1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1 << 0)
41 
42 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
43 
44 /*
45  * Collection structure - just an ID, and a redistributor address to
46  * ping. We use one per CPU as a bag of interrupts assigned to this
47  * CPU.
48  */
49 struct its_collection {
50 	u64			target_address;
51 	u16			col_id;
52 };
53 
54 /*
55  * The ITS structure - contains most of the infrastructure, with the
56  * top-level MSI domain, the command queue, the collections, and the
57  * list of devices writing to it.
58  */
59 struct its_node {
60 	raw_spinlock_t		lock;
61 	struct list_head	entry;
62 	void __iomem		*base;
63 	unsigned long		phys_base;
64 	struct its_cmd_block	*cmd_base;
65 	struct its_cmd_block	*cmd_write;
66 	void			*tables[GITS_BASER_NR_REGS];
67 	struct its_collection	*collections;
68 	struct list_head	its_device_list;
69 	u64			flags;
70 	u32			ite_size;
71 };
72 
73 #define ITS_ITT_ALIGN		SZ_256
74 
75 struct event_lpi_map {
76 	unsigned long		*lpi_map;
77 	u16			*col_map;
78 	irq_hw_number_t		lpi_base;
79 	int			nr_lpis;
80 };
81 
82 /*
83  * The ITS view of a device - belongs to an ITS, a collection, owns an
84  * interrupt translation table, and a list of interrupts.
85  */
86 struct its_device {
87 	struct list_head	entry;
88 	struct its_node		*its;
89 	struct event_lpi_map	event_map;
90 	void			*itt;
91 	u32			nr_ites;
92 	u32			device_id;
93 };
94 
95 static LIST_HEAD(its_nodes);
96 static DEFINE_SPINLOCK(its_lock);
97 static struct device_node *gic_root_node;
98 static struct rdists *gic_rdists;
99 
100 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
101 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
102 
103 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
104 					       u32 event)
105 {
106 	struct its_node *its = its_dev->its;
107 
108 	return its->collections + its_dev->event_map.col_map[event];
109 }
110 
111 /*
112  * ITS command descriptors - parameters to be encoded in a command
113  * block.
114  */
115 struct its_cmd_desc {
116 	union {
117 		struct {
118 			struct its_device *dev;
119 			u32 event_id;
120 		} its_inv_cmd;
121 
122 		struct {
123 			struct its_device *dev;
124 			u32 event_id;
125 		} its_int_cmd;
126 
127 		struct {
128 			struct its_device *dev;
129 			int valid;
130 		} its_mapd_cmd;
131 
132 		struct {
133 			struct its_collection *col;
134 			int valid;
135 		} its_mapc_cmd;
136 
137 		struct {
138 			struct its_device *dev;
139 			u32 phys_id;
140 			u32 event_id;
141 		} its_mapvi_cmd;
142 
143 		struct {
144 			struct its_device *dev;
145 			struct its_collection *col;
146 			u32 event_id;
147 		} its_movi_cmd;
148 
149 		struct {
150 			struct its_device *dev;
151 			u32 event_id;
152 		} its_discard_cmd;
153 
154 		struct {
155 			struct its_collection *col;
156 		} its_invall_cmd;
157 	};
158 };
159 
160 /*
161  * The ITS command block, which is what the ITS actually parses.
162  */
163 struct its_cmd_block {
164 	u64	raw_cmd[4];
165 };
166 
167 #define ITS_CMD_QUEUE_SZ		SZ_64K
168 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
169 
170 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
171 						    struct its_cmd_desc *);
172 
173 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
174 {
175 	cmd->raw_cmd[0] &= ~0xffUL;
176 	cmd->raw_cmd[0] |= cmd_nr;
177 }
178 
179 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
180 {
181 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
182 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
183 }
184 
185 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
186 {
187 	cmd->raw_cmd[1] &= ~0xffffffffUL;
188 	cmd->raw_cmd[1] |= id;
189 }
190 
191 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
192 {
193 	cmd->raw_cmd[1] &= 0xffffffffUL;
194 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
195 }
196 
197 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
198 {
199 	cmd->raw_cmd[1] &= ~0x1fUL;
200 	cmd->raw_cmd[1] |= size & 0x1f;
201 }
202 
203 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
204 {
205 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
206 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
207 }
208 
209 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
210 {
211 	cmd->raw_cmd[2] &= ~(1UL << 63);
212 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
213 }
214 
215 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
216 {
217 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
218 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
219 }
220 
221 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
222 {
223 	cmd->raw_cmd[2] &= ~0xffffUL;
224 	cmd->raw_cmd[2] |= col;
225 }
226 
227 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
228 {
229 	/* Let's fixup BE commands */
230 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
231 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
232 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
233 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
234 }
235 
236 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
237 						 struct its_cmd_desc *desc)
238 {
239 	unsigned long itt_addr;
240 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
241 
242 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
243 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
244 
245 	its_encode_cmd(cmd, GITS_CMD_MAPD);
