xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
29 #include <linux/mm.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
39 
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
43 
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
46 
47 #include "irq-gic-common.h"
48 
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
52 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
53 
54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 #define LPI_PROP_DEFAULT_PRIO	0xa0
68 
69 /*
70  * Collection structure - just an ID, and a redistributor address to
71  * ping. We use one per CPU as a bag of interrupts assigned to this
72  * CPU.
73  */
74 struct its_collection {
75 	u64			target_address;
76 	u16			col_id;
77 };
78 
79 /*
80  * The ITS_BASER structure - contains memory information, cached
81  * value of BASER register configuration and ITS page size.
82  */
83 struct its_baser {
84 	void		*base;
85 	u64		val;
86 	u32		order;
87 	u32		psz;
88 };
89 
90 struct its_device;
91 
92 /*
93  * The ITS structure - contains most of the infrastructure, with the
94  * top-level MSI domain, the command queue, the collections, and the
95  * list of devices writing to it.
96  */
97 struct its_node {
98 	raw_spinlock_t		lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	phys_addr_t		phys_base;
102 	struct its_cmd_block	*cmd_base;
103 	struct its_cmd_block	*cmd_write;
104 	struct its_baser	tables[GITS_BASER_NR_REGS];
105 	struct its_collection	*collections;
106 	struct fwnode_handle	*fwnode_handle;
107 	u64			(*get_msi_base)(struct its_device *its_dev);
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	struct list_head	its_device_list;
111 	u64			flags;
112 	unsigned long		list_nr;
113 	u32			ite_size;
114 	u32			device_ids;
115 	int			numa_node;
116 	unsigned int		msi_domain_flags;
117 	u32			pre_its_base; /* for Socionext Synquacer */
118 	bool			is_v4;
119 	int			vlpi_redist_offset;
120 };
121 
122 #define ITS_ITT_ALIGN		SZ_256
123 
124 /* The maximum number of VPEID bits supported by VLPI commands */
125 #define ITS_MAX_VPEID_BITS	(16)
126 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
127 
128 /* Convert page order to size in bytes */
129 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
130 
131 struct event_lpi_map {
132 	unsigned long		*lpi_map;
133 	u16			*col_map;
134 	irq_hw_number_t		lpi_base;
135 	int			nr_lpis;
136 	struct mutex		vlpi_lock;
137 	struct its_vm		*vm;
138 	struct its_vlpi_map	*vlpi_maps;
139 	int			nr_vlpis;
140 };
141 
142 /*
143  * The ITS view of a device - belongs to an ITS, owns an interrupt
144  * translation table, and a list of interrupts.  If it some of its
145  * LPIs are injected into a guest (GICv4), the event_map.vm field
146  * indicates which one.
147  */
148 struct its_device {
149 	struct list_head	entry;
150 	struct its_node		*its;
151 	struct event_lpi_map	event_map;
152 	void			*itt;
153 	u32			nr_ites;
154 	u32			device_id;
155 };
156 
157 static struct {
158 	raw_spinlock_t		lock;
159 	struct its_device	*dev;
160 	struct its_vpe		**vpes;
161 	int			next_victim;
162 } vpe_proxy;
163 
164 static LIST_HEAD(its_nodes);
165 static DEFINE_RAW_SPINLOCK(its_lock);
166 static struct rdists *gic_rdists;
167 static struct irq_domain *its_parent;
168 
169 static unsigned long its_list_map;
170 static u16 vmovp_seq_num;
171 static DEFINE_RAW_SPINLOCK(vmovp_lock);
172 
173 static DEFINE_IDA(its_vpeid_ida);
174 
175 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
176 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
177 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
178 
179 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
180 					       u32 event)
181 {
182 	struct its_node *its = its_dev->its;
183 
184 	return its->collections + its_dev->event_map.col_map[event];
185 }
186 
187 static struct its_collection *valid_col(struct its_collection *col)
188 {
189 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
190 		return NULL;
191 
192 	return col;
193 }
194 
195 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
196 {
197 	if (valid_col(its->collections + vpe->col_idx))
198 		return vpe;
199 
200 	return NULL;
201 }
202 
203 /*
204  * ITS command descriptors - parameters to be encoded in a command
205  * block.
206  */
207 struct its_cmd_desc {
208 	union {
209 		struct {
210 			struct its_device *dev;
211 			u32 event_id;
212 		} its_inv_cmd;
213 
214 		struct {
215 			struct its_device *dev;
216 			u32 event_id;
217 		} its_clear_cmd;
218 
219 		struct {
220 			struct its_device *dev;
221 			u32 event_id;
222 		} its_int_cmd;
223 
224 		struct {
225 			struct its_device *dev;
226 			int valid;
227 		} its_mapd_cmd;
228 
229 		struct {
230 			struct its_collection *col;
231 			int valid;
232 		} its_mapc_cmd;
233 
234 		struct {
235 			struct its_device *dev;
236 			u32 phys_id;
237 			u32 event_id;
238 		} its_mapti_cmd;
239 
240 		struct {
241 			struct its_device *dev;
242 			struct its_collection *col;
243 			u32 event_id;
244 		} its_movi_cmd;
245 
246 		struct {
247 			struct its_device *dev;
248 			u32 event_id;
249 		} its_discard_cmd;
250 
251 		struct {
252 			struct its_collection *col;
253 		} its_invall_cmd;
254 
255 		struct {
256 			struct its_vpe *vpe;
257 		} its_vinvall_cmd;
258 
259 		struct {
260 			struct its_vpe *vpe;
261 			struct its_collection *col;
262 			bool valid;
263 		} its_vmapp_cmd;
264 
265 		struct {
266 			struct its_vpe *vpe;
267 			struct its_device *dev;
268 			u32 virt_id;
269 			u32 event_id;
270 			bool db_enabled;
271 		} its_vmapti_cmd;
272 
273 		struct {
274 			struct its_vpe *vpe;
275 			struct its_device *dev;
276 			u32 event_id;
277 			bool db_enabled;
278 		} its_vmovi_cmd;
279 
280 		struct {
281 			struct its_vpe *vpe;
282 			struct its_collection *col;
283 			u16 seq_num;
284 			u16 its_list;
285 		} its_vmovp_cmd;
286 	};
287 };
288 
289 /*
290  * The ITS command block, which is what the ITS actually parses.
291  */
292 struct its_cmd_block {
293 	u64	raw_cmd[4];
294 };
295 
296 #define ITS_CMD_QUEUE_SZ		SZ_64K
297 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
298 
299 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
300 						    struct its_cmd_block *,
301 						    struct its_cmd_desc *);
302 
303 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
304 					      struct its_cmd_block *,
305 					      struct its_cmd_desc *);
306 
307 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
308 {
309 	u64 mask = GENMASK_ULL(h, l);
310 	*raw_cmd &= ~mask;
311 	*raw_cmd |= (val << l) & mask;
312 }
313 
314 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
315 {
316 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
317 }
318 
319 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
320 {
321 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
322 }
323 
324 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
325 {
326 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
327 }
328 
329 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
330 {
331 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
332 }
333 
334 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
335 {
336 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
337 }
338 
339 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
340 {
341 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
342 }
343 
344 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
345 {
346 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
347 }
348 
349 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
350 {
351 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
352 }
353 
354 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
355 {
356 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
357 }
358 
359 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
360 {
361 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
362 }
363 
364 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
365 {
366 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
367 }
368 
369 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
370 {
371 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
372 }
373 
374 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
375 {
376 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
377 }
378 
379 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
380 {
381 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
382 }
383 
384 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
385 {
386 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
387 }
388 
389 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
390 {
391 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
392 }
393 
394 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
395 {
396 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
397 }
398 
399 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
400 {
401 	/* Let's fixup BE commands */
402 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
403 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
404 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
405 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
406 }
407 
408 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
409 						 struct its_cmd_block *cmd,
410 						 struct its_cmd_desc *desc)
411 {
412 	unsigned long itt_addr;
413 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
414 
415 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
416 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
417 
418 	its_encode_cmd(cmd, GITS_CMD_MAPD);
419 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
420 	its_encode_size(cmd, size - 1);
421 	its_encode_itt(cmd, itt_addr);
422 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
423 
424 	its_fixup_cmd(cmd);
425 
426 	return NULL;
427 }
428 
429 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
430 						 struct its_cmd_block *cmd,
431 						 struct its_cmd_desc *desc)
432 {
433 	its_encode_cmd(cmd, GITS_CMD_MAPC);
434 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
435 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
436 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
437 
438 	its_fixup_cmd(cmd);
439 
440 	return desc->its_mapc_cmd.col;
441 }
442 
443 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
444 						  struct its_cmd_block *cmd,
445 						  struct its_cmd_desc *desc)
446 {
447 	struct its_collection *col;
448 
449 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
450 			       desc->its_mapti_cmd.event_id);
451 
452 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
453 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
454 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
455 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
456 	its_encode_collection(cmd, col->col_id);
457 
458 	its_fixup_cmd(cmd);
459 
460 	return valid_col(col);
461 }
462 
463 static struct its_collection *its_build_movi_cmd(struct its_node *its,
464 						 struct its_cmd_block *cmd,
465 						 struct its_cmd_desc *desc)
466 {
467 	struct its_collection *col;
468 
469 	col = dev_event_to_col(desc->its_movi_cmd.dev,
470 			       desc->its_movi_cmd.event_id);
471 
472 	its_encode_cmd(cmd, GITS_CMD_MOVI);
473 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
474 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
475 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
476 
477 	its_fixup_cmd(cmd);
478 
479 	return valid_col(col);
480 }
481 
482 static struct its_collection *its_build_discard_cmd(struct its_node *its,
483 						    struct its_cmd_block *cmd,
484 						    struct its_cmd_desc *desc)
485 {
486 	struct its_collection *col;
487 
488 	col = dev_event_to_col(desc->its_discard_cmd.dev,
489 			       desc->its_discard_cmd.event_id);
490 
491 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
492 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
493 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
494 
495 	its_fixup_cmd(cmd);
496 
497 	return valid_col(col);
498 }
499 
500 static struct its_collection *its_build_inv_cmd(struct its_node *its,
501 						struct its_cmd_block *cmd,
502 						struct its_cmd_desc *desc)
503 {
504 	struct its_collection *col;
505 
506 	col = dev_event_to_col(desc->its_inv_cmd.dev,
507 			       desc->its_inv_cmd.event_id);
508 
509 	its_encode_cmd(cmd, GITS_CMD_INV);
510 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
511 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
512 
513 	its_fixup_cmd(cmd);
514 
515 	return valid_col(col);
516 }
517 
518 static struct its_collection *its_build_int_cmd(struct its_node *its,
519 						struct its_cmd_block *cmd,
520 						struct its_cmd_desc *desc)
521 {
522 	struct its_collection *col;
523 
524 	col = dev_event_to_col(desc->its_int_cmd.dev,
525 			       desc->its_int_cmd.event_id);
526 
527 	its_encode_cmd(cmd, GITS_CMD_INT);
528 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
529 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
530 
531 	its_fixup_cmd(cmd);
532 
533 	return valid_col(col);
534 }
535 
536 static struct its_collection *its_build_clear_cmd(struct its_node *its,
537 						  struct its_cmd_block *cmd,
538 						  struct its_cmd_desc *desc)
539 {
540 	struct its_collection *col;
541 
542 	col = dev_event_to_col(desc->its_clear_cmd.dev,
543 			       desc->its_clear_cmd.event_id);
544 
545 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
546 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
547 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
548 
549 	its_fixup_cmd(cmd);
550 
551 	return valid_col(col);
552 }
553 
554 static struct its_collection *its_build_invall_cmd(struct its_node *its,
555 						   struct its_cmd_block *cmd,
556 						   struct its_cmd_desc *desc)
557 {
558 	its_encode_cmd(cmd, GITS_CMD_INVALL);
559 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
560 
561 	its_fixup_cmd(cmd);
562 
563 	return NULL;
564 }
565 
566 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
567 					     struct its_cmd_block *cmd,
568 					     struct its_cmd_desc *desc)
569 {
570 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
571 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
572 
573 	its_fixup_cmd(cmd);
574 
575 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
576 }
577 
578 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
579 					   struct its_cmd_block *cmd,
580 					   struct its_cmd_desc *desc)
581 {
582 	unsigned long vpt_addr;
583 	u64 target;
584 
585 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
586 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
587 
588 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
589 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
590 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
591 	its_encode_target(cmd, target);
592 	its_encode_vpt_addr(cmd, vpt_addr);
593 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
594 
595 	its_fixup_cmd(cmd);
596 
597 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
598 }
599 
600 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
601 					    struct its_cmd_block *cmd,
602 					    struct its_cmd_desc *desc)
603 {
604 	u32 db;
605 
606 	if (desc->its_vmapti_cmd.db_enabled)
607 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
608 	else
609 		db = 1023;
610 
611 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
612 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
613 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
614 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
615 	its_encode_db_phys_id(cmd, db);
616 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
617 
618 	its_fixup_cmd(cmd);
619 
620 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
621 }
622 
623 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
624 					   struct its_cmd_block *cmd,
625 					   struct its_cmd_desc *desc)
626 {
627 	u32 db;
628 
629 	if (desc->its_vmovi_cmd.db_enabled)
630 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
631 	else
632 		db = 1023;
633 
634 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
635 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
636 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
637 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
638 	its_encode_db_phys_id(cmd, db);
639 	its_encode_db_valid(cmd, true);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
644 }
645 
646 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
647 					   struct its_cmd_block *cmd,
648 					   struct its_cmd_desc *desc)
649 {
650 	u64 target;
651 
652 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
653 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
654 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
655 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
656 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
657 	its_encode_target(cmd, target);
658 
659 	its_fixup_cmd(cmd);
660 
661 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
662 }
663 
664 static u64 its_cmd_ptr_to_offset(struct its_node *its,
665 				 struct its_cmd_block *ptr)
666 {
667 	return (ptr - its->cmd_base) * sizeof(*ptr);
668 }
669 
670 static int its_queue_full(struct its_node *its)
671 {
672 	int widx;
673 	int ridx;
674 
675 	widx = its->cmd_write - its->cmd_base;
676 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
677 
678 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
679 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
680 		return 1;
681 
682 	return 0;
683 }
684 
685 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
686 {
687 	struct its_cmd_block *cmd;
688 	u32 count = 1000000;	/* 1s! */
689 
690 	while (its_queue_full(its)) {
691 		count--;
692 		if (!count) {
693 			pr_err_ratelimited("ITS queue not draining\n");
694 			return NULL;
695 		}
696 		cpu_relax();
697 		udelay(1);
698 	}
699 
700 	cmd = its->cmd_write++;
701 
702 	/* Handle queue wrapping */
703 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
704 		its->cmd_write = its->cmd_base;
705 
706 	/* Clear command  */
707 	cmd->raw_cmd[0] = 0;
708 	cmd->raw_cmd[1] = 0;
709 	cmd->raw_cmd[2] = 0;
710 	cmd->raw_cmd[3] = 0;
711 
712 	return cmd;
713 }
714 
715 static struct its_cmd_block *its_post_commands(struct its_node *its)
716 {
717 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
718 
719 	writel_relaxed(wr, its->base + GITS_CWRITER);
720 
721 	return its->cmd_write;
722 }
723 
724 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
725 {
726 	/*
727 	 * Make sure the commands written to memory are observable by
728 	 * the ITS.
