1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/irqdomain.h> 18 #include <linux/list.h> 19 #include <linux/log2.h> 20 #include <linux/memblock.h> 21 #include <linux/mm.h> 22 #include <linux/msi.h> 23 #include <linux/of.h> 24 #include <linux/of_address.h> 25 #include <linux/of_irq.h> 26 #include <linux/of_pci.h> 27 #include <linux/of_platform.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/syscore_ops.h> 31 32 #include <linux/irqchip.h> 33 #include <linux/irqchip/arm-gic-v3.h> 34 #include <linux/irqchip/arm-gic-v4.h> 35 36 #include <asm/cputype.h> 37 #include <asm/exception.h> 38 39 #include "irq-gic-common.h" 40 41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 42 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 44 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 45 46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 48 49 static u32 lpi_id_bits; 50 51 /* 52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 53 * deal with (one configuration byte per interrupt). PENDBASE has to 54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 55 */ 56 #define LPI_NRBITS lpi_id_bits 57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 59 60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 61 62 /* 63 * Collection structure - just an ID, and a redistributor address to 64 * ping. We use one per CPU as a bag of interrupts assigned to this 65 * CPU. 66 */ 67 struct its_collection { 68 u64 target_address; 69 u16 col_id; 70 }; 71 72 /* 73 * The ITS_BASER structure - contains memory information, cached 74 * value of BASER register configuration and ITS page size. 75 */ 76 struct its_baser { 77 void *base; 78 u64 val; 79 u32 order; 80 u32 psz; 81 }; 82 83 struct its_device; 84 85 /* 86 * The ITS structure - contains most of the infrastructure, with the 87 * top-level MSI domain, the command queue, the collections, and the 88 * list of devices writing to it. 89 * 90 * dev_alloc_lock has to be taken for device allocations, while the 91 * spinlock must be taken to parse data structures such as the device 92 * list. 93 */ 94 struct its_node { 95 raw_spinlock_t lock; 96 struct mutex dev_alloc_lock; 97 struct list_head entry; 98 void __iomem *base; 99 phys_addr_t phys_base; 100 struct its_cmd_block *cmd_base; 101 struct its_cmd_block *cmd_write; 102 struct its_baser tables[GITS_BASER_NR_REGS]; 103 struct its_collection *collections; 104 struct fwnode_handle *fwnode_handle; 105 u64 (*get_msi_base)(struct its_device *its_dev); 106 u64 typer; 107 u64 cbaser_save; 108 u32 ctlr_save; 109 struct list_head its_device_list; 110 u64 flags; 111 unsigned long list_nr; 112 int numa_node; 113 unsigned int msi_domain_flags; 114 u32 pre_its_base; /* for Socionext Synquacer */ 115 int vlpi_redist_offset; 116 }; 117 118 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 119 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 120 121 #define ITS_ITT_ALIGN SZ_256 122 123 /* The maximum number of VPEID bits supported by VLPI commands */ 124 #define ITS_MAX_VPEID_BITS (16) 125 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 126 127 /* Convert page order to size in bytes */ 128 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 129 130 struct event_lpi_map { 131 unsigned long *lpi_map; 132 u16 *col_map; 133 irq_hw_number_t lpi_base; 134 int nr_lpis; 135 raw_spinlock_t vlpi_lock; 136 struct its_vm *vm; 137 struct its_vlpi_map *vlpi_maps; 138 int nr_vlpis; 139 }; 140 141 /* 142 * The ITS view of a device - belongs to an ITS, owns an interrupt 143 * translation table, and a list of interrupts. If it some of its 144 * LPIs are injected into a guest (GICv4), the event_map.vm field 145 * indicates which one. 146 */ 147 struct its_device { 148 struct list_head entry; 149 struct its_node *its; 150 struct event_lpi_map event_map; 151 void *itt; 152 u32 nr_ites; 153 u32 device_id; 154 bool shared; 155 }; 156 157 static struct { 158 raw_spinlock_t lock; 159 struct its_device *dev; 160 struct its_vpe **vpes; 161 int next_victim; 162 } vpe_proxy; 163 164 static LIST_HEAD(its_nodes); 165 static DEFINE_RAW_SPINLOCK(its_lock); 166 static struct rdists *gic_rdists; 167 static struct irq_domain *its_parent; 168 169 static unsigned long its_list_map; 170 static u16 vmovp_seq_num; 171 static DEFINE_RAW_SPINLOCK(vmovp_lock); 172 173 static DEFINE_IDA(its_vpeid_ida); 174 175 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 176 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 177 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 178 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 179 180 static u16 get_its_list(struct its_vm *vm) 181 { 182 struct its_node *its; 183 unsigned long its_list = 0; 184 185 list_for_each_entry(its, &its_nodes, entry) { 186 if (!is_v4(its)) 187 continue; 188 189 if (vm->vlpi_count[its->list_nr]) 190 __set_bit(its->list_nr, &its_list); 191 } 192 193 return (u16)its_list; 194 } 195 196 static inline u32 its_get_event_id(struct irq_data *d) 197 { 198 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 199 return d->hwirq - its_dev->event_map.lpi_base; 200 } 201 202 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 203 u32 event) 204 { 205 struct its_node *its = its_dev->its; 206 207 return its->collections + its_dev->event_map.col_map[event]; 208 } 209 210 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 211 u32 event) 212 { 213 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 214 return NULL; 215 216 return &its_dev->event_map.vlpi_maps[event]; 217 } 218 219 static struct its_collection *irq_to_col(struct irq_data *d) 220 { 221 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 222 223 return dev_event_to_col(its_dev, its_get_event_id(d)); 224 } 225 226 static struct its_collection *valid_col(struct its_collection *col) 227 { 228 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 229 return NULL; 230 231 return col; 232 } 233 234 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 235 { 236 if (valid_col(its->collections + vpe->col_idx)) 237 return vpe; 238 239 return NULL; 240 } 241 242 /* 243 * ITS command descriptors - parameters to be encoded in a command 244 * block. 245 */ 246 struct its_cmd_desc { 247 union { 248 struct { 249 struct its_device *dev; 250 u32 event_id; 251 } its_inv_cmd; 252 253 struct { 254 struct its_device *dev; 255 u32 event_id; 256 } its_clear_cmd; 257 258 struct { 259 struct its_device *dev; 260 u32 event_id; 261 } its_int_cmd; 262 263 struct { 264 struct its_device *dev; 265 int valid; 266 } its_mapd_cmd; 267 268 struct { 269 struct its_collection *col; 270 int valid; 271 } its_mapc_cmd; 272 273 struct { 274 struct its_device *dev; 275 u32 phys_id; 276 u32 event_id; 277 } its_mapti_cmd; 278 279 struct { 280 struct its_device *dev; 281 struct its_collection *col; 282 u32 event_id; 283 } its_movi_cmd; 284 285 struct { 286 struct its_device *dev; 287 u32 event_id; 288 } its_discard_cmd; 289 290 struct { 291 struct its_collection *col; 292 } its_invall_cmd; 293 294 struct { 295 struct its_vpe *vpe; 296 } its_vinvall_cmd; 297 298 struct { 299 struct its_vpe *vpe; 300 struct its_collection *col; 301 bool valid; 302 } its_vmapp_cmd; 303 304 struct { 305 struct its_vpe *vpe; 306 struct its_device *dev; 307 u32 virt_id; 308 u32 event_id; 309 bool db_enabled; 310 } its_vmapti_cmd; 311 312 struct { 313 struct its_vpe *vpe; 314 struct its_device *dev; 315 u32 event_id; 316 bool db_enabled; 317 } its_vmovi_cmd; 318 319 struct { 320 struct its_vpe *vpe; 321 struct its_collection *col; 322 u16 seq_num; 323 u16 its_list; 324 } its_vmovp_cmd; 325 }; 326 }; 327 328 /* 329 * The ITS command block, which is what the ITS actually parses. 330 */ 331 struct its_cmd_block { 332 union { 333 u64 raw_cmd[4]; 334 __le64 raw_cmd_le[4]; 335 }; 336 }; 337 338 #define ITS_CMD_QUEUE_SZ SZ_64K 339 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 340 341 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 342 struct its_cmd_block *, 343 struct its_cmd_desc *); 344 345 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 346 struct its_cmd_block *, 347 struct its_cmd_desc *); 348 349 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 350 { 351 u64 mask = GENMASK_ULL(h, l); 352 *raw_cmd &= ~mask; 353 *raw_cmd |= (val << l) & mask; 354 } 355 356 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 357 { 358 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 359 } 360 361 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 362 { 363 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 364 } 365 366 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 367 { 368 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 369 } 370 371 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 372 { 373 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 374 } 375 376 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 377 { 378 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 379 } 380 381 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 382 { 383 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 384 } 385 386 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 387 { 388 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 389 } 390 391 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 392 { 393 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 394 } 395 396 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 397 { 398 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 399 } 400 401 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 402 { 403 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 404 } 405 406 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 407 { 408 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 409 } 410 411 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 412 { 413 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 414 } 415 416 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 417 { 418 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 419 } 420 421 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 422 { 423 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 424 } 425 426 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 427 { 428 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 429 } 430 431 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 432 { 433 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 434 } 435 436 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 437 { 438 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 439 } 440 441 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 442 { 443 /* Let's fixup BE commands */ 444 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 445 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 446 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 447 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 448 } 449 450 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 451 struct its_cmd_block *cmd, 452 struct its_cmd_desc *desc) 453 { 454 unsigned long itt_addr; 455 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 456 457 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 458 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 459 460 its_encode_cmd(cmd, GITS_CMD_MAPD); 461 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 462 its_encode_size(cmd, size - 1); 463 its_encode_itt(cmd, itt_addr); 464 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 465 466 its_fixup_cmd(cmd); 467 468 return NULL; 469 } 470 471 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 472 struct its_cmd_block *cmd, 473 struct its_cmd_desc *desc) 474 { 475 its_encode_cmd(cmd, GITS_CMD_MAPC); 476 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 477 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 478 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 479 480 its_fixup_cmd(cmd); 481 482 return desc->its_mapc_cmd.col; 483 } 484 485 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 486 struct its_cmd_block *cmd, 487 struct its_cmd_desc *desc) 488 { 489 struct its_collection *col; 490 491 col = dev_event_to_col(desc->its_mapti_cmd.dev, 492 desc->its_mapti_cmd.event_id); 493 494 its_encode_cmd(cmd, GITS_CMD_MAPTI); 495 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 496 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 497 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 498 its_encode_collection(cmd, col->col_id); 499 500 its_fixup_cmd(cmd); 501 502 return valid_col(col); 503 } 504 505 static struct its_collection *its_build_movi_cmd(struct its_node *its, 506 struct its_cmd_block *cmd, 507 struct its_cmd_desc *desc) 508 { 509 struct its_collection *col; 510 511 col = dev_event_to_col(desc->its_movi_cmd.dev, 512 desc->its_movi_cmd.event_id); 513 514 its_encode_cmd(cmd, GITS_CMD_MOVI); 515 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 516 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 517 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 518 519 its_fixup_cmd(cmd); 520 521 return valid_col(col); 522 } 523 524 static struct its_collection *its_build_discard_cmd(struct its_node *its, 525 struct its_cmd_block *cmd, 526 struct its_cmd_desc *desc) 527 { 528 struct its_collection *col; 529 530 col = dev_event_to_col(desc->its_discard_cmd.dev, 531 desc->its_discard_cmd.event_id); 532 533 its_encode_cmd(cmd, GITS_CMD_DISCARD); 534 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 535 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 536 537 its_fixup_cmd(cmd); 538 539 return valid_col(col); 540 } 541 542 static struct its_collection *its_build_inv_cmd(struct its_node *its, 543 struct its_cmd_block *cmd, 544 struct its_cmd_desc *desc) 545 { 546 struct its_collection *col; 547 548 col = dev_event_to_col(desc->its_inv_cmd.dev, 549 desc->its_inv_cmd.event_id); 550 551 its_encode_cmd(cmd, GITS_CMD_INV); 552 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 553 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 554 555 its_fixup_cmd(cmd); 556 557 return valid_col(col); 558 } 559 560 static struct its_collection *its_build_int_cmd(struct its_node *its, 561 struct its_cmd_block *cmd, 562 struct its_cmd_desc *desc) 563 { 564 struct its_collection *col; 565 566 col = dev_event_to_col(desc->its_int_cmd.dev, 567 desc->its_int_cmd.event_id); 568 569 its_encode_cmd(cmd, GITS_CMD_INT); 570 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 