246 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
247 	its_encode_size(cmd, size - 1);
248 	its_encode_itt(cmd, itt_addr);
249 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
250 
251 	its_fixup_cmd(cmd);
252 
253 	return NULL;
254 }
255 
256 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
257 						 struct its_cmd_desc *desc)
258 {
259 	its_encode_cmd(cmd, GITS_CMD_MAPC);
260 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
261 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
262 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
263 
264 	its_fixup_cmd(cmd);
265 
266 	return desc->its_mapc_cmd.col;
267 }
268 
269 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
270 						  struct its_cmd_desc *desc)
271 {
272 	struct its_collection *col;
273 
274 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
275 			       desc->its_mapvi_cmd.event_id);
276 
277 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
278 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
279 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
280 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
281 	its_encode_collection(cmd, col->col_id);
282 
283 	its_fixup_cmd(cmd);
284 
285 	return col;
286 }
287 
288 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
289 						 struct its_cmd_desc *desc)
290 {
291 	struct its_collection *col;
292 
293 	col = dev_event_to_col(desc->its_movi_cmd.dev,
294 			       desc->its_movi_cmd.event_id);
295 
296 	its_encode_cmd(cmd, GITS_CMD_MOVI);
297 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
298 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
299 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
300 
301 	its_fixup_cmd(cmd);
302 
303 	return col;
304 }
305 
306 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
307 						    struct its_cmd_desc *desc)
308 {
309 	struct its_collection *col;
310 
311 	col = dev_event_to_col(desc->its_discard_cmd.dev,
312 			       desc->its_discard_cmd.event_id);
313 
314 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
315 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
316 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
317 
318 	its_fixup_cmd(cmd);
319 
320 	return col;
321 }
322 
323 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
324 						struct its_cmd_desc *desc)
325 {
326 	struct its_collection *col;
327 
328 	col = dev_event_to_col(desc->its_inv_cmd.dev,
329 			       desc->its_inv_cmd.event_id);
330 
331 	its_encode_cmd(cmd, GITS_CMD_INV);
332 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
333 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
334 
335 	its_fixup_cmd(cmd);
336 
337 	return col;
338 }
339 
340 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
341 						   struct its_cmd_desc *desc)
342 {
343 	its_encode_cmd(cmd, GITS_CMD_INVALL);
344 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
345 
346 	its_fixup_cmd(cmd);
347 
348 	return NULL;
349 }
350 
351 static u64 its_cmd_ptr_to_offset(struct its_node *its,
352 				 struct its_cmd_block *ptr)
353 {
354 	return (ptr - its->cmd_base) * sizeof(*ptr);
355 }
356 
357 static int its_queue_full(struct its_node *its)
358 {
359 	int widx;
360 	int ridx;
361 
362 	widx = its->cmd_write - its->cmd_base;
363 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
364 
365 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
366 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
373 {
374 	struct its_cmd_block *cmd;
375 	u32 count = 1000000;	/* 1s! */
376 
377 	while (its_queue_full(its)) {
378 		count--;
379 		if (!count) {
380 			pr_err_ratelimited("ITS queue not draining\n");
381 			return NULL;
382 		}
383 		cpu_relax();
384 		udelay(1);
385 	}
386 
387 	cmd = its->cmd_write++;
388 
389 	/* Handle queue wrapping */
390 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
391 		its->cmd_write = its->cmd_base;
392 
393 	return cmd;
394 }
395 
396 static struct its_cmd_block *its_post_commands(struct its_node *its)
397 {
398 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
399 
400 	writel_relaxed(wr, its->base + GITS_CWRITER);
401 
402 	return its->cmd_write;
403 }
404 
405 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
406 {
407 	/*
408 	 * Make sure the commands written to memory are observable by
409 	 * the ITS.
410 	 */
411 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
412 		__flush_dcache_area(cmd, sizeof(*cmd));
413 	else
414 		dsb(ishst);
415 }
416 
417 static void its_wait_for_range_completion(struct its_node *its,
418 					  struct its_cmd_block *from,
419 					  struct its_cmd_block *to)
420 {
421 	u64 rd_idx, from_idx, to_idx;
422 	u32 count = 1000000;	/* 1s! */
423 
424 	from_idx = its_cmd_ptr_to_offset(its, from);
425 	to_idx = its_cmd_ptr_to_offset(its, to);
426 
427 	while (1) {
428 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
429 		if (rd_idx >= to_idx || rd_idx < from_idx)
430 			break;
431 
432 		count--;
433 		if (!count) {
434 			pr_err_ratelimited("ITS queue timeout\n");
435 			return;
436 		}
437 		cpu_relax();
438 		udelay(1);
439 	}
440 }
441 
442 static void its_send_single_command(struct its_node *its,
443 				    its_cmd_builder_t builder,
444 				    struct its_cmd_desc *desc)
445 {
446 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
447 	struct its_collection *sync_col;
448 	unsigned long flags;
449 
450 	raw_spin_lock_irqsave(&its->lock, flags);
451 