729 	 */
730 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
731 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
732 	else
733 		dsb(ishst);
734 }
735 
736 static int its_wait_for_range_completion(struct its_node *its,
737 					 struct its_cmd_block *from,
738 					 struct its_cmd_block *to)
739 {
740 	u64 rd_idx, from_idx, to_idx;
741 	u32 count = 1000000;	/* 1s! */
742 
743 	from_idx = its_cmd_ptr_to_offset(its, from);
744 	to_idx = its_cmd_ptr_to_offset(its, to);
745 
746 	while (1) {
747 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
748 
749 		/* Direct case */
750 		if (from_idx < to_idx && rd_idx >= to_idx)
751 			break;
752 
753 		/* Wrapped case */
754 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
755 			break;
756 
757 		count--;
758 		if (!count) {
759 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
760 					   from_idx, to_idx, rd_idx);
761 			return -1;
762 		}
763 		cpu_relax();
764 		udelay(1);
765 	}
766 
767 	return 0;
768 }
769 
770 /* Warning, macro hell follows */
771 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
772 void name(struct its_node *its,						\
773 	  buildtype builder,						\
774 	  struct its_cmd_desc *desc)					\
775 {									\
776 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
777 	synctype *sync_obj;						\
778 	unsigned long flags;						\
779 									\
780 	raw_spin_lock_irqsave(&its->lock, flags);			\
781 									\
782 	cmd = its_allocate_entry(its);					\
783 	if (!cmd) {		/* We're soooooo screewed... */		\
784 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
785 		return;							\
786 	}								\
787 	sync_obj = builder(its, cmd, desc);				\
788 	its_flush_cmd(its, cmd);					\
789 									\
790 	if (sync_obj) {							\
791 		sync_cmd = its_allocate_entry(its);			\
792 		if (!sync_cmd)						\
793 			goto post;					\
794 									\
795 		buildfn(its, sync_cmd, sync_obj);			\
796 		its_flush_cmd(its, sync_cmd);				\
797 	}								\
798 									\
799 post:									\
800 	next_cmd = its_post_commands(its);				\
801 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
802 									\
803 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
804 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
805 }
806 
807 static void its_build_sync_cmd(struct its_node *its,
808 			       struct its_cmd_block *sync_cmd,
809 			       struct its_collection *sync_col)
810 {
811 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
812 	its_encode_target(sync_cmd, sync_col->target_address);
813 
814 	its_fixup_cmd(sync_cmd);
815 }
816 
817 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
818 			     struct its_collection, its_build_sync_cmd)
819 
820 static void its_build_vsync_cmd(struct its_node *its,
821 				struct its_cmd_block *sync_cmd,
822 				struct its_vpe *sync_vpe)
823 {
824 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
825 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
826 
827 	its_fixup_cmd(sync_cmd);
828 }
829 
830 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
831 			     struct its_vpe, its_build_vsync_cmd)
832 
833 static void its_send_int(struct its_device *dev, u32 event_id)
834 {
835 	struct its_cmd_desc desc;
836 
837 	desc.its_int_cmd.dev = dev;
838 	desc.its_int_cmd.event_id = event_id;
839 
840 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
841 }
842 
843 static void its_send_clear(struct its_device *dev, u32 event_id)
844 {
845 	struct its_cmd_desc desc;
846 
847 	desc.its_clear_cmd.dev = dev;
848 	desc.its_clear_cmd.event_id = event_id;
849 
850 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
851 }
852 
853 static void its_send_inv(struct its_device *dev, u32 event_id)
854 {
855 	struct its_cmd_desc desc;
856 
857 	desc.its_inv_cmd.dev = dev;
858 	desc.its_inv_cmd.event_id = event_id;
859 
860 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
861 }
862 
863 static void its_send_mapd(struct its_device *dev, int valid)
864 {
865 	struct its_cmd_desc desc;
866 
867 	desc.its_mapd_cmd.dev = dev;
868 	desc.its_mapd_cmd.valid = !!valid;
869 
870 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
871 }
872 
873 static void its_send_mapc(struct its_node *its, struct its_collection *col,
874 			  int valid)
875 {
876 	struct its_cmd_desc desc;
877 
878 	desc.its_mapc_cmd.col = col;
879 	desc.its_mapc_cmd.valid = !!valid;
880 
881 	its_send_single_command(its, its_build_mapc_cmd, &desc);
882 }
883 
884 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
885 {
886 	struct its_cmd_desc desc;
887 
888 	desc.its_mapti_cmd.dev = dev;
889 	desc.its_mapti_cmd.phys_id = irq_id;
890 	desc.its_mapti_cmd.event_id = id;
891 
892 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
893 }
894 
895 static void its_send_movi(struct its_device *dev,
896 			  struct its_collection *col, u32 id)
897 {
898 	struct its_cmd_desc desc;
899 
900 	desc.its_movi_cmd.dev = dev;
901 	desc.its_movi_cmd.col = col;
902 	desc.its_movi_cmd.event_id = id;
903 
904 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
905 }
906 
907 static void its_send_discard(struct its_device *dev, u32 id)
908 {
909 	struct its_cmd_desc desc;
910 
911 	desc.its_discard_cmd.dev = dev;
912 	desc.its_discard_cmd.event_id = id;
913 
914 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
915 }
916 
917 static void its_send_invall(struct its_node *its, struct its_collection *col)
918 {
919 	struct its_cmd_desc desc;
920 
921 	desc.its_invall_cmd.col = col;
922 
923 	its_send_single_command(its, its_build_invall_cmd, &desc);
924 }
925 
926 static void its_send_vmapti(struct its_device *dev, u32 id)
927 {
928 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
929 	struct its_cmd_desc desc;
930 
931 	desc.its_vmapti_cmd.vpe = map->vpe;
932 	desc.its_vmapti_cmd.dev = dev;
933 	desc.its_vmapti_cmd.virt_id = map->vintid;
934 	desc.its_vmapti_cmd.event_id = id;
935 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
936 
937 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
938 }
939 
940 static void its_send_vmovi(struct its_device *dev, u32 id)
941 {
942 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
943 	struct its_cmd_desc desc;
944 
945 	desc.its_vmovi_cmd.vpe = map->vpe;
946 	desc.its_vmovi_cmd.dev = dev;
947 	desc.its_vmovi_cmd.event_id = id;
948 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
949 
950 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
951 }
952 
953 static void its_send_vmapp(struct its_node *its,
954 			   struct its_vpe *vpe, bool valid)
955 {
956 	struct its_cmd_desc desc;
957 
958 	desc.its_vmapp_cmd.vpe = vpe;
959 	desc.its_vmapp_cmd.valid = valid;
960 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
961 
962 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
963 }
964 
965 static void its_send_vmovp(struct its_vpe *vpe)
966 {
967 	struct its_cmd_desc desc;
968 	struct its_node *its;
969 	unsigned long flags;
970 	int col_id = vpe->col_idx;
971 
972 	desc.its_vmovp_cmd.vpe = vpe;
973 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
974 
975 	if (!its_list_map) {
976 		its = list_first_entry(&its_nodes, struct its_node, entry);
977 		desc.its_vmovp_cmd.seq_num = 0;
978 		desc.its_vmovp_cmd.col = &its->collections[col_id];
979 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
980 		return;
981 	}
982 
983 	/*
984 	 * Yet another marvel of the architecture. If using the
985 	 * its_list "feature", we need to make sure that all ITSs
986 	 * receive all VMOVP commands in the same order. The only way
987 	 * to guarantee this is to make vmovp a serialization point.
988 	 *
989 	 * Wall <-- Head.
990 	 */
991 	raw_spin_lock_irqsave(&vmovp_lock, flags);
992 
993 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
994 
995 	/* Emit VMOVPs */
996 	list_for_each_entry(its, &its_nodes, entry) {
997 		if (!its->is_v4)
998 			continue;
999 
1000 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1001 			continue;
1002 
1003 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1004 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1005 	}
1006 
1007 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1008 }
1009 
1010 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1011 {
1012 	struct its_cmd_desc desc;
1013 
1014 	desc.its_vinvall_cmd.vpe = vpe;
1015 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1016 }
1017 
1018 /*
1019  * irqchip functions - assumes MSI, mostly.
1020  */
1021 
1022 static inline u32 its_get_event_id(struct irq_data *d)
1023 {
1024 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1025 	return d->hwirq - its_dev->event_map.lpi_base;
1026 }
1027 
1028 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1029 {
1030 	irq_hw_number_t hwirq;
1031 	struct page *prop_page;
1032 	u8 *cfg;
1033 
1034 	if (irqd_is_forwarded_to_vcpu(d)) {
1035 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1036 		u32 event = its_get_event_id(d);
1037 		struct its_vlpi_map *map;
1038 
1039 		prop_page = its_dev->event_map.vm->vprop_page;
1040 		map = &its_dev->event_map.vlpi_maps[event];
1041 		hwirq = map->vintid;
1042 
1043 		/* Remember the updated property */
1044 		map->properties &= ~clr;
1045 		map->properties |= set | LPI_PROP_GROUP1;
1046 	} else {
1047 		prop_page = gic_rdists->prop_page;
1048 		hwirq = d->hwirq;
1049 	}
1050 
1051 	cfg = page_address(prop_page) + hwirq - 8192;
1052 	*cfg &= ~clr;
1053 	*cfg |= set | LPI_PROP_GROUP1;
1054 
1055 	/*
1056 	 * Make the above write visible to the redistributors.
1057 	 * And yes, we're flushing exactly: One. Single. Byte.
1058 	 * Humpf...
1059 	 */
1060 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1061 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1062 	else
1063 		dsb(ishst);
1064 }
1065 
1066 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1067 {
1068 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1069 
1070 	lpi_write_config(d, clr, set);
1071 	its_send_inv(its_dev, its_get_event_id(d));
1072 }
1073 
1074 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1075 {
1076 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1077 	u32 event = its_get_event_id(d);
1078 
1079 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1080 		return;
1081 
1082 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1083 
1084 	/*
1085 	 * More fun with the architecture:
1086 	 *
1087 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1088 	 * value or to 1023, depending on the enable bit. But that
1089 	 * would be issueing a mapping for an /existing/ DevID+EventID
1090 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1091 	 * to the /same/ vPE, using this opportunity to adjust the
1092 	 * doorbell. Mouahahahaha. We loves it, Precious.
