
1564 	else
1565 		lpi_write_config(d, 0xff, info->config);
1566 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1567 
1568 	return 0;
1569 }
1570 
1571 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1572 {
1573 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1574 	struct its_cmd_info *info = vcpu_info;
1575 
1576 	/* Need a v4 ITS */
1577 	if (!is_v4(its_dev->its))
1578 		return -EINVAL;
1579 
1580 	/* Unmap request? */
1581 	if (!info)
1582 		return its_vlpi_unmap(d);
1583 
1584 	switch (info->cmd_type) {
1585 	case MAP_VLPI:
1586 		return its_vlpi_map(d, info);
1587 
1588 	case GET_VLPI:
1589 		return its_vlpi_get(d, info);
1590 
1591 	case PROP_UPDATE_VLPI:
1592 	case PROP_UPDATE_AND_INV_VLPI:
1593 		return its_vlpi_prop_update(d, info);
1594 
1595 	default:
1596 		return -EINVAL;
1597 	}
1598 }
1599 
1600 static struct irq_chip its_irq_chip = {
1601 	.name			= "ITS",
1602 	.irq_mask		= its_mask_irq,
1603 	.irq_unmask		= its_unmask_irq,
1604 	.irq_eoi		= irq_chip_eoi_parent,
1605 	.irq_set_affinity	= its_set_affinity,
1606 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1607 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1608 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1609 };
1610 
1611 
1612 /*
1613  * How we allocate LPIs:
1614  *
1615  * lpi_range_list contains ranges of LPIs that are to available to
1616  * allocate from. To allocate LPIs, just pick the first range that
1617  * fits the required allocation, and reduce it by the required
1618  * amount. Once empty, remove the range from the list.
1619  *
1620  * To free a range of LPIs, add a free range to the list, sort it and
1621  * merge the result if the new range happens to be adjacent to an
1622  * already free block.
1623  *
1624  * The consequence of the above is that allocation is cost is low, but
1625  * freeing is expensive. We assumes that freeing rarely occurs.
1626  */
1627 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1628 
1629 static DEFINE_MUTEX(lpi_range_lock);
1630 static LIST_HEAD(lpi_range_list);
1631 
1632 struct lpi_range {
1633 	struct list_head	entry;
1634 	u32			base_id;
1635 	u32			span;
1636 };
1637 
1638 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1639 {
1640 	struct lpi_range *range;
1641 
1642 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1643 	if (range) {
1644 		range->base_id = base;
1645 		range->span = span;
1646 	}
1647 
1648 	return range;
1649 }
1650 
1651 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1652 {
1653 	struct lpi_range *range, *tmp;
1654 	int err = -ENOSPC;
1655 
1656 	mutex_lock(&lpi_range_lock);
1657 
1658 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1659 		if (range->span >= nr_lpis) {
1660 			*base = range->base_id;
1661 			range->base_id += nr_lpis;
1662 			range->span -= nr_lpis;
1663 
1664 			if (range->span == 0) {
1665 				list_del(&range->entry);
1666 				kfree(range);
1667 			}
1668 
1669 			err = 0;
1670 			break;
1671 		}
1672 	}
1673 
1674 	mutex_unlock(&lpi_range_lock);
1675 
1676 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1677 	return err;
1678 }
1679 
1680 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1681 {
1682 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1683 		return;
1684 	if (a->base_id + a->span != b->base_id)
1685 		return;
1686 	b->base_id = a->base_id;
1687 	b->span += a->span;
1688 	list_del(&a->entry);
1689 	kfree(a);
1690 }
1691 
1692 static int free_lpi_range(u32 base, u32 nr_lpis)
1693 {
1694 	struct lpi_range *new, *old;
1695 
1696 	new = mk_lpi_range(base, nr_lpis);
1697 	if (!new)
1698 		return -ENOMEM;
1699 
1700 	mutex_lock(&lpi_range_lock);
1701 
1702 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1703 		if (old->base_id < base)
1704 			break;
1705 	}
1706 	/*
1707 	 * old is the last element with ->base_id smaller than base,
1708 	 * so new goes right after it. If there are no elements with
1709 	 * ->base_id smaller than base, &old->entry ends up pointing
1710 	 * at the head of the list, and inserting new it the start of
1711 	 * the list is the right thing to do in that case as well.
1712 	 */
1713 	list_add(&new->entry, &old->entry);
1714 	/*
1715 	 * Now check if we can merge with the preceding and/or
1716 	 * following ranges.
1717 	 */
1718 	merge_lpi_ranges(old, new);
1719 	merge_lpi_ranges(new, list_next_entry(new, entry));
1720 
1721 	mutex_unlock(&lpi_range_lock);
1722 	return 0;
1723 }
1724 
1725 static int __init its_lpi_init(u32 id_bits)
1726 {
1727 	u32 lpis = (1UL << id_bits) - 8192;
1728 	u32 numlpis;
1729 	int err;
1730 
1731 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1732 
1733 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1734 		lpis = numlpis;
1735 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1736 			lpis);
1737 	}
1738 
1739 	/*
1740 	 * Initializing the allocator is just the same as freeing the
1741 	 * full range of LPIs.
1742 	 */
1743 	err = free_lpi_range(8192, lpis);
1744 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1745 	return err;
1746 }
1747 
1748 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1749 {
1750 	unsigned long *bitmap = NULL;
1751 	int err = 0;
1752 
1753 	do {
1754 		err = alloc_lpi_range(nr_irqs, base);
1755 		if (!err)
1756 			break;
1757 
1758 		nr_irqs /= 2;
1759 	} while (nr_irqs > 0);
1760 
1761 	if (!nr_irqs)
1762 		err = -ENOSPC;
1763 
1764 	if (err)
1765 		goto out;
1766 
1767 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1768 	if (!bitmap)
1769 		goto out;
1770 
1771 	*nr_ids = nr_irqs;
1772 
1773 out:
1774 	if (!bitmap)
1775 		*base = *nr_ids = 0;
1776 
1777 	return bitmap;
1778 }
1779 
1780 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1781 {
1782 	WARN_ON(free_lpi_range(base, nr_ids));
1783 	kfree(bitmap);
1784 }
1785 
1786 static void gic_reset_prop_table(void *va)
1787 {
1788 	/* Priority 0xa0, Group-1, disabled */
1789 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1790 
1791 	/* Make sure the GIC will observe the written configuration */
1792 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1793 }
1794 
1795 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1796 {
1797 	struct page *prop_page;
1798 
1799 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1800 	if (!prop_page)
1801 		return NULL;
1802 
1803 	gic_reset_prop_table(page_address(prop_page));
1804 
1805 	return prop_page;
1806 }
1807 
1808 static void its_free_prop_table(struct page *prop_page)
1809 {
1810 	free_pages((unsigned long)page_address(prop_page),
1811 		   get_order(LPI_PROPBASE_SZ));
1812 }
1813 
1814 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1815 {
1816 	phys_addr_t start, end, addr_end;
1817 	u64 i;
1818 
1819 	/*
1820 	 * We don't bother checking for a kdump kernel as by
1821 	 * construction, the LPI tables are out of this kernel's
1822 	 * memory map.