571 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 572 573 its_fixup_cmd(cmd); 574 575 return valid_col(col); 576 } 577 578 static struct its_collection *its_build_clear_cmd(struct its_node *its, 579 struct its_cmd_block *cmd, 580 struct its_cmd_desc *desc) 581 { 582 struct its_collection *col; 583 584 col = dev_event_to_col(desc->its_clear_cmd.dev, 585 desc->its_clear_cmd.event_id); 586 587 its_encode_cmd(cmd, GITS_CMD_CLEAR); 588 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 589 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 590 591 its_fixup_cmd(cmd); 592 593 return valid_col(col); 594 } 595 596 static struct its_collection *its_build_invall_cmd(struct its_node *its, 597 struct its_cmd_block *cmd, 598 struct its_cmd_desc *desc) 599 { 600 its_encode_cmd(cmd, GITS_CMD_INVALL); 601 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 602 603 its_fixup_cmd(cmd); 604 605 return NULL; 606 } 607 608 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 609 struct its_cmd_block *cmd, 610 struct its_cmd_desc *desc) 611 { 612 its_encode_cmd(cmd, GITS_CMD_VINVALL); 613 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 614 615 its_fixup_cmd(cmd); 616 617 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 618 } 619 620 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 621 struct its_cmd_block *cmd, 622 struct its_cmd_desc *desc) 623 { 624 unsigned long vpt_addr; 625 u64 target; 626 627 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 628 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 629 630 its_encode_cmd(cmd, GITS_CMD_VMAPP); 631 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 632 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 633 its_encode_target(cmd, target); 634 its_encode_vpt_addr(cmd, vpt_addr); 635 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 636 637 its_fixup_cmd(cmd); 638 639 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 640 } 641 642 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 643 struct its_cmd_block *cmd, 644 struct its_cmd_desc *desc) 645 { 646 u32 db; 647 648 if (desc->its_vmapti_cmd.db_enabled) 649 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 650 else 651 db = 1023; 652 653 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 654 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 655 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 656 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 657 its_encode_db_phys_id(cmd, db); 658 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 659 660 its_fixup_cmd(cmd); 661 662 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 663 } 664 665 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 666 struct its_cmd_block *cmd, 667 struct its_cmd_desc *desc) 668 { 669 u32 db; 670 671 if (desc->its_vmovi_cmd.db_enabled) 672 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 673 else 674 db = 1023; 675 676 its_encode_cmd(cmd, GITS_CMD_VMOVI); 677 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 678 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 679 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 680 its_encode_db_phys_id(cmd, db); 681 its_encode_db_valid(cmd, true); 682 683 its_fixup_cmd(cmd); 684 685 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 686 } 687 688 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 689 struct its_cmd_block *cmd, 690 struct its_cmd_desc *desc) 691 { 692 u64 target; 693 694 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 695 its_encode_cmd(cmd, GITS_CMD_VMOVP); 696 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 697 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 698 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 699 its_encode_target(cmd, target); 700 701 its_fixup_cmd(cmd); 702 703 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 704 } 705 706 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 707 struct its_cmd_block *cmd, 708 struct its_cmd_desc *desc) 709 { 710 struct its_vlpi_map *map; 711 712 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 713 desc->its_inv_cmd.event_id); 714 715 its_encode_cmd(cmd, GITS_CMD_INV); 716 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 717 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 718 719 its_fixup_cmd(cmd); 720 721 return valid_vpe(its, map->vpe); 722 } 723 724 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 725 struct its_cmd_block *cmd, 726 struct its_cmd_desc *desc) 727 { 728 struct its_vlpi_map *map; 729 730 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 731 desc->its_int_cmd.event_id); 732 733 its_encode_cmd(cmd, GITS_CMD_INT); 734 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 735 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 736 737 its_fixup_cmd(cmd); 738 739 return valid_vpe(its, map->vpe); 740 } 741 742 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 743 struct its_cmd_block *cmd, 744 struct its_cmd_desc *desc) 745 { 746 struct its_vlpi_map *map; 747 748 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 749 desc->its_clear_cmd.event_id); 750 751 its_encode_cmd(cmd, GITS_CMD_CLEAR); 752 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 753 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 754 755 its_fixup_cmd(cmd); 756 757 return valid_vpe(its, map->vpe); 758 } 759 760 static u64 its_cmd_ptr_to_offset(struct its_node *its, 761 struct its_cmd_block *ptr) 762 { 763 return (ptr - its->cmd_base) * sizeof(*ptr); 764 } 765 766 static int its_queue_full(struct its_node *its) 767 { 768 int widx; 769 int ridx; 770 771 widx = its->cmd_write - its->cmd_base; 772 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 773 774 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 775 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 776 return 1; 777 778 return 0; 779 } 780 781 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 782 { 783 struct its_cmd_block *cmd; 784 u32 count = 1000000; /* 1s! */ 785 786 while (its_queue_full(its)) { 787 count--; 788 if (!count) { 789 pr_err_ratelimited("ITS queue not draining\n"); 790 return NULL; 791 } 792 cpu_relax(); 793 udelay(1); 794 } 795 796 cmd = its->cmd_write++; 797 798 /* Handle queue wrapping */ 799 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 800 its->cmd_write = its->cmd_base; 801 802 /* Clear command */ 803 cmd->raw_cmd[0] = 0; 804 cmd->raw_cmd[1] = 0; 805 cmd->raw_cmd[2] = 0; 806 cmd->raw_cmd[3] = 0; 807 808 return cmd; 809 } 810 811 static struct its_cmd_block *its_post_commands(struct its_node *its) 812 { 813 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 814 815 writel_relaxed(wr, its->base + GITS_CWRITER); 816 817 return its->cmd_write; 818 } 819 820 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 821 { 822 /* 823 * Make sure the commands written to memory are observable by 824 * the ITS. 825 */ 826 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 827 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 828 else 829 dsb(ishst); 830 } 831 832 static int its_wait_for_range_completion(struct its_node *its, 833 u64 prev_idx, 834 struct its_cmd_block *to) 835 { 836 u64 rd_idx, to_idx, linear_idx; 837 u32 count = 1000000; /* 1s! */ 838 839 /* Linearize to_idx if the command set has wrapped around */ 840 to_idx = its_cmd_ptr_to_offset(its, to); 841 if (to_idx < prev_idx) 842 to_idx += ITS_CMD_QUEUE_SZ; 843 844 linear_idx = prev_idx; 845 846 while (1) { 847 s64 delta; 848 849 rd_idx = readl_relaxed(its->base + GITS_CREADR); 850 851 /* 852 * Compute the read pointer progress, taking the 853 * potential wrap-around into account. 854 */ 855 delta = rd_idx - prev_idx; 856 if (rd_idx < prev_idx) 857 delta += ITS_CMD_QUEUE_SZ; 858 859 linear_idx += delta; 860 if (linear_idx >= to_idx) 861 break; 862 863 count--; 864 if (!count) { 865 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 866 to_idx, linear_idx); 867 return -1; 868 } 869 prev_idx = rd_idx; 870 cpu_relax(); 871 udelay(1); 872 } 873 874 return 0; 875 } 876 877 /* Warning, macro hell follows */ 878 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 879 void name(struct its_node *its, \ 880 buildtype builder, \ 881 struct its_cmd_desc *desc) \ 882 { \ 883 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 884 synctype *sync_obj; \ 885 unsigned long flags; \ 886 u64 rd_idx; \ 887 \ 888 raw_spin_lock_irqsave(&its->lock, flags); \ 889 \ 890 cmd = its_allocate_entry(its); \ 891 if (!cmd) { /* We're soooooo screewed... */ \ 892 raw_spin_unlock_irqrestore(&its->lock, flags); \ 893 return; \ 894 } \ 895 sync_obj = builder(its, cmd, desc); \ 896 its_flush_cmd(its, cmd); \ 897 \ 898 if (sync_obj) { \ 899 sync_cmd = its_allocate_entry(its); \ 900 if (!sync_cmd) \ 901 goto post; \ 902 \ 903 buildfn(its, sync_cmd, sync_obj); \ 904 its_flush_cmd(its, sync_cmd); \ 905 } \ 906 \ 907 post: \ 908 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 909 next_cmd = its_post_commands(its); \ 910 raw_spin_unlock_irqrestore(&its->lock, flags); \ 911 \ 912 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 913 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 914 } 915 916 static void its_build_sync_cmd(struct its_node *its, 917 struct its_cmd_block *sync_cmd, 918 struct its_collection *sync_col) 919 { 920 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 921 its_encode_target(sync_cmd, sync_col->target_address); 922 923 its_fixup_cmd(sync_cmd); 924 } 925 926 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 927 struct its_collection, its_build_sync_cmd) 928 929 static void its_build_vsync_cmd(struct its_node *its, 930 struct its_cmd_block *sync_cmd, 931 struct its_vpe *sync_vpe) 932 { 933 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 934 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 935 936 its_fixup_cmd(sync_cmd); 937 } 938 939 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 940 struct its_vpe, its_build_vsync_cmd) 941 942 static void its_send_int(struct its_device *dev, u32 event_id) 943 { 944 struct its_cmd_desc desc; 945 946 desc.its_int_cmd.dev = dev; 947 desc.its_int_cmd.event_id = event_id; 948 949 its_send_single_command(dev->its, its_build_int_cmd, &desc); 950 } 951 952 static void its_send_clear(struct its_device *dev, u32 event_id) 953 { 954 struct its_cmd_desc desc; 955 956 desc.its_clear_cmd.dev = dev; 957 desc.its_clear_cmd.event_id = event_id; 958 959 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 960 } 961 962 static void its_send_inv(struct its_device *dev, u32 event_id) 963 { 964 struct its_cmd_desc desc; 965 966 desc.its_inv_cmd.dev = dev; 967 desc.its_inv_cmd.event_id = event_id; 968 969 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 970 } 971 972 static void its_send_mapd(struct its_device *dev, int valid) 973 { 974 struct its_cmd_desc desc; 975 976 desc.its_mapd_cmd.dev = dev; 977 desc.its_mapd_cmd.valid = !!valid; 978 979 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 980 } 981 982 static void its_send_mapc(struct its_node *its, struct its_collection *col, 983 int valid) 984 { 985 struct its_cmd_desc desc; 986 987 desc.its_mapc_cmd.col = col; 988 desc.its_mapc_cmd.valid = !!valid; 989 990 its_send_single_command(its, its_build_mapc_cmd, &desc); 991 } 992 993 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 994 { 995 struct its_cmd_desc desc; 996 997 desc.its_mapti_cmd.dev = dev; 998 desc.its_mapti_cmd.phys_id = irq_id; 999 desc.its_mapti_cmd.event_id = id; 1000 1001 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1002 } 1003 1004 static void its_send_movi(struct its_device *dev, 1005 struct its_collection *col, u32 id) 1006 { 1007 struct its_cmd_desc desc; 1008 1009 desc.its_movi_cmd.dev = dev; 1010 desc.its_movi_cmd.col = col; 1011 desc.its_movi_cmd.event_id = id; 1012 1013 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1014 } 1015 1016 static void its_send_discard(struct its_device *dev, u32 id) 1017 { 1018 struct its_cmd_desc desc; 1019 1020 desc.its_discard_cmd.dev = dev; 1021 desc.its_discard_cmd.event_id = id; 1022 1023 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1024 } 1025 1026 static void its_send_invall(struct its_node *its, struct its_collection *col) 1027 { 1028 struct its_cmd_desc desc; 1029 1030 desc.its_invall_cmd.col = col; 1031 1032 its_send_single_command(its, its_build_invall_cmd, &desc); 1033 } 1034 1035 static void its_send_vmapti(struct its_device *dev, u32 id) 1036 { 1037 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1038 struct its_cmd_desc desc; 1039 1040 desc.its_vmapti_cmd.vpe = map->vpe; 1041 desc.its_vmapti_cmd.dev = dev; 1042 desc.its_vmapti_cmd.virt_id = map->vintid; 1043 desc.its_vmapti_cmd.event_id = id; 1044 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1045 1046 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1047 } 1048 1049 static void its_send_vmovi(struct its_device *dev, u32 id) 1050 { 1051 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1052 struct its_cmd_desc desc; 1053 1054 desc.its_vmovi_cmd.vpe = map->vpe; 1055 desc.its_vmovi_cmd.dev = dev; 1056 desc.its_vmovi_cmd.event_id = id; 1057 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1058 1059 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1060 } 1061 1062 static void its_send_vmapp(struct its_node *its, 1063 struct its_vpe *vpe, bool valid) 1064 { 1065 struct its_cmd_desc desc; 1066 1067 desc.its_vmapp_cmd.vpe = vpe; 1068 desc.its_vmapp_cmd.valid = valid; 1069 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1070 1071 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1072 } 1073 1074 static void its_send_vmovp(struct its_vpe *vpe) 1075 { 1076 struct its_cmd_desc desc = {}; 1077 struct its_node *its; 1078 unsigned long flags; 1079 int col_id = vpe->col_idx; 1080 1081 desc.its_vmovp_cmd.vpe = vpe; 1082 1083 if (!its_list_map) { 1084 its = list_first_entry(&its_nodes, struct its_node, entry); 1085 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1086 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1087 return; 1088 } 1089 1090 /* 1091 * Yet another marvel of the architecture. If using the 1092 * its_list "feature", we need to make sure that all ITSs 1093 * receive all VMOVP commands in the same order. The only way 1094 * to guarantee this is to make vmovp a serialization point. 