1 /* 2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/bitmap.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/dma-iommu.h> 23 #include <linux/interrupt.h> 24 #include <linux/irqdomain.h> 25 #include <linux/acpi_iort.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 37 #include <linux/irqchip.h> 38 #include <linux/irqchip/arm-gic-v3.h> 39 40 #include <asm/cacheflush.h> 41 #include <asm/cputype.h> 42 #include <asm/exception.h> 43 44 #include "irq-gic-common.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 51 52 /* 53 * Collection structure - just an ID, and a redistributor address to 54 * ping. We use one per CPU as a bag of interrupts assigned to this 55 * CPU. 56 */ 57 struct its_collection { 58 u64 target_address; 59 u16 col_id; 60 }; 61 62 /* 63 * The ITS_BASER structure - contains memory information, cached 64 * value of BASER register configuration and ITS page size. 65 */ 66 struct its_baser { 67 void *base; 68 u64 val; 69 u32 order; 70 u32 psz; 71 }; 72 73 /* 74 * The ITS structure - contains most of the infrastructure, with the 75 * top-level MSI domain, the command queue, the collections, and the 76 * list of devices writing to it. 77 */ 78 struct its_node { 79 raw_spinlock_t lock; 80 struct list_head entry; 81 void __iomem *base; 82 phys_addr_t phys_base; 83 struct its_cmd_block *cmd_base; 84 struct its_cmd_block *cmd_write; 85 struct its_baser tables[GITS_BASER_NR_REGS]; 86 struct its_collection *collections; 87 struct list_head its_device_list; 88 u64 flags; 89 u32 ite_size; 90 u32 device_ids; 91 int numa_node; 92 }; 93 94 #define ITS_ITT_ALIGN SZ_256 95 96 /* Convert page order to size in bytes */ 97 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 98 99 struct event_lpi_map { 100 unsigned long *lpi_map; 101 u16 *col_map; 102 irq_hw_number_t lpi_base; 103 int nr_lpis; 104 }; 105 106 /* 107 * The ITS view of a device - belongs to an ITS, a collection, owns an 108 * interrupt translation table, and a list of interrupts. 109 */ 110 struct its_device { 111 struct list_head entry; 112 struct its_node *its; 113 struct event_lpi_map event_map; 114 void *itt; 115 u32 nr_ites; 116 u32 device_id; 117 }; 118 119 static LIST_HEAD(its_nodes); 120 static DEFINE_SPINLOCK(its_lock); 121 static struct rdists *gic_rdists; 122 static struct irq_domain *its_parent; 123 124 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 125 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 126 127 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 128 u32 event) 129 { 130 struct its_node *its = its_dev->its; 131 132 return its->collections + its_dev->event_map.col_map[event]; 133 } 134 135 /* 136 * ITS command descriptors - parameters to be encoded in a command 137 * block. 138 */ 139 struct its_cmd_desc { 140 union { 141 struct { 142 struct its_device *dev; 143 u32 event_id; 144 } its_inv_cmd; 145 146 struct { 147 struct its_device *dev; 148 u32 event_id; 149 } its_int_cmd; 150 151 struct { 152 struct its_device *dev; 153 int valid; 154 } its_mapd_cmd; 155 156 struct { 157 struct its_collection *col; 158 int valid; 159 } its_mapc_cmd; 160 161 struct { 162 struct its_device *dev; 163 u32 phys_id; 164 u32 event_id; 165 } its_mapvi_cmd; 166 167 struct { 168 struct its_device *dev; 169 struct its_collection *col; 170 u32 event_id; 171 } its_movi_cmd; 172 173 struct { 174 struct its_device *dev; 175 u32 event_id; 176 } its_discard_cmd; 177 178 struct { 179 struct its_collection *col; 180 } its_invall_cmd; 181 }; 182 }; 183 184 /* 185 * The ITS command block, which is what the ITS actually parses. 186 */ 187 struct its_cmd_block { 188 u64 raw_cmd[4]; 189 }; 190 191 #define ITS_CMD_QUEUE_SZ SZ_64K 192 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 193 194 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 195 struct its_cmd_desc *); 196 197 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 198 { 199 cmd->raw_cmd[0] &= ~0xffUL; 200 cmd->raw_cmd[0] |= cmd_nr; 201 } 202 203 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 204 { 205 cmd->raw_cmd[0] &= BIT_ULL(32) - 1; 206 cmd->raw_cmd[0] |= ((u64)devid) << 32; 207 } 208 209 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 210 { 211 cmd->raw_cmd[1] &= ~0xffffffffUL; 212 cmd->raw_cmd[1] |= id; 213 } 214 215 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 216 { 217 cmd->raw_cmd[1] &= 0xffffffffUL; 218 cmd->raw_cmd[1] |= ((u64)phys_id) << 32; 219 } 220 221 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 222 { 223 cmd->raw_cmd[1] &= ~0x1fUL; 224 cmd->raw_cmd[1] |= size & 0x1f; 225 } 226 227 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 228 { 229 cmd->raw_cmd[2] &= ~0xffffffffffffUL; 230 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL; 231 } 232 233 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 234 { 235 cmd->raw_cmd[2] &= ~(1UL << 63); 236 cmd->raw_cmd[2] |= ((u64)!!valid) << 63; 237 } 238 239 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 240 { 241 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16); 242 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16)); 243 } 244 245 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 246 { 247 cmd->raw_cmd[2] &= ~0xffffUL; 248 cmd->raw_cmd[2] |= col; 249 } 250 251 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 252 { 253 /* Let's fixup BE commands */ 254 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 255 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 256 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 257 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 258 } 259 260 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 261 struct its_cmd_desc *desc) 262 { 263 unsigned long itt_addr; 264 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 265 266 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 267 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 268 269 its_encode_cmd(cmd, GITS_CMD_MAPD); 270 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 271 its_encode_size(cmd, size - 1); 272 its_encode_itt(cmd, itt_addr); 273 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 274 275 its_fixup_cmd(cmd); 276 277 return NULL; 278 } 279 280 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 281 struct its_cmd_desc *desc) 