1823 	 */
1824 	if (is_kdump_kernel())
1825 		return true;
1826 
1827 	addr_end = addr + size - 1;
1828 
1829 	for_each_reserved_mem_region(i, &start, &end) {
1830 		if (addr >= start && addr_end <= end)
1831 			return true;
1832 	}
1833 
1834 	/* Not found, not a good sign... */
1835 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1836 		&addr, &addr_end);
1837 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1838 	return false;
1839 }
1840 
1841 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1842 {
1843 	if (efi_enabled(EFI_CONFIG_TABLES))
1844 		return efi_mem_reserve_persistent(addr, size);
1845 
1846 	return 0;
1847 }
1848 
1849 static int __init its_setup_lpi_prop_table(void)
1850 {
1851 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1852 		u64 val;
1853 
1854 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1855 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1856 
1857 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1858 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1859 						     LPI_PROPBASE_SZ,
1860 						     MEMREMAP_WB);
1861 		gic_reset_prop_table(gic_rdists->prop_table_va);
1862 	} else {
1863 		struct page *page;
1864 
1865 		lpi_id_bits = min_t(u32,
1866 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1867 				    ITS_MAX_LPI_NRBITS);
1868 		page = its_allocate_prop_table(GFP_NOWAIT);
1869 		if (!page) {
1870 			pr_err("Failed to allocate PROPBASE\n");
1871 			return -ENOMEM;
1872 		}
1873 
1874 		gic_rdists->prop_table_pa = page_to_phys(page);
1875 		gic_rdists->prop_table_va = page_address(page);
1876 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1877 					  LPI_PROPBASE_SZ));
1878 	}
1879 
1880 	pr_info("GICv3: using LPI property table @%pa\n",
1881 		&gic_rdists->prop_table_pa);
1882 
1883 	return its_lpi_init(lpi_id_bits);
1884 }
1885 
1886 static const char *its_base_type_string[] = {
1887 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1888 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1889 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1890 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1891 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1892 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1893 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1894 };
1895 
1896 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1897 {
1898 	u32 idx = baser - its->tables;
1899 
1900 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1901 }
1902 
1903 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1904 			    u64 val)
1905 {
1906 	u32 idx = baser - its->tables;
1907 
1908 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1909 	baser->val = its_read_baser(its, baser);
1910 }
1911 
1912 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1913 			   u64 cache, u64 shr, u32 psz, u32 order,
1914 			   bool indirect)
1915 {
1916 	u64 val = its_read_baser(its, baser);
1917 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1918 	u64 type = GITS_BASER_TYPE(val);
1919 	u64 baser_phys, tmp;
1920 	u32 alloc_pages;
1921 	struct page *page;
1922 	void *base;
1923 
1924 retry_alloc_baser:
1925 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1926 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1927 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1928 			&its->phys_base, its_base_type_string[type],
1929 			alloc_pages, GITS_BASER_PAGES_MAX);
1930 		alloc_pages = GITS_BASER_PAGES_MAX;
1931 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1932 	}
1933 
1934 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1935 	if (!page)
1936 		return -ENOMEM;
1937 
1938 	base = (void *)page_address(page);
1939 	baser_phys = virt_to_phys(base);
1940 
1941 	/* Check if the physical address of the memory is above 48bits */
1942 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1943 
1944 		/* 52bit PA is supported only when PageSize=64K */
1945 		if (psz != SZ_64K) {
1946 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1947 			free_pages((unsigned long)base, order);
1948 			return -ENXIO;
1949 		}
1950 
1951 		/* Convert 52bit PA to 48bit field */
1952 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1953 	}
1954 
1955 retry_baser:
1956 	val = (baser_phys					 |
1957 		(type << GITS_BASER_TYPE_SHIFT)			 |
1958 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1959 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1960 		cache						 |
1961 		shr						 |
1962 		GITS_BASER_VALID);
1963 
1964 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1965 
1966 	switch (psz) {
1967 	case SZ_4K:
1968 		val |= GITS_BASER_PAGE_SIZE_4K;
1969 		break;
1970 	case SZ_16K:
1971 		val |= GITS_BASER_PAGE_SIZE_16K;
1972 		break;
1973 	case SZ_64K:
1974 		val |= GITS_BASER_PAGE_SIZE_64K;
1975 		break;
1976 	}
1977 
1978 	its_write_baser(its, baser, val);
1979 	tmp = baser->val;
1980 
1981 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1982 		/*
1983 		 * Shareability didn't stick. Just use
1984 		 * whatever the read reported, which is likely
1985 		 * to be the only thing this redistributor
1986 		 * supports. If that's zero, make it
1987 		 * non-cacheable as well.
1988 		 */
1989 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1990 		if (!shr) {
1991 			cache = GITS_BASER_nC;
1992 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1993 		}
1994 		goto retry_baser;
1995 	}
1996 
1997 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1998 		/*
1999 		 * Page size didn't stick. Let's try a smaller
2000 		 * size and retry. If we reach 4K, then
2001 		 * something is horribly wrong...
2002 		 */
2003 		free_pages((unsigned long)base, order);
2004 		baser->base = NULL;
2005 
2006 		switch (psz) {
2007 		case SZ_16K:
2008 			psz = SZ_4K;
2009 			goto retry_alloc_baser;
2010 		case SZ_64K:
2011 			psz = SZ_16K;
2012 			goto retry_alloc_baser;
2013 		}
2014 	}
2015 
2016 	if (val != tmp) {
2017 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2018 		       &its->phys_base, its_base_type_string[type],
2019 		       val, tmp);
2020 		free_pages((unsigned long)base, order);
2021 		return -ENXIO;
2022 	}
2023 
2024 	baser->order = order;
2025 	baser->base = base;
2026 	baser->psz = psz;
2027 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2028 
2029 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2030 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2031 		its_base_type_string[type],
2032 		(unsigned long)virt_to_phys(base),
2033 		indirect ? "indirect" : "flat", (int)esz,
2034 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2035 
2036 	return 0;
2037 }
2038 
2039 static bool its_parse_indirect_baser(struct its_node *its,
2040 				     struct its_baser *baser,
2041 				     u32 psz, u32 *order, u32 ids)
2042 {
2043 	u64 tmp = its_read_baser(its, baser);
2044 	u64 type = GITS_BASER_TYPE(tmp);
2045 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2046 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2047 	u32 new_order = *order;
2048 	bool indirect = false;
2049 
2050 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2051 	if ((esz << ids) > (psz * 2)) {
2052 		/*
2053 		 * Find out whether hw supports a single or two-level table by
2054 		 * table by reading bit at offset '62' after writing '1' to it.
2055 		 */
2056 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2057 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2058 
2059 		if (indirect) {
2060 			/*
2061 			 * The size of the lvl2 table is equal to ITS page size
2062 			 * which is 'psz'. For computing lvl1 table size,
2063 			 * subtract ID bits that sparse lvl2 table from 'ids'
2064 			 * which is reported by ITS hardware times lvl1 table
2065 			 * entry size.
2066 			 */
2067 			ids -= ilog2(psz / (int)esz);
2068 			esz = GITS_LVL1_ENTRY_SIZE;
2069 		}
2070 	}
2071 
2072 	/*
2073 	 * Allocate as many entries as required to fit the
2074 	 * range of device IDs that the ITS can grok... The ID
2075 	 * space being incredibly sparse, this results in a
2076 	 * massive waste of memory if two-level device table
2077 	 * feature is not supported by hardware.
2078 	 */
2079 	new_order = max_t(u32, get_order(esz << ids), new_order);
2080 	if (new_order >= MAX_ORDER) {
2081 		new_order = MAX_ORDER - 1;
2082 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2083 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2084 			&its->phys_base, its_base_type_string[type],
2085 			device_ids(its), ids);
2086 	}
2087 
2088 	*order = new_order;
2089 
2090 	return indirect;
2091 }
2092 
2093 static void its_free_tables(struct its_node *its)
2094 {
2095 	int i;
2096 
2097 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2098 		if (its->tables[i].base) {
2099 			free_pages((unsigned long)its->tables[i].base,
2100 				   its->tables[i].order);
2101 			its->tables[i].base = NULL;
2102 		}
2103 	}
2104 }
2105 
2106 static int its_alloc_tables(struct its_node *its)
2107 {
2108 	u64 shr = GITS_BASER_InnerShareable;
2109 	u64 cache = GITS_BASER_RaWaWb;
2110 	u32 psz = SZ_64K;
2111 	int err, i;
2112 
2113 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2114 		/* erratum 24313: ignore memory access type */
2115 		cache = GITS_BASER_nCnB;
2116 
2117 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2118 		struct its_baser *baser = its->tables + i;
2119 		u64 val = its_read_baser(its, baser);
2120 		u64 type = GITS_BASER_TYPE(val);
2121 		u32 order = get_order(psz);
2122 		bool indirect = false;
2123 
2124 		switch (type) {
2125 		case GITS_BASER_TYPE_NONE:
2126 			continue;
2127 
2128 		case GITS_BASER_TYPE_DEVICE:
2129 			indirect = its_parse_indirect_baser(its, baser,
2130 							    psz, &order,
2131 							    device_ids(its));
2132 			break;
2133 
2134 		case GITS_BASER_TYPE_VCPU:
2135 			indirect = its_parse_indirect_baser(its, baser,
2136 							    psz, &order,
2137 							    ITS_MAX_VPEID_BITS);
2138 			break;
2139 		}
2140 
2141 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
2142 		if (err < 0) {
2143 			its_free_tables(its);
2144 			return err;
2145 		}
2146 
2147 		/* Update settings which will be used for next BASERn */
2148 		psz = baser->psz;
2149 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2150 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 static int its_alloc_collections(struct its_node *its)
2157 {
2158 	int i;
2159 
2160 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2161 				   GFP_KERNEL);
2162 	if (!its->collections)
2163 		return -ENOMEM;
2164 
2165 	for (i = 0; i < nr_cpu_ids; i++)
2166 		its->collections[i].target_address = ~0ULL;
2167 
2168 	return 0;
2169 }
2170 
2171 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2172 {
2173 	struct page *pend_page;
2174 
2175 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2176 				get_order(LPI_PENDBASE_SZ));
2177 	if (!pend_page)
2178 		return NULL;
2179 
2180 	/* Make sure the GIC will observe the zero-ed page */
2181 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2182 
2183 	return pend_page;
2184 }
2185 
2186 static void its_free_pending_table(struct page *pt)
2187 {
2188 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2189 }
2190 
2191 /*
2192  * Booting with kdump and LPIs enabled is generally fine. Any other
2193  * case is wrong in the absence of firmware/EFI support.
2194  */
2195 static bool enabled_lpis_allowed(void)
2196 {
2197 	phys_addr_t addr;
2198 	u64 val;
2199 
2200 	/* Check whether the property table is in a reserved region */
2201 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2202 	addr = val & GENMASK_ULL(51, 12);
2203 
2204 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2205 }
2206 
2207 static int __init allocate_lpi_tables(void)
2208 {
2209 	u64 val;
2210 	int err, cpu;
2211 
2212 	/*
2213 	 * If LPIs are enabled while we run this from the boot CPU,
2214 	 * flag the RD tables as pre-allocated if the stars do align.
2215 	 */
2216 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2217 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2218 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2219 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2220 		pr_info("GICv3: Using preallocated redistributor tables\n");
2221 	}
2222 
2223 	err = its_setup_lpi_prop_table();
2224 	if (err)
2225 		return err;
2226 
2227 	/*
2228 	 * We allocate all the pending tables anyway, as we may have a
2229 	 * mix of RDs that have had LPIs enabled, and some that
2230 	 * don't. We'll free the unused ones as each CPU comes online.