1093 	 */
1094 	its_send_vmovi(its_dev, event);
1095 }
1096 
1097 static void its_mask_irq(struct irq_data *d)
1098 {
1099 	if (irqd_is_forwarded_to_vcpu(d))
1100 		its_vlpi_set_doorbell(d, false);
1101 
1102 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1103 }
1104 
1105 static void its_unmask_irq(struct irq_data *d)
1106 {
1107 	if (irqd_is_forwarded_to_vcpu(d))
1108 		its_vlpi_set_doorbell(d, true);
1109 
1110 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1111 }
1112 
1113 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1114 			    bool force)
1115 {
1116 	unsigned int cpu;
1117 	const struct cpumask *cpu_mask = cpu_online_mask;
1118 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1119 	struct its_collection *target_col;
1120 	u32 id = its_get_event_id(d);
1121 
1122 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1123 	if (irqd_is_forwarded_to_vcpu(d))
1124 		return -EINVAL;
1125 
1126        /* lpi cannot be routed to a redistributor that is on a foreign node */
1127 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1128 		if (its_dev->its->numa_node >= 0) {
1129 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1130 			if (!cpumask_intersects(mask_val, cpu_mask))
1131 				return -EINVAL;
1132 		}
1133 	}
1134 
1135 	cpu = cpumask_any_and(mask_val, cpu_mask);
1136 
1137 	if (cpu >= nr_cpu_ids)
1138 		return -EINVAL;
1139 
1140 	/* don't set the affinity when the target cpu is same as current one */
1141 	if (cpu != its_dev->event_map.col_map[id]) {
1142 		target_col = &its_dev->its->collections[cpu];
1143 		its_send_movi(its_dev, target_col, id);
1144 		its_dev->event_map.col_map[id] = cpu;
1145 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1146 	}
1147 
1148 	return IRQ_SET_MASK_OK_DONE;
1149 }
1150 
1151 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1152 {
1153 	struct its_node *its = its_dev->its;
1154 
1155 	return its->phys_base + GITS_TRANSLATER;
1156 }
1157 
1158 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1159 {
1160 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161 	struct its_node *its;
1162 	u64 addr;
1163 
1164 	its = its_dev->its;
1165 	addr = its->get_msi_base(its_dev);
1166 
1167 	msg->address_lo		= lower_32_bits(addr);
1168 	msg->address_hi		= upper_32_bits(addr);
1169 	msg->data		= its_get_event_id(d);
1170 
1171 	iommu_dma_map_msi_msg(d->irq, msg);
1172 }
1173 
1174 static int its_irq_set_irqchip_state(struct irq_data *d,
1175 				     enum irqchip_irq_state which,
1176 				     bool state)
1177 {
1178 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1179 	u32 event = its_get_event_id(d);
1180 
1181 	if (which != IRQCHIP_STATE_PENDING)
1182 		return -EINVAL;
1183 
1184 	if (state)
1185 		its_send_int(its_dev, event);
1186 	else
1187 		its_send_clear(its_dev, event);
1188 
1189 	return 0;
1190 }
1191 
1192 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1193 {
1194 	unsigned long flags;
1195 
1196 	/* Not using the ITS list? Everything is always mapped. */
1197 	if (!its_list_map)
1198 		return;
1199 
1200 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1201 
1202 	/*
1203 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1204 	 * them mapped now.
1205 	 */
1206 	vm->vlpi_count[its->list_nr]++;
1207 
1208 	if (vm->vlpi_count[its->list_nr] == 1) {
1209 		int i;
1210 
1211 		for (i = 0; i < vm->nr_vpes; i++) {
1212 			struct its_vpe *vpe = vm->vpes[i];
1213 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1214 
1215 			/* Map the VPE to the first possible CPU */
1216 			vpe->col_idx = cpumask_first(cpu_online_mask);
1217 			its_send_vmapp(its, vpe, true);
1218 			its_send_vinvall(its, vpe);
1219 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1220 		}
1221 	}
1222 
1223 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1224 }
1225 
1226 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1227 {
1228 	unsigned long flags;
1229 
1230 	/* Not using the ITS list? Everything is always mapped. */
1231 	if (!its_list_map)
1232 		return;
1233 
1234 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1235 
1236 	if (!--vm->vlpi_count[its->list_nr]) {
1237 		int i;
1238 
1239 		for (i = 0; i < vm->nr_vpes; i++)
1240 			its_send_vmapp(its, vm->vpes[i], false);
1241 	}
1242 
1243 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1244 }
1245 
1246 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1247 {
1248 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1249 	u32 event = its_get_event_id(d);
1250 	int ret = 0;
1251 
1252 	if (!info->map)
1253 		return -EINVAL;
1254 
1255 	mutex_lock(&its_dev->event_map.vlpi_lock);
1256 
1257 	if (!its_dev->event_map.vm) {
1258 		struct its_vlpi_map *maps;
1259 
1260 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1261 			       GFP_KERNEL);
1262 		if (!maps) {
1263 			ret = -ENOMEM;
1264 			goto out;
1265 		}
1266 
1267 		its_dev->event_map.vm = info->map->vm;
1268 		its_dev->event_map.vlpi_maps = maps;
1269 	} else if (its_dev->event_map.vm != info->map->vm) {
1270 		ret = -EINVAL;
1271 		goto out;
1272 	}
1273 
1274 	/* Get our private copy of the mapping information */
1275 	its_dev->event_map.vlpi_maps[event] = *info->map;
1276 
1277 	if (irqd_is_forwarded_to_vcpu(d)) {
1278 		/* Already mapped, move it around */
1279 		its_send_vmovi(its_dev, event);
1280 	} else {
1281 		/* Ensure all the VPEs are mapped on this ITS */
1282 		its_map_vm(its_dev->its, info->map->vm);
1283 
1284 		/*
1285 		 * Flag the interrupt as forwarded so that we can
1286 		 * start poking the virtual property table.
1287 		 */
1288 		irqd_set_forwarded_to_vcpu(d);
1289 
1290 		/* Write out the property to the prop table */
1291 		lpi_write_config(d, 0xff, info->map->properties);
1292 
1293 		/* Drop the physical mapping */
1294 		its_send_discard(its_dev, event);
1295 
1296 		/* and install the virtual one */
1297 		its_send_vmapti(its_dev, event);
1298 
1299 		/* Increment the number of VLPIs */
1300 		its_dev->event_map.nr_vlpis++;
1301 	}
1302 
1303 out:
1304 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1305 	return ret;
1306 }
1307 
1308 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1309 {
1310 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311 	u32 event = its_get_event_id(d);
1312 	int ret = 0;
1313 
1314 	mutex_lock(&its_dev->event_map.vlpi_lock);
1315 
1316 	if (!its_dev->event_map.vm ||
1317 	    !its_dev->event_map.vlpi_maps[event].vm) {
1318 		ret = -EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	/* Copy our mapping information to the incoming request */
1323 	*info->map = its_dev->event_map.vlpi_maps[event];
1324 
1325 out:
1326 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1327 	return ret;
1328 }
1329 
1330 static int its_vlpi_unmap(struct irq_data *d)
1331 {
1332 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1333 	u32 event = its_get_event_id(d);
1334 	int ret = 0;
1335 
1336 	mutex_lock(&its_dev->event_map.vlpi_lock);
1337 
1338 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1339 		ret = -EINVAL;
1340 		goto out;
1341 	}
1342 
1343 	/* Drop the virtual mapping */
1344 	its_send_discard(its_dev, event);
1345 
1346 	/* and restore the physical one */
1347 	irqd_clr_forwarded_to_vcpu(d);
1348 	its_send_mapti(its_dev, d->hwirq, event);
1349 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1350 				    LPI_PROP_ENABLED |
1351 				    LPI_PROP_GROUP1));
1352 
1353 	/* Potentially unmap the VM from this ITS */
1354 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1355 
1356 	/*
1357 	 * Drop the refcount and make the device available again if
1358 	 * this was the last VLPI.
1359 	 */
1360 	if (!--its_dev->event_map.nr_vlpis) {
1361 		its_dev->event_map.vm = NULL;
1362 		kfree(its_dev->event_map.vlpi_maps);
1363 	}
1364 
1365 out:
1366 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1367 	return ret;
1368 }
1369 
1370 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1371 {
1372 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1373 
1374 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1375 		return -EINVAL;
1376 
1377 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1378 		lpi_update_config(d, 0xff, info->config);
1379 	else
1380 		lpi_write_config(d, 0xff, info->config);
1381 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1382 
1383 	return 0;
1384 }
1385 
1386 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1387 {
1388 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1389 	struct its_cmd_info *info = vcpu_info;
1390 
1391 	/* Need a v4 ITS */
1392 	if (!its_dev->its->is_v4)
1393 		return -EINVAL;
1394 
1395 	/* Unmap request? */
1396 	if (!info)
1397 		return its_vlpi_unmap(d);
1398 
1399 	switch (info->cmd_type) {
1400 	case MAP_VLPI:
1401 		return its_vlpi_map(d, info);
1402 
1403 	case GET_VLPI:
1404 		return its_vlpi_get(d, info);
1405 
1406 	case PROP_UPDATE_VLPI:
1407 	case PROP_UPDATE_AND_INV_VLPI:
1408 		return its_vlpi_prop_update(d, info);
1409 
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 }
1414 
1415 static struct irq_chip its_irq_chip = {
1416 	.name			= "ITS",
1417 	.irq_mask		= its_mask_irq,
1418 	.irq_unmask		= its_unmask_irq,
1419 	.irq_eoi		= irq_chip_eoi_parent,
1420 	.irq_set_affinity	= its_set_affinity,
1421 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1422 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1423 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1424 };
1425 
1426 
1427 /*
1428  * How we allocate LPIs:
1429  *
1430  * lpi_range_list contains ranges of LPIs that are to available to
1431  * allocate from. To allocate LPIs, just pick the first range that
1432  * fits the required allocation, and reduce it by the required
1433  * amount. Once empty, remove the range from the list.
1434  *
1435  * To free a range of LPIs, add a free range to the list, sort it and
1436  * merge the result if the new range happens to be adjacent to an
1437  * already free block.
1438  *
1439  * The consequence of the above is that allocation is cost is low, but
1440  * freeing is expensive. We assumes that freeing rarely occurs.
1441  */
1442 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1443 
1444 static DEFINE_MUTEX(lpi_range_lock);
1445 static LIST_HEAD(lpi_range_list);
1446 
1447 struct lpi_range {
1448 	struct list_head	entry;
1449 	u32			base_id;
1450 	u32			span;
1451 };
1452 
1453 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1454 {
1455 	struct lpi_range *range;
1456 
1457 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1458 	if (range) {
1459 		INIT_LIST_HEAD(&range->entry);
1460 		range->base_id = base;
1461 		range->span = span;
1462 	}
1463 
1464 	return range;
1465 }
1466 
1467 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1468 {
1469 	struct lpi_range *ra, *rb;
1470 
1471 	ra = container_of(a, struct lpi_range, entry);
1472 	rb = container_of(b, struct lpi_range, entry);
1473 
1474 	return rb->base_id - ra->base_id;
1475 }
1476 
1477 static void merge_lpi_ranges(void)
1478 {
1479 	struct lpi_range *range, *tmp;
1480 
1481 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1482 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1483 		    (tmp->base_id == (range->base_id + range->span))) {
1484 			tmp->base_id = range->base_id;
1485 			tmp->span += range->span;
1486 			list_del(&range->entry);
1487 			kfree(range);
1488 		}
1489 	}
1490 }
1491 
1492 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1493 {
1494 	struct lpi_range *range, *tmp;
1495 	int err = -ENOSPC;
1496 
1497 	mutex_lock(&lpi_range_lock);
1498 
1499 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1500 		if (range->span >= nr_lpis) {
1501 			*base = range->base_id;
1502 			range->base_id += nr_lpis;
1503 			range->span -= nr_lpis;
1504 
1505 			if (range->span == 0) {
1506 				list_del(&range->entry);
1507 				kfree(range);
1508 			}
1509 
1510 			err = 0;
1511 			break;
1512 		}
1513 	}
1514 
1515 	mutex_unlock(&lpi_range_lock);
1516 
1517 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1518 	return err;
1519 }
1520 
1521 static int free_lpi_range(u32 base, u32 nr_lpis)
1522 {
1523 	struct lpi_range *new;
1524 	int err = 0;
1525 
1526 	mutex_lock(&lpi_range_lock);
1527 
1528 	new = mk_lpi_range(base, nr_lpis);
1529 	if (!new) {
1530 		err = -ENOMEM;
1531 		goto out;
1532 	}
1533 
1534 	list_add(&new->entry, &lpi_range_list);
1535 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1536 	merge_lpi_ranges();
1537 out:
1538 	mutex_unlock(&lpi_range_lock);
1539 	return err;
1540 }
1541 
1542 static int __init its_lpi_init(u32 id_bits)
1543 {
1544 	u32 lpis = (1UL << id_bits) - 8192;
1545 	u32 numlpis;
1546 	int err;
1547 
1548 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1549 
1550 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1551 		lpis = numlpis;
1552 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1553 			lpis);
1554 	}
1555 
1556 	/*
1557 	 * Initializing the allocator is just the same as freeing the
1558 	 * full range of LPIs.