282 { 283 its_encode_cmd(cmd, GITS_CMD_MAPC); 284 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 285 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 286 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 287 288 its_fixup_cmd(cmd); 289 290 return desc->its_mapc_cmd.col; 291 } 292 293 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd, 294 struct its_cmd_desc *desc) 295 { 296 struct its_collection *col; 297 298 col = dev_event_to_col(desc->its_mapvi_cmd.dev, 299 desc->its_mapvi_cmd.event_id); 300 301 its_encode_cmd(cmd, GITS_CMD_MAPVI); 302 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id); 303 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id); 304 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id); 305 its_encode_collection(cmd, col->col_id); 306 307 its_fixup_cmd(cmd); 308 309 return col; 310 } 311 312 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 313 struct its_cmd_desc *desc) 314 { 315 struct its_collection *col; 316 317 col = dev_event_to_col(desc->its_movi_cmd.dev, 318 desc->its_movi_cmd.event_id); 319 320 its_encode_cmd(cmd, GITS_CMD_MOVI); 321 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 322 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 323 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 324 325 its_fixup_cmd(cmd); 326 327 return col; 328 } 329 330 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 331 struct its_cmd_desc *desc) 332 { 333 struct its_collection *col; 334 335 col = dev_event_to_col(desc->its_discard_cmd.dev, 336 desc->its_discard_cmd.event_id); 337 338 its_encode_cmd(cmd, GITS_CMD_DISCARD); 339 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 340 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 341 342 its_fixup_cmd(cmd); 343 344 return col; 345 } 346 347 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 348 struct its_cmd_desc *desc) 349 { 350 struct its_collection *col; 351 352 col = dev_event_to_col(desc->its_inv_cmd.dev, 353 desc->its_inv_cmd.event_id); 354 355 its_encode_cmd(cmd, GITS_CMD_INV); 356 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 357 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 358 359 its_fixup_cmd(cmd); 360 361 return col; 362 } 363 364 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 365 struct its_cmd_desc *desc) 366 { 367 its_encode_cmd(cmd, GITS_CMD_INVALL); 368 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 369 370 its_fixup_cmd(cmd); 371 372 return NULL; 373 } 374 375 static u64 its_cmd_ptr_to_offset(struct its_node *its, 376 struct its_cmd_block *ptr) 377 { 378 return (ptr - its->cmd_base) * sizeof(*ptr); 379 } 380 381 static int its_queue_full(struct its_node *its) 382 { 383 int widx; 384 int ridx; 385 386 widx = its->cmd_write - its->cmd_base; 387 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 388 389 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 390 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 391 return 1; 392 393 return 0; 394 } 395 396 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 397 { 398 struct its_cmd_block *cmd; 399 u32 count = 1000000; /* 1s! */ 400 401 while (its_queue_full(its)) { 402 count--; 403 if (!count) { 404 pr_err_ratelimited("ITS queue not draining\n"); 405 return NULL; 406 } 407 cpu_relax(); 408 udelay(1); 409 } 410 411 cmd = its->cmd_write++; 412 413 /* Handle queue wrapping */ 414 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 415 its->cmd_write = its->cmd_base; 416 417 return cmd; 418 } 419 420 static struct its_cmd_block *its_post_commands(struct its_node *its) 421 { 422 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 423 424 writel_relaxed(wr, its->base + GITS_CWRITER); 425 426 return its->cmd_write; 427 } 428 429 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 430 { 431 /* 432 * Make sure the commands written to memory are observable by 433 * the ITS. 434 */ 435 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 436 __flush_dcache_area(cmd, sizeof(*cmd)); 437 else 438 dsb(ishst); 439 } 440 441 static void its_wait_for_range_completion(struct its_node *its, 442 struct its_cmd_block *from, 443 struct its_cmd_block *to) 444 { 445 u64 rd_idx, from_idx, to_idx; 446 u32 count = 1000000; /* 1s! */ 447 448 from_idx = its_cmd_ptr_to_offset(its, from); 449 to_idx = its_cmd_ptr_to_offset(its, to); 450 451 while (1) { 452 rd_idx = readl_relaxed(its->base + GITS_CREADR); 453 if (rd_idx >= to_idx || rd_idx < from_idx) 454 break; 455 456 count--; 457 if (!count) { 458 pr_err_ratelimited("ITS queue timeout\n"); 459 return; 460 } 461 cpu_relax(); 462 udelay(1); 463 } 464 } 465 466 static void its_send_single_command(struct its_node *its, 467 its_cmd_builder_t builder, 468 struct its_cmd_desc *desc) 469 { 470 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; 471 struct its_collection *sync_col; 472 unsigned long flags; 473 474 raw_spin_lock_irqsave(&its->lock, flags); 475 476 cmd = its_allocate_entry(its); 477 if (!cmd) { /* We're soooooo screewed... */ 478 pr_err_ratelimited("ITS can't allocate, dropping command\n"); 479 raw_spin_unlock_irqrestore(&its->lock, flags); 480 return; 481 } 482 sync_col = builder(cmd, desc); 483 its_flush_cmd(its, cmd); 484 485 if (sync_col) { 486 sync_cmd = its_allocate_entry(its); 487 if (!sync_cmd) { 488 pr_err_ratelimited("ITS can't SYNC, skipping\n"); 489 goto post; 490 } 491 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 492 its_encode_target(sync_cmd, sync_col->target_address); 493 its_fixup_cmd(sync_cmd); 494 its_flush_cmd(its, sync_cmd); 495 } 496 497 post: 498 next_cmd = its_post_commands(its); 499 raw_spin_unlock_irqrestore(&its->lock, flags); 500 501 its_wait_for_range_completion(its, cmd, next_cmd); 502 } 503 504 static void its_send_inv(struct its_device *dev, u32 event_id) 505 { 506 struct its_cmd_desc desc; 507 508 desc.its_inv_cmd.dev = dev; 509 desc.its_inv_cmd.event_id = event_id; 510 511 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 512 } 513 514 static void its_send_mapd(struct its_device *dev, int valid) 515 { 516 struct its_cmd_desc desc; 517 518 desc.its_mapd_cmd.dev = dev; 519 desc.its_mapd_cmd.valid = !!valid; 520 521 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 522 } 523 524 static void its_send_mapc(struct its_node *its, struct its_collection *col, 525 int valid) 526 { 527 struct its_cmd_desc desc; 528 529 desc.its_mapc_cmd.col = col; 530 desc.its_mapc_cmd.valid = !!valid; 531 532 its_send_single_command(its, its_build_mapc_cmd, &desc); 533 } 534 535 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id) 536 { 537 struct its_cmd_desc desc; 538 539 desc.its_mapvi_cmd.dev = dev; 540 desc.its_mapvi_cmd.phys_id = irq_id; 541 desc.its_mapvi_cmd.event_id = id; 542 543 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc); 544 } 545 546 static void its_send_movi(struct its_device *dev, 547 struct its_collection *col, u32 id) 548 { 549 struct its_cmd_desc desc; 550 551 desc.its_movi_cmd.dev = dev; 552 desc.its_movi_cmd.col = col; 553 desc.its_movi_cmd.event_id = id; 554 555 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 556 } 557 558 static void its_send_discard(struct its_device *dev, u32 id) 559 { 560 struct its_cmd_desc desc; 561 562 desc.its_discard_cmd.dev = dev; 563 desc.its_discard_cmd.event_id = id; 564 565 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 566 } 567 568 static void its_send_invall(struct its_node *its, struct its_collection *col) 569 { 570 struct its_cmd_desc desc; 571 572 desc.its_invall_cmd.col = col; 573 574 its_send_single_command(its, its_build_invall_cmd, &desc); 575 } 576 577 /* 578 * irqchip functions - assumes MSI, mostly. 579 */ 580 581 static inline u32 its_get_event_id(struct irq_data *d) 582 { 583 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 584 return d->hwirq - its_dev->event_map.lpi_base; 585 } 586 587 static void lpi_set_config(struct irq_data *d, bool enable) 588 { 589 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 590 irq_hw_number_t hwirq = d->hwirq; 591 u32 id = its_get_event_id(d); 592 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192; 593 594 if (enable) 595 *cfg |= LPI_PROP_ENABLED; 596 else 597 *cfg &= ~LPI_PROP_ENABLED; 598 599 /* 600 * Make the above write visible to the redistributors. 601 * And yes, we're flushing exactly: One. Single. Byte. 602 * Humpf... 603 */ 604 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 605 __flush_dcache_area(cfg, sizeof(*cfg)); 606 else 607 dsb(ishst); 608 its_send_inv(its_dev, id); 609 } 610 611 static void its_mask_irq(struct irq_data *d) 612 { 613 lpi_set_config(d, false); 614 } 615 616 static void its_unmask_irq(struct irq_data *d) 617 { 618 lpi_set_config(d, true); 619 } 620 621 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 622 bool force) 623 { 624 unsigned int cpu; 625 const struct cpumask *cpu_mask = cpu_online_mask; 626 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 627 struct its_collection *target_col; 628 u32 id = its_get_event_id(d); 629 630 /* lpi cannot be routed to a redistributor that is on a foreign node */ 631 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 632 if (its_dev->its->numa_node >= 0) { 633 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 634 if (!cpumask_intersects(mask_val, cpu_mask)) 635 return -EINVAL; 636 } 637 } 638 639 cpu = cpumask_any_and(mask_val, cpu_mask); 640 641 if (cpu >= nr_cpu_ids) 642 return -EINVAL; 643 644 target_col = &its_dev->its->collections[cpu]; 645 its_send_movi(its_dev, target_col, id); 646 its_dev->event_map.col_map[id] = cpu; 647 648 return IRQ_SET_MASK_OK_DONE; 649 } 650 651 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 652 { 653 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 654 struct its_node *its; 655 u64 addr; 656 657 its = its_dev->its; 658 addr = its->phys_base + GITS_TRANSLATER; 659 660 msg->address_lo = addr & ((1UL << 32) - 1); 661 msg->address_hi = addr >> 32; 662 msg->data = its_get_event_id(d); 663 664 iommu_dma_map_msi_msg(d->irq, msg); 665 } 666 667 static struct irq_chip its_irq_chip = { 668 .name = "ITS", 669 .irq_mask = its_mask_irq, 670 .irq_unmask = its_unmask_irq, 671 .irq_eoi = irq_chip_eoi_parent, 672 .irq_set_affinity = its_set_affinity, 673 .irq_compose_msi_msg = its_irq_compose_msi_msg, 674 }; 675 676 /* 677 * How we allocate LPIs: 678 * 679 * The GIC has id_bits bits for interrupt identifiers. From there, we 680 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 681 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 682 * bits to the right. 683 * 684 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 685 */ 686 #define IRQS_PER_CHUNK_SHIFT 5 687 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 688 689 static unsigned long *lpi_bitmap; 690 static u32 lpi_chunks; 691 static DEFINE_SPINLOCK(lpi_lock); 692 693 static int its_lpi_to_chunk(int lpi) 694 { 695 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 696 } 697 698 static int its_chunk_to_lpi(int chunk) 699 { 700 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 701 } 702 703 static int __init its_lpi_init(u32 id_bits) 704 { 705 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 706 707 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 708 GFP_KERNEL); 709 if (!lpi_bitmap) { 710 lpi_chunks = 0; 711 return -ENOMEM; 712 } 713 714 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 715 return 0; 716 } 717 718 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 719 { 720 unsigned long *bitmap = NULL; 721 int chunk_id; 722 int nr_chunks; 723 int i; 724 725 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 726 727 spin_lock(&lpi_lock); 728 729 do { 730 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 731 0, nr_chunks, 0); 732 if (chunk_id < lpi_chunks) 733 break; 734 735 nr_chunks--; 736 } while (nr_chunks > 0); 737 738 if (!nr_chunks) 739 goto out; 740 741 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 742 GFP_ATOMIC); 743 if (!bitmap) 744 goto out; 745 746 for (i = 0; i < nr_chunks; i++) 747 set_bit(chunk_id + i, lpi_bitmap); 748 749 *base = its_chunk_to_lpi(chunk_id); 750 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 751 752 out: 753 spin_unlock(&lpi_lock); 754 755 if (!bitmap) 756 *base = *nr_ids = 0; 757 758 return bitmap; 759 } 760 761 static void its_lpi_free(struct event_lpi_map *map) 762 { 763 int base = map->lpi_base; 764 int nr_ids = map->nr_lpis; 765 int lpi; 766 767 spin_lock(&lpi_lock); 768 769 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 770 int chunk = its_lpi_to_chunk(lpi); 