1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static bool rdists_support_shareable(void) 211 { 212 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 213 } 214 215 static u16 get_its_list(struct its_vm *vm) 216 { 217 struct its_node *its; 218 unsigned long its_list = 0; 219 220 list_for_each_entry(its, &its_nodes, entry) { 221 if (!is_v4(its)) 222 continue; 223 224 if (require_its_list_vmovp(vm, its)) 225 __set_bit(its->list_nr, &its_list); 226 } 227 228 return (u16)its_list; 229 } 230 231 static inline u32 its_get_event_id(struct irq_data *d) 232 { 233 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 234 return d->hwirq - its_dev->event_map.lpi_base; 235 } 236 237 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 238 u32 event) 239 { 240 struct its_node *its = its_dev->its; 241 242 return its->collections + its_dev->event_map.col_map[event]; 243 } 244 245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 246 u32 event) 247 { 248 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 249 return NULL; 250 251 return &its_dev->event_map.vlpi_maps[event]; 252 } 253 254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 255 { 256 if (irqd_is_forwarded_to_vcpu(d)) { 257 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 258 u32 event = its_get_event_id(d); 259 260 return dev_event_to_vlpi_map(its_dev, event); 261 } 262 263 return NULL; 264 } 265 266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 267 { 268 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 269 return vpe->col_idx; 270 } 271 272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 273 { 274 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 275 } 276 277 static struct irq_chip its_vpe_irq_chip; 278 279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 280 { 281 struct its_vpe *vpe = NULL; 282 int cpu; 283 284 if (d->chip == &its_vpe_irq_chip) { 285 vpe = irq_data_get_irq_chip_data(d); 286 } else { 287 struct its_vlpi_map *map = get_vlpi_map(d); 288 if (map) 289 vpe = map->vpe; 290 } 291 292 if (vpe) { 293 cpu = vpe_to_cpuid_lock(vpe, flags); 294 } else { 295 /* Physical LPIs are already locked via the irq_desc lock */ 296 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 297 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 298 /* Keep GCC quiet... */ 299 *flags = 0; 300 } 301 302 return cpu; 303 } 304 305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 306 { 307 struct its_vpe *vpe = NULL; 308 309 if (d->chip == &its_vpe_irq_chip) { 310 vpe = irq_data_get_irq_chip_data(d); 311 } else { 312 struct its_vlpi_map *map = get_vlpi_map(d); 313 if (map) 314 vpe = map->vpe; 315 } 316 317 if (vpe) 318 vpe_to_cpuid_unlock(vpe, flags); 319 } 320 321 static struct its_collection *valid_col(struct its_collection *col) 322 { 323 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 324 return NULL; 325 326 return col; 327 } 328 329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 330 { 331 if (valid_col(its->collections + vpe->col_idx)) 332 return vpe; 333 334 return NULL; 335 } 336 337 /* 338 * ITS command descriptors - parameters to be encoded in a command 339 * block. 340 */ 341 struct its_cmd_desc { 342 union { 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_inv_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_clear_cmd; 352 353 struct { 354 struct its_device *dev; 355 u32 event_id; 356 } its_int_cmd; 357 358 struct { 359 struct its_device *dev; 360 int valid; 361 } its_mapd_cmd; 362 363 struct { 364 struct its_collection *col; 365 int valid; 366 } its_mapc_cmd; 367 368 struct { 369 struct its_device *dev; 370 u32 phys_id; 371 u32 event_id; 372 } its_mapti_cmd; 373 374 struct { 375 struct its_device *dev; 376 struct its_collection *col; 377 u32 event_id; 378 } its_movi_cmd; 379 380 struct { 381 struct its_device *dev; 382 u32 event_id; 383 } its_discard_cmd; 384 385 struct { 386 struct its_collection *col; 387 } its_invall_cmd; 388 389 struct { 390 struct its_vpe *vpe; 391 } its_vinvall_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 bool valid; 397 } its_vmapp_cmd; 398 399 struct { 400 struct its_vpe *vpe; 401 struct its_device *dev; 402 u32 virt_id; 403 u32 event_id; 404 bool db_enabled; 405 } its_vmapti_cmd; 406 407 struct { 408 struct its_vpe *vpe; 409 struct its_device *dev; 410 u32 event_id; 411 bool db_enabled; 412 } its_vmovi_cmd; 413 414 struct { 415 struct its_vpe *vpe; 416 struct its_collection *col; 417 u16 seq_num; 418 u16 its_list; 419 } its_vmovp_cmd; 420 421 struct { 422 struct its_vpe *vpe; 423 } its_invdb_cmd; 424 425 struct { 426 struct its_vpe *vpe; 427 u8 sgi; 428 u8 priority; 429 bool enable; 430 bool group; 431 bool clear; 432 } its_vsgi_cmd; 433 }; 434 }; 435 436 /* 437 * The ITS command block, which is what the ITS actually parses. 