1559 	 */
1560 	err = free_lpi_range(8192, lpis);
1561 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1562 	return err;
1563 }
1564 
1565 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1566 {
1567 	unsigned long *bitmap = NULL;
1568 	int err = 0;
1569 
1570 	do {
1571 		err = alloc_lpi_range(nr_irqs, base);
1572 		if (!err)
1573 			break;
1574 
1575 		nr_irqs /= 2;
1576 	} while (nr_irqs > 0);
1577 
1578 	if (err)
1579 		goto out;
1580 
1581 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1582 	if (!bitmap)
1583 		goto out;
1584 
1585 	*nr_ids = nr_irqs;
1586 
1587 out:
1588 	if (!bitmap)
1589 		*base = *nr_ids = 0;
1590 
1591 	return bitmap;
1592 }
1593 
1594 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1595 {
1596 	WARN_ON(free_lpi_range(base, nr_ids));
1597 	kfree(bitmap);
1598 }
1599 
1600 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1601 {
1602 	struct page *prop_page;
1603 
1604 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1605 	if (!prop_page)
1606 		return NULL;
1607 
1608 	/* Priority 0xa0, Group-1, disabled */
1609 	memset(page_address(prop_page),
1610 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1611 	       LPI_PROPBASE_SZ);
1612 
1613 	/* Make sure the GIC will observe the written configuration */
1614 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1615 
1616 	return prop_page;
1617 }
1618 
1619 static void its_free_prop_table(struct page *prop_page)
1620 {
1621 	free_pages((unsigned long)page_address(prop_page),
1622 		   get_order(LPI_PROPBASE_SZ));
1623 }
1624 
1625 static int __init its_alloc_lpi_tables(void)
1626 {
1627 	phys_addr_t paddr;
1628 
1629 	lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1630 				ITS_MAX_LPI_NRBITS);
1631 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1632 	if (!gic_rdists->prop_page) {
1633 		pr_err("Failed to allocate PROPBASE\n");
1634 		return -ENOMEM;
1635 	}
1636 
1637 	paddr = page_to_phys(gic_rdists->prop_page);
1638 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1639 
1640 	return its_lpi_init(lpi_id_bits);
1641 }
1642 
1643 static const char *its_base_type_string[] = {
1644 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1645 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1646 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1647 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1648 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1649 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1650 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1651 };
1652 
1653 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1654 {
1655 	u32 idx = baser - its->tables;
1656 
1657 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1658 }
1659 
1660 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1661 			    u64 val)
1662 {
1663 	u32 idx = baser - its->tables;
1664 
1665 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1666 	baser->val = its_read_baser(its, baser);
1667 }
1668 
1669 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1670 			   u64 cache, u64 shr, u32 psz, u32 order,
1671 			   bool indirect)
1672 {
1673 	u64 val = its_read_baser(its, baser);
1674 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1675 	u64 type = GITS_BASER_TYPE(val);
1676 	u64 baser_phys, tmp;
1677 	u32 alloc_pages;
1678 	void *base;
1679 
1680 retry_alloc_baser:
1681 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1682 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1683 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1684 			&its->phys_base, its_base_type_string[type],
1685 			alloc_pages, GITS_BASER_PAGES_MAX);
1686 		alloc_pages = GITS_BASER_PAGES_MAX;
1687 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1688 	}
1689 
1690 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1691 	if (!base)
1692 		return -ENOMEM;
1693 
1694 	baser_phys = virt_to_phys(base);
1695 
1696 	/* Check if the physical address of the memory is above 48bits */
1697 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1698 
1699 		/* 52bit PA is supported only when PageSize=64K */
1700 		if (psz != SZ_64K) {
1701 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1702 			free_pages((unsigned long)base, order);
1703 			return -ENXIO;
1704 		}
1705 
1706 		/* Convert 52bit PA to 48bit field */
1707 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1708 	}
1709 
1710 retry_baser:
1711 	val = (baser_phys					 |
1712 		(type << GITS_BASER_TYPE_SHIFT)			 |
1713 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1714 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1715 		cache						 |
1716 		shr						 |
1717 		GITS_BASER_VALID);
1718 
1719 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1720 
1721 	switch (psz) {
1722 	case SZ_4K:
1723 		val |= GITS_BASER_PAGE_SIZE_4K;
1724 		break;
1725 	case SZ_16K:
1726 		val |= GITS_BASER_PAGE_SIZE_16K;
1727 		break;
1728 	case SZ_64K:
1729 		val |= GITS_BASER_PAGE_SIZE_64K;
1730 		break;
1731 	}
1732 
1733 	its_write_baser(its, baser, val);
1734 	tmp = baser->val;
1735 
1736 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1737 		/*
1738 		 * Shareability didn't stick. Just use
1739 		 * whatever the read reported, which is likely
1740 		 * to be the only thing this redistributor
1741 		 * supports. If that's zero, make it
1742 		 * non-cacheable as well.
1743 		 */
1744 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1745 		if (!shr) {
1746 			cache = GITS_BASER_nC;
1747 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1748 		}
1749 		goto retry_baser;
1750 	}
1751 
1752 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1753 		/*
1754 		 * Page size didn't stick. Let's try a smaller
1755 		 * size and retry. If we reach 4K, then
1756 		 * something is horribly wrong...
1757 		 */
1758 		free_pages((unsigned long)base, order);
1759 		baser->base = NULL;
1760 
1761 		switch (psz) {
1762 		case SZ_16K:
1763 			psz = SZ_4K;
1764 			goto retry_alloc_baser;
1765 		case SZ_64K:
1766 			psz = SZ_16K;
1767 			goto retry_alloc_baser;
1768 		}
1769 	}
1770 
1771 	if (val != tmp) {
1772 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1773 		       &its->phys_base, its_base_type_string[type],
1774 		       val, tmp);
1775 		free_pages((unsigned long)base, order);
1776 		return -ENXIO;
1777 	}
1778 
1779 	baser->order = order;
1780 	baser->base = base;
1781 	baser->psz = psz;
1782 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1783 
1784 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1785 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1786 		its_base_type_string[type],
1787 		(unsigned long)virt_to_phys(base),
1788 		indirect ? "indirect" : "flat", (int)esz,
1789 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1790 
1791 	return 0;
1792 }
1793 
1794 static bool its_parse_indirect_baser(struct its_node *its,
1795 				     struct its_baser *baser,
1796 				     u32 psz, u32 *order, u32 ids)
1797 {
1798 	u64 tmp = its_read_baser(its, baser);
1799 	u64 type = GITS_BASER_TYPE(tmp);
1800 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1801 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1802 	u32 new_order = *order;
1803 	bool indirect = false;
1804 
1805 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1806 	if ((esz << ids) > (psz * 2)) {
1807 		/*
1808 		 * Find out whether hw supports a single or two-level table by
1809 		 * table by reading bit at offset '62' after writing '1' to it.
1810 		 */
1811 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1812 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1813 
1814 		if (indirect) {
1815 			/*
1816 			 * The size of the lvl2 table is equal to ITS page size
1817 			 * which is 'psz'. For computing lvl1 table size,
1818 			 * subtract ID bits that sparse lvl2 table from 'ids'
1819 			 * which is reported by ITS hardware times lvl1 table
1820 			 * entry size.
1821 			 */
1822 			ids -= ilog2(psz / (int)esz);
1823 			esz = GITS_LVL1_ENTRY_SIZE;
1824 		}
1825 	}
1826 
1827 	/*
1828 	 * Allocate as many entries as required to fit the
1829 	 * range of device IDs that the ITS can grok... The ID
1830 	 * space being incredibly sparse, this results in a
1831 	 * massive waste of memory if two-level device table
1832 	 * feature is not supported by hardware.
1833 	 */
1834 	new_order = max_t(u32, get_order(esz << ids), new_order);
1835 	if (new_order >= MAX_ORDER) {
1836 		new_order = MAX_ORDER - 1;
1837 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1838 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1839 			&its->phys_base, its_base_type_string[type],
1840 			its->device_ids, ids);
1841 	}
1842 
1843 	*order = new_order;
1844 
1845 	return indirect;
1846 }
1847 
1848 static void its_free_tables(struct its_node *its)
1849 {
1850 	int i;
1851 
1852 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1853 		if (its->tables[i].base) {
1854 			free_pages((unsigned long)its->tables[i].base,
1855 				   its->tables[i].order);
1856 			its->tables[i].base = NULL;
1857 		}
1858 	}
1859 }
1860 
1861 static int its_alloc_tables(struct its_node *its)
1862 {
1863 	u64 shr = GITS_BASER_InnerShareable;
1864 	u64 cache = GITS_BASER_RaWaWb;
1865 	u32 psz = SZ_64K;
1866 	int err, i;
1867 
1868 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1869 		/* erratum 24313: ignore memory access type */
1870 		cache = GITS_BASER_nCnB;
1871 
1872 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1873 		struct its_baser *baser = its->tables + i;
1874 		u64 val = its_read_baser(its, baser);
1875 		u64 type = GITS_BASER_TYPE(val);
1876 		u32 order = get_order(psz);
1877 		bool indirect = false;
1878 
1879 		switch (type) {
1880 		case GITS_BASER_TYPE_NONE:
1881 			continue;
1882 
1883 		case GITS_BASER_TYPE_DEVICE:
1884 			indirect = its_parse_indirect_baser(its, baser,
1885 							    psz, &order,
1886 							    its->device_ids);
1887 		case GITS_BASER_TYPE_VCPU:
1888 			indirect = its_parse_indirect_baser(its, baser,
1889 							    psz, &order,
1890 							    ITS_MAX_VPEID_BITS);
1891 			break;
1892 		}
1893 
1894 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1895 		if (err < 0) {
1896 			its_free_tables(its);
1897 			return err;
1898 		}
1899 
1900 		/* Update settings which will be used for next BASERn */
1901 		psz = baser->psz;
1902 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1903 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int its_alloc_collections(struct its_node *its)
1910 {
1911 	int i;
1912 
1913 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1914 				   GFP_KERNEL);
1915 	if (!its->collections)
1916 		return -ENOMEM;
1917 
1918 	for (i = 0; i < nr_cpu_ids; i++)
1919 		its->collections[i].target_address = ~0ULL;
1920 
1921 	return 0;
1922 }
1923 
1924 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1925 {
1926 	struct page *pend_page;
1927 	/*
1928 	 * The pending pages have to be at least 64kB aligned,
1929 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1930 	 */
1931 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1932 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1933 	if (!pend_page)
1934 		return NULL;
1935 
1936 	/* Make sure the GIC will observe the zero-ed page */
1937 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1938 
1939 	return pend_page;
1940 }
1941 
1942 static void its_free_pending_table(struct page *pt)
1943 {
1944 	free_pages((unsigned long)page_address(pt),
1945 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1946 }
1947 
1948 static void its_cpu_init_lpis(void)
1949 {
1950 	void __iomem *rbase = gic_data_rdist_rd_base();
1951 	struct page *pend_page;
1952 	u64 val, tmp;
1953 
1954 	/* If we didn't allocate the pending table yet, do it now */
1955 	pend_page = gic_data_rdist()->pend_page;
1956 	if (!pend_page) {
1957 		phys_addr_t paddr;
1958 
1959 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1960 		if (!pend_page) {
1961 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1962 			       smp_processor_id());
1963 			return;
1964 		}
1965 
1966 		paddr = page_to_phys(pend_page);
1967 		pr_info("CPU%d: using LPI pending table @%pa\n",
1968 			smp_processor_id(), &paddr);
1969 		gic_data_rdist()->pend_page = pend_page;
1970 	}
1971 
1972 	/* set PROPBASE */
1973 	val = (page_to_phys(gic_rdists->prop_page) |
1974 	       GICR_PROPBASER_InnerShareable |
1975 	       GICR_PROPBASER_RaWaWb |
1976 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1977 
1978 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1979 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1980 
1981 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1982 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1983 			/*
1984 			 * The HW reports non-shareable, we must
1985 			 * remove the cacheability attributes as
1986 			 * well.