771 BUG_ON(chunk > lpi_chunks); 772 if (test_bit(chunk, lpi_bitmap)) { 773 clear_bit(chunk, lpi_bitmap); 774 } else { 775 pr_err("Bad LPI chunk %d\n", chunk); 776 } 777 } 778 779 spin_unlock(&lpi_lock); 780 781 kfree(map->lpi_map); 782 kfree(map->col_map); 783 } 784 785 /* 786 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to 787 * deal with (one configuration byte per interrupt). PENDBASE has to 788 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 789 */ 790 #define LPI_PROPBASE_SZ SZ_64K 791 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K) 792 793 /* 794 * This is how many bits of ID we need, including the useless ones. 795 */ 796 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K) 797 798 #define LPI_PROP_DEFAULT_PRIO 0xa0 799 800 static int __init its_alloc_lpi_tables(void) 801 { 802 phys_addr_t paddr; 803 804 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT, 805 get_order(LPI_PROPBASE_SZ)); 806 if (!gic_rdists->prop_page) { 807 pr_err("Failed to allocate PROPBASE\n"); 808 return -ENOMEM; 809 } 810 811 paddr = page_to_phys(gic_rdists->prop_page); 812 pr_info("GIC: using LPI property table @%pa\n", &paddr); 813 814 /* Priority 0xa0, Group-1, disabled */ 815 memset(page_address(gic_rdists->prop_page), 816 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 817 LPI_PROPBASE_SZ); 818 819 /* Make sure the GIC will observe the written configuration */ 820 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ); 821 822 return 0; 823 } 824 825 static const char *its_base_type_string[] = { 826 [GITS_BASER_TYPE_DEVICE] = "Devices", 827 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 828 [GITS_BASER_TYPE_CPU] = "Physical CPUs", 829 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 830 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 831 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 832 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 833 }; 834 835 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 836 { 837 u32 idx = baser - its->tables; 838 839 return readq_relaxed(its->base + GITS_BASER + (idx << 3)); 840 } 841 842 static void its_write_baser(struct its_node *its, struct its_baser *baser, 843 u64 val) 844 { 845 u32 idx = baser - its->tables; 846 847 writeq_relaxed(val, its->base + GITS_BASER + (idx << 3)); 848 baser->val = its_read_baser(its, baser); 849 } 850 851 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 852 u64 cache, u64 shr, u32 psz, u32 order, 853 bool indirect) 854 { 855 u64 val = its_read_baser(its, baser); 856 u64 esz = GITS_BASER_ENTRY_SIZE(val); 857 u64 type = GITS_BASER_TYPE(val); 858 u32 alloc_pages; 859 void *base; 860 u64 tmp; 861 862 retry_alloc_baser: 863 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 864 if (alloc_pages > GITS_BASER_PAGES_MAX) { 865 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 866 &its->phys_base, its_base_type_string[type], 867 alloc_pages, GITS_BASER_PAGES_MAX); 868 alloc_pages = GITS_BASER_PAGES_MAX; 869 order = get_order(GITS_BASER_PAGES_MAX * psz); 870 } 871 872 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 873 if (!base) 874 return -ENOMEM; 875 876 retry_baser: 877 val = (virt_to_phys(base) | 878 (type << GITS_BASER_TYPE_SHIFT) | 879 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 880 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 881 cache | 882 shr | 883 GITS_BASER_VALID); 884 885 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 886 887 switch (psz) { 888 case SZ_4K: 889 val |= GITS_BASER_PAGE_SIZE_4K; 890 break; 891 case SZ_16K: 892 val |= GITS_BASER_PAGE_SIZE_16K; 893 break; 894 case SZ_64K: 895 val |= GITS_BASER_PAGE_SIZE_64K; 896 break; 897 } 898 899 its_write_baser(its, baser, val); 900 tmp = baser->val; 901 902 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 903 /* 904 * Shareability didn't stick. Just use 905 * whatever the read reported, which is likely 906 * to be the only thing this redistributor 907 * supports. If that's zero, make it 908 * non-cacheable as well. 909 */ 910 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 911 if (!shr) { 912 cache = GITS_BASER_nC; 913 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order)); 914 } 915 goto retry_baser; 916 } 917 918 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 919 /* 920 * Page size didn't stick. Let's try a smaller 921 * size and retry. If we reach 4K, then 922 * something is horribly wrong... 923 */ 924 free_pages((unsigned long)base, order); 925 baser->base = NULL; 926 927 switch (psz) { 928 case SZ_16K: 929 psz = SZ_4K; 930 goto retry_alloc_baser; 931 case SZ_64K: 932 psz = SZ_16K; 933 goto retry_alloc_baser; 934 } 935 } 936 937 if (val != tmp) { 938 pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n", 939 &its->phys_base, its_base_type_string[type], 940 (unsigned long) val, (unsigned long) tmp); 941 free_pages((unsigned long)base, order); 942 return -ENXIO; 943 } 944 945 baser->order = order; 946 baser->base = base; 947 baser->psz = psz; 948 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 949 950 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 951 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp), 952 its_base_type_string[type], 953 (unsigned long)virt_to_phys(base), 954 indirect ? "indirect" : "flat", (int)esz, 955 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 956 957 return 0; 958 } 959 960 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser, 961 u32 psz, u32 *order) 962 { 963 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser)); 964 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb; 965 u32 ids = its->device_ids; 966 u32 new_order = *order; 967 bool indirect = false; 968 969 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 970 if ((esz << ids) > (psz * 2)) { 971 /* 972 * Find out whether hw supports a single or two-level table by 973 * table by reading bit at offset '62' after writing '1' to it. 974 */ 975 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 976 indirect = !!