1095 * 1096 * Wall <-- Head. 1097 */ 1098 raw_spin_lock_irqsave(&vmovp_lock, flags); 1099 1100 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1101 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1102 1103 /* Emit VMOVPs */ 1104 list_for_each_entry(its, &its_nodes, entry) { 1105 if (!is_v4(its)) 1106 continue; 1107 1108 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1109 continue; 1110 1111 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1112 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1113 } 1114 1115 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1116 } 1117 1118 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1119 { 1120 struct its_cmd_desc desc; 1121 1122 desc.its_vinvall_cmd.vpe = vpe; 1123 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1124 } 1125 1126 static void its_send_vinv(struct its_device *dev, u32 event_id) 1127 { 1128 struct its_cmd_desc desc; 1129 1130 /* 1131 * There is no real VINV command. This is just a normal INV, 1132 * with a VSYNC instead of a SYNC. 1133 */ 1134 desc.its_inv_cmd.dev = dev; 1135 desc.its_inv_cmd.event_id = event_id; 1136 1137 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1138 } 1139 1140 static void its_send_vint(struct its_device *dev, u32 event_id) 1141 { 1142 struct its_cmd_desc desc; 1143 1144 /* 1145 * There is no real VINT command. This is just a normal INT, 1146 * with a VSYNC instead of a SYNC. 1147 */ 1148 desc.its_int_cmd.dev = dev; 1149 desc.its_int_cmd.event_id = event_id; 1150 1151 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1152 } 1153 1154 static void its_send_vclear(struct its_device *dev, u32 event_id) 1155 { 1156 struct its_cmd_desc desc; 1157 1158 /* 1159 * There is no real VCLEAR command. This is just a normal CLEAR, 1160 * with a VSYNC instead of a SYNC. 1161 */ 1162 desc.its_clear_cmd.dev = dev; 1163 desc.its_clear_cmd.event_id = event_id; 1164 1165 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1166 } 1167 1168 /* 1169 * irqchip functions - assumes MSI, mostly. 1170 */ 1171 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 1172 { 1173 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1174 u32 event = its_get_event_id(d); 1175 1176 if (!irqd_is_forwarded_to_vcpu(d)) 1177 return NULL; 1178 1179 return dev_event_to_vlpi_map(its_dev, event); 1180 } 1181 1182 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1183 { 1184 struct its_vlpi_map *map = get_vlpi_map(d); 1185 irq_hw_number_t hwirq; 1186 void *va; 1187 u8 *cfg; 1188 1189 if (map) { 1190 va = page_address(map->vm->vprop_page); 1191 hwirq = map->vintid; 1192 1193 /* Remember the updated property */ 1194 map->properties &= ~clr; 1195 map->properties |= set | LPI_PROP_GROUP1; 1196 } else { 1197 va = gic_rdists->prop_table_va; 1198 hwirq = d->hwirq; 1199 } 1200 1201 cfg = va + hwirq - 8192; 1202 *cfg &= ~clr; 1203 *cfg |= set | LPI_PROP_GROUP1; 1204 1205 /* 1206 * Make the above write visible to the redistributors. 1207 * And yes, we're flushing exactly: One. Single. Byte. 1208 * Humpf... 1209 */ 1210 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1211 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1212 else 1213 dsb(ishst); 1214 } 1215 1216 static void wait_for_syncr(void __iomem *rdbase) 1217 { 1218 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 1219 cpu_relax(); 1220 } 1221 1222 static void direct_lpi_inv(struct irq_data *d) 1223 { 1224 struct its_collection *col; 1225 void __iomem *rdbase; 1226 1227 /* Target the redistributor this LPI is currently routed to */ 1228 col = irq_to_col(d); 1229 rdbase = per_cpu_ptr(gic_rdists->rdist, col->col_id)->rd_base; 1230 gic_write_lpir(d->hwirq, rdbase + GICR_INVLPIR); 1231 1232 wait_for_syncr(rdbase); 1233 } 1234 1235 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1236 { 1237 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1238 1239 lpi_write_config(d, clr, set); 1240 if (gic_rdists->has_direct_lpi && !irqd_is_forwarded_to_vcpu(d)) 1241 direct_lpi_inv(d); 1242 else if (!irqd_is_forwarded_to_vcpu(d)) 1243 its_send_inv(its_dev, its_get_event_id(d)); 1244 else 1245 its_send_vinv(its_dev, its_get_event_id(d)); 1246 } 1247 1248 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1249 { 1250 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1251 u32 event = its_get_event_id(d); 1252 struct its_vlpi_map *map; 1253 1254 map = dev_event_to_vlpi_map(its_dev, event); 1255 1256 if (map->db_enabled == enable) 1257 return; 1258 1259 map->db_enabled = enable; 1260 1261 /* 1262 * More fun with the architecture: 1263 * 1264 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1265 * value or to 1023, depending on the enable bit. But that 1266 * would be issueing a mapping for an /existing/ DevID+EventID 1267 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1268 * to the /same/ vPE, using this opportunity to adjust the 1269 * doorbell. Mouahahahaha. We loves it, Precious. 1270 */ 1271 its_send_vmovi(its_dev, event); 1272 } 1273 1274 static void its_mask_irq(struct irq_data *d) 1275 { 1276 if (irqd_is_forwarded_to_vcpu(d)) 1277 its_vlpi_set_doorbell(d, false); 1278 1279 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1280 } 1281 1282 static void its_unmask_irq(struct irq_data *d) 1283 { 1284 if (irqd_is_forwarded_to_vcpu(d)) 1285 its_vlpi_set_doorbell(d, true); 1286 1287 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1288 } 1289 1290 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1291 bool force) 1292 { 1293 unsigned int cpu; 1294 const struct cpumask *cpu_mask = cpu_online_mask; 1295 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1296 struct its_collection *target_col; 1297 u32 id = its_get_event_id(d); 1298 1299 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1300 if (irqd_is_forwarded_to_vcpu(d)) 1301 return -EINVAL; 1302 1303 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1304 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1305 if (its_dev->its->numa_node >= 0) { 1306 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1307 if (!cpumask_intersects(mask_val, cpu_mask)) 1308 return -EINVAL; 1309 } 1310 } 1311 1312 cpu = cpumask_any_and(mask_val, cpu_mask); 1313 1314 if (cpu >= nr_cpu_ids) 1315 return -EINVAL; 1316 1317 /* don't set the affinity when the target cpu is same as current one */ 1318 if (cpu != its_dev->event_map.col_map[id]) { 1319 target_col = &its_dev->its->collections[cpu]; 1320 its_send_movi(its_dev, target_col, id); 1321 its_dev->event_map.col_map[id] = cpu; 1322 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1323 } 1324 1325 return IRQ_SET_MASK_OK_DONE; 1326 } 1327 1328 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1329 { 1330 struct its_node *its = its_dev->its; 1331 1332 return its->phys_base + GITS_TRANSLATER; 1333 } 1334 1335 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1336 { 1337 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1338 struct its_node *its; 1339 u64 addr; 1340 1341 its = its_dev->its; 1342 addr = its->get_msi_base(its_dev); 1343 1344 msg->address_lo = lower_32_bits(addr); 1345 msg->address_hi = upper_32_bits(addr); 1346 msg->data = its_get_event_id(d); 1347 1348 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1349 } 1350 1351 static int its_irq_set_irqchip_state(struct irq_data *d, 1352 enum irqchip_irq_state which, 1353 bool state) 1354 { 1355 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1356 u32 event = its_get_event_id(d); 1357 1358 if (which != IRQCHIP_STATE_PENDING) 1359 return -EINVAL; 1360 1361 if (irqd_is_forwarded_to_vcpu(d)) { 1362 if (state) 1363 its_send_vint(its_dev, event); 1364 else 1365 its_send_vclear(its_dev, event); 1366 } else { 1367 if (state) 1368 its_send_int(its_dev, event); 1369 else 1370 its_send_clear(its_dev, event); 1371 } 1372 1373 return 0; 1374 } 1375 1376 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1377 { 1378 unsigned long flags; 1379 1380 /* Not using the ITS list? Everything is always mapped. */ 1381 if (!its_list_map) 1382 return; 1383 1384 raw_spin_lock_irqsave(&vmovp_lock, flags); 1385 1386 /* 1387 * If the VM wasn't mapped yet, iterate over the vpes and get 1388 * them mapped now. 1389 */ 1390 vm->vlpi_count[its->list_nr]++; 1391 1392 if (vm->vlpi_count[its->list_nr] == 1) { 1393 int i; 1394 1395 for (i = 0; i < vm->nr_vpes; i++) { 1396 struct its_vpe *vpe = vm->vpes[i]; 1397 struct irq_data *d = irq_get_irq_data(vpe->irq); 1398 1399 /* Map the VPE to the first possible CPU */ 1400 vpe->col_idx = cpumask_first(cpu_online_mask); 1401 its_send_vmapp(its, vpe, true); 1402 its_send_vinvall(its, vpe); 1403 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1404 } 1405 } 1406 1407 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1408 } 1409 1410 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1411 { 1412 unsigned long flags; 1413 1414 /* Not using the ITS list? Everything is always mapped. */ 1415 if (!its_list_map) 1416 return; 1417 1418 raw_spin_lock_irqsave(&vmovp_lock, flags); 1419 1420 if (!--vm->vlpi_count[its->list_nr]) { 1421 int i; 1422 1423 for (i = 0; i < vm->nr_vpes; i++) 1424 its_send_vmapp(its, vm->vpes[i], false); 1425 } 1426 1427 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1428 } 1429 1430 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1431 { 1432 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1433 u32 event = its_get_event_id(d); 1434 int ret = 0; 1435 1436 if (!info->map) 1437 return -EINVAL; 1438 1439 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1440 1441 if (!its_dev->event_map.vm) { 1442 struct its_vlpi_map *maps; 1443 1444 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1445 GFP_ATOMIC); 1446 if (!maps) { 1447 ret = -ENOMEM; 1448 goto out; 1449 } 1450 1451 its_dev->event_map.vm = info->map->vm; 1452 its_dev->event_map.vlpi_maps = maps; 1453 } else if (its_dev->event_map.vm != info->map->vm) { 1454 ret = -EINVAL; 1455 goto out; 1456 } 1457 1458 /* Get our private copy of the mapping information */ 1459 its_dev->event_map.vlpi_maps[event] = *info->map; 1460 1461 if (irqd_is_forwarded_to_vcpu(d)) { 1462 /* Already mapped, move it around */ 1463 its_send_vmovi(its_dev, event); 1464 } else { 1465 /* Ensure all the VPEs are mapped on this ITS */ 1466 its_map_vm(its_dev->its, info->map->vm); 1467 1468 /* 1469 * Flag the interrupt as forwarded so that we can 1470 * start poking the virtual property table. 1471 */ 1472 irqd_set_forwarded_to_vcpu(d); 1473 1474 /* Write out the property to the prop table */ 1475 lpi_write_config(d, 0xff, info->map->properties); 1476 1477 /* Drop the physical mapping */ 1478 its_send_discard(its_dev, event); 1479 1480 /* and install the virtual one */ 1481 its_send_vmapti(its_dev, event); 1482 1483 /* Increment the number of VLPIs */ 1484 its_dev->event_map.nr_vlpis++; 1485 } 1486 1487 out: 1488 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1489 return ret; 1490 } 1491 1492 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1493 { 1494 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1495 struct its_vlpi_map *map; 1496 int ret = 0; 1497 1498 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1499 1500 map = get_vlpi_map(d); 1501 1502 if (!its_dev->event_map.vm || !map) { 1503 ret = -EINVAL; 1504 goto out; 1505 } 1506 1507 /* Copy our mapping information to the incoming request */ 1508 *info->map = *map; 1509 1510 out: 1511 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1512 return ret; 1513 } 1514 1515 static int its_vlpi_unmap(struct irq_data *d) 1516 { 1517 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1518 u32 event = its_get_event_id(d); 1519 int ret = 0; 1520 1521 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1522 1523 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1524 ret = -EINVAL; 1525 goto out; 1526 } 1527 1528 /* Drop the virtual mapping */ 1529 its_send_discard(its_dev, event); 1530 1531 /* and restore the physical one */ 1532 irqd_clr_forwarded_to_vcpu(d); 1533 its_send_mapti(its_dev, d->hwirq, event); 1534 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1535 LPI_PROP_ENABLED | 1536 LPI_PROP_GROUP1)); 1537 1538 /* Potentially unmap the VM from this ITS */ 1539 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1540 1541 /* 1542 * Drop the refcount and make the device available again if 1543 * this was the last VLPI. 1544 */ 1545 if (!--its_dev->event_map.nr_vlpis) { 1546 its_dev->event_map.vm = NULL; 1547 kfree(its_dev->event_map.vlpi_maps); 1548 } 1549 1550 out: 1551 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1552 return ret; 1553 } 1554 1555 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1556 { 1557 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1558 1559 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1560 return -EINVAL; 1561 1562 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1563 lpi_update_config(d, 0xff, info->config); 1564 else 1565 lpi_write_config(d, 0xff, info->config); 1566 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1567 1568 return 0; 1569 } 1570 1571 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1572 { 1573 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1574 struct its_cmd_info *info = vcpu_info; 1575 1576 /* Need a v4 ITS */ 1577 if (!is_v4(its_dev->its)) 1578 return -EINVAL; 1579 1580 /* Unmap request? */ 1581 if (!info) 1582 return its_vlpi_unmap(d); 1583 1584 switch (info->cmd_type) { 1585 case MAP_VLPI: 1586 return its_vlpi_map(d, info); 1587 1588 case GET_VLPI: 1589 return its_vlpi_get(d, info); 1590 1591 case PROP_UPDATE_VLPI: 1592 case PROP_UPDATE_AND_INV_VLPI: 1593 return its_vlpi_prop_update(d, info); 1594 1595 default: 1596 return -EINVAL; 1597 } 1598 } 1599 1600 static struct irq_chip its_irq_chip = { 1601 .name = "ITS", 1602 .irq_mask = its_mask_irq, 1603 .irq_unmask = its_unmask_irq, 1604 .irq_eoi = irq_chip_eoi_parent, 1605 .irq_set_affinity = its_set_affinity, 1606 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1607 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1608 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1609 }; 1610 1611 1612 /* 1613 * How we allocate LPIs: 1614 * 1615 * lpi_range_list contains ranges of LPIs that are to available to 1616 * allocate from. To allocate LPIs, just pick the first range that 1617 * fits the required allocation, and reduce it by the required 1618 * amount. Once empty, remove the range from the list. 1619 * 1620 * To free a range of LPIs, add a free range to the list, sort it and 1621 * merge the result if the new range happens to be adjacent to an 1622 * already free block. 