1987 			 */
1988 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1989 				 GICR_PROPBASER_CACHEABILITY_MASK);
1990 			val |= GICR_PROPBASER_nC;
1991 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1992 		}
1993 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1994 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1995 	}
1996 
1997 	/* set PENDBASE */
1998 	val = (page_to_phys(pend_page) |
1999 	       GICR_PENDBASER_InnerShareable |
2000 	       GICR_PENDBASER_RaWaWb);
2001 
2002 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2003 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2004 
2005 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2006 		/*
2007 		 * The HW reports non-shareable, we must remove the
2008 		 * cacheability attributes as well.
2009 		 */
2010 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2011 			 GICR_PENDBASER_CACHEABILITY_MASK);
2012 		val |= GICR_PENDBASER_nC;
2013 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2014 	}
2015 
2016 	/* Enable LPIs */
2017 	val = readl_relaxed(rbase + GICR_CTLR);
2018 	val |= GICR_CTLR_ENABLE_LPIS;
2019 	writel_relaxed(val, rbase + GICR_CTLR);
2020 
2021 	/* Make sure the GIC has seen the above */
2022 	dsb(sy);
2023 }
2024 
2025 static void its_cpu_init_collection(struct its_node *its)
2026 {
2027 	int cpu = smp_processor_id();
2028 	u64 target;
2029 
2030 	/* avoid cross node collections and its mapping */
2031 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2032 		struct device_node *cpu_node;
2033 
2034 		cpu_node = of_get_cpu_node(cpu, NULL);
2035 		if (its->numa_node != NUMA_NO_NODE &&
2036 			its->numa_node != of_node_to_nid(cpu_node))
2037 			return;
2038 	}
2039 
2040 	/*
2041 	 * We now have to bind each collection to its target
2042 	 * redistributor.
2043 	 */
2044 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2045 		/*
2046 		 * This ITS wants the physical address of the
2047 		 * redistributor.
2048 		 */
2049 		target = gic_data_rdist()->phys_base;
2050 	} else {
2051 		/* This ITS wants a linear CPU number. */
2052 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2053 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2054 	}
2055 
2056 	/* Perform collection mapping */
2057 	its->collections[cpu].target_address = target;
2058 	its->collections[cpu].col_id = cpu;
2059 
2060 	its_send_mapc(its, &its->collections[cpu], 1);
2061 	its_send_invall(its, &its->collections[cpu]);
2062 }
2063 
2064 static void its_cpu_init_collections(void)
2065 {
2066 	struct its_node *its;
2067 
2068 	raw_spin_lock(&its_lock);
2069 
2070 	list_for_each_entry(its, &its_nodes, entry)
2071 		its_cpu_init_collection(its);
2072 
2073 	raw_spin_unlock(&its_lock);
2074 }
2075 
2076 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2077 {
2078 	struct its_device *its_dev = NULL, *tmp;
2079 	unsigned long flags;
2080 
2081 	raw_spin_lock_irqsave(&its->lock, flags);
2082 
2083 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2084 		if (tmp->device_id == dev_id) {
2085 			its_dev = tmp;
2086 			break;
2087 		}
2088 	}
2089 
2090 	raw_spin_unlock_irqrestore(&its->lock, flags);
2091 
2092 	return its_dev;
2093 }
2094 
2095 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2096 {
2097 	int i;
2098 
2099 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2100 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2101 			return &its->tables[i];
2102 	}
2103 
2104 	return NULL;
2105 }
2106 
2107 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2108 {
2109 	struct page *page;
2110 	u32 esz, idx;
2111 	__le64 *table;
2112 
2113 	/* Don't allow device id that exceeds single, flat table limit */
2114 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2115 	if (!(baser->val & GITS_BASER_INDIRECT))
2116 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2117 
2118 	/* Compute 1st level table index & check if that exceeds table limit */
2119 	idx = id >> ilog2(baser->psz / esz);
2120 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2121 		return false;
2122 
2123 	table = baser->base;
2124 
2125 	/* Allocate memory for 2nd level table */
2126 	if (!table[idx]) {
2127 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2128 		if (!page)
2129 			return false;
2130 
2131 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2132 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2133 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2134 
2135 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2136 
2137 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2138 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2139 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2140 
2141 		/* Ensure updated table contents are visible to ITS hardware */
2142 		dsb(sy);
2143 	}
2144 
2145 	return true;
2146 }
2147 
2148 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2149 {
2150 	struct its_baser *baser;
2151 
2152 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2153 
2154 	/* Don't allow device id that exceeds ITS hardware limit */
2155 	if (!baser)
2156 		return (ilog2(dev_id) < its->device_ids);
2157 
2158 	return its_alloc_table_entry(baser, dev_id);
2159 }
2160 
2161 static bool its_alloc_vpe_table(u32 vpe_id)
2162 {
2163 	struct its_node *its;
2164 
2165 	/*
2166 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2167 	 * could try and only do it on ITSs corresponding to devices
2168 	 * that have interrupts targeted at this VPE, but the
2169 	 * complexity becomes crazy (and you have tons of memory
2170 	 * anyway, right?).
2171 	 */
2172 	list_for_each_entry(its, &its_nodes, entry) {
2173 		struct its_baser *baser;
2174 
2175 		if (!its->is_v4)
2176 			continue;
2177 
2178 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2179 		if (!baser)
2180 			return false;
2181 
2182 		if (!its_alloc_table_entry(baser, vpe_id))
2183 			return false;
2184 	}
2185 
2186 	return true;
2187 }
2188 
2189 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2190 					    int nvecs, bool alloc_lpis)
2191 {
2192 	struct its_device *dev;
2193 	unsigned long *lpi_map = NULL;
2194 	unsigned long flags;
2195 	u16 *col_map = NULL;
2196 	void *itt;
2197 	int lpi_base;
2198 	int nr_lpis;
2199 	int nr_ites;
2200 	int sz;
2201 
2202 	if (!its_alloc_device_table(its, dev_id))
2203 		return NULL;
2204 
2205 	if (WARN_ON(!is_power_of_2(nvecs)))
2206 		nvecs = roundup_pow_of_two(nvecs);
2207 
2208 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2209 	/*
2210 	 * Even if the device wants a single LPI, the ITT must be
2211 	 * sized as a power of two (and you need at least one bit...).
2212 	 */
2213 	nr_ites = max(2, nvecs);
2214 	sz = nr_ites * its->ite_size;
2215 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2216 	itt = kzalloc(sz, GFP_KERNEL);
2217 	if (alloc_lpis) {
2218 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2219 		if (lpi_map)
2220 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2221 					  GFP_KERNEL);
2222 	} else {
2223 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2224 		nr_lpis = 0;
2225 		lpi_base = 0;
2226 	}
2227 
2228 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2229 		kfree(dev);
2230 		kfree(itt);
2231 		kfree(lpi_map);
2232 		kfree(col_map);
2233 		return NULL;
2234 	}
2235 
2236 	gic_flush_dcache_to_poc(itt, sz);
2237 
2238 	dev->its = its;
2239 	dev->itt = itt;
2240 	dev->nr_ites = nr_ites;
2241 	dev->event_map.lpi_map = lpi_map;
2242 	dev->event_map.col_map = col_map;
2243 	dev->event_map.lpi_base = lpi_base;
2244 	dev->event_map.nr_lpis = nr_lpis;
2245 	mutex_init(&dev->event_map.vlpi_lock);
2246 	dev->device_id = dev_id;
2247 	INIT_LIST_HEAD(&dev->entry);
2248 
2249 	raw_spin_lock_irqsave(&its->lock, flags);
2250 	list_add(&dev->entry, &its->its_device_list);
2251 	raw_spin_unlock_irqrestore(&its->lock, flags);
2252 
2253 	/* Map device to its ITT */
2254 	its_send_mapd(dev, 1);
2255 
2256 	return dev;
2257 }
2258 
2259 static void its_free_device(struct its_device *its_dev)
2260 {
2261 	unsigned long flags;
2262 
2263 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2264 	list_del(&its_dev->entry);
2265 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2266 	kfree(its_dev->itt);
2267 	kfree(its_dev);
2268 }
2269 
2270 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2271 {
2272 	int idx;
2273 
2274 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2275 				  dev->event_map.nr_lpis);
2276 	if (idx == dev->event_map.nr_lpis)
2277 		return -ENOSPC;
2278 
2279 	*hwirq = dev->event_map.lpi_base + idx;
2280 	set_bit(idx, dev->event_map.lpi_map);
2281 
2282 	return 0;
2283 }
2284 
2285 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2286 			   int nvec, msi_alloc_info_t *info)
2287 {
2288 	struct its_node *its;
2289 	struct its_device *its_dev;
2290 	struct msi_domain_info *msi_info;
2291 	u32 dev_id;
2292 
2293 	/*
2294 	 * We ignore "dev" entierely, and rely on the dev_id that has
2295 	 * been passed via the scratchpad. This limits this domain's
2296 	 * usefulness to upper layers that definitely know that they
2297 	 * are built on top of the ITS.
2298 	 */
2299 	dev_id = info->scratchpad[0].ul;
2300 
2301 	msi_info = msi_get_domain_info(domain);
2302 	its = msi_info->data;
2303 
2304 	if (!gic_rdists->has_direct_lpi &&
2305 	    vpe_proxy.dev &&
2306 	    vpe_proxy.dev->its == its &&
2307 	    dev_id == vpe_proxy.dev->device_id) {
2308 		/* Bad luck. Get yourself a better implementation */
2309 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2310 			  dev_id);
2311 		return -EINVAL;
2312 	}
2313 
2314 	its_dev = its_find_device(its, dev_id);
2315 	if (its_dev) {
2316 		/*
2317 		 * We already have seen this ID, probably through
2318 		 * another alias (PCI bridge of some sort). No need to
2319 		 * create the device.
2320 		 */
2321 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2322 		goto out;
2323 	}
2324 
2325 	its_dev = its_create_device(its, dev_id, nvec, true);
2326 	if (!its_dev)
2327 		return -ENOMEM;
2328 
2329 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2330 out:
2331 	info->scratchpad[0].ptr = its_dev;
2332 	return 0;
2333 }
2334 
2335 static struct msi_domain_ops its_msi_domain_ops = {
2336 	.msi_prepare	= its_msi_prepare,
2337 };
2338 
2339 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2340 				    unsigned int virq,
2341 				    irq_hw_number_t hwirq)
2342 {
2343 	struct irq_fwspec fwspec;
2344 
2345 	if (irq_domain_get_of_node(domain->parent)) {
2346 		fwspec.fwnode = domain->parent->fwnode;
2347 		fwspec.param_count = 3;
2348 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2349 		fwspec.param[1] = hwirq;
2350 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2351 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2352 		fwspec.fwnode = domain->parent->fwnode;
2353 		fwspec.param_count = 2;
2354 		fwspec.param[0] = hwirq;
2355 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2356 	} else {
2357 		return -EINVAL;
2358 	}
2359 
2360 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2361 }
2362 
2363 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2364 				unsigned int nr_irqs, void *args)
2365 {
2366 	msi_alloc_info_t *info = args;
2367 	struct its_device *its_dev = info->scratchpad[0].ptr;
2368 	irq_hw_number_t hwirq;
2369 	int err;
2370 	int i;
2371 
2372 	for (i = 0; i < nr_irqs; i++) {
2373 		err = its_alloc_device_irq(its_dev, &hwirq);
2374 		if (err)
2375 			return err;
2376 
2377 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2378 		if (err)
2379 			return err;
2380 
2381 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2382 					      hwirq, &its_irq_chip, its_dev);
2383 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2384 		pr_debug("ID:%d pID:%d vID:%d\n",
2385 			 (int)(hwirq - its_dev->event_map.lpi_base),
2386 			 (int) hwirq, virq + i);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int its_irq_domain_activate(struct irq_domain *domain,
2393 				   struct irq_data *d, bool reserve)
2394 {
2395 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2396 	u32 event = its_get_event_id(d);
2397 	const struct cpumask *cpu_mask = cpu_online_mask;
2398 	int cpu;
2399 
2400 	/* get the cpu_mask of local node */
2401 	if (its_dev->its->numa_node >= 0)
2402 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2403 
2404 	/* Bind the LPI to the first possible CPU */
2405 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2406 	if (cpu >= nr_cpu_ids) {
2407 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2408 			return -EINVAL;
2409 
2410 		cpu = cpumask_first(cpu_online_mask);
2411 	}
2412 
2413 	its_dev->event_map.col_map[event] = cpu;
2414 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2415 
2416 	/* Map the GIC IRQ and event to the device */
2417 	its_send_mapti(its_dev, d->hwirq, event);
2418 	return 0;
2419 }
2420 
2421 static void its_irq_domain_deactivate(struct irq_domain *domain,
2422 				      struct irq_data *d)
2423 {
2424 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2425 	u32 event = its_get_event_id(d);
2426 
2427 	/* Stop the delivery of interrupts */
2428 	its_send_discard(its_dev, event);
2429 }
2430 
2431 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2432 				unsigned int nr_irqs)
2433 {
2434 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2435 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2436 	int i;
2437 
2438 	for (i = 0; i < nr_irqs; i++) {
2439 		struct irq_data *data = irq_domain_get_irq_data(domain,
2440 								virq + i);
2441 		u32 event = its_get_event_id(data);
2442 
2443 		/* Mark interrupt index as unused */
2444 		clear_bit(event, its_dev->event_map.lpi_map);
2445 
2446 		/* Nuke the entry in the domain */
2447 		irq_domain_reset_irq_data(data);
2448 	}
2449 
2450 	/* If all interrupts have been freed, start mopping the floor */
2451 	if (bitmap_empty(its_dev->event_map.lpi_map,
2452 			 its_dev->event_map.nr_lpis)) {
2453 		its_lpi_free(its_dev->event_map.lpi_map,
2454 			     its_dev->event_map.lpi_base,
2455 			     its_dev->event_map.nr_lpis);
2456 		kfree(its_dev->event_map.col_map);
2457 
2458 		/* Unmap device/itt */
2459 		its_send_mapd(its_dev, 0);
2460 		its_free_device(its_dev);
2461 	}
2462 
2463 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2464 }
2465 
2466 static const struct irq_domain_ops its_domain_ops = {
2467 	.alloc			= its_irq_domain_alloc,
2468 	.free			= its_irq_domain_free,
2469 	.activate		= its_irq_domain_activate,
2470 	.deactivate		= its_irq_domain_deactivate,
2471 };
2472 
2473 /*
2474  * This is insane.
