1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/list.h> 27 #include <linux/list_sort.h> 28 #include <linux/log2.h> 29 #include <linux/mm.h> 30 #include <linux/msi.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_pci.h> 35 #include <linux/of_platform.h> 36 #include <linux/percpu.h> 37 #include <linux/slab.h> 38 #include <linux/syscore_ops.h> 39 40 #include <linux/irqchip.h> 41 #include <linux/irqchip/arm-gic-v3.h> 42 #include <linux/irqchip/arm-gic-v4.h> 43 44 #include <asm/cputype.h> 45 #include <asm/exception.h> 46 47 #include "irq-gic-common.h" 48 49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 52 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 53 54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 55 56 static u32 lpi_id_bits; 57 58 /* 59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 60 * deal with (one configuration byte per interrupt). PENDBASE has to 61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 62 */ 63 #define LPI_NRBITS lpi_id_bits 64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 66 67 #define LPI_PROP_DEFAULT_PRIO 0xa0 68 69 /* 70 * Collection structure - just an ID, and a redistributor address to 71 * ping. We use one per CPU as a bag of interrupts assigned to this 72 * CPU. 73 */ 74 struct its_collection { 75 u64 target_address; 76 u16 col_id; 77 }; 78 79 /* 80 * The ITS_BASER structure - contains memory information, cached 81 * value of BASER register configuration and ITS page size. 82 */ 83 struct its_baser { 84 void *base; 85 u64 val; 86 u32 order; 87 u32 psz; 88 }; 89 90 struct its_device; 91 92 /* 93 * The ITS structure - contains most of the infrastructure, with the 94 * top-level MSI domain, the command queue, the collections, and the 95 * list of devices writing to it. 96 */ 97 struct its_node { 98 raw_spinlock_t lock; 99 struct list_head entry; 100 void __iomem *base; 101 phys_addr_t phys_base; 102 struct its_cmd_block *cmd_base; 103 struct its_cmd_block *cmd_write; 104 struct its_baser tables[GITS_BASER_NR_REGS]; 105 struct its_collection *collections; 106 struct fwnode_handle *fwnode_handle; 107 u64 (*get_msi_base)(struct its_device *its_dev); 108 u64 cbaser_save; 109 u32 ctlr_save; 110 struct list_head its_device_list; 111 u64 flags; 112 unsigned long list_nr; 113 u32 ite_size; 114 u32 device_ids; 115 int numa_node; 116 unsigned int msi_domain_flags; 117 u32 pre_its_base; /* for Socionext Synquacer */ 118 bool is_v4; 119 int vlpi_redist_offset; 120 }; 121 122 #define ITS_ITT_ALIGN SZ_256 123 124 /* The maximum number of VPEID bits supported by VLPI commands */ 125 #define ITS_MAX_VPEID_BITS (16) 126 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 127 128 /* Convert page order to size in bytes */ 129 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 130 131 struct event_lpi_map { 132 unsigned long *lpi_map; 133 u16 *col_map; 134 irq_hw_number_t lpi_base; 135 int nr_lpis; 136 struct mutex vlpi_lock; 137 struct its_vm *vm; 138 struct its_vlpi_map *vlpi_maps; 139 int nr_vlpis; 140 }; 141 142 /* 143 * The ITS view of a device - belongs to an ITS, owns an interrupt 144 * translation table, and a list of interrupts. If it some of its 145 * LPIs are injected into a guest (GICv4), the event_map.vm field 146 * indicates which one. 147 */ 148 struct its_device { 149 struct list_head entry; 150 struct its_node *its; 151 struct event_lpi_map event_map; 152 void *itt; 153 u32 nr_ites; 154 u32 device_id; 155 }; 156 157 static struct { 158 raw_spinlock_t lock; 159 struct its_device *dev; 160 struct its_vpe **vpes; 161 int next_victim; 162 } vpe_proxy; 163 164 static LIST_HEAD(its_nodes); 165 static DEFINE_RAW_SPINLOCK(its_lock); 166 static struct rdists *gic_rdists; 167 static struct irq_domain *its_parent; 168 169 static unsigned long its_list_map; 170 static u16 vmovp_seq_num; 171 static DEFINE_RAW_SPINLOCK(vmovp_lock); 172 173 static DEFINE_IDA(its_vpeid_ida); 174 175 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 176 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 177 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 178 179 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 180 u32 event) 181 { 182 struct its_node *its = its_dev->its; 183 184 return its->collections + its_dev->event_map.col_map[event]; 185 } 186 187 static struct its_collection *valid_col(struct its_collection *col) 188 { 189 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15))) 190 return NULL; 191 192 return col; 193 } 194 195 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 196 { 197 if (valid_col(its->collections + vpe->col_idx)) 198 return vpe; 199 200 return NULL; 201 } 202 203 /* 204 * ITS command descriptors - parameters to be encoded in a command 205 * block. 206 */ 207 struct its_cmd_desc { 208 union { 209 struct { 210 struct its_device *dev; 211 u32 event_id; 212 } its_inv_cmd; 213 214 struct { 215 struct its_device *dev; 216 u32 event_id; 217 } its_clear_cmd; 218 219 struct { 220 struct its_device *dev; 221 u32 event_id; 222 } its_int_cmd; 223 224 struct { 225 struct its_device *dev; 226 int valid; 227 } its_mapd_cmd; 228 229 struct { 230 struct its_collection *col; 231 int valid; 232 } its_mapc_cmd; 233 234 struct { 235 struct its_device *dev; 236 u32 phys_id; 237 u32 event_id; 238 } its_mapti_cmd; 239 240 struct { 241 struct its_device *dev; 242 struct its_collection *col; 243 u32 event_id; 244 } its_movi_cmd; 245 246 struct { 247 struct its_device *dev; 248 u32 event_id; 249 } its_discard_cmd; 250 251 struct { 252 struct its_collection *col; 253 } its_invall_cmd; 254 255 struct { 256 struct its_vpe *vpe; 257 } its_vinvall_cmd; 258 259 struct { 260 struct its_vpe *vpe; 261 struct its_collection *col; 262 bool valid; 263 } its_vmapp_cmd; 264 265 struct { 266 struct its_vpe *vpe; 267 struct its_device *dev; 268 u32 virt_id; 269 u32 event_id; 270 bool db_enabled; 271 } its_vmapti_cmd; 272 273 struct { 274 struct its_vpe *vpe; 275 struct its_device *dev; 276 u32 event_id; 277 bool db_enabled; 278 } its_vmovi_cmd; 279 280 struct { 281 struct its_vpe *vpe; 282 struct its_collection *col; 283 u16 seq_num; 284 u16 its_list; 285 } its_vmovp_cmd; 286 }; 287 }; 288 289 /* 290 * The ITS command block, which is what the ITS actually parses. 291 */ 292 struct its_cmd_block { 293 u64 raw_cmd[4]; 294 }; 295 296 #define ITS_CMD_QUEUE_SZ SZ_64K 297 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 298 299 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 300 struct its_cmd_block *, 301 struct its_cmd_desc *); 302 303 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 304 struct its_cmd_block *, 305 struct its_cmd_desc *); 306 307 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 308 { 309 u64 mask = GENMASK_ULL(h, l); 310 *raw_cmd &= ~mask; 311 *raw_cmd |= (val << l) & mask; 312 } 313 314 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 315 { 316 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 317 } 318 319 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 320 { 321 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 322 } 323 324 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 325 { 326 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 327 } 328 329 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 330 { 331 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 332 } 333 334 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 335 { 336 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 337 } 338 339 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 340 { 341 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 342 } 343 344 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 345 { 346 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 347 } 348 349 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 350 { 351 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 352 } 353 354 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 355 { 356 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 357 } 358 359 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 360 { 361 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 362 } 363 364 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 365 { 366 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 367 } 368 369 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 370 { 371 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 372 } 373 374 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 375 { 376 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 377 } 378 379 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 380 { 381 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 382 } 383 384 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 385 { 386 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 387 } 388 389 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 390 { 391 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 392 } 393 394 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 395 { 396 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 397 } 398 399 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 400 { 401 /* Let's fixup BE commands */ 402 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 403 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 404 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 405 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 406 } 407 408 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 409 struct its_cmd_block *cmd, 410 struct its_cmd_desc *desc) 411 { 412 unsigned long itt_addr; 413 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 414 415 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 416 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 417 418 its_encode_cmd(cmd, GITS_CMD_MAPD); 419 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 420 its_encode_size(cmd, size - 1); 421 its_encode_itt(cmd, itt_addr); 422 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 423 424 its_fixup_cmd(cmd); 425 426 return NULL; 427 } 428 429 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 430 struct its_cmd_block *cmd, 431 struct its_cmd_desc *desc) 432 { 433 its_encode_cmd(cmd, GITS_CMD_MAPC); 434 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 435 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 436 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 437 438 its_fixup_cmd(cmd); 439 440 return desc->its_mapc_cmd.col; 441 } 442 443 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 444 struct its_cmd_block *cmd, 445 struct its_cmd_desc *desc) 446 { 447 struct its_collection *col; 448 449 col = dev_event_to_col(desc->its_mapti_cmd.dev, 450 desc->its_mapti_cmd.event_id); 451 452 its_encode_cmd(cmd, GITS_CMD_MAPTI); 453 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 454 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 455 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 456 its_encode_collection(cmd, col->col_id); 457 458 its_fixup_cmd(cmd); 459 460 return valid_col(col); 461 } 462 463 static struct its_collection *its_build_movi_cmd(struct its_node *its, 464 struct its_cmd_block *cmd, 465 struct its_cmd_desc *desc) 466 { 467 struct its_collection *col; 468 469 col = dev_event_to_col(desc->its_movi_cmd.dev, 470 desc->its_movi_cmd.event_id); 471 472 its_encode_cmd(cmd, GITS_CMD_MOVI); 473 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 474 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 475 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 476 477 its_fixup_cmd(cmd); 478 479 return valid_col(col); 480 } 481 482 static struct its_collection *its_build_discard_cmd(struct its_node *its, 483 struct its_cmd_block *cmd, 484 struct its_cmd_desc *desc) 485 { 486 struct its_collection *col; 487 488 col = dev_event_to_col(desc->its_discard_cmd.dev, 489 desc->its_discard_cmd.event_id); 490 491 its_encode_cmd(cmd, GITS_CMD_DISCARD); 492 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 493 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 494 495 its_fixup_cmd(cmd); 496 497 return valid_col(col); 498 } 499 500 static struct its_collection *its_build_inv_cmd(struct its_node *its, 501 struct its_cmd_block *cmd, 502 struct its_cmd_desc *desc) 503 { 504 struct its_collection *col; 505 506 col = dev_event_to_col(desc->its_inv_cmd.dev, 507 desc->its_inv_cmd.event_id); 508 509 its_encode_cmd(cmd, GITS_CMD_INV); 510 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 511 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 512 513 its_fixup_cmd(cmd); 514 515 return valid_col(col); 516 } 517 518 static struct its_collection *its_build_int_cmd(struct its_node *its, 519 struct its_cmd_block *cmd, 520 struct its_cmd_desc *desc) 521 { 522 struct its_collection *col; 523 524 col = dev_event_to_col(desc->its_int_cmd.dev, 525 desc->its_int_cmd.event_id); 526 527 its_encode_cmd(cmd, GITS_CMD_INT); 528 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 529 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 