1623 * 1624 * The consequence of the above is that allocation is cost is low, but 1625 * freeing is expensive. We assumes that freeing rarely occurs. 1626 */ 1627 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1628 1629 static DEFINE_MUTEX(lpi_range_lock); 1630 static LIST_HEAD(lpi_range_list); 1631 1632 struct lpi_range { 1633 struct list_head entry; 1634 u32 base_id; 1635 u32 span; 1636 }; 1637 1638 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1639 { 1640 struct lpi_range *range; 1641 1642 range = kmalloc(sizeof(*range), GFP_KERNEL); 1643 if (range) { 1644 range->base_id = base; 1645 range->span = span; 1646 } 1647 1648 return range; 1649 } 1650 1651 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1652 { 1653 struct lpi_range *range, *tmp; 1654 int err = -ENOSPC; 1655 1656 mutex_lock(&lpi_range_lock); 1657 1658 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1659 if (range->span >= nr_lpis) { 1660 *base = range->base_id; 1661 range->base_id += nr_lpis; 1662 range->span -= nr_lpis; 1663 1664 if (range->span == 0) { 1665 list_del(&range->entry); 1666 kfree(range); 1667 } 1668 1669 err = 0; 1670 break; 1671 } 1672 } 1673 1674 mutex_unlock(&lpi_range_lock); 1675 1676 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1677 return err; 1678 } 1679 1680 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 1681 { 1682 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 1683 return; 1684 if (a->base_id + a->span != b->base_id) 1685 return; 1686 b->base_id = a->base_id; 1687 b->span += a->span; 1688 list_del(&a->entry); 1689 kfree(a); 1690 } 1691 1692 static int free_lpi_range(u32 base, u32 nr_lpis) 1693 { 1694 struct lpi_range *new, *old; 1695 1696 new = mk_lpi_range(base, nr_lpis); 1697 if (!new) 1698 return -ENOMEM; 1699 1700 mutex_lock(&lpi_range_lock); 1701 1702 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 1703 if (old->base_id < base) 1704 break; 1705 } 1706 /* 1707 * old is the last element with ->base_id smaller than base, 1708 * so new goes right after it. If there are no elements with 1709 * ->base_id smaller than base, &old->entry ends up pointing 1710 * at the head of the list, and inserting new it the start of 1711 * the list is the right thing to do in that case as well. 1712 */ 1713 list_add(&new->entry, &old->entry); 1714 /* 1715 * Now check if we can merge with the preceding and/or 1716 * following ranges. 1717 */ 1718 merge_lpi_ranges(old, new); 1719 merge_lpi_ranges(new, list_next_entry(new, entry)); 1720 1721 mutex_unlock(&lpi_range_lock); 1722 return 0; 1723 } 1724 1725 static int __init its_lpi_init(u32 id_bits) 1726 { 1727 u32 lpis = (1UL << id_bits) - 8192; 1728 u32 numlpis; 1729 int err; 1730 1731 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1732 1733 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1734 lpis = numlpis; 1735 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1736 lpis); 1737 } 1738 1739 /* 1740 * Initializing the allocator is just the same as freeing the 1741 * full range of LPIs. 1742 */ 1743 err = free_lpi_range(8192, lpis); 1744 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1745 return err; 1746 } 1747 1748 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1749 { 1750 unsigned long *bitmap = NULL; 1751 int err = 0; 1752 1753 do { 1754 err = alloc_lpi_range(nr_irqs, base); 1755 if (!err) 1756 break; 1757 1758 nr_irqs /= 2; 1759 } while (nr_irqs > 0); 1760 1761 if (!nr_irqs) 1762 err = -ENOSPC; 1763 1764 if (err) 1765 goto out; 1766 1767 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1768 if (!bitmap) 1769 goto out; 1770 1771 *nr_ids = nr_irqs; 1772 1773 out: 1774 if (!bitmap) 1775 *base = *nr_ids = 0; 1776 1777 return bitmap; 1778 } 1779 1780 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1781 { 1782 WARN_ON(free_lpi_range(base, nr_ids)); 1783 kfree(bitmap); 1784 } 1785 1786 static void gic_reset_prop_table(void *va) 1787 { 1788 /* Priority 0xa0, Group-1, disabled */ 1789 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 1790 1791 /* Make sure the GIC will observe the written configuration */ 1792 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 1793 } 1794 1795 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1796 { 1797 struct page *prop_page; 1798 1799 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1800 if (!prop_page) 1801 return NULL; 1802 1803 gic_reset_prop_table(page_address(prop_page)); 1804 1805 return prop_page; 1806 } 1807 1808 static void its_free_prop_table(struct page *prop_page) 1809 { 1810 free_pages((unsigned long)page_address(prop_page), 1811 get_order(LPI_PROPBASE_SZ)); 1812 } 1813 1814 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 1815 { 1816 phys_addr_t start, end, addr_end; 1817 u64 i; 1818 1819 /* 1820 * We don't bother checking for a kdump kernel as by 1821 * construction, the LPI tables are out of this kernel's 1822 * memory map. 1823 */ 1824 if (is_kdump_kernel()) 1825 return true; 1826 1827 addr_end = addr + size - 1; 1828 1829 for_each_reserved_mem_region(i, &start, &end) { 1830 if (addr >= start && addr_end <= end) 1831 return true; 1832 } 1833 1834 /* Not found, not a good sign... */ 1835 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 1836 &addr, &addr_end); 1837 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 1838 return false; 1839 } 1840 1841 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 1842 { 1843 if (efi_enabled(EFI_CONFIG_TABLES)) 1844 return efi_mem_reserve_persistent(addr, size); 1845 1846 return 0; 1847 } 1848 1849 static int __init its_setup_lpi_prop_table(void) 1850 { 1851 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 1852 u64 val; 1853 1854 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 1855 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 1856 1857 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 1858 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 1859 LPI_PROPBASE_SZ, 1860 MEMREMAP_WB); 1861 gic_reset_prop_table(gic_rdists->prop_table_va); 1862 } else { 1863 struct page *page; 1864 1865 lpi_id_bits = min_t(u32, 1866 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 1867 ITS_MAX_LPI_NRBITS); 1868 page = its_allocate_prop_table(GFP_NOWAIT); 1869 if (!page) { 1870 pr_err("Failed to allocate PROPBASE\n"); 1871 return -ENOMEM; 1872 } 1873 1874 gic_rdists->prop_table_pa = page_to_phys(page); 1875 gic_rdists->prop_table_va = page_address(page); 1876 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 1877 LPI_PROPBASE_SZ)); 1878 } 1879 1880 pr_info("GICv3: using LPI property table @%pa\n", 1881 &gic_rdists->prop_table_pa); 1882 1883 return its_lpi_init(lpi_id_bits); 1884 } 1885 1886 static const char *its_base_type_string[] = { 1887 [GITS_BASER_TYPE_DEVICE] = "Devices", 1888 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1889 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1890 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1891 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1892 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1893 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1894 }; 1895 1896 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1897 { 1898 u32 idx = baser - its->tables; 1899 1900 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1901 } 1902 1903 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1904 u64 val) 1905 { 1906 u32 idx = baser - its->tables; 1907 1908 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1909 baser->val = its_read_baser(its, baser); 1910 } 1911 1912 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1913 u64 cache, u64 shr, u32 psz, u32 order, 1914 bool indirect) 1915 { 1916 u64 val = its_read_baser(its, baser); 1917 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1918 u64 type = GITS_BASER_TYPE(val); 1919 u64 baser_phys, tmp; 1920 u32 alloc_pages; 1921 struct page *page; 1922 void *base; 1923 1924 retry_alloc_baser: 1925 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1926 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1927 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1928 &its->phys_base, its_base_type_string[type], 1929 alloc_pages, GITS_BASER_PAGES_MAX); 1930 alloc_pages = GITS_BASER_PAGES_MAX; 1931 order = get_order(GITS_BASER_PAGES_MAX * psz); 1932 } 1933 1934 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 1935 if (!page) 1936 return -ENOMEM; 1937 1938 base = (void *)page_address(page); 1939 baser_phys = virt_to_phys(base); 1940 1941 /* Check if the physical address of the memory is above 48bits */ 1942 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1943 1944 /* 52bit PA is supported only when PageSize=64K */ 1945 if (psz != SZ_64K) { 1946 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1947 free_pages((unsigned long)base, order); 1948 return -ENXIO; 1949 } 1950 1951 /* Convert 52bit PA to 48bit field */ 1952 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1953 } 1954 1955 retry_baser: 1956 val = (baser_phys | 1957 (type << GITS_BASER_TYPE_SHIFT) | 1958 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1959 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1960 cache | 1961 shr | 1962 GITS_BASER_VALID); 1963 1964 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1965 1966 switch (psz) { 1967 case SZ_4K: 1968 val |= GITS_BASER_PAGE_SIZE_4K; 1969 break; 1970 case SZ_16K: 1971 val |= GITS_BASER_PAGE_SIZE_16K; 1972 break; 1973 case SZ_64K: 1974 val |= GITS_BASER_PAGE_SIZE_64K; 1975 break; 1976 } 1977 1978 its_write_baser(its, baser, val); 1979 tmp = baser->val; 1980 1981 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1982 /* 1983 * Shareability didn't stick. Just use 1984 * whatever the read reported, which is likely 1985 * to be the only thing this redistributor 1986 * supports. If that's zero, make it 1987 * non-cacheable as well. 1988 */ 1989 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1990 if (!shr) { 1991 cache = GITS_BASER_nC; 1992 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1993 } 1994 goto retry_baser; 1995 } 1996 1997 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1998 /* 1999 * Page size didn't stick. Let's try a smaller 2000 * size and retry. If we reach 4K, then 2001 * something is horribly wrong... 2002 */ 2003 free_pages((unsigned long)base, order); 2004 baser->base = NULL; 2005 2006 switch (psz) { 2007 case SZ_16K: 2008 psz = SZ_4K; 2009 goto retry_alloc_baser; 2010 case SZ_64K: 2011 psz = SZ_16K; 2012 goto retry_alloc_baser; 2013 } 2014 } 2015 2016 if (val != tmp) { 2017 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2018 &its->phys_base, its_base_type_string[type], 2019 val, tmp); 2020 free_pages((unsigned long)base, order); 2021 return -ENXIO; 2022 } 2023 2024 baser->order = order; 2025 baser->base = base; 2026 baser->psz = psz; 2027 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2028 2029 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2030 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2031 its_base_type_string[type], 2032 (unsigned long)virt_to_phys(base), 2033 indirect ? "indirect" : "flat", (int)esz, 2034 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2035 2036 return 0; 2037 } 2038 2039 static bool its_parse_indirect_baser(struct its_node *its, 2040 struct its_baser *baser, 2041 u32 psz, u32 *order, u32 ids) 2042 { 2043 u64 tmp = its_read_baser(its, baser); 2044 u64 type = GITS_BASER_TYPE(tmp); 2045 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2046 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2047 u32 new_order = *order; 2048 bool indirect = false; 2049 2050 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2051 if ((esz << ids) > (psz * 2)) { 2052 /* 2053 * Find out whether hw supports a single or two-level table by 2054 * table by reading bit at offset '62' after writing '1' to it. 2055 */ 2056 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2057 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2058 2059 if (indirect) { 2060 /* 2061 * The size of the lvl2 table is equal to ITS page size 2062 * which is 'psz'. For computing lvl1 table size, 2063 * subtract ID bits that sparse lvl2 table from 'ids' 2064 * which is reported by ITS hardware times lvl1 table 2065 * entry size. 2066 */ 2067 ids -= ilog2(psz / (int)esz); 2068 esz = GITS_LVL1_ENTRY_SIZE; 2069 } 2070 } 2071 2072 /* 2073 * Allocate as many entries as required to fit the 2074 * range of device IDs that the ITS can grok... The ID 2075 * space being incredibly sparse, this results in a 2076 * massive waste of memory if two-level device table 2077 * feature is not supported by hardware. 2078 */ 2079 new_order = max_t(u32, get_order(esz << ids), new_order); 2080 if (new_order >= MAX_ORDER) { 2081 new_order = MAX_ORDER - 1; 2082 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2083 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2084 &its->phys_base, its_base_type_string[type], 2085 device_ids(its), ids); 2086 } 2087 2088 *order = new_order; 2089 2090 return indirect; 2091 } 2092 2093 static void its_free_tables(struct its_node *its) 2094 { 2095 int i; 2096 2097 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2098 if (its->tables[i].base) { 2099 free_pages((unsigned long)its->tables[i].base, 2100 its->tables[i].order); 2101 its->tables[i].base = NULL; 2102 } 2103 } 2104 } 2105 2106 static int its_alloc_tables(struct its_node *its) 2107 { 2108 u64 shr = GITS_BASER_InnerShareable; 2109 u64 cache = GITS_BASER_RaWaWb; 2110 u32 psz = SZ_64K; 2111 int err, i; 2112 2113 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2114 /* erratum 24313: ignore memory access type */ 2115 cache = GITS_BASER_nCnB; 2116 2117 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2118 struct its_baser *baser = its->tables + i; 2119 u64 val = its_read_baser(its, baser); 2120 u64 type = GITS_BASER_TYPE(val); 2121 u32 order = get_order(psz); 2122 bool indirect = false; 2123 2124 switch (type) { 2125 case GITS_BASER_TYPE_NONE: 2126 continue; 2127 2128 case GITS_BASER_TYPE_DEVICE: 2129 indirect = its_parse_indirect_baser(its, baser, 2130 psz, &order, 2131 device_ids(its)); 2132 break; 2133 2134 case GITS_BASER_TYPE_VCPU: 2135 indirect = its_parse_indirect_baser(its, baser, 2136 psz, &order, 2137 ITS_MAX_VPEID_BITS); 2138 break; 2139 } 2140 2141 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 2142 if (err < 0) { 2143 its_free_tables(its); 2144 return err; 2145 } 2146 2147 /* Update settings which will be used for next BASERn */ 2148 psz = baser->psz; 2149 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2150 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int its_alloc_collections(struct its_node *its) 2157 { 2158 int i; 2159 2160 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2161 GFP_KERNEL); 2162 if (!its->collections) 2163 return -ENOMEM; 2164 2165 for (i = 0; i < nr_cpu_ids; i++) 2166 its->collections[i].target_address = ~0ULL; 2167 2168 return 0; 2169 } 2170 2171 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2172 { 2173 struct page *pend_page; 2174 2175 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2176 get_order(LPI_PENDBASE_SZ)); 2177 if (!pend_page) 2178 return NULL; 2179 2180 /* Make sure the GIC will observe the zero-ed page */ 2181 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2182 2183 return pend_page; 2184 } 2185 2186 static void its_free_pending_table(struct page *pt) 2187 { 2188 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2189 } 2190 2191 /* 2192 * Booting with kdump and LPIs enabled is generally fine. Any other 2193 * case is wrong in the absence of firmware/EFI support. 