2475  *
2476  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2477  * likely), the only way to perform an invalidate is to use a fake
2478  * device to issue an INV command, implying that the LPI has first
2479  * been mapped to some event on that device. Since this is not exactly
2480  * cheap, we try to keep that mapping around as long as possible, and
2481  * only issue an UNMAP if we're short on available slots.
2482  *
2483  * Broken by design(tm).
2484  */
2485 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2486 {
2487 	/* Already unmapped? */
2488 	if (vpe->vpe_proxy_event == -1)
2489 		return;
2490 
2491 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2492 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2493 
2494 	/*
2495 	 * We don't track empty slots at all, so let's move the
2496 	 * next_victim pointer if we can quickly reuse that slot
2497 	 * instead of nuking an existing entry. Not clear that this is
2498 	 * always a win though, and this might just generate a ripple
2499 	 * effect... Let's just hope VPEs don't migrate too often.
2500 	 */
2501 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2502 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2503 
2504 	vpe->vpe_proxy_event = -1;
2505 }
2506 
2507 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2508 {
2509 	if (!gic_rdists->has_direct_lpi) {
2510 		unsigned long flags;
2511 
2512 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2513 		its_vpe_db_proxy_unmap_locked(vpe);
2514 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2515 	}
2516 }
2517 
2518 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2519 {
2520 	/* Already mapped? */
2521 	if (vpe->vpe_proxy_event != -1)
2522 		return;
2523 
2524 	/* This slot was already allocated. Kick the other VPE out. */
2525 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2526 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2527 
2528 	/* Map the new VPE instead */
2529 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2530 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2531 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2532 
2533 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2534 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2535 }
2536 
2537 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2538 {
2539 	unsigned long flags;
2540 	struct its_collection *target_col;
2541 
2542 	if (gic_rdists->has_direct_lpi) {
2543 		void __iomem *rdbase;
2544 
2545 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2546 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2547 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2548 			cpu_relax();
2549 
2550 		return;
2551 	}
2552 
2553 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2554 
2555 	its_vpe_db_proxy_map_locked(vpe);
2556 
2557 	target_col = &vpe_proxy.dev->its->collections[to];
2558 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2559 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2560 
2561 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2562 }
2563 
2564 static int its_vpe_set_affinity(struct irq_data *d,
2565 				const struct cpumask *mask_val,
2566 				bool force)
2567 {
2568 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2569 	int cpu = cpumask_first(mask_val);
2570 
2571 	/*
2572 	 * Changing affinity is mega expensive, so let's be as lazy as
2573 	 * we can and only do it if we really have to. Also, if mapped
2574 	 * into the proxy device, we need to move the doorbell
2575 	 * interrupt to its new location.
2576 	 */
2577 	if (vpe->col_idx != cpu) {
2578 		int from = vpe->col_idx;
2579 
2580 		vpe->col_idx = cpu;
2581 		its_send_vmovp(vpe);
2582 		its_vpe_db_proxy_move(vpe, from, cpu);
2583 	}
2584 
2585 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2586 
2587 	return IRQ_SET_MASK_OK_DONE;
2588 }
2589 
2590 static void its_vpe_schedule(struct its_vpe *vpe)
2591 {
2592 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2593 	u64 val;
2594 
2595 	/* Schedule the VPE */
2596 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2597 		GENMASK_ULL(51, 12);
2598 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2599 	val |= GICR_VPROPBASER_RaWb;
2600 	val |= GICR_VPROPBASER_InnerShareable;
2601 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2602 
2603 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2604 		GENMASK_ULL(51, 16);
2605 	val |= GICR_VPENDBASER_RaWaWb;
2606 	val |= GICR_VPENDBASER_NonShareable;
2607 	/*
2608 	 * There is no good way of finding out if the pending table is
2609 	 * empty as we can race against the doorbell interrupt very
2610 	 * easily. So in the end, vpe->pending_last is only an
2611 	 * indication that the vcpu has something pending, not one
2612 	 * that the pending table is empty. A good implementation
2613 	 * would be able to read its coarse map pretty quickly anyway,
2614 	 * making this a tolerable issue.
2615 	 */
2616 	val |= GICR_VPENDBASER_PendingLast;
2617 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2618 	val |= GICR_VPENDBASER_Valid;
2619 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2620 }
2621 
2622 static void its_vpe_deschedule(struct its_vpe *vpe)
2623 {
2624 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2625 	u32 count = 1000000;	/* 1s! */
2626 	bool clean;
2627 	u64 val;
2628 
2629 	/* We're being scheduled out */
2630 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2631 	val &= ~GICR_VPENDBASER_Valid;
2632 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2633 
2634 	do {
2635 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2636 		clean = !(val & GICR_VPENDBASER_Dirty);
2637 		if (!clean) {
2638 			count--;
2639 			cpu_relax();
2640 			udelay(1);
2641 		}
2642 	} while (!clean && count);
2643 
2644 	if (unlikely(!clean && !count)) {
2645 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2646 		vpe->idai = false;
2647 		vpe->pending_last = true;
2648 	} else {
2649 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2650 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2651 	}
2652 }
2653 
2654 static void its_vpe_invall(struct its_vpe *vpe)
2655 {
2656 	struct its_node *its;
2657 
2658 	list_for_each_entry(its, &its_nodes, entry) {
2659 		if (!its->is_v4)
2660 			continue;
2661 
2662 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2663 			continue;
2664 
2665 		/*
2666 		 * Sending a VINVALL to a single ITS is enough, as all
2667 		 * we need is to reach the redistributors.
2668 		 */
2669 		its_send_vinvall(its, vpe);
2670 		return;
2671 	}
2672 }
2673 
2674 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2675 {
2676 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2677 	struct its_cmd_info *info = vcpu_info;
2678 
2679 	switch (info->cmd_type) {
2680 	case SCHEDULE_VPE:
2681 		its_vpe_schedule(vpe);
2682 		return 0;
2683 
2684 	case DESCHEDULE_VPE:
2685 		its_vpe_deschedule(vpe);
2686 		return 0;
2687 
2688 	case INVALL_VPE:
2689 		its_vpe_invall(vpe);
2690 		return 0;
2691 
2692 	default:
2693 		return -EINVAL;
2694 	}
2695 }
2696 
2697 static void its_vpe_send_cmd(struct its_vpe *vpe,
2698 			     void (*cmd)(struct its_device *, u32))
2699 {
2700 	unsigned long flags;
2701 
2702 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2703 
2704 	its_vpe_db_proxy_map_locked(vpe);
2705 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2706 
2707 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2708 }
2709 
2710 static void its_vpe_send_inv(struct irq_data *d)
2711 {
2712 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2713 
2714 	if (gic_rdists->has_direct_lpi) {
2715 		void __iomem *rdbase;
2716 
2717 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2718 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2719 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2720 			cpu_relax();
2721 	} else {
2722 		its_vpe_send_cmd(vpe, its_send_inv);
2723 	}
2724 }
2725 
2726 static void its_vpe_mask_irq(struct irq_data *d)
2727 {
2728 	/*
2729 	 * We need to unmask the LPI, which is described by the parent
2730 	 * irq_data. Instead of calling into the parent (which won't
2731 	 * exactly do the right thing, let's simply use the
2732 	 * parent_data pointer. Yes, I'm naughty.
2733 	 */
2734 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2735 	its_vpe_send_inv(d);
2736 }
2737 
2738 static void its_vpe_unmask_irq(struct irq_data *d)
2739 {
2740 	/* Same hack as above... */
2741 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2742 	its_vpe_send_inv(d);
2743 }
2744 
2745 static int its_vpe_set_irqchip_state(struct irq_data *d,
2746 				     enum irqchip_irq_state which,
2747 				     bool state)
2748 {
2749 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2750 
2751 	if (which != IRQCHIP_STATE_PENDING)
2752 		return -EINVAL;
2753 
2754 	if (gic_rdists->has_direct_lpi) {
2755 		void __iomem *rdbase;
2756 
2757 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2758 		if (state) {
2759 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2760 		} else {
2761 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2762 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2763 				cpu_relax();
2764 		}
2765 	} else {
2766 		if (state)
2767 			its_vpe_send_cmd(vpe, its_send_int);
2768 		else
2769 			its_vpe_send_cmd(vpe, its_send_clear);
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static struct irq_chip its_vpe_irq_chip = {
2776 	.name			= "GICv4-vpe",
2777 	.irq_mask		= its_vpe_mask_irq,
2778 	.irq_unmask		= its_vpe_unmask_irq,
2779 	.irq_eoi		= irq_chip_eoi_parent,
2780 	.irq_set_affinity	= its_vpe_set_affinity,
2781 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2782 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2783 };
2784 
2785 static int its_vpe_id_alloc(void)
2786 {
2787 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2788 }
2789 
2790 static void its_vpe_id_free(u16 id)
2791 {
2792 	ida_simple_remove(&its_vpeid_ida, id);
2793 }
2794 
2795 static int its_vpe_init(struct its_vpe *vpe)
2796 {
2797 	struct page *vpt_page;
2798 	int vpe_id;
2799 
2800 	/* Allocate vpe_id */
2801 	vpe_id = its_vpe_id_alloc();
2802 	if (vpe_id < 0)
2803 		return vpe_id;
2804 
2805 	/* Allocate VPT */
2806 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2807 	if (!vpt_page) {
2808 		its_vpe_id_free(vpe_id);
2809 		return -ENOMEM;
2810 	}
2811 
2812 	if (!its_alloc_vpe_table(vpe_id)) {
2813 		its_vpe_id_free(vpe_id);
2814 		its_free_pending_table(vpe->vpt_page);
2815 		return -ENOMEM;
2816 	}
2817 
2818 	vpe->vpe_id = vpe_id;
2819 	vpe->vpt_page = vpt_page;
2820 	vpe->vpe_proxy_event = -1;
2821 
2822 	return 0;
2823 }
2824 
2825 static void its_vpe_teardown(struct its_vpe *vpe)
2826 {
2827 	its_vpe_db_proxy_unmap(vpe);
2828 	its_vpe_id_free(vpe->vpe_id);
2829 	its_free_pending_table(vpe->vpt_page);
2830 }
2831 
2832 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2833 				    unsigned int virq,
2834 				    unsigned int nr_irqs)
2835 {
2836 	struct its_vm *vm = domain->host_data;
2837 	int i;
2838 
2839 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2840 
2841 	for (i = 0; i < nr_irqs; i++) {
2842 		struct irq_data *data = irq_domain_get_irq_data(domain,
2843 								virq + i);
2844 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2845 
2846 		BUG_ON(vm != vpe->its_vm);
2847 
2848 		clear_bit(data->hwirq, vm->db_bitmap);
2849 		its_vpe_teardown(vpe);
2850 		irq_domain_reset_irq_data(data);
2851 	}
2852 
2853 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2854 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2855 		its_free_prop_table(vm->vprop_page);
2856 	}
2857 }
2858 
2859 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2860 				    unsigned int nr_irqs, void *args)
2861 {
2862 	struct its_vm *vm = args;
2863 	unsigned long *bitmap;
2864 	struct page *vprop_page;
2865 	int base, nr_ids, i, err = 0;
2866 
2867 	BUG_ON(!vm);
2868 
2869 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
2870 	if (!bitmap)
2871 		return -ENOMEM;
2872 
2873 	if (nr_ids < nr_irqs) {
2874 		its_lpi_free(bitmap, base, nr_ids);
2875 		return -ENOMEM;
2876 	}
2877 
2878 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2879 	if (!vprop_page) {
2880 		its_lpi_free(bitmap, base, nr_ids);
2881 		return -ENOMEM;
2882 	}
2883 
2884 	vm->db_bitmap = bitmap;
2885 	vm->db_lpi_base = base;
2886 	vm->nr_db_lpis = nr_ids;
2887 	vm->vprop_page = vprop_page;
2888 
2889 	for (i = 0; i < nr_irqs; i++) {
2890 		vm->vpes[i]->vpe_db_lpi = base + i;
2891 		err = its_vpe_init(vm->vpes[i]);
2892 		if (err)
2893 			break;
2894 		err = its_irq_gic_domain_alloc(domain, virq + i,
2895 					       vm->vpes[i]->vpe_db_lpi);
2896 		if (err)
2897 			break;
2898 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2899 					      &its_vpe_irq_chip, vm->vpes[i]);
2900 		set_bit(i, bitmap);
2901 	}
2902 
2903 	if (err) {
2904 		if (i > 0)
2905 			its_vpe_irq_domain_free(domain, virq, i - 1);
2906 
2907 		its_lpi_free(bitmap, base, nr_ids);
2908 		its_free_prop_table(vprop_page);
2909 	}
2910 
2911 	return err;
2912 }
2913 
2914 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2915 				       struct irq_data *d, bool reserve)
2916 {
2917 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2918 	struct its_node *its;
2919 
2920 	/* If we use the list map, we issue VMAPP on demand... */
2921 	if (its_list_map)
2922 		return 0;
2923 
2924 	/* Map the VPE to the first possible CPU */
2925 	vpe->col_idx = cpumask_first(cpu_online_mask);
2926 
2927 	list_for_each_entry(its, &its_nodes, entry) {
2928 		if (!its->is_v4)
2929 			continue;
2930 
2931 		its_send_vmapp(its, vpe, true);
2932 		its_send_vinvall(its, vpe);
2933 	}
2934 
2935 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2936 
2937 	return 0;
2938 }
2939 
2940 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2941 					  struct irq_data *d)
2942 {
2943 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2944 	struct its_node *its;
2945 
2946 	/*
2947 	 * If we use the list map, we unmap the VPE once no VLPIs are
2948 	 * associated with the VM.
