1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	void __iomem		*sgir_base;
100 	phys_addr_t		phys_base;
101 	struct its_cmd_block	*cmd_base;
102 	struct its_cmd_block	*cmd_write;
103 	struct its_baser	tables[GITS_BASER_NR_REGS];
104 	struct its_collection	*collections;
105 	struct fwnode_handle	*fwnode_handle;
106 	u64			(*get_msi_base)(struct its_device *its_dev);
107 	u64			typer;
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	u32			mpidr;
111 	struct list_head	its_device_list;
112 	u64			flags;
113 	unsigned long		list_nr;
114 	int			numa_node;
115 	unsigned int		msi_domain_flags;
116 	u32			pre_its_base; /* for Socionext Synquacer */
117 	int			vlpi_redist_offset;
118 };
119 
120 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123 
124 #define ITS_ITT_ALIGN		SZ_256
125 
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS						\
128 	({								\
129 		int nvpeid = 16;					\
130 		if (gic_rdists->has_rvpeid &&				\
131 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
132 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
133 				      GICD_TYPER2_VID);			\
134 									\
135 		nvpeid;							\
136 	})
137 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
138 
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
141 
142 struct event_lpi_map {
143 	unsigned long		*lpi_map;
144 	u16			*col_map;
145 	irq_hw_number_t		lpi_base;
146 	int			nr_lpis;
147 	raw_spinlock_t		vlpi_lock;
148 	struct its_vm		*vm;
149 	struct its_vlpi_map	*vlpi_maps;
150 	int			nr_vlpis;
151 };
152 
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160 	struct list_head	entry;
161 	struct its_node		*its;
162 	struct event_lpi_map	event_map;
163 	void			*itt;
164 	u32			nr_ites;
165 	u32			device_id;
166 	bool			shared;
167 };
168 
169 static struct {
170 	raw_spinlock_t		lock;
171 	struct its_device	*dev;
172 	struct its_vpe		**vpes;
173 	int			next_victim;
174 } vpe_proxy;
175 
176 struct cpu_lpi_count {
177 	atomic_t	managed;
178 	atomic_t	unmanaged;
179 };
180 
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182 
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187 
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191 
192 static DEFINE_IDA(its_vpeid_ida);
193 
194 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
198 
199 /*
200  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201  * always have vSGIs mapped.
202  */
203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207 
208 static u16 get_its_list(struct its_vm *vm)
209 {
210 	struct its_node *its;
211 	unsigned long its_list = 0;
212 
213 	list_for_each_entry(its, &its_nodes, entry) {
214 		if (!is_v4(its))
215 			continue;
216 
217 		if (require_its_list_vmovp(vm, its))
218 			__set_bit(its->list_nr, &its_list);
219 	}
220 
221 	return (u16)its_list;
222 }
223 
224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 	return d->hwirq - its_dev->event_map.lpi_base;
228 }
229 
230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 					       u32 event)
232 {
233 	struct its_node *its = its_dev->its;
234 
235 	return its->collections + its_dev->event_map.col_map[event];
236 }
237 
238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 					       u32 event)
240 {
241 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 		return NULL;
243 
244 	return &its_dev->event_map.vlpi_maps[event];
245 }
246 
247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 	if (irqd_is_forwarded_to_vcpu(d)) {
250 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 		u32 event = its_get_event_id(d);
252 
253 		return dev_event_to_vlpi_map(its_dev, event);
254 	}
255 
256 	return NULL;
257 }
258 
259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 	return vpe->col_idx;
263 }
264 
265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269 
270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
271 {
272 	struct its_vlpi_map *map = get_vlpi_map(d);
273 	int cpu;
274 
275 	if (map) {
276 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
277 	} else {
278 		/* Physical LPIs are already locked via the irq_desc lock */
279 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281 		/* Keep GCC quiet... */
282 		*flags = 0;
283 	}
284 
285 	return cpu;
286 }
287 
288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
289 {
290 	struct its_vlpi_map *map = get_vlpi_map(d);
291 
292 	if (map)
293 		vpe_to_cpuid_unlock(map->vpe, flags);
294 }
295 
296 static struct its_collection *valid_col(struct its_collection *col)
297 {
298 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
299 		return NULL;
300 
301 	return col;
302 }
303 
304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305 {
306 	if (valid_col(its->collections + vpe->col_idx))
307 		return vpe;
308 
309 	return NULL;
310 }
311 
312 /*
313  * ITS command descriptors - parameters to be encoded in a command
314  * block.
315  */
316 struct its_cmd_desc {
317 	union {
318 		struct {
319 			struct its_device *dev;
320 			u32 event_id;
321 		} its_inv_cmd;
322 
323 		struct {
324 			struct its_device *dev;
325 			u32 event_id;
326 		} its_clear_cmd;
327 
328 		struct {
329 			struct its_device *dev;
330 			u32 event_id;
331 		} its_int_cmd;
332 
333 		struct {
334 			struct its_device *dev;
335 			int valid;
336 		} its_mapd_cmd;
337 
338 		struct {
339 			struct its_collection *col;
340 			int valid;
341 		} its_mapc_cmd;
342 
343 		struct {
344 			struct its_device *dev;
345 			u32 phys_id;
346 			u32 event_id;
347 		} its_mapti_cmd;
348 
349 		struct {
350 			struct its_device *dev;
351 			struct its_collection *col;
352 			u32 event_id;
353 		} its_movi_cmd;
354 
355 		struct {
356 			struct its_device *dev;
357 			u32 event_id;
358 		} its_discard_cmd;
359 
360 		struct {
361 			struct its_collection *col;
362 		} its_invall_cmd;
363 
364 		struct {
365 			struct its_vpe *vpe;
366 		} its_vinvall_cmd;
367 
368 		struct {
369 			struct its_vpe *vpe;
370 			struct its_collection *col;
371 			bool valid;
372 		} its_vmapp_cmd;
373 
374 		struct {
375 			struct its_vpe *vpe;
376 			struct its_device *dev;
377 			u32 virt_id;
378 			u32 event_id;
379 			bool db_enabled;
380 		} its_vmapti_cmd;
381 
382 		struct {
383 			struct its_vpe *vpe;
384 			struct its_device *dev;
385 			u32 event_id;
386 			bool db_enabled;
387 		} its_vmovi_cmd;
388 
389 		struct {
390 			struct its_vpe *vpe;
391 			struct its_collection *col;
392 			u16 seq_num;
393 			u16 its_list;
394 		} its_vmovp_cmd;
395 
396 		struct {
397 			struct its_vpe *vpe;
398 		} its_invdb_cmd;
399 
400 		struct {
401 			struct its_vpe *vpe;
402 			u8 sgi;
403 			u8 priority;
404 			bool enable;
405 			bool group;
406 			bool clear;
407 		} its_vsgi_cmd;
408 	};
409 };
410 
411 /*
412  * The ITS command block, which is what the ITS actually parses.
413  */
414 struct its_cmd_block {
415 	union {
416 		u64	raw_cmd[4];
417 		__le64	raw_cmd_le[4];
418 	};
419 };
420 
421 #define ITS_CMD_QUEUE_SZ		SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423 
424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425 						    struct its_cmd_block *,
426 						    struct its_cmd_desc *);
427 
428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429 					      struct its_cmd_block *,
430 					      struct its_cmd_desc *);
431 
432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433 {
434 	u64 mask = GENMASK_ULL(h, l);
435 	*raw_cmd &= ~mask;
436 	*raw_cmd |= (val << l) & mask;
437 }
438 
439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440 {
441 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
442 }
443 
444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445 {
446 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
447 }
448 
449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450 {
451 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
452 }
453 
454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455 {
456 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
457 }
458 
459 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460 {
461 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
462 }
463 
464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465 {
466 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
467 }
468 
469 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470 {
471 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
472 }
473 
474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475 {
476 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
477 }
478 
479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480 {
481 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
482 }
483 
484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485 {
486 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487 }
488 
489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492 }
493 
494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497 }
498 
499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502 }
503 
504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505 {
506 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507 }
508 
509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510 {
511 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512 }
513 
514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515 {
516 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
517 }
518 
519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520 {
521 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522 }
523 
524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525 {
526 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527 }
528 
529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530 {
531 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532 }
533 
534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535 {
536 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537 }
538 
539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540 					u32 vpe_db_lpi)
541 {
542 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543 }
544 
545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546 					u32 vpe_db_lpi)
547 {
548 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549 }
550 
551 static void its_encode_db(struct its_cmd_block *cmd, bool db)
552 {
553 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554 }
555 
556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557 {
558 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559 }
560 
561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562 {
563 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564 }
565 
566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567 {
568 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569 }
570 
571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572 {
573 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574 }
575 
576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577 {
578 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579 }
580 
581 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582 {
583 	/* Let's fixup BE commands */
584 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
588 }
589 
590 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591 						 struct its_cmd_block *cmd,
592 						 struct its_cmd_desc *desc)
593 {
594 	unsigned long itt_addr;
595 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
596 
597 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599 
600 	its_encode_cmd(cmd, GITS_CMD_MAPD);
601 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602 	its_encode_size(cmd, size - 1);
603 	its_encode_itt(cmd, itt_addr);
604 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605 
606 	its_fixup_cmd(cmd);
607 
608 	return NULL;
609 }
610 
611 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612 						 struct its_cmd_block *cmd,
613 						 struct its_cmd_desc *desc)
614 {
615 	its_encode_cmd(cmd, GITS_CMD_MAPC);
616 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619 
620 	its_fixup_cmd(cmd);
621 
622 	return desc->its_mapc_cmd.col;
623 }
624 
625 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626 						  struct its_cmd_block *cmd,
627 						  struct its_cmd_desc *desc)
628 {
629 	struct its_collection *col;
630 
631 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
632 			       desc->its_mapti_cmd.event_id);
633 
634 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
635 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
638 	its_encode_collection(cmd, col->col_id);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return valid_col(col);
643 }
644 
645 static struct its_collection *its_build_movi_cmd(struct its_node *its,
646 						 struct its_cmd_block *cmd,
647 						 struct its_cmd_desc *desc)
648 {
649 	struct its_collection *col;
650 
651 	col = dev_event_to_col(desc->its_movi_cmd.dev,
652 			       desc->its_movi_cmd.event_id);
653 
654 	its_encode_cmd(cmd, GITS_CMD_MOVI);
655 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
656 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
657 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658 
659 	its_fixup_cmd(cmd);
660 
661 	return valid_col(col);
662 }
663 
664 static struct its_collection *its_build_discard_cmd(struct its_node *its,
665 						    struct its_cmd_block *cmd,
666 						    struct its_cmd_desc *desc)
667 {
668 	struct its_collection *col;
669 
670 	col = dev_event_to_col(desc->its_discard_cmd.dev,
671 			       desc->its_discard_cmd.event_id);
672 
673 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
674 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676 
677 	its_fixup_cmd(cmd);
678 
679 	return valid_col(col);
680 }
681 
682 static struct its_collection *its_build_inv_cmd(struct its_node *its,
683 						struct its_cmd_block *cmd,
684 						struct its_cmd_desc *desc)
685 {
686 	struct its_collection *col;
687 
688 	col = dev_event_to_col(desc->its_inv_cmd.dev,
689 			       desc->its_inv_cmd.event_id);
690 
691 	its_encode_cmd(cmd, GITS_CMD_INV);
692 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694 
695 	its_fixup_cmd(cmd);
696 
697 	return valid_col(col);
698 }
699 
700 static struct its_collection *its_build_int_cmd(struct its_node *its,
701 						struct its_cmd_block *cmd,
702 						struct its_cmd_desc *desc)
703 {
704 	struct its_collection *col;
705 
706 	col = dev_event_to_col(desc->its_int_cmd.dev,
707 			       desc->its_int_cmd.event_id);
708 
709 	its_encode_cmd(cmd, GITS_CMD_INT);
710 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712 
713 	its_fixup_cmd(cmd);
714 
715 	return valid_col(col);
716 }
717 
718 static struct its_collection *its_build_clear_cmd(struct its_node *its,
719 						  struct its_cmd_block *cmd,
720 						  struct its_cmd_desc *desc)
721 {
722 	struct its_collection *col;
723 
724 	col = dev_event_to_col(desc->its_clear_cmd.dev,
725 			       desc->its_clear_cmd.event_id);
726 
727 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
728 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730 
731 	its_fixup_cmd(cmd);
732 
733 	return valid_col(col);
734 }
735 
736 static struct its_collection *its_build_invall_cmd(struct its_node *its,
737 						   struct its_cmd_block *cmd,
738 						   struct its_cmd_desc *desc)
739 {
740 	its_encode_cmd(cmd, GITS_CMD_INVALL);
741 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
742 
743 	its_fixup_cmd(cmd);
744 
745 	return NULL;
746 }
747 
748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749 					     struct its_cmd_block *cmd,
750 					     struct its_cmd_desc *desc)
751 {
752 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
753 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754 
755 	its_fixup_cmd(cmd);
756 
757 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
758 }
759 
760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761 					   struct its_cmd_block *cmd,
762 					   struct its_cmd_desc *desc)
763 {
764 	unsigned long vpt_addr, vconf_addr;
765 	u64 target;
766 	bool alloc;
767 
768 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
769 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
771 
772 	if (!desc->its_vmapp_cmd.valid) {
773 		if (is_v4_1(its)) {
774 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775 			its_encode_alloc(cmd, alloc);
776 		}
777 
778 		goto out;
779 	}
780 
781 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783 
784 	its_encode_target(cmd, target);
785 	its_encode_vpt_addr(cmd, vpt_addr);
786 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787 
788 	if (!is_v4_1(its))
789 		goto out;
790 
791 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792 
793 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794 
795 	its_encode_alloc(cmd, alloc);
796 
797 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
798 	its_encode_ptz(cmd, alloc);
799 	its_encode_vconf_addr(cmd, vconf_addr);
800 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
801 
802 out:
803 	its_fixup_cmd(cmd);
804 
805 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
806 }
807 
808 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
809 					    struct its_cmd_block *cmd,
810 					    struct its_cmd_desc *desc)
811 {
812 	u32 db;
813 
814 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
815 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
816 	else
817 		db = 1023;
818 
819 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
820 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
821 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
822 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
823 	its_encode_db_phys_id(cmd, db);
824 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
825 
826 	its_fixup_cmd(cmd);
827 
828 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
829 }
830 
831 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
832 					   struct its_cmd_block *cmd,
833 					   struct its_cmd_desc *desc)
834 {
835 	u32 db;
836 
837 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
838 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
839 	else
840 		db = 1023;
841 
842 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
843 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
844 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
845 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
846 	its_encode_db_phys_id(cmd, db);
847 	its_encode_db_valid(cmd, true);
848 
849 	its_fixup_cmd(cmd);
850 
851 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
852 }
853 
854 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
855 					   struct its_cmd_block *cmd,
856 					   struct its_cmd_desc *desc)
857 {
858 	u64 target;
859 
860 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
861 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
862 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
863 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
864 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
865 	its_encode_target(cmd, target);
866 
867 	if (is_v4_1(its)) {
868 		its_encode_db(cmd, true);
869 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
870 	}
871 
872 	its_fixup_cmd(cmd);
873 
874 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
875 }
876 
877 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
878 					  struct its_cmd_block *cmd,
879 					  struct its_cmd_desc *desc)
880 {
881 	struct its_vlpi_map *map;
882 
883 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
884 				    desc->its_inv_cmd.event_id);
885 
886 	its_encode_cmd(cmd, GITS_CMD_INV);
887 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
888 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
889 
890 	its_fixup_cmd(cmd);
891 
892 	return valid_vpe(its, map->vpe);
893 }
894 
895 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
896 					  struct its_cmd_block *cmd,
897 					  struct its_cmd_desc *desc)
898 {
899 	struct its_vlpi_map *map;
900 
901 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
902 				    desc->its_int_cmd.event_id);
903 
904 	its_encode_cmd(cmd, GITS_CMD_INT);
905 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
906 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
907 
908 	its_fixup_cmd(cmd);
909 
910 	return valid_vpe(its, map->vpe);
911 }
912 
913 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
914 					    struct its_cmd_block *cmd,
915 					    struct its_cmd_desc *desc)
916 {
917 	struct its_vlpi_map *map;
918 
919 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
920 				    desc->its_clear_cmd.event_id);
921 
922 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
923 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
924 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
925 
926 	its_fixup_cmd(cmd);
927 
928 	return valid_vpe(its, map->vpe);
929 }
930 
931 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
932 					   struct its_cmd_block *cmd,
933 					   struct its_cmd_desc *desc)
934 {
935 	if (WARN_ON(!is_v4_1(its)))
936 		return NULL;
937 
938 	its_encode_cmd(cmd, GITS_CMD_INVDB);
939 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
940 
941 	its_fixup_cmd(cmd);
942 
943 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
944 }
945 
946 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
947 					  struct its_cmd_block *cmd,
948 					  struct its_cmd_desc *desc)
949 {
950 	if (WARN_ON(!is_v4_1(its)))
951 		return NULL;
952 
953 	its_encode_cmd(cmd, GITS_CMD_VSGI);
954 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
955 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
956 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
957 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
958 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
959 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
960 
961 	its_fixup_cmd(cmd);
962 
963 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
964 }
965 
966 static u64 its_cmd_ptr_to_offset(struct its_node *its,
967 				 struct its_cmd_block *ptr)
968 {
969 	return (ptr - its->cmd_base) * sizeof(*ptr);
970 }
971 
972 static int its_queue_full(struct its_node *its)
973 {
974 	int widx;
975 	int ridx;
976 
977 	widx = its->cmd_write - its->cmd_base;
978 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
979 
980 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
981 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
982 		return 1;
983 
984 	return 0;
985 }
986 
987 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
988 {
989 	struct its_cmd_block *cmd;
990 	u32 count = 1000000;	/* 1s! */
991 
992 	while (its_queue_full(its)) {
993 		count--;
994 		if (!count) {
995 			pr_err_ratelimited("ITS queue not draining\n");
996 			return NULL;
997 		}
998 		cpu_relax();
999 		udelay(1);
1000 	}
1001 
1002 	cmd = its->cmd_write++;
1003 
1004 	/* Handle queue wrapping */
1005 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1006 		its->cmd_write = its->cmd_base;
1007 
1008 	/* Clear command  */
1009 	cmd->raw_cmd[0] = 0;
1010 	cmd->raw_cmd[1] = 0;
1011 	cmd->raw_cmd[2] = 0;
1012 	cmd->raw_cmd[3] = 0;
1013 
1014 	return cmd;
1015 }
1016 
1017 static struct its_cmd_block *its_post_commands(struct its_node *its)
1018 {
1019 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1020 
1021 	writel_relaxed(wr, its->base + GITS_CWRITER);
1022 
1023 	return its->cmd_write;
1024 }
1025 
1026 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1027 {
1028 	/*
1029 	 * Make sure the commands written to memory are observable by
1030 	 * the ITS.