530 531 its_fixup_cmd(cmd); 532 533 return valid_col(col); 534 } 535 536 static struct its_collection *its_build_clear_cmd(struct its_node *its, 537 struct its_cmd_block *cmd, 538 struct its_cmd_desc *desc) 539 { 540 struct its_collection *col; 541 542 col = dev_event_to_col(desc->its_clear_cmd.dev, 543 desc->its_clear_cmd.event_id); 544 545 its_encode_cmd(cmd, GITS_CMD_CLEAR); 546 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 547 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 548 549 its_fixup_cmd(cmd); 550 551 return valid_col(col); 552 } 553 554 static struct its_collection *its_build_invall_cmd(struct its_node *its, 555 struct its_cmd_block *cmd, 556 struct its_cmd_desc *desc) 557 { 558 its_encode_cmd(cmd, GITS_CMD_INVALL); 559 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 560 561 its_fixup_cmd(cmd); 562 563 return NULL; 564 } 565 566 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 567 struct its_cmd_block *cmd, 568 struct its_cmd_desc *desc) 569 { 570 its_encode_cmd(cmd, GITS_CMD_VINVALL); 571 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 572 573 its_fixup_cmd(cmd); 574 575 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 576 } 577 578 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 579 struct its_cmd_block *cmd, 580 struct its_cmd_desc *desc) 581 { 582 unsigned long vpt_addr; 583 u64 target; 584 585 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 586 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 587 588 its_encode_cmd(cmd, GITS_CMD_VMAPP); 589 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 590 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 591 its_encode_target(cmd, target); 592 its_encode_vpt_addr(cmd, vpt_addr); 593 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 594 595 its_fixup_cmd(cmd); 596 597 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 598 } 599 600 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 601 struct its_cmd_block *cmd, 602 struct its_cmd_desc *desc) 603 { 604 u32 db; 605 606 if (desc->its_vmapti_cmd.db_enabled) 607 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 608 else 609 db = 1023; 610 611 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 612 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 613 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 614 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 615 its_encode_db_phys_id(cmd, db); 616 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 617 618 its_fixup_cmd(cmd); 619 620 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 621 } 622 623 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 624 struct its_cmd_block *cmd, 625 struct its_cmd_desc *desc) 626 { 627 u32 db; 628 629 if (desc->its_vmovi_cmd.db_enabled) 630 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 631 else 632 db = 1023; 633 634 its_encode_cmd(cmd, GITS_CMD_VMOVI); 635 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 636 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 637 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 638 its_encode_db_phys_id(cmd, db); 639 its_encode_db_valid(cmd, true); 640 641 its_fixup_cmd(cmd); 642 643 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 644 } 645 646 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 647 struct its_cmd_block *cmd, 648 struct its_cmd_desc *desc) 649 { 650 u64 target; 651 652 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 653 its_encode_cmd(cmd, GITS_CMD_VMOVP); 654 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 655 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 656 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 657 its_encode_target(cmd, target); 658 659 its_fixup_cmd(cmd); 660 661 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 662 } 663 664 static u64 its_cmd_ptr_to_offset(struct its_node *its, 665 struct its_cmd_block *ptr) 666 { 667 return (ptr - its->cmd_base) * sizeof(*ptr); 668 } 669 670 static int its_queue_full(struct its_node *its) 671 { 672 int widx; 673 int ridx; 674 675 widx = its->cmd_write - its->cmd_base; 676 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 677 678 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 679 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 680 return 1; 681 682 return 0; 683 } 684 685 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 686 { 687 struct its_cmd_block *cmd; 688 u32 count = 1000000; /* 1s! */ 689 690 while (its_queue_full(its)) { 691 count--; 692 if (!count) { 693 pr_err_ratelimited("ITS queue not draining\n"); 694 return NULL; 695 } 696 cpu_relax(); 697 udelay(1); 698 } 699 700 cmd = its->cmd_write++; 701 702 /* Handle queue wrapping */ 703 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 704 its->cmd_write = its->cmd_base; 705 706 /* Clear command */ 707 cmd->raw_cmd[0] = 0; 708 cmd->raw_cmd[1] = 0; 709 cmd->raw_cmd[2] = 0; 710 cmd->raw_cmd[3] = 0; 711 712 return cmd; 713 } 714 715 static struct its_cmd_block *its_post_commands(struct its_node *its) 716 { 717 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 718 719 writel_relaxed(wr, its->base + GITS_CWRITER); 720 721 return its->cmd_write; 722 } 723 724 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 725 { 726 /* 727 * Make sure the commands written to memory are observable by 728 * the ITS. 729 */ 730 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 731 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 732 else 733 dsb(ishst); 734 } 735 736 static int its_wait_for_range_completion(struct its_node *its, 737 struct its_cmd_block *from, 738 struct its_cmd_block *to) 739 { 740 u64 rd_idx, from_idx, to_idx; 741 u32 count = 1000000; /* 1s! */ 742 743 from_idx = its_cmd_ptr_to_offset(its, from); 744 to_idx = its_cmd_ptr_to_offset(its, to); 745 746 while (1) { 747 rd_idx = readl_relaxed(its->base + GITS_CREADR); 748 749 /* Direct case */ 750 if (from_idx < to_idx && rd_idx >= to_idx) 751 break; 752 753 /* Wrapped case */ 754 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 755 break; 756 757 count--; 758 if (!count) { 759 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", 760 from_idx, to_idx, rd_idx); 761 return -1; 762 } 763 cpu_relax(); 764 udelay(1); 765 } 766 767 return 0; 768 } 769 770 /* Warning, macro hell follows */ 771 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 772 void name(struct its_node *its, \ 773 buildtype builder, \ 774 struct its_cmd_desc *desc) \ 775 { \ 776 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 777 synctype *sync_obj; \ 778 unsigned long flags; \ 779 \ 780 raw_spin_lock_irqsave(&its->lock, flags); \ 781 \ 782 cmd = its_allocate_entry(its); \ 783 if (!cmd) { /* We're soooooo screewed... */ \ 784 raw_spin_unlock_irqrestore(&its->lock, flags); \ 785 return; \ 786 } \ 787 sync_obj = builder(its, cmd, desc); \ 788 its_flush_cmd(its, cmd); \ 789 \ 790 if (sync_obj) { \ 791 sync_cmd = its_allocate_entry(its); \ 792 if (!sync_cmd) \ 793 goto post; \ 794 \ 795 buildfn(its, sync_cmd, sync_obj); \ 796 its_flush_cmd(its, sync_cmd); \ 797 } \ 798 \ 799 post: \ 800 next_cmd = its_post_commands(its); \ 801 raw_spin_unlock_irqrestore(&its->lock, flags); \ 802 \ 803 if (its_wait_for_range_completion(its, cmd, next_cmd)) \ 804 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 805 } 806 807 static void its_build_sync_cmd(struct its_node *its, 808 struct its_cmd_block *sync_cmd, 809 struct its_collection *sync_col) 810 { 811 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 812 its_encode_target(sync_cmd, sync_col->target_address); 813 814 its_fixup_cmd(sync_cmd); 815 } 816 817 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 818 struct its_collection, its_build_sync_cmd) 819 820 static void its_build_vsync_cmd(struct its_node *its, 821 struct its_cmd_block *sync_cmd, 822 struct its_vpe *sync_vpe) 823 { 824 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 825 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 826 827 its_fixup_cmd(sync_cmd); 828 } 829 830 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 831 struct its_vpe, its_build_vsync_cmd) 832 833 static void its_send_int(struct its_device *dev, u32 event_id) 834 { 835 struct its_cmd_desc desc; 836 837 desc.its_int_cmd.dev = dev; 838 desc.its_int_cmd.event_id = event_id; 839 840 its_send_single_command(dev->its, its_build_int_cmd, &desc); 841 } 842 843 static void its_send_clear(struct its_device *dev, u32 event_id) 844 { 845 struct its_cmd_desc desc; 846 847 desc.its_clear_cmd.dev = dev; 848 desc.its_clear_cmd.event_id = event_id; 849 850 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 851 } 852 853 static void its_send_inv(struct its_device *dev, u32 event_id) 854 { 855 struct its_cmd_desc desc; 856 857 desc.its_inv_cmd.dev = dev; 858 desc.its_inv_cmd.event_id = event_id; 859 860 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 861 } 862 863 static void its_send_mapd(struct its_device *dev, int valid) 864 { 865 struct its_cmd_desc desc; 866 867 desc.its_mapd_cmd.dev = dev; 868 desc.its_mapd_cmd.valid = !!valid; 869 870 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 871 } 872 873 static void its_send_mapc(struct its_node *its, struct its_collection *col, 874 int valid) 875 { 876 struct its_cmd_desc desc; 877 878 desc.its_mapc_cmd.col = col; 879 desc.its_mapc_cmd.valid = !!valid; 880 881 its_send_single_command(its, its_build_mapc_cmd, &desc); 882 } 883 884 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 885 { 886 struct its_cmd_desc desc; 887 888 desc.its_mapti_cmd.dev = dev; 889 desc.its_mapti_cmd.phys_id = irq_id; 890 desc.its_mapti_cmd.event_id = id; 891 892 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 893 } 894 895 static void its_send_movi(struct its_device *dev, 896 struct its_collection *col, u32 id) 897 { 898 struct its_cmd_desc desc; 899 900 desc.its_movi_cmd.dev = dev; 901 desc.its_movi_cmd.col = col; 902 desc.its_movi_cmd.event_id = id; 903 904 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 905 } 906 907 static void its_send_discard(struct its_device *dev, u32 id) 908 { 909 struct its_cmd_desc desc; 910 911 desc.its_discard_cmd.dev = dev; 912 desc.its_discard_cmd.event_id = id; 913 914 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 915 } 916 917 static void its_send_invall(struct its_node *its, struct its_collection *col) 918 { 919 struct its_cmd_desc desc; 920 921 desc.its_invall_cmd.col = col; 922 923 its_send_single_command(its, its_build_invall_cmd, &desc); 924 } 925 926 static void its_send_vmapti(struct its_device *dev, u32 id) 927 { 928 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 929 struct its_cmd_desc desc; 930 931 desc.its_vmapti_cmd.vpe = map->vpe; 932 desc.its_vmapti_cmd.dev = dev; 933 desc.its_vmapti_cmd.virt_id = map->vintid; 934 desc.its_vmapti_cmd.event_id = id; 935 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 936 937 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 938 } 939 940 static void its_send_vmovi(struct its_device *dev, u32 id) 941 { 942 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 943 struct its_cmd_desc desc; 944 945 desc.its_vmovi_cmd.vpe = map->vpe; 946 desc.its_vmovi_cmd.dev = dev; 947 desc.its_vmovi_cmd.event_id = id; 948 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 949 950 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 951 } 952 953 static void its_send_vmapp(struct its_node *its, 954 struct its_vpe *vpe, bool valid) 955 { 956 struct its_cmd_desc desc; 957 958 desc.its_vmapp_cmd.vpe = vpe; 959 desc.its_vmapp_cmd.valid = valid; 960 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 961 962 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 963 } 964 965 static void its_send_vmovp(struct its_vpe *vpe) 966 { 967 struct its_cmd_desc desc; 968 struct its_node *its; 969 unsigned long flags; 970 int col_id = vpe->col_idx; 971 972 desc.its_vmovp_cmd.vpe = vpe; 973 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 974 975 if (!its_list_map) { 976 its = list_first_entry(&its_nodes, struct its_node, entry); 977 desc.its_vmovp_cmd.seq_num = 0; 978 desc.its_vmovp_cmd.col = &its->collections[col_id]; 979 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 980 return; 981 } 982 983 /* 984 * Yet another marvel of the architecture. If using the 985 * its_list "feature", we need to make sure that all ITSs 986 * receive all VMOVP commands in the same order. The only way 987 * to guarantee this is to make vmovp a serialization point. 988 * 989 * Wall <-- Head. 990 */ 991 raw_spin_lock_irqsave(&vmovp_lock, flags); 992 993 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 994 995 /* Emit VMOVPs */ 996 list_for_each_entry(its, &its_nodes, entry) { 997 if (!its->is_v4) 998 continue; 999 1000 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1001 continue; 1002 1003 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1004 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1005 } 1006 1007 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1008 } 1009 1010 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1011 { 1012 struct its_cmd_desc desc; 1013 1014 desc.its_vinvall_cmd.vpe = vpe; 1015 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1016 } 1017 1018 /* 1019 * irqchip functions - assumes MSI, mostly. 