2194 */ 2195 static bool enabled_lpis_allowed(void) 2196 { 2197 phys_addr_t addr; 2198 u64 val; 2199 2200 /* Check whether the property table is in a reserved region */ 2201 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2202 addr = val & GENMASK_ULL(51, 12); 2203 2204 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2205 } 2206 2207 static int __init allocate_lpi_tables(void) 2208 { 2209 u64 val; 2210 int err, cpu; 2211 2212 /* 2213 * If LPIs are enabled while we run this from the boot CPU, 2214 * flag the RD tables as pre-allocated if the stars do align. 2215 */ 2216 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2217 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2218 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2219 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2220 pr_info("GICv3: Using preallocated redistributor tables\n"); 2221 } 2222 2223 err = its_setup_lpi_prop_table(); 2224 if (err) 2225 return err; 2226 2227 /* 2228 * We allocate all the pending tables anyway, as we may have a 2229 * mix of RDs that have had LPIs enabled, and some that 2230 * don't. We'll free the unused ones as each CPU comes online. 2231 */ 2232 for_each_possible_cpu(cpu) { 2233 struct page *pend_page; 2234 2235 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2236 if (!pend_page) { 2237 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2238 return -ENOMEM; 2239 } 2240 2241 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2242 } 2243 2244 return 0; 2245 } 2246 2247 static u64 its_clear_vpend_valid(void __iomem *vlpi_base) 2248 { 2249 u32 count = 1000000; /* 1s! */ 2250 bool clean; 2251 u64 val; 2252 2253 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2254 val &= ~GICR_VPENDBASER_Valid; 2255 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2256 2257 do { 2258 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2259 clean = !(val & GICR_VPENDBASER_Dirty); 2260 if (!clean) { 2261 count--; 2262 cpu_relax(); 2263 udelay(1); 2264 } 2265 } while (!clean && count); 2266 2267 return val; 2268 } 2269 2270 static void its_cpu_init_lpis(void) 2271 { 2272 void __iomem *rbase = gic_data_rdist_rd_base(); 2273 struct page *pend_page; 2274 phys_addr_t paddr; 2275 u64 val, tmp; 2276 2277 if (gic_data_rdist()->lpi_enabled) 2278 return; 2279 2280 val = readl_relaxed(rbase + GICR_CTLR); 2281 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 2282 (val & GICR_CTLR_ENABLE_LPIS)) { 2283 /* 2284 * Check that we get the same property table on all 2285 * RDs. If we don't, this is hopeless. 2286 */ 2287 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 2288 paddr &= GENMASK_ULL(51, 12); 2289 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 2290 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2291 2292 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2293 paddr &= GENMASK_ULL(51, 16); 2294 2295 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 2296 its_free_pending_table(gic_data_rdist()->pend_page); 2297 gic_data_rdist()->pend_page = NULL; 2298 2299 goto out; 2300 } 2301 2302 pend_page = gic_data_rdist()->pend_page; 2303 paddr = page_to_phys(pend_page); 2304 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 2305 2306 /* set PROPBASE */ 2307 val = (gic_rdists->prop_table_pa | 2308 GICR_PROPBASER_InnerShareable | 2309 GICR_PROPBASER_RaWaWb | 2310 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 2311 2312 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2313 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 2314 2315 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 2316 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 2317 /* 2318 * The HW reports non-shareable, we must 2319 * remove the cacheability attributes as 2320 * well. 2321 */ 2322 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 2323 GICR_PROPBASER_CACHEABILITY_MASK); 2324 val |= GICR_PROPBASER_nC; 2325 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2326 } 2327 pr_info_once("GIC: using cache flushing for LPI property table\n"); 2328 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 2329 } 2330 2331 /* set PENDBASE */ 2332 val = (page_to_phys(pend_page) | 2333 GICR_PENDBASER_InnerShareable | 2334 GICR_PENDBASER_RaWaWb); 2335 2336 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2337 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2338 2339 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2340 /* 2341 * The HW reports non-shareable, we must remove the 2342 * cacheability attributes as well. 2343 */ 2344 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2345 GICR_PENDBASER_CACHEABILITY_MASK); 2346 val |= GICR_PENDBASER_nC; 2347 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2348 } 2349 2350 /* Enable LPIs */ 2351 val = readl_relaxed(rbase + GICR_CTLR); 2352 val |= GICR_CTLR_ENABLE_LPIS; 2353 writel_relaxed(val, rbase + GICR_CTLR); 2354 2355 if (gic_rdists->has_vlpis) { 2356 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2357 2358 /* 2359 * It's possible for CPU to receive VLPIs before it is 2360 * sheduled as a vPE, especially for the first CPU, and the 2361 * VLPI with INTID larger than 2^(IDbits+1) will be considered 2362 * as out of range and dropped by GIC. 2363 * So we initialize IDbits to known value to avoid VLPI drop. 2364 */ 2365 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2366 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 2367 smp_processor_id(), val); 2368 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2369 2370 /* 2371 * Also clear Valid bit of GICR_VPENDBASER, in case some 2372 * ancient programming gets left in and has possibility of 2373 * corrupting memory. 2374 */ 2375 val = its_clear_vpend_valid(vlpi_base); 2376 WARN_ON(val & GICR_VPENDBASER_Dirty); 2377 } 2378 2379 /* Make sure the GIC has seen the above */ 2380 dsb(sy); 2381 out: 2382 gic_data_rdist()->lpi_enabled = true; 2383 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 2384 smp_processor_id(), 2385 gic_data_rdist()->pend_page ? "allocated" : "reserved", 2386 &paddr); 2387 } 2388 2389 static void its_cpu_init_collection(struct its_node *its) 2390 { 2391 int cpu = smp_processor_id(); 2392 u64 target; 2393 2394 /* avoid cross node collections and its mapping */ 2395 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2396 struct device_node *cpu_node; 2397 2398 cpu_node = of_get_cpu_node(cpu, NULL); 2399 if (its->numa_node != NUMA_NO_NODE && 2400 its->numa_node != of_node_to_nid(cpu_node)) 2401 return; 2402 } 2403 2404 /* 2405 * We now have to bind each collection to its target 2406 * redistributor. 2407 */ 2408 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2409 /* 2410 * This ITS wants the physical address of the 2411 * redistributor. 2412 */ 2413 target = gic_data_rdist()->phys_base; 2414 } else { 2415 /* This ITS wants a linear CPU number. */ 2416 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2417 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2418 } 2419 2420 /* Perform collection mapping */ 2421 its->collections[cpu].target_address = target; 2422 its->collections[cpu].col_id = cpu; 2423 2424 its_send_mapc(its, &its->collections[cpu], 1); 2425 its_send_invall(its, &its->collections[cpu]); 2426 } 2427 2428 static void its_cpu_init_collections(void) 2429 { 2430 struct its_node *its; 2431 2432 raw_spin_lock(&its_lock); 2433 2434 list_for_each_entry(its, &its_nodes, entry) 2435 its_cpu_init_collection(its); 2436 2437 raw_spin_unlock(&its_lock); 2438 } 2439 2440 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2441 { 2442 struct its_device *its_dev = NULL, *tmp; 2443 unsigned long flags; 2444 2445 raw_spin_lock_irqsave(&its->lock, flags); 2446 2447 list_for_each_entry(tmp, &its->its_device_list, entry) { 2448 if (tmp->device_id == dev_id) { 2449 its_dev = tmp; 2450 break; 2451 } 2452 } 2453 2454 raw_spin_unlock_irqrestore(&its->lock, flags); 2455 2456 return its_dev; 2457 } 2458 2459 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2460 { 2461 int i; 2462 2463 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2464 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2465 return &its->tables[i]; 2466 } 2467 2468 return NULL; 2469 } 2470 2471 static bool its_alloc_table_entry(struct its_node *its, 2472 struct its_baser *baser, u32 id) 2473 { 2474 struct page *page; 2475 u32 esz, idx; 2476 __le64 *table; 2477 2478 /* Don't allow device id that exceeds single, flat table limit */ 2479 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2480 if (!(baser->val & GITS_BASER_INDIRECT)) 2481 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2482 2483 /* Compute 1st level table index & check if that exceeds table limit */ 2484 idx = id >> ilog2(baser->psz / esz); 2485 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2486 return false; 2487 2488 table = baser->base; 2489 2490 /* Allocate memory for 2nd level table */ 2491 if (!table[idx]) { 2492 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 2493 get_order(baser->psz)); 2494 if (!page) 2495 return false; 2496 2497 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2498 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2499 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2500 2501 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2502 2503 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2504 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2505 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2506 2507 /* Ensure updated table contents are visible to ITS hardware */ 2508 dsb(sy); 2509 } 2510 2511 return true; 2512 } 2513 2514 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2515 { 2516 struct its_baser *baser; 2517 2518 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2519 2520 /* Don't allow device id that exceeds ITS hardware limit */ 2521 if (!baser) 2522 return (ilog2(dev_id) < device_ids(its)); 2523 2524 return its_alloc_table_entry(its, baser, dev_id); 2525 } 2526 2527 static bool its_alloc_vpe_table(u32 vpe_id) 2528 { 2529 struct its_node *its; 2530 2531 /* 2532 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2533 * could try and only do it on ITSs corresponding to devices 2534 * that have interrupts targeted at this VPE, but the 2535 * complexity becomes crazy (and you have tons of memory 2536 * anyway, right?). 2537 */ 2538 list_for_each_entry(its, &its_nodes, entry) { 2539 struct its_baser *baser; 2540 2541 if (!is_v4(its)) 2542 continue; 2543 2544 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2545 if (!baser) 2546 return false; 2547 2548 if (!its_alloc_table_entry(its, baser, vpe_id)) 2549 return false; 2550 } 2551 2552 return true; 2553 } 2554 2555 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2556 int nvecs, bool alloc_lpis) 2557 { 2558 struct its_device *dev; 2559 unsigned long *lpi_map = NULL; 2560 unsigned long flags; 2561 u16 *col_map = NULL; 2562 void *itt; 2563 int lpi_base; 2564 int nr_lpis; 2565 int nr_ites; 2566 int sz; 2567 2568 if (!its_alloc_device_table(its, dev_id)) 2569 return NULL; 2570 2571 if (WARN_ON(!is_power_of_2(nvecs))) 2572 nvecs = roundup_pow_of_two(nvecs); 2573 2574 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2575 /* 2576 * Even if the device wants a single LPI, the ITT must be 2577 * sized as a power of two (and you need at least one bit...). 2578 */ 2579 nr_ites = max(2, nvecs); 2580 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 2581 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2582 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 2583 if (alloc_lpis) { 2584 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2585 if (lpi_map) 2586 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2587 GFP_KERNEL); 2588 } else { 2589 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2590 nr_lpis = 0; 2591 lpi_base = 0; 2592 } 2593 2594 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2595 kfree(dev); 2596 kfree(itt); 2597 kfree(lpi_map); 2598 kfree(col_map); 2599 return NULL; 2600 } 2601 2602 gic_flush_dcache_to_poc(itt, sz); 2603 2604 dev->its = its; 2605 dev->itt = itt; 2606 dev->nr_ites = nr_ites; 2607 dev->event_map.lpi_map = lpi_map; 2608 dev->event_map.col_map = col_map; 2609 dev->event_map.lpi_base = lpi_base; 2610 dev->event_map.nr_lpis = nr_lpis; 2611 raw_spin_lock_init(&dev->event_map.vlpi_lock); 2612 dev->device_id = dev_id; 2613 INIT_LIST_HEAD(&dev->entry); 2614 2615 raw_spin_lock_irqsave(&its->lock, flags); 2616 list_add(&dev->entry, &its->its_device_list); 2617 raw_spin_unlock_irqrestore(&its->lock, flags); 2618 2619 /* Map device to its ITT */ 2620 its_send_mapd(dev, 1); 2621 2622 return dev; 2623 } 2624 2625 static void its_free_device(struct its_device *its_dev) 2626 { 2627 unsigned long flags; 2628 2629 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2630 list_del(&its_dev->entry); 2631 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2632 kfree(its_dev->event_map.col_map); 2633 kfree(its_dev->itt); 2634 kfree(its_dev); 2635 } 2636 2637 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 2638 { 2639 int idx; 2640 2641 /* Find a free LPI region in lpi_map and allocate them. */ 2642 idx = bitmap_find_free_region(dev->event_map.lpi_map, 2643 dev->event_map.nr_lpis, 2644 get_count_order(nvecs)); 2645 if (idx < 0) 2646 return -ENOSPC; 2647 2648 *hwirq = dev->event_map.lpi_base + idx; 2649 2650 return 0; 2651 } 2652 2653 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2654 int nvec, msi_alloc_info_t *info) 2655 { 2656 struct its_node *its; 2657 struct its_device *its_dev; 2658 struct msi_domain_info *msi_info; 2659 u32 dev_id; 2660 int err = 0; 2661 2662 /* 2663 * We ignore "dev" entirely, and rely on the dev_id that has 2664 * been passed via the scratchpad. This limits this domain's 2665 * usefulness to upper layers that definitely know that they 2666 * are built on top of the ITS. 2667 */ 2668 dev_id = info->scratchpad[0].ul; 2669 2670 msi_info = msi_get_domain_info(domain); 2671 its = msi_info->data; 2672 2673 if (!gic_rdists->has_direct_lpi && 2674 vpe_proxy.dev && 2675 vpe_proxy.dev->its == its && 2676 dev_id == vpe_proxy.dev->device_id) { 2677 /* Bad luck. Get yourself a better implementation */ 2678 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2679 dev_id); 2680 return -EINVAL; 2681 } 2682 2683 mutex_lock(&its->dev_alloc_lock); 2684 its_dev = its_find_device(its, dev_id); 2685 if (its_dev) { 2686 /* 2687 * We already have seen this ID, probably through 2688 * another alias (PCI bridge of some sort). No need to 2689 * create the device. 