(baser->val & GITS_BASER_INDIRECT); 977 978 if (indirect) { 979 /* 980 * The size of the lvl2 table is equal to ITS page size 981 * which is 'psz'. For computing lvl1 table size, 982 * subtract ID bits that sparse lvl2 table from 'ids' 983 * which is reported by ITS hardware times lvl1 table 984 * entry size. 985 */ 986 ids -= ilog2(psz / esz); 987 esz = GITS_LVL1_ENTRY_SIZE; 988 } 989 } 990 991 /* 992 * Allocate as many entries as required to fit the 993 * range of device IDs that the ITS can grok... The ID 994 * space being incredibly sparse, this results in a 995 * massive waste of memory if two-level device table 996 * feature is not supported by hardware. 997 */ 998 new_order = max_t(u32, get_order(esz << ids), new_order); 999 if (new_order >= MAX_ORDER) { 1000 new_order = MAX_ORDER - 1; 1001 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz); 1002 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n", 1003 &its->phys_base, its->device_ids, ids); 1004 } 1005 1006 *order = new_order; 1007 1008 return indirect; 1009 } 1010 1011 static void its_free_tables(struct its_node *its) 1012 { 1013 int i; 1014 1015 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1016 if (its->tables[i].base) { 1017 free_pages((unsigned long)its->tables[i].base, 1018 its->tables[i].order); 1019 its->tables[i].base = NULL; 1020 } 1021 } 1022 } 1023 1024 static int its_alloc_tables(struct its_node *its) 1025 { 1026 u64 typer = gic_read_typer(its->base + GITS_TYPER); 1027 u32 ids = GITS_TYPER_DEVBITS(typer); 1028 u64 shr = GITS_BASER_InnerShareable; 1029 u64 cache = GITS_BASER_WaWb; 1030 u32 psz = SZ_64K; 1031 int err, i; 1032 1033 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 1034 /* 1035 * erratum 22375: only alloc 8MB table size 1036 * erratum 24313: ignore memory access type 1037 */ 1038 cache = GITS_BASER_nCnB; 1039 ids = 0x14; /* 20 bits, 8MB */ 1040 } 1041 1042 its->device_ids = ids; 1043 1044 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1045 struct its_baser *baser = its->tables + i; 1046 u64 val = its_read_baser(its, baser); 1047 u64 type = GITS_BASER_TYPE(val); 1048 u32 order = get_order(psz); 1049 bool indirect = false; 1050 1051 if (type == GITS_BASER_TYPE_NONE) 1052 continue; 1053 1054 if (type == GITS_BASER_TYPE_DEVICE) 1055 indirect = its_parse_baser_device(its, baser, psz, &order); 1056 1057 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1058 if (err < 0) { 1059 its_free_tables(its); 1060 return err; 1061 } 1062 1063 /* Update settings which will be used for next BASERn */ 1064 psz = baser->psz; 1065 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1066 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1067 } 1068 1069 return 0; 1070 } 1071 1072 static int its_alloc_collections(struct its_node *its) 1073 { 1074 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1075 GFP_KERNEL); 1076 if (!its->collections) 1077 return -ENOMEM; 1078 1079 return 0; 1080 } 1081 1082 static void its_cpu_init_lpis(void) 1083 { 1084 void __iomem *rbase = gic_data_rdist_rd_base(); 1085 struct page *pend_page; 1086 u64 val, tmp; 1087 1088 /* If we didn't allocate the pending table yet, do it now */ 1089 pend_page = gic_data_rdist()->pend_page; 1090 if (!pend_page) { 1091 phys_addr_t paddr; 1092 /* 1093 * The pending pages have to be at least 64kB aligned, 1094 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1095 */ 1096 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO, 1097 get_order(max(LPI_PENDBASE_SZ, SZ_64K))); 1098 if (!pend_page) { 1099 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1100 smp_processor_id()); 1101 return; 1102 } 1103 1104 /* Make sure the GIC will observe the zero-ed page */ 1105 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ); 1106 1107 paddr = page_to_phys(pend_page); 1108 pr_info("CPU%d: using LPI pending table @%pa\n", 1109 smp_processor_id(), &paddr); 1110 gic_data_rdist()->pend_page = pend_page; 1111 } 1112 1113 /* Disable LPIs */ 1114 val = readl_relaxed(rbase + GICR_CTLR); 1115 val &= ~GICR_CTLR_ENABLE_LPIS; 1116 writel_relaxed(val, rbase + GICR_CTLR); 1117 1118 /* 1119 * Make sure any change to the table is observable by the GIC. 1120 */ 1121 dsb(sy); 1122 1123 /* set PROPBASE */ 1124 val = (page_to_phys(gic_rdists->prop_page) | 1125 GICR_PROPBASER_InnerShareable | 1126 GICR_PROPBASER_WaWb | 1127 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1128 1129 writeq_relaxed(val, rbase + GICR_PROPBASER); 1130 tmp = readq_relaxed(rbase + GICR_PROPBASER); 1131 1132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1134 /* 1135 * The HW reports non-shareable, we must 1136 * remove the cacheability attributes as 1137 * well. 1138 */ 1139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1140 GICR_PROPBASER_CACHEABILITY_MASK); 1141 val |= GICR_PROPBASER_nC; 1142 writeq_relaxed(val, rbase + GICR_PROPBASER); 1143 } 1144 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1146 } 1147 1148 /* set PENDBASE */ 1149 val = (page_to_phys(pend_page) | 1150 GICR_PENDBASER_InnerShareable | 1151 GICR_PENDBASER_WaWb); 1152 1153 writeq_relaxed(val, rbase + GICR_PENDBASER); 1154 tmp = readq_relaxed(rbase + GICR_PENDBASER); 1155 1156 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1157 /* 1158 * The HW reports non-shareable, we must remove the 1159 * cacheability attributes as well. 1160 */ 1161 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1162 GICR_PENDBASER_CACHEABILITY_MASK); 1163 val |= GICR_PENDBASER_nC; 1164 writeq_relaxed(val, rbase + GICR_PENDBASER); 1165 } 1166 1167 /* Enable LPIs */ 1168 val = readl_relaxed(rbase + GICR_CTLR); 1169 val |= GICR_CTLR_ENABLE_LPIS; 1170 writel_relaxed(val, rbase + GICR_CTLR); 1171 1172 /* Make sure the GIC has seen the above */ 1173 dsb(sy); 1174 } 1175 1176 static void its_cpu_init_collection(void) 1177 { 1178 struct its_node *its; 1179 int cpu; 1180 1181 spin_lock(&its_lock); 1182 cpu = smp_processor_id(); 1183 1184 list_for_each_entry(its, &its_nodes, entry) { 1185 u64 target; 1186 1187 /* avoid cross node collections and its mapping */ 1188 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1189 struct device_node *cpu_node; 1190 1191 cpu_node = of_get_cpu_node(cpu, NULL); 1192 if (its->numa_node != NUMA_NO_NODE && 1193 its->numa_node != of_node_to_nid(cpu_node)) 1194 continue; 1195 } 1196 1197 /* 1198 * We now have to bind each collection to its target 1199 * redistributor. 1200 */ 1201 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1202 /* 1203 * This ITS wants the physical address of the 1204 * redistributor. 