1031 	 */
1032 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1033 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1034 	else
1035 		dsb(ishst);
1036 }
1037 
1038 static int its_wait_for_range_completion(struct its_node *its,
1039 					 u64	prev_idx,
1040 					 struct its_cmd_block *to)
1041 {
1042 	u64 rd_idx, to_idx, linear_idx;
1043 	u32 count = 1000000;	/* 1s! */
1044 
1045 	/* Linearize to_idx if the command set has wrapped around */
1046 	to_idx = its_cmd_ptr_to_offset(its, to);
1047 	if (to_idx < prev_idx)
1048 		to_idx += ITS_CMD_QUEUE_SZ;
1049 
1050 	linear_idx = prev_idx;
1051 
1052 	while (1) {
1053 		s64 delta;
1054 
1055 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1056 
1057 		/*
1058 		 * Compute the read pointer progress, taking the
1059 		 * potential wrap-around into account.
1060 		 */
1061 		delta = rd_idx - prev_idx;
1062 		if (rd_idx < prev_idx)
1063 			delta += ITS_CMD_QUEUE_SZ;
1064 
1065 		linear_idx += delta;
1066 		if (linear_idx >= to_idx)
1067 			break;
1068 
1069 		count--;
1070 		if (!count) {
1071 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1072 					   to_idx, linear_idx);
1073 			return -1;
1074 		}
1075 		prev_idx = rd_idx;
1076 		cpu_relax();
1077 		udelay(1);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 /* Warning, macro hell follows */
1084 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1085 void name(struct its_node *its,						\
1086 	  buildtype builder,						\
1087 	  struct its_cmd_desc *desc)					\
1088 {									\
1089 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1090 	synctype *sync_obj;						\
1091 	unsigned long flags;						\
1092 	u64 rd_idx;							\
1093 									\
1094 	raw_spin_lock_irqsave(&its->lock, flags);			\
1095 									\
1096 	cmd = its_allocate_entry(its);					\
1097 	if (!cmd) {		/* We're soooooo screewed... */		\
1098 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1099 		return;							\
1100 	}								\
1101 	sync_obj = builder(its, cmd, desc);				\
1102 	its_flush_cmd(its, cmd);					\
1103 									\
1104 	if (sync_obj) {							\
1105 		sync_cmd = its_allocate_entry(its);			\
1106 		if (!sync_cmd)						\
1107 			goto post;					\
1108 									\
1109 		buildfn(its, sync_cmd, sync_obj);			\
1110 		its_flush_cmd(its, sync_cmd);				\
1111 	}								\
1112 									\
1113 post:									\
1114 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1115 	next_cmd = its_post_commands(its);				\
1116 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1117 									\
1118 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1119 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1120 }
1121 
1122 static void its_build_sync_cmd(struct its_node *its,
1123 			       struct its_cmd_block *sync_cmd,
1124 			       struct its_collection *sync_col)
1125 {
1126 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1127 	its_encode_target(sync_cmd, sync_col->target_address);
1128 
1129 	its_fixup_cmd(sync_cmd);
1130 }
1131 
1132 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1133 			     struct its_collection, its_build_sync_cmd)
1134 
1135 static void its_build_vsync_cmd(struct its_node *its,
1136 				struct its_cmd_block *sync_cmd,
1137 				struct its_vpe *sync_vpe)
1138 {
1139 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1140 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1141 
1142 	its_fixup_cmd(sync_cmd);
1143 }
1144 
1145 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1146 			     struct its_vpe, its_build_vsync_cmd)
1147 
1148 static void its_send_int(struct its_device *dev, u32 event_id)
1149 {
1150 	struct its_cmd_desc desc;
1151 
1152 	desc.its_int_cmd.dev = dev;
1153 	desc.its_int_cmd.event_id = event_id;
1154 
1155 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1156 }
1157 
1158 static void its_send_clear(struct its_device *dev, u32 event_id)
1159 {
1160 	struct its_cmd_desc desc;
1161 
1162 	desc.its_clear_cmd.dev = dev;
1163 	desc.its_clear_cmd.event_id = event_id;
1164 
1165 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1166 }
1167 
1168 static void its_send_inv(struct its_device *dev, u32 event_id)
1169 {
1170 	struct its_cmd_desc desc;
1171 
1172 	desc.its_inv_cmd.dev = dev;
1173 	desc.its_inv_cmd.event_id = event_id;
1174 
1175 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1176 }
1177 
1178 static void its_send_mapd(struct its_device *dev, int valid)
1179 {
1180 	struct its_cmd_desc desc;
1181 
1182 	desc.its_mapd_cmd.dev = dev;
1183 	desc.its_mapd_cmd.valid = !!valid;
1184 
1185 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1186 }
1187 
1188 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1189 			  int valid)
1190 {
1191 	struct its_cmd_desc desc;
1192 
1193 	desc.its_mapc_cmd.col = col;
1194 	desc.its_mapc_cmd.valid = !!valid;
1195 
1196 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1197 }
1198 
1199 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1200 {
1201 	struct its_cmd_desc desc;
1202 
1203 	desc.its_mapti_cmd.dev = dev;
1204 	desc.its_mapti_cmd.phys_id = irq_id;
1205 	desc.its_mapti_cmd.event_id = id;
1206 
1207 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1208 }
1209 
1210 static void its_send_movi(struct its_device *dev,
1211 			  struct its_collection *col, u32 id)
1212 {
1213 	struct its_cmd_desc desc;
1214 
1215 	desc.its_movi_cmd.dev = dev;
1216 	desc.its_movi_cmd.col = col;
1217 	desc.its_movi_cmd.event_id = id;
1218 
1219 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1220 }
1221 
1222 static void its_send_discard(struct its_device *dev, u32 id)
1223 {
1224 	struct its_cmd_desc desc;
1225 
1226 	desc.its_discard_cmd.dev = dev;
1227 	desc.its_discard_cmd.event_id = id;
1228 
1229 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1230 }
1231 
1232 static void its_send_invall(struct its_node *its, struct its_collection *col)
1233 {
1234 	struct its_cmd_desc desc;
1235 
1236 	desc.its_invall_cmd.col = col;
1237 
1238 	its_send_single_command(its, its_build_invall_cmd, &desc);
1239 }
1240 
1241 static void its_send_vmapti(struct its_device *dev, u32 id)
1242 {
1243 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1244 	struct its_cmd_desc desc;
1245 
1246 	desc.its_vmapti_cmd.vpe = map->vpe;
1247 	desc.its_vmapti_cmd.dev = dev;
1248 	desc.its_vmapti_cmd.virt_id = map->vintid;
1249 	desc.its_vmapti_cmd.event_id = id;
1250 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1251 
1252 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1253 }
1254 
1255 static void its_send_vmovi(struct its_device *dev, u32 id)
1256 {
1257 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1258 	struct its_cmd_desc desc;
1259 
1260 	desc.its_vmovi_cmd.vpe = map->vpe;
1261 	desc.its_vmovi_cmd.dev = dev;
1262 	desc.its_vmovi_cmd.event_id = id;
1263 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1264 
1265 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1266 }
1267 
1268 static void its_send_vmapp(struct its_node *its,
1269 			   struct its_vpe *vpe, bool valid)
1270 {
1271 	struct its_cmd_desc desc;
1272 
1273 	desc.its_vmapp_cmd.vpe = vpe;
1274 	desc.its_vmapp_cmd.valid = valid;
1275 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1276 
1277 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1278 }
1279 
1280 static void its_send_vmovp(struct its_vpe *vpe)
1281 {
1282 	struct its_cmd_desc desc = {};
1283 	struct its_node *its;
1284 	unsigned long flags;
1285 	int col_id = vpe->col_idx;
1286 
1287 	desc.its_vmovp_cmd.vpe = vpe;
1288 
1289 	if (!its_list_map) {
1290 		its = list_first_entry(&its_nodes, struct its_node, entry);
1291 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1292 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * Yet another marvel of the architecture. If using the
1298 	 * its_list "feature", we need to make sure that all ITSs
1299 	 * receive all VMOVP commands in the same order. The only way
1300 	 * to guarantee this is to make vmovp a serialization point.
1301 	 *
1302 	 * Wall <-- Head.
1303 	 */
1304 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1305 
1306 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1307 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1308 
1309 	/* Emit VMOVPs */
1310 	list_for_each_entry(its, &its_nodes, entry) {
1311 		if (!is_v4(its))
1312 			continue;
1313 
1314 		if (!require_its_list_vmovp(vpe->its_vm, its))
1315 			continue;
1316 
1317 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1318 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1319 	}
1320 
1321 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1322 }
1323 
1324 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1325 {
1326 	struct its_cmd_desc desc;
1327 
1328 	desc.its_vinvall_cmd.vpe = vpe;
1329 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1330 }
1331 
1332 static void its_send_vinv(struct its_device *dev, u32 event_id)
1333 {
1334 	struct its_cmd_desc desc;
1335 
1336 	/*
1337 	 * There is no real VINV command. This is just a normal INV,
1338 	 * with a VSYNC instead of a SYNC.
1339 	 */
1340 	desc.its_inv_cmd.dev = dev;
1341 	desc.its_inv_cmd.event_id = event_id;
1342 
1343 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1344 }
1345 
1346 static void its_send_vint(struct its_device *dev, u32 event_id)
1347 {
1348 	struct its_cmd_desc desc;
1349 
1350 	/*
1351 	 * There is no real VINT command. This is just a normal INT,
1352 	 * with a VSYNC instead of a SYNC.
1353 	 */
1354 	desc.its_int_cmd.dev = dev;
1355 	desc.its_int_cmd.event_id = event_id;
1356 
1357 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1358 }
1359 
1360 static void its_send_vclear(struct its_device *dev, u32 event_id)
1361 {
1362 	struct its_cmd_desc desc;
1363 
1364 	/*
1365 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1366 	 * with a VSYNC instead of a SYNC.
1367 	 */
1368 	desc.its_clear_cmd.dev = dev;
1369 	desc.its_clear_cmd.event_id = event_id;
1370 
1371 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1372 }
1373 
1374 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1375 {
1376 	struct its_cmd_desc desc;
1377 
1378 	desc.its_invdb_cmd.vpe = vpe;
1379 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1380 }
1381 
1382 /*
1383  * irqchip functions - assumes MSI, mostly.
1384  */
1385 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1386 {
1387 	struct its_vlpi_map *map = get_vlpi_map(d);
1388 	irq_hw_number_t hwirq;
1389 	void *va;
1390 	u8 *cfg;
1391 
1392 	if (map) {
1393 		va = page_address(map->vm->vprop_page);
1394 		hwirq = map->vintid;
1395 
1396 		/* Remember the updated property */
1397 		map->properties &= ~clr;
1398 		map->properties |= set | LPI_PROP_GROUP1;
1399 	} else {
1400 		va = gic_rdists->prop_table_va;
1401 		hwirq = d->hwirq;
1402 	}
1403 
1404 	cfg = va + hwirq - 8192;
1405 	*cfg &= ~clr;
1406 	*cfg |= set | LPI_PROP_GROUP1;
1407 
1408 	/*
1409 	 * Make the above write visible to the redistributors.
1410 	 * And yes, we're flushing exactly: One. Single. Byte.
1411 	 * Humpf...
1412 	 */
1413 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1414 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1415 	else
1416 		dsb(ishst);
1417 }
1418 
1419 static void wait_for_syncr(void __iomem *rdbase)
1420 {
1421 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1422 		cpu_relax();
1423 }
1424 
1425 static void direct_lpi_inv(struct irq_data *d)
1426 {
1427 	struct its_vlpi_map *map = get_vlpi_map(d);
1428 	void __iomem *rdbase;
1429 	unsigned long flags;
1430 	u64 val;
1431 	int cpu;
1432 
1433 	if (map) {
1434 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1435 
1436 		WARN_ON(!is_v4_1(its_dev->its));
1437 
1438 		val  = GICR_INVLPIR_V;
1439 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1440 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1441 	} else {
1442 		val = d->hwirq;
1443 	}
1444 
1445 	/* Target the redistributor this LPI is currently routed to */
1446 	cpu = irq_to_cpuid_lock(d, &flags);
1447 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1448 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1449 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1450 
1451 	wait_for_syncr(rdbase);
1452 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453 	irq_to_cpuid_unlock(d, flags);
1454 }
1455 
1456 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1457 {
1458 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1459 
1460 	lpi_write_config(d, clr, set);
1461 	if (gic_rdists->has_direct_lpi &&
1462 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1463 		direct_lpi_inv(d);
1464 	else if (!irqd_is_forwarded_to_vcpu(d))
1465 		its_send_inv(its_dev, its_get_event_id(d));
1466 	else
1467 		its_send_vinv(its_dev, its_get_event_id(d));
1468 }
1469 
1470 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1471 {
1472 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1473 	u32 event = its_get_event_id(d);
1474 	struct its_vlpi_map *map;
1475 
1476 	/*
1477 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1478 	 * here.
1479 	 */
1480 	if (is_v4_1(its_dev->its))
1481 		return;
1482 
1483 	map = dev_event_to_vlpi_map(its_dev, event);
1484 
1485 	if (map->db_enabled == enable)
1486 		return;
1487 
1488 	map->db_enabled = enable;
1489 
1490 	/*
1491 	 * More fun with the architecture:
1492 	 *
1493 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1494 	 * value or to 1023, depending on the enable bit. But that
1495 	 * would be issueing a mapping for an /existing/ DevID+EventID
1496 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1497 	 * to the /same/ vPE, using this opportunity to adjust the
1498 	 * doorbell. Mouahahahaha. We loves it, Precious.
1499 	 */
1500 	its_send_vmovi(its_dev, event);
1501 }
1502 
1503 static void its_mask_irq(struct irq_data *d)
1504 {
1505 	if (irqd_is_forwarded_to_vcpu(d))
1506 		its_vlpi_set_doorbell(d, false);
1507 
1508 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1509 }
1510 
1511 static void its_unmask_irq(struct irq_data *d)
1512 {
1513 	if (irqd_is_forwarded_to_vcpu(d))
1514 		its_vlpi_set_doorbell(d, true);
1515 
1516 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1517 }
1518 
1519 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1520 {
1521 	if (irqd_affinity_is_managed(d))
1522 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1523 
1524 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1525 }
1526 
1527 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1528 {
1529 	if (irqd_affinity_is_managed(d))
1530 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1531 	else
1532 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1533 }
1534 
1535 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1536 {
1537 	if (irqd_affinity_is_managed(d))
1538 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1539 	else
1540 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1541 }
1542 
1543 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1544 					      const struct cpumask *cpu_mask)
1545 {
1546 	unsigned int cpu = nr_cpu_ids, tmp;
1547 	int count = S32_MAX;
1548 
1549 	for_each_cpu(tmp, cpu_mask) {
1550 		int this_count = its_read_lpi_count(d, tmp);
1551 		if (this_count < count) {
1552 			cpu = tmp;
1553 		        count = this_count;
1554 		}
1555 	}
1556 
1557 	return cpu;
1558 }
1559 
1560 /*
1561  * As suggested by Thomas Gleixner in:
1562  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1563  */
1564 static int its_select_cpu(struct irq_data *d,
1565 			  const struct cpumask *aff_mask)
1566 {
1567 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1568 	cpumask_var_t tmpmask;
1569 	int cpu, node;
1570 
1571 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1572 		return -ENOMEM;
1573 
1574 	node = its_dev->its->numa_node;
1575 
1576 	if (!irqd_affinity_is_managed(d)) {
1577 		/* First try the NUMA node */
1578 		if (node != NUMA_NO_NODE) {
1579 			/*
1580 			 * Try the intersection of the affinity mask and the
1581 			 * node mask (and the online mask, just to be safe).
1582 			 */
1583 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1584 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1585 
1586 			/*
1587 			 * Ideally, we would check if the mask is empty, and
1588 			 * try again on the full node here.
1589 			 *
1590 			 * But it turns out that the way ACPI describes the
1591 			 * affinity for ITSs only deals about memory, and
1592 			 * not target CPUs, so it cannot describe a single
1593 			 * ITS placed next to two NUMA nodes.
1594 			 *
1595 			 * Instead, just fallback on the online mask. This
1596 			 * diverges from Thomas' suggestion above.