452 	cmd = its_allocate_entry(its);
453 	if (!cmd) {		/* We're soooooo screewed... */
454 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
455 		raw_spin_unlock_irqrestore(&its->lock, flags);
456 		return;
457 	}
458 	sync_col = builder(cmd, desc);
459 	its_flush_cmd(its, cmd);
460 
461 	if (sync_col) {
462 		sync_cmd = its_allocate_entry(its);
463 		if (!sync_cmd) {
464 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
465 			goto post;
466 		}
467 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
468 		its_encode_target(sync_cmd, sync_col->target_address);
469 		its_fixup_cmd(sync_cmd);
470 		its_flush_cmd(its, sync_cmd);
471 	}
472 
473 post:
474 	next_cmd = its_post_commands(its);
475 	raw_spin_unlock_irqrestore(&its->lock, flags);
476 
477 	its_wait_for_range_completion(its, cmd, next_cmd);
478 }
479 
480 static void its_send_inv(struct its_device *dev, u32 event_id)
481 {
482 	struct its_cmd_desc desc;
483 
484 	desc.its_inv_cmd.dev = dev;
485 	desc.its_inv_cmd.event_id = event_id;
486 
487 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
488 }
489 
490 static void its_send_mapd(struct its_device *dev, int valid)
491 {
492 	struct its_cmd_desc desc;
493 
494 	desc.its_mapd_cmd.dev = dev;
495 	desc.its_mapd_cmd.valid = !!valid;
496 
497 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
498 }
499 
500 static void its_send_mapc(struct its_node *its, struct its_collection *col,
501 			  int valid)
502 {
503 	struct its_cmd_desc desc;
504 
505 	desc.its_mapc_cmd.col = col;
506 	desc.its_mapc_cmd.valid = !!valid;
507 
508 	its_send_single_command(its, its_build_mapc_cmd, &desc);
509 }
510 
511 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
512 {
513 	struct its_cmd_desc desc;
514 
515 	desc.its_mapvi_cmd.dev = dev;
516 	desc.its_mapvi_cmd.phys_id = irq_id;
517 	desc.its_mapvi_cmd.event_id = id;
518 
519 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
520 }
521 
522 static void its_send_movi(struct its_device *dev,
523 			  struct its_collection *col, u32 id)
524 {
525 	struct its_cmd_desc desc;
526 
527 	desc.its_movi_cmd.dev = dev;
528 	desc.its_movi_cmd.col = col;
529 	desc.its_movi_cmd.event_id = id;
530 
531 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
532 }
533 
534 static void its_send_discard(struct its_device *dev, u32 id)
535 {
536 	struct its_cmd_desc desc;
537 
538 	desc.its_discard_cmd.dev = dev;
539 	desc.its_discard_cmd.event_id = id;
540 
541 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
542 }
543 
544 static void its_send_invall(struct its_node *its, struct its_collection *col)
545 {
546 	struct its_cmd_desc desc;
547 
548 	desc.its_invall_cmd.col = col;
549 
550 	its_send_single_command(its, its_build_invall_cmd, &desc);
551 }
552 
553 /*
554  * irqchip functions - assumes MSI, mostly.
555  */
556 
557 static inline u32 its_get_event_id(struct irq_data *d)
558 {
559 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
560 	return d->hwirq - its_dev->event_map.lpi_base;
561 }
562 
563 static void lpi_set_config(struct irq_data *d, bool enable)
564 {
565 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
566 	irq_hw_number_t hwirq = d->hwirq;
567 	u32 id = its_get_event_id(d);
568 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
569 
570 	if (enable)
571 		*cfg |= LPI_PROP_ENABLED;
572 	else
573 		*cfg &= ~LPI_PROP_ENABLED;
574 
575 	/*
576 	 * Make the above write visible to the redistributors.
577 	 * And yes, we're flushing exactly: One. Single. Byte.
578 	 * Humpf...
579 	 */
580 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
581 		__flush_dcache_area(cfg, sizeof(*cfg));
582 	else
583 		dsb(ishst);
584 	its_send_inv(its_dev, id);
585 }
586 
587 static void its_mask_irq(struct irq_data *d)
588 {
589 	lpi_set_config(d, false);
590 }
591 
592 static void its_unmask_irq(struct irq_data *d)
593 {
594 	lpi_set_config(d, true);
595 }
596 
597 static void its_eoi_irq(struct irq_data *d)
598 {
599 	gic_write_eoir(d->hwirq);
600 }
601 
602 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
603 			    bool force)
604 {
605 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
606 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
607 	struct its_collection *target_col;
608 	u32 id = its_get_event_id(d);
609 
610 	if (cpu >= nr_cpu_ids)
611 		return -EINVAL;
612 
613 	target_col = &its_dev->its->collections[cpu];
614 	its_send_movi(its_dev, target_col, id);
615 	its_dev->event_map.col_map[id] = cpu;
616 
617 	return IRQ_SET_MASK_OK_DONE;
618 }
619 
620 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
621 {
622 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
623 	struct its_node *its;
624 	u64 addr;
625 
626 	its = its_dev->its;
627 	addr = its->phys_base + GITS_TRANSLATER;
628 
629 	msg->address_lo		= addr & ((1UL << 32) - 1);
630 	msg->address_hi		= addr >> 32;
631 	msg->data		= its_get_event_id(d);
632 }
633 
634 static struct irq_chip its_irq_chip = {
635 	.name			= "ITS",
636 	.irq_mask		= its_mask_irq,
637 	.irq_unmask		= its_unmask_irq,
638 	.irq_eoi		= its_eoi_irq,
639 	.irq_set_affinity	= its_set_affinity,
640 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
641 };
642 
643 /*
644  * How we allocate LPIs:
645  *
646  * The GIC has id_bits bits for interrupt identifiers. From there, we
647  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
648  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
649  * bits to the right.