1205 */ 1206 target = gic_data_rdist()->phys_base; 1207 } else { 1208 /* 1209 * This ITS wants a linear CPU number. 1210 */ 1211 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1212 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1213 } 1214 1215 /* Perform collection mapping */ 1216 its->collections[cpu].target_address = target; 1217 its->collections[cpu].col_id = cpu; 1218 1219 its_send_mapc(its, &its->collections[cpu], 1); 1220 its_send_invall(its, &its->collections[cpu]); 1221 } 1222 1223 spin_unlock(&its_lock); 1224 } 1225 1226 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1227 { 1228 struct its_device *its_dev = NULL, *tmp; 1229 unsigned long flags; 1230 1231 raw_spin_lock_irqsave(&its->lock, flags); 1232 1233 list_for_each_entry(tmp, &its->its_device_list, entry) { 1234 if (tmp->device_id == dev_id) { 1235 its_dev = tmp; 1236 break; 1237 } 1238 } 1239 1240 raw_spin_unlock_irqrestore(&its->lock, flags); 1241 1242 return its_dev; 1243 } 1244 1245 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 1246 { 1247 int i; 1248 1249 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1250 if (GITS_BASER_TYPE(its->tables[i].val) == type) 1251 return &its->tables[i]; 1252 } 1253 1254 return NULL; 1255 } 1256 1257 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 1258 { 1259 struct its_baser *baser; 1260 struct page *page; 1261 u32 esz, idx; 1262 __le64 *table; 1263 1264 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 1265 1266 /* Don't allow device id that exceeds ITS hardware limit */ 1267 if (!baser) 1268 return (ilog2(dev_id) < its->device_ids); 1269 1270 /* Don't allow device id that exceeds single, flat table limit */ 1271 esz = GITS_BASER_ENTRY_SIZE(baser->val); 1272 if (!(baser->val & GITS_BASER_INDIRECT)) 1273 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 1274 1275 /* Compute 1st level table index & check if that exceeds table limit */ 1276 idx = dev_id >> ilog2(baser->psz / esz); 1277 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 1278 return false; 1279 1280 table = baser->base; 1281 1282 /* Allocate memory for 2nd level table */ 1283 if (!table[idx]) { 1284 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 1285 if (!page) 1286 return false; 1287 1288 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 1289 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1290 __flush_dcache_area(page_address(page), baser->psz); 1291 1292 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 1293 1294 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 1295 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1296 __flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE); 1297 1298 /* Ensure updated table contents are visible to ITS hardware */ 1299 dsb(sy); 1300 } 1301 1302 return true; 1303 } 1304 1305 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1306 int nvecs) 1307 { 1308 struct its_device *dev; 1309 unsigned long *lpi_map; 1310 unsigned long flags; 1311 u16 *col_map = NULL; 1312 void *itt; 1313 int lpi_base; 1314 int nr_lpis; 1315 int nr_ites; 1316 int sz; 1317 1318 if (!its_alloc_device_table(its, dev_id)) 1319 return NULL; 1320 1321 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1322 /* 1323 * At least one bit of EventID is being used, hence a minimum 1324 * of two entries. No, the architecture doesn't let you 1325 * express an ITT with a single entry. 1326 */ 1327 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 1328 sz = nr_ites * its->ite_size; 1329 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 1330 itt = kzalloc(sz, GFP_KERNEL); 1331 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 1332 if (lpi_map) 1333 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL); 1334 1335 if (!dev || !itt || !lpi_map || !col_map) { 1336 kfree(dev); 1337 kfree(itt); 1338 kfree(lpi_map); 1339 kfree(col_map); 1340 return NULL; 1341 } 1342 1343 __flush_dcache_area(itt, sz); 1344 1345 dev->its = its; 1346 dev->itt = itt; 1347 dev->nr_ites = nr_ites; 1348 dev->event_map.lpi_map = lpi_map; 1349 dev->event_map.col_map = col_map; 1350 dev->event_map.lpi_base = lpi_base; 1351 dev->event_map.nr_lpis = nr_lpis; 1352 dev->device_id = dev_id; 1353 INIT_LIST_HEAD(&dev->entry); 1354 1355 raw_spin_lock_irqsave(&its->lock, flags); 1356 list_add(&dev->entry, &its->its_device_list); 1357 raw_spin_unlock_irqrestore(&its->lock, flags); 1358 1359 /* Map device to its ITT */ 1360 its_send_mapd(dev, 1); 1361 1362 return dev; 1363 } 1364 1365 static void its_free_device(struct its_device *its_dev) 1366 { 1367 unsigned long flags; 1368 1369 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 1370 list_del(&its_dev->entry); 1371 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 1372 kfree(its_dev->itt); 1373 kfree(its_dev); 1374 } 1375 1376 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 1377 { 1378 int idx; 1379 1380 idx = find_first_zero_bit(dev->event_map.lpi_map, 1381 dev->event_map.nr_lpis); 1382 if (idx == dev->event_map.nr_lpis) 1383 return -ENOSPC; 1384 1385 *hwirq = dev->event_map.lpi_base + idx; 1386 set_bit(idx, dev->event_map.lpi_map); 1387 1388 return 0; 1389 } 1390 1391 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 1392 int nvec, msi_alloc_info_t *info) 1393 { 1394 struct its_node *its; 1395 struct its_device *its_dev; 1396 struct msi_domain_info *msi_info; 1397 u32 dev_id; 1398 1399 /* 1400 * We ignore "dev" entierely, and rely on the dev_id that has 1401 * been passed via the scratchpad. This limits this domain's 1402 * usefulness to upper layers that definitely know that they 1403 * are built on top of the ITS. 1404 */ 1405 dev_id = info->scratchpad[0].ul; 1406 1407 msi_info = msi_get_domain_info(domain); 1408 its = msi_info->data; 1409 1410 its_dev = its_find_device(its, dev_id); 1411 if (its_dev) { 1412 /* 1413 * We already have seen this ID, probably through 1414 * another alias (PCI bridge of some sort). No need to 1415 * create the device. 