438 */ 439 struct its_cmd_block { 440 union { 441 u64 raw_cmd[4]; 442 __le64 raw_cmd_le[4]; 443 }; 444 }; 445 446 #define ITS_CMD_QUEUE_SZ SZ_64K 447 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 448 449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 450 struct its_cmd_block *, 451 struct its_cmd_desc *); 452 453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 454 struct its_cmd_block *, 455 struct its_cmd_desc *); 456 457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 458 { 459 u64 mask = GENMASK_ULL(h, l); 460 *raw_cmd &= ~mask; 461 *raw_cmd |= (val << l) & mask; 462 } 463 464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 467 } 468 469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 470 { 471 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 472 } 473 474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 477 } 478 479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 482 } 483 484 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 485 { 486 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 487 } 488 489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 492 } 493 494 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 497 } 498 499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 502 } 503 504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 505 { 506 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 507 } 508 509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 510 { 511 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 512 } 513 514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 517 } 518 519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 522 } 523 524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 525 { 526 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 527 } 528 529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 530 { 531 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 532 } 533 534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 535 { 536 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 537 } 538 539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 542 } 543 544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 545 { 546 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 547 } 548 549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 552 } 553 554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 557 } 558 559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 560 { 561 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 562 } 563 564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 565 u32 vpe_db_lpi) 566 { 567 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 568 } 569 570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 571 u32 vpe_db_lpi) 572 { 573 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 574 } 575 576 static void its_encode_db(struct its_cmd_block *cmd, bool db) 577 { 578 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 579 } 580 581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 584 } 585 586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 589 } 590 591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 594 } 595 596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 599 } 600 601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 602 { 603 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 604 } 605 606 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 607 { 608 /* Let's fixup BE commands */ 609 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 610 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 611 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 612 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 613 } 614 615 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 unsigned long itt_addr; 620 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 621 622 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 623 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 624 625 its_encode_cmd(cmd, GITS_CMD_MAPD); 626 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 627 its_encode_size(cmd, size - 1); 628 its_encode_itt(cmd, itt_addr); 