650  *
651  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
652  */
653 #define IRQS_PER_CHUNK_SHIFT	5
654 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
655 
656 static unsigned long *lpi_bitmap;
657 static u32 lpi_chunks;
658 static DEFINE_SPINLOCK(lpi_lock);
659 
660 static int its_lpi_to_chunk(int lpi)
661 {
662 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
663 }
664 
665 static int its_chunk_to_lpi(int chunk)
666 {
667 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
668 }
669 
670 static int its_lpi_init(u32 id_bits)
671 {
672 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
673 
674 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
675 			     GFP_KERNEL);
676 	if (!lpi_bitmap) {
677 		lpi_chunks = 0;
678 		return -ENOMEM;
679 	}
680 
681 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
682 	return 0;
683 }
684 
685 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
686 {
687 	unsigned long *bitmap = NULL;
688 	int chunk_id;
689 	int nr_chunks;
690 	int i;
691 
692 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
693 
694 	spin_lock(&lpi_lock);
695 
696 	do {
697 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
698 						      0, nr_chunks, 0);
699 		if (chunk_id < lpi_chunks)
700 			break;
701 
702 		nr_chunks--;
703 	} while (nr_chunks > 0);
704 
705 	if (!nr_chunks)
706 		goto out;
707 
708 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
709 			 GFP_ATOMIC);
710 	if (!bitmap)
711 		goto out;
712 
713 	for (i = 0; i < nr_chunks; i++)
714 		set_bit(chunk_id + i, lpi_bitmap);
715 
716 	*base = its_chunk_to_lpi(chunk_id);
717 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
718 
719 out:
720 	spin_unlock(&lpi_lock);
721 
722 	if (!bitmap)
723 		*base = *nr_ids = 0;
724 
725 	return bitmap;
726 }
727 
728 static void its_lpi_free(struct event_lpi_map *map)
729 {
730 	int base = map->lpi_base;
731 	int nr_ids = map->nr_lpis;
732 	int lpi;
733 
734 	spin_lock(&lpi_lock);
735 
736 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
737 		int chunk = its_lpi_to_chunk(lpi);
738 		BUG_ON(chunk > lpi_chunks);
739 		if (test_bit(chunk, lpi_bitmap)) {
740 			clear_bit(chunk, lpi_bitmap);
741 		} else {
742 			pr_err("Bad LPI chunk %d\n", chunk);
743 		}
744 	}
745 
746 	spin_unlock(&lpi_lock);
747 
748 	kfree(map->lpi_map);
749 	kfree(map->col_map);
750 }
751 
752 /*
753  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
754  * deal with (one configuration byte per interrupt). PENDBASE has to
755  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
756  */
757 #define LPI_PROPBASE_SZ		SZ_64K
758 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
759 
760 /*
761  * This is how many bits of ID we need, including the useless ones.
762  */
763 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
764 
765 #define LPI_PROP_DEFAULT_PRIO	0xa0
766 
767 static int __init its_alloc_lpi_tables(void)
768 {
769 	phys_addr_t paddr;
770 
771 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
772 					   get_order(LPI_PROPBASE_SZ));
773 	if (!gic_rdists->prop_page) {
774 		pr_err("Failed to allocate PROPBASE\n");
775 		return -ENOMEM;
776 	}
777 
778 	paddr = page_to_phys(gic_rdists->prop_page);
779 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
780 
781 	/* Priority 0xa0, Group-1, disabled */
782 	memset(page_address(gic_rdists->prop_page),
783 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
784 	       LPI_PROPBASE_SZ);
785 
786 	/* Make sure the GIC will observe the written configuration */
787 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
788 
789 	return 0;
790 }
791 
792 static const char *its_base_type_string[] = {
793 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
794 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
795 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
796 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
797 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
798 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
799 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
800 };
801 
802 static void its_free_tables(struct its_node *its)
803 {
804 	int i;
805 
806 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
807 		if (its->tables[i]) {
808 			free_page((unsigned long)its->tables[i]);
809 			its->tables[i] = NULL;
810 		}
811 	}
812 }
813 
814 static int its_alloc_tables(const char *node_name, struct its_node *its)
815 {
816 	int err;
817 	int i;
818 	int psz = SZ_64K;
819 	u64 shr = GITS_BASER_InnerShareable;
820 	u64 cache = GITS_BASER_WaWb;
821 
822 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
823 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
824 		u64 type = GITS_BASER_TYPE(val);
825 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
826 		int order = get_order(psz);
827 		int alloc_size;
828 		u64 tmp;
829 		void *base;
830 
831 		if (type == GITS_BASER_TYPE_NONE)
832 			continue;
833 
834 		/*
835 		 * Allocate as many entries as required to fit the
836 		 * range of device IDs that the ITS can grok... The ID
837 		 * space being incredibly sparse, this results in a
838 		 * massive waste of memory.
839 		 *
840 		 * For other tables, only allocate a single page.
841 		 */
842 		if (type == GITS_BASER_TYPE_DEVICE) {
843 			u64 typer = readq_relaxed(its->base + GITS_TYPER);
844 			u32 ids = GITS_TYPER_DEVBITS(typer);
845 
846 			/*
847 			 * 'order' was initialized earlier to the default page
848 			 * granule of the the ITS.  We can't have an allocation
849 			 * smaller than that.  If the requested allocation
850 			 * is smaller, round up to the default page granule.