1597 			 */
1598 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1599 			if (cpu < nr_cpu_ids)
1600 				goto out;
1601 
1602 			/* If we can't cross sockets, give up */
1603 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1604 				goto out;
1605 
1606 			/* If the above failed, expand the search */
1607 		}
1608 
1609 		/* Try the intersection of the affinity and online masks */
1610 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1611 
1612 		/* If that doesn't fly, the online mask is the last resort */
1613 		if (cpumask_empty(tmpmask))
1614 			cpumask_copy(tmpmask, cpu_online_mask);
1615 
1616 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1617 	} else {
1618 		cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1619 
1620 		/* If we cannot cross sockets, limit the search to that node */
1621 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1622 		    node != NUMA_NO_NODE)
1623 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1624 
1625 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1626 	}
1627 out:
1628 	free_cpumask_var(tmpmask);
1629 
1630 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1631 	return cpu;
1632 }
1633 
1634 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1635 			    bool force)
1636 {
1637 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1638 	struct its_collection *target_col;
1639 	u32 id = its_get_event_id(d);
1640 	int cpu, prev_cpu;
1641 
1642 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1643 	if (irqd_is_forwarded_to_vcpu(d))
1644 		return -EINVAL;
1645 
1646 	prev_cpu = its_dev->event_map.col_map[id];
1647 	its_dec_lpi_count(d, prev_cpu);
1648 
1649 	if (!force)
1650 		cpu = its_select_cpu(d, mask_val);
1651 	else
1652 		cpu = cpumask_pick_least_loaded(d, mask_val);
1653 
1654 	if (cpu < 0 || cpu >= nr_cpu_ids)
1655 		goto err;
1656 
1657 	/* don't set the affinity when the target cpu is same as current one */
1658 	if (cpu != prev_cpu) {
1659 		target_col = &its_dev->its->collections[cpu];
1660 		its_send_movi(its_dev, target_col, id);
1661 		its_dev->event_map.col_map[id] = cpu;
1662 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1663 	}
1664 
1665 	its_inc_lpi_count(d, cpu);
1666 
1667 	return IRQ_SET_MASK_OK_DONE;
1668 
1669 err:
1670 	its_inc_lpi_count(d, prev_cpu);
1671 	return -EINVAL;
1672 }
1673 
1674 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1675 {
1676 	struct its_node *its = its_dev->its;
1677 
1678 	return its->phys_base + GITS_TRANSLATER;
1679 }
1680 
1681 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1682 {
1683 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1684 	struct its_node *its;
1685 	u64 addr;
1686 
1687 	its = its_dev->its;
1688 	addr = its->get_msi_base(its_dev);
1689 
1690 	msg->address_lo		= lower_32_bits(addr);
1691 	msg->address_hi		= upper_32_bits(addr);
1692 	msg->data		= its_get_event_id(d);
1693 
1694 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1695 }
1696 
1697 static int its_irq_set_irqchip_state(struct irq_data *d,
1698 				     enum irqchip_irq_state which,
1699 				     bool state)
1700 {
1701 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1702 	u32 event = its_get_event_id(d);
1703 
1704 	if (which != IRQCHIP_STATE_PENDING)
1705 		return -EINVAL;
1706 
1707 	if (irqd_is_forwarded_to_vcpu(d)) {
1708 		if (state)
1709 			its_send_vint(its_dev, event);
1710 		else
1711 			its_send_vclear(its_dev, event);
1712 	} else {
1713 		if (state)
1714 			its_send_int(its_dev, event);
1715 		else
1716 			its_send_clear(its_dev, event);
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int its_irq_retrigger(struct irq_data *d)
1723 {
1724 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1725 }
1726 
1727 /*
1728  * Two favourable cases:
1729  *
1730  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1731  *     for vSGI delivery
1732  *
1733  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1734  *     and we're better off mapping all VPEs always
1735  *
1736  * If neither (a) nor (b) is true, then we map vPEs on demand.
1737  *
1738  */
1739 static bool gic_requires_eager_mapping(void)
1740 {
1741 	if (!its_list_map || gic_rdists->has_rvpeid)
1742 		return true;
1743 
1744 	return false;
1745 }
1746 
1747 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1748 {
1749 	unsigned long flags;
1750 
1751 	if (gic_requires_eager_mapping())
1752 		return;
1753 
1754 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1755 
1756 	/*
1757 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1758 	 * them mapped now.
1759 	 */
1760 	vm->vlpi_count[its->list_nr]++;
1761 
1762 	if (vm->vlpi_count[its->list_nr] == 1) {
1763 		int i;
1764 
1765 		for (i = 0; i < vm->nr_vpes; i++) {
1766 			struct its_vpe *vpe = vm->vpes[i];
1767 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1768 
1769 			/* Map the VPE to the first possible CPU */
1770 			vpe->col_idx = cpumask_first(cpu_online_mask);
1771 			its_send_vmapp(its, vpe, true);
1772 			its_send_vinvall(its, vpe);
1773 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1774 		}
1775 	}
1776 
1777 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1778 }
1779 
1780 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1781 {
1782 	unsigned long flags;
1783 
1784 	/* Not using the ITS list? Everything is always mapped. */
1785 	if (gic_requires_eager_mapping())
1786 		return;
1787 
1788 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1789 
1790 	if (!--vm->vlpi_count[its->list_nr]) {
1791 		int i;
1792 
1793 		for (i = 0; i < vm->nr_vpes; i++)
1794 			its_send_vmapp(its, vm->vpes[i], false);
1795 	}
1796 
1797 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1798 }
1799 
1800 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1801 {
1802 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1803 	u32 event = its_get_event_id(d);
1804 	int ret = 0;
1805 
1806 	if (!info->map)
1807 		return -EINVAL;
1808 
1809 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1810 
1811 	if (!its_dev->event_map.vm) {
1812 		struct its_vlpi_map *maps;
1813 
1814 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1815 			       GFP_ATOMIC);
1816 		if (!maps) {
1817 			ret = -ENOMEM;
1818 			goto out;
1819 		}
1820 
1821 		its_dev->event_map.vm = info->map->vm;
1822 		its_dev->event_map.vlpi_maps = maps;
1823 	} else if (its_dev->event_map.vm != info->map->vm) {
1824 		ret = -EINVAL;
1825 		goto out;
1826 	}
1827 
1828 	/* Get our private copy of the mapping information */
1829 	its_dev->event_map.vlpi_maps[event] = *info->map;
1830 
1831 	if (irqd_is_forwarded_to_vcpu(d)) {
1832 		/* Already mapped, move it around */
1833 		its_send_vmovi(its_dev, event);
1834 	} else {
1835 		/* Ensure all the VPEs are mapped on this ITS */
1836 		its_map_vm(its_dev->its, info->map->vm);
1837 
1838 		/*
1839 		 * Flag the interrupt as forwarded so that we can
1840 		 * start poking the virtual property table.
1841 		 */
1842 		irqd_set_forwarded_to_vcpu(d);
1843 
1844 		/* Write out the property to the prop table */
1845 		lpi_write_config(d, 0xff, info->map->properties);
1846 
1847 		/* Drop the physical mapping */
1848 		its_send_discard(its_dev, event);
1849 
1850 		/* and install the virtual one */
1851 		its_send_vmapti(its_dev, event);
1852 
1853 		/* Increment the number of VLPIs */
1854 		its_dev->event_map.nr_vlpis++;
1855 	}
1856 
1857 out:
1858 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1859 	return ret;
1860 }
1861 
1862 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1863 {
1864 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1865 	struct its_vlpi_map *map;
1866 	int ret = 0;
1867 
1868 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1869 
1870 	map = get_vlpi_map(d);
1871 
1872 	if (!its_dev->event_map.vm || !map) {
1873 		ret = -EINVAL;
1874 		goto out;
1875 	}
1876 
1877 	/* Copy our mapping information to the incoming request */
1878 	*info->map = *map;
1879 
1880 out:
1881 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1882 	return ret;
1883 }
1884 
1885 static int its_vlpi_unmap(struct irq_data *d)
1886 {
1887 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1888 	u32 event = its_get_event_id(d);
1889 	int ret = 0;
1890 
1891 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1892 
1893 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1894 		ret = -EINVAL;
1895 		goto out;
1896 	}
1897 
1898 	/* Drop the virtual mapping */
1899 	its_send_discard(its_dev, event);
1900 
1901 	/* and restore the physical one */
1902 	irqd_clr_forwarded_to_vcpu(d);
1903 	its_send_mapti(its_dev, d->hwirq, event);
1904 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1905 				    LPI_PROP_ENABLED |
1906 				    LPI_PROP_GROUP1));
1907 
1908 	/* Potentially unmap the VM from this ITS */
1909 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1910 
1911 	/*
1912 	 * Drop the refcount and make the device available again if
1913 	 * this was the last VLPI.
1914 	 */
1915 	if (!--its_dev->event_map.nr_vlpis) {
1916 		its_dev->event_map.vm = NULL;
1917 		kfree(its_dev->event_map.vlpi_maps);
1918 	}
1919 
1920 out:
1921 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1922 	return ret;
1923 }
1924 
1925 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1926 {
1927 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1928 
1929 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1930 		return -EINVAL;
1931 
1932 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1933 		lpi_update_config(d, 0xff, info->config);
1934 	else
1935 		lpi_write_config(d, 0xff, info->config);
1936 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1937 
1938 	return 0;
1939 }
1940 
1941 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1942 {
1943 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1944 	struct its_cmd_info *info = vcpu_info;
1945 
1946 	/* Need a v4 ITS */
1947 	if (!is_v4(its_dev->its))
1948 		return -EINVAL;
1949 
1950 	/* Unmap request? */
1951 	if (!info)
1952 		return its_vlpi_unmap(d);
1953 
1954 	switch (info->cmd_type) {
1955 	case MAP_VLPI:
1956 		return its_vlpi_map(d, info);
1957 
1958 	case GET_VLPI:
1959 		return its_vlpi_get(d, info);
1960 
1961 	case PROP_UPDATE_VLPI:
1962 	case PROP_UPDATE_AND_INV_VLPI:
1963 		return its_vlpi_prop_update(d, info);
1964 
1965 	default:
1966 		return -EINVAL;
1967 	}
1968 }
1969 
1970 static struct irq_chip its_irq_chip = {
1971 	.name			= "ITS",
1972 	.irq_mask		= its_mask_irq,
1973 	.irq_unmask		= its_unmask_irq,
1974 	.irq_eoi		= irq_chip_eoi_parent,
1975 	.irq_set_affinity	= its_set_affinity,
1976 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1977 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1978 	.irq_retrigger		= its_irq_retrigger,
1979 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1980 };
1981 
1982 
1983 /*
1984  * How we allocate LPIs:
1985  *
1986  * lpi_range_list contains ranges of LPIs that are to available to
1987  * allocate from. To allocate LPIs, just pick the first range that
1988  * fits the required allocation, and reduce it by the required
1989  * amount. Once empty, remove the range from the list.
1990  *
1991  * To free a range of LPIs, add a free range to the list, sort it and
1992  * merge the result if the new range happens to be adjacent to an
1993  * already free block.
1994  *
1995  * The consequence of the above is that allocation is cost is low, but
1996  * freeing is expensive. We assumes that freeing rarely occurs.
1997  */
1998 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1999 
2000 static DEFINE_MUTEX(lpi_range_lock);
2001 static LIST_HEAD(lpi_range_list);
2002 
2003 struct lpi_range {
2004 	struct list_head	entry;
2005 	u32			base_id;
2006 	u32			span;
2007 };
2008 
2009 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2010 {
2011 	struct lpi_range *range;
2012 
2013 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2014 	if (range) {
2015 		range->base_id = base;
2016 		range->span = span;
2017 	}
2018 
2019 	return range;
2020 }
2021 
2022 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2023 {
2024 	struct lpi_range *range, *tmp;
2025 	int err = -ENOSPC;
2026 
2027 	mutex_lock(&lpi_range_lock);
2028 
2029 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2030 		if (range->span >= nr_lpis) {
2031 			*base = range->base_id;
2032 			range->base_id += nr_lpis;
2033 			range->span -= nr_lpis;
2034 
2035 			if (range->span == 0) {
2036 				list_del(&range->entry);
2037 				kfree(range);
2038 			}
2039 
2040 			err = 0;
2041 			break;
2042 		}
2043 	}
2044 
2045 	mutex_unlock(&lpi_range_lock);
2046 
2047 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2048 	return err;
2049 }
2050 
2051 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2052 {
2053 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2054 		return;
2055 	if (a->base_id + a->span != b->base_id)
2056 		return;
2057 	b->base_id = a->base_id;
2058 	b->span += a->span;
2059 	list_del(&a->entry);
2060 	kfree(a);
2061 }
2062 
2063 static int free_lpi_range(u32 base, u32 nr_lpis)
2064 {
2065 	struct lpi_range *new, *old;
2066 
2067 	new = mk_lpi_range(base, nr_lpis);
2068 	if (!new)
2069 		return -ENOMEM;
2070 
2071 	mutex_lock(&lpi_range_lock);
2072 
2073 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2074 		if (old->base_id < base)
2075 			break;
2076 	}
2077 	/*
2078 	 * old is the last element with ->base_id smaller than base,
2079 	 * so new goes right after it. If there are no elements with
2080 	 * ->base_id smaller than base, &old->entry ends up pointing
2081 	 * at the head of the list, and inserting new it the start of
2082 	 * the list is the right thing to do in that case as well.
2083 	 */
2084 	list_add(&new->entry, &old->entry);
2085 	/*
2086 	 * Now check if we can merge with the preceding and/or
2087 	 * following ranges.
2088 	 */
2089 	merge_lpi_ranges(old, new);
2090 	merge_lpi_ranges(new, list_next_entry(new, entry));
2091 
2092 	mutex_unlock(&lpi_range_lock);
2093 	return 0;
2094 }
2095 
2096 static int __init its_lpi_init(u32 id_bits)
2097 {
2098 	u32 lpis = (1UL << id_bits) - 8192;
2099 	u32 numlpis;
2100 	int err;
2101 
2102 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2103 
2104 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2105 		lpis = numlpis;
2106 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2107 			lpis);
2108 	}
2109 
2110 	/*
2111 	 * Initializing the allocator is just the same as freeing the
2112 	 * full range of LPIs.
2113 	 */
2114 	err = free_lpi_range(8192, lpis);
2115 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2116 	return err;
2117 }
2118 
2119 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2120 {
2121 	unsigned long *bitmap = NULL;
2122 	int err = 0;
2123 
2124 	do {
2125 		err = alloc_lpi_range(nr_irqs, base);
2126 		if (!err)
2127 			break;
2128 
2129 		nr_irqs /= 2;
2130 	} while (nr_irqs > 0);
2131 
2132 	if (!nr_irqs)
2133 		err = -ENOSPC;
2134 
2135 	if (err)
2136 		goto out;
2137 
2138 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2139 	if (!bitmap)
2140 		goto out;
2141 
2142 	*nr_ids = nr_irqs;
2143 
2144 out:
2145 	if (!bitmap)
2146 		*base = *nr_ids = 0;
2147 
2148 	return bitmap;
2149 }
2150 
2151 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2152 {
2153 	WARN_ON(free_lpi_range(base, nr_ids));
2154 	kfree(bitmap);
2155 }
2156 
2157 static void gic_reset_prop_table(void *va)
2158 {
2159 	/* Priority 0xa0, Group-1, disabled */
2160 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2161 
2162 	/* Make sure the GIC will observe the written configuration */
2163 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2164 }
2165 
2166 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2167 {
2168 	struct page *prop_page;
2169 
2170 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2171 	if (!prop_page)
2172 		return NULL;
2173 
2174 	gic_reset_prop_table(page_address(prop_page));
2175 
2176 	return prop_page;
2177 }
2178 
2179 static void its_free_prop_table(struct page *prop_page)
2180 {
2181 	free_pages((unsigned long)page_address(prop_page),
2182 		   get_order(LPI_PROPBASE_SZ));
2183 }
2184 
2185 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2186 {
2187 	phys_addr_t start, end, addr_end;
2188 	u64 i;
2189 
2190 	/*
2191 	 * We don't bother checking for a kdump kernel as by
2192 	 * construction, the LPI tables are out of this kernel's
2193 	 * memory map.