2690 */ 2691 its_dev->shared = true; 2692 pr_debug("Reusing ITT for devID %x\n", dev_id); 2693 goto out; 2694 } 2695 2696 its_dev = its_create_device(its, dev_id, nvec, true); 2697 if (!its_dev) { 2698 err = -ENOMEM; 2699 goto out; 2700 } 2701 2702 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2703 out: 2704 mutex_unlock(&its->dev_alloc_lock); 2705 info->scratchpad[0].ptr = its_dev; 2706 return err; 2707 } 2708 2709 static struct msi_domain_ops its_msi_domain_ops = { 2710 .msi_prepare = its_msi_prepare, 2711 }; 2712 2713 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2714 unsigned int virq, 2715 irq_hw_number_t hwirq) 2716 { 2717 struct irq_fwspec fwspec; 2718 2719 if (irq_domain_get_of_node(domain->parent)) { 2720 fwspec.fwnode = domain->parent->fwnode; 2721 fwspec.param_count = 3; 2722 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2723 fwspec.param[1] = hwirq; 2724 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2725 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2726 fwspec.fwnode = domain->parent->fwnode; 2727 fwspec.param_count = 2; 2728 fwspec.param[0] = hwirq; 2729 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2730 } else { 2731 return -EINVAL; 2732 } 2733 2734 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2735 } 2736 2737 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2738 unsigned int nr_irqs, void *args) 2739 { 2740 msi_alloc_info_t *info = args; 2741 struct its_device *its_dev = info->scratchpad[0].ptr; 2742 struct its_node *its = its_dev->its; 2743 irq_hw_number_t hwirq; 2744 int err; 2745 int i; 2746 2747 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 2748 if (err) 2749 return err; 2750 2751 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 2752 if (err) 2753 return err; 2754 2755 for (i = 0; i < nr_irqs; i++) { 2756 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 2757 if (err) 2758 return err; 2759 2760 irq_domain_set_hwirq_and_chip(domain, virq + i, 2761 hwirq + i, &its_irq_chip, its_dev); 2762 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2763 pr_debug("ID:%d pID:%d vID:%d\n", 2764 (int)(hwirq + i - its_dev->event_map.lpi_base), 2765 (int)(hwirq + i), virq + i); 2766 } 2767 2768 return 0; 2769 } 2770 2771 static int its_irq_domain_activate(struct irq_domain *domain, 2772 struct irq_data *d, bool reserve) 2773 { 2774 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2775 u32 event = its_get_event_id(d); 2776 const struct cpumask *cpu_mask = cpu_online_mask; 2777 int cpu; 2778 2779 /* get the cpu_mask of local node */ 2780 if (its_dev->its->numa_node >= 0) 2781 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2782 2783 /* Bind the LPI to the first possible CPU */ 2784 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2785 if (cpu >= nr_cpu_ids) { 2786 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2787 return -EINVAL; 2788 2789 cpu = cpumask_first(cpu_online_mask); 2790 } 2791 2792 its_dev->event_map.col_map[event] = cpu; 2793 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2794 2795 /* Map the GIC IRQ and event to the device */ 2796 its_send_mapti(its_dev, d->hwirq, event); 2797 return 0; 2798 } 2799 2800 static void its_irq_domain_deactivate(struct irq_domain *domain, 2801 struct irq_data *d) 2802 { 2803 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2804 u32 event = its_get_event_id(d); 2805 2806 /* Stop the delivery of interrupts */ 2807 its_send_discard(its_dev, event); 2808 } 2809 2810 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2811 unsigned int nr_irqs) 2812 { 2813 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2814 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2815 struct its_node *its = its_dev->its; 2816 int i; 2817 2818 bitmap_release_region(its_dev->event_map.lpi_map, 2819 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 2820 get_count_order(nr_irqs)); 2821 2822 for (i = 0; i < nr_irqs; i++) { 2823 struct irq_data *data = irq_domain_get_irq_data(domain, 2824 virq + i); 2825 /* Nuke the entry in the domain */ 2826 irq_domain_reset_irq_data(data); 2827 } 2828 2829 mutex_lock(&its->dev_alloc_lock); 2830 2831 /* 2832 * If all interrupts have been freed, start mopping the 2833 * floor. This is conditionned on the device not being shared. 2834 */ 2835 if (!its_dev->shared && 2836 bitmap_empty(its_dev->event_map.lpi_map, 2837 its_dev->event_map.nr_lpis)) { 2838 its_lpi_free(its_dev->event_map.lpi_map, 2839 its_dev->event_map.lpi_base, 2840 its_dev->event_map.nr_lpis); 2841 2842 /* Unmap device/itt */ 2843 its_send_mapd(its_dev, 0); 2844 its_free_device(its_dev); 2845 } 2846 2847 mutex_unlock(&its->dev_alloc_lock); 2848 2849 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2850 } 2851 2852 static const struct irq_domain_ops its_domain_ops = { 2853 .alloc = its_irq_domain_alloc, 2854 .free = its_irq_domain_free, 2855 .activate = its_irq_domain_activate, 2856 .deactivate = its_irq_domain_deactivate, 2857 }; 2858 2859 /* 2860 * This is insane. 2861 * 2862 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2863 * likely), the only way to perform an invalidate is to use a fake 2864 * device to issue an INV command, implying that the LPI has first 2865 * been mapped to some event on that device. Since this is not exactly 2866 * cheap, we try to keep that mapping around as long as possible, and 2867 * only issue an UNMAP if we're short on available slots. 2868 * 2869 * Broken by design(tm). 2870 */ 2871 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2872 { 2873 /* Already unmapped? */ 2874 if (vpe->vpe_proxy_event == -1) 2875 return; 2876 2877 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2878 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2879 2880 /* 2881 * We don't track empty slots at all, so let's move the 2882 * next_victim pointer if we can quickly reuse that slot 2883 * instead of nuking an existing entry. Not clear that this is 2884 * always a win though, and this might just generate a ripple 2885 * effect... Let's just hope VPEs don't migrate too often. 2886 */ 2887 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2888 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2889 2890 vpe->vpe_proxy_event = -1; 2891 } 2892 2893 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2894 { 2895 if (!gic_rdists->has_direct_lpi) { 2896 unsigned long flags; 2897 2898 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2899 its_vpe_db_proxy_unmap_locked(vpe); 2900 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2901 } 2902 } 2903 2904 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2905 { 2906 /* Already mapped? */ 2907 if (vpe->vpe_proxy_event != -1) 2908 return; 2909 2910 /* This slot was already allocated. Kick the other VPE out. */ 2911 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2912 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2913 2914 /* Map the new VPE instead */ 2915 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2916 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2917 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2918 2919 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2920 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2921 } 2922 2923 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2924 { 2925 unsigned long flags; 2926 struct its_collection *target_col; 2927 2928 if (gic_rdists->has_direct_lpi) { 2929 void __iomem *rdbase; 2930 2931 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2932 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2933 wait_for_syncr(rdbase); 2934 2935 return; 2936 } 2937 2938 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2939 2940 its_vpe_db_proxy_map_locked(vpe); 2941 2942 target_col = &vpe_proxy.dev->its->collections[to]; 2943 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2944 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2945 2946 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2947 } 2948 2949 static int its_vpe_set_affinity(struct irq_data *d, 2950 const struct cpumask *mask_val, 2951 bool force) 2952 { 2953 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2954 int cpu = cpumask_first(mask_val); 2955 2956 /* 2957 * Changing affinity is mega expensive, so let's be as lazy as 2958 * we can and only do it if we really have to. Also, if mapped 2959 * into the proxy device, we need to move the doorbell 2960 * interrupt to its new location. 2961 */ 2962 if (vpe->col_idx != cpu) { 2963 int from = vpe->col_idx; 2964 2965 vpe->col_idx = cpu; 2966 its_send_vmovp(vpe); 2967 its_vpe_db_proxy_move(vpe, from, cpu); 2968 } 2969 2970 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2971 2972 return IRQ_SET_MASK_OK_DONE; 2973 } 2974 2975 static void its_vpe_schedule(struct its_vpe *vpe) 2976 { 2977 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2978 u64 val; 2979 2980 /* Schedule the VPE */ 2981 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2982 GENMASK_ULL(51, 12); 2983 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2984 val |= GICR_VPROPBASER_RaWb; 2985 val |= GICR_VPROPBASER_InnerShareable; 2986 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2987 2988 val = virt_to_phys(page_address(vpe->vpt_page)) & 2989 GENMASK_ULL(51, 16); 2990 val |= GICR_VPENDBASER_RaWaWb; 2991 val |= GICR_VPENDBASER_NonShareable; 2992 /* 2993 * There is no good way of finding out if the pending table is 2994 * empty as we can race against the doorbell interrupt very 2995 * easily. So in the end, vpe->pending_last is only an 2996 * indication that the vcpu has something pending, not one 2997 * that the pending table is empty. A good implementation 2998 * would be able to read its coarse map pretty quickly anyway, 2999 * making this a tolerable issue. 3000 */ 3001 val |= GICR_VPENDBASER_PendingLast; 3002 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3003 val |= GICR_VPENDBASER_Valid; 3004 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3005 } 3006 3007 static void its_vpe_deschedule(struct its_vpe *vpe) 3008 { 3009 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3010 u64 val; 3011 3012 val = its_clear_vpend_valid(vlpi_base); 3013 3014 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 3015 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3016 vpe->idai = false; 3017 vpe->pending_last = true; 3018 } else { 3019 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3020 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3021 } 3022 } 3023 3024 static void its_vpe_invall(struct its_vpe *vpe) 3025 { 3026 struct its_node *its; 3027 3028 list_for_each_entry(its, &its_nodes, entry) { 3029 if (!is_v4(its)) 3030 continue; 3031 3032 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3033 continue; 3034 3035 /* 3036 * Sending a VINVALL to a single ITS is enough, as all 3037 * we need is to reach the redistributors. 3038 */ 3039 its_send_vinvall(its, vpe); 3040 return; 3041 } 3042 } 3043 3044 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3045 { 3046 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3047 struct its_cmd_info *info = vcpu_info; 3048 3049 switch (info->cmd_type) { 3050 case SCHEDULE_VPE: 3051 its_vpe_schedule(vpe); 3052 return 0; 3053 3054 case DESCHEDULE_VPE: 3055 its_vpe_deschedule(vpe); 3056 return 0; 3057 3058 case INVALL_VPE: 3059 its_vpe_invall(vpe); 3060 return 0; 3061 3062 default: 3063 return -EINVAL; 3064 } 3065 } 3066 3067 static void its_vpe_send_cmd(struct its_vpe *vpe, 3068 void (*cmd)(struct its_device *, u32)) 3069 { 3070 unsigned long flags; 3071 3072 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3073 3074 its_vpe_db_proxy_map_locked(vpe); 3075 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3076 3077 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3078 } 3079 3080 static void its_vpe_send_inv(struct irq_data *d) 3081 { 3082 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3083 3084 if (gic_rdists->has_direct_lpi) { 3085 void __iomem *rdbase; 3086 3087 /* Target the redistributor this VPE is currently known on */ 3088 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3089 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3090 wait_for_syncr(rdbase); 3091 } else { 3092 its_vpe_send_cmd(vpe, its_send_inv); 3093 } 3094 } 3095 3096 static void its_vpe_mask_irq(struct irq_data *d) 3097 { 3098 /* 3099 * We need to unmask the LPI, which is described by the parent 3100 * irq_data. Instead of calling into the parent (which won't 3101 * exactly do the right thing, let's simply use the 3102 * parent_data pointer. Yes, I'm naughty. 