851 			 */
852 			order = max(get_order((1UL << ids) * entry_size),
853 				    order);
854 			if (order >= MAX_ORDER) {
855 				order = MAX_ORDER - 1;
856 				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
857 					node_name, order);
858 			}
859 		}
860 
861 		alloc_size = (1 << order) * PAGE_SIZE;
862 		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
863 		if (!base) {
864 			err = -ENOMEM;
865 			goto out_free;
866 		}
867 
868 		its->tables[i] = base;
869 
870 retry_baser:
871 		val = (virt_to_phys(base) 				 |
872 		       (type << GITS_BASER_TYPE_SHIFT)			 |
873 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
874 		       cache						 |
875 		       shr						 |
876 		       GITS_BASER_VALID);
877 
878 		switch (psz) {
879 		case SZ_4K:
880 			val |= GITS_BASER_PAGE_SIZE_4K;
881 			break;
882 		case SZ_16K:
883 			val |= GITS_BASER_PAGE_SIZE_16K;
884 			break;
885 		case SZ_64K:
886 			val |= GITS_BASER_PAGE_SIZE_64K;
887 			break;
888 		}
889 
890 		val |= (alloc_size / psz) - 1;
891 
892 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
893 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
894 
895 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
896 			/*
897 			 * Shareability didn't stick. Just use
898 			 * whatever the read reported, which is likely
899 			 * to be the only thing this redistributor
900 			 * supports. If that's zero, make it
901 			 * non-cacheable as well.
902 			 */
903 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
904 			if (!shr) {
905 				cache = GITS_BASER_nC;
906 				__flush_dcache_area(base, alloc_size);
907 			}
908 			goto retry_baser;
909 		}
910 
911 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
912 			/*
913 			 * Page size didn't stick. Let's try a smaller
914 			 * size and retry. If we reach 4K, then
915 			 * something is horribly wrong...
916 			 */
917 			switch (psz) {
918 			case SZ_16K:
919 				psz = SZ_4K;
920 				goto retry_baser;
921 			case SZ_64K:
922 				psz = SZ_16K;
923 				goto retry_baser;
924 			}
925 		}
926 
927 		if (val != tmp) {
928 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
929 			       node_name, i,
930 			       (unsigned long) val, (unsigned long) tmp);
931 			err = -ENXIO;
932 			goto out_free;
933 		}
934 
935 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
936 			(int)(alloc_size / entry_size),
937 			its_base_type_string[type],
938 			(unsigned long)virt_to_phys(base),
939 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
940 	}
941 
942 	return 0;
943 
944 out_free:
945 	its_free_tables(its);
946 
947 	return err;
948 }
949 
950 static int its_alloc_collections(struct its_node *its)
951 {
952 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
953 				   GFP_KERNEL);
954 	if (!its->collections)
955 		return -ENOMEM;
956 
957 	return 0;
958 }
959 
960 static void its_cpu_init_lpis(void)
961 {
962 	void __iomem *rbase = gic_data_rdist_rd_base();
963 	struct page *pend_page;
964 	u64 val, tmp;
965 
966 	/* If we didn't allocate the pending table yet, do it now */
967 	pend_page = gic_data_rdist()->pend_page;
968 	if (!pend_page) {
969 		phys_addr_t paddr;
970 		/*
971 		 * The pending pages have to be at least 64kB aligned,
972 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
973 		 */
974 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
975 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
976 		if (!pend_page) {
977 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
978 			       smp_processor_id());
979 			return;
980 		}
981 
982 		/* Make sure the GIC will observe the zero-ed page */
983 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
984 
985 		paddr = page_to_phys(pend_page);
986 		pr_info("CPU%d: using LPI pending table @%pa\n",
987 			smp_processor_id(), &paddr);
988 		gic_data_rdist()->pend_page = pend_page;
989 	}
990 
991 	/* Disable LPIs */
992 	val = readl_relaxed(rbase + GICR_CTLR);
993 	val &= ~GICR_CTLR_ENABLE_LPIS;
994 	writel_relaxed(val, rbase + GICR_CTLR);
995 
996 	/*
997 	 * Make sure any change to the table is observable by the GIC.
998 	 */
999 	dsb(sy);
1000 
1001 	/* set PROPBASE */
1002 	val = (page_to_phys(gic_rdists->prop_page) |
1003 	       GICR_PROPBASER_InnerShareable |
1004 	       GICR_PROPBASER_WaWb |
1005 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1006 
1007 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1008 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1009 
1010 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1011 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1012 			/*
1013 			 * The HW reports non-shareable, we must
1014 			 * remove the cacheability attributes as
1015 			 * well.
1016 			 */
1017 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1018 				 GICR_PROPBASER_CACHEABILITY_MASK);
1019 			val |= GICR_PROPBASER_nC;
1020 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1021 		}
1022 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1023 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1024 	}
1025 
1026 	/* set PENDBASE */
1027 	val = (page_to_phys(pend_page) |
1028 	       GICR_PENDBASER_InnerShareable |
1029 	       GICR_PENDBASER_WaWb);
1030 
1031 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1032 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1033 
1034 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1035 		/*
1036 		 * The HW reports non-shareable, we must remove the
1037 		 * cacheability attributes as well.