2231 	 */
2232 	for_each_possible_cpu(cpu) {
2233 		struct page *pend_page;
2234 
2235 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2236 		if (!pend_page) {
2237 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2238 			return -ENOMEM;
2239 		}
2240 
2241 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2248 {
2249 	u32 count = 1000000;	/* 1s! */
2250 	bool clean;
2251 	u64 val;
2252 
2253 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2254 	val &= ~GICR_VPENDBASER_Valid;
2255 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2256 
2257 	do {
2258 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2259 		clean = !(val & GICR_VPENDBASER_Dirty);
2260 		if (!clean) {
2261 			count--;
2262 			cpu_relax();
2263 			udelay(1);
2264 		}
2265 	} while (!clean && count);
2266 
2267 	return val;
2268 }
2269 
2270 static void its_cpu_init_lpis(void)
2271 {
2272 	void __iomem *rbase = gic_data_rdist_rd_base();
2273 	struct page *pend_page;
2274 	phys_addr_t paddr;
2275 	u64 val, tmp;
2276 
2277 	if (gic_data_rdist()->lpi_enabled)
2278 		return;
2279 
2280 	val = readl_relaxed(rbase + GICR_CTLR);
2281 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2282 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2283 		/*
2284 		 * Check that we get the same property table on all
2285 		 * RDs. If we don't, this is hopeless.
2286 		 */
2287 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2288 		paddr &= GENMASK_ULL(51, 12);
2289 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2290 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2291 
2292 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2293 		paddr &= GENMASK_ULL(51, 16);
2294 
2295 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2296 		its_free_pending_table(gic_data_rdist()->pend_page);
2297 		gic_data_rdist()->pend_page = NULL;
2298 
2299 		goto out;
2300 	}
2301 
2302 	pend_page = gic_data_rdist()->pend_page;
2303 	paddr = page_to_phys(pend_page);
2304 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2305 
2306 	/* set PROPBASE */
2307 	val = (gic_rdists->prop_table_pa |
2308 	       GICR_PROPBASER_InnerShareable |
2309 	       GICR_PROPBASER_RaWaWb |
2310 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2311 
2312 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2313 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2314 
2315 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2316 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2317 			/*
2318 			 * The HW reports non-shareable, we must
2319 			 * remove the cacheability attributes as
2320 			 * well.
2321 			 */
2322 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2323 				 GICR_PROPBASER_CACHEABILITY_MASK);
2324 			val |= GICR_PROPBASER_nC;
2325 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2326 		}
2327 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2328 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2329 	}
2330 
2331 	/* set PENDBASE */
2332 	val = (page_to_phys(pend_page) |
2333 	       GICR_PENDBASER_InnerShareable |
2334 	       GICR_PENDBASER_RaWaWb);
2335 
2336 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2337 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2338 
2339 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2340 		/*
2341 		 * The HW reports non-shareable, we must remove the
2342 		 * cacheability attributes as well.
2343 		 */
2344 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2345 			 GICR_PENDBASER_CACHEABILITY_MASK);
2346 		val |= GICR_PENDBASER_nC;
2347 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2348 	}
2349 
2350 	/* Enable LPIs */
2351 	val = readl_relaxed(rbase + GICR_CTLR);
2352 	val |= GICR_CTLR_ENABLE_LPIS;
2353 	writel_relaxed(val, rbase + GICR_CTLR);
2354 
2355 	if (gic_rdists->has_vlpis) {
2356 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2357 
2358 		/*
2359 		 * It's possible for CPU to receive VLPIs before it is
2360 		 * sheduled as a vPE, especially for the first CPU, and the
2361 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2362 		 * as out of range and dropped by GIC.
2363 		 * So we initialize IDbits to known value to avoid VLPI drop.
2364 		 */
2365 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2366 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2367 			smp_processor_id(), val);
2368 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2369 
2370 		/*
2371 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2372 		 * ancient programming gets left in and has possibility of
2373 		 * corrupting memory.
2374 		 */
2375 		val = its_clear_vpend_valid(vlpi_base);
2376 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2377 	}
2378 
2379 	/* Make sure the GIC has seen the above */
2380 	dsb(sy);
2381 out:
2382 	gic_data_rdist()->lpi_enabled = true;
2383 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2384 		smp_processor_id(),
2385 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2386 		&paddr);
2387 }
2388 
2389 static void its_cpu_init_collection(struct its_node *its)
2390 {
2391 	int cpu = smp_processor_id();
2392 	u64 target;
2393 
2394 	/* avoid cross node collections and its mapping */
2395 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2396 		struct device_node *cpu_node;
2397 
2398 		cpu_node = of_get_cpu_node(cpu, NULL);
2399 		if (its->numa_node != NUMA_NO_NODE &&
2400 			its->numa_node != of_node_to_nid(cpu_node))
2401 			return;
2402 	}
2403 
2404 	/*
2405 	 * We now have to bind each collection to its target
2406 	 * redistributor.
2407 	 */
2408 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2409 		/*
2410 		 * This ITS wants the physical address of the
2411 		 * redistributor.
2412 		 */
2413 		target = gic_data_rdist()->phys_base;
2414 	} else {
2415 		/* This ITS wants a linear CPU number. */
2416 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2417 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2418 	}
2419 
2420 	/* Perform collection mapping */
2421 	its->collections[cpu].target_address = target;
2422 	its->collections[cpu].col_id = cpu;
2423 
2424 	its_send_mapc(its, &its->collections[cpu], 1);
2425 	its_send_invall(its, &its->collections[cpu]);
2426 }
2427 
2428 static void its_cpu_init_collections(void)
2429 {
2430 	struct its_node *its;
2431 
2432 	raw_spin_lock(&its_lock);
2433 
2434 	list_for_each_entry(its, &its_nodes, entry)
2435 		its_cpu_init_collection(its);
2436 
2437 	raw_spin_unlock(&its_lock);
2438 }
2439 
2440 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2441 {
2442 	struct its_device *its_dev = NULL, *tmp;
2443 	unsigned long flags;
2444 
2445 	raw_spin_lock_irqsave(&its->lock, flags);
2446 
2447 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2448 		if (tmp->device_id == dev_id) {
2449 			its_dev = tmp;
2450 			break;
2451 		}
2452 	}
2453 
2454 	raw_spin_unlock_irqrestore(&its->lock, flags);
2455 
2456 	return its_dev;
2457 }
2458 
2459 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2460 {
2461 	int i;
2462 
2463 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2464 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2465 			return &its->tables[i];
2466 	}
2467 
2468 	return NULL;
2469 }
2470 
2471 static bool its_alloc_table_entry(struct its_node *its,
2472 				  struct its_baser *baser, u32 id)
2473 {
2474 	struct page *page;
2475 	u32 esz, idx;
2476 	__le64 *table;
2477 
2478 	/* Don't allow device id that exceeds single, flat table limit */
2479 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2480 	if (!(baser->val & GITS_BASER_INDIRECT))
2481 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2482 
2483 	/* Compute 1st level table index & check if that exceeds table limit */
2484 	idx = id >> ilog2(baser->psz / esz);
2485 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2486 		return false;
2487 
2488 	table = baser->base;
2489 
2490 	/* Allocate memory for 2nd level table */
2491 	if (!table[idx]) {
2492 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2493 					get_order(baser->psz));
2494 		if (!page)
2495 			return false;
2496 
2497 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2498 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2499 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2500 
2501 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2502 
2503 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2504 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2505 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2506 
2507 		/* Ensure updated table contents are visible to ITS hardware */
2508 		dsb(sy);
2509 	}
2510 
2511 	return true;
2512 }
2513 
2514 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2515 {
2516 	struct its_baser *baser;
2517 
2518 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2519 
2520 	/* Don't allow device id that exceeds ITS hardware limit */
2521 	if (!baser)
2522 		return (ilog2(dev_id) < device_ids(its));
2523 
2524 	return its_alloc_table_entry(its, baser, dev_id);
2525 }
2526 
2527 static bool its_alloc_vpe_table(u32 vpe_id)
2528 {
2529 	struct its_node *its;
2530 
2531 	/*
2532 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2533 	 * could try and only do it on ITSs corresponding to devices
2534 	 * that have interrupts targeted at this VPE, but the
2535 	 * complexity becomes crazy (and you have tons of memory
2536 	 * anyway, right?).
2537 	 */
2538 	list_for_each_entry(its, &its_nodes, entry) {
2539 		struct its_baser *baser;
2540 
2541 		if (!is_v4(its))
2542 			continue;
2543 
2544 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2545 		if (!baser)
2546 			return false;
2547 
2548 		if (!its_alloc_table_entry(its, baser, vpe_id))
2549 			return false;
2550 	}
2551 
2552 	return true;
2553 }
2554 
2555 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2556 					    int nvecs, bool alloc_lpis)
2557 {
2558 	struct its_device *dev;
2559 	unsigned long *lpi_map = NULL;
2560 	unsigned long flags;
2561 	u16 *col_map = NULL;
2562 	void *itt;
2563 	int lpi_base;
2564 	int nr_lpis;
2565 	int nr_ites;
2566 	int sz;
2567 
2568 	if (!its_alloc_device_table(its, dev_id))
2569 		return NULL;
2570 
2571 	if (WARN_ON(!is_power_of_2(nvecs)))
2572 		nvecs = roundup_pow_of_two(nvecs);
2573 
2574 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2575 	/*
2576 	 * Even if the device wants a single LPI, the ITT must be
2577 	 * sized as a power of two (and you need at least one bit...).