3103 */ 3104 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3105 its_vpe_send_inv(d); 3106 } 3107 3108 static void its_vpe_unmask_irq(struct irq_data *d) 3109 { 3110 /* Same hack as above... */ 3111 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3112 its_vpe_send_inv(d); 3113 } 3114 3115 static int its_vpe_set_irqchip_state(struct irq_data *d, 3116 enum irqchip_irq_state which, 3117 bool state) 3118 { 3119 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3120 3121 if (which != IRQCHIP_STATE_PENDING) 3122 return -EINVAL; 3123 3124 if (gic_rdists->has_direct_lpi) { 3125 void __iomem *rdbase; 3126 3127 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3128 if (state) { 3129 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3130 } else { 3131 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3132 wait_for_syncr(rdbase); 3133 } 3134 } else { 3135 if (state) 3136 its_vpe_send_cmd(vpe, its_send_int); 3137 else 3138 its_vpe_send_cmd(vpe, its_send_clear); 3139 } 3140 3141 return 0; 3142 } 3143 3144 static struct irq_chip its_vpe_irq_chip = { 3145 .name = "GICv4-vpe", 3146 .irq_mask = its_vpe_mask_irq, 3147 .irq_unmask = its_vpe_unmask_irq, 3148 .irq_eoi = irq_chip_eoi_parent, 3149 .irq_set_affinity = its_vpe_set_affinity, 3150 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 3151 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 3152 }; 3153 3154 static int its_vpe_id_alloc(void) 3155 { 3156 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 3157 } 3158 3159 static void its_vpe_id_free(u16 id) 3160 { 3161 ida_simple_remove(&its_vpeid_ida, id); 3162 } 3163 3164 static int its_vpe_init(struct its_vpe *vpe) 3165 { 3166 struct page *vpt_page; 3167 int vpe_id; 3168 3169 /* Allocate vpe_id */ 3170 vpe_id = its_vpe_id_alloc(); 3171 if (vpe_id < 0) 3172 return vpe_id; 3173 3174 /* Allocate VPT */ 3175 vpt_page = its_allocate_pending_table(GFP_KERNEL); 3176 if (!vpt_page) { 3177 its_vpe_id_free(vpe_id); 3178 return -ENOMEM; 3179 } 3180 3181 if (!its_alloc_vpe_table(vpe_id)) { 3182 its_vpe_id_free(vpe_id); 3183 its_free_pending_table(vpt_page); 3184 return -ENOMEM; 3185 } 3186 3187 vpe->vpe_id = vpe_id; 3188 vpe->vpt_page = vpt_page; 3189 vpe->vpe_proxy_event = -1; 3190 3191 return 0; 3192 } 3193 3194 static void its_vpe_teardown(struct its_vpe *vpe) 3195 { 3196 its_vpe_db_proxy_unmap(vpe); 3197 its_vpe_id_free(vpe->vpe_id); 3198 its_free_pending_table(vpe->vpt_page); 3199 } 3200 3201 static void its_vpe_irq_domain_free(struct irq_domain *domain, 3202 unsigned int virq, 3203 unsigned int nr_irqs) 3204 { 3205 struct its_vm *vm = domain->host_data; 3206 int i; 3207 3208 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3209 3210 for (i = 0; i < nr_irqs; i++) { 3211 struct irq_data *data = irq_domain_get_irq_data(domain, 3212 virq + i); 3213 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 3214 3215 BUG_ON(vm != vpe->its_vm); 3216 3217 clear_bit(data->hwirq, vm->db_bitmap); 3218 its_vpe_teardown(vpe); 3219 irq_domain_reset_irq_data(data); 3220 } 3221 3222 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 3223 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 3224 its_free_prop_table(vm->vprop_page); 3225 } 3226 } 3227 3228 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3229 unsigned int nr_irqs, void *args) 3230 { 3231 struct its_vm *vm = args; 3232 unsigned long *bitmap; 3233 struct page *vprop_page; 3234 int base, nr_ids, i, err = 0; 3235 3236 BUG_ON(!vm); 3237 3238 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 3239 if (!bitmap) 3240 return -ENOMEM; 3241 3242 if (nr_ids < nr_irqs) { 3243 its_lpi_free(bitmap, base, nr_ids); 3244 return -ENOMEM; 3245 } 3246 3247 vprop_page = its_allocate_prop_table(GFP_KERNEL); 3248 if (!vprop_page) { 3249 its_lpi_free(bitmap, base, nr_ids); 3250 return -ENOMEM; 3251 } 3252 3253 vm->db_bitmap = bitmap; 3254 vm->db_lpi_base = base; 3255 vm->nr_db_lpis = nr_ids; 3256 vm->vprop_page = vprop_page; 3257 3258 for (i = 0; i < nr_irqs; i++) { 3259 vm->vpes[i]->vpe_db_lpi = base + i; 3260 err = its_vpe_init(vm->vpes[i]); 3261 if (err) 3262 break; 3263 err = its_irq_gic_domain_alloc(domain, virq + i, 3264 vm->vpes[i]->vpe_db_lpi); 3265 if (err) 3266 break; 3267 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 3268 &its_vpe_irq_chip, vm->vpes[i]); 3269 set_bit(i, bitmap); 3270 } 3271 3272 if (err) { 3273 if (i > 0) 3274 its_vpe_irq_domain_free(domain, virq, i - 1); 3275 3276 its_lpi_free(bitmap, base, nr_ids); 3277 its_free_prop_table(vprop_page); 3278 } 3279 3280 return err; 3281 } 3282 3283 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 3284 struct irq_data *d, bool reserve) 3285 { 3286 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3287 struct its_node *its; 3288 3289 /* If we use the list map, we issue VMAPP on demand... */ 3290 if (its_list_map) 3291 return 0; 3292 3293 /* Map the VPE to the first possible CPU */ 3294 vpe->col_idx = cpumask_first(cpu_online_mask); 3295 3296 list_for_each_entry(its, &its_nodes, entry) { 3297 if (!is_v4(its)) 3298 continue; 3299 3300 its_send_vmapp(its, vpe, true); 3301 its_send_vinvall(its, vpe); 3302 } 3303 3304 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 3305 3306 return 0; 3307 } 3308 3309 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 3310 struct irq_data *d) 3311 { 3312 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3313 struct its_node *its; 3314 3315 /* 3316 * If we use the list map, we unmap the VPE once no VLPIs are 3317 * associated with the VM. 3318 */ 3319 if (its_list_map) 3320 return; 3321 3322 list_for_each_entry(its, &its_nodes, entry) { 3323 if (!is_v4(its)) 3324 continue; 3325 3326 its_send_vmapp(its, vpe, false); 3327 } 3328 } 3329 3330 static const struct irq_domain_ops its_vpe_domain_ops = { 3331 .alloc = its_vpe_irq_domain_alloc, 3332 .free = its_vpe_irq_domain_free, 3333 .activate = its_vpe_irq_domain_activate, 3334 .deactivate = its_vpe_irq_domain_deactivate, 3335 }; 3336 3337 static int its_force_quiescent(void __iomem *base) 3338 { 3339 u32 count = 1000000; /* 1s */ 3340 u32 val; 3341 3342 val = readl_relaxed(base + GITS_CTLR); 3343 /* 3344 * GIC architecture specification requires the ITS to be both 3345 * disabled and quiescent for writes to GITS_BASER<n> or 3346 * GITS_CBASER to not have UNPREDICTABLE results. 3347 */ 3348 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 3349 return 0; 3350 3351 /* Disable the generation of all interrupts to this ITS */ 3352 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 3353 writel_relaxed(val, base + GITS_CTLR); 3354 3355 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 3356 while (1) { 3357 val = readl_relaxed(base + GITS_CTLR); 3358 if (val & GITS_CTLR_QUIESCENT) 3359 return 0; 3360 3361 count--; 3362 if (!count) 3363 return -EBUSY; 3364 3365 cpu_relax(); 3366 udelay(1); 3367 } 3368 } 3369 3370 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3371 { 3372 struct its_node *its = data; 3373 3374 /* erratum 22375: only alloc 8MB table size (20 bits) */ 3375 its->typer &= ~GITS_TYPER_DEVBITS; 3376 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 3377 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3378 3379 return true; 3380 } 3381 3382 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3383 { 3384 struct its_node *its = data; 3385 3386 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3387 3388 return true; 3389 } 3390 3391 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3392 { 3393 struct its_node *its = data; 3394 3395 /* On QDF2400, the size of the ITE is 16Bytes */ 3396 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 3397 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 3398 3399 return true; 3400 } 3401 3402 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3403 { 3404 struct its_node *its = its_dev->its; 3405 3406 /* 3407 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3408 * which maps 32-bit writes targeted at a separate window of 3409 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3410 * with device ID taken from bits [device_id_bits + 1:2] of 3411 * the window offset. 3412 */ 3413 return its->pre_its_base + (its_dev->device_id << 2); 3414 } 3415 3416 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3417 { 3418 struct its_node *its = data; 3419 u32 pre_its_window[2]; 3420 u32 ids; 3421 3422 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3423 "socionext,synquacer-pre-its", 3424 pre_its_window, 3425 ARRAY_SIZE(pre_its_window))) { 3426 3427 its->pre_its_base = pre_its_window[0]; 3428 its->get_msi_base = its_irq_get_msi_base_pre_its; 3429 3430 ids = ilog2(pre_its_window[1]) - 2; 3431 if (device_ids(its) > ids) { 3432 its->typer &= ~GITS_TYPER_DEVBITS; 3433 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 3434 } 3435 3436 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3437 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3438 return true; 3439 } 3440 return false; 3441 } 3442 3443 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3444 { 3445 struct its_node *its = data; 3446 3447 /* 3448 * Hip07 insists on using the wrong address for the VLPI 3449 * page. Trick it into doing the right thing... 3450 */ 3451 its->vlpi_redist_offset = SZ_128K; 3452 return true; 3453 } 3454 3455 static const struct gic_quirk its_quirks[] = { 3456 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3457 { 3458 .desc = "ITS: Cavium errata 22375, 24313", 3459 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3460 .mask = 0xffff0fff, 3461 .init = its_enable_quirk_cavium_22375, 3462 }, 3463 #endif 3464 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3465 { 3466 .desc = "ITS: Cavium erratum 23144", 3467 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3468 .mask = 0xffff0fff, 3469 .init = its_enable_quirk_cavium_23144, 3470 }, 3471 #endif 3472 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3473 { 3474 .desc = "ITS: QDF2400 erratum 0065", 3475 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3476 .mask = 0xffffffff, 3477 .init = its_enable_quirk_qdf2400_e0065, 3478 }, 3479 #endif 3480 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3481 { 3482 /* 3483 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3484 * implementation, but with a 'pre-ITS' added that requires 3485 * special handling in software. 3486 */ 3487 .desc = "ITS: Socionext Synquacer pre-ITS", 3488 .iidr = 0x0001143b, 3489 .mask = 0xffffffff, 3490 .init = its_enable_quirk_socionext_synquacer, 3491 }, 3492 #endif 3493 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3494 { 3495 .desc = "ITS: Hip07 erratum 161600802", 3496 .iidr = 0x00000004, 3497 .mask = 0xffffffff, 3498 .init = its_enable_quirk_hip07_161600802, 3499 }, 3500 #endif 3501 { 3502 } 3503 }; 3504 3505 static void its_enable_quirks(struct its_node *its) 3506 { 3507 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3508 3509 gic_enable_quirks(iidr, its_quirks, its); 3510 } 3511 3512 static int its_save_disable(void) 3513 { 3514 struct its_node *its; 3515 int err = 0; 3516 3517 raw_spin_lock(&its_lock); 3518 list_for_each_entry(its, &its_nodes, entry) { 3519 void __iomem *base; 3520 3521 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3522 continue; 3523 3524 base = its->base; 3525 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3526 err = its_force_quiescent(base); 3527 if (err) { 3528 pr_err("ITS@%pa: failed to quiesce: %d\n", 3529 &its->phys_base, err); 3530 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3531 goto err; 3532 } 3533 3534 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3535 } 3536 3537 err: 3538 if (err) { 3539 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3540 void __iomem *base; 3541 3542 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3543 continue; 3544 3545 base = its->base; 3546 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3547 } 3548 } 3549 raw_spin_unlock(&its_lock); 3550 3551 return err; 3552 } 3553 3554 static void its_restore_enable(void) 3555 { 3556 struct its_node *its; 3557 int ret; 3558 3559 raw_spin_lock(&its_lock); 3560 list_for_each_entry(its, &its_nodes, entry) { 3561 void __iomem *base; 3562 int i; 3563 3564 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3565 continue; 3566 3567 base = its->base; 3568 3569 /* 3570 * Make sure that the ITS is disabled. If it fails to quiesce, 3571 * don't restore it since writing to CBASER or BASER<n> 3572 * registers is undefined according to the GIC v3 ITS 3573 * Specification. 3574 */ 3575 ret = its_force_quiescent(base); 3576 if (ret) { 3577 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3578 &its->phys_base, ret); 3579 continue; 3580 } 3581 3582 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3583 3584 /* 3585 * Writing CBASER resets CREADR to 0, so make CWRITER and 3586 * cmd_write line up with it. 3587 */ 3588 its->cmd_write = its->cmd_base; 3589 gits_write_cwriter(0, base + GITS_CWRITER); 3590 3591 /* Restore GITS_BASER from the value cache. */ 3592 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3593 struct its_baser *baser = &its->tables[i]; 3594 3595 if (!(baser->val & GITS_BASER_VALID)) 3596 continue; 3597 3598 its_write_baser(its, baser, baser->val); 3599 } 3600 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3601 3602 /* 3603 * Reinit the collection if it's stored in the ITS. This is 3604 * indicated by the col_id being less than the HCC field. 3605 * CID < HCC as specified in the GIC v3 Documentation. 