1416 */ 1417 pr_debug("Reusing ITT for devID %x\n", dev_id); 1418 goto out; 1419 } 1420 1421 its_dev = its_create_device(its, dev_id, nvec); 1422 if (!its_dev) 1423 return -ENOMEM; 1424 1425 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 1426 out: 1427 info->scratchpad[0].ptr = its_dev; 1428 return 0; 1429 } 1430 1431 static struct msi_domain_ops its_msi_domain_ops = { 1432 .msi_prepare = its_msi_prepare, 1433 }; 1434 1435 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 1436 unsigned int virq, 1437 irq_hw_number_t hwirq) 1438 { 1439 struct irq_fwspec fwspec; 1440 1441 if (irq_domain_get_of_node(domain->parent)) { 1442 fwspec.fwnode = domain->parent->fwnode; 1443 fwspec.param_count = 3; 1444 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 1445 fwspec.param[1] = hwirq; 1446 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 1447 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 1448 fwspec.fwnode = domain->parent->fwnode; 1449 fwspec.param_count = 2; 1450 fwspec.param[0] = hwirq; 1451 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1452 } else { 1453 return -EINVAL; 1454 } 1455 1456 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 1457 } 1458 1459 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1460 unsigned int nr_irqs, void *args) 1461 { 1462 msi_alloc_info_t *info = args; 1463 struct its_device *its_dev = info->scratchpad[0].ptr; 1464 irq_hw_number_t hwirq; 1465 int err; 1466 int i; 1467 1468 for (i = 0; i < nr_irqs; i++) { 1469 err = its_alloc_device_irq(its_dev, &hwirq); 1470 if (err) 1471 return err; 1472 1473 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 1474 if (err) 1475 return err; 1476 1477 irq_domain_set_hwirq_and_chip(domain, virq + i, 1478 hwirq, &its_irq_chip, its_dev); 1479 pr_debug("ID:%d pID:%d vID:%d\n", 1480 (int)(hwirq - its_dev->event_map.lpi_base), 1481 (int) hwirq, virq + i); 1482 } 1483 1484 return 0; 1485 } 1486 1487 static void its_irq_domain_activate(struct irq_domain *domain, 1488 struct irq_data *d) 1489 { 1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1491 u32 event = its_get_event_id(d); 1492 const struct cpumask *cpu_mask = cpu_online_mask; 1493 1494 /* get the cpu_mask of local node */ 1495 if (its_dev->its->numa_node >= 0) 1496 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1497 1498 /* Bind the LPI to the first possible CPU */ 1499 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask); 1500 1501 /* Map the GIC IRQ and event to the device */ 1502 its_send_mapvi(its_dev, d->hwirq, event); 1503 } 1504 1505 static void its_irq_domain_deactivate(struct irq_domain *domain, 1506 struct irq_data *d) 1507 { 1508 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1509 u32 event = its_get_event_id(d); 1510 1511 /* Stop the delivery of interrupts */ 1512 its_send_discard(its_dev, event); 1513 } 1514 1515 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1516 unsigned int nr_irqs) 1517 { 1518 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1519 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1520 int i; 1521 1522 for (i = 0; i < nr_irqs; i++) { 1523 struct irq_data *data = irq_domain_get_irq_data(domain, 1524 virq + i); 1525 u32 event = its_get_event_id(data); 1526 1527 /* Mark interrupt index as unused */ 1528 clear_bit(event, its_dev->event_map.lpi_map); 1529 1530 /* Nuke the entry in the domain */ 1531 irq_domain_reset_irq_data(data); 1532 } 1533 1534 /* If all interrupts have been freed, start mopping the floor */ 1535 if (bitmap_empty(its_dev->event_map.lpi_map, 1536 its_dev->event_map.nr_lpis)) { 1537 its_lpi_free(&its_dev->event_map); 1538 1539 /* Unmap device/itt */ 1540 its_send_mapd(its_dev, 0); 1541 its_free_device(its_dev); 1542 } 1543 1544 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 1545 } 1546 1547 static const struct irq_domain_ops its_domain_ops = { 1548 .alloc = its_irq_domain_alloc, 1549 .free = its_irq_domain_free, 1550 .activate = its_irq_domain_activate, 1551 .deactivate = its_irq_domain_deactivate, 1552 }; 1553 1554 static int its_force_quiescent(void __iomem *base) 1555 { 1556 u32 count = 1000000; /* 1s */ 1557 u32 val; 1558 1559 val = readl_relaxed(base + GITS_CTLR); 1560 /* 1561 * GIC architecture specification requires the ITS to be both 1562 * disabled and quiescent for writes to GITS_BASER<n> or 1563 * GITS_CBASER to not have UNPREDICTABLE results. 1564 */ 1565 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 1566 return 0; 1567 1568 /* Disable the generation of all interrupts to this ITS */ 1569 val &= ~GITS_CTLR_ENABLE; 1570 writel_relaxed(val, base + GITS_CTLR); 1571 1572 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 1573 while (1) { 1574 val = readl_relaxed(base + GITS_CTLR); 1575 if (val & GITS_CTLR_QUIESCENT) 1576 return 0; 1577 1578 count--; 1579 if (!count) 1580 return -EBUSY; 1581 1582 cpu_relax(); 1583 udelay(1); 1584 } 1585 } 1586 1587 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 1588 { 1589 struct its_node *its = data; 1590 1591 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 1592 } 1593 1594 static void __maybe_unused its_enable_quirk_cavium_23144(void *data) 1595 { 1596 struct its_node *its = data; 1597 1598 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 1599 } 1600 1601 static const struct gic_quirk its_quirks[] = { 1602 #ifdef CONFIG_CAVIUM_ERRATUM_22375 1603 { 1604 .desc = "ITS: Cavium errata 22375, 24313", 1605 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1606 .mask = 0xffff0fff, 1607 .init = its_enable_quirk_cavium_22375, 1608 }, 1609 #endif 1610 #ifdef CONFIG_CAVIUM_ERRATUM_23144 1611 { 1612 .desc = "ITS: Cavium erratum 23144", 1613 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1614 .mask = 0xffff0fff, 1615 .init = its_enable_quirk_cavium_23144, 1616 }, 1617 #endif 1618 { 1619 } 1620 }; 1621 1622 static void its_enable_quirks(struct its_node *its) 1623 { 1624 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 1625 1626 gic_enable_quirks(iidr, its_quirks, its); 1627 } 1628 1629 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 1630 { 1631 struct irq_domain *inner_domain; 1632 struct msi_domain_info *info; 1633 1634 info = kzalloc(sizeof(*info), GFP_KERNEL); 1635 if (!info) 1636 return -ENOMEM; 1637 1638 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 1639 if (!inner_domain) { 1640 kfree(info); 1641 return -ENOMEM; 1642 } 1643 1644 inner_domain->parent = its_parent; 1645 inner_domain->bus_token = DOMAIN_BUS_NEXUS; 1646 info->ops = &its_msi_domain_ops; 1647 info->data = its; 1648 inner_domain->host_data = info; 1649 1650 return 0; 1651 } 1652 1653 static int __init its_probe_one(struct resource *res, 1654 struct fwnode_handle *handle, int numa_node) 1655 { 1656 struct its_node *its; 1657 void __iomem *its_base; 1658 u32 val; 1659 u64 baser, tmp; 1660 int err; 1661 1662 its_base = ioremap(res->start, resource_size(res)); 1663 if (!its_base) { 1664 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 1665 return -ENOMEM; 1666 } 1667 1668 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 1669 if (val != 0x30 && val != 0x40) { 1670 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 1671 err = -ENODEV; 1672 goto out_unmap; 1673 } 1674 1675 err = its_force_quiescent(its_base); 1676 if (err) { 1677 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 1678 goto out_unmap; 1679 } 1680 1681 pr_info("ITS %pR\n", res); 1682 1683 its = kzalloc(sizeof(*its), GFP_KERNEL); 1684 if (!its) { 1685 err = -ENOMEM; 1686 goto out_unmap; 1687 } 1688 1689 raw_spin_lock_init(&its->lock); 1690 INIT_LIST_HEAD(&its->entry); 1691 INIT_LIST_HEAD(&its->its_device_list); 1692 its->base = its_base; 1693 its->phys_base = res->start; 1694 its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1; 1695 its->numa_node = numa_node; 1696 1697 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL); 1698 if (!its->cmd_base) { 1699 err = -ENOMEM; 1700 goto out_free_its; 1701 } 1702 its->cmd_write = its->cmd_base; 1703 1704 its_enable_quirks(its); 1705 1706 err = its_alloc_tables(its); 1707 if (err) 1708 goto out_free_cmd; 1709 1710 err = its_alloc_collections(its); 1711 if (err) 1712 goto out_free_tables; 1713 1714 baser = (virt_to_phys(its->cmd_base) | 1715 GITS_CBASER_WaWb | 1716 GITS_CBASER_InnerShareable | 1717 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 1718 GITS_CBASER_VALID); 1719 1720 writeq_relaxed(baser, its->base + GITS_CBASER); 1721 tmp = readq_relaxed(its->base + GITS_CBASER); 1722 1723 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 1724 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 1725 /* 1726 * The HW reports non-shareable, we must 1727 * remove the cacheability attributes as 1728 * well. 1729 */ 1730 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 1731 GITS_CBASER_CACHEABILITY_MASK); 1732 baser |= GITS_CBASER_nC; 1733 writeq_relaxed(baser, its->base + GITS_CBASER); 1734 } 1735 pr_info("ITS: using cache flushing for cmd queue\n"); 1736 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 1737 } 1738 1739 writeq_relaxed(0, its->base + GITS_CWRITER); 1740 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR); 1741 1742 err = its_init_domain(handle, its); 1743 if (err) 1744 goto out_free_tables; 1745 1746 spin_lock(&its_lock); 1747 list_add(&its->entry, &its_nodes); 1748 spin_unlock(&its_lock); 1749 1750 return 0; 1751 1752 out_free_tables: 1753 its_free_tables(its); 1754 out_free_cmd: 1755 kfree(its->cmd_base); 1756 out_free_its: 1757 kfree(its); 1758 out_unmap: 1759 iounmap(its_base); 1760 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 1761 return err; 1762 } 1763 1764 static bool gic_rdists_supports_plpis(void) 1765 { 1766 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 1767 } 1768 1769 int its_cpu_init(void) 1770 { 1771 if (!list_empty(&its_nodes)) { 1772 if (!gic_rdists_supports_plpis()) { 1773 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 1774 return -ENXIO; 1775 } 1776 its_cpu_init_lpis(); 1777 its_cpu_init_collection(); 1778 } 1779 1780 return 0; 1781 } 1782 1783 static struct of_device_id its_device_id[] = { 1784 { .compatible = "arm,gic-v3-its", }, 1785 {}, 1786 }; 1787 1788 static int __init its_of_probe(struct device_node *node) 1789 { 1790 struct device_node *np; 1791 struct resource res; 1792 1793 for (np = of_find_matching_node(node, its_device_id); np; 1794 np = of_find_matching_node(np, its_device_id)) { 1795 if (!of_property_read_bool(np, "msi-controller")) { 1796 pr_warn("%s: no msi-controller property, ITS ignored\n", 1797 np->full_name); 1798 continue; 1799 } 1800 1801 if (of_address_to_resource(np, 0, &res)) { 1802 pr_warn("%s: no regs?\n", np->full_name); 1803 continue; 1804 } 1805 1806 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 1807 } 1808 return 0; 1809 } 1810 1811 #ifdef CONFIG_ACPI 1812 1813 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 1814 1815 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 1816 const unsigned long end) 1817 { 1818 struct acpi_madt_generic_translator *its_entry; 1819 struct fwnode_handle *dom_handle; 1820 struct resource res; 1821 int err; 1822 1823 its_entry = (struct acpi_madt_generic_translator *)header; 1824 memset(&res, 0, sizeof(res)); 1825 res.start = its_entry->base_address; 1826 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 1827 res.flags = IORESOURCE_MEM; 1828 1829 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 1830 if (!dom_handle) { 1831 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 1832 &res.start); 1833 return -ENOMEM; 1834 } 1835 1836 err = iort_register_domain_token(its_entry->translation_id, dom_handle); 1837 if (err) { 1838 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 1839 &res.start, its_entry->translation_id); 1840 goto dom_err; 1841 } 1842 1843 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE); 1844 if (!err) 1845 return 0; 1846 1847 iort_deregister_domain_token(its_entry->translation_id); 1848 dom_err: 1849 irq_domain_free_fwnode(dom_handle); 1850 return err; 1851 } 1852 1853 static void __init its_acpi_probe(void) 1854 { 1855 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 1856 gic_acpi_parse_madt_its, 0); 1857 } 1858 #else 1859 static void __init its_acpi_probe(void) { } 1860 #endif 1861 1862 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 1863 struct irq_domain *parent_domain) 1864 { 1865 struct device_node *of_node; 1866 1867 its_parent = parent_domain; 1868 of_node = to_of_node(handle); 1869 if (of_node) 1870 its_of_probe(of_node); 1871 else 1872 its_acpi_probe(); 1873 1874 if (list_empty(&its_nodes)) { 1875 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 1876 return -ENXIO; 1877 } 1878 1879 gic_rdists = rdists; 1880 its_alloc_lpi_tables(); 1881 its_lpi_init(rdists->id_bits); 1882 1883 return 0; 1884 } 1885