2578 	 */
2579 	nr_ites = max(2, nvecs);
2580 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
2581 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2582 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2583 	if (alloc_lpis) {
2584 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2585 		if (lpi_map)
2586 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2587 					  GFP_KERNEL);
2588 	} else {
2589 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2590 		nr_lpis = 0;
2591 		lpi_base = 0;
2592 	}
2593 
2594 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2595 		kfree(dev);
2596 		kfree(itt);
2597 		kfree(lpi_map);
2598 		kfree(col_map);
2599 		return NULL;
2600 	}
2601 
2602 	gic_flush_dcache_to_poc(itt, sz);
2603 
2604 	dev->its = its;
2605 	dev->itt = itt;
2606 	dev->nr_ites = nr_ites;
2607 	dev->event_map.lpi_map = lpi_map;
2608 	dev->event_map.col_map = col_map;
2609 	dev->event_map.lpi_base = lpi_base;
2610 	dev->event_map.nr_lpis = nr_lpis;
2611 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
2612 	dev->device_id = dev_id;
2613 	INIT_LIST_HEAD(&dev->entry);
2614 
2615 	raw_spin_lock_irqsave(&its->lock, flags);
2616 	list_add(&dev->entry, &its->its_device_list);
2617 	raw_spin_unlock_irqrestore(&its->lock, flags);
2618 
2619 	/* Map device to its ITT */
2620 	its_send_mapd(dev, 1);
2621 
2622 	return dev;
2623 }
2624 
2625 static void its_free_device(struct its_device *its_dev)
2626 {
2627 	unsigned long flags;
2628 
2629 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2630 	list_del(&its_dev->entry);
2631 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2632 	kfree(its_dev->event_map.col_map);
2633 	kfree(its_dev->itt);
2634 	kfree(its_dev);
2635 }
2636 
2637 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2638 {
2639 	int idx;
2640 
2641 	/* Find a free LPI region in lpi_map and allocate them. */
2642 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2643 				      dev->event_map.nr_lpis,
2644 				      get_count_order(nvecs));
2645 	if (idx < 0)
2646 		return -ENOSPC;
2647 
2648 	*hwirq = dev->event_map.lpi_base + idx;
2649 
2650 	return 0;
2651 }
2652 
2653 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2654 			   int nvec, msi_alloc_info_t *info)
2655 {
2656 	struct its_node *its;
2657 	struct its_device *its_dev;
2658 	struct msi_domain_info *msi_info;
2659 	u32 dev_id;
2660 	int err = 0;
2661 
2662 	/*
2663 	 * We ignore "dev" entirely, and rely on the dev_id that has
2664 	 * been passed via the scratchpad. This limits this domain's
2665 	 * usefulness to upper layers that definitely know that they
2666 	 * are built on top of the ITS.
2667 	 */
2668 	dev_id = info->scratchpad[0].ul;
2669 
2670 	msi_info = msi_get_domain_info(domain);
2671 	its = msi_info->data;
2672 
2673 	if (!gic_rdists->has_direct_lpi &&
2674 	    vpe_proxy.dev &&
2675 	    vpe_proxy.dev->its == its &&
2676 	    dev_id == vpe_proxy.dev->device_id) {
2677 		/* Bad luck. Get yourself a better implementation */
2678 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2679 			  dev_id);
2680 		return -EINVAL;
2681 	}
2682 
2683 	mutex_lock(&its->dev_alloc_lock);
2684 	its_dev = its_find_device(its, dev_id);
2685 	if (its_dev) {
2686 		/*
2687 		 * We already have seen this ID, probably through
2688 		 * another alias (PCI bridge of some sort). No need to
2689 		 * create the device.
2690 		 */
2691 		its_dev->shared = true;
2692 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2693 		goto out;
2694 	}
2695 
2696 	its_dev = its_create_device(its, dev_id, nvec, true);
2697 	if (!its_dev) {
2698 		err = -ENOMEM;
2699 		goto out;
2700 	}
2701 
2702 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2703 out:
2704 	mutex_unlock(&its->dev_alloc_lock);
2705 	info->scratchpad[0].ptr = its_dev;
2706 	return err;
2707 }
2708 
2709 static struct msi_domain_ops its_msi_domain_ops = {
2710 	.msi_prepare	= its_msi_prepare,
2711 };
2712 
2713 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2714 				    unsigned int virq,
2715 				    irq_hw_number_t hwirq)
2716 {
2717 	struct irq_fwspec fwspec;
2718 
2719 	if (irq_domain_get_of_node(domain->parent)) {
2720 		fwspec.fwnode = domain->parent->fwnode;
2721 		fwspec.param_count = 3;
2722 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2723 		fwspec.param[1] = hwirq;
2724 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2725 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2726 		fwspec.fwnode = domain->parent->fwnode;
2727 		fwspec.param_count = 2;
2728 		fwspec.param[0] = hwirq;
2729 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2730 	} else {
2731 		return -EINVAL;
2732 	}
2733 
2734 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2735 }
2736 
2737 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2738 				unsigned int nr_irqs, void *args)
2739 {
2740 	msi_alloc_info_t *info = args;
2741 	struct its_device *its_dev = info->scratchpad[0].ptr;
2742 	struct its_node *its = its_dev->its;
2743 	irq_hw_number_t hwirq;
2744 	int err;
2745 	int i;
2746 
2747 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2748 	if (err)
2749 		return err;
2750 
2751 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2752 	if (err)
2753 		return err;
2754 
2755 	for (i = 0; i < nr_irqs; i++) {
2756 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2757 		if (err)
2758 			return err;
2759 
2760 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2761 					      hwirq + i, &its_irq_chip, its_dev);
2762 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2763 		pr_debug("ID:%d pID:%d vID:%d\n",
2764 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2765 			 (int)(hwirq + i), virq + i);
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 static int its_irq_domain_activate(struct irq_domain *domain,
2772 				   struct irq_data *d, bool reserve)
2773 {
2774 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2775 	u32 event = its_get_event_id(d);
2776 	const struct cpumask *cpu_mask = cpu_online_mask;
2777 	int cpu;
2778 
2779 	/* get the cpu_mask of local node */
2780 	if (its_dev->its->numa_node >= 0)
2781 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2782 
2783 	/* Bind the LPI to the first possible CPU */
2784 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2785 	if (cpu >= nr_cpu_ids) {
2786 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2787 			return -EINVAL;
2788 
2789 		cpu = cpumask_first(cpu_online_mask);
2790 	}
2791 
2792 	its_dev->event_map.col_map[event] = cpu;
2793 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2794 
2795 	/* Map the GIC IRQ and event to the device */
2796 	its_send_mapti(its_dev, d->hwirq, event);
2797 	return 0;
2798 }
2799 
2800 static void its_irq_domain_deactivate(struct irq_domain *domain,
2801 				      struct irq_data *d)
2802 {
2803 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2804 	u32 event = its_get_event_id(d);
2805 
2806 	/* Stop the delivery of interrupts */
2807 	its_send_discard(its_dev, event);
2808 }
2809 
2810 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2811 				unsigned int nr_irqs)
2812 {
2813 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2814 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2815 	struct its_node *its = its_dev->its;
2816 	int i;
2817 
2818 	bitmap_release_region(its_dev->event_map.lpi_map,
2819 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2820 			      get_count_order(nr_irqs));
2821 
2822 	for (i = 0; i < nr_irqs; i++) {
2823 		struct irq_data *data = irq_domain_get_irq_data(domain,
2824 								virq + i);
2825 		/* Nuke the entry in the domain */
2826 		irq_domain_reset_irq_data(data);
2827 	}
2828 
2829 	mutex_lock(&its->dev_alloc_lock);
2830 
2831 	/*
2832 	 * If all interrupts have been freed, start mopping the
2833 	 * floor. This is conditionned on the device not being shared.
2834 	 */
2835 	if (!its_dev->shared &&
2836 	    bitmap_empty(its_dev->event_map.lpi_map,
2837 			 its_dev->event_map.nr_lpis)) {
2838 		its_lpi_free(its_dev->event_map.lpi_map,
2839 			     its_dev->event_map.lpi_base,
2840 			     its_dev->event_map.nr_lpis);
2841 
2842 		/* Unmap device/itt */
2843 		its_send_mapd(its_dev, 0);
2844 		its_free_device(its_dev);
2845 	}
2846 
2847 	mutex_unlock(&its->dev_alloc_lock);
2848 
2849 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2850 }
2851 
2852 static const struct irq_domain_ops its_domain_ops = {
2853 	.alloc			= its_irq_domain_alloc,
2854 	.free			= its_irq_domain_free,
2855 	.activate		= its_irq_domain_activate,
2856 	.deactivate		= its_irq_domain_deactivate,
2857 };
2858 
2859 /*
2860  * This is insane.