3606 */ 3607 if (its->collections[smp_processor_id()].col_id < 3608 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3609 its_cpu_init_collection(its); 3610 } 3611 raw_spin_unlock(&its_lock); 3612 } 3613 3614 static struct syscore_ops its_syscore_ops = { 3615 .suspend = its_save_disable, 3616 .resume = its_restore_enable, 3617 }; 3618 3619 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3620 { 3621 struct irq_domain *inner_domain; 3622 struct msi_domain_info *info; 3623 3624 info = kzalloc(sizeof(*info), GFP_KERNEL); 3625 if (!info) 3626 return -ENOMEM; 3627 3628 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3629 if (!inner_domain) { 3630 kfree(info); 3631 return -ENOMEM; 3632 } 3633 3634 inner_domain->parent = its_parent; 3635 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3636 inner_domain->flags |= its->msi_domain_flags; 3637 info->ops = &its_msi_domain_ops; 3638 info->data = its; 3639 inner_domain->host_data = info; 3640 3641 return 0; 3642 } 3643 3644 static int its_init_vpe_domain(void) 3645 { 3646 struct its_node *its; 3647 u32 devid; 3648 int entries; 3649 3650 if (gic_rdists->has_direct_lpi) { 3651 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3652 return 0; 3653 } 3654 3655 /* Any ITS will do, even if not v4 */ 3656 its = list_first_entry(&its_nodes, struct its_node, entry); 3657 3658 entries = roundup_pow_of_two(nr_cpu_ids); 3659 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3660 GFP_KERNEL); 3661 if (!vpe_proxy.vpes) { 3662 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3663 return -ENOMEM; 3664 } 3665 3666 /* Use the last possible DevID */ 3667 devid = GENMASK(device_ids(its) - 1, 0); 3668 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3669 if (!vpe_proxy.dev) { 3670 kfree(vpe_proxy.vpes); 3671 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3672 return -ENOMEM; 3673 } 3674 3675 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3676 3677 raw_spin_lock_init(&vpe_proxy.lock); 3678 vpe_proxy.next_victim = 0; 3679 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3680 devid, vpe_proxy.dev->nr_ites); 3681 3682 return 0; 3683 } 3684 3685 static int __init its_compute_its_list_map(struct resource *res, 3686 void __iomem *its_base) 3687 { 3688 int its_number; 3689 u32 ctlr; 3690 3691 /* 3692 * This is assumed to be done early enough that we're 3693 * guaranteed to be single-threaded, hence no 3694 * locking. Should this change, we should address 3695 * this. 3696 */ 3697 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3698 if (its_number >= GICv4_ITS_LIST_MAX) { 3699 pr_err("ITS@%pa: No ITSList entry available!\n", 3700 &res->start); 3701 return -EINVAL; 3702 } 3703 3704 ctlr = readl_relaxed(its_base + GITS_CTLR); 3705 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3706 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3707 writel_relaxed(ctlr, its_base + GITS_CTLR); 3708 ctlr = readl_relaxed(its_base + GITS_CTLR); 3709 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3710 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3711 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3712 } 3713 3714 if (test_and_set_bit(its_number, &its_list_map)) { 3715 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3716 &res->start, its_number); 3717 return -EINVAL; 3718 } 3719 3720 return its_number; 3721 } 3722 3723 static int __init its_probe_one(struct resource *res, 3724 struct fwnode_handle *handle, int numa_node) 3725 { 3726 struct its_node *its; 3727 void __iomem *its_base; 3728 u32 val, ctlr; 3729 u64 baser, tmp, typer; 3730 struct page *page; 3731 int err; 3732 3733 its_base = ioremap(res->start, resource_size(res)); 3734 if (!its_base) { 3735 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3736 return -ENOMEM; 3737 } 3738 3739 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3740 if (val != 0x30 && val != 0x40) { 3741 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3742 err = -ENODEV; 3743 goto out_unmap; 3744 } 3745 3746 err = its_force_quiescent(its_base); 3747 if (err) { 3748 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3749 goto out_unmap; 3750 } 3751 3752 pr_info("ITS %pR\n", res); 3753 3754 its = kzalloc(sizeof(*its), GFP_KERNEL); 3755 if (!its) { 3756 err = -ENOMEM; 3757 goto out_unmap; 3758 } 3759 3760 raw_spin_lock_init(&its->lock); 3761 mutex_init(&its->dev_alloc_lock); 3762 INIT_LIST_HEAD(&its->entry); 3763 INIT_LIST_HEAD(&its->its_device_list); 3764 typer = gic_read_typer(its_base + GITS_TYPER); 3765 its->typer = typer; 3766 its->base = its_base; 3767 its->phys_base = res->start; 3768 if (is_v4(its)) { 3769 if (!(typer & GITS_TYPER_VMOVP)) { 3770 err = its_compute_its_list_map(res, its_base); 3771 if (err < 0) 3772 goto out_free_its; 3773 3774 its->list_nr = err; 3775 3776 pr_info("ITS@%pa: Using ITS number %d\n", 3777 &res->start, err); 3778 } else { 3779 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3780 } 3781 } 3782 3783 its->numa_node = numa_node; 3784 3785 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3786 get_order(ITS_CMD_QUEUE_SZ)); 3787 if (!page) { 3788 err = -ENOMEM; 3789 goto out_free_its; 3790 } 3791 its->cmd_base = (void *)page_address(page); 3792 its->cmd_write = its->cmd_base; 3793 its->fwnode_handle = handle; 3794 its->get_msi_base = its_irq_get_msi_base; 3795 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3796 3797 its_enable_quirks(its); 3798 3799 err = its_alloc_tables(its); 3800 if (err) 3801 goto out_free_cmd; 3802 3803 err = its_alloc_collections(its); 3804 if (err) 3805 goto out_free_tables; 3806 3807 baser = (virt_to_phys(its->cmd_base) | 3808 GITS_CBASER_RaWaWb | 3809 GITS_CBASER_InnerShareable | 3810 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3811 GITS_CBASER_VALID); 3812 3813 gits_write_cbaser(baser, its->base + GITS_CBASER); 3814 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3815 3816 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3817 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3818 /* 3819 * The HW reports non-shareable, we must 3820 * remove the cacheability attributes as 3821 * well. 3822 */ 3823 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3824 GITS_CBASER_CACHEABILITY_MASK); 3825 baser |= GITS_CBASER_nC; 3826 gits_write_cbaser(baser, its->base + GITS_CBASER); 3827 } 3828 pr_info("ITS: using cache flushing for cmd queue\n"); 3829 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3830 } 3831 3832 gits_write_cwriter(0, its->base + GITS_CWRITER); 3833 ctlr = readl_relaxed(its->base + GITS_CTLR); 3834 ctlr |= GITS_CTLR_ENABLE; 3835 if (is_v4(its)) 3836 ctlr |= GITS_CTLR_ImDe; 3837 writel_relaxed(ctlr, its->base + GITS_CTLR); 3838 3839 if (GITS_TYPER_HCC(typer)) 3840 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3841 3842 err = its_init_domain(handle, its); 3843 if (err) 3844 goto out_free_tables; 3845 3846 raw_spin_lock(&its_lock); 3847 list_add(&its->entry, &its_nodes); 3848 raw_spin_unlock(&its_lock); 3849 3850 return 0; 3851 3852 out_free_tables: 3853 its_free_tables(its); 3854 out_free_cmd: 3855 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3856 out_free_its: 3857 kfree(its); 3858 out_unmap: 3859 iounmap(its_base); 3860 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3861 return err; 3862 } 3863 3864 static bool gic_rdists_supports_plpis(void) 3865 { 3866 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3867 } 3868 3869 static int redist_disable_lpis(void) 3870 { 3871 void __iomem *rbase = gic_data_rdist_rd_base(); 3872 u64 timeout = USEC_PER_SEC; 3873 u64 val; 3874 3875 if (!gic_rdists_supports_plpis()) { 3876 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3877 return -ENXIO; 3878 } 3879 3880 val = readl_relaxed(rbase + GICR_CTLR); 3881 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3882 return 0; 3883 3884 /* 3885 * If coming via a CPU hotplug event, we don't need to disable 3886 * LPIs before trying to re-enable them. They are already 3887 * configured and all is well in the world. 3888 * 3889 * If running with preallocated tables, there is nothing to do. 3890 */ 3891 if (gic_data_rdist()->lpi_enabled || 3892 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 3893 return 0; 3894 3895 /* 3896 * From that point on, we only try to do some damage control. 3897 */ 3898 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3899 smp_processor_id()); 3900 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3901 3902 /* Disable LPIs */ 3903 val &= ~GICR_CTLR_ENABLE_LPIS; 3904 writel_relaxed(val, rbase + GICR_CTLR); 3905 3906 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3907 dsb(sy); 3908 3909 /* 3910 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3911 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3912 * Error out if we time out waiting for RWP to clear. 3913 */ 3914 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3915 if (!timeout) { 3916 pr_err("CPU%d: Timeout while disabling LPIs\n", 3917 smp_processor_id()); 3918 return -ETIMEDOUT; 3919 } 3920 udelay(1); 3921 timeout--; 3922 } 3923 3924 /* 3925 * After it has been written to 1, it is IMPLEMENTATION 3926 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3927 * cleared to 0. Error out if clearing the bit failed. 3928 */ 3929 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3930 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3931 return -EBUSY; 3932 } 3933 3934 return 0; 3935 } 3936 3937 int its_cpu_init(void) 3938 { 3939 if (!list_empty(&its_nodes)) { 3940 int ret; 3941 3942 ret = redist_disable_lpis(); 3943 if (ret) 3944 return ret; 3945 3946 its_cpu_init_lpis(); 3947 its_cpu_init_collections(); 3948 } 3949 3950 return 0; 3951 } 3952 3953 static const struct of_device_id its_device_id[] = { 3954 { .compatible = "arm,gic-v3-its", }, 3955 {}, 3956 }; 3957 3958 static int __init its_of_probe(struct device_node *node) 3959 { 3960 struct device_node *np; 3961 struct resource res; 3962 3963 for (np = of_find_matching_node(node, its_device_id); np; 3964 np = of_find_matching_node(np, its_device_id)) { 3965 if (!of_device_is_available(np)) 3966 continue; 3967 if (!of_property_read_bool(np, "msi-controller")) { 3968 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3969 np); 3970 continue; 3971 } 3972 3973 if (of_address_to_resource(np, 0, &res)) { 3974 pr_warn("%pOF: no regs?\n", np); 3975 continue; 3976 } 3977 3978 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3979 } 3980 return 0; 3981 } 3982 3983 #ifdef CONFIG_ACPI 3984 3985 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3986 3987 #ifdef CONFIG_ACPI_NUMA 3988 struct its_srat_map { 3989 /* numa node id */ 3990 u32 numa_node; 3991 /* GIC ITS ID */ 3992 u32 its_id; 3993 }; 3994 3995 static struct its_srat_map *its_srat_maps __initdata; 3996 static int its_in_srat __initdata; 3997 3998 static int __init acpi_get_its_numa_node(u32 its_id) 3999 { 4000 int i; 4001 4002 for (i = 0; i < its_in_srat; i++) { 4003 if (its_id == its_srat_maps[i].its_id) 4004 return its_srat_maps[i].numa_node; 4005 } 4006 return NUMA_NO_NODE; 4007 } 4008 4009 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 4010 const unsigned long end) 4011 { 4012 return 0; 4013 } 4014 4015 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 4016 const unsigned long end) 4017 { 4018 int node; 4019 struct acpi_srat_gic_its_affinity *its_affinity; 4020 4021 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 4022 if (!its_affinity) 4023 return -EINVAL; 4024 4025 if (its_affinity->header.length < sizeof(*its_affinity)) { 4026 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 4027 its_affinity->header.length); 4028 return -EINVAL; 4029 } 4030 4031 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 4032 4033 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 4034 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 4035 return 0; 4036 } 4037 4038 its_srat_maps[its_in_srat].numa_node = node; 4039 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 4040 its_in_srat++; 4041 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 4042 its_affinity->proximity_domain, its_affinity->its_id, node); 4043 4044 return 0; 4045 } 4046 4047 static void __init acpi_table_parse_srat_its(void) 4048 { 4049 int count; 4050 4051 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 4052 sizeof(struct acpi_table_srat), 4053 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 4054 gic_acpi_match_srat_its, 0); 4055 if (count <= 0) 4056 return; 4057 4058 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 4059 GFP_KERNEL); 4060 if (!its_srat_maps) { 4061 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 4062 return; 4063 } 4064 4065 acpi_table_parse_entries(ACPI_SIG_SRAT, 4066 sizeof(struct acpi_table_srat), 4067 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 4068 gic_acpi_parse_srat_its, 0); 4069 } 4070 4071 /* free the its_srat_maps after ITS probing */ 4072 static void __init acpi_its_srat_maps_free(void) 4073 { 4074 kfree(its_srat_maps); 4075 } 4076 #else 4077 static void __init acpi_table_parse_srat_its(void) { } 4078 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 4079 static void __init acpi_its_srat_maps_free(void) { } 4080 #endif 4081 4082 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 4083 const unsigned long end) 4084 { 4085 struct acpi_madt_generic_translator *its_entry; 4086 struct fwnode_handle *dom_handle; 4087 struct resource res; 4088 int err; 4089 4090 its_entry = (struct acpi_madt_generic_translator *)header; 4091 memset(&res, 0, sizeof(res)); 4092 res.start = its_entry->base_address; 4093 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 4094 res.flags = IORESOURCE_MEM; 4095 4096 dom_handle = irq_domain_alloc_fwnode(&res.start); 4097 if (!dom_handle) { 4098 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 4099 &res.start); 4100 return -ENOMEM; 4101 } 4102 4103 err = iort_register_domain_token(its_entry->translation_id, res.start, 4104 dom_handle); 4105 if (err) { 4106 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 4107 &res.start, its_entry->translation_id); 4108 goto dom_err; 4109 } 4110 4111 err = its_probe_one(&res, dom_handle, 4112 acpi_get_its_numa_node(its_entry->translation_id)); 4113 if (!err) 4114 return 0; 4115 4116 iort_deregister_domain_token(its_entry->translation_id); 4117 dom_err: 4118 irq_domain_free_fwnode(dom_handle); 4119 return err; 4120 } 4121 4122 static void __init its_acpi_probe(void) 4123 { 4124 acpi_table_parse_srat_its(); 4125 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 4126 gic_acpi_parse_madt_its, 0); 4127 acpi_its_srat_maps_free(); 4128 } 4129 #else 4130 static void __init its_acpi_probe(void) { } 4131 #endif 4132 4133 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 4134 struct irq_domain *parent_domain) 4135 { 4136 struct device_node *of_node; 4137 struct its_node *its; 4138 bool has_v4 = false; 4139 int err; 4140 4141 its_parent = parent_domain; 4142 of_node = to_of_node(handle); 4143 if (of_node) 4144 its_of_probe(of_node); 4145 else 4146 its_acpi_probe(); 4147 4148 if (list_empty(&its_nodes)) { 4149 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 4150 return -ENXIO; 4151 } 4152 4153 gic_rdists = rdists; 4154 4155 err = allocate_lpi_tables(); 4156 if (err) 4157 return err; 4158 4159 list_for_each_entry(its, &its_nodes, entry) 4160 has_v4 |= is_v4(its); 4161 4162 if (has_v4 & rdists->has_vlpis) { 4163 if (its_init_vpe_domain() || 4164 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 4165 rdists->has_vlpis = false; 4166 pr_err("ITS: Disabling GICv4 support\n"); 4167 } 4168 } 4169 4170 register_syscore_ops(&its_syscore_ops); 4171 4172 return 0; 4173 } 4174