2194 	 */
2195 	if (is_kdump_kernel())
2196 		return true;
2197 
2198 	addr_end = addr + size - 1;
2199 
2200 	for_each_reserved_mem_range(i, &start, &end) {
2201 		if (addr >= start && addr_end <= end)
2202 			return true;
2203 	}
2204 
2205 	/* Not found, not a good sign... */
2206 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2207 		&addr, &addr_end);
2208 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2209 	return false;
2210 }
2211 
2212 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2213 {
2214 	if (efi_enabled(EFI_CONFIG_TABLES))
2215 		return efi_mem_reserve_persistent(addr, size);
2216 
2217 	return 0;
2218 }
2219 
2220 static int __init its_setup_lpi_prop_table(void)
2221 {
2222 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2223 		u64 val;
2224 
2225 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2226 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2227 
2228 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2229 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2230 						     LPI_PROPBASE_SZ,
2231 						     MEMREMAP_WB);
2232 		gic_reset_prop_table(gic_rdists->prop_table_va);
2233 	} else {
2234 		struct page *page;
2235 
2236 		lpi_id_bits = min_t(u32,
2237 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2238 				    ITS_MAX_LPI_NRBITS);
2239 		page = its_allocate_prop_table(GFP_NOWAIT);
2240 		if (!page) {
2241 			pr_err("Failed to allocate PROPBASE\n");
2242 			return -ENOMEM;
2243 		}
2244 
2245 		gic_rdists->prop_table_pa = page_to_phys(page);
2246 		gic_rdists->prop_table_va = page_address(page);
2247 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2248 					  LPI_PROPBASE_SZ));
2249 	}
2250 
2251 	pr_info("GICv3: using LPI property table @%pa\n",
2252 		&gic_rdists->prop_table_pa);
2253 
2254 	return its_lpi_init(lpi_id_bits);
2255 }
2256 
2257 static const char *its_base_type_string[] = {
2258 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2259 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2260 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2261 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2262 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2263 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2264 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2265 };
2266 
2267 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2268 {
2269 	u32 idx = baser - its->tables;
2270 
2271 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2272 }
2273 
2274 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2275 			    u64 val)
2276 {
2277 	u32 idx = baser - its->tables;
2278 
2279 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2280 	baser->val = its_read_baser(its, baser);
2281 }
2282 
2283 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2284 			   u64 cache, u64 shr, u32 order, bool indirect)
2285 {
2286 	u64 val = its_read_baser(its, baser);
2287 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2288 	u64 type = GITS_BASER_TYPE(val);
2289 	u64 baser_phys, tmp;
2290 	u32 alloc_pages, psz;
2291 	struct page *page;
2292 	void *base;
2293 
2294 	psz = baser->psz;
2295 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2296 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2297 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2298 			&its->phys_base, its_base_type_string[type],
2299 			alloc_pages, GITS_BASER_PAGES_MAX);
2300 		alloc_pages = GITS_BASER_PAGES_MAX;
2301 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2302 	}
2303 
2304 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2305 	if (!page)
2306 		return -ENOMEM;
2307 
2308 	base = (void *)page_address(page);
2309 	baser_phys = virt_to_phys(base);
2310 
2311 	/* Check if the physical address of the memory is above 48bits */
2312 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2313 
2314 		/* 52bit PA is supported only when PageSize=64K */
2315 		if (psz != SZ_64K) {
2316 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2317 			free_pages((unsigned long)base, order);
2318 			return -ENXIO;
2319 		}
2320 
2321 		/* Convert 52bit PA to 48bit field */
2322 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2323 	}
2324 
2325 retry_baser:
2326 	val = (baser_phys					 |
2327 		(type << GITS_BASER_TYPE_SHIFT)			 |
2328 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2329 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2330 		cache						 |
2331 		shr						 |
2332 		GITS_BASER_VALID);
2333 
2334 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2335 
2336 	switch (psz) {
2337 	case SZ_4K:
2338 		val |= GITS_BASER_PAGE_SIZE_4K;
2339 		break;
2340 	case SZ_16K:
2341 		val |= GITS_BASER_PAGE_SIZE_16K;
2342 		break;
2343 	case SZ_64K:
2344 		val |= GITS_BASER_PAGE_SIZE_64K;
2345 		break;
2346 	}
2347 
2348 	its_write_baser(its, baser, val);
2349 	tmp = baser->val;
2350 
2351 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2352 		/*
2353 		 * Shareability didn't stick. Just use
2354 		 * whatever the read reported, which is likely
2355 		 * to be the only thing this redistributor
2356 		 * supports. If that's zero, make it
2357 		 * non-cacheable as well.
2358 		 */
2359 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2360 		if (!shr) {
2361 			cache = GITS_BASER_nC;
2362 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2363 		}
2364 		goto retry_baser;
2365 	}
2366 
2367 	if (val != tmp) {
2368 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2369 		       &its->phys_base, its_base_type_string[type],
2370 		       val, tmp);
2371 		free_pages((unsigned long)base, order);
2372 		return -ENXIO;
2373 	}
2374 
2375 	baser->order = order;
2376 	baser->base = base;
2377 	baser->psz = psz;
2378 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2379 
2380 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2381 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2382 		its_base_type_string[type],
2383 		(unsigned long)virt_to_phys(base),
2384 		indirect ? "indirect" : "flat", (int)esz,
2385 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2386 
2387 	return 0;
2388 }
2389 
2390 static bool its_parse_indirect_baser(struct its_node *its,
2391 				     struct its_baser *baser,
2392 				     u32 *order, u32 ids)
2393 {
2394 	u64 tmp = its_read_baser(its, baser);
2395 	u64 type = GITS_BASER_TYPE(tmp);
2396 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2397 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2398 	u32 new_order = *order;
2399 	u32 psz = baser->psz;
2400 	bool indirect = false;
2401 
2402 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2403 	if ((esz << ids) > (psz * 2)) {
2404 		/*
2405 		 * Find out whether hw supports a single or two-level table by
2406 		 * table by reading bit at offset '62' after writing '1' to it.
2407 		 */
2408 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2409 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2410 
2411 		if (indirect) {
2412 			/*
2413 			 * The size of the lvl2 table is equal to ITS page size
2414 			 * which is 'psz'. For computing lvl1 table size,
2415 			 * subtract ID bits that sparse lvl2 table from 'ids'
2416 			 * which is reported by ITS hardware times lvl1 table
2417 			 * entry size.
2418 			 */
2419 			ids -= ilog2(psz / (int)esz);
2420 			esz = GITS_LVL1_ENTRY_SIZE;
2421 		}
2422 	}
2423 
2424 	/*
2425 	 * Allocate as many entries as required to fit the
2426 	 * range of device IDs that the ITS can grok... The ID
2427 	 * space being incredibly sparse, this results in a
2428 	 * massive waste of memory if two-level device table
2429 	 * feature is not supported by hardware.
2430 	 */
2431 	new_order = max_t(u32, get_order(esz << ids), new_order);
2432 	if (new_order >= MAX_ORDER) {
2433 		new_order = MAX_ORDER - 1;
2434 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2435 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2436 			&its->phys_base, its_base_type_string[type],
2437 			device_ids(its), ids);
2438 	}
2439 
2440 	*order = new_order;
2441 
2442 	return indirect;
2443 }
2444 
2445 static u32 compute_common_aff(u64 val)
2446 {
2447 	u32 aff, clpiaff;
2448 
2449 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2450 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2451 
2452 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2453 }
2454 
2455 static u32 compute_its_aff(struct its_node *its)
2456 {
2457 	u64 val;
2458 	u32 svpet;
2459 
2460 	/*
2461 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2462 	 * the resulting affinity. We then use that to see if this match
2463 	 * our own affinity.
2464 	 */
2465 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2466 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2467 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2468 	return compute_common_aff(val);
2469 }
2470 
2471 static struct its_node *find_sibling_its(struct its_node *cur_its)
2472 {
2473 	struct its_node *its;
2474 	u32 aff;
2475 
2476 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2477 		return NULL;
2478 
2479 	aff = compute_its_aff(cur_its);
2480 
2481 	list_for_each_entry(its, &its_nodes, entry) {
2482 		u64 baser;
2483 
2484 		if (!is_v4_1(its) || its == cur_its)
2485 			continue;
2486 
2487 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2488 			continue;
2489 
2490 		if (aff != compute_its_aff(its))
2491 			continue;
2492 
2493 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2494 		baser = its->tables[2].val;
2495 		if (!(baser & GITS_BASER_VALID))
2496 			continue;
2497 
2498 		return its;
2499 	}
2500 
2501 	return NULL;
2502 }
2503 
2504 static void its_free_tables(struct its_node *its)
2505 {
2506 	int i;
2507 
2508 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2509 		if (its->tables[i].base) {
2510 			free_pages((unsigned long)its->tables[i].base,
2511 				   its->tables[i].order);
2512 			its->tables[i].base = NULL;
2513 		}
2514 	}
2515 }
2516 
2517 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2518 {
2519 	u64 psz = SZ_64K;
2520 
2521 	while (psz) {
2522 		u64 val, gpsz;
2523 
2524 		val = its_read_baser(its, baser);
2525 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2526 
2527 		switch (psz) {
2528 		case SZ_64K:
2529 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2530 			break;
2531 		case SZ_16K:
2532 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2533 			break;
2534 		case SZ_4K:
2535 		default:
2536 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2537 			break;
2538 		}
2539 
2540 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2541 
2542 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2543 		its_write_baser(its, baser, val);
2544 
2545 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2546 			break;
2547 
2548 		switch (psz) {
2549 		case SZ_64K:
2550 			psz = SZ_16K;
2551 			break;
2552 		case SZ_16K:
2553 			psz = SZ_4K;
2554 			break;
2555 		case SZ_4K:
2556 		default:
2557 			return -1;
2558 		}
2559 	}
2560 
2561 	baser->psz = psz;
2562 	return 0;
2563 }
2564 
2565 static int its_alloc_tables(struct its_node *its)
2566 {
2567 	u64 shr = GITS_BASER_InnerShareable;
2568 	u64 cache = GITS_BASER_RaWaWb;
2569 	int err, i;
2570 
2571 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2572 		/* erratum 24313: ignore memory access type */
2573 		cache = GITS_BASER_nCnB;
2574 
2575 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2576 		struct its_baser *baser = its->tables + i;
2577 		u64 val = its_read_baser(its, baser);
2578 		u64 type = GITS_BASER_TYPE(val);
2579 		bool indirect = false;
2580 		u32 order;
2581 
2582 		if (type == GITS_BASER_TYPE_NONE)
2583 			continue;
2584 
2585 		if (its_probe_baser_psz(its, baser)) {
2586 			its_free_tables(its);
2587 			return -ENXIO;
2588 		}
2589 
2590 		order = get_order(baser->psz);
2591 
2592 		switch (type) {
2593 		case GITS_BASER_TYPE_DEVICE:
2594 			indirect = its_parse_indirect_baser(its, baser, &order,
2595 							    device_ids(its));
2596 			break;
2597 
2598 		case GITS_BASER_TYPE_VCPU:
2599 			if (is_v4_1(its)) {
2600 				struct its_node *sibling;
2601 
2602 				WARN_ON(i != 2);
2603 				if ((sibling = find_sibling_its(its))) {
2604 					*baser = sibling->tables[2];
2605 					its_write_baser(its, baser, baser->val);
2606 					continue;
2607 				}
2608 			}
2609 
2610 			indirect = its_parse_indirect_baser(its, baser, &order,
2611 							    ITS_MAX_VPEID_BITS);
2612 			break;
2613 		}
2614 
2615 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2616 		if (err < 0) {
2617 			its_free_tables(its);
2618 			return err;
2619 		}
2620 
2621 		/* Update settings which will be used for next BASERn */
2622 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2623 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static u64 inherit_vpe_l1_table_from_its(void)
2630 {
2631 	struct its_node *its;
2632 	u64 val;
2633 	u32 aff;
2634 
2635 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2636 	aff = compute_common_aff(val);
2637 
2638 	list_for_each_entry(its, &its_nodes, entry) {
2639 		u64 baser, addr;
2640 
2641 		if (!is_v4_1(its))
2642 			continue;
2643 
2644 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2645 			continue;
2646 
2647 		if (aff != compute_its_aff(its))
2648 			continue;
2649 
2650 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2651 		baser = its->tables[2].val;
2652 		if (!(baser & GITS_BASER_VALID))
2653 			continue;
2654 
2655 		/* We have a winner! */
2656 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2657 
2658 		val  = GICR_VPROPBASER_4_1_VALID;
2659 		if (baser & GITS_BASER_INDIRECT)
2660 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2661 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2662 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2663 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2664 		case GIC_PAGE_SIZE_64K:
2665 			addr = GITS_BASER_ADDR_48_to_52(baser);
2666 			break;
2667 		default:
2668 			addr = baser & GENMASK_ULL(47, 12);
2669 			break;
2670 		}
2671 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2672 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2673 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2674 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2675 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2676 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2677 
2678 		return val;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2685 {
2686 	u32 aff;
2687 	u64 val;
2688 	int cpu;
2689 
2690 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2691 	aff = compute_common_aff(val);
2692 
2693 	for_each_possible_cpu(cpu) {
2694 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2695 
2696 		if (!base || cpu == smp_processor_id())
2697 			continue;
2698 
2699 		val = gic_read_typer(base + GICR_TYPER);
2700 		if (aff != compute_common_aff(val))
2701 			continue;
2702 
2703 		/*
2704 		 * At this point, we have a victim. This particular CPU
2705 		 * has already booted, and has an affinity that matches
2706 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2707 		 * Make sure we don't write the Z bit in that case.
2708 		 */
2709 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2710 		val &= ~GICR_VPROPBASER_4_1_Z;
2711 
2712 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2713 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2714 
2715 		return val;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static bool allocate_vpe_l2_table(int cpu, u32 id)
2722 {
2723 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2724 	unsigned int psz, esz, idx, npg, gpsz;
2725 	u64 val;
2726 	struct page *page;
2727 	__le64 *table;
2728 
2729 	if (!gic_rdists->has_rvpeid)
2730 		return true;
2731 
2732 	/* Skip non-present CPUs */
2733 	if (!base)
2734 		return true;
2735 
2736 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2737 
2738 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2739 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2740 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2741 
2742 	switch (gpsz) {
2743 	default:
2744 		WARN_ON(1);
2745 		fallthrough;
2746 	case GIC_PAGE_SIZE_4K:
2747 		psz = SZ_4K;
2748 		break;
2749 	case GIC_PAGE_SIZE_16K:
2750 		psz = SZ_16K;
2751 		break;
2752 	case GIC_PAGE_SIZE_64K:
2753 		psz = SZ_64K;
2754 		break;
2755 	}
2756 
2757 	/* Don't allow vpe_id that exceeds single, flat table limit */
2758 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2759 		return (id < (npg * psz / (esz * SZ_8)));
2760 
2761 	/* Compute 1st level table index & check if that exceeds table limit */
2762 	idx = id >> ilog2(psz / (esz * SZ_8));
2763 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2764 		return false;
2765 
2766 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2767 
2768 	/* Allocate memory for 2nd level table */
2769 	if (!table[idx]) {
2770 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2771 		if (!page)
2772 			return false;
2773 
2774 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2775 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2776 			gic_flush_dcache_to_poc(page_address(page), psz);
2777 
2778 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2779 
2780 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2781 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2782 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2783 
2784 		/* Ensure updated table contents are visible to RD hardware */
2785 		dsb(sy);
2786 	}
2787 
2788 	return true;
2789 }
2790 
2791 static int allocate_vpe_l1_table(void)
2792 {
2793 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2794 	u64 val, gpsz, npg, pa;
2795 	unsigned int psz = SZ_64K;
2796 	unsigned int np, epp, esz;
2797 	struct page *page;
2798 
2799 	if (!gic_rdists->has_rvpeid)
2800 		return 0;
2801 
2802 	/*
2803 	 * if VPENDBASER.Valid is set, disable any previously programmed
2804 	 * VPE by setting PendingLast while clearing Valid. This has the
2805 	 * effect of making sure no doorbell will be generated and we can
2806 	 * then safely clear VPROPBASER.Valid.
2807 	 */
2808 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2809 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2810 				      vlpi_base + GICR_VPENDBASER);
2811 
2812 	/*
2813 	 * If we can inherit the configuration from another RD, let's do
2814 	 * so. Otherwise, we have to go through the allocation process. We
2815 	 * assume that all RDs have the exact same requirements, as
2816 	 * nothing will work otherwise.
2817 	 */
2818 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2819 	if (val & GICR_VPROPBASER_4_1_VALID)
2820 		goto out;
2821 
2822 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2823 	if (!gic_data_rdist()->vpe_table_mask)
2824 		return -ENOMEM;
2825 
2826 	val = inherit_vpe_l1_table_from_its();
2827 	if (val & GICR_VPROPBASER_4_1_VALID)
2828 		goto out;
2829 
2830 	/* First probe the page size */
2831 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2832 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2833 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2834 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2835 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2836 
2837 	switch (gpsz) {
2838 	default:
2839 		gpsz = GIC_PAGE_SIZE_4K;
2840 		fallthrough;
2841 	case GIC_PAGE_SIZE_4K:
2842 		psz = SZ_4K;
2843 		break;
2844 	case GIC_PAGE_SIZE_16K:
2845 		psz = SZ_16K;
2846 		break;
2847 	case GIC_PAGE_SIZE_64K:
2848 		psz = SZ_64K;
2849 		break;
2850 	}
2851 
2852 	/*
2853 	 * Start populating the register from scratch, including RO fields
2854 	 * (which we want to print in debug cases...)
2855 	 */
2856 	val = 0;
2857 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2858 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2859 
2860 	/* How many entries per GIC page? */
2861 	esz++;
2862 	epp = psz / (esz * SZ_8);
2863 
2864 	/*
2865 	 * If we need more than just a single L1 page, flag the table
2866 	 * as indirect and compute the number of required L1 pages.
2867 	 */
2868 	if (epp < ITS_MAX_VPEID) {
2869 		int nl2;
2870 
2871 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2872 
2873 		/* Number of L2 pages required to cover the VPEID space */
2874 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2875 
2876 		/* Number of L1 pages to point to the L2 pages */
2877 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2878 	} else {
2879 		npg = 1;
2880 	}
2881 
2882 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2883 
2884 	/* Right, that's the number of CPU pages we need for L1 */
2885 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2886 
2887 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2888 		 np, npg, psz, epp, esz);
2889 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2890 	if (!page)
2891 		return -ENOMEM;
2892 
2893 	gic_data_rdist()->vpe_l1_base = page_address(page);
2894 	pa = virt_to_phys(page_address(page));
2895 	WARN_ON(!IS_ALIGNED(pa, psz));
2896 
2897 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2898 	val |= GICR_VPROPBASER_RaWb;
2899 	val |= GICR_VPROPBASER_InnerShareable;
2900 	val |= GICR_VPROPBASER_4_1_Z;
2901 	val |= GICR_VPROPBASER_4_1_VALID;
2902 
2903 out:
2904 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2905 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2906 
2907 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2908 		 smp_processor_id(), val,
2909 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2910 
2911 	return 0;
2912 }
2913 
2914 static int its_alloc_collections(struct its_node *its)
2915 {
2916 	int i;
2917 
2918 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2919 				   GFP_KERNEL);
2920 	if (!its->collections)
2921 		return -ENOMEM;
2922 
2923 	for (i = 0; i < nr_cpu_ids; i++)
2924 		its->collections[i].target_address = ~0ULL;
2925 
2926 	return 0;
2927 }
2928 
2929 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2930 {
2931 	struct page *pend_page;
2932 
2933 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2934 				get_order(LPI_PENDBASE_SZ));
2935 	if (!pend_page)
2936 		return NULL;
2937 
2938 	/* Make sure the GIC will observe the zero-ed page */
2939 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2940 
2941 	return pend_page;
2942 }
2943 
2944 static void its_free_pending_table(struct page *pt)
2945 {
2946 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2947 }
2948 
2949 /*
2950  * Booting with kdump and LPIs enabled is generally fine. Any other
2951  * case is wrong in the absence of firmware/EFI support.