2861  *
2862  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2863  * likely), the only way to perform an invalidate is to use a fake
2864  * device to issue an INV command, implying that the LPI has first
2865  * been mapped to some event on that device. Since this is not exactly
2866  * cheap, we try to keep that mapping around as long as possible, and
2867  * only issue an UNMAP if we're short on available slots.
2868  *
2869  * Broken by design(tm).
2870  */
2871 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2872 {
2873 	/* Already unmapped? */
2874 	if (vpe->vpe_proxy_event == -1)
2875 		return;
2876 
2877 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2878 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2879 
2880 	/*
2881 	 * We don't track empty slots at all, so let's move the
2882 	 * next_victim pointer if we can quickly reuse that slot
2883 	 * instead of nuking an existing entry. Not clear that this is
2884 	 * always a win though, and this might just generate a ripple
2885 	 * effect... Let's just hope VPEs don't migrate too often.
2886 	 */
2887 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2888 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2889 
2890 	vpe->vpe_proxy_event = -1;
2891 }
2892 
2893 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2894 {
2895 	if (!gic_rdists->has_direct_lpi) {
2896 		unsigned long flags;
2897 
2898 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2899 		its_vpe_db_proxy_unmap_locked(vpe);
2900 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2901 	}
2902 }
2903 
2904 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2905 {
2906 	/* Already mapped? */
2907 	if (vpe->vpe_proxy_event != -1)
2908 		return;
2909 
2910 	/* This slot was already allocated. Kick the other VPE out. */
2911 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2912 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2913 
2914 	/* Map the new VPE instead */
2915 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2916 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2917 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2918 
2919 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2920 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2921 }
2922 
2923 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2924 {
2925 	unsigned long flags;
2926 	struct its_collection *target_col;
2927 
2928 	if (gic_rdists->has_direct_lpi) {
2929 		void __iomem *rdbase;
2930 
2931 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2932 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2933 		wait_for_syncr(rdbase);
2934 
2935 		return;
2936 	}
2937 
2938 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2939 
2940 	its_vpe_db_proxy_map_locked(vpe);
2941 
2942 	target_col = &vpe_proxy.dev->its->collections[to];
2943 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2944 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2945 
2946 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2947 }
2948 
2949 static int its_vpe_set_affinity(struct irq_data *d,
2950 				const struct cpumask *mask_val,
2951 				bool force)
2952 {
2953 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2954 	int cpu = cpumask_first(mask_val);
2955 
2956 	/*
2957 	 * Changing affinity is mega expensive, so let's be as lazy as
2958 	 * we can and only do it if we really have to. Also, if mapped
2959 	 * into the proxy device, we need to move the doorbell
2960 	 * interrupt to its new location.
2961 	 */
2962 	if (vpe->col_idx != cpu) {
2963 		int from = vpe->col_idx;
2964 
2965 		vpe->col_idx = cpu;
2966 		its_send_vmovp(vpe);
2967 		its_vpe_db_proxy_move(vpe, from, cpu);
2968 	}
2969 
2970 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2971 
2972 	return IRQ_SET_MASK_OK_DONE;
2973 }
2974 
2975 static void its_vpe_schedule(struct its_vpe *vpe)
2976 {
2977 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2978 	u64 val;
2979 
2980 	/* Schedule the VPE */
2981 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2982 		GENMASK_ULL(51, 12);
2983 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2984 	val |= GICR_VPROPBASER_RaWb;
2985 	val |= GICR_VPROPBASER_InnerShareable;
2986 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2987 
2988 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2989 		GENMASK_ULL(51, 16);
2990 	val |= GICR_VPENDBASER_RaWaWb;
2991 	val |= GICR_VPENDBASER_NonShareable;
2992 	/*
2993 	 * There is no good way of finding out if the pending table is
2994 	 * empty as we can race against the doorbell interrupt very
2995 	 * easily. So in the end, vpe->pending_last is only an
2996 	 * indication that the vcpu has something pending, not one
2997 	 * that the pending table is empty. A good implementation
2998 	 * would be able to read its coarse map pretty quickly anyway,
2999 	 * making this a tolerable issue.
3000 	 */
3001 	val |= GICR_VPENDBASER_PendingLast;
3002 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3003 	val |= GICR_VPENDBASER_Valid;
3004 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3005 }
3006 
3007 static void its_vpe_deschedule(struct its_vpe *vpe)
3008 {
3009 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3010 	u64 val;
3011 
3012 	val = its_clear_vpend_valid(vlpi_base);
3013 
3014 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3015 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3016 		vpe->idai = false;
3017 		vpe->pending_last = true;
3018 	} else {
3019 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3020 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3021 	}
3022 }
3023 
3024 static void its_vpe_invall(struct its_vpe *vpe)
3025 {
3026 	struct its_node *its;
3027 
3028 	list_for_each_entry(its, &its_nodes, entry) {
3029 		if (!is_v4(its))
3030 			continue;
3031 
3032 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3033 			continue;
3034 
3035 		/*
3036 		 * Sending a VINVALL to a single ITS is enough, as all
3037 		 * we need is to reach the redistributors.
3038 		 */
3039 		its_send_vinvall(its, vpe);
3040 		return;
3041 	}
3042 }
3043 
3044 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3045 {
3046 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3047 	struct its_cmd_info *info = vcpu_info;
3048 
3049 	switch (info->cmd_type) {
3050 	case SCHEDULE_VPE:
3051 		its_vpe_schedule(vpe);
3052 		return 0;
3053 
3054 	case DESCHEDULE_VPE:
3055 		its_vpe_deschedule(vpe);
3056 		return 0;
3057 
3058 	case INVALL_VPE:
3059 		its_vpe_invall(vpe);
3060 		return 0;
3061 
3062 	default:
3063 		return -EINVAL;
3064 	}
3065 }
3066 
3067 static void its_vpe_send_cmd(struct its_vpe *vpe,
3068 			     void (*cmd)(struct its_device *, u32))
3069 {
3070 	unsigned long flags;
3071 
3072 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3073 
3074 	its_vpe_db_proxy_map_locked(vpe);
3075 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3076 
3077 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3078 }
3079 
3080 static void its_vpe_send_inv(struct irq_data *d)
3081 {
3082 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3083 
3084 	if (gic_rdists->has_direct_lpi) {
3085 		void __iomem *rdbase;
3086 
3087 		/* Target the redistributor this VPE is currently known on */
3088 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3089 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3090 		wait_for_syncr(rdbase);
3091 	} else {
3092 		its_vpe_send_cmd(vpe, its_send_inv);
3093 	}
3094 }
3095 
3096 static void its_vpe_mask_irq(struct irq_data *d)
3097 {
3098 	/*
3099 	 * We need to unmask the LPI, which is described by the parent
3100 	 * irq_data. Instead of calling into the parent (which won't
3101 	 * exactly do the right thing, let's simply use the
3102 	 * parent_data pointer. Yes, I'm naughty.