1020 */ 1021 1022 static inline u32 its_get_event_id(struct irq_data *d) 1023 { 1024 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1025 return d->hwirq - its_dev->event_map.lpi_base; 1026 } 1027 1028 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1029 { 1030 irq_hw_number_t hwirq; 1031 struct page *prop_page; 1032 u8 *cfg; 1033 1034 if (irqd_is_forwarded_to_vcpu(d)) { 1035 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1036 u32 event = its_get_event_id(d); 1037 struct its_vlpi_map *map; 1038 1039 prop_page = its_dev->event_map.vm->vprop_page; 1040 map = &its_dev->event_map.vlpi_maps[event]; 1041 hwirq = map->vintid; 1042 1043 /* Remember the updated property */ 1044 map->properties &= ~clr; 1045 map->properties |= set | LPI_PROP_GROUP1; 1046 } else { 1047 prop_page = gic_rdists->prop_page; 1048 hwirq = d->hwirq; 1049 } 1050 1051 cfg = page_address(prop_page) + hwirq - 8192; 1052 *cfg &= ~clr; 1053 *cfg |= set | LPI_PROP_GROUP1; 1054 1055 /* 1056 * Make the above write visible to the redistributors. 1057 * And yes, we're flushing exactly: One. Single. Byte. 1058 * Humpf... 1059 */ 1060 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1061 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1062 else 1063 dsb(ishst); 1064 } 1065 1066 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1067 { 1068 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1069 1070 lpi_write_config(d, clr, set); 1071 its_send_inv(its_dev, its_get_event_id(d)); 1072 } 1073 1074 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1075 { 1076 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1077 u32 event = its_get_event_id(d); 1078 1079 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1080 return; 1081 1082 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1083 1084 /* 1085 * More fun with the architecture: 1086 * 1087 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1088 * value or to 1023, depending on the enable bit. But that 1089 * would be issueing a mapping for an /existing/ DevID+EventID 1090 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1091 * to the /same/ vPE, using this opportunity to adjust the 1092 * doorbell. Mouahahahaha. We loves it, Precious. 1093 */ 1094 its_send_vmovi(its_dev, event); 1095 } 1096 1097 static void its_mask_irq(struct irq_data *d) 1098 { 1099 if (irqd_is_forwarded_to_vcpu(d)) 1100 its_vlpi_set_doorbell(d, false); 1101 1102 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1103 } 1104 1105 static void its_unmask_irq(struct irq_data *d) 1106 { 1107 if (irqd_is_forwarded_to_vcpu(d)) 1108 its_vlpi_set_doorbell(d, true); 1109 1110 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1111 } 1112 1113 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1114 bool force) 1115 { 1116 unsigned int cpu; 1117 const struct cpumask *cpu_mask = cpu_online_mask; 1118 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1119 struct its_collection *target_col; 1120 u32 id = its_get_event_id(d); 1121 1122 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1123 if (irqd_is_forwarded_to_vcpu(d)) 1124 return -EINVAL; 1125 1126 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1127 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1128 if (its_dev->its->numa_node >= 0) { 1129 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1130 if (!cpumask_intersects(mask_val, cpu_mask)) 1131 return -EINVAL; 1132 } 1133 } 1134 1135 cpu = cpumask_any_and(mask_val, cpu_mask); 1136 1137 if (cpu >= nr_cpu_ids) 1138 return -EINVAL; 1139 1140 /* don't set the affinity when the target cpu is same as current one */ 1141 if (cpu != its_dev->event_map.col_map[id]) { 1142 target_col = &its_dev->its->collections[cpu]; 1143 its_send_movi(its_dev, target_col, id); 1144 its_dev->event_map.col_map[id] = cpu; 1145 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1146 } 1147 1148 return IRQ_SET_MASK_OK_DONE; 1149 } 1150 1151 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1152 { 1153 struct its_node *its = its_dev->its; 1154 1155 return its->phys_base + GITS_TRANSLATER; 1156 } 1157 1158 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1159 { 1160 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1161 struct its_node *its; 1162 u64 addr; 1163 1164 its = its_dev->its; 1165 addr = its->get_msi_base(its_dev); 1166 1167 msg->address_lo = lower_32_bits(addr); 1168 msg->address_hi = upper_32_bits(addr); 1169 msg->data = its_get_event_id(d); 1170 1171 iommu_dma_map_msi_msg(d->irq, msg); 1172 } 1173 1174 static int its_irq_set_irqchip_state(struct irq_data *d, 1175 enum irqchip_irq_state which, 1176 bool state) 1177 { 1178 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1179 u32 event = its_get_event_id(d); 1180 1181 if (which != IRQCHIP_STATE_PENDING) 1182 return -EINVAL; 1183 1184 if (state) 1185 its_send_int(its_dev, event); 1186 else 1187 its_send_clear(its_dev, event); 1188 1189 return 0; 1190 } 1191 1192 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1193 { 1194 unsigned long flags; 1195 1196 /* Not using the ITS list? Everything is always mapped. */ 1197 if (!its_list_map) 1198 return; 1199 1200 raw_spin_lock_irqsave(&vmovp_lock, flags); 1201 1202 /* 1203 * If the VM wasn't mapped yet, iterate over the vpes and get 1204 * them mapped now. 1205 */ 1206 vm->vlpi_count[its->list_nr]++; 1207 1208 if (vm->vlpi_count[its->list_nr] == 1) { 1209 int i; 1210 1211 for (i = 0; i < vm->nr_vpes; i++) { 1212 struct its_vpe *vpe = vm->vpes[i]; 1213 struct irq_data *d = irq_get_irq_data(vpe->irq); 1214 1215 /* Map the VPE to the first possible CPU */ 1216 vpe->col_idx = cpumask_first(cpu_online_mask); 1217 its_send_vmapp(its, vpe, true); 1218 its_send_vinvall(its, vpe); 1219 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1220 } 1221 } 1222 1223 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1224 } 1225 1226 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1227 { 1228 unsigned long flags; 1229 1230 /* Not using the ITS list? Everything is always mapped. */ 1231 if (!its_list_map) 1232 return; 1233 1234 raw_spin_lock_irqsave(&vmovp_lock, flags); 1235 1236 if (!--vm->vlpi_count[its->list_nr]) { 1237 int i; 1238 1239 for (i = 0; i < vm->nr_vpes; i++) 1240 its_send_vmapp(its, vm->vpes[i], false); 1241 } 1242 1243 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1244 } 1245 1246 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1247 { 1248 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1249 u32 event = its_get_event_id(d); 1250 int ret = 0; 1251 1252 if (!info->map) 1253 return -EINVAL; 1254 1255 mutex_lock(&its_dev->event_map.vlpi_lock); 1256 1257 if (!its_dev->event_map.vm) { 1258 struct its_vlpi_map *maps; 1259 1260 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1261 GFP_KERNEL); 1262 if (!maps) { 1263 ret = -ENOMEM; 1264 goto out; 1265 } 1266 1267 its_dev->event_map.vm = info->map->vm; 1268 its_dev->event_map.vlpi_maps = maps; 1269 } else if (its_dev->event_map.vm != info->map->vm) { 1270 ret = -EINVAL; 1271 goto out; 1272 } 1273 1274 /* Get our private copy of the mapping information */ 1275 its_dev->event_map.vlpi_maps[event] = *info->map; 1276 1277 if (irqd_is_forwarded_to_vcpu(d)) { 1278 /* Already mapped, move it around */ 1279 its_send_vmovi(its_dev, event); 1280 } else { 1281 /* Ensure all the VPEs are mapped on this ITS */ 1282 its_map_vm(its_dev->its, info->map->vm); 1283 1284 /* 1285 * Flag the interrupt as forwarded so that we can 1286 * start poking the virtual property table. 1287 */ 1288 irqd_set_forwarded_to_vcpu(d); 1289 1290 /* Write out the property to the prop table */ 1291 lpi_write_config(d, 0xff, info->map->properties); 1292 1293 /* Drop the physical mapping */ 1294 its_send_discard(its_dev, event); 1295 1296 /* and install the virtual one */ 1297 its_send_vmapti(its_dev, event); 1298 1299 /* Increment the number of VLPIs */ 1300 its_dev->event_map.nr_vlpis++; 1301 } 1302 1303 out: 1304 mutex_unlock(&its_dev->event_map.vlpi_lock); 1305 return ret; 1306 } 1307 1308 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1309 { 1310 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1311 u32 event = its_get_event_id(d); 1312 int ret = 0; 1313 1314 mutex_lock(&its_dev->event_map.vlpi_lock); 1315 1316 if (!its_dev->event_map.vm || 1317 !its_dev->event_map.vlpi_maps[event].vm) { 1318 ret = -EINVAL; 1319 goto out; 1320 } 1321 1322 /* Copy our mapping information to the incoming request */ 1323 *info->map = its_dev->event_map.vlpi_maps[event]; 1324 1325 out: 1326 mutex_unlock(&its_dev->event_map.vlpi_lock); 1327 return ret; 1328 } 1329 1330 static int its_vlpi_unmap(struct irq_data *d) 1331 { 1332 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1333 u32 event = its_get_event_id(d); 1334 int ret = 0; 1335 1336 mutex_lock(&its_dev->event_map.vlpi_lock); 1337 1338 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1339 ret = -EINVAL; 1340 goto out; 1341 } 1342 1343 /* Drop the virtual mapping */ 1344 its_send_discard(its_dev, event); 1345 1346 /* and restore the physical one */ 1347 irqd_clr_forwarded_to_vcpu(d); 1348 its_send_mapti(its_dev, d->hwirq, event); 1349 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1350 LPI_PROP_ENABLED | 1351 LPI_PROP_GROUP1)); 1352 1353 /* Potentially unmap the VM from this ITS */ 1354 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1355 1356 /* 1357 * Drop the refcount and make the device available again if 1358 * this was the last VLPI. 1359 */ 1360 if (!--its_dev->event_map.nr_vlpis) { 1361 its_dev->event_map.vm = NULL; 1362 kfree(its_dev->event_map.vlpi_maps); 1363 } 1364 1365 out: 1366 mutex_unlock(&its_dev->event_map.vlpi_lock); 1367 return ret; 1368 } 1369 1370 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1371 { 1372 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1373 1374 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1375 return -EINVAL; 1376 1377 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1378 lpi_update_config(d, 0xff, info->config); 1379 else 1380 lpi_write_config(d, 0xff, info->config); 1381 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1382 1383 return 0; 1384 } 1385 1386 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1387 { 1388 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1389 struct its_cmd_info *info = vcpu_info; 1390 1391 /* Need a v4 ITS */ 1392 if (!its_dev->its->is_v4) 1393 return -EINVAL; 1394 1395 /* Unmap request? */ 1396 if (!info) 1397 return its_vlpi_unmap(d); 1398 1399 switch (info->cmd_type) { 1400 case MAP_VLPI: 1401 return its_vlpi_map(d, info); 1402 1403 case GET_VLPI: 1404 return its_vlpi_get(d, info); 1405 1406 case PROP_UPDATE_VLPI: 1407 case PROP_UPDATE_AND_INV_VLPI: 1408 return its_vlpi_prop_update(d, info); 1409 1410 default: 1411 return -EINVAL; 1412 } 1413 } 1414 1415 static struct irq_chip its_irq_chip = { 1416 .name = "ITS", 1417 .irq_mask = its_mask_irq, 1418 .irq_unmask = its_unmask_irq, 1419 .irq_eoi = irq_chip_eoi_parent, 1420 .irq_set_affinity = its_set_affinity, 1421 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1422 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1423 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1424 }; 1425 1426 1427 /* 1428 * How we allocate LPIs: 1429 * 1430 * lpi_range_list contains ranges of LPIs that are to available to 1431 * allocate from. To allocate LPIs, just pick the first range that 1432 * fits the required allocation, and reduce it by the required 1433 * amount. Once empty, remove the range from the list. 1434 * 1435 * To free a range of LPIs, add a free range to the list, sort it and 1436 * merge the result if the new range happens to be adjacent to an 1437 * already free block. 1438 * 1439 * The consequence of the above is that allocation is cost is low, but 1440 * freeing is expensive. We assumes that freeing rarely occurs. 