2952  */
2953 static bool enabled_lpis_allowed(void)
2954 {
2955 	phys_addr_t addr;
2956 	u64 val;
2957 
2958 	/* Check whether the property table is in a reserved region */
2959 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2960 	addr = val & GENMASK_ULL(51, 12);
2961 
2962 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2963 }
2964 
2965 static int __init allocate_lpi_tables(void)
2966 {
2967 	u64 val;
2968 	int err, cpu;
2969 
2970 	/*
2971 	 * If LPIs are enabled while we run this from the boot CPU,
2972 	 * flag the RD tables as pre-allocated if the stars do align.
2973 	 */
2974 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2975 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2976 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2977 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2978 		pr_info("GICv3: Using preallocated redistributor tables\n");
2979 	}
2980 
2981 	err = its_setup_lpi_prop_table();
2982 	if (err)
2983 		return err;
2984 
2985 	/*
2986 	 * We allocate all the pending tables anyway, as we may have a
2987 	 * mix of RDs that have had LPIs enabled, and some that
2988 	 * don't. We'll free the unused ones as each CPU comes online.
2989 	 */
2990 	for_each_possible_cpu(cpu) {
2991 		struct page *pend_page;
2992 
2993 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2994 		if (!pend_page) {
2995 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2996 			return -ENOMEM;
2997 		}
2998 
2999 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
3005 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3006 {
3007 	u32 count = 1000000;	/* 1s! */
3008 	bool clean;
3009 	u64 val;
3010 
3011 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3012 	val &= ~GICR_VPENDBASER_Valid;
3013 	val &= ~clr;
3014 	val |= set;
3015 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3016 
3017 	do {
3018 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3019 		clean = !(val & GICR_VPENDBASER_Dirty);
3020 		if (!clean) {
3021 			count--;
3022 			cpu_relax();
3023 			udelay(1);
3024 		}
3025 	} while (!clean && count);
3026 
3027 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3028 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3029 		val |= GICR_VPENDBASER_PendingLast;
3030 	}
3031 
3032 	return val;
3033 }
3034 
3035 static void its_cpu_init_lpis(void)
3036 {
3037 	void __iomem *rbase = gic_data_rdist_rd_base();
3038 	struct page *pend_page;
3039 	phys_addr_t paddr;
3040 	u64 val, tmp;
3041 
3042 	if (gic_data_rdist()->lpi_enabled)
3043 		return;
3044 
3045 	val = readl_relaxed(rbase + GICR_CTLR);
3046 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3047 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3048 		/*
3049 		 * Check that we get the same property table on all
3050 		 * RDs. If we don't, this is hopeless.
3051 		 */
3052 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3053 		paddr &= GENMASK_ULL(51, 12);
3054 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3055 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3056 
3057 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3058 		paddr &= GENMASK_ULL(51, 16);
3059 
3060 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3061 		its_free_pending_table(gic_data_rdist()->pend_page);
3062 		gic_data_rdist()->pend_page = NULL;
3063 
3064 		goto out;
3065 	}
3066 
3067 	pend_page = gic_data_rdist()->pend_page;
3068 	paddr = page_to_phys(pend_page);
3069 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3070 
3071 	/* set PROPBASE */
3072 	val = (gic_rdists->prop_table_pa |
3073 	       GICR_PROPBASER_InnerShareable |
3074 	       GICR_PROPBASER_RaWaWb |
3075 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3076 
3077 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3078 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3079 
3080 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3081 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3082 			/*
3083 			 * The HW reports non-shareable, we must
3084 			 * remove the cacheability attributes as
3085 			 * well.
3086 			 */
3087 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3088 				 GICR_PROPBASER_CACHEABILITY_MASK);
3089 			val |= GICR_PROPBASER_nC;
3090 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3091 		}
3092 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3093 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3094 	}
3095 
3096 	/* set PENDBASE */
3097 	val = (page_to_phys(pend_page) |
3098 	       GICR_PENDBASER_InnerShareable |
3099 	       GICR_PENDBASER_RaWaWb);
3100 
3101 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3102 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3103 
3104 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3105 		/*
3106 		 * The HW reports non-shareable, we must remove the
3107 		 * cacheability attributes as well.
3108 		 */
3109 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3110 			 GICR_PENDBASER_CACHEABILITY_MASK);
3111 		val |= GICR_PENDBASER_nC;
3112 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3113 	}
3114 
3115 	/* Enable LPIs */
3116 	val = readl_relaxed(rbase + GICR_CTLR);
3117 	val |= GICR_CTLR_ENABLE_LPIS;
3118 	writel_relaxed(val, rbase + GICR_CTLR);
3119 
3120 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3121 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3122 
3123 		/*
3124 		 * It's possible for CPU to receive VLPIs before it is
3125 		 * sheduled as a vPE, especially for the first CPU, and the
3126 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3127 		 * as out of range and dropped by GIC.
3128 		 * So we initialize IDbits to known value to avoid VLPI drop.
3129 		 */
3130 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3131 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3132 			smp_processor_id(), val);
3133 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3134 
3135 		/*
3136 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3137 		 * ancient programming gets left in and has possibility of
3138 		 * corrupting memory.
3139 		 */
3140 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3141 	}
3142 
3143 	if (allocate_vpe_l1_table()) {
3144 		/*
3145 		 * If the allocation has failed, we're in massive trouble.
3146 		 * Disable direct injection, and pray that no VM was
3147 		 * already running...
3148 		 */
3149 		gic_rdists->has_rvpeid = false;
3150 		gic_rdists->has_vlpis = false;
3151 	}
3152 
3153 	/* Make sure the GIC has seen the above */
3154 	dsb(sy);
3155 out:
3156 	gic_data_rdist()->lpi_enabled = true;
3157 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3158 		smp_processor_id(),
3159 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3160 		&paddr);
3161 }
3162 
3163 static void its_cpu_init_collection(struct its_node *its)
3164 {
3165 	int cpu = smp_processor_id();
3166 	u64 target;
3167 
3168 	/* avoid cross node collections and its mapping */
3169 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3170 		struct device_node *cpu_node;
3171 
3172 		cpu_node = of_get_cpu_node(cpu, NULL);
3173 		if (its->numa_node != NUMA_NO_NODE &&
3174 			its->numa_node != of_node_to_nid(cpu_node))
3175 			return;
3176 	}
3177 
3178 	/*
3179 	 * We now have to bind each collection to its target
3180 	 * redistributor.
3181 	 */
3182 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3183 		/*
3184 		 * This ITS wants the physical address of the
3185 		 * redistributor.
3186 		 */
3187 		target = gic_data_rdist()->phys_base;
3188 	} else {
3189 		/* This ITS wants a linear CPU number. */
3190 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3191 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3192 	}
3193 
3194 	/* Perform collection mapping */
3195 	its->collections[cpu].target_address = target;
3196 	its->collections[cpu].col_id = cpu;
3197 
3198 	its_send_mapc(its, &its->collections[cpu], 1);
3199 	its_send_invall(its, &its->collections[cpu]);
3200 }
3201 
3202 static void its_cpu_init_collections(void)
3203 {
3204 	struct its_node *its;
3205 
3206 	raw_spin_lock(&its_lock);
3207 
3208 	list_for_each_entry(its, &its_nodes, entry)
3209 		its_cpu_init_collection(its);
3210 
3211 	raw_spin_unlock(&its_lock);
3212 }
3213 
3214 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3215 {
3216 	struct its_device *its_dev = NULL, *tmp;
3217 	unsigned long flags;
3218 
3219 	raw_spin_lock_irqsave(&its->lock, flags);
3220 
3221 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3222 		if (tmp->device_id == dev_id) {
3223 			its_dev = tmp;
3224 			break;
3225 		}
3226 	}
3227 
3228 	raw_spin_unlock_irqrestore(&its->lock, flags);
3229 
3230 	return its_dev;
3231 }
3232 
3233 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3234 {
3235 	int i;
3236 
3237 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3238 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3239 			return &its->tables[i];
3240 	}
3241 
3242 	return NULL;
3243 }
3244 
3245 static bool its_alloc_table_entry(struct its_node *its,
3246 				  struct its_baser *baser, u32 id)
3247 {
3248 	struct page *page;
3249 	u32 esz, idx;
3250 	__le64 *table;
3251 
3252 	/* Don't allow device id that exceeds single, flat table limit */
3253 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3254 	if (!(baser->val & GITS_BASER_INDIRECT))
3255 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3256 
3257 	/* Compute 1st level table index & check if that exceeds table limit */
3258 	idx = id >> ilog2(baser->psz / esz);
3259 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3260 		return false;
3261 
3262 	table = baser->base;
3263 
3264 	/* Allocate memory for 2nd level table */
3265 	if (!table[idx]) {
3266 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3267 					get_order(baser->psz));
3268 		if (!page)
3269 			return false;
3270 
3271 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3272 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3273 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3274 
3275 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3276 
3277 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3278 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3279 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3280 
3281 		/* Ensure updated table contents are visible to ITS hardware */
3282 		dsb(sy);
3283 	}
3284 
3285 	return true;
3286 }
3287 
3288 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3289 {
3290 	struct its_baser *baser;
3291 
3292 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3293 
3294 	/* Don't allow device id that exceeds ITS hardware limit */
3295 	if (!baser)
3296 		return (ilog2(dev_id) < device_ids(its));
3297 
3298 	return its_alloc_table_entry(its, baser, dev_id);
3299 }
3300 
3301 static bool its_alloc_vpe_table(u32 vpe_id)
3302 {
3303 	struct its_node *its;
3304 	int cpu;
3305 
3306 	/*
3307 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3308 	 * could try and only do it on ITSs corresponding to devices
3309 	 * that have interrupts targeted at this VPE, but the
3310 	 * complexity becomes crazy (and you have tons of memory
3311 	 * anyway, right?).
3312 	 */
3313 	list_for_each_entry(its, &its_nodes, entry) {
3314 		struct its_baser *baser;
3315 
3316 		if (!is_v4(its))
3317 			continue;
3318 
3319 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3320 		if (!baser)
3321 			return false;
3322 
3323 		if (!its_alloc_table_entry(its, baser, vpe_id))
3324 			return false;
3325 	}
3326 
3327 	/* Non v4.1? No need to iterate RDs and go back early. */
3328 	if (!gic_rdists->has_rvpeid)
3329 		return true;
3330 
3331 	/*
3332 	 * Make sure the L2 tables are allocated for all copies of
3333 	 * the L1 table on *all* v4.1 RDs.
3334 	 */
3335 	for_each_possible_cpu(cpu) {
3336 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3337 			return false;
3338 	}
3339 
3340 	return true;
3341 }
3342 
3343 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3344 					    int nvecs, bool alloc_lpis)
3345 {
3346 	struct its_device *dev;
3347 	unsigned long *lpi_map = NULL;
3348 	unsigned long flags;
3349 	u16 *col_map = NULL;
3350 	void *itt;
3351 	int lpi_base;
3352 	int nr_lpis;
3353 	int nr_ites;
3354 	int sz;
3355 
3356 	if (!its_alloc_device_table(its, dev_id))
3357 		return NULL;
3358 
3359 	if (WARN_ON(!is_power_of_2(nvecs)))
3360 		nvecs = roundup_pow_of_two(nvecs);
3361 
3362 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3363 	/*
3364 	 * Even if the device wants a single LPI, the ITT must be
3365 	 * sized as a power of two (and you need at least one bit...).
3366 	 */
3367 	nr_ites = max(2, nvecs);
3368 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3369 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3370 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3371 	if (alloc_lpis) {
3372 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3373 		if (lpi_map)
3374 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3375 					  GFP_KERNEL);
3376 	} else {
3377 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3378 		nr_lpis = 0;
3379 		lpi_base = 0;
3380 	}
3381 
3382 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3383 		kfree(dev);
3384 		kfree(itt);
3385 		kfree(lpi_map);
3386 		kfree(col_map);
3387 		return NULL;
3388 	}
3389 
3390 	gic_flush_dcache_to_poc(itt, sz);
3391 
3392 	dev->its = its;
3393 	dev->itt = itt;
3394 	dev->nr_ites = nr_ites;
3395 	dev->event_map.lpi_map = lpi_map;
3396 	dev->event_map.col_map = col_map;
3397 	dev->event_map.lpi_base = lpi_base;
3398 	dev->event_map.nr_lpis = nr_lpis;
3399 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3400 	dev->device_id = dev_id;
3401 	INIT_LIST_HEAD(&dev->entry);
3402 
3403 	raw_spin_lock_irqsave(&its->lock, flags);
3404 	list_add(&dev->entry, &its->its_device_list);
3405 	raw_spin_unlock_irqrestore(&its->lock, flags);
3406 
3407 	/* Map device to its ITT */
3408 	its_send_mapd(dev, 1);
3409 
3410 	return dev;
3411 }
3412 
3413 static void its_free_device(struct its_device *its_dev)
3414 {
3415 	unsigned long flags;
3416 
3417 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3418 	list_del(&its_dev->entry);
3419 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3420 	kfree(its_dev->event_map.col_map);
3421 	kfree(its_dev->itt);
3422 	kfree(its_dev);
3423 }
3424 
3425 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3426 {
3427 	int idx;
3428 
3429 	/* Find a free LPI region in lpi_map and allocate them. */
3430 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3431 				      dev->event_map.nr_lpis,
3432 				      get_count_order(nvecs));
3433 	if (idx < 0)
3434 		return -ENOSPC;
3435 
3436 	*hwirq = dev->event_map.lpi_base + idx;
3437 
3438 	return 0;
3439 }
3440 
3441 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3442 			   int nvec, msi_alloc_info_t *info)
3443 {
3444 	struct its_node *its;
3445 	struct its_device *its_dev;
3446 	struct msi_domain_info *msi_info;
3447 	u32 dev_id;
3448 	int err = 0;
3449 
3450 	/*
3451 	 * We ignore "dev" entirely, and rely on the dev_id that has
3452 	 * been passed via the scratchpad. This limits this domain's
3453 	 * usefulness to upper layers that definitely know that they
3454 	 * are built on top of the ITS.
3455 	 */
3456 	dev_id = info->scratchpad[0].ul;
3457 
3458 	msi_info = msi_get_domain_info(domain);
3459 	its = msi_info->data;
3460 
3461 	if (!gic_rdists->has_direct_lpi &&
3462 	    vpe_proxy.dev &&
3463 	    vpe_proxy.dev->its == its &&
3464 	    dev_id == vpe_proxy.dev->device_id) {
3465 		/* Bad luck. Get yourself a better implementation */
3466 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3467 			  dev_id);
3468 		return -EINVAL;
3469 	}
3470 
3471 	mutex_lock(&its->dev_alloc_lock);
3472 	its_dev = its_find_device(its, dev_id);
3473 	if (its_dev) {
3474 		/*
3475 		 * We already have seen this ID, probably through
3476 		 * another alias (PCI bridge of some sort). No need to
3477 		 * create the device.
3478 		 */
3479 		its_dev->shared = true;
3480 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3481 		goto out;
3482 	}
3483 
3484 	its_dev = its_create_device(its, dev_id, nvec, true);
3485 	if (!its_dev) {
3486 		err = -ENOMEM;
3487 		goto out;
3488 	}
3489 
3490 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3491 		its_dev->shared = true;
3492 
3493 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3494 out:
3495 	mutex_unlock(&its->dev_alloc_lock);
3496 	info->scratchpad[0].ptr = its_dev;
3497 	return err;
3498 }
3499 
3500 static struct msi_domain_ops its_msi_domain_ops = {
3501 	.msi_prepare	= its_msi_prepare,
3502 };
3503 
3504 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3505 				    unsigned int virq,
3506 				    irq_hw_number_t hwirq)
3507 {
3508 	struct irq_fwspec fwspec;
3509 
3510 	if (irq_domain_get_of_node(domain->parent)) {
3511 		fwspec.fwnode = domain->parent->fwnode;
3512 		fwspec.param_count = 3;
3513 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3514 		fwspec.param[1] = hwirq;
3515 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3516 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3517 		fwspec.fwnode = domain->parent->fwnode;
3518 		fwspec.param_count = 2;
3519 		fwspec.param[0] = hwirq;
3520 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3521 	} else {
3522 		return -EINVAL;
3523 	}
3524 
3525 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3526 }
3527 
3528 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3529 				unsigned int nr_irqs, void *args)
3530 {
3531 	msi_alloc_info_t *info = args;
3532 	struct its_device *its_dev = info->scratchpad[0].ptr;
3533 	struct its_node *its = its_dev->its;
3534 	struct irq_data *irqd;
3535 	irq_hw_number_t hwirq;
3536 	int err;
3537 	int i;
3538 
3539 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3540 	if (err)
3541 		return err;
3542 
3543 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3544 	if (err)
3545 		return err;
3546 
3547 	for (i = 0; i < nr_irqs; i++) {
3548 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3549 		if (err)
3550 			return err;
3551 
3552 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3553 					      hwirq + i, &its_irq_chip, its_dev);
3554 		irqd = irq_get_irq_data(virq + i);
3555 		irqd_set_single_target(irqd);
3556 		irqd_set_affinity_on_activate(irqd);
3557 		pr_debug("ID:%d pID:%d vID:%d\n",
3558 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3559 			 (int)(hwirq + i), virq + i);
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 static int its_irq_domain_activate(struct irq_domain *domain,
3566 				   struct irq_data *d, bool reserve)
3567 {
3568 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3569 	u32 event = its_get_event_id(d);
3570 	int cpu;
3571 
3572 	cpu = its_select_cpu(d, cpu_online_mask);
3573 	if (cpu < 0 || cpu >= nr_cpu_ids)
3574 		return -EINVAL;
3575 
3576 	its_inc_lpi_count(d, cpu);
3577 	its_dev->event_map.col_map[event] = cpu;
3578 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3579 
3580 	/* Map the GIC IRQ and event to the device */
3581 	its_send_mapti(its_dev, d->hwirq, event);
3582 	return 0;
3583 }
3584 
3585 static void its_irq_domain_deactivate(struct irq_domain *domain,
3586 				      struct irq_data *d)
3587 {
3588 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589 	u32 event = its_get_event_id(d);
3590 
3591 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3592 	/* Stop the delivery of interrupts */
3593 	its_send_discard(its_dev, event);
3594 }
3595 
3596 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3597 				unsigned int nr_irqs)
3598 {
3599 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3600 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3601 	struct its_node *its = its_dev->its;
3602 	int i;
3603 
3604 	bitmap_release_region(its_dev->event_map.lpi_map,
3605 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3606 			      get_count_order(nr_irqs));
3607 
3608 	for (i = 0; i < nr_irqs; i++) {
3609 		struct irq_data *data = irq_domain_get_irq_data(domain,
3610 								virq + i);
3611 		/* Nuke the entry in the domain */
3612 		irq_domain_reset_irq_data(data);
3613 	}
3614 
3615 	mutex_lock(&its->dev_alloc_lock);
3616 
3617 	/*
3618 	 * If all interrupts have been freed, start mopping the
3619 	 * floor. This is conditionned on the device not being shared.