3103 	 */
3104 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3105 	its_vpe_send_inv(d);
3106 }
3107 
3108 static void its_vpe_unmask_irq(struct irq_data *d)
3109 {
3110 	/* Same hack as above... */
3111 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3112 	its_vpe_send_inv(d);
3113 }
3114 
3115 static int its_vpe_set_irqchip_state(struct irq_data *d,
3116 				     enum irqchip_irq_state which,
3117 				     bool state)
3118 {
3119 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3120 
3121 	if (which != IRQCHIP_STATE_PENDING)
3122 		return -EINVAL;
3123 
3124 	if (gic_rdists->has_direct_lpi) {
3125 		void __iomem *rdbase;
3126 
3127 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3128 		if (state) {
3129 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3130 		} else {
3131 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3132 			wait_for_syncr(rdbase);
3133 		}
3134 	} else {
3135 		if (state)
3136 			its_vpe_send_cmd(vpe, its_send_int);
3137 		else
3138 			its_vpe_send_cmd(vpe, its_send_clear);
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 static struct irq_chip its_vpe_irq_chip = {
3145 	.name			= "GICv4-vpe",
3146 	.irq_mask		= its_vpe_mask_irq,
3147 	.irq_unmask		= its_vpe_unmask_irq,
3148 	.irq_eoi		= irq_chip_eoi_parent,
3149 	.irq_set_affinity	= its_vpe_set_affinity,
3150 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
3151 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
3152 };
3153 
3154 static int its_vpe_id_alloc(void)
3155 {
3156 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3157 }
3158 
3159 static void its_vpe_id_free(u16 id)
3160 {
3161 	ida_simple_remove(&its_vpeid_ida, id);
3162 }
3163 
3164 static int its_vpe_init(struct its_vpe *vpe)
3165 {
3166 	struct page *vpt_page;
3167 	int vpe_id;
3168 
3169 	/* Allocate vpe_id */
3170 	vpe_id = its_vpe_id_alloc();
3171 	if (vpe_id < 0)
3172 		return vpe_id;
3173 
3174 	/* Allocate VPT */
3175 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3176 	if (!vpt_page) {
3177 		its_vpe_id_free(vpe_id);
3178 		return -ENOMEM;
3179 	}
3180 
3181 	if (!its_alloc_vpe_table(vpe_id)) {
3182 		its_vpe_id_free(vpe_id);
3183 		its_free_pending_table(vpt_page);
3184 		return -ENOMEM;
3185 	}
3186 
3187 	vpe->vpe_id = vpe_id;
3188 	vpe->vpt_page = vpt_page;
3189 	vpe->vpe_proxy_event = -1;
3190 
3191 	return 0;
3192 }
3193 
3194 static void its_vpe_teardown(struct its_vpe *vpe)
3195 {
3196 	its_vpe_db_proxy_unmap(vpe);
3197 	its_vpe_id_free(vpe->vpe_id);
3198 	its_free_pending_table(vpe->vpt_page);
3199 }
3200 
3201 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3202 				    unsigned int virq,
3203 				    unsigned int nr_irqs)
3204 {
3205 	struct its_vm *vm = domain->host_data;
3206 	int i;
3207 
3208 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3209 
3210 	for (i = 0; i < nr_irqs; i++) {
3211 		struct irq_data *data = irq_domain_get_irq_data(domain,
3212 								virq + i);
3213 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3214 
3215 		BUG_ON(vm != vpe->its_vm);
3216 
3217 		clear_bit(data->hwirq, vm->db_bitmap);
3218 		its_vpe_teardown(vpe);
3219 		irq_domain_reset_irq_data(data);
3220 	}
3221 
3222 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3223 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3224 		its_free_prop_table(vm->vprop_page);
3225 	}
3226 }
3227 
3228 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3229 				    unsigned int nr_irqs, void *args)
3230 {
3231 	struct its_vm *vm = args;
3232 	unsigned long *bitmap;
3233 	struct page *vprop_page;
3234 	int base, nr_ids, i, err = 0;
3235 
3236 	BUG_ON(!vm);
3237 
3238 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3239 	if (!bitmap)
3240 		return -ENOMEM;
3241 
3242 	if (nr_ids < nr_irqs) {
3243 		its_lpi_free(bitmap, base, nr_ids);
3244 		return -ENOMEM;
3245 	}
3246 
3247 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3248 	if (!vprop_page) {
3249 		its_lpi_free(bitmap, base, nr_ids);
3250 		return -ENOMEM;
3251 	}
3252 
3253 	vm->db_bitmap = bitmap;
3254 	vm->db_lpi_base = base;
3255 	vm->nr_db_lpis = nr_ids;
3256 	vm->vprop_page = vprop_page;
3257 
3258 	for (i = 0; i < nr_irqs; i++) {
3259 		vm->vpes[i]->vpe_db_lpi = base + i;
3260 		err = its_vpe_init(vm->vpes[i]);
3261 		if (err)
3262 			break;
3263 		err = its_irq_gic_domain_alloc(domain, virq + i,
3264 					       vm->vpes[i]->vpe_db_lpi);
3265 		if (err)
3266 			break;
3267 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3268 					      &its_vpe_irq_chip, vm->vpes[i]);
3269 		set_bit(i, bitmap);
3270 	}
3271 
3272 	if (err) {
3273 		if (i > 0)
3274 			its_vpe_irq_domain_free(domain, virq, i - 1);
3275 
3276 		its_lpi_free(bitmap, base, nr_ids);
3277 		its_free_prop_table(vprop_page);
3278 	}
3279 
3280 	return err;
3281 }
3282 
3283 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3284 				       struct irq_data *d, bool reserve)
3285 {
3286 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3287 	struct its_node *its;
3288 
3289 	/* If we use the list map, we issue VMAPP on demand... */
3290 	if (its_list_map)
3291 		return 0;
3292 
3293 	/* Map the VPE to the first possible CPU */
3294 	vpe->col_idx = cpumask_first(cpu_online_mask);
3295 
3296 	list_for_each_entry(its, &its_nodes, entry) {
3297 		if (!is_v4(its))
3298 			continue;
3299 
3300 		its_send_vmapp(its, vpe, true);
3301 		its_send_vinvall(its, vpe);
3302 	}
3303 
3304 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3305 
3306 	return 0;
3307 }
3308 
3309 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3310 					  struct irq_data *d)
3311 {
3312 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3313 	struct its_node *its;
3314 
3315 	/*
3316 	 * If we use the list map, we unmap the VPE once no VLPIs are
3317 	 * associated with the VM.
3318 	 */
3319 	if (its_list_map)
3320 		return;
3321 
3322 	list_for_each_entry(its, &its_nodes, entry) {
3323 		if (!is_v4(its))
3324 			continue;
3325 
3326 		its_send_vmapp(its, vpe, false);
3327 	}
3328 }
3329 
3330 static const struct irq_domain_ops its_vpe_domain_ops = {
3331 	.alloc			= its_vpe_irq_domain_alloc,
3332 	.free			= its_vpe_irq_domain_free,
3333 	.activate		= its_vpe_irq_domain_activate,
3334 	.deactivate		= its_vpe_irq_domain_deactivate,
3335 };
3336 
3337 static int its_force_quiescent(void __iomem *base)
3338 {
3339 	u32 count = 1000000;	/* 1s */
3340 	u32 val;
3341 
3342 	val = readl_relaxed(base + GITS_CTLR);
3343 	/*
3344 	 * GIC architecture specification requires the ITS to be both
3345 	 * disabled and quiescent for writes to GITS_BASER<n> or
3346 	 * GITS_CBASER to not have UNPREDICTABLE results.
3347 	 */
3348 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3349 		return 0;
3350 
3351 	/* Disable the generation of all interrupts to this ITS */
3352 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3353 	writel_relaxed(val, base + GITS_CTLR);
3354 
3355 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3356 	while (1) {
3357 		val = readl_relaxed(base + GITS_CTLR);
3358 		if (val & GITS_CTLR_QUIESCENT)
3359 			return 0;
3360 
3361 		count--;
3362 		if (!count)
3363 			return -EBUSY;
3364 
3365 		cpu_relax();
3366 		udelay(1);
3367 	}
3368 }
3369 
3370 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3371 {
3372 	struct its_node *its = data;
3373 
3374 	/* erratum 22375: only alloc 8MB table size (20 bits) */
3375 	its->typer &= ~GITS_TYPER_DEVBITS;
3376 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
3377 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3378 
3379 	return true;
3380 }
3381 
3382 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3383 {
3384 	struct its_node *its = data;
3385 
3386 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3387 
3388 	return true;
3389 }
3390 
3391 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3392 {
3393 	struct its_node *its = data;
3394 
3395 	/* On QDF2400, the size of the ITE is 16Bytes */
3396 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
3397 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
3398 
3399 	return true;
3400 }
3401 
3402 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3403 {
3404 	struct its_node *its = its_dev->its;
3405 
3406 	/*
3407 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3408 	 * which maps 32-bit writes targeted at a separate window of
3409 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3410 	 * with device ID taken from bits [device_id_bits + 1:2] of
3411 	 * the window offset.
3412 	 */
3413 	return its->pre_its_base + (its_dev->device_id << 2);
3414 }
3415 
3416 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3417 {
3418 	struct its_node *its = data;
3419 	u32 pre_its_window[2];
3420 	u32 ids;
3421 
3422 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3423 					   "socionext,synquacer-pre-its",
3424 					   pre_its_window,
3425 					   ARRAY_SIZE(pre_its_window))) {
3426 
3427 		its->pre_its_base = pre_its_window[0];
3428 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3429 
3430 		ids = ilog2(pre_its_window[1]) - 2;
3431 		if (device_ids(its) > ids) {
3432 			its->typer &= ~GITS_TYPER_DEVBITS;
3433 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
3434 		}
3435 
3436 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3437 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3438 		return true;
3439 	}
3440 	return false;
3441 }
3442 
3443 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3444 {
3445 	struct its_node *its = data;
3446 
3447 	/*
3448 	 * Hip07 insists on using the wrong address for the VLPI
3449 	 * page. Trick it into doing the right thing...
3450 	 */
3451 	its->vlpi_redist_offset = SZ_128K;
3452 	return true;
3453 }
3454 
3455 static const struct gic_quirk its_quirks[] = {
3456 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3457 	{
3458 		.desc	= "ITS: Cavium errata 22375, 24313",
3459 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3460 		.mask	= 0xffff0fff,
3461 		.init	= its_enable_quirk_cavium_22375,
3462 	},
3463 #endif
3464 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3465 	{
3466 		.desc	= "ITS: Cavium erratum 23144",
3467 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3468 		.mask	= 0xffff0fff,
3469 		.init	= its_enable_quirk_cavium_23144,
3470 	},
3471 #endif
3472 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3473 	{
3474 		.desc	= "ITS: QDF2400 erratum 0065",
3475 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3476 		.mask	= 0xffffffff,
3477 		.init	= its_enable_quirk_qdf2400_e0065,
3478 	},
3479 #endif
3480 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3481 	{
3482 		/*
3483 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3484 		 * implementation, but with a 'pre-ITS' added that requires
3485 		 * special handling in software.