1441 */ 1442 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1443 1444 static DEFINE_MUTEX(lpi_range_lock); 1445 static LIST_HEAD(lpi_range_list); 1446 1447 struct lpi_range { 1448 struct list_head entry; 1449 u32 base_id; 1450 u32 span; 1451 }; 1452 1453 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1454 { 1455 struct lpi_range *range; 1456 1457 range = kzalloc(sizeof(*range), GFP_KERNEL); 1458 if (range) { 1459 INIT_LIST_HEAD(&range->entry); 1460 range->base_id = base; 1461 range->span = span; 1462 } 1463 1464 return range; 1465 } 1466 1467 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b) 1468 { 1469 struct lpi_range *ra, *rb; 1470 1471 ra = container_of(a, struct lpi_range, entry); 1472 rb = container_of(b, struct lpi_range, entry); 1473 1474 return rb->base_id - ra->base_id; 1475 } 1476 1477 static void merge_lpi_ranges(void) 1478 { 1479 struct lpi_range *range, *tmp; 1480 1481 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1482 if (!list_is_last(&range->entry, &lpi_range_list) && 1483 (tmp->base_id == (range->base_id + range->span))) { 1484 tmp->base_id = range->base_id; 1485 tmp->span += range->span; 1486 list_del(&range->entry); 1487 kfree(range); 1488 } 1489 } 1490 } 1491 1492 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1493 { 1494 struct lpi_range *range, *tmp; 1495 int err = -ENOSPC; 1496 1497 mutex_lock(&lpi_range_lock); 1498 1499 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1500 if (range->span >= nr_lpis) { 1501 *base = range->base_id; 1502 range->base_id += nr_lpis; 1503 range->span -= nr_lpis; 1504 1505 if (range->span == 0) { 1506 list_del(&range->entry); 1507 kfree(range); 1508 } 1509 1510 err = 0; 1511 break; 1512 } 1513 } 1514 1515 mutex_unlock(&lpi_range_lock); 1516 1517 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1518 return err; 1519 } 1520 1521 static int free_lpi_range(u32 base, u32 nr_lpis) 1522 { 1523 struct lpi_range *new; 1524 int err = 0; 1525 1526 mutex_lock(&lpi_range_lock); 1527 1528 new = mk_lpi_range(base, nr_lpis); 1529 if (!new) { 1530 err = -ENOMEM; 1531 goto out; 1532 } 1533 1534 list_add(&new->entry, &lpi_range_list); 1535 list_sort(NULL, &lpi_range_list, lpi_range_cmp); 1536 merge_lpi_ranges(); 1537 out: 1538 mutex_unlock(&lpi_range_lock); 1539 return err; 1540 } 1541 1542 static int __init its_lpi_init(u32 id_bits) 1543 { 1544 u32 lpis = (1UL << id_bits) - 8192; 1545 u32 numlpis; 1546 int err; 1547 1548 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1549 1550 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1551 lpis = numlpis; 1552 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1553 lpis); 1554 } 1555 1556 /* 1557 * Initializing the allocator is just the same as freeing the 1558 * full range of LPIs. 1559 */ 1560 err = free_lpi_range(8192, lpis); 1561 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1562 return err; 1563 } 1564 1565 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1566 { 1567 unsigned long *bitmap = NULL; 1568 int err = 0; 1569 1570 do { 1571 err = alloc_lpi_range(nr_irqs, base); 1572 if (!err) 1573 break; 1574 1575 nr_irqs /= 2; 1576 } while (nr_irqs > 0); 1577 1578 if (err) 1579 goto out; 1580 1581 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1582 if (!bitmap) 1583 goto out; 1584 1585 *nr_ids = nr_irqs; 1586 1587 out: 1588 if (!bitmap) 1589 *base = *nr_ids = 0; 1590 1591 return bitmap; 1592 } 1593 1594 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1595 { 1596 WARN_ON(free_lpi_range(base, nr_ids)); 1597 kfree(bitmap); 1598 } 1599 1600 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1601 { 1602 struct page *prop_page; 1603 1604 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1605 if (!prop_page) 1606 return NULL; 1607 1608 /* Priority 0xa0, Group-1, disabled */ 1609 memset(page_address(prop_page), 1610 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1611 LPI_PROPBASE_SZ); 1612 1613 /* Make sure the GIC will observe the written configuration */ 1614 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1615 1616 return prop_page; 1617 } 1618 1619 static void its_free_prop_table(struct page *prop_page) 1620 { 1621 free_pages((unsigned long)page_address(prop_page), 1622 get_order(LPI_PROPBASE_SZ)); 1623 } 1624 1625 static int __init its_alloc_lpi_tables(void) 1626 { 1627 phys_addr_t paddr; 1628 1629 lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 1630 ITS_MAX_LPI_NRBITS); 1631 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1632 if (!gic_rdists->prop_page) { 1633 pr_err("Failed to allocate PROPBASE\n"); 1634 return -ENOMEM; 1635 } 1636 1637 paddr = page_to_phys(gic_rdists->prop_page); 1638 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1639 1640 return its_lpi_init(lpi_id_bits); 1641 } 1642 1643 static const char *its_base_type_string[] = { 1644 [GITS_BASER_TYPE_DEVICE] = "Devices", 1645 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1646 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1647 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1648 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1649 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1650 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1651 }; 1652 1653 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1654 { 1655 u32 idx = baser - its->tables; 1656 1657 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1658 } 1659 1660 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1661 u64 val) 1662 { 1663 u32 idx = baser - its->tables; 1664 1665 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1666 baser->val = its_read_baser(its, baser); 1667 } 1668 1669 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1670 u64 cache, u64 shr, u32 psz, u32 order, 1671 bool indirect) 1672 { 1673 u64 val = its_read_baser(its, baser); 1674 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1675 u64 type = GITS_BASER_TYPE(val); 1676 u64 baser_phys, tmp; 1677 u32 alloc_pages; 1678 void *base; 1679 1680 retry_alloc_baser: 1681 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1682 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1683 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1684 &its->phys_base, its_base_type_string[type], 1685 alloc_pages, GITS_BASER_PAGES_MAX); 1686 alloc_pages = GITS_BASER_PAGES_MAX; 1687 order = get_order(GITS_BASER_PAGES_MAX * psz); 1688 } 1689 1690 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1691 if (!base) 1692 return -ENOMEM; 1693 1694 baser_phys = virt_to_phys(base); 1695 1696 /* Check if the physical address of the memory is above 48bits */ 1697 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1698 1699 /* 52bit PA is supported only when PageSize=64K */ 1700 if (psz != SZ_64K) { 1701 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1702 free_pages((unsigned long)base, order); 1703 return -ENXIO; 1704 } 1705 1706 /* Convert 52bit PA to 48bit field */ 1707 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1708 } 1709 1710 retry_baser: 1711 val = (baser_phys | 1712 (type << GITS_BASER_TYPE_SHIFT) | 1713 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1714 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1715 cache | 1716 shr | 1717 GITS_BASER_VALID); 1718 1719 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1720 1721 switch (psz) { 1722 case SZ_4K: 1723 val |= GITS_BASER_PAGE_SIZE_4K; 1724 break; 1725 case SZ_16K: 1726 val |= GITS_BASER_PAGE_SIZE_16K; 1727 break; 1728 case SZ_64K: 1729 val |= GITS_BASER_PAGE_SIZE_64K; 1730 break; 1731 } 1732 1733 its_write_baser(its, baser, val); 1734 tmp = baser->val; 1735 1736 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1737 /* 1738 * Shareability didn't stick. Just use 1739 * whatever the read reported, which is likely 1740 * to be the only thing this redistributor 1741 * supports. If that's zero, make it 1742 * non-cacheable as well. 1743 */ 1744 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1745 if (!shr) { 1746 cache = GITS_BASER_nC; 1747 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1748 } 1749 goto retry_baser; 1750 } 1751 1752 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1753 /* 1754 * Page size didn't stick. Let's try a smaller 1755 * size and retry. If we reach 4K, then 1756 * something is horribly wrong... 1757 */ 1758 free_pages((unsigned long)base, order); 1759 baser->base = NULL; 1760 1761 switch (psz) { 1762 case SZ_16K: 1763 psz = SZ_4K; 1764 goto retry_alloc_baser; 1765 case SZ_64K: 1766 psz = SZ_16K; 1767 goto retry_alloc_baser; 1768 } 1769 } 1770 1771 if (val != tmp) { 1772 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1773 &its->phys_base, its_base_type_string[type], 1774 val, tmp); 1775 free_pages((unsigned long)base, order); 1776 return -ENXIO; 1777 } 1778 1779 baser->order = order; 1780 baser->base = base; 1781 baser->psz = psz; 1782 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1783 1784 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1785 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1786 its_base_type_string[type], 1787 (unsigned long)virt_to_phys(base), 1788 indirect ? "indirect" : "flat", (int)esz, 1789 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1790 1791 return 0; 1792 } 1793 1794 static bool its_parse_indirect_baser(struct its_node *its, 1795 struct its_baser *baser, 1796 u32 psz, u32 *order, u32 ids) 1797 { 1798 u64 tmp = its_read_baser(its, baser); 1799 u64 type = GITS_BASER_TYPE(tmp); 1800 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1801 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1802 u32 new_order = *order; 1803 bool indirect = false; 1804 1805 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1806 if ((esz << ids) > (psz * 2)) { 1807 /* 1808 * Find out whether hw supports a single or two-level table by 1809 * table by reading bit at offset '62' after writing '1' to it. 1810 */ 1811 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1812 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1813 1814 if (indirect) { 1815 /* 1816 * The size of the lvl2 table is equal to ITS page size 1817 * which is 'psz'. For computing lvl1 table size, 1818 * subtract ID bits that sparse lvl2 table from 'ids' 1819 * which is reported by ITS hardware times lvl1 table 1820 * entry size. 1821 */ 1822 ids -= ilog2(psz / (int)esz); 1823 esz = GITS_LVL1_ENTRY_SIZE; 1824 } 1825 } 1826 1827 /* 1828 * Allocate as many entries as required to fit the 1829 * range of device IDs that the ITS can grok... The ID 1830 * space being incredibly sparse, this results in a 1831 * massive waste of memory if two-level device table 1832 * feature is not supported by hardware. 1833 */ 1834 new_order = max_t(u32, get_order(esz << ids), new_order); 1835 if (new_order >= MAX_ORDER) { 1836 new_order = MAX_ORDER - 1; 1837 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1838 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1839 &its->phys_base, its_base_type_string[type], 1840 its->device_ids, ids); 1841 } 1842 1843 *order = new_order; 1844 1845 return indirect; 1846 } 1847 1848 static void its_free_tables(struct its_node *its) 1849 { 1850 int i; 1851 1852 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1853 if (its->tables[i].base) { 1854 free_pages((unsigned long)its->tables[i].base, 1855 its->tables[i].order); 1856 its->tables[i].base = NULL; 1857 } 1858 } 1859 } 1860 1861 static int its_alloc_tables(struct its_node *its) 1862 { 1863 u64 shr = GITS_BASER_InnerShareable; 1864 u64 cache = GITS_BASER_RaWaWb; 1865 u32 psz = SZ_64K; 1866 int err, i; 1867 1868 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1869 /* erratum 24313: ignore memory access type */ 1870 cache = GITS_BASER_nCnB; 1871 1872 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1873 struct its_baser *baser = its->tables + i; 1874 u64 val = its_read_baser(its, baser); 1875 u64 type = GITS_BASER_TYPE(val); 1876 u32 order = get_order(psz); 1877 bool indirect = false; 1878 1879 switch (type) { 1880 case GITS_BASER_TYPE_NONE: 1881 continue; 1882 1883 case GITS_BASER_TYPE_DEVICE: 1884 indirect = its_parse_indirect_baser(its, baser, 1885 psz, &order, 1886 its->device_ids); 1887 case GITS_BASER_TYPE_VCPU: 1888 indirect = its_parse_indirect_baser(its, baser, 1889 psz, &order, 1890 ITS_MAX_VPEID_BITS); 1891 break; 1892 } 1893 1894 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1895 if (err < 0) { 1896 its_free_tables(its); 1897 return err; 1898 } 1899 1900 /* Update settings which will be used for next BASERn */ 1901 psz = baser->psz; 1902 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1903 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1904 } 1905 1906 return 0; 1907 } 1908 1909 static int its_alloc_collections(struct its_node *its) 1910 { 1911 int i; 1912 1913 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 1914 GFP_KERNEL); 1915 if (!its->collections) 1916 return -ENOMEM; 1917 1918 for (i = 0; i < nr_cpu_ids; i++) 1919 its->collections[i].target_address = ~0ULL; 1920 1921 return 0; 1922 } 1923 1924 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1925 { 1926 struct page *pend_page; 1927 /* 1928 * The pending pages have to be at least 64kB aligned, 1929 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1930 */ 1931 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1932 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1933 if (!pend_page) 1934 return NULL; 1935 1936 /* Make sure the GIC will observe the zero-ed page */ 1937 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1938 1939 return pend_page; 1940 } 1941 1942 static void its_free_pending_table(struct page *pt) 1943 { 1944 free_pages((unsigned long)page_address(pt), 1945 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1946 } 1947 1948 static void its_cpu_init_lpis(void) 1949 { 1950 void __iomem *rbase = gic_data_rdist_rd_base(); 1951 struct page *pend_page; 1952 u64 val, tmp; 1953 1954 /* If we didn't allocate the pending table yet, do it now */ 1955 pend_page = gic_data_rdist()->pend_page; 1956 if (!pend_page) { 1957 phys_addr_t paddr; 1958 1959 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1960 if (!pend_page) { 1961 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1962 smp_processor_id()); 1963 return; 1964 } 1965 1966 paddr = page_to_phys(pend_page); 1967 pr_info("CPU%d: using LPI pending table @%pa\n", 1968 smp_processor_id(), &paddr); 1969 gic_data_rdist()->pend_page = pend_page; 1970 } 1971 1972 /* set PROPBASE */ 1973 val = (page_to_phys(gic_rdists->prop_page) | 1974 GICR_PROPBASER_InnerShareable | 1975 GICR_PROPBASER_RaWaWb | 1976 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1977 1978 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1979 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1980 1981 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1982 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1983 /* 1984 * The HW reports non-shareable, we must 1985 * remove the cacheability attributes as 1986 * well. 1987 */ 1988 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1989 GICR_PROPBASER_CACHEABILITY_MASK); 1990 val |= GICR_PROPBASER_nC; 1991 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1992 } 1993 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1994 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1995 } 1996 1997 /* set PENDBASE */ 1998 val = (page_to_phys(pend_page) | 1999 GICR_PENDBASER_InnerShareable | 2000 GICR_PENDBASER_RaWaWb); 2001 2002 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2003 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2004 2005 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2006 /* 2007 * The HW reports non-shareable, we must remove the 2008 * cacheability attributes as well. 2009 */ 2010 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2011 GICR_PENDBASER_CACHEABILITY_MASK); 2012 val |= GICR_PENDBASER_nC; 2013 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2014 } 2015 2016 /* Enable LPIs */ 2017 val = readl_relaxed(rbase + GICR_CTLR); 2018 val |= GICR_CTLR_ENABLE_LPIS; 2019 writel_relaxed(val, rbase + GICR_CTLR); 2020 2021 /* Make sure the GIC has seen the above */ 2022 dsb(sy); 2023 } 2024 2025 static void its_cpu_init_collection(struct its_node *its) 2026 { 2027 int cpu = smp_processor_id(); 2028 u64 target; 2029 2030 /* avoid cross node collections and its mapping */ 2031 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2032 struct device_node *cpu_node; 2033 2034 cpu_node = of_get_cpu_node(cpu, NULL); 2035 if (its->numa_node != NUMA_NO_NODE && 2036 its->numa_node != of_node_to_nid(cpu_node)) 2037 return; 2038 } 2039 2040 /* 2041 * We now have to bind each collection to its target 2042 * redistributor. 2043 */ 2044 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2045 /* 2046 * This ITS wants the physical address of the 2047 * redistributor. 2048 */ 2049 target = gic_data_rdist()->phys_base; 2050 } else { 2051 /* This ITS wants a linear CPU number. */ 2052 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2053 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2054 } 2055 2056 /* Perform collection mapping */ 2057 its->collections[cpu].target_address = target; 2058 its->collections[cpu].col_id = cpu; 2059 2060 its_send_mapc(its, &its->collections[cpu], 1); 2061 its_send_invall(its, &its->collections[cpu]); 2062 } 2063 2064 static void its_cpu_init_collections(void) 2065 { 2066 struct its_node *its; 2067 2068 raw_spin_lock(&its_lock); 2069 2070 list_for_each_entry(its, &its_nodes, entry) 2071 its_cpu_init_collection(its); 2072 2073 raw_spin_unlock(&its_lock); 2074 } 2075 2076 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2077 { 2078 struct its_device *its_dev = NULL, *tmp; 2079 unsigned long flags; 2080 2081 raw_spin_lock_irqsave(&its->lock, flags); 2082 2083 list_for_each_entry(tmp, &its->its_device_list, entry) { 2084 if (tmp->device_id == dev_id) { 2085 its_dev = tmp; 2086 break; 2087 } 2088 } 2089 2090 raw_spin_unlock_irqrestore(&its->lock, flags); 2091 2092 return its_dev; 2093 } 2094 2095 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2096 { 2097 int i; 2098 2099 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2100 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2101 return &its->tables[i]; 2102 } 2103 2104 return NULL; 2105 } 2106 2107 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 2108 { 2109 struct page *page; 2110 u32 esz, idx; 2111 __le64 *table; 2112 2113 /* Don't allow device id that exceeds single, flat table limit */ 2114 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2115 if (!(baser->val & GITS_BASER_INDIRECT)) 2116 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2117 2118 /* Compute 1st level table index & check if that exceeds table limit */ 2119 idx = id >> ilog2(baser->psz / esz); 2120 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2121 return false; 2122 2123 table = baser->base; 2124 2125 /* Allocate memory for 2nd level table */ 2126 if (!table[idx]) { 2127 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 2128 if (!page) 2129 return false; 2130 2131 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2132 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2133 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2134 2135 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2136 2137 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2138 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2139 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2140 2141 /* Ensure updated table contents are visible to ITS hardware */ 2142 dsb(sy); 2143 } 2144 2145 return true; 2146 } 2147 2148 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2149 { 2150 struct its_baser *baser; 2151 2152 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2153 2154 /* Don't allow device id that exceeds ITS hardware limit */ 2155 if (!baser) 2156 return (ilog2(dev_id) < its->device_ids); 2157 2158 return its_alloc_table_entry(baser, dev_id); 2159 } 2160 2161 static bool its_alloc_vpe_table(u32 vpe_id) 2162 { 2163 struct its_node *its; 2164 2165 /* 2166 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2167 * could try and only do it on ITSs corresponding to devices 2168 * that have interrupts targeted at this VPE, but the 2169 * complexity becomes crazy (and you have tons of memory 2170 * anyway, right?). 2171 */ 2172 list_for_each_entry(its, &its_nodes, entry) { 2173 struct its_baser *baser; 2174 2175 if (!its->is_v4) 2176 continue; 2177 2178 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2179 if (!baser) 2180 return false; 2181 2182 if (!its_alloc_table_entry(baser, vpe_id)) 2183 return false; 2184 } 2185 2186 return true; 2187 } 2188 2189 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2190 int nvecs, bool alloc_lpis) 2191 { 2192 struct its_device *dev; 2193 unsigned long *lpi_map = NULL; 2194 unsigned long flags; 2195 u16 *col_map = NULL; 2196 void *itt; 2197 int lpi_base; 2198 int nr_lpis; 2199 int nr_ites; 2200 int sz; 2201 2202 if (!its_alloc_device_table(its, dev_id)) 2203 return NULL; 2204 2205 if (WARN_ON(!is_power_of_2(nvecs))) 2206 nvecs = roundup_pow_of_two(nvecs); 2207 2208 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2209 /* 2210 * Even if the device wants a single LPI, the ITT must be 2211 * sized as a power of two (and you need at least one bit...). 2212 */ 2213 nr_ites = max(2, nvecs); 2214 sz = nr_ites * its->ite_size; 2215 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2216 itt = kzalloc(sz, GFP_KERNEL); 2217 if (alloc_lpis) { 2218 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2219 if (lpi_map) 2220 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2221 GFP_KERNEL); 2222 } else { 2223 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2224 nr_lpis = 0; 2225 lpi_base = 0; 2226 } 2227 2228 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2229 kfree(dev); 2230 kfree(itt); 2231 kfree(lpi_map); 2232 kfree(col_map); 2233 return NULL; 2234 } 2235 2236 gic_flush_dcache_to_poc(itt, sz); 2237 2238 dev->its = its; 2239 dev->itt = itt; 2240 dev->nr_ites = nr_ites; 2241 dev->event_map.lpi_map = lpi_map; 2242 dev->event_map.col_map = col_map; 2243 dev->event_map.lpi_base = lpi_base; 2244 dev->event_map.nr_lpis = nr_lpis; 2245 mutex_init(&dev->event_map.vlpi_lock); 2246 dev->device_id = dev_id; 2247 INIT_LIST_HEAD(&dev->entry); 2248 2249 raw_spin_lock_irqsave(&its->lock, flags); 2250 list_add(&dev->entry, &its->its_device_list); 2251 raw_spin_unlock_irqrestore(&its->lock, flags); 2252 2253 /* Map device to its ITT */ 2254 its_send_mapd(dev, 1); 2255 2256 return dev; 2257 } 2258 2259 static void its_free_device(struct its_device *its_dev) 2260 { 2261 unsigned long flags; 2262 2263 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2264 list_del(&its_dev->entry); 2265 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2266 kfree(its_dev->itt); 2267 kfree(its_dev); 2268 } 2269 2270 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2271 { 2272 int idx; 2273 2274 idx = find_first_zero_bit(dev->event_map.lpi_map, 2275 dev->event_map.nr_lpis); 2276 if (idx == dev->event_map.nr_lpis) 2277 return -ENOSPC; 2278 2279 *hwirq = dev->event_map.lpi_base + idx; 2280 set_bit(idx, dev->event_map.lpi_map); 2281 2282 return 0; 2283 } 2284 2285 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2286 int nvec, msi_alloc_info_t *info) 2287 { 2288 struct its_node *its; 2289 struct its_device *its_dev; 2290 struct msi_domain_info *msi_info; 2291 u32 dev_id; 2292 2293 /* 2294 * We ignore "dev" entierely, and rely on the dev_id that has 2295 * been passed via the scratchpad. This limits this domain's 2296 * usefulness to upper layers that definitely know that they 2297 * are built on top of the ITS. 2298 */ 2299 dev_id = info->scratchpad[0].ul; 2300 2301 msi_info = msi_get_domain_info(domain); 2302 its = msi_info->data; 2303 2304 if (!gic_rdists->has_direct_lpi && 2305 vpe_proxy.dev && 2306 vpe_proxy.dev->its == its && 2307 dev_id == vpe_proxy.dev->device_id) { 2308 /* Bad luck. Get yourself a better implementation */ 2309 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2310 dev_id); 2311 return -EINVAL; 2312 } 2313 2314 its_dev = its_find_device(its, dev_id); 2315 if (its_dev) { 2316 /* 2317 * We already have seen this ID, probably through 2318 * another alias (PCI bridge of some sort). No need to 2319 * create the device. 2320 */ 2321 pr_debug("Reusing ITT for devID %x\n", dev_id); 2322 goto out; 2323 } 2324 2325 its_dev = its_create_device(its, dev_id, nvec, true); 2326 if (!its_dev) 2327 return -ENOMEM; 2328 2329 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2330 out: 2331 info->scratchpad[0].ptr = its_dev; 2332 return 0; 2333 } 2334 2335 static struct msi_domain_ops its_msi_domain_ops = { 2336 .msi_prepare = its_msi_prepare, 2337 }; 2338 2339 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2340 unsigned int virq, 2341 irq_hw_number_t hwirq) 2342 { 2343 struct irq_fwspec fwspec; 2344 2345 if (irq_domain_get_of_node(domain->parent)) { 2346 fwspec.fwnode = domain->parent->fwnode; 2347 fwspec.param_count = 3; 2348 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2349 fwspec.param[1] = hwirq; 2350 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2351 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2352 fwspec.fwnode = domain->parent->fwnode; 2353 fwspec.param_count = 2; 2354 fwspec.param[0] = hwirq; 2355 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2356 } else { 2357 return -EINVAL; 2358 } 2359 2360 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2361 } 2362 2363 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2364 unsigned int nr_irqs, void *args) 2365 { 2366 msi_alloc_info_t *info = args; 2367 struct its_device *its_dev = info->scratchpad[0].ptr; 2368 irq_hw_number_t hwirq; 2369 int err; 2370 int i; 2371 2372 for (i = 0; i < nr_irqs; i++) { 2373 err = its_alloc_device_irq(its_dev, &hwirq); 2374 if (err) 2375 return err; 2376 2377 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2378 if (err) 2379 return err; 2380 2381 irq_domain_set_hwirq_and_chip(domain, virq + i, 2382 hwirq, &its_irq_chip, its_dev); 2383 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2384 pr_debug("ID:%d pID:%d vID:%d\n", 2385 (int)(hwirq - its_dev->event_map.lpi_base), 2386 (int) hwirq, virq + i); 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int its_irq_domain_activate(struct irq_domain *domain, 2393 struct irq_data *d, bool reserve) 2394 { 2395 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2396 u32 event = its_get_event_id(d); 2397 const struct cpumask *cpu_mask = cpu_online_mask; 2398 int cpu; 2399 2400 /* get the cpu_mask of local node */ 2401 if (its_dev->its->numa_node >= 0) 2402 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2403 2404 /* Bind the LPI to the first possible CPU */ 2405 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2406 if (cpu >= nr_cpu_ids) { 2407 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2408 return -EINVAL; 2409 2410 cpu = cpumask_first(cpu_online_mask); 2411 } 2412 2413 its_dev->event_map.col_map[event] = cpu; 2414 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2415 2416 /* Map the GIC IRQ and event to the device */ 2417 its_send_mapti(its_dev, d->hwirq, event); 2418 return 0; 2419 } 2420 2421 static void its_irq_domain_deactivate(struct irq_domain *domain, 2422 struct irq_data *d) 2423 { 2424 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2425 u32 event = its_get_event_id(d); 2426 2427 /* Stop the delivery of interrupts */ 2428 its_send_discard(its_dev, event); 2429 } 2430 2431 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2432 unsigned int nr_irqs) 2433 { 2434 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2435 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2436 int i; 2437 2438 for (i = 0; i < nr_irqs; i++) { 2439 struct irq_data *data = irq_domain_get_irq_data(domain, 2440 virq + i); 2441 u32 event = its_get_event_id(data); 2442 2443 /* Mark interrupt index as unused */ 2444 clear_bit(event, its_dev->event_map.lpi_map); 2445 2446 /* Nuke the entry in the domain */ 2447 irq_domain_reset_irq_data(data); 2448 } 2449 2450 /* If all interrupts have been freed, start mopping the floor */ 2451 if (bitmap_empty(its_dev->event_map.lpi_map, 2452 its_dev->event_map.nr_lpis)) { 2453 its_lpi_free(its_dev->event_map.lpi_map, 2454 its_dev->event_map.lpi_base, 2455 its_dev->event_map.nr_lpis); 2456 kfree(its_dev->event_map.col_map); 2457 2458 /* Unmap device/itt */ 2459 its_send_mapd(its_dev, 0); 2460 its_free_device(its_dev); 2461 } 2462 2463 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2464 } 2465 2466 static const struct irq_domain_ops its_domain_ops = { 2467 .alloc = its_irq_domain_alloc, 2468 .free = its_irq_domain_free, 2469 .activate = its_irq_domain_activate, 2470 .deactivate = its_irq_domain_deactivate, 2471 }; 2472 2473 /* 2474 * This is insane. 2475 * 2476 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2477 * likely), the only way to perform an invalidate is to use a fake 2478 * device to issue an INV command, implying that the LPI has first 2479 * been mapped to some event on that device. Since this is not exactly 2480 * cheap, we try to keep that mapping around as long as possible, and 2481 * only issue an UNMAP if we're short on available slots. 2482 * 2483 * Broken by design(tm). 2484 */ 2485 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2486 { 2487 /* Already unmapped? */ 2488 if (vpe->vpe_proxy_event == -1) 2489 return; 2490 2491 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2492 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2493 2494 /* 2495 * We don't track empty slots at all, so let's move the 2496 * next_victim pointer if we can quickly reuse that slot 2497 * instead of nuking an existing entry. Not clear that this is 2498 * always a win though, and this might just generate a ripple 2499 * effect... Let's just hope VPEs don't migrate too often. 2500 */ 2501 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2502 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2503 2504 vpe->vpe_proxy_event = -1; 2505 } 2506 2507 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2508 { 2509 if (!gic_rdists->has_direct_lpi) { 2510 unsigned long flags; 2511 2512 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2513 its_vpe_db_proxy_unmap_locked(vpe); 2514 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2515 } 2516 } 2517 2518 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2519 { 2520 /* Already mapped? */ 2521 if (vpe->vpe_proxy_event != -1) 2522 return; 2523 2524 /* This slot was already allocated. Kick the other VPE out. */ 2525 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2526 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2527 2528 /* Map the new VPE instead */ 2529 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2530 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2531 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2532 2533 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2534 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2535 } 2536 2537 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2538 { 2539 unsigned long flags; 2540 struct its_collection *target_col; 2541 2542 if (gic_rdists->has_direct_lpi) { 2543 void __iomem *rdbase; 2544 2545 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2546 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2547 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2548 cpu_relax(); 2549 2550 return; 2551 } 2552 2553 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2554 2555 its_vpe_db_proxy_map_locked(vpe); 2556 2557 target_col = &vpe_proxy.dev->its->collections[to]; 2558 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2559 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2560 2561 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2562 } 2563 2564 static int its_vpe_set_affinity(struct irq_data *d, 2565 const struct cpumask *mask_val, 2566 bool force) 2567 { 2568 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2569 int cpu = cpumask_first(mask_val); 2570 2571 /* 2572 * Changing affinity is mega expensive, so let's be as lazy as 2573 * we can and only do it if we really have to. Also, if mapped 2574 * into the proxy device, we need to move the doorbell 2575 * interrupt to its new location. 2576 */ 2577 if (vpe->col_idx != cpu) { 2578 int from = vpe->col_idx; 2579 2580 vpe->col_idx = cpu; 2581 its_send_vmovp(vpe); 2582 its_vpe_db_proxy_move(vpe, from, cpu); 2583 } 2584 2585 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2586 2587 return IRQ_SET_MASK_OK_DONE; 2588 } 2589 2590 static void its_vpe_schedule(struct its_vpe *vpe) 2591 { 2592 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2593 u64 val; 2594 2595 /* Schedule the VPE */ 2596 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2597 GENMASK_ULL(51, 12); 2598 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2599 val |= GICR_VPROPBASER_RaWb; 2600 val |= GICR_VPROPBASER_InnerShareable; 2601 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2602 2603 val = virt_to_phys(page_address(vpe->vpt_page)) & 2604 GENMASK_ULL(51, 16); 2605 val |= GICR_VPENDBASER_RaWaWb; 2606 val |= GICR_VPENDBASER_NonShareable; 2607 /* 2608 * There is no good way of finding out if the pending table is 2609 * empty as we can race against the doorbell interrupt very 2610 * easily. So in the end, vpe->pending_last is only an 2611 * indication that the vcpu has something pending, not one 2612 * that the pending table is empty. A good implementation 2613 * would be able to read its coarse map pretty quickly anyway, 2614 * making this a tolerable issue. 2615 */ 2616 val |= GICR_VPENDBASER_PendingLast; 2617 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2618 val |= GICR_VPENDBASER_Valid; 2619 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2620 } 2621 2622 static void its_vpe_deschedule(struct its_vpe *vpe) 2623 { 2624 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2625 u32 count = 1000000; /* 1s! */ 2626 bool clean; 2627 u64 val; 2628 2629 /* We're being scheduled out */ 2630 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2631 val &= ~GICR_VPENDBASER_Valid; 2632 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2633 2634 do { 2635 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2636 clean = !(val & GICR_VPENDBASER_Dirty); 2637 if (!clean) { 2638 count--; 2639 cpu_relax(); 2640 udelay(1); 2641 } 2642 } while (!clean && count); 2643 2644 if (unlikely(!clean && !count)) { 2645 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2646 vpe->idai = false; 2647 vpe->pending_last = true; 2648 } else { 2649 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2650 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2651 } 2652 } 2653 2654 static void its_vpe_invall(struct its_vpe *vpe) 2655 { 2656 struct its_node *its; 2657 2658 list_for_each_entry(its, &its_nodes, entry) { 2659 if (!its->is_v4) 2660 continue; 2661 2662 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2663 continue; 2664 2665 /* 2666 * Sending a VINVALL to a single ITS is enough, as all 2667 * we need is to reach the redistributors. 2668 */ 2669 its_send_vinvall(its, vpe); 2670 return; 2671 } 2672 } 2673 2674 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2675 { 2676 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2677 struct its_cmd_info *info = vcpu_info; 2678 2679 switch (info->cmd_type) { 2680 case SCHEDULE_VPE: 2681 its_vpe_schedule(vpe); 2682 return 0; 2683 2684 case DESCHEDULE_VPE: 2685 its_vpe_deschedule(vpe); 2686 return 0; 2687 2688 case INVALL_VPE: 2689 its_vpe_invall(vpe); 2690 return 0; 2691 2692 default: 2693 return -EINVAL; 2694 } 2695 } 2696 2697 static void its_vpe_send_cmd(struct its_vpe *vpe, 2698 void (*cmd)(struct its_device *, u32)) 2699 { 2700 unsigned long flags; 2701 2702 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2703 2704 its_vpe_db_proxy_map_locked(vpe); 2705 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2706 2707 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2708 } 2709 2710 static void its_vpe_send_inv(struct irq_data *d) 2711 { 2712 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2713 2714 if (gic_rdists->has_direct_lpi) { 2715 void __iomem *rdbase; 2716 2717 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2718 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2719 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2720 cpu_relax(); 2721 } else { 2722 its_vpe_send_cmd(vpe, its_send_inv); 2723 } 2724 } 2725 2726 static void its_vpe_mask_irq(struct irq_data *d) 2727 { 2728 /* 2729 * We need to unmask the LPI, which is described by the parent 2730 * irq_data. Instead of calling into the parent (which won't 2731 * exactly do the right thing, let's simply use the 2732 * parent_data pointer. Yes, I'm naughty. 2733 */ 2734 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2735 its_vpe_send_inv(d); 2736 } 2737 2738 static void its_vpe_unmask_irq(struct irq_data *d) 2739 { 2740 /* Same hack as above... */ 2741 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2742 its_vpe_send_inv(d); 2743 } 2744 2745 static int its_vpe_set_irqchip_state(struct irq_data *d, 2746 enum irqchip_irq_state which, 2747 bool state) 2748 { 2749 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2750 2751 if (which != IRQCHIP_STATE_PENDING) 2752 return -EINVAL; 2753 2754 if (gic_rdists->has_direct_lpi) { 2755 void __iomem *rdbase; 2756 2757 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2758 if (state) { 2759 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2760 } else { 2761 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2762 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2763 cpu_relax(); 2764 } 2765 } else { 2766 if (state) 2767 its_vpe_send_cmd(vpe, its_send_int); 2768 else 2769 its_vpe_send_cmd(vpe, its_send_clear); 2770 } 2771 2772 return 0; 2773 } 2774 2775 static struct irq_chip its_vpe_irq_chip = { 2776 .name = "GICv4-vpe", 2777 .irq_mask = its_vpe_mask_irq, 2778 .irq_unmask = its_vpe_unmask_irq, 2779 .irq_eoi = irq_chip_eoi_parent, 2780 .irq_set_affinity = its_vpe_set_affinity, 2781 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2782 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2783 }; 2784 2785 static int its_vpe_id_alloc(void) 2786 { 2787 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2788 } 2789 2790 static void its_vpe_id_free(u16 id) 2791 { 2792 ida_simple_remove(&its_vpeid_ida, id); 2793 } 2794 2795 static int its_vpe_init(struct its_vpe *vpe) 2796 { 2797 struct page *vpt_page; 2798 int vpe_id; 2799 2800 /* Allocate vpe_id */ 2801 vpe_id = its_vpe_id_alloc(); 2802 if (vpe_id < 0) 2803 return vpe_id; 2804 2805 /* Allocate VPT */ 2806 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2807 if (!vpt_page) { 2808 its_vpe_id_free(vpe_id); 2809 return -ENOMEM; 2810 } 2811 2812 if (!its_alloc_vpe_table(vpe_id)) { 2813 its_vpe_id_free(vpe_id); 2814 its_free_pending_table(vpe->vpt_page); 2815 return -ENOMEM; 2816 } 2817 2818 vpe->vpe_id = vpe_id; 2819 vpe->vpt_page = vpt_page; 2820 vpe->vpe_proxy_event = -1; 2821 2822 return 0; 2823 } 2824 2825 static void its_vpe_teardown(struct its_vpe *vpe) 2826 { 2827 its_vpe_db_proxy_unmap(vpe); 2828 its_vpe_id_free(vpe->vpe_id); 2829 its_free_pending_table(vpe->vpt_page); 2830 } 2831 2832 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2833 unsigned int virq, 2834 unsigned int nr_irqs) 2835 { 2836 struct its_vm *vm = domain->host_data; 2837 int i; 2838 2839 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2840 2841 for (i = 0; i < nr_irqs; i++) { 2842 struct irq_data *data = irq_domain_get_irq_data(domain, 2843 virq + i); 2844 