1038 		 */
1039 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1040 			 GICR_PENDBASER_CACHEABILITY_MASK);
1041 		val |= GICR_PENDBASER_nC;
1042 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1043 	}
1044 
1045 	/* Enable LPIs */
1046 	val = readl_relaxed(rbase + GICR_CTLR);
1047 	val |= GICR_CTLR_ENABLE_LPIS;
1048 	writel_relaxed(val, rbase + GICR_CTLR);
1049 
1050 	/* Make sure the GIC has seen the above */
1051 	dsb(sy);
1052 }
1053 
1054 static void its_cpu_init_collection(void)
1055 {
1056 	struct its_node *its;
1057 	int cpu;
1058 
1059 	spin_lock(&its_lock);
1060 	cpu = smp_processor_id();
1061 
1062 	list_for_each_entry(its, &its_nodes, entry) {
1063 		u64 target;
1064 
1065 		/*
1066 		 * We now have to bind each collection to its target
1067 		 * redistributor.
1068 		 */
1069 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1070 			/*
1071 			 * This ITS wants the physical address of the
1072 			 * redistributor.
1073 			 */
1074 			target = gic_data_rdist()->phys_base;
1075 		} else {
1076 			/*
1077 			 * This ITS wants a linear CPU number.
1078 			 */
1079 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1080 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1081 		}
1082 
1083 		/* Perform collection mapping */
1084 		its->collections[cpu].target_address = target;
1085 		its->collections[cpu].col_id = cpu;
1086 
1087 		its_send_mapc(its, &its->collections[cpu], 1);
1088 		its_send_invall(its, &its->collections[cpu]);
1089 	}
1090 
1091 	spin_unlock(&its_lock);
1092 }
1093 
1094 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1095 {
1096 	struct its_device *its_dev = NULL, *tmp;
1097 	unsigned long flags;
1098 
1099 	raw_spin_lock_irqsave(&its->lock, flags);
1100 
1101 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1102 		if (tmp->device_id == dev_id) {
1103 			its_dev = tmp;
1104 			break;
1105 		}
1106 	}
1107 
1108 	raw_spin_unlock_irqrestore(&its->lock, flags);
1109 
1110 	return its_dev;
1111 }
1112 
1113 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1114 					    int nvecs)
1115 {
1116 	struct its_device *dev;
1117 	unsigned long *lpi_map;
1118 	unsigned long flags;
1119 	u16 *col_map = NULL;
1120 	void *itt;
1121 	int lpi_base;
1122 	int nr_lpis;
1123 	int nr_ites;
1124 	int sz;
1125 
1126 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1127 	/*
1128 	 * At least one bit of EventID is being used, hence a minimum
1129 	 * of two entries. No, the architecture doesn't let you
1130 	 * express an ITT with a single entry.
1131 	 */
1132 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1133 	sz = nr_ites * its->ite_size;
1134 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1135 	itt = kzalloc(sz, GFP_KERNEL);
1136 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1137 	if (lpi_map)
1138 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1139 
1140 	if (!dev || !itt || !lpi_map || !col_map) {
1141 		kfree(dev);
1142 		kfree(itt);
1143 		kfree(lpi_map);
1144 		kfree(col_map);
1145 		return NULL;
1146 	}
1147 
1148 	__flush_dcache_area(itt, sz);
1149 
1150 	dev->its = its;
1151 	dev->itt = itt;
1152 	dev->nr_ites = nr_ites;
1153 	dev->event_map.lpi_map = lpi_map;
1154 	dev->event_map.col_map = col_map;
1155 	dev->event_map.lpi_base = lpi_base;
1156 	dev->event_map.nr_lpis = nr_lpis;
1157 	dev->device_id = dev_id;
1158 	INIT_LIST_HEAD(&dev->entry);
1159 
1160 	raw_spin_lock_irqsave(&its->lock, flags);
1161 	list_add(&dev->entry, &its->its_device_list);
1162 	raw_spin_unlock_irqrestore(&its->lock, flags);
1163 
1164 	/* Map device to its ITT */
1165 	its_send_mapd(dev, 1);
1166 
1167 	return dev;
1168 }
1169 
1170 static void its_free_device(struct its_device *its_dev)
1171 {
1172 	unsigned long flags;
1173 
1174 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1175 	list_del(&its_dev->entry);
1176 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1177 	kfree(its_dev->itt);
1178 	kfree(its_dev);
1179 }
1180 
1181 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1182 {
1183 	int idx;
1184 
1185 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1186 				  dev->event_map.nr_lpis);
1187 	if (idx == dev->event_map.nr_lpis)
1188 		return -ENOSPC;
1189 
1190 	*hwirq = dev->event_map.lpi_base + idx;
1191 	set_bit(idx, dev->event_map.lpi_map);
1192 
1193 	return 0;
1194 }
1195 
1196 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1197 			   int nvec, msi_alloc_info_t *info)
1198 {
1199 	struct its_node *its;
1200 	struct its_device *its_dev;
1201 	struct msi_domain_info *msi_info;
1202 	u32 dev_id;
1203 
1204 	/*
1205 	 * We ignore "dev" entierely, and rely on the dev_id that has
1206 	 * been passed via the scratchpad. This limits this domain's
1207 	 * usefulness to upper layers that definitely know that they
1208 	 * are built on top of the ITS.