3620 	 */
3621 	if (!its_dev->shared &&
3622 	    bitmap_empty(its_dev->event_map.lpi_map,
3623 			 its_dev->event_map.nr_lpis)) {
3624 		its_lpi_free(its_dev->event_map.lpi_map,
3625 			     its_dev->event_map.lpi_base,
3626 			     its_dev->event_map.nr_lpis);
3627 
3628 		/* Unmap device/itt */
3629 		its_send_mapd(its_dev, 0);
3630 		its_free_device(its_dev);
3631 	}
3632 
3633 	mutex_unlock(&its->dev_alloc_lock);
3634 
3635 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3636 }
3637 
3638 static const struct irq_domain_ops its_domain_ops = {
3639 	.alloc			= its_irq_domain_alloc,
3640 	.free			= its_irq_domain_free,
3641 	.activate		= its_irq_domain_activate,
3642 	.deactivate		= its_irq_domain_deactivate,
3643 };
3644 
3645 /*
3646  * This is insane.
3647  *
3648  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3649  * likely), the only way to perform an invalidate is to use a fake
3650  * device to issue an INV command, implying that the LPI has first
3651  * been mapped to some event on that device. Since this is not exactly
3652  * cheap, we try to keep that mapping around as long as possible, and
3653  * only issue an UNMAP if we're short on available slots.
3654  *
3655  * Broken by design(tm).
3656  *
3657  * GICv4.1, on the other hand, mandates that we're able to invalidate
3658  * by writing to a MMIO register. It doesn't implement the whole of
3659  * DirectLPI, but that's good enough. And most of the time, we don't
3660  * even have to invalidate anything, as the redistributor can be told
3661  * whether to generate a doorbell or not (we thus leave it enabled,
3662  * always).
3663  */
3664 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3665 {
3666 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3667 	if (gic_rdists->has_rvpeid)
3668 		return;
3669 
3670 	/* Already unmapped? */
3671 	if (vpe->vpe_proxy_event == -1)
3672 		return;
3673 
3674 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3675 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3676 
3677 	/*
3678 	 * We don't track empty slots at all, so let's move the
3679 	 * next_victim pointer if we can quickly reuse that slot
3680 	 * instead of nuking an existing entry. Not clear that this is
3681 	 * always a win though, and this might just generate a ripple
3682 	 * effect... Let's just hope VPEs don't migrate too often.
3683 	 */
3684 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3685 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3686 
3687 	vpe->vpe_proxy_event = -1;
3688 }
3689 
3690 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3691 {
3692 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3693 	if (gic_rdists->has_rvpeid)
3694 		return;
3695 
3696 	if (!gic_rdists->has_direct_lpi) {
3697 		unsigned long flags;
3698 
3699 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3700 		its_vpe_db_proxy_unmap_locked(vpe);
3701 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3702 	}
3703 }
3704 
3705 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3706 {
3707 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3708 	if (gic_rdists->has_rvpeid)
3709 		return;
3710 
3711 	/* Already mapped? */
3712 	if (vpe->vpe_proxy_event != -1)
3713 		return;
3714 
3715 	/* This slot was already allocated. Kick the other VPE out. */
3716 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3717 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3718 
3719 	/* Map the new VPE instead */
3720 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3721 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3722 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3723 
3724 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3725 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3726 }
3727 
3728 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3729 {
3730 	unsigned long flags;
3731 	struct its_collection *target_col;
3732 
3733 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3734 	if (gic_rdists->has_rvpeid)
3735 		return;
3736 
3737 	if (gic_rdists->has_direct_lpi) {
3738 		void __iomem *rdbase;
3739 
3740 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3741 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3742 		wait_for_syncr(rdbase);
3743 
3744 		return;
3745 	}
3746 
3747 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3748 
3749 	its_vpe_db_proxy_map_locked(vpe);
3750 
3751 	target_col = &vpe_proxy.dev->its->collections[to];
3752 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3753 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3754 
3755 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3756 }
3757 
3758 static int its_vpe_set_affinity(struct irq_data *d,
3759 				const struct cpumask *mask_val,
3760 				bool force)
3761 {
3762 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3763 	int from, cpu = cpumask_first(mask_val);
3764 	unsigned long flags;
3765 
3766 	/*
3767 	 * Changing affinity is mega expensive, so let's be as lazy as
3768 	 * we can and only do it if we really have to. Also, if mapped
3769 	 * into the proxy device, we need to move the doorbell
3770 	 * interrupt to its new location.
3771 	 *
3772 	 * Another thing is that changing the affinity of a vPE affects
3773 	 * *other interrupts* such as all the vLPIs that are routed to
3774 	 * this vPE. This means that the irq_desc lock is not enough to
3775 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3776 	 * during the update, hence the lock below which must also be
3777 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3778 	 */
3779 	from = vpe_to_cpuid_lock(vpe, &flags);
3780 	if (from == cpu)
3781 		goto out;
3782 
3783 	vpe->col_idx = cpu;
3784 
3785 	/*
3786 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3787 	 * is sharing its VPE table with the current one.
3788 	 */
3789 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3790 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3791 		goto out;
3792 
3793 	its_send_vmovp(vpe);
3794 	its_vpe_db_proxy_move(vpe, from, cpu);
3795 
3796 out:
3797 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3798 	vpe_to_cpuid_unlock(vpe, flags);
3799 
3800 	return IRQ_SET_MASK_OK_DONE;
3801 }
3802 
3803 static void its_wait_vpt_parse_complete(void)
3804 {
3805 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3806 	u64 val;
3807 
3808 	if (!gic_rdists->has_vpend_valid_dirty)
3809 		return;
3810 
3811 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3812 						       val,
3813 						       !(val & GICR_VPENDBASER_Dirty),
3814 						       1, 500));
3815 }
3816 
3817 static void its_vpe_schedule(struct its_vpe *vpe)
3818 {
3819 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3820 	u64 val;
3821 
3822 	/* Schedule the VPE */
3823 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3824 		GENMASK_ULL(51, 12);
3825 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3826 	val |= GICR_VPROPBASER_RaWb;
3827 	val |= GICR_VPROPBASER_InnerShareable;
3828 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3829 
3830 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3831 		GENMASK_ULL(51, 16);
3832 	val |= GICR_VPENDBASER_RaWaWb;
3833 	val |= GICR_VPENDBASER_InnerShareable;
3834 	/*
3835 	 * There is no good way of finding out if the pending table is
3836 	 * empty as we can race against the doorbell interrupt very
3837 	 * easily. So in the end, vpe->pending_last is only an
3838 	 * indication that the vcpu has something pending, not one
3839 	 * that the pending table is empty. A good implementation
3840 	 * would be able to read its coarse map pretty quickly anyway,
3841 	 * making this a tolerable issue.
3842 	 */
3843 	val |= GICR_VPENDBASER_PendingLast;
3844 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3845 	val |= GICR_VPENDBASER_Valid;
3846 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3847 }
3848 
3849 static void its_vpe_deschedule(struct its_vpe *vpe)
3850 {
3851 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3852 	u64 val;
3853 
3854 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3855 
3856 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3857 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3858 }
3859 
3860 static void its_vpe_invall(struct its_vpe *vpe)
3861 {
3862 	struct its_node *its;
3863 
3864 	list_for_each_entry(its, &its_nodes, entry) {
3865 		if (!is_v4(its))
3866 			continue;
3867 
3868 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3869 			continue;
3870 
3871 		/*
3872 		 * Sending a VINVALL to a single ITS is enough, as all
3873 		 * we need is to reach the redistributors.
3874 		 */
3875 		its_send_vinvall(its, vpe);
3876 		return;
3877 	}
3878 }
3879 
3880 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3881 {
3882 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3883 	struct its_cmd_info *info = vcpu_info;
3884 
3885 	switch (info->cmd_type) {
3886 	case SCHEDULE_VPE:
3887 		its_vpe_schedule(vpe);
3888 		return 0;
3889 
3890 	case DESCHEDULE_VPE:
3891 		its_vpe_deschedule(vpe);
3892 		return 0;
3893 
3894 	case COMMIT_VPE:
3895 		its_wait_vpt_parse_complete();
3896 		return 0;
3897 
3898 	case INVALL_VPE:
3899 		its_vpe_invall(vpe);
3900 		return 0;
3901 
3902 	default:
3903 		return -EINVAL;
3904 	}
3905 }
3906 
3907 static void its_vpe_send_cmd(struct its_vpe *vpe,
3908 			     void (*cmd)(struct its_device *, u32))
3909 {
3910 	unsigned long flags;
3911 
3912 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3913 
3914 	its_vpe_db_proxy_map_locked(vpe);
3915 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3916 
3917 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3918 }
3919 
3920 static void its_vpe_send_inv(struct irq_data *d)
3921 {
3922 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3923 
3924 	if (gic_rdists->has_direct_lpi) {
3925 		void __iomem *rdbase;
3926 
3927 		/* Target the redistributor this VPE is currently known on */
3928 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3929 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3930 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3931 		wait_for_syncr(rdbase);
3932 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3933 	} else {
3934 		its_vpe_send_cmd(vpe, its_send_inv);
3935 	}
3936 }
3937 
3938 static void its_vpe_mask_irq(struct irq_data *d)
3939 {
3940 	/*
3941 	 * We need to unmask the LPI, which is described by the parent
3942 	 * irq_data. Instead of calling into the parent (which won't
3943 	 * exactly do the right thing, let's simply use the
3944 	 * parent_data pointer. Yes, I'm naughty.
3945 	 */
3946 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3947 	its_vpe_send_inv(d);
3948 }
3949 
3950 static void its_vpe_unmask_irq(struct irq_data *d)
3951 {
3952 	/* Same hack as above... */
3953 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3954 	its_vpe_send_inv(d);
3955 }
3956 
3957 static int its_vpe_set_irqchip_state(struct irq_data *d,
3958 				     enum irqchip_irq_state which,
3959 				     bool state)
3960 {
3961 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3962 
3963 	if (which != IRQCHIP_STATE_PENDING)
3964 		return -EINVAL;
3965 
3966 	if (gic_rdists->has_direct_lpi) {
3967 		void __iomem *rdbase;
3968 
3969 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3970 		if (state) {
3971 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3972 		} else {
3973 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3974 			wait_for_syncr(rdbase);
3975 		}
3976 	} else {
3977 		if (state)
3978 			its_vpe_send_cmd(vpe, its_send_int);
3979 		else
3980 			its_vpe_send_cmd(vpe, its_send_clear);
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static int its_vpe_retrigger(struct irq_data *d)
3987 {
3988 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3989 }
3990 
3991 static struct irq_chip its_vpe_irq_chip = {
3992 	.name			= "GICv4-vpe",
3993 	.irq_mask		= its_vpe_mask_irq,
3994 	.irq_unmask		= its_vpe_unmask_irq,
3995 	.irq_eoi		= irq_chip_eoi_parent,
3996 	.irq_set_affinity	= its_vpe_set_affinity,
3997 	.irq_retrigger		= its_vpe_retrigger,
3998 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
3999 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4000 };
4001 
4002 static struct its_node *find_4_1_its(void)
4003 {
4004 	static struct its_node *its = NULL;
4005 
4006 	if (!its) {
4007 		list_for_each_entry(its, &its_nodes, entry) {
4008 			if (is_v4_1(its))
4009 				return its;
4010 		}
4011 
4012 		/* Oops? */
4013 		its = NULL;
4014 	}
4015 
4016 	return its;
4017 }
4018 
4019 static void its_vpe_4_1_send_inv(struct irq_data *d)
4020 {
4021 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4022 	struct its_node *its;
4023 
4024 	/*
4025 	 * GICv4.1 wants doorbells to be invalidated using the
4026 	 * INVDB command in order to be broadcast to all RDs. Send
4027 	 * it to the first valid ITS, and let the HW do its magic.
4028 	 */
4029 	its = find_4_1_its();
4030 	if (its)
4031 		its_send_invdb(its, vpe);
4032 }
4033 
4034 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4035 {
4036 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4037 	its_vpe_4_1_send_inv(d);
4038 }
4039 
4040 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4041 {
4042 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4043 	its_vpe_4_1_send_inv(d);
4044 }
4045 
4046 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4047 				 struct its_cmd_info *info)
4048 {
4049 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4050 	u64 val = 0;
4051 
4052 	/* Schedule the VPE */
4053 	val |= GICR_VPENDBASER_Valid;
4054 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4055 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4056 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4057 
4058 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4059 }
4060 
4061 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4062 				   struct its_cmd_info *info)
4063 {
4064 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4065 	u64 val;
4066 
4067 	if (info->req_db) {
4068 		unsigned long flags;
4069 
4070 		/*
4071 		 * vPE is going to block: make the vPE non-resident with
4072 		 * PendingLast clear and DB set. The GIC guarantees that if
4073 		 * we read-back PendingLast clear, then a doorbell will be
4074 		 * delivered when an interrupt comes.
4075 		 *
4076 		 * Note the locking to deal with the concurrent update of
4077 		 * pending_last from the doorbell interrupt handler that can
4078 		 * run concurrently.
4079 		 */
4080 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4081 		val = its_clear_vpend_valid(vlpi_base,
4082 					    GICR_VPENDBASER_PendingLast,
4083 					    GICR_VPENDBASER_4_1_DB);
4084 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4085 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4086 	} else {
4087 		/*
4088 		 * We're not blocking, so just make the vPE non-resident
4089 		 * with PendingLast set, indicating that we'll be back.
4090 		 */
4091 		val = its_clear_vpend_valid(vlpi_base,
4092 					    0,
4093 					    GICR_VPENDBASER_PendingLast);
4094 		vpe->pending_last = true;
4095 	}
4096 }
4097 
4098 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4099 {
4100 	void __iomem *rdbase;
4101 	unsigned long flags;
4102 	u64 val;
4103 	int cpu;
4104 
4105 	val  = GICR_INVALLR_V;
4106 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4107 
4108 	/* Target the redistributor this vPE is currently known on */
4109 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4110 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4111 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4112 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4113 
4114 	wait_for_syncr(rdbase);
4115 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4116 	vpe_to_cpuid_unlock(vpe, flags);
4117 }
4118 
4119 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4120 {
4121 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4122 	struct its_cmd_info *info = vcpu_info;
4123 
4124 	switch (info->cmd_type) {
4125 	case SCHEDULE_VPE:
4126 		its_vpe_4_1_schedule(vpe, info);
4127 		return 0;
4128 
4129 	case DESCHEDULE_VPE:
4130 		its_vpe_4_1_deschedule(vpe, info);
4131 		return 0;
4132 
4133 	case COMMIT_VPE:
4134 		its_wait_vpt_parse_complete();
4135 		return 0;
4136 
4137 	case INVALL_VPE:
4138 		its_vpe_4_1_invall(vpe);
4139 		return 0;
4140 
4141 	default:
4142 		return -EINVAL;
4143 	}
4144 }
4145 
4146 static struct irq_chip its_vpe_4_1_irq_chip = {
4147 	.name			= "GICv4.1-vpe",
4148 	.irq_mask		= its_vpe_4_1_mask_irq,
4149 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4150 	.irq_eoi		= irq_chip_eoi_parent,
4151 	.irq_set_affinity	= its_vpe_set_affinity,
4152 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4153 };
4154 
4155 static void its_configure_sgi(struct irq_data *d, bool clear)
4156 {
4157 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4158 	struct its_cmd_desc desc;
4159 
4160 	desc.its_vsgi_cmd.vpe = vpe;
4161 	desc.its_vsgi_cmd.sgi = d->hwirq;
4162 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4163 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4164 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4165 	desc.its_vsgi_cmd.clear = clear;
4166 
4167 	/*
4168 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4169 	 * destination VPE is mapped there. Since we map them eagerly at
4170 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4171 	 */
4172 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4173 }
4174 
4175 static void its_sgi_mask_irq(struct irq_data *d)
4176 {
4177 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178 
4179 	vpe->sgi_config[d->hwirq].enabled = false;
4180 	its_configure_sgi(d, false);
4181 }
4182 
4183 static void its_sgi_unmask_irq(struct irq_data *d)
4184 {
4185 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4186 
4187 	vpe->sgi_config[d->hwirq].enabled = true;
4188 	its_configure_sgi(d, false);
4189 }
4190 
4191 static int its_sgi_set_affinity(struct irq_data *d,
4192 				const struct cpumask *mask_val,
4193 				bool force)
4194 {
4195 	/*
4196 	 * There is no notion of affinity for virtual SGIs, at least
4197 	 * not on the host (since they can only be targetting a vPE).