629 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 630 631 its_fixup_cmd(cmd); 632 633 return NULL; 634 } 635 636 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 637 struct its_cmd_block *cmd, 638 struct its_cmd_desc *desc) 639 { 640 its_encode_cmd(cmd, GITS_CMD_MAPC); 641 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 642 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 643 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 644 645 its_fixup_cmd(cmd); 646 647 return desc->its_mapc_cmd.col; 648 } 649 650 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 651 struct its_cmd_block *cmd, 652 struct its_cmd_desc *desc) 653 { 654 struct its_collection *col; 655 656 col = dev_event_to_col(desc->its_mapti_cmd.dev, 657 desc->its_mapti_cmd.event_id); 658 659 its_encode_cmd(cmd, GITS_CMD_MAPTI); 660 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 661 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 662 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 663 its_encode_collection(cmd, col->col_id); 664 665 its_fixup_cmd(cmd); 666 667 return valid_col(col); 668 } 669 670 static struct its_collection *its_build_movi_cmd(struct its_node *its, 671 struct its_cmd_block *cmd, 672 struct its_cmd_desc *desc) 673 { 674 struct its_collection *col; 675 676 col = dev_event_to_col(desc->its_movi_cmd.dev, 677 desc->its_movi_cmd.event_id); 678 679 its_encode_cmd(cmd, GITS_CMD_MOVI); 680 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 681 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 682 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 683 684 its_fixup_cmd(cmd); 685 686 return valid_col(col); 687 } 688 689 static struct its_collection *its_build_discard_cmd(struct its_node *its, 690 struct its_cmd_block *cmd, 691 struct its_cmd_desc *desc) 692 { 693 struct its_collection *col; 694 695 col = dev_event_to_col(desc->its_discard_cmd.dev, 696 desc->its_discard_cmd.event_id); 697 698 its_encode_cmd(cmd, GITS_CMD_DISCARD); 699 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 700 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 701 702 its_fixup_cmd(cmd); 703 704 return valid_col(col); 705 } 706 707 static struct its_collection *its_build_inv_cmd(struct its_node *its, 708 struct its_cmd_block *cmd, 709 struct its_cmd_desc *desc) 710 { 711 struct its_collection *col; 712 713 col = dev_event_to_col(desc->its_inv_cmd.dev, 714 desc->its_inv_cmd.event_id); 715 716 its_encode_cmd(cmd, GITS_CMD_INV); 717 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 718 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 719 720 its_fixup_cmd(cmd); 721 722 return valid_col(col); 723 } 724 725 static struct its_collection *its_build_int_cmd(struct its_node *its, 726 struct its_cmd_block *cmd, 727 struct its_cmd_desc *desc) 728 { 729 struct its_collection *col; 730 731 col = dev_event_to_col(desc->its_int_cmd.dev, 732 desc->its_int_cmd.event_id); 733 734 its_encode_cmd(cmd, GITS_CMD_INT); 735 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 736 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 737 738 its_fixup_cmd(cmd); 739 740 return valid_col(col); 741 } 742 743 static struct its_collection *its_build_clear_cmd(struct its_node *its, 744 struct its_cmd_block *cmd, 745 struct its_cmd_desc *desc) 746 { 747 struct its_collection *col; 748 749 col = dev_event_to_col(desc->its_clear_cmd.dev, 750 desc->its_clear_cmd.event_id); 751 752 its_encode_cmd(cmd, GITS_CMD_CLEAR); 753 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 754 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_col(col); 759 } 760 761 static struct its_collection *its_build_invall_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 its_encode_cmd(cmd, GITS_CMD_INVALL); 766 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 767 768 its_fixup_cmd(cmd); 769 770 return desc->its_invall_cmd.col; 771 } 772 773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 774 struct its_cmd_block *cmd, 775 struct its_cmd_desc *desc) 776 { 777 its_encode_cmd(cmd, GITS_CMD_VINVALL); 778 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 779 780 its_fixup_cmd(cmd); 781 782 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 783 } 784 785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 786 struct its_cmd_block *cmd, 787 struct its_cmd_desc *desc) 788 { 789 unsigned long vpt_addr, vconf_addr; 790 u64 target; 791 bool alloc; 792 793 its_encode_cmd(cmd, GITS_CMD_VMAPP); 794 