3486 		 */
3487 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3488 		.iidr	= 0x0001143b,
3489 		.mask	= 0xffffffff,
3490 		.init	= its_enable_quirk_socionext_synquacer,
3491 	},
3492 #endif
3493 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3494 	{
3495 		.desc	= "ITS: Hip07 erratum 161600802",
3496 		.iidr	= 0x00000004,
3497 		.mask	= 0xffffffff,
3498 		.init	= its_enable_quirk_hip07_161600802,
3499 	},
3500 #endif
3501 	{
3502 	}
3503 };
3504 
3505 static void its_enable_quirks(struct its_node *its)
3506 {
3507 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3508 
3509 	gic_enable_quirks(iidr, its_quirks, its);
3510 }
3511 
3512 static int its_save_disable(void)
3513 {
3514 	struct its_node *its;
3515 	int err = 0;
3516 
3517 	raw_spin_lock(&its_lock);
3518 	list_for_each_entry(its, &its_nodes, entry) {
3519 		void __iomem *base;
3520 
3521 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3522 			continue;
3523 
3524 		base = its->base;
3525 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3526 		err = its_force_quiescent(base);
3527 		if (err) {
3528 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3529 			       &its->phys_base, err);
3530 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3531 			goto err;
3532 		}
3533 
3534 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3535 	}
3536 
3537 err:
3538 	if (err) {
3539 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3540 			void __iomem *base;
3541 
3542 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3543 				continue;
3544 
3545 			base = its->base;
3546 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3547 		}
3548 	}
3549 	raw_spin_unlock(&its_lock);
3550 
3551 	return err;
3552 }
3553 
3554 static void its_restore_enable(void)
3555 {
3556 	struct its_node *its;
3557 	int ret;
3558 
3559 	raw_spin_lock(&its_lock);
3560 	list_for_each_entry(its, &its_nodes, entry) {
3561 		void __iomem *base;
3562 		int i;
3563 
3564 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3565 			continue;
3566 
3567 		base = its->base;
3568 
3569 		/*
3570 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3571 		 * don't restore it since writing to CBASER or BASER<n>
3572 		 * registers is undefined according to the GIC v3 ITS
3573 		 * Specification.
3574 		 */
3575 		ret = its_force_quiescent(base);
3576 		if (ret) {
3577 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3578 			       &its->phys_base, ret);
3579 			continue;
3580 		}
3581 
3582 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3583 
3584 		/*
3585 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3586 		 * cmd_write line up with it.
3587 		 */
3588 		its->cmd_write = its->cmd_base;
3589 		gits_write_cwriter(0, base + GITS_CWRITER);
3590 
3591 		/* Restore GITS_BASER from the value cache. */
3592 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3593 			struct its_baser *baser = &its->tables[i];
3594 
3595 			if (!(baser->val & GITS_BASER_VALID))
3596 				continue;
3597 
3598 			its_write_baser(its, baser, baser->val);
3599 		}
3600 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3601 
3602 		/*
3603 		 * Reinit the collection if it's stored in the ITS. This is
3604 		 * indicated by the col_id being less than the HCC field.
3605 		 * CID < HCC as specified in the GIC v3 Documentation.
3606 		 */
3607 		if (its->collections[smp_processor_id()].col_id <
3608 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3609 			its_cpu_init_collection(its);
3610 	}
3611 	raw_spin_unlock(&its_lock);
3612 }
3613 
3614 static struct syscore_ops its_syscore_ops = {
3615 	.suspend = its_save_disable,
3616 	.resume = its_restore_enable,
3617 };
3618 
3619 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3620 {
3621 	struct irq_domain *inner_domain;
3622 	struct msi_domain_info *info;
3623 
3624 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3625 	if (!info)
3626 		return -ENOMEM;
3627 
3628 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3629 	if (!inner_domain) {
3630 		kfree(info);
3631 		return -ENOMEM;
3632 	}
3633 
3634 	inner_domain->parent = its_parent;
3635 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3636 	inner_domain->flags |= its->msi_domain_flags;
3637 	info->ops = &its_msi_domain_ops;
3638 	info->data = its;
3639 	inner_domain->host_data = info;
3640 
3641 	return 0;
3642 }
3643 
3644 static int its_init_vpe_domain(void)
3645 {
3646 	struct its_node *its;
3647 	u32 devid;
3648 	int entries;
3649 
3650 	if (gic_rdists->has_direct_lpi) {
3651 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3652 		return 0;
3653 	}
3654 
3655 	/* Any ITS will do, even if not v4 */
3656 	its = list_first_entry(&its_nodes, struct its_node, entry);
3657 
3658 	entries = roundup_pow_of_two(nr_cpu_ids);
3659 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3660 				 GFP_KERNEL);
3661 	if (!vpe_proxy.vpes) {
3662 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3663 		return -ENOMEM;
3664 	}
3665 
3666 	/* Use the last possible DevID */
3667 	devid = GENMASK(device_ids(its) - 1, 0);
3668 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3669 	if (!vpe_proxy.dev) {
3670 		kfree(vpe_proxy.vpes);
3671 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3672 		return -ENOMEM;
3673 	}
3674 
3675 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3676 
3677 	raw_spin_lock_init(&vpe_proxy.lock);
3678 	vpe_proxy.next_victim = 0;
3679 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3680 		devid, vpe_proxy.dev->nr_ites);
3681 
3682 	return 0;
3683 }
3684 
3685 static int __init its_compute_its_list_map(struct resource *res,
3686 					   void __iomem *its_base)
3687 {
3688 	int its_number;
3689 	u32 ctlr;
3690 
3691 	/*
3692 	 * This is assumed to be done early enough that we're
3693 	 * guaranteed to be single-threaded, hence no
3694 	 * locking. Should this change, we should address
3695 	 * this.
3696 	 */
3697 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3698 	if (its_number >= GICv4_ITS_LIST_MAX) {
3699 		pr_err("ITS@%pa: No ITSList entry available!\n",
3700 		       &res->start);
3701 		return -EINVAL;
3702 	}
3703 
3704 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3705 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3706 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3707 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3708 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3709 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3710 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3711 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3712 	}
3713 
3714 	if (test_and_set_bit(its_number, &its_list_map)) {
3715 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3716 		       &res->start, its_number);
3717 		return -EINVAL;
3718 	}
3719 
3720 	return its_number;
3721 }
3722 
3723 static int __init its_probe_one(struct resource *res,
3724 				struct fwnode_handle *handle, int numa_node)
3725 {
3726 	struct its_node *its;
3727 	void __iomem *its_base;
3728 	u32 val, ctlr;
3729 	u64 baser, tmp, typer;
3730 	struct page *page;
3731 	int err;
3732 
3733 	its_base = ioremap(res->start, resource_size(res));
3734 	if (!its_base) {
3735 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3736 		return -ENOMEM;
3737 	}
3738 
3739 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3740 	if (val != 0x30 && val != 0x40) {
3741 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3742 		err = -ENODEV;
3743 		goto out_unmap;
3744 	}
3745 
3746 	err = its_force_quiescent(its_base);
3747 	if (err) {
3748 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3749 		goto out_unmap;
3750 	}
3751 
3752 	pr_info("ITS %pR\n", res);
3753 
3754 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3755 	if (!its) {
3756 		err = -ENOMEM;
3757 		goto out_unmap;
3758 	}
3759 
3760 	raw_spin_lock_init(&its->lock);
3761 	mutex_init(&its->dev_alloc_lock);
3762 	INIT_LIST_HEAD(&its->entry);
3763 	INIT_LIST_HEAD(&its->its_device_list);
3764 	typer = gic_read_typer(its_base + GITS_TYPER);
3765 	its->typer = typer;
3766 	its->base = its_base;
3767 	its->phys_base = res->start;
3768 	if (is_v4(its)) {
3769 		if (!(typer & GITS_TYPER_VMOVP)) {
3770 			err = its_compute_its_list_map(res, its_base);
3771 			if (err < 0)
3772 				goto out_free_its;
3773 
3774 			its->list_nr = err;
3775 
3776 			pr_info("ITS@%pa: Using ITS number %d\n",
3777 				&res->start, err);
3778 		} else {
3779 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3780 		}
3781 	}
3782 
3783 	its->numa_node = numa_node;
3784 
3785 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3786 				get_order(ITS_CMD_QUEUE_SZ));
3787 	if (!page) {
3788 		err = -ENOMEM;
3789 		goto out_free_its;
3790 	}
3791 	its->cmd_base = (void *)page_address(page);
3792 	its->cmd_write = its->cmd_base;
3793 	its->fwnode_handle = handle;
3794 	its->get_msi_base = its_irq_get_msi_base;
3795 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3796 
3797 	its_enable_quirks(its);
3798 
3799 	err = its_alloc_tables(its);
3800 	if (err)
3801 		goto out_free_cmd;
3802 
3803 	err = its_alloc_collections(its);
3804 	if (err)
3805 		goto out_free_tables;
3806 
3807 	baser = (virt_to_phys(its->cmd_base)	|
3808 		 GITS_CBASER_RaWaWb		|
3809 		 GITS_CBASER_InnerShareable	|
3810 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3811 		 GITS_CBASER_VALID);
3812 
3813 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3814 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3815 
3816 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3817 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3818 			/*
3819 			 * The HW reports non-shareable, we must
3820 			 * remove the cacheability attributes as
3821 			 * well.