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2845 2846 BUG_ON(vm != vpe->its_vm); 2847 2848 clear_bit(data->hwirq, vm->db_bitmap); 2849 its_vpe_teardown(vpe); 2850 irq_domain_reset_irq_data(data); 2851 } 2852 2853 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2854 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2855 its_free_prop_table(vm->vprop_page); 2856 } 2857 } 2858 2859 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2860 unsigned int nr_irqs, void *args) 2861 { 2862 struct its_vm *vm = args; 2863 unsigned long *bitmap; 2864 struct page *vprop_page; 2865 int base, nr_ids, i, err = 0; 2866 2867 BUG_ON(!vm); 2868 2869 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 2870 if (!bitmap) 2871 return -ENOMEM; 2872 2873 if (nr_ids < nr_irqs) { 2874 its_lpi_free(bitmap, base, nr_ids); 2875 return -ENOMEM; 2876 } 2877 2878 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2879 if (!vprop_page) { 2880 its_lpi_free(bitmap, base, nr_ids); 2881 return -ENOMEM; 2882 } 2883 2884 vm->db_bitmap = bitmap; 2885 vm->db_lpi_base = base; 2886 vm->nr_db_lpis = nr_ids; 2887 vm->vprop_page = vprop_page; 2888 2889 for (i = 0; i < nr_irqs; i++) { 2890 vm->vpes[i]->vpe_db_lpi = base + i; 2891 err = its_vpe_init(vm->vpes[i]); 2892 if (err) 2893 break; 2894 err = its_irq_gic_domain_alloc(domain, virq + i, 2895 vm->vpes[i]->vpe_db_lpi); 2896 if (err) 2897 break; 2898 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2899 &its_vpe_irq_chip, vm->vpes[i]); 2900 set_bit(i, bitmap); 2901 } 2902 2903 if (err) { 2904 if (i > 0) 2905 its_vpe_irq_domain_free(domain, virq, i - 1); 2906 2907 its_lpi_free(bitmap, base, nr_ids); 2908 its_free_prop_table(vprop_page); 2909 } 2910 2911 return err; 2912 } 2913 2914 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 2915 struct irq_data *d, bool reserve) 2916 { 2917 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2918 struct its_node *its; 2919 2920 /* If we use the list map, we issue VMAPP on demand... */ 2921 if (its_list_map) 2922 return 0; 2923 2924 /* Map the VPE to the first possible CPU */ 2925 vpe->col_idx = cpumask_first(cpu_online_mask); 2926 2927 list_for_each_entry(its, &its_nodes, entry) { 2928 if (!its->is_v4) 2929 continue; 2930 2931 its_send_vmapp(its, vpe, true); 2932 its_send_vinvall(its, vpe); 2933 } 2934 2935 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 2936 2937 return 0; 2938 } 2939 2940 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2941 struct irq_data *d) 2942 { 2943 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2944 struct its_node *its; 2945 2946 /* 2947 * If we use the list map, we unmap the VPE once no VLPIs are 2948 * associated with the VM. 2949 */ 2950 if (its_list_map) 2951 return; 2952 2953 list_for_each_entry(its, &its_nodes, entry) { 2954 if (!its->is_v4) 2955 continue; 2956 2957 its_send_vmapp(its, vpe, false); 2958 } 2959 } 2960 2961 static const struct irq_domain_ops its_vpe_domain_ops = { 2962 .alloc = its_vpe_irq_domain_alloc, 2963 .free = its_vpe_irq_domain_free, 2964 .activate = its_vpe_irq_domain_activate, 2965 .deactivate = its_vpe_irq_domain_deactivate, 2966 }; 2967 2968 static int its_force_quiescent(void __iomem *base) 2969 { 2970 u32 count = 1000000; /* 1s */ 2971 u32 val; 2972 2973 val = readl_relaxed(base + GITS_CTLR); 2974 /* 2975 * GIC architecture specification requires the ITS to be both 2976 * disabled and quiescent for writes to GITS_BASER<n> or 2977 * GITS_CBASER to not have UNPREDICTABLE results. 2978 */ 2979 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2980 return 0; 2981 2982 /* Disable the generation of all interrupts to this ITS */ 2983 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2984 writel_relaxed(val, base + GITS_CTLR); 2985 2986 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2987 while (1) { 2988 val = readl_relaxed(base + GITS_CTLR); 2989 if (val & GITS_CTLR_QUIESCENT) 2990 return 0; 2991 2992 count--; 2993 if (!count) 2994 return -EBUSY; 2995 2996 cpu_relax(); 2997 udelay(1); 2998 } 2999 } 3000 3001 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3002 { 3003 struct its_node *its = data; 3004 3005 /* erratum 22375: only alloc 8MB table size */ 3006 its->device_ids = 0x14; /* 20 bits, 8MB */ 3007 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3008 3009 return true; 3010 } 3011 3012 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3013 { 3014 struct its_node *its = data; 3015 3016 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3017 3018 return true; 3019 } 3020 3021 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3022 { 3023 struct its_node *its = data; 3024 3025 /* On QDF2400, the size of the ITE is 16Bytes */ 3026 its->ite_size = 16; 3027 3028 return true; 3029 } 3030 3031 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3032 { 3033 struct its_node *its = its_dev->its; 3034 3035 /* 3036 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3037 * which maps 32-bit writes targeted at a separate window of 3038 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3039 * with device ID taken from bits [device_id_bits + 1:2] of 3040 * the window offset. 3041 */ 3042 return its->pre_its_base + (its_dev->device_id << 2); 3043 } 3044 3045 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3046 { 3047 struct its_node *its = data; 3048 u32 pre_its_window[2]; 3049 u32 ids; 3050 3051 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3052 "socionext,synquacer-pre-its", 3053 pre_its_window, 3054 ARRAY_SIZE(pre_its_window))) { 3055 3056 its->pre_its_base = pre_its_window[0]; 3057 its->get_msi_base = its_irq_get_msi_base_pre_its; 3058 3059 ids = ilog2(pre_its_window[1]) - 2; 3060 if (its->device_ids > ids) 3061 its->device_ids = ids; 3062 3063 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3064 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3065 return true; 3066 } 3067 return false; 3068 } 3069 3070 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3071 { 3072 struct its_node *its = data; 3073 3074 /* 3075 * Hip07 insists on using the wrong address for the VLPI 3076 * page. Trick it into doing the right thing... 3077 */ 3078 its->vlpi_redist_offset = SZ_128K; 3079 return true; 3080 } 3081 3082 static const struct gic_quirk its_quirks[] = { 3083 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3084 { 3085 .desc = "ITS: Cavium errata 22375, 24313", 3086 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3087 .mask = 0xffff0fff, 3088 .init = its_enable_quirk_cavium_22375, 3089 }, 3090 #endif 3091 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3092 { 3093 .desc = "ITS: Cavium erratum 23144", 3094 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3095 .mask = 0xffff0fff, 3096 .init = its_enable_quirk_cavium_23144, 3097 }, 3098 #endif 3099 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3100 { 3101 .desc = "ITS: QDF2400 erratum 0065", 3102 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3103 .mask = 0xffffffff, 3104 .init = its_enable_quirk_qdf2400_e0065, 3105 }, 3106 #endif 3107 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3108 { 3109 /* 3110 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3111 * implementation, but with a 'pre-ITS' added that requires 3112 * special handling in software. 3113 */ 3114 .desc = "ITS: Socionext Synquacer pre-ITS", 3115 .iidr = 0x0001143b, 3116 .mask = 0xffffffff, 3117 .init = its_enable_quirk_socionext_synquacer, 3118 }, 3119 #endif 3120 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3121 { 3122 .desc = "ITS: Hip07 erratum 161600802", 3123 .iidr = 0x00000004, 3124 .mask = 0xffffffff, 3125 .init = its_enable_quirk_hip07_161600802, 3126 }, 3127 #endif 3128 { 3129 } 3130 }; 3131 3132 static void its_enable_quirks(struct its_node *its) 3133 { 3134 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3135 3136 gic_enable_quirks(iidr, its_quirks, its); 3137 } 3138 3139 static int its_save_disable(void) 3140 { 3141 struct its_node *its; 3142 int err = 0; 3143 3144 raw_spin_lock(&its_lock); 3145 list_for_each_entry(its, &its_nodes, entry) { 3146 void __iomem *base; 3147 3148 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3149 continue; 3150 3151 base = its->base; 3152 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3153 err = its_force_quiescent(base); 3154 if (err) { 3155 pr_err("ITS@%pa: failed to quiesce: %d\n", 3156 &its->phys_base, err); 3157 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3158 goto err; 3159 } 3160 3161 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3162 } 3163 3164 err: 3165 if (err) { 3166 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3167 void __iomem *base; 3168 3169 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3170 continue; 3171 3172 base = its->base; 3173 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3174 } 3175 } 3176 raw_spin_unlock(&its_lock); 3177 3178 return err; 3179 } 3180 3181 static void its_restore_enable(void) 3182 { 3183 struct its_node *its; 3184 int ret; 3185 3186 raw_spin_lock(&its_lock); 3187 list_for_each_entry(its, &its_nodes, entry) { 3188 void __iomem *base; 3189 int i; 3190 3191 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3192 continue; 3193 3194 base = its->base; 3195 3196 /* 3197 * Make sure that the ITS is disabled. If it fails to quiesce, 3198 * don't restore it since writing to CBASER or BASER<n> 3199 * registers is undefined according to the GIC v3 ITS 3200 * Specification. 3201 */ 3202 ret = its_force_quiescent(base); 3203 if (ret) { 3204 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3205 &its->phys_base, ret); 3206 continue; 3207 } 3208 3209 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3210 3211 /* 3212 * Writing CBASER resets CREADR to 0, so make CWRITER and 3213 * cmd_write line up with it. 3214 */ 3215 its->cmd_write = its->cmd_base; 3216 gits_write_cwriter(0, base + GITS_CWRITER); 3217 3218 /* Restore GITS_BASER from the value cache. */ 3219 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3220 struct its_baser *baser = &its->tables[i]; 3221 3222 if (!(baser->val & GITS_BASER_VALID)) 3223 continue; 3224 3225 its_write_baser(its, baser, baser->val); 3226 } 3227 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3228 3229 /* 3230 * Reinit the collection if it's stored in the ITS. This is 3231 * indicated by the col_id being less than the HCC field. 3232 * CID < HCC as specified in the GIC v3 Documentation. 3233 */ 3234 if (its->collections[smp_processor_id()].col_id < 3235 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3236 its_cpu_init_collection(its); 3237 } 3238 raw_spin_unlock(&its_lock); 3239 } 3240 3241 static struct syscore_ops its_syscore_ops = { 3242 .suspend = its_save_disable, 3243 .resume = its_restore_enable, 3244 }; 3245 3246 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3247 { 3248 struct irq_domain *inner_domain; 3249 struct msi_domain_info *info; 3250 3251 info = kzalloc(sizeof(*info), GFP_KERNEL); 3252 if (!info) 3253 return -ENOMEM; 3254 3255 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3256 if (!inner_domain) { 3257 kfree(info); 3258 return -ENOMEM; 3259 } 3260 3261 inner_domain->parent = its_parent; 3262 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3263 inner_domain->flags |= its->msi_domain_flags; 3264 info->ops = &its_msi_domain_ops; 3265 info->data = its; 3266 inner_domain->host_data = info; 3267 3268 return 0; 3269 } 3270 3271 static int its_init_vpe_domain(void) 3272 { 3273 struct its_node *its; 3274 u32 devid; 3275 int entries; 3276 3277 if (gic_rdists->has_direct_lpi) { 3278 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3279 return 0; 3280 } 3281 3282 /* Any ITS will do, even if not v4 */ 3283 its = list_first_entry(&its_nodes, struct its_node, entry); 3284 3285 entries = roundup_pow_of_two(nr_cpu_ids); 3286 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3287 GFP_KERNEL); 3288 if (!vpe_proxy.vpes) { 3289 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3290 return -ENOMEM; 3291 } 3292 3293 /* Use the last possible DevID */ 3294 devid = GENMASK(its->device_ids - 1, 0); 3295 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3296 if (!vpe_proxy.dev) { 3297 kfree(vpe_proxy.vpes); 3298 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3299 return -ENOMEM; 3300 } 3301 3302 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3303 3304 raw_spin_lock_init(&vpe_proxy.lock); 3305 vpe_proxy.next_victim = 0; 3306 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3307 devid, vpe_proxy.dev->nr_ites); 3308 3309 return 0; 3310 } 3311 3312 static int __init its_compute_its_list_map(struct resource *res, 3313 void __iomem *its_base) 3314 { 3315 int its_number; 3316 u32 ctlr; 3317 3318 /* 3319 * This is assumed to be done early enough that we're 3320 * guaranteed to be single-threaded, hence no 3321 * locking. Should this change, we should address 3322 * this. 3323 */ 3324 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3325 if (its_number >= GICv4_ITS_LIST_MAX) { 3326 pr_err("ITS@%pa: No ITSList entry available!