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 795 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 796 797 if (!desc->its_vmapp_cmd.valid) { 798 if (is_v4_1(its)) { 799 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 800 its_encode_alloc(cmd, alloc); 801 } 802 803 goto out; 804 } 805 806 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 807 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 808 809 its_encode_target(cmd, target); 810 its_encode_vpt_addr(cmd, vpt_addr); 811 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 812 813 if (!is_v4_1(its)) 814 goto out; 815 816 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 817 818 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 819 820 its_encode_alloc(cmd, alloc); 821 822 /* 823 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 824 * to be unmapped first, and in this case, we may remap the vPE 825 * back while the VPT is not empty. So we can't assume that the 826 * VPT is empty on map. This is why we never advertise PTZ. 827 */ 828 its_encode_ptz(cmd, false); 829 its_encode_vconf_addr(cmd, vconf_addr); 830 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 831 832 out: 833 its_fixup_cmd(cmd); 834 835 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 836 } 837 838 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 839 struct its_cmd_block *cmd, 840 struct its_cmd_desc *desc) 841 { 842 u32 db; 843 844 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 845 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 846 else 847 db = 1023; 848 849 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 850 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 851 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 852 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 853 its_encode_db_phys_id(cmd, db); 854 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 855 856 its_fixup_cmd(cmd); 857 858 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 859 } 860 861 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 862 struct its_cmd_block *cmd, 863 struct its_cmd_desc *desc) 864 { 865 u32 db; 866 867 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 868 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 869 else 870 db = 1023; 871 872 its_encode_cmd(cmd, GITS_CMD_VMOVI); 873 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 874 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 875 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 876 its_encode_db_phys_id(cmd, db); 877 its_encode_db_valid(cmd, true); 878 879 its_fixup_cmd(cmd); 880 881 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 882 } 883 884 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 885 struct its_cmd_block *cmd, 886 struct its_cmd_desc *desc) 887 { 888 u64 target; 889 890 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 891 its_encode_cmd(cmd, GITS_CMD_VMOVP); 892 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 893 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 894 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 895 its_encode_target(cmd, target); 896 897 if (is_v4_1(its)) { 898 its_encode_db(cmd, true); 899 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 900 } 901 902 its_fixup_cmd(cmd); 903 904 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 905 } 906 907 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 908 struct its_cmd_block *cmd, 909 struct its_cmd_desc *desc) 910 { 911 struct its_vlpi_map *map; 912 913 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 914 desc->its_inv_cmd.event_id); 915 916 its_encode_cmd(cmd, GITS_CMD_INV); 917 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 918 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 919 920 its_fixup_cmd(cmd); 921 922 return valid_vpe(its, map->vpe); 923 } 924 925 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 926 struct its_cmd_block *cmd, 927 struct its_cmd_desc *desc) 928 { 929 struct its_vlpi_map *map; 930 931 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 932 desc->its_int_cmd.event_id); 933 934 its_encode_cmd(cmd, GITS_CMD_INT); 935 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 936 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 937 938 its_fixup_cmd(cmd); 939 940 return valid_vpe(its, map->vpe); 941 } 942 943 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 944 struct its_cmd_block *cmd, 945 struct its_cmd_desc *desc) 946 { 947 struct its_vlpi_map *map; 948 949 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 950 desc->its_clear_cmd.event_id); 951 952 its_encode_cmd(cmd, GITS_CMD_CLEAR); 953 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 954 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 955 956 its_fixup_cmd(cmd); 957 958 return valid_vpe(its, map->vpe); 959 } 960 961 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 962 struct its_cmd_block *cmd, 963 struct its_cmd_desc *desc) 964 { 965 if (WARN_ON(!is_v4_1(its))) 966 return NULL; 967 968 its_encode_cmd(cmd, GITS_CMD_INVDB); 969 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 970 971 its_fixup_cmd(cmd); 972 973 return valid_vpe(its, desc->its_invdb_cmd.vpe); 974 } 975 976 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 977 struct its_cmd_block *cmd, 978 struct its_cmd_desc *desc) 979 { 980 if (WARN_ON(!is_v4_1(its))) 981 return NULL; 982 983 its_encode_cmd(cmd, GITS_CMD_VSGI); 984 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 985 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 986 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 987 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 988 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 989 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 990 991 its_fixup_cmd(cmd); 992 993 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 994 } 995 996 static u64 its_cmd_ptr_to_offset(struct its_node *its, 997 struct its_cmd_block *ptr) 998 { 999 return (ptr - its->cmd_base) * sizeof(*ptr); 1000 } 1001 1002 static int its_queue_full(struct its_node *its) 1003 { 1004 int widx; 1005 int ridx; 1006 1007 widx = its->cmd_write - its->cmd_base; 1008 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1009 1010 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1011 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1012 return 1; 1013 1014 return 0; 1015 } 1016 1017 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1018 { 1019 struct its_cmd_block *cmd; 1020 u32 count = 1000000; /* 1s! */ 1021 1022 while (its_queue_full(its)) { 1023 count--; 1024 if (!count) { 1025 pr_err_ratelimited("ITS queue not draining\n"); 1026 return NULL; 1027 } 1028 cpu_relax(); 1029 udelay(1); 1030 } 1031 1032 cmd = its->cmd_write++; 1033 1034 /* Handle queue wrapping */ 1035 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1036 its->cmd_write = its->cmd_base; 1037 1038 /* Clear command */ 1039 cmd->raw_cmd[0] = 0; 1040 cmd->raw_cmd[1] = 0; 1041 cmd->raw_cmd[2] = 0; 1042 cmd->raw_cmd[3] = 0; 1043 1044 return cmd; 1045 } 1046 1047 static struct its_cmd_block *its_post_commands(struct its_node *its) 1048 { 1049 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1050 1051 writel_relaxed(wr, its->base + GITS_CWRITER); 1052 1053 return its->cmd_write; 1054 } 1055 1056 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1057 { 1058 /* 1059 * Make sure the commands written to memory are observable by 1060 * the ITS. 1061 */ 1062 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1063 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1064 else 1065 dsb(ishst); 1066 } 1067 1068 static int its_wait_for_range_completion(struct its_node *its, 1069 u64 prev_idx, 1070 struct its_cmd_block *to) 1071 { 1072 u64 rd_idx, to_idx, linear_idx; 1073 u32 count = 1000000; /* 1s! */ 1074 1075 /* Linearize to_idx if the command set has wrapped around */ 1076 to_idx = its_cmd_ptr_to_offset(its, to); 1077 if (to_idx < prev_idx) 1078 to_idx += ITS_CMD_QUEUE_SZ; 1079 1080 linear_idx = prev_idx; 1081 1082 while (1) { 1083 s64 delta; 1084 1085 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1086 1087 /* 1088 * Compute the read pointer progress, taking the 1089 * potential wrap-around into account. 1090 */ 1091 delta = rd_idx - prev_idx; 1092 if (rd_idx < prev_idx) 1093 delta += ITS_CMD_QUEUE_SZ; 1094 1095 linear_idx += delta; 1096 if (linear_idx >= to_idx) 1097 break; 1098 1099 count--; 1100 if (!count) { 1101 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1102 to_idx, linear_idx); 1103 return -1; 1104 } 1105 prev_idx = rd_idx; 1106 cpu_relax(); 1107 udelay(1); 1108 } 1109 1110 return 0; 1111 } 1112 1113 /* Warning, macro hell follows */ 1114 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1115 void name(struct its_node *its, \ 1116 buildtype builder, \ 1117 struct its_cmd_desc *desc) \ 1118 { \ 1119 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1120 synctype *sync_obj; \ 