3822 			 */
3823 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3824 				   GITS_CBASER_CACHEABILITY_MASK);
3825 			baser |= GITS_CBASER_nC;
3826 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3827 		}
3828 		pr_info("ITS: using cache flushing for cmd queue\n");
3829 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3830 	}
3831 
3832 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3833 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3834 	ctlr |= GITS_CTLR_ENABLE;
3835 	if (is_v4(its))
3836 		ctlr |= GITS_CTLR_ImDe;
3837 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3838 
3839 	if (GITS_TYPER_HCC(typer))
3840 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3841 
3842 	err = its_init_domain(handle, its);
3843 	if (err)
3844 		goto out_free_tables;
3845 
3846 	raw_spin_lock(&its_lock);
3847 	list_add(&its->entry, &its_nodes);
3848 	raw_spin_unlock(&its_lock);
3849 
3850 	return 0;
3851 
3852 out_free_tables:
3853 	its_free_tables(its);
3854 out_free_cmd:
3855 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3856 out_free_its:
3857 	kfree(its);
3858 out_unmap:
3859 	iounmap(its_base);
3860 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3861 	return err;
3862 }
3863 
3864 static bool gic_rdists_supports_plpis(void)
3865 {
3866 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3867 }
3868 
3869 static int redist_disable_lpis(void)
3870 {
3871 	void __iomem *rbase = gic_data_rdist_rd_base();
3872 	u64 timeout = USEC_PER_SEC;
3873 	u64 val;
3874 
3875 	if (!gic_rdists_supports_plpis()) {
3876 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3877 		return -ENXIO;
3878 	}
3879 
3880 	val = readl_relaxed(rbase + GICR_CTLR);
3881 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3882 		return 0;
3883 
3884 	/*
3885 	 * If coming via a CPU hotplug event, we don't need to disable
3886 	 * LPIs before trying to re-enable them. They are already
3887 	 * configured and all is well in the world.
3888 	 *
3889 	 * If running with preallocated tables, there is nothing to do.
3890 	 */
3891 	if (gic_data_rdist()->lpi_enabled ||
3892 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3893 		return 0;
3894 
3895 	/*
3896 	 * From that point on, we only try to do some damage control.
3897 	 */
3898 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3899 		smp_processor_id());
3900 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3901 
3902 	/* Disable LPIs */
3903 	val &= ~GICR_CTLR_ENABLE_LPIS;
3904 	writel_relaxed(val, rbase + GICR_CTLR);
3905 
3906 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3907 	dsb(sy);
3908 
3909 	/*
3910 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3911 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3912 	 * Error out if we time out waiting for RWP to clear.
3913 	 */
3914 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3915 		if (!timeout) {
3916 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3917 			       smp_processor_id());
3918 			return -ETIMEDOUT;
3919 		}
3920 		udelay(1);
3921 		timeout--;
3922 	}
3923 
3924 	/*
3925 	 * After it has been written to 1, it is IMPLEMENTATION
3926 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3927 	 * cleared to 0. Error out if clearing the bit failed.
3928 	 */
3929 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3930 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3931 		return -EBUSY;
3932 	}
3933 
3934 	return 0;
3935 }
3936 
3937 int its_cpu_init(void)
3938 {
3939 	if (!list_empty(&its_nodes)) {
3940 		int ret;
3941 
3942 		ret = redist_disable_lpis();
3943 		if (ret)
3944 			return ret;
3945 
3946 		its_cpu_init_lpis();
3947 		its_cpu_init_collections();
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static const struct of_device_id its_device_id[] = {
3954 	{	.compatible	= "arm,gic-v3-its",	},
3955 	{},
3956 };
3957 
3958 static int __init its_of_probe(struct device_node *node)
3959 {
3960 	struct device_node *np;
3961 	struct resource res;
3962 
3963 	for (np = of_find_matching_node(node, its_device_id); np;
3964 	     np = of_find_matching_node(np, its_device_id)) {
3965 		if (!of_device_is_available(np))
3966 			continue;
3967 		if (!of_property_read_bool(np, "msi-controller")) {
3968 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3969 				np);
3970 			continue;
3971 		}
3972 
3973 		if (of_address_to_resource(np, 0, &res)) {
3974 			pr_warn("%pOF: no regs?\n", np);
3975 			continue;
3976 		}
3977 
3978 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3979 	}
3980 	return 0;
3981 }
3982 
3983 #ifdef CONFIG_ACPI
3984 
3985 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3986 
3987 #ifdef CONFIG_ACPI_NUMA
3988 struct its_srat_map {
3989 	/* numa node id */
3990 	u32	numa_node;
3991 	/* GIC ITS ID */
3992 	u32	its_id;
3993 };
3994 
3995 static struct its_srat_map *its_srat_maps __initdata;
3996 static int its_in_srat __initdata;
3997 
3998 static int __init acpi_get_its_numa_node(u32 its_id)
3999 {
4000 	int i;
4001 
4002 	for (i = 0; i < its_in_srat; i++) {
4003 		if (its_id == its_srat_maps[i].its_id)
4004 			return its_srat_maps[i].numa_node;
4005 	}
4006 	return NUMA_NO_NODE;
4007 }
4008 
4009 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
4010 					  const unsigned long end)
4011 {
4012 	return 0;
4013 }
4014 
4015 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
4016 			 const unsigned long end)
4017 {
4018 	int node;
4019 	struct acpi_srat_gic_its_affinity *its_affinity;
4020 
4021 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
4022 	if (!its_affinity)
4023 		return -EINVAL;
4024 
4025 	if (its_affinity->header.length < sizeof(*its_affinity)) {
4026 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
4027 			its_affinity->header.length);
4028 		return -EINVAL;
4029 	}
4030 
4031 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
4032 
4033 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
4034 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
4035 		return 0;
4036 	}
4037 
4038 	its_srat_maps[its_in_srat].numa_node = node;
4039 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
4040 	its_in_srat++;
4041 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
4042 		its_affinity->proximity_domain, its_affinity->its_id, node);
4043 
4044 	return 0;
4045 }
4046 
4047 static void __init acpi_table_parse_srat_its(void)
4048 {
4049 	int count;
4050 
4051 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
4052 			sizeof(struct acpi_table_srat),
4053 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4054 			gic_acpi_match_srat_its, 0);
4055 	if (count <= 0)
4056 		return;
4057 
4058 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
4059 				      GFP_KERNEL);
4060 	if (!its_srat_maps) {
4061 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
4062 		return;
4063 	}
4064 
4065 	acpi_table_parse_entries(ACPI_SIG_SRAT,
4066 			sizeof(struct acpi_table_srat),
4067 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4068 			gic_acpi_parse_srat_its, 0);
4069 }
4070 
4071 /* free the its_srat_maps after ITS probing */
4072 static void __init acpi_its_srat_maps_free(void)
4073 {
4074 	kfree(its_srat_maps);
4075 }
4076 #else
4077 static void __init acpi_table_parse_srat_its(void)	{ }
4078 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
4079 static void __init acpi_its_srat_maps_free(void) { }
4080 #endif
4081 
4082 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
4083 					  const unsigned long end)
4084 {
4085 	struct acpi_madt_generic_translator *its_entry;
4086 	struct fwnode_handle *dom_handle;
4087 	struct resource res;
4088 	int err;
4089 
4090 	its_entry = (struct acpi_madt_generic_translator *)header;
4091 	memset(&res, 0, sizeof(res));
4092 	res.start = its_entry->base_address;
4093 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
4094 	res.flags = IORESOURCE_MEM;
4095 
4096 	dom_handle = irq_domain_alloc_fwnode(&res.start);
4097 	if (!dom_handle) {
4098 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
4099 		       &res.start);
4100 		return -ENOMEM;
4101 	}
4102 
4103 	err = iort_register_domain_token(its_entry->translation_id, res.start,
4104 					 dom_handle);
4105 	if (err) {
4106 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
4107 		       &res.start, its_entry->translation_id);
4108 		goto dom_err;
4109 	}
4110 
4111 	err = its_probe_one(&res, dom_handle,
4112 			acpi_get_its_numa_node(its_entry->translation_id));
4113 	if (!err)
4114 		return 0;
4115 
4116 	iort_deregister_domain_token(its_entry->translation_id);
4117 dom_err:
4118 	irq_domain_free_fwnode(dom_handle);
4119 	return err;
4120 }
4121 
4122 static void __init its_acpi_probe(void)
4123 {
4124 	acpi_table_parse_srat_its();
4125 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
4126 			      gic_acpi_parse_madt_its, 0);
4127 	acpi_its_srat_maps_free();
4128 }
4129 #else
4130 static void __init its_acpi_probe(void) { }
4131 #endif
4132 
4133 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
4134 		    struct irq_domain *parent_domain)
4135 {
4136 	struct device_node *of_node;
4137 	struct its_node *its;
4138 	bool has_v4 = false;
4139 	int err;
4140 
4141 	its_parent = parent_domain;
4142 	of_node = to_of_node(handle);
4143 	if (of_node)
4144 		its_of_probe(of_node);
4145 	else
4146 		its_acpi_probe();
4147 
4148 	if (list_empty(&its_nodes)) {
4149 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
4150 		return -ENXIO;
4151 	}
4152 
4153 	gic_rdists = rdists;
4154 
4155 	err = allocate_lpi_tables();
4156 	if (err)
4157 		return err;
4158 
4159 	list_for_each_entry(its, &its_nodes, entry)
4160 		has_v4 |= is_v4(its);
4161 
4162 	if (has_v4 & rdists->has_vlpis) {
4163 		if (its_init_vpe_domain() ||
4164 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4165 			rdists->has_vlpis = false;
4166 			pr_err("ITS: Disabling GICv4 support\n");
4167 		}
4168 	}
4169 
4170 	register_syscore_ops(&its_syscore_ops);
4171 
4172 	return 0;
4173 }
4174