\n", 3327 &res->start); 3328 return -EINVAL; 3329 } 3330 3331 ctlr = readl_relaxed(its_base + GITS_CTLR); 3332 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3333 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3334 writel_relaxed(ctlr, its_base + GITS_CTLR); 3335 ctlr = readl_relaxed(its_base + GITS_CTLR); 3336 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3337 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3338 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3339 } 3340 3341 if (test_and_set_bit(its_number, &its_list_map)) { 3342 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3343 &res->start, its_number); 3344 return -EINVAL; 3345 } 3346 3347 return its_number; 3348 } 3349 3350 static int __init its_probe_one(struct resource *res, 3351 struct fwnode_handle *handle, int numa_node) 3352 { 3353 struct its_node *its; 3354 void __iomem *its_base; 3355 u32 val, ctlr; 3356 u64 baser, tmp, typer; 3357 int err; 3358 3359 its_base = ioremap(res->start, resource_size(res)); 3360 if (!its_base) { 3361 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3362 return -ENOMEM; 3363 } 3364 3365 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3366 if (val != 0x30 && val != 0x40) { 3367 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3368 err = -ENODEV; 3369 goto out_unmap; 3370 } 3371 3372 err = its_force_quiescent(its_base); 3373 if (err) { 3374 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3375 goto out_unmap; 3376 } 3377 3378 pr_info("ITS %pR\n", res); 3379 3380 its = kzalloc(sizeof(*its), GFP_KERNEL); 3381 if (!its) { 3382 err = -ENOMEM; 3383 goto out_unmap; 3384 } 3385 3386 raw_spin_lock_init(&its->lock); 3387 INIT_LIST_HEAD(&its->entry); 3388 INIT_LIST_HEAD(&its->its_device_list); 3389 typer = gic_read_typer(its_base + GITS_TYPER); 3390 its->base = its_base; 3391 its->phys_base = res->start; 3392 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3393 its->device_ids = GITS_TYPER_DEVBITS(typer); 3394 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3395 if (its->is_v4) { 3396 if (!(typer & GITS_TYPER_VMOVP)) { 3397 err = its_compute_its_list_map(res, its_base); 3398 if (err < 0) 3399 goto out_free_its; 3400 3401 its->list_nr = err; 3402 3403 pr_info("ITS@%pa: Using ITS number %d\n", 3404 &res->start, err); 3405 } else { 3406 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3407 } 3408 } 3409 3410 its->numa_node = numa_node; 3411 3412 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 3413 get_order(ITS_CMD_QUEUE_SZ)); 3414 if (!its->cmd_base) { 3415 err = -ENOMEM; 3416 goto out_free_its; 3417 } 3418 its->cmd_write = its->cmd_base; 3419 its->fwnode_handle = handle; 3420 its->get_msi_base = its_irq_get_msi_base; 3421 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3422 3423 its_enable_quirks(its); 3424 3425 err = its_alloc_tables(its); 3426 if (err) 3427 goto out_free_cmd; 3428 3429 err = its_alloc_collections(its); 3430 if (err) 3431 goto out_free_tables; 3432 3433 baser = (virt_to_phys(its->cmd_base) | 3434 GITS_CBASER_RaWaWb | 3435 GITS_CBASER_InnerShareable | 3436 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3437 GITS_CBASER_VALID); 3438 3439 gits_write_cbaser(baser, its->base + GITS_CBASER); 3440 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3441 3442 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3443 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3444 /* 3445 * The HW reports non-shareable, we must 3446 * remove the cacheability attributes as 3447 * well. 3448 */ 3449 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3450 GITS_CBASER_CACHEABILITY_MASK); 3451 baser |= GITS_CBASER_nC; 3452 gits_write_cbaser(baser, its->base + GITS_CBASER); 3453 } 3454 pr_info("ITS: using cache flushing for cmd queue\n"); 3455 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3456 } 3457 3458 gits_write_cwriter(0, its->base + GITS_CWRITER); 3459 ctlr = readl_relaxed(its->base + GITS_CTLR); 3460 ctlr |= GITS_CTLR_ENABLE; 3461 if (its->is_v4) 3462 ctlr |= GITS_CTLR_ImDe; 3463 writel_relaxed(ctlr, its->base + GITS_CTLR); 3464 3465 if (GITS_TYPER_HCC(typer)) 3466 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3467 3468 err = its_init_domain(handle, its); 3469 if (err) 3470 goto out_free_tables; 3471 3472 raw_spin_lock(&its_lock); 3473 list_add(&its->entry, &its_nodes); 3474 raw_spin_unlock(&its_lock); 3475 3476 return 0; 3477 3478 out_free_tables: 3479 its_free_tables(its); 3480 out_free_cmd: 3481 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3482 out_free_its: 3483 kfree(its); 3484 out_unmap: 3485 iounmap(its_base); 3486 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3487 return err; 3488 } 3489 3490 static bool gic_rdists_supports_plpis(void) 3491 { 3492 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3493 } 3494 3495 static int redist_disable_lpis(void) 3496 { 3497 void __iomem *rbase = gic_data_rdist_rd_base(); 3498 u64 timeout = USEC_PER_SEC; 3499 u64 val; 3500 3501 /* 3502 * If coming via a CPU hotplug event, we don't need to disable 3503 * LPIs before trying to re-enable them. They are already 3504 * configured and all is well in the world. Detect this case 3505 * by checking the allocation of the pending table for the 3506 * current CPU. 3507 */ 3508 if (gic_data_rdist()->pend_page) 3509 return 0; 3510 3511 if (!gic_rdists_supports_plpis()) { 3512 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3513 return -ENXIO; 3514 } 3515 3516 val = readl_relaxed(rbase + GICR_CTLR); 3517 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3518 return 0; 3519 3520 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3521 smp_processor_id()); 3522 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3523 3524 /* Disable LPIs */ 3525 val &= ~GICR_CTLR_ENABLE_LPIS; 3526 writel_relaxed(val, rbase + GICR_CTLR); 3527 3528 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3529 dsb(sy); 3530 3531 /* 3532 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3533 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3534 * Error out if we time out waiting for RWP to clear. 3535 */ 3536 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3537 if (!timeout) { 3538 pr_err("CPU%d: Timeout while disabling LPIs\n", 3539 smp_processor_id()); 3540 return -ETIMEDOUT; 3541 } 3542 udelay(1); 3543 timeout--; 3544 } 3545 3546 /* 3547 * After it has been written to 1, it is IMPLEMENTATION 3548 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3549 * cleared to 0. Error out if clearing the bit failed. 3550 */ 3551 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3552 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3553 return -EBUSY; 3554 } 3555 3556 return 0; 3557 } 3558 3559 int its_cpu_init(void) 3560 { 3561 if (!list_empty(&its_nodes)) { 3562 int ret; 3563 3564 ret = redist_disable_lpis(); 3565 if (ret) 3566 return ret; 3567 3568 its_cpu_init_lpis(); 3569 its_cpu_init_collections(); 3570 } 3571 3572 return 0; 3573 } 3574 3575 static const struct of_device_id its_device_id[] = { 3576 { .compatible = "arm,gic-v3-its", }, 3577 {}, 3578 }; 3579 3580 static int __init its_of_probe(struct device_node *node) 3581 { 3582 struct device_node *np; 3583 struct resource res; 3584 3585 for (np = of_find_matching_node(node, its_device_id); np; 3586 np = of_find_matching_node(np, its_device_id)) { 3587 if (!of_device_is_available(np)) 3588 continue; 3589 if (!of_property_read_bool(np, "msi-controller")) { 3590 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3591 np); 3592 continue; 3593 } 3594 3595 if (of_address_to_resource(np, 0, &res)) { 3596 pr_warn("%pOF: no regs?\n", np); 3597 continue; 3598 } 3599 3600 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3601 } 3602 return 0; 3603 } 3604 3605 #ifdef CONFIG_ACPI 3606 3607 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3608 3609 #ifdef CONFIG_ACPI_NUMA 3610 struct its_srat_map { 3611 /* numa node id */ 3612 u32 numa_node; 3613 /* GIC ITS ID */ 3614 u32 its_id; 3615 }; 3616 3617 static struct its_srat_map *its_srat_maps __initdata; 3618 static int its_in_srat __initdata; 3619 3620 static int __init acpi_get_its_numa_node(u32 its_id) 3621 { 3622 int i; 3623 3624 for (i = 0; i < its_in_srat; i++) { 3625 if (its_id == its_srat_maps[i].its_id) 3626 return its_srat_maps[i].numa_node; 3627 } 3628 return NUMA_NO_NODE; 3629 } 3630 3631 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3632 const unsigned long end) 3633 { 3634 return 0; 3635 } 3636 3637 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3638 const unsigned long end) 3639 { 3640 int node; 3641 struct acpi_srat_gic_its_affinity *its_affinity; 3642 3643 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3644 if (!its_affinity) 3645 return -EINVAL; 3646 3647 if (its_affinity->header.length < sizeof(*its_affinity)) { 3648 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3649 its_affinity->header.length); 3650 return -EINVAL; 3651 } 3652 3653 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3654 3655 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3656 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3657 return 0; 3658 } 3659 3660 its_srat_maps[its_in_srat].numa_node = node; 3661 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3662 its_in_srat++; 3663 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3664 its_affinity->proximity_domain, its_affinity->its_id, node); 3665 3666 return 0; 3667 } 3668 3669 static void __init acpi_table_parse_srat_its(void) 3670 { 3671 int count; 3672 3673 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3674 sizeof(struct acpi_table_srat), 3675 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3676 gic_acpi_match_srat_its, 0); 3677 if (count <= 0) 3678 return; 3679 3680 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3681 GFP_KERNEL); 3682 if (!its_srat_maps) { 3683 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3684 return; 3685 } 3686 3687 acpi_table_parse_entries(ACPI_SIG_SRAT, 3688 sizeof(struct acpi_table_srat), 3689 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3690 gic_acpi_parse_srat_its, 0); 3691 } 3692 3693 /* free the its_srat_maps after ITS probing */ 3694 static void __init acpi_its_srat_maps_free(void) 3695 { 3696 kfree(its_srat_maps); 3697 } 3698 #else 3699 static void __init acpi_table_parse_srat_its(void) { } 3700 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3701 static void __init acpi_its_srat_maps_free(void) { } 3702 #endif 3703 3704 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3705 const unsigned long end) 3706 { 3707 struct acpi_madt_generic_translator *its_entry; 3708 struct fwnode_handle *dom_handle; 3709 struct resource res; 3710 int err; 3711 3712 its_entry = (struct acpi_madt_generic_translator *)header; 3713 memset(&res, 0, sizeof(res)); 3714 res.start = its_entry->base_address; 3715 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3716 res.flags = IORESOURCE_MEM; 3717 3718 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3719 if (!dom_handle) { 3720 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3721 &res.start); 3722 return -ENOMEM; 3723 } 3724 3725 err = iort_register_domain_token(its_entry->translation_id, res.start, 3726 dom_handle); 3727 if (err) { 3728 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3729 &res.start, its_entry->translation_id); 3730 goto dom_err; 3731 } 3732 3733 err = its_probe_one(&res, dom_handle, 3734 acpi_get_its_numa_node(its_entry->translation_id)); 3735 if (!err) 3736 return 0; 3737 3738 iort_deregister_domain_token(its_entry->translation_id); 3739 dom_err: 3740 irq_domain_free_fwnode(dom_handle); 3741 return err; 3742 } 3743 3744 static void __init its_acpi_probe(void) 3745 { 3746 acpi_table_parse_srat_its(); 3747 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3748 gic_acpi_parse_madt_its, 0); 3749 acpi_its_srat_maps_free(); 3750 } 3751 #else 3752 static void __init its_acpi_probe(void) { } 3753 #endif 3754 3755 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3756 struct irq_domain *parent_domain) 3757 { 3758 struct device_node *of_node; 3759 struct its_node *its; 3760 bool has_v4 = false; 3761 int err; 3762 3763 its_parent = parent_domain; 3764 of_node = to_of_node(handle); 3765 if (of_node) 3766 its_of_probe(of_node); 3767 else 3768 its_acpi_probe(); 3769 3770 if (list_empty(&its_nodes)) { 3771 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3772 return -ENXIO; 3773 } 3774 3775 gic_rdists = rdists; 3776 err = its_alloc_lpi_tables(); 3777 if (err) 3778 return err; 3779 3780 list_for_each_entry(its, &its_nodes, entry) 3781 has_v4 |= its->is_v4; 3782 3783 if (has_v4 & rdists->has_vlpis) { 3784 if (its_init_vpe_domain() || 3785 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3786 rdists->has_vlpis = false; 3787 pr_err("ITS: Disabling GICv4 support\n"); 3788 } 3789 } 3790 3791 register_syscore_ops(&its_syscore_ops); 3792 3793 return 0; 3794 } 3795