2949 	 */
2950 	if (its_list_map)
2951 		return;
2952 
2953 	list_for_each_entry(its, &its_nodes, entry) {
2954 		if (!its->is_v4)
2955 			continue;
2956 
2957 		its_send_vmapp(its, vpe, false);
2958 	}
2959 }
2960 
2961 static const struct irq_domain_ops its_vpe_domain_ops = {
2962 	.alloc			= its_vpe_irq_domain_alloc,
2963 	.free			= its_vpe_irq_domain_free,
2964 	.activate		= its_vpe_irq_domain_activate,
2965 	.deactivate		= its_vpe_irq_domain_deactivate,
2966 };
2967 
2968 static int its_force_quiescent(void __iomem *base)
2969 {
2970 	u32 count = 1000000;	/* 1s */
2971 	u32 val;
2972 
2973 	val = readl_relaxed(base + GITS_CTLR);
2974 	/*
2975 	 * GIC architecture specification requires the ITS to be both
2976 	 * disabled and quiescent for writes to GITS_BASER<n> or
2977 	 * GITS_CBASER to not have UNPREDICTABLE results.
2978 	 */
2979 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2980 		return 0;
2981 
2982 	/* Disable the generation of all interrupts to this ITS */
2983 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2984 	writel_relaxed(val, base + GITS_CTLR);
2985 
2986 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2987 	while (1) {
2988 		val = readl_relaxed(base + GITS_CTLR);
2989 		if (val & GITS_CTLR_QUIESCENT)
2990 			return 0;
2991 
2992 		count--;
2993 		if (!count)
2994 			return -EBUSY;
2995 
2996 		cpu_relax();
2997 		udelay(1);
2998 	}
2999 }
3000 
3001 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3002 {
3003 	struct its_node *its = data;
3004 
3005 	/* erratum 22375: only alloc 8MB table size */
3006 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3007 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3008 
3009 	return true;
3010 }
3011 
3012 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3013 {
3014 	struct its_node *its = data;
3015 
3016 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3017 
3018 	return true;
3019 }
3020 
3021 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3022 {
3023 	struct its_node *its = data;
3024 
3025 	/* On QDF2400, the size of the ITE is 16Bytes */
3026 	its->ite_size = 16;
3027 
3028 	return true;
3029 }
3030 
3031 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3032 {
3033 	struct its_node *its = its_dev->its;
3034 
3035 	/*
3036 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3037 	 * which maps 32-bit writes targeted at a separate window of
3038 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3039 	 * with device ID taken from bits [device_id_bits + 1:2] of
3040 	 * the window offset.
3041 	 */
3042 	return its->pre_its_base + (its_dev->device_id << 2);
3043 }
3044 
3045 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3046 {
3047 	struct its_node *its = data;
3048 	u32 pre_its_window[2];
3049 	u32 ids;
3050 
3051 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3052 					   "socionext,synquacer-pre-its",
3053 					   pre_its_window,
3054 					   ARRAY_SIZE(pre_its_window))) {
3055 
3056 		its->pre_its_base = pre_its_window[0];
3057 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3058 
3059 		ids = ilog2(pre_its_window[1]) - 2;
3060 		if (its->device_ids > ids)
3061 			its->device_ids = ids;
3062 
3063 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3064 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3065 		return true;
3066 	}
3067 	return false;
3068 }
3069 
3070 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3071 {
3072 	struct its_node *its = data;
3073 
3074 	/*
3075 	 * Hip07 insists on using the wrong address for the VLPI
3076 	 * page. Trick it into doing the right thing...
3077 	 */
3078 	its->vlpi_redist_offset = SZ_128K;
3079 	return true;
3080 }
3081 
3082 static const struct gic_quirk its_quirks[] = {
3083 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3084 	{
3085 		.desc	= "ITS: Cavium errata 22375, 24313",
3086 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3087 		.mask	= 0xffff0fff,
3088 		.init	= its_enable_quirk_cavium_22375,
3089 	},
3090 #endif
3091 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3092 	{
3093 		.desc	= "ITS: Cavium erratum 23144",
3094 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3095 		.mask	= 0xffff0fff,
3096 		.init	= its_enable_quirk_cavium_23144,
3097 	},
3098 #endif
3099 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3100 	{
3101 		.desc	= "ITS: QDF2400 erratum 0065",
3102 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3103 		.mask	= 0xffffffff,
3104 		.init	= its_enable_quirk_qdf2400_e0065,
3105 	},
3106 #endif
3107 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3108 	{
3109 		/*
3110 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3111 		 * implementation, but with a 'pre-ITS' added that requires
3112 		 * special handling in software.
3113 		 */
3114 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3115 		.iidr	= 0x0001143b,
3116 		.mask	= 0xffffffff,
3117 		.init	= its_enable_quirk_socionext_synquacer,
3118 	},
3119 #endif
3120 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3121 	{
3122 		.desc	= "ITS: Hip07 erratum 161600802",
3123 		.iidr	= 0x00000004,
3124 		.mask	= 0xffffffff,
3125 		.init	= its_enable_quirk_hip07_161600802,
3126 	},
3127 #endif
3128 	{
3129 	}
3130 };
3131 
3132 static void its_enable_quirks(struct its_node *its)
3133 {
3134 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3135 
3136 	gic_enable_quirks(iidr, its_quirks, its);
3137 }
3138 
3139 static int its_save_disable(void)
3140 {
3141 	struct its_node *its;
3142 	int err = 0;
3143 
3144 	raw_spin_lock(&its_lock);
3145 	list_for_each_entry(its, &its_nodes, entry) {
3146 		void __iomem *base;
3147 
3148 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3149 			continue;
3150 
3151 		base = its->base;
3152 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3153 		err = its_force_quiescent(base);
3154 		if (err) {
3155 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3156 			       &its->phys_base, err);
3157 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3158 			goto err;
3159 		}
3160 
3161 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3162 	}
3163 
3164 err:
3165 	if (err) {
3166 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3167 			void __iomem *base;
3168 
3169 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3170 				continue;
3171 
3172 			base = its->base;
3173 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3174 		}
3175 	}
3176 	raw_spin_unlock(&its_lock);
3177 
3178 	return err;
3179 }
3180 
3181 static void its_restore_enable(void)
3182 {
3183 	struct its_node *its;
3184 	int ret;
3185 
3186 	raw_spin_lock(&its_lock);
3187 	list_for_each_entry(its, &its_nodes, entry) {
3188 		void __iomem *base;
3189 		int i;
3190 
3191 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3192 			continue;
3193 
3194 		base = its->base;
3195 
3196 		/*
3197 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3198 		 * don't restore it since writing to CBASER or BASER<n>
3199 		 * registers is undefined according to the GIC v3 ITS
3200 		 * Specification.
3201 		 */
3202 		ret = its_force_quiescent(base);
3203 		if (ret) {
3204 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3205 			       &its->phys_base, ret);
3206 			continue;
3207 		}
3208 
3209 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3210 
3211 		/*
3212 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3213 		 * cmd_write line up with it.
3214 		 */
3215 		its->cmd_write = its->cmd_base;
3216 		gits_write_cwriter(0, base + GITS_CWRITER);
3217 
3218 		/* Restore GITS_BASER from the value cache. */
3219 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3220 			struct its_baser *baser = &its->tables[i];
3221 
3222 			if (!(baser->val & GITS_BASER_VALID))
3223 				continue;
3224 
3225 			its_write_baser(its, baser, baser->val);
3226 		}
3227 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3228 
3229 		/*
3230 		 * Reinit the collection if it's stored in the ITS. This is
3231 		 * indicated by the col_id being less than the HCC field.
3232 		 * CID < HCC as specified in the GIC v3 Documentation.
3233 		 */
3234 		if (its->collections[smp_processor_id()].col_id <
3235 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3236 			its_cpu_init_collection(its);
3237 	}
3238 	raw_spin_unlock(&its_lock);
3239 }
3240 
3241 static struct syscore_ops its_syscore_ops = {
3242 	.suspend = its_save_disable,
3243 	.resume = its_restore_enable,
3244 };
3245 
3246 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3247 {
3248 	struct irq_domain *inner_domain;
3249 	struct msi_domain_info *info;
3250 
3251 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3252 	if (!info)
3253 		return -ENOMEM;
3254 
3255 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3256 	if (!inner_domain) {
3257 		kfree(info);
3258 		return -ENOMEM;
3259 	}
3260 
3261 	inner_domain->parent = its_parent;
3262 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3263 	inner_domain->flags |= its->msi_domain_flags;
3264 	info->ops = &its_msi_domain_ops;
3265 	info->data = its;
3266 	inner_domain->host_data = info;
3267 
3268 	return 0;
3269 }
3270 
3271 static int its_init_vpe_domain(void)
3272 {
3273 	struct its_node *its;
3274 	u32 devid;
3275 	int entries;
3276 
3277 	if (gic_rdists->has_direct_lpi) {
3278 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3279 		return 0;
3280 	}
3281 
3282 	/* Any ITS will do, even if not v4 */
3283 	its = list_first_entry(&its_nodes, struct its_node, entry);
3284 
3285 	entries = roundup_pow_of_two(nr_cpu_ids);
3286 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3287 				 GFP_KERNEL);
3288 	if (!vpe_proxy.vpes) {
3289 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3290 		return -ENOMEM;
3291 	}
3292 
3293 	/* Use the last possible DevID */
3294 	devid = GENMASK(its->device_ids - 1, 0);
3295 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3296 	if (!vpe_proxy.dev) {
3297 		kfree(vpe_proxy.vpes);
3298 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3299 		return -ENOMEM;
3300 	}
3301 
3302 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3303 
3304 	raw_spin_lock_init(&vpe_proxy.lock);
3305 	vpe_proxy.next_victim = 0;
3306 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3307 		devid, vpe_proxy.dev->nr_ites);
3308 
3309 	return 0;
3310 }
3311 
3312 static int __init its_compute_its_list_map(struct resource *res,
3313 					   void __iomem *its_base)
3314 {
3315 	int its_number;
3316 	u32 ctlr;
3317 
3318 	/*
3319 	 * This is assumed to be done early enough that we're
3320 	 * guaranteed to be single-threaded, hence no
3321 	 * locking. Should this change, we should address
3322 	 * this.