1209 	 */
1210 	dev_id = info->scratchpad[0].ul;
1211 
1212 	msi_info = msi_get_domain_info(domain);
1213 	its = msi_info->data;
1214 
1215 	its_dev = its_find_device(its, dev_id);
1216 	if (its_dev) {
1217 		/*
1218 		 * We already have seen this ID, probably through
1219 		 * another alias (PCI bridge of some sort). No need to
1220 		 * create the device.
1221 		 */
1222 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1223 		goto out;
1224 	}
1225 
1226 	its_dev = its_create_device(its, dev_id, nvec);
1227 	if (!its_dev)
1228 		return -ENOMEM;
1229 
1230 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1231 out:
1232 	info->scratchpad[0].ptr = its_dev;
1233 	return 0;
1234 }
1235 
1236 static struct msi_domain_ops its_msi_domain_ops = {
1237 	.msi_prepare	= its_msi_prepare,
1238 };
1239 
1240 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1241 				    unsigned int virq,
1242 				    irq_hw_number_t hwirq)
1243 {
1244 	struct of_phandle_args args;
1245 
1246 	args.np = domain->parent->of_node;
1247 	args.args_count = 3;
1248 	args.args[0] = GIC_IRQ_TYPE_LPI;
1249 	args.args[1] = hwirq;
1250 	args.args[2] = IRQ_TYPE_EDGE_RISING;
1251 
1252 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &args);
1253 }
1254 
1255 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1256 				unsigned int nr_irqs, void *args)
1257 {
1258 	msi_alloc_info_t *info = args;
1259 	struct its_device *its_dev = info->scratchpad[0].ptr;
1260 	irq_hw_number_t hwirq;
1261 	int err;
1262 	int i;
1263 
1264 	for (i = 0; i < nr_irqs; i++) {
1265 		err = its_alloc_device_irq(its_dev, &hwirq);
1266 		if (err)
1267 			return err;
1268 
1269 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1270 		if (err)
1271 			return err;
1272 
1273 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1274 					      hwirq, &its_irq_chip, its_dev);
1275 		pr_debug("ID:%d pID:%d vID:%d\n",
1276 			 (int)(hwirq - its_dev->event_map.lpi_base),
1277 			 (int) hwirq, virq + i);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static void its_irq_domain_activate(struct irq_domain *domain,
1284 				    struct irq_data *d)
1285 {
1286 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1287 	u32 event = its_get_event_id(d);
1288 
1289 	/* Bind the LPI to the first possible CPU */
1290 	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1291 
1292 	/* Map the GIC IRQ and event to the device */
1293 	its_send_mapvi(its_dev, d->hwirq, event);
1294 }
1295 
1296 static void its_irq_domain_deactivate(struct irq_domain *domain,
1297 				      struct irq_data *d)
1298 {
1299 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1300 	u32 event = its_get_event_id(d);
1301 
1302 	/* Stop the delivery of interrupts */
1303 	its_send_discard(its_dev, event);
1304 }
1305 
1306 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1307 				unsigned int nr_irqs)
1308 {
1309 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1310 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311 	int i;
1312 
1313 	for (i = 0; i < nr_irqs; i++) {
1314 		struct irq_data *data = irq_domain_get_irq_data(domain,
1315 								virq + i);
1316 		u32 event = its_get_event_id(data);
1317 
1318 		/* Mark interrupt index as unused */
1319 		clear_bit(event, its_dev->event_map.lpi_map);
1320 
1321 		/* Nuke the entry in the domain */
1322 		irq_domain_reset_irq_data(data);
1323 	}
1324 
1325 	/* If all interrupts have been freed, start mopping the floor */
1326 	if (bitmap_empty(its_dev->event_map.lpi_map,
1327 			 its_dev->event_map.nr_lpis)) {
1328 		its_lpi_free(&its_dev->event_map);
1329 
1330 		/* Unmap device/itt */
1331 		its_send_mapd(its_dev, 0);
1332 		its_free_device(its_dev);
1333 	}
1334 
1335 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1336 }
1337 
1338 static const struct irq_domain_ops its_domain_ops = {
1339 	.alloc			= its_irq_domain_alloc,
1340 	.free			= its_irq_domain_free,
1341 	.activate		= its_irq_domain_activate,
1342 	.deactivate		= its_irq_domain_deactivate,
1343 };
1344 
1345 static int its_force_quiescent(void __iomem *base)
1346 {
1347 	u32 count = 1000000;	/* 1s */
1348 	u32 val;
1349 
1350 	val = readl_relaxed(base + GITS_CTLR);
1351 	if (val & GITS_CTLR_QUIESCENT)
1352 		return 0;
1353 
1354 	/* Disable the generation of all interrupts to this ITS */
1355 	val &= ~GITS_CTLR_ENABLE;
1356 	writel_relaxed(val, base + GITS_CTLR);
1357 
1358 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1359 	while (1) {
1360 		val = readl_relaxed(base + GITS_CTLR);
1361 		if (val & GITS_CTLR_QUIESCENT)
1362 			return 0;
1363 
1364 		count--;
1365 		if (!count)
1366 			return -EBUSY;
1367 
1368 		cpu_relax();
1369 		udelay(1);
1370 	}
1371 }
1372 
1373 static int its_probe(struct device_node *node, struct irq_domain *parent)
1374 {
1375 	struct resource res;
1376 	struct its_node *its;
1377 	void __iomem *its_base;