4198 	 * Tell the kernel we've done whatever it asked for.
4199 	 */
4200 	irq_data_update_effective_affinity(d, mask_val);
4201 	return IRQ_SET_MASK_OK;
4202 }
4203 
4204 static int its_sgi_set_irqchip_state(struct irq_data *d,
4205 				     enum irqchip_irq_state which,
4206 				     bool state)
4207 {
4208 	if (which != IRQCHIP_STATE_PENDING)
4209 		return -EINVAL;
4210 
4211 	if (state) {
4212 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4213 		struct its_node *its = find_4_1_its();
4214 		u64 val;
4215 
4216 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4217 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4218 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4219 	} else {
4220 		its_configure_sgi(d, true);
4221 	}
4222 
4223 	return 0;
4224 }
4225 
4226 static int its_sgi_get_irqchip_state(struct irq_data *d,
4227 				     enum irqchip_irq_state which, bool *val)
4228 {
4229 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4230 	void __iomem *base;
4231 	unsigned long flags;
4232 	u32 count = 1000000;	/* 1s! */
4233 	u32 status;
4234 	int cpu;
4235 
4236 	if (which != IRQCHIP_STATE_PENDING)
4237 		return -EINVAL;
4238 
4239 	/*
4240 	 * Locking galore! We can race against two different events:
4241 	 *
4242 	 * - Concurent vPE affinity change: we must make sure it cannot
4243 	 *   happen, or we'll talk to the wrong redistributor. This is
4244 	 *   identical to what happens with vLPIs.
4245 	 *
4246 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4247 	 *   MMIO registers, this must be made atomic one way or another.
4248 	 */
4249 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4250 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4251 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4252 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4253 	do {
4254 		status = readl_relaxed(base + GICR_VSGIPENDR);
4255 		if (!(status & GICR_VSGIPENDR_BUSY))
4256 			goto out;
4257 
4258 		count--;
4259 		if (!count) {
4260 			pr_err_ratelimited("Unable to get SGI status\n");
4261 			goto out;
4262 		}
4263 		cpu_relax();
4264 		udelay(1);
4265 	} while (count);
4266 
4267 out:
4268 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4269 	vpe_to_cpuid_unlock(vpe, flags);
4270 
4271 	if (!count)
4272 		return -ENXIO;
4273 
4274 	*val = !!(status & (1 << d->hwirq));
4275 
4276 	return 0;
4277 }
4278 
4279 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4280 {
4281 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4282 	struct its_cmd_info *info = vcpu_info;
4283 
4284 	switch (info->cmd_type) {
4285 	case PROP_UPDATE_VSGI:
4286 		vpe->sgi_config[d->hwirq].priority = info->priority;
4287 		vpe->sgi_config[d->hwirq].group = info->group;
4288 		its_configure_sgi(d, false);
4289 		return 0;
4290 
4291 	default:
4292 		return -EINVAL;
4293 	}
4294 }
4295 
4296 static struct irq_chip its_sgi_irq_chip = {
4297 	.name			= "GICv4.1-sgi",
4298 	.irq_mask		= its_sgi_mask_irq,
4299 	.irq_unmask		= its_sgi_unmask_irq,
4300 	.irq_set_affinity	= its_sgi_set_affinity,
4301 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4302 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4303 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4304 };
4305 
4306 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4307 				    unsigned int virq, unsigned int nr_irqs,
4308 				    void *args)
4309 {
4310 	struct its_vpe *vpe = args;
4311 	int i;
4312 
4313 	/* Yes, we do want 16 SGIs */
4314 	WARN_ON(nr_irqs != 16);
4315 
4316 	for (i = 0; i < 16; i++) {
4317 		vpe->sgi_config[i].priority = 0;
4318 		vpe->sgi_config[i].enabled = false;
4319 		vpe->sgi_config[i].group = false;
4320 
4321 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4322 					      &its_sgi_irq_chip, vpe);
4323 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4324 	}
4325 
4326 	return 0;
4327 }
4328 
4329 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4330 				    unsigned int virq,
4331 				    unsigned int nr_irqs)
4332 {
4333 	/* Nothing to do */
4334 }
4335 
4336 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4337 				       struct irq_data *d, bool reserve)
4338 {
4339 	/* Write out the initial SGI configuration */
4340 	its_configure_sgi(d, false);
4341 	return 0;
4342 }
4343 
4344 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4345 					  struct irq_data *d)
4346 {
4347 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348 
4349 	/*
4350 	 * The VSGI command is awkward:
4351 	 *
4352 	 * - To change the configuration, CLEAR must be set to false,
4353 	 *   leaving the pending bit unchanged.
4354 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4355 	 *   the configuration unchanged.
4356 	 *
4357 	 * You just can't do both at once, hence the two commands below.
4358 	 */
4359 	vpe->sgi_config[d->hwirq].enabled = false;
4360 	its_configure_sgi(d, false);
4361 	its_configure_sgi(d, true);
4362 }
4363 
4364 static const struct irq_domain_ops its_sgi_domain_ops = {
4365 	.alloc		= its_sgi_irq_domain_alloc,
4366 	.free		= its_sgi_irq_domain_free,
4367 	.activate	= its_sgi_irq_domain_activate,
4368 	.deactivate	= its_sgi_irq_domain_deactivate,
4369 };
4370 
4371 static int its_vpe_id_alloc(void)
4372 {
4373 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4374 }
4375 
4376 static void its_vpe_id_free(u16 id)
4377 {
4378 	ida_simple_remove(&its_vpeid_ida, id);
4379 }
4380 
4381 static int its_vpe_init(struct its_vpe *vpe)
4382 {
4383 	struct page *vpt_page;
4384 	int vpe_id;
4385 
4386 	/* Allocate vpe_id */
4387 	vpe_id = its_vpe_id_alloc();
4388 	if (vpe_id < 0)
4389 		return vpe_id;
4390 
4391 	/* Allocate VPT */
4392 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4393 	if (!vpt_page) {
4394 		its_vpe_id_free(vpe_id);
4395 		return -ENOMEM;
4396 	}
4397 
4398 	if (!its_alloc_vpe_table(vpe_id)) {
4399 		its_vpe_id_free(vpe_id);
4400 		its_free_pending_table(vpt_page);
4401 		return -ENOMEM;
4402 	}
4403 
4404 	raw_spin_lock_init(&vpe->vpe_lock);
4405 	vpe->vpe_id = vpe_id;
4406 	vpe->vpt_page = vpt_page;
4407 	if (gic_rdists->has_rvpeid)
4408 		atomic_set(&vpe->vmapp_count, 0);
4409 	else
4410 		vpe->vpe_proxy_event = -1;
4411 
4412 	return 0;
4413 }
4414 
4415 static void its_vpe_teardown(struct its_vpe *vpe)
4416 {
4417 	its_vpe_db_proxy_unmap(vpe);
4418 	its_vpe_id_free(vpe->vpe_id);
4419 	its_free_pending_table(vpe->vpt_page);
4420 }
4421 
4422 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4423 				    unsigned int virq,
4424 				    unsigned int nr_irqs)
4425 {
4426 	struct its_vm *vm = domain->host_data;
4427 	int i;
4428 
4429 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4430 
4431 	for (i = 0; i < nr_irqs; i++) {
4432 		struct irq_data *data = irq_domain_get_irq_data(domain,
4433 								virq + i);
4434 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4435 
4436 		BUG_ON(vm != vpe->its_vm);
4437 
4438 		clear_bit(data->hwirq, vm->db_bitmap);
4439 		its_vpe_teardown(vpe);
4440 		irq_domain_reset_irq_data(data);
4441 	}
4442 
4443 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4444 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4445 		its_free_prop_table(vm->vprop_page);
4446 	}
4447 }
4448 
4449 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4450 				    unsigned int nr_irqs, void *args)
4451 {
4452 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4453 	struct its_vm *vm = args;
4454 	unsigned long *bitmap;
4455 	struct page *vprop_page;
4456 	int base, nr_ids, i, err = 0;
4457 
4458 	BUG_ON(!vm);
4459 
4460 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4461 	if (!bitmap)
4462 		return -ENOMEM;
4463 
4464 	if (nr_ids < nr_irqs) {
4465 		its_lpi_free(bitmap, base, nr_ids);
4466 		return -ENOMEM;
4467 	}
4468 
4469 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4470 	if (!vprop_page) {
4471 		its_lpi_free(bitmap, base, nr_ids);
4472 		return -ENOMEM;
4473 	}
4474 
4475 	vm->db_bitmap = bitmap;
4476 	vm->db_lpi_base = base;
4477 	vm->nr_db_lpis = nr_ids;
4478 	vm->vprop_page = vprop_page;
4479 
4480 	if (gic_rdists->has_rvpeid)
4481 		irqchip = &its_vpe_4_1_irq_chip;
4482 
4483 	for (i = 0; i < nr_irqs; i++) {
4484 		vm->vpes[i]->vpe_db_lpi = base + i;
4485 		err = its_vpe_init(vm->vpes[i]);
4486 		if (err)
4487 			break;
4488 		err = its_irq_gic_domain_alloc(domain, virq + i,
4489 					       vm->vpes[i]->vpe_db_lpi);
4490 		if (err)
4491 			break;
4492 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4493 					      irqchip, vm->vpes[i]);
4494 		set_bit(i, bitmap);
4495 	}
4496 
4497 	if (err) {
4498 		if (i > 0)
4499 			its_vpe_irq_domain_free(domain, virq, i - 1);
4500 
4501 		its_lpi_free(bitmap, base, nr_ids);
4502 		its_free_prop_table(vprop_page);
4503 	}
4504 
4505 	return err;
4506 }
4507 
4508 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4509 				       struct irq_data *d, bool reserve)
4510 {
4511 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4512 	struct its_node *its;
4513 
4514 	/*
4515 	 * If we use the list map, we issue VMAPP on demand... Unless
4516 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4517 	 * so that VSGIs can work.
4518 	 */
4519 	if (!gic_requires_eager_mapping())
4520 		return 0;
4521 
4522 	/* Map the VPE to the first possible CPU */
4523 	vpe->col_idx = cpumask_first(cpu_online_mask);
4524 
4525 	list_for_each_entry(its, &its_nodes, entry) {
4526 		if (!is_v4(its))
4527 			continue;
4528 
4529 		its_send_vmapp(its, vpe, true);
4530 		its_send_vinvall(its, vpe);
4531 	}
4532 
4533 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4534 
4535 	return 0;
4536 }
4537 
4538 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4539 					  struct irq_data *d)
4540 {
4541 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4542 	struct its_node *its;
4543 
4544 	/*
4545 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4546 	 * VLPIs are associated with the VM.
4547 	 */
4548 	if (!gic_requires_eager_mapping())
4549 		return;
4550 
4551 	list_for_each_entry(its, &its_nodes, entry) {
4552 		if (!is_v4(its))
4553 			continue;
4554 
4555 		its_send_vmapp(its, vpe, false);
4556 	}
4557 }
4558 
4559 static const struct irq_domain_ops its_vpe_domain_ops = {
4560 	.alloc			= its_vpe_irq_domain_alloc,
4561 	.free			= its_vpe_irq_domain_free,
4562 	.activate		= its_vpe_irq_domain_activate,
4563 	.deactivate		= its_vpe_irq_domain_deactivate,
4564 };
4565 
4566 static int its_force_quiescent(void __iomem *base)
4567 {
4568 	u32 count = 1000000;	/* 1s */
4569 	u32 val;
4570 
4571 	val = readl_relaxed(base + GITS_CTLR);
4572 	/*
4573 	 * GIC architecture specification requires the ITS to be both
4574 	 * disabled and quiescent for writes to GITS_BASER<n> or
4575 	 * GITS_CBASER to not have UNPREDICTABLE results.
4576 	 */
4577 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4578 		return 0;
4579 
4580 	/* Disable the generation of all interrupts to this ITS */
4581 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4582 	writel_relaxed(val, base + GITS_CTLR);
4583 
4584 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4585 	while (1) {
4586 		val = readl_relaxed(base + GITS_CTLR);
4587 		if (val & GITS_CTLR_QUIESCENT)
4588 			return 0;
4589 
4590 		count--;
4591 		if (!count)
4592 			return -EBUSY;
4593 
4594 		cpu_relax();
4595 		udelay(1);
4596 	}
4597 }
4598 
4599 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4600 {
4601 	struct its_node *its = data;
4602 
4603 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4604 	its->typer &= ~GITS_TYPER_DEVBITS;
4605 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4606 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4607 
4608 	return true;
4609 }
4610 
4611 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4612 {
4613 	struct its_node *its = data;
4614 
4615 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4616 
4617 	return true;
4618 }
4619 
4620 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4621 {
4622 	struct its_node *its = data;
4623 
4624 	/* On QDF2400, the size of the ITE is 16Bytes */
4625 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4626 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4627 
4628 	return true;
4629 }
4630 
4631 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4632 {
4633 	struct its_node *its = its_dev->its;
4634 
4635 	/*
4636 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4637 	 * which maps 32-bit writes targeted at a separate window of
4638 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4639 	 * with device ID taken from bits [device_id_bits + 1:2] of
4640 	 * the window offset.
4641 	 */
4642 	return its->pre_its_base + (its_dev->device_id << 2);
4643 }
4644 
4645 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4646 {
4647 	struct its_node *its = data;
4648 	u32 pre_its_window[2];
4649 	u32 ids;
4650 
4651 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4652 					   "socionext,synquacer-pre-its",
4653 					   pre_its_window,
4654 					   ARRAY_SIZE(pre_its_window))) {
4655 
4656 		its->pre_its_base = pre_its_window[0];
4657 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4658 
4659 		ids = ilog2(pre_its_window[1]) - 2;
4660 		if (device_ids(its) > ids) {
4661 			its->typer &= ~GITS_TYPER_DEVBITS;
4662 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4663 		}
4664 
4665 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4666 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4667 		return true;
4668 	}
4669 	return false;
4670 }
4671 
4672 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4673 {
4674 	struct its_node *its = data;
4675 
4676 	/*
4677 	 * Hip07 insists on using the wrong address for the VLPI
4678 	 * page. Trick it into doing the right thing...
4679 	 */
4680 	its->vlpi_redist_offset = SZ_128K;
4681 	return true;
4682 }
4683 
4684 static const struct gic_quirk its_quirks[] = {
4685 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4686 	{
4687 		.desc	= "ITS: Cavium errata 22375, 24313",
4688 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4689 		.mask	= 0xffff0fff,
4690 		.init	= its_enable_quirk_cavium_22375,
4691 	},
4692 #endif
4693 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4694 	{
4695 		.desc	= "ITS: Cavium erratum 23144",
4696 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4697 		.mask	= 0xffff0fff,
4698 		.init	= its_enable_quirk_cavium_23144,
4699 	},
4700 #endif
4701 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4702 	{
4703 		.desc	= "ITS: QDF2400 erratum 0065",
4704 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4705 		.mask	= 0xffffffff,
4706 		.init	= its_enable_quirk_qdf2400_e0065,
4707 	},
4708 #endif
4709 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4710 	{
4711 		/*
4712 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4713 		 * implementation, but with a 'pre-ITS' added that requires
4714 		 * special handling in software.
4715 		 */
4716 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4717 		.iidr	= 0x0001143b,
4718 		.mask	= 0xffffffff,
4719 		.init	= its_enable_quirk_socionext_synquacer,
4720 	},
4721 #endif
4722 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4723 	{
4724 		.desc	= "ITS: Hip07 erratum 161600802",
4725 		.iidr	= 0x00000004,
4726 		.mask	= 0xffffffff,
4727 		.init	= its_enable_quirk_hip07_161600802,
4728 	},
4729 #endif
4730 	{
4731 	}
4732 };
4733 
4734 static void its_enable_quirks(struct its_node *its)
4735 {
4736 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4737 
4738 	gic_enable_quirks(iidr, its_quirks, its);
4739 }
4740 
4741 static int its_save_disable(void)
4742 {
4743 	struct its_node *its;
4744 	int err = 0;
4745 
4746 	raw_spin_lock(&its_lock);
4747 	list_for_each_entry(its, &its_nodes, entry) {
4748 		void __iomem *base;
4749 
4750 		base = its->base;
4751 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4752 		err = its_force_quiescent(base);
4753 		if (err) {
4754 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4755 			       &its->phys_base, err);
4756 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4757 			goto err;
4758 		}
4759 
4760 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4761 	}
4762 
4763 err:
4764 	if (err) {
4765 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4766 			void __iomem *base;
4767 
4768 			base = its->base;
4769 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4770 		}
4771 	}
4772 	raw_spin_unlock(&its_lock);
4773 
4774 	return err;
4775 }
4776 
4777 static void its_restore_enable(void)
4778 {
4779 	struct its_node *its;
4780 	int ret;
4781 
4782 	raw_spin_lock(&its_lock);
4783 	list_for_each_entry(its, &its_nodes, entry) {
4784 		void __iomem *base;
4785 		int i;
4786 
4787 		base = its->base;
4788 
4789 		/*
4790 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4791 		 * don't restore it since writing to CBASER or BASER<n>
4792 		 * registers is undefined according to the GIC v3 ITS
4793 		 * Specification.
4794 		 *
4795 		 * Firmware resuming with the ITS enabled is terminally broken.