3323 	 */
3324 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3325 	if (its_number >= GICv4_ITS_LIST_MAX) {
3326 		pr_err("ITS@%pa: No ITSList entry available!\n",
3327 		       &res->start);
3328 		return -EINVAL;
3329 	}
3330 
3331 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3332 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3333 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3334 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3335 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3336 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3337 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3338 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3339 	}
3340 
3341 	if (test_and_set_bit(its_number, &its_list_map)) {
3342 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3343 		       &res->start, its_number);
3344 		return -EINVAL;
3345 	}
3346 
3347 	return its_number;
3348 }
3349 
3350 static int __init its_probe_one(struct resource *res,
3351 				struct fwnode_handle *handle, int numa_node)
3352 {
3353 	struct its_node *its;
3354 	void __iomem *its_base;
3355 	u32 val, ctlr;
3356 	u64 baser, tmp, typer;
3357 	int err;
3358 
3359 	its_base = ioremap(res->start, resource_size(res));
3360 	if (!its_base) {
3361 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3362 		return -ENOMEM;
3363 	}
3364 
3365 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3366 	if (val != 0x30 && val != 0x40) {
3367 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3368 		err = -ENODEV;
3369 		goto out_unmap;
3370 	}
3371 
3372 	err = its_force_quiescent(its_base);
3373 	if (err) {
3374 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3375 		goto out_unmap;
3376 	}
3377 
3378 	pr_info("ITS %pR\n", res);
3379 
3380 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3381 	if (!its) {
3382 		err = -ENOMEM;
3383 		goto out_unmap;
3384 	}
3385 
3386 	raw_spin_lock_init(&its->lock);
3387 	INIT_LIST_HEAD(&its->entry);
3388 	INIT_LIST_HEAD(&its->its_device_list);
3389 	typer = gic_read_typer(its_base + GITS_TYPER);
3390 	its->base = its_base;
3391 	its->phys_base = res->start;
3392 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3393 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3394 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3395 	if (its->is_v4) {
3396 		if (!(typer & GITS_TYPER_VMOVP)) {
3397 			err = its_compute_its_list_map(res, its_base);
3398 			if (err < 0)
3399 				goto out_free_its;
3400 
3401 			its->list_nr = err;
3402 
3403 			pr_info("ITS@%pa: Using ITS number %d\n",
3404 				&res->start, err);
3405 		} else {
3406 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3407 		}
3408 	}
3409 
3410 	its->numa_node = numa_node;
3411 
3412 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3413 						get_order(ITS_CMD_QUEUE_SZ));
3414 	if (!its->cmd_base) {
3415 		err = -ENOMEM;
3416 		goto out_free_its;
3417 	}
3418 	its->cmd_write = its->cmd_base;
3419 	its->fwnode_handle = handle;
3420 	its->get_msi_base = its_irq_get_msi_base;
3421 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3422 
3423 	its_enable_quirks(its);
3424 
3425 	err = its_alloc_tables(its);
3426 	if (err)
3427 		goto out_free_cmd;
3428 
3429 	err = its_alloc_collections(its);
3430 	if (err)
3431 		goto out_free_tables;
3432 
3433 	baser = (virt_to_phys(its->cmd_base)	|
3434 		 GITS_CBASER_RaWaWb		|
3435 		 GITS_CBASER_InnerShareable	|
3436 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3437 		 GITS_CBASER_VALID);
3438 
3439 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3440 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3441 
3442 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3443 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3444 			/*
3445 			 * The HW reports non-shareable, we must
3446 			 * remove the cacheability attributes as
3447 			 * well.
3448 			 */
3449 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3450 				   GITS_CBASER_CACHEABILITY_MASK);
3451 			baser |= GITS_CBASER_nC;
3452 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3453 		}
3454 		pr_info("ITS: using cache flushing for cmd queue\n");
3455 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3456 	}
3457 
3458 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3459 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3460 	ctlr |= GITS_CTLR_ENABLE;
3461 	if (its->is_v4)
3462 		ctlr |= GITS_CTLR_ImDe;
3463 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3464 
3465 	if (GITS_TYPER_HCC(typer))
3466 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3467 
3468 	err = its_init_domain(handle, its);
3469 	if (err)
3470 		goto out_free_tables;
3471 
3472 	raw_spin_lock(&its_lock);
3473 	list_add(&its->entry, &its_nodes);
3474 	raw_spin_unlock(&its_lock);
3475 
3476 	return 0;
3477 
3478 out_free_tables:
3479 	its_free_tables(its);
3480 out_free_cmd:
3481 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3482 out_free_its:
3483 	kfree(its);
3484 out_unmap:
3485 	iounmap(its_base);
3486 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3487 	return err;
3488 }
3489 
3490 static bool gic_rdists_supports_plpis(void)
3491 {
3492 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3493 }
3494 
3495 static int redist_disable_lpis(void)
3496 {
3497 	void __iomem *rbase = gic_data_rdist_rd_base();
3498 	u64 timeout = USEC_PER_SEC;
3499 	u64 val;
3500 
3501 	/*
3502 	 * If coming via a CPU hotplug event, we don't need to disable
3503 	 * LPIs before trying to re-enable them. They are already
3504 	 * configured and all is well in the world. Detect this case
3505 	 * by checking the allocation of the pending table for the
3506 	 * current CPU.
3507 	 */
3508 	if (gic_data_rdist()->pend_page)
3509 		return 0;
3510 
3511 	if (!gic_rdists_supports_plpis()) {
3512 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3513 		return -ENXIO;
3514 	}
3515 
3516 	val = readl_relaxed(rbase + GICR_CTLR);
3517 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3518 		return 0;
3519 
3520 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3521 		smp_processor_id());
3522 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3523 
3524 	/* Disable LPIs */
3525 	val &= ~GICR_CTLR_ENABLE_LPIS;
3526 	writel_relaxed(val, rbase + GICR_CTLR);
3527 
3528 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3529 	dsb(sy);
3530 
3531 	/*
3532 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3533 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3534 	 * Error out if we time out waiting for RWP to clear.
3535 	 */
3536 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3537 		if (!timeout) {
3538 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3539 			       smp_processor_id());
3540 			return -ETIMEDOUT;
3541 		}
3542 		udelay(1);
3543 		timeout--;
3544 	}
3545 
3546 	/*
3547 	 * After it has been written to 1, it is IMPLEMENTATION
3548 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3549 	 * cleared to 0. Error out if clearing the bit failed.
3550 	 */
3551 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3552 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3553 		return -EBUSY;
3554 	}
3555 
3556 	return 0;
3557 }
3558 
3559 int its_cpu_init(void)
3560 {
3561 	if (!list_empty(&its_nodes)) {
3562 		int ret;
3563 
3564 		ret = redist_disable_lpis();
3565 		if (ret)
3566 			return ret;
3567 
3568 		its_cpu_init_lpis();
3569 		its_cpu_init_collections();
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 static const struct of_device_id its_device_id[] = {
3576 	{	.compatible	= "arm,gic-v3-its",	},
3577 	{},
3578 };
3579 
3580 static int __init its_of_probe(struct device_node *node)
3581 {
3582 	struct device_node *np;
3583 	struct resource res;
3584 
3585 	for (np = of_find_matching_node(node, its_device_id); np;
3586 	     np = of_find_matching_node(np, its_device_id)) {
3587 		if (!of_device_is_available(np))
3588 			continue;
3589 		if (!of_property_read_bool(np, "msi-controller")) {
3590 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3591 				np);
3592 			continue;
3593 		}
3594 
3595 		if (of_address_to_resource(np, 0, &res)) {
3596 			pr_warn("%pOF: no regs?\n", np);
3597 			continue;
3598 		}
3599 
3600 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3601 	}
3602 	return 0;
3603 }
3604 
3605 #ifdef CONFIG_ACPI
3606 
3607 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3608 
3609 #ifdef CONFIG_ACPI_NUMA
3610 struct its_srat_map {
3611 	/* numa node id */
3612 	u32	numa_node;
3613 	/* GIC ITS ID */
3614 	u32	its_id;
3615 };
3616 
3617 static struct its_srat_map *its_srat_maps __initdata;
3618 static int its_in_srat __initdata;
3619 
3620 static int __init acpi_get_its_numa_node(u32 its_id)
3621 {
3622 	int i;
3623 
3624 	for (i = 0; i < its_in_srat; i++) {
3625 		if (its_id == its_srat_maps[i].its_id)
3626 			return its_srat_maps[i].numa_node;
3627 	}
3628 	return NUMA_NO_NODE;
3629 }
3630 
3631 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3632 					  const unsigned long end)
3633 {
3634 	return 0;
3635 }
3636 
3637 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3638 			 const unsigned long end)
3639 {
3640 	int node;
3641 	struct acpi_srat_gic_its_affinity *its_affinity;
3642 
3643 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3644 	if (!its_affinity)
3645 		return -EINVAL;
3646 
3647 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3648 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3649 			its_affinity->header.length);
3650 		return -EINVAL;
3651 	}
3652 
3653 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3654 
3655 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3656 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3657 		return 0;
3658 	}
3659 
3660 	its_srat_maps[its_in_srat].numa_node = node;
3661 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3662 	its_in_srat++;
3663 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3664 		its_affinity->proximity_domain, its_affinity->its_id, node);
3665 
3666 	return 0;
3667 }
3668 
3669 static void __init acpi_table_parse_srat_its(void)
3670 {
3671 	int count;
3672 
3673 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3674 			sizeof(struct acpi_table_srat),
3675 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3676 			gic_acpi_match_srat_its, 0);
3677 	if (count <= 0)
3678 		return;
3679 
3680 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3681 				      GFP_KERNEL);
3682 	if (!its_srat_maps) {
3683 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3684 		return;
3685 	}
3686 
3687 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3688 			sizeof(struct acpi_table_srat),
3689 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3690 			gic_acpi_parse_srat_its, 0);
3691 }
3692 
3693 /* free the its_srat_maps after ITS probing */
3694 static void __init acpi_its_srat_maps_free(void)
3695 {
3696 	kfree(its_srat_maps);
3697 }
3698 #else
3699 static void __init acpi_table_parse_srat_its(void)	{ }
3700 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3701 static void __init acpi_its_srat_maps_free(void) { }
3702 #endif
3703 
3704 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3705 					  const unsigned long end)
3706 {
3707 	struct acpi_madt_generic_translator *its_entry;
3708 	struct fwnode_handle *dom_handle;
3709 	struct resource res;
3710 	int err;
3711 
3712 	its_entry = (struct acpi_madt_generic_translator *)header;
3713 	memset(&res, 0, sizeof(res));
3714 	res.start = its_entry->base_address;
3715 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3716 	res.flags = IORESOURCE_MEM;
3717 
3718 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3719 	if (!dom_handle) {
3720 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3721 		       &res.start);
3722 		return -ENOMEM;
3723 	}
3724 
3725 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3726 					 dom_handle);
3727 	if (err) {
3728 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3729 		       &res.start, its_entry->translation_id);
3730 		goto dom_err;
3731 	}
3732 
3733 	err = its_probe_one(&res, dom_handle,
3734 			acpi_get_its_numa_node(its_entry->translation_id));
3735 	if (!err)
3736 		return 0;
3737 
3738 	iort_deregister_domain_token(its_entry->translation_id);
3739 dom_err:
3740 	irq_domain_free_fwnode(dom_handle);
3741 	return err;
3742 }
3743 
3744 static void __init its_acpi_probe(void)
3745 {
3746 	acpi_table_parse_srat_its();
3747 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3748 			      gic_acpi_parse_madt_its, 0);
3749 	acpi_its_srat_maps_free();
3750 }
3751 #else
3752 static void __init its_acpi_probe(void) { }
3753 #endif
3754 
3755 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3756 		    struct irq_domain *parent_domain)
3757 {
3758 	struct device_node *of_node;
3759 	struct its_node *its;
3760 	bool has_v4 = false;
3761 	int err;
3762 
3763 	its_parent = parent_domain;
3764 	of_node = to_of_node(handle);
3765 	if (of_node)
3766 		its_of_probe(of_node);
3767 	else
3768 		its_acpi_probe();
3769 
3770 	if (list_empty(&its_nodes)) {
3771 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3772 		return -ENXIO;
3773 	}
3774 
3775 	gic_rdists = rdists;
3776 	err = its_alloc_lpi_tables();
3777 	if (err)
3778 		return err;
3779 
3780 	list_for_each_entry(its, &its_nodes, entry)
3781 		has_v4 |= its->is_v4;
3782 
3783 	if (has_v4 & rdists->has_vlpis) {
3784 		if (its_init_vpe_domain() ||
3785 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3786 			rdists->has_vlpis = false;
3787 			pr_err("ITS: Disabling GICv4 support\n");
3788 		}
3789 	}
3790 
3791 	register_syscore_ops(&its_syscore_ops);
3792 
3793 	return 0;
3794 }
3795