1378 	struct irq_domain *inner_domain;
1379 	u32 val;
1380 	u64 baser, tmp;
1381 	int err;
1382 
1383 	err = of_address_to_resource(node, 0, &res);
1384 	if (err) {
1385 		pr_warn("%s: no regs?\n", node->full_name);
1386 		return -ENXIO;
1387 	}
1388 
1389 	its_base = ioremap(res.start, resource_size(&res));
1390 	if (!its_base) {
1391 		pr_warn("%s: unable to map registers\n", node->full_name);
1392 		return -ENOMEM;
1393 	}
1394 
1395 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1396 	if (val != 0x30 && val != 0x40) {
1397 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1398 		err = -ENODEV;
1399 		goto out_unmap;
1400 	}
1401 
1402 	err = its_force_quiescent(its_base);
1403 	if (err) {
1404 		pr_warn("%s: failed to quiesce, giving up\n",
1405 			node->full_name);
1406 		goto out_unmap;
1407 	}
1408 
1409 	pr_info("ITS: %s\n", node->full_name);
1410 
1411 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1412 	if (!its) {
1413 		err = -ENOMEM;
1414 		goto out_unmap;
1415 	}
1416 
1417 	raw_spin_lock_init(&its->lock);
1418 	INIT_LIST_HEAD(&its->entry);
1419 	INIT_LIST_HEAD(&its->its_device_list);
1420 	its->base = its_base;
1421 	its->phys_base = res.start;
1422 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1423 
1424 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1425 	if (!its->cmd_base) {
1426 		err = -ENOMEM;
1427 		goto out_free_its;
1428 	}
1429 	its->cmd_write = its->cmd_base;
1430 
1431 	err = its_alloc_tables(node->full_name, its);
1432 	if (err)
1433 		goto out_free_cmd;
1434 
1435 	err = its_alloc_collections(its);
1436 	if (err)
1437 		goto out_free_tables;
1438 
1439 	baser = (virt_to_phys(its->cmd_base)	|
1440 		 GITS_CBASER_WaWb		|
1441 		 GITS_CBASER_InnerShareable	|
1442 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1443 		 GITS_CBASER_VALID);
1444 
1445 	writeq_relaxed(baser, its->base + GITS_CBASER);
1446 	tmp = readq_relaxed(its->base + GITS_CBASER);
1447 
1448 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1449 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1450 			/*
1451 			 * The HW reports non-shareable, we must
1452 			 * remove the cacheability attributes as
1453 			 * well.
1454 			 */
1455 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1456 				   GITS_CBASER_CACHEABILITY_MASK);
1457 			baser |= GITS_CBASER_nC;
1458 			writeq_relaxed(baser, its->base + GITS_CBASER);
1459 		}
1460 		pr_info("ITS: using cache flushing for cmd queue\n");
1461 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1462 	}
1463 
1464 	writeq_relaxed(0, its->base + GITS_CWRITER);
1465 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1466 
1467 	if (of_property_read_bool(node, "msi-controller")) {
1468 		struct msi_domain_info *info;
1469 
1470 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1471 		if (!info) {
1472 			err = -ENOMEM;
1473 			goto out_free_tables;
1474 		}
1475 
1476 		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1477 		if (!inner_domain) {
1478 			err = -ENOMEM;
1479 			kfree(info);
1480 			goto out_free_tables;
1481 		}
1482 
1483 		inner_domain->parent = parent;
1484 		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1485 		info->ops = &its_msi_domain_ops;
1486 		info->data = its;
1487 		inner_domain->host_data = info;
1488 	}
1489 
1490 	spin_lock(&its_lock);
1491 	list_add(&its->entry, &its_nodes);
1492 	spin_unlock(&its_lock);
1493 
1494 	return 0;
1495 
1496 out_free_tables:
1497 	its_free_tables(its);
1498 out_free_cmd:
1499 	kfree(its->cmd_base);
1500 out_free_its:
1501 	kfree(its);
1502 out_unmap:
1503 	iounmap(its_base);
1504 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1505 	return err;
1506 }
1507 
1508 static bool gic_rdists_supports_plpis(void)
1509 {
1510 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1511 }
1512 
1513 int its_cpu_init(void)
1514 {
1515 	if (!list_empty(&its_nodes)) {
1516 		if (!gic_rdists_supports_plpis()) {
1517 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1518 			return -ENXIO;
1519 		}
1520 		its_cpu_init_lpis();
1521 		its_cpu_init_collection();
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static struct of_device_id its_device_id[] = {
1528 	{	.compatible	= "arm,gic-v3-its",	},
1529 	{},
1530 };
1531 
1532 int its_init(struct device_node *node, struct rdists *rdists,
1533 	     struct irq_domain *parent_domain)
1534 {
1535 	struct device_node *np;
1536 
1537 	for (np = of_find_matching_node(node, its_device_id); np;
1538 	     np = of_find_matching_node(np, its_device_id)) {
1539 		its_probe(np, parent_domain);
1540 	}
1541 
1542 	if (list_empty(&its_nodes)) {
1543 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1544 		return -ENXIO;
1545 	}
1546 
1547 	gic_rdists = rdists;
1548 	gic_root_node = node;
1549 
1550 	its_alloc_lpi_tables();
1551 	its_lpi_init(rdists->id_bits);
1552 
1553 	return 0;
1554 }
1555