4796 		 */
4797 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4798 		ret = its_force_quiescent(base);
4799 		if (ret) {
4800 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4801 			       &its->phys_base, ret);
4802 			continue;
4803 		}
4804 
4805 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4806 
4807 		/*
4808 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4809 		 * cmd_write line up with it.
4810 		 */
4811 		its->cmd_write = its->cmd_base;
4812 		gits_write_cwriter(0, base + GITS_CWRITER);
4813 
4814 		/* Restore GITS_BASER from the value cache. */
4815 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4816 			struct its_baser *baser = &its->tables[i];
4817 
4818 			if (!(baser->val & GITS_BASER_VALID))
4819 				continue;
4820 
4821 			its_write_baser(its, baser, baser->val);
4822 		}
4823 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4824 
4825 		/*
4826 		 * Reinit the collection if it's stored in the ITS. This is
4827 		 * indicated by the col_id being less than the HCC field.
4828 		 * CID < HCC as specified in the GIC v3 Documentation.
4829 		 */
4830 		if (its->collections[smp_processor_id()].col_id <
4831 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4832 			its_cpu_init_collection(its);
4833 	}
4834 	raw_spin_unlock(&its_lock);
4835 }
4836 
4837 static struct syscore_ops its_syscore_ops = {
4838 	.suspend = its_save_disable,
4839 	.resume = its_restore_enable,
4840 };
4841 
4842 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4843 {
4844 	struct irq_domain *inner_domain;
4845 	struct msi_domain_info *info;
4846 
4847 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4848 	if (!info)
4849 		return -ENOMEM;
4850 
4851 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4852 	if (!inner_domain) {
4853 		kfree(info);
4854 		return -ENOMEM;
4855 	}
4856 
4857 	inner_domain->parent = its_parent;
4858 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4859 	inner_domain->flags |= its->msi_domain_flags;
4860 	info->ops = &its_msi_domain_ops;
4861 	info->data = its;
4862 	inner_domain->host_data = info;
4863 
4864 	return 0;
4865 }
4866 
4867 static int its_init_vpe_domain(void)
4868 {
4869 	struct its_node *its;
4870 	u32 devid;
4871 	int entries;
4872 
4873 	if (gic_rdists->has_direct_lpi) {
4874 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4875 		return 0;
4876 	}
4877 
4878 	/* Any ITS will do, even if not v4 */
4879 	its = list_first_entry(&its_nodes, struct its_node, entry);
4880 
4881 	entries = roundup_pow_of_two(nr_cpu_ids);
4882 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4883 				 GFP_KERNEL);
4884 	if (!vpe_proxy.vpes) {
4885 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4886 		return -ENOMEM;
4887 	}
4888 
4889 	/* Use the last possible DevID */
4890 	devid = GENMASK(device_ids(its) - 1, 0);
4891 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4892 	if (!vpe_proxy.dev) {
4893 		kfree(vpe_proxy.vpes);
4894 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4895 		return -ENOMEM;
4896 	}
4897 
4898 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4899 
4900 	raw_spin_lock_init(&vpe_proxy.lock);
4901 	vpe_proxy.next_victim = 0;
4902 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4903 		devid, vpe_proxy.dev->nr_ites);
4904 
4905 	return 0;
4906 }
4907 
4908 static int __init its_compute_its_list_map(struct resource *res,
4909 					   void __iomem *its_base)
4910 {
4911 	int its_number;
4912 	u32 ctlr;
4913 
4914 	/*
4915 	 * This is assumed to be done early enough that we're
4916 	 * guaranteed to be single-threaded, hence no
4917 	 * locking. Should this change, we should address
4918 	 * this.
4919 	 */
4920 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4921 	if (its_number >= GICv4_ITS_LIST_MAX) {
4922 		pr_err("ITS@%pa: No ITSList entry available!\n",
4923 		       &res->start);
4924 		return -EINVAL;
4925 	}
4926 
4927 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4928 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4929 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4930 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4931 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4932 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4933 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4934 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4935 	}
4936 
4937 	if (test_and_set_bit(its_number, &its_list_map)) {
4938 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4939 		       &res->start, its_number);
4940 		return -EINVAL;
4941 	}
4942 
4943 	return its_number;
4944 }
4945 
4946 static int __init its_probe_one(struct resource *res,
4947 				struct fwnode_handle *handle, int numa_node)
4948 {
4949 	struct its_node *its;
4950 	void __iomem *its_base;
4951 	u32 val, ctlr;
4952 	u64 baser, tmp, typer;
4953 	struct page *page;
4954 	int err;
4955 
4956 	its_base = ioremap(res->start, SZ_64K);
4957 	if (!its_base) {
4958 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4959 		return -ENOMEM;
4960 	}
4961 
4962 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4963 	if (val != 0x30 && val != 0x40) {
4964 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4965 		err = -ENODEV;
4966 		goto out_unmap;
4967 	}
4968 
4969 	err = its_force_quiescent(its_base);
4970 	if (err) {
4971 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4972 		goto out_unmap;
4973 	}
4974 
4975 	pr_info("ITS %pR\n", res);
4976 
4977 	its = kzalloc(sizeof(*its), GFP_KERNEL);
4978 	if (!its) {
4979 		err = -ENOMEM;
4980 		goto out_unmap;
4981 	}
4982 
4983 	raw_spin_lock_init(&its->lock);
4984 	mutex_init(&its->dev_alloc_lock);
4985 	INIT_LIST_HEAD(&its->entry);
4986 	INIT_LIST_HEAD(&its->its_device_list);
4987 	typer = gic_read_typer(its_base + GITS_TYPER);
4988 	its->typer = typer;
4989 	its->base = its_base;
4990 	its->phys_base = res->start;
4991 	if (is_v4(its)) {
4992 		if (!(typer & GITS_TYPER_VMOVP)) {
4993 			err = its_compute_its_list_map(res, its_base);
4994 			if (err < 0)
4995 				goto out_free_its;
4996 
4997 			its->list_nr = err;
4998 
4999 			pr_info("ITS@%pa: Using ITS number %d\n",
5000 				&res->start, err);
5001 		} else {
5002 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5003 		}
5004 
5005 		if (is_v4_1(its)) {
5006 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5007 
5008 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5009 			if (!its->sgir_base) {
5010 				err = -ENOMEM;
5011 				goto out_free_its;
5012 			}
5013 
5014 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5015 
5016 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5017 				&res->start, its->mpidr, svpet);
5018 		}
5019 	}
5020 
5021 	its->numa_node = numa_node;
5022 
5023 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5024 				get_order(ITS_CMD_QUEUE_SZ));
5025 	if (!page) {
5026 		err = -ENOMEM;
5027 		goto out_unmap_sgir;
5028 	}
5029 	its->cmd_base = (void *)page_address(page);
5030 	its->cmd_write = its->cmd_base;
5031 	its->fwnode_handle = handle;
5032 	its->get_msi_base = its_irq_get_msi_base;
5033 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5034 
5035 	its_enable_quirks(its);
5036 
5037 	err = its_alloc_tables(its);
5038 	if (err)
5039 		goto out_free_cmd;
5040 
5041 	err = its_alloc_collections(its);
5042 	if (err)
5043 		goto out_free_tables;
5044 
5045 	baser = (virt_to_phys(its->cmd_base)	|
5046 		 GITS_CBASER_RaWaWb		|
5047 		 GITS_CBASER_InnerShareable	|
5048 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5049 		 GITS_CBASER_VALID);
5050 
5051 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5052 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5053 
5054 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5055 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5056 			/*
5057 			 * The HW reports non-shareable, we must
5058 			 * remove the cacheability attributes as
5059 			 * well.
5060 			 */
5061 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5062 				   GITS_CBASER_CACHEABILITY_MASK);
5063 			baser |= GITS_CBASER_nC;
5064 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5065 		}
5066 		pr_info("ITS: using cache flushing for cmd queue\n");
5067 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5068 	}
5069 
5070 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5071 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5072 	ctlr |= GITS_CTLR_ENABLE;
5073 	if (is_v4(its))
5074 		ctlr |= GITS_CTLR_ImDe;
5075 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5076 
5077 	err = its_init_domain(handle, its);
5078 	if (err)
5079 		goto out_free_tables;
5080 
5081 	raw_spin_lock(&its_lock);
5082 	list_add(&its->entry, &its_nodes);
5083 	raw_spin_unlock(&its_lock);
5084 
5085 	return 0;
5086 
5087 out_free_tables:
5088 	its_free_tables(its);
5089 out_free_cmd:
5090 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5091 out_unmap_sgir:
5092 	if (its->sgir_base)
5093 		iounmap(its->sgir_base);
5094 out_free_its:
5095 	kfree(its);
5096 out_unmap:
5097 	iounmap(its_base);
5098 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5099 	return err;
5100 }
5101 
5102 static bool gic_rdists_supports_plpis(void)
5103 {
5104 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5105 }
5106 
5107 static int redist_disable_lpis(void)
5108 {
5109 	void __iomem *rbase = gic_data_rdist_rd_base();
5110 	u64 timeout = USEC_PER_SEC;
5111 	u64 val;
5112 
5113 	if (!gic_rdists_supports_plpis()) {
5114 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5115 		return -ENXIO;
5116 	}
5117 
5118 	val = readl_relaxed(rbase + GICR_CTLR);
5119 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5120 		return 0;
5121 
5122 	/*
5123 	 * If coming via a CPU hotplug event, we don't need to disable
5124 	 * LPIs before trying to re-enable them. They are already
5125 	 * configured and all is well in the world.
5126 	 *
5127 	 * If running with preallocated tables, there is nothing to do.
5128 	 */
5129 	if (gic_data_rdist()->lpi_enabled ||
5130 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5131 		return 0;
5132 
5133 	/*
5134 	 * From that point on, we only try to do some damage control.
5135 	 */
5136 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5137 		smp_processor_id());
5138 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5139 
5140 	/* Disable LPIs */
5141 	val &= ~GICR_CTLR_ENABLE_LPIS;
5142 	writel_relaxed(val, rbase + GICR_CTLR);
5143 
5144 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5145 	dsb(sy);
5146 
5147 	/*
5148 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5149 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5150 	 * Error out if we time out waiting for RWP to clear.
5151 	 */
5152 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5153 		if (!timeout) {
5154 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5155 			       smp_processor_id());
5156 			return -ETIMEDOUT;
5157 		}
5158 		udelay(1);
5159 		timeout--;
5160 	}
5161 
5162 	/*
5163 	 * After it has been written to 1, it is IMPLEMENTATION
5164 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5165 	 * cleared to 0. Error out if clearing the bit failed.
5166 	 */
5167 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5168 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5169 		return -EBUSY;
5170 	}
5171 
5172 	return 0;
5173 }
5174 
5175 int its_cpu_init(void)
5176 {
5177 	if (!list_empty(&its_nodes)) {
5178 		int ret;
5179 
5180 		ret = redist_disable_lpis();
5181 		if (ret)
5182 			return ret;
5183 
5184 		its_cpu_init_lpis();
5185 		its_cpu_init_collections();
5186 	}
5187 
5188 	return 0;
5189 }
5190 
5191 static const struct of_device_id its_device_id[] = {
5192 	{	.compatible	= "arm,gic-v3-its",	},
5193 	{},
5194 };
5195 
5196 static int __init its_of_probe(struct device_node *node)
5197 {
5198 	struct device_node *np;
5199 	struct resource res;
5200 
5201 	for (np = of_find_matching_node(node, its_device_id); np;
5202 	     np = of_find_matching_node(np, its_device_id)) {
5203 		if (!of_device_is_available(np))
5204 			continue;
5205 		if (!of_property_read_bool(np, "msi-controller")) {
5206 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5207 				np);
5208 			continue;
5209 		}
5210 
5211 		if (of_address_to_resource(np, 0, &res)) {
5212 			pr_warn("%pOF: no regs?\n", np);
5213 			continue;
5214 		}
5215 
5216 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5217 	}
5218 	return 0;
5219 }
5220 
5221 #ifdef CONFIG_ACPI
5222 
5223 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5224 
5225 #ifdef CONFIG_ACPI_NUMA
5226 struct its_srat_map {
5227 	/* numa node id */
5228 	u32	numa_node;
5229 	/* GIC ITS ID */
5230 	u32	its_id;
5231 };
5232 
5233 static struct its_srat_map *its_srat_maps __initdata;
5234 static int its_in_srat __initdata;
5235 
5236 static int __init acpi_get_its_numa_node(u32 its_id)
5237 {
5238 	int i;
5239 
5240 	for (i = 0; i < its_in_srat; i++) {
5241 		if (its_id == its_srat_maps[i].its_id)
5242 			return its_srat_maps[i].numa_node;
5243 	}
5244 	return NUMA_NO_NODE;
5245 }
5246 
5247 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5248 					  const unsigned long end)
5249 {
5250 	return 0;
5251 }
5252 
5253 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5254 			 const unsigned long end)
5255 {
5256 	int node;
5257 	struct acpi_srat_gic_its_affinity *its_affinity;
5258 
5259 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5260 	if (!its_affinity)
5261 		return -EINVAL;
5262 
5263 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5264 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5265 			its_affinity->header.length);
5266 		return -EINVAL;
5267 	}
5268 
5269 	/*
5270 	 * Note that in theory a new proximity node could be created by this
5271 	 * entry as it is an SRAT resource allocation structure.
5272 	 * We do not currently support doing so.
5273 	 */
5274 	node = pxm_to_node(its_affinity->proximity_domain);
5275 
5276 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5277 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5278 		return 0;
5279 	}
5280 
5281 	its_srat_maps[its_in_srat].numa_node = node;
5282 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5283 	its_in_srat++;
5284 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5285 		its_affinity->proximity_domain, its_affinity->its_id, node);
5286 
5287 	return 0;
5288 }
5289 
5290 static void __init acpi_table_parse_srat_its(void)
5291 {
5292 	int count;
5293 
5294 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5295 			sizeof(struct acpi_table_srat),
5296 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5297 			gic_acpi_match_srat_its, 0);
5298 	if (count <= 0)
5299 		return;
5300 
5301 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5302 				      GFP_KERNEL);
5303 	if (!its_srat_maps) {
5304 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5305 		return;
5306 	}
5307 
5308 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5309 			sizeof(struct acpi_table_srat),
5310 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5311 			gic_acpi_parse_srat_its, 0);
5312 }
5313 
5314 /* free the its_srat_maps after ITS probing */
5315 static void __init acpi_its_srat_maps_free(void)
5316 {
5317 	kfree(its_srat_maps);
5318 }
5319 #else
5320 static void __init acpi_table_parse_srat_its(void)	{ }
5321 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5322 static void __init acpi_its_srat_maps_free(void) { }
5323 #endif
5324 
5325 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5326 					  const unsigned long end)
5327 {
5328 	struct acpi_madt_generic_translator *its_entry;
5329 	struct fwnode_handle *dom_handle;
5330 	struct resource res;
5331 	int err;
5332 
5333 	its_entry = (struct acpi_madt_generic_translator *)header;
5334 	memset(&res, 0, sizeof(res));
5335 	res.start = its_entry->base_address;
5336 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5337 	res.flags = IORESOURCE_MEM;
5338 
5339 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5340 	if (!dom_handle) {
5341 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5342 		       &res.start);
5343 		return -ENOMEM;
5344 	}
5345 
5346 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5347 					 dom_handle);
5348 	if (err) {
5349 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5350 		       &res.start, its_entry->translation_id);
5351 		goto dom_err;
5352 	}
5353 
5354 	err = its_probe_one(&res, dom_handle,
5355 			acpi_get_its_numa_node(its_entry->translation_id));
5356 	if (!err)
5357 		return 0;
5358 
5359 	iort_deregister_domain_token(its_entry->translation_id);
5360 dom_err:
5361 	irq_domain_free_fwnode(dom_handle);
5362 	return err;
5363 }
5364 
5365 static void __init its_acpi_probe(void)
5366 {
5367 	acpi_table_parse_srat_its();
5368 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5369 			      gic_acpi_parse_madt_its, 0);
5370 	acpi_its_srat_maps_free();
5371 }
5372 #else
5373 static void __init its_acpi_probe(void) { }
5374 #endif
5375 
5376 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5377 		    struct irq_domain *parent_domain)
5378 {
5379 	struct device_node *of_node;
5380 	struct its_node *its;
5381 	bool has_v4 = false;
5382 	bool has_v4_1 = false;
5383 	int err;
5384 
5385 	gic_rdists = rdists;
5386 
5387 	its_parent = parent_domain;
5388 	of_node = to_of_node(handle);
5389 	if (of_node)
5390 		its_of_probe(of_node);
5391 	else
5392 		its_acpi_probe();
5393 
5394 	if (list_empty(&its_nodes)) {
5395 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5396 		return -ENXIO;
5397 	}
5398 
5399 	err = allocate_lpi_tables();
5400 	if (err)
5401 		return err;
5402 
5403 	list_for_each_entry(its, &its_nodes, entry) {
5404 		has_v4 |= is_v4(its);
5405 		has_v4_1 |= is_v4_1(its);
5406 	}
5407 
5408 	/* Don't bother with inconsistent systems */
5409 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5410 		rdists->has_rvpeid = false;
5411 
5412 	if (has_v4 & rdists->has_vlpis) {
5413 		const struct irq_domain_ops *sgi_ops;
5414 
5415 		if (has_v4_1)
5416 			sgi_ops = &its_sgi_domain_ops;
5417 		else
5418 			sgi_ops = NULL;
5419 
5420 		if (its_init_vpe_domain() ||
5421 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5422 			rdists->has_vlpis = false;
5423 			pr_err("ITS: Disabling GICv4 support\n");
5424 		}
5425 	}
5426 
5427 	register_syscore_ops(&its_syscore_ops);
5428 
5429 	return 0;
5430 }
5431