1121 unsigned long flags; \ 1122 u64 rd_idx; \ 1123 \ 1124 raw_spin_lock_irqsave(&its->lock, flags); \ 1125 \ 1126 cmd = its_allocate_entry(its); \ 1127 if (!cmd) { /* We're soooooo screewed... */ \ 1128 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1129 return; \ 1130 } \ 1131 sync_obj = builder(its, cmd, desc); \ 1132 its_flush_cmd(its, cmd); \ 1133 \ 1134 if (sync_obj) { \ 1135 sync_cmd = its_allocate_entry(its); \ 1136 if (!sync_cmd) \ 1137 goto post; \ 1138 \ 1139 buildfn(its, sync_cmd, sync_obj); \ 1140 its_flush_cmd(its, sync_cmd); \ 1141 } \ 1142 \ 1143 post: \ 1144 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1145 next_cmd = its_post_commands(its); \ 1146 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1147 \ 1148 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1149 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1150 } 1151 1152 static void its_build_sync_cmd(struct its_node *its, 1153 struct its_cmd_block *sync_cmd, 1154 struct its_collection *sync_col) 1155 { 1156 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1157 its_encode_target(sync_cmd, sync_col->target_address); 1158 1159 its_fixup_cmd(sync_cmd); 1160 } 1161 1162 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1163 struct its_collection, its_build_sync_cmd) 1164 1165 static void its_build_vsync_cmd(struct its_node *its, 1166 struct its_cmd_block *sync_cmd, 1167 struct its_vpe *sync_vpe) 1168 { 1169 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1170 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1171 1172 its_fixup_cmd(sync_cmd); 1173 } 1174 1175 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1176 struct its_vpe, its_build_vsync_cmd) 1177 1178 static void its_send_int(struct its_device *dev, u32 event_id) 1179 { 1180 struct its_cmd_desc desc; 1181 1182 desc.its_int_cmd.dev = dev; 1183 desc.its_int_cmd.event_id = event_id; 1184 1185 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1186 } 1187 1188 static void its_send_clear(struct its_device *dev, u32 event_id) 1189 { 1190 struct its_cmd_desc desc; 1191 1192 desc.its_clear_cmd.dev = dev; 1193 desc.its_clear_cmd.event_id = event_id; 1194 1195 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1196 } 1197 1198 static void its_send_inv(struct its_device *dev, u32 event_id) 1199 { 1200 struct its_cmd_desc desc; 1201 1202 desc.its_inv_cmd.dev = dev; 1203 desc.its_inv_cmd.event_id = event_id; 1204 1205 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1206 } 1207 1208 static void its_send_mapd(struct its_device *dev, int valid) 1209 { 1210 struct its_cmd_desc desc; 1211 1212 desc.its_mapd_cmd.dev = dev; 1213 desc.its_mapd_cmd.valid = !!valid; 1214 1215 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1216 } 1217 1218 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1219 int valid) 1220 { 1221 struct its_cmd_desc desc; 1222 1223 desc.its_mapc_cmd.col = col; 1224 desc.its_mapc_cmd.valid = !!valid; 1225 1226 its_send_single_command(its, its_build_mapc_cmd, &desc); 1227 } 1228 1229 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1230 { 1231 struct its_cmd_desc desc; 1232 1233 desc.its_mapti_cmd.dev = dev; 1234 desc.its_mapti_cmd.phys_id = irq_id; 1235 desc.its_mapti_cmd.event_id = id; 1236 1237 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1238 } 1239 1240 static void its_send_movi(struct its_device *dev, 1241 struct its_collection *col, u32 id) 1242 { 1243 struct its_cmd_desc desc; 1244 1245 desc.its_movi_cmd.dev = dev; 1246 desc.its_movi_cmd.col = col; 1247 desc.its_movi_cmd.event_id = id; 1248 1249 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1250 } 1251 1252 static void its_send_discard(struct its_device *dev, u32 id) 1253 { 1254 struct its_cmd_desc desc; 1255 1256 desc.its_discard_cmd.dev = dev; 1257 desc.its_discard_cmd.event_id = id; 1258 1259 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1260 } 1261 1262 static void its_send_invall(struct its_node *its, struct its_collection *col) 1263 { 1264 struct its_cmd_desc desc; 1265 1266 desc.its_invall_cmd.col = col; 1267 1268 its_send_single_command(its, its_build_invall_cmd, &desc); 1269 } 1270 1271 static void its_send_vmapti(struct its_device *dev, u32 id) 1272 { 1273 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1274 struct its_cmd_desc desc; 1275 1276 desc.its_vmapti_cmd.vpe = map->vpe; 1277 desc.its_vmapti_cmd.dev = dev; 1278 desc.its_vmapti_cmd.virt_id = map->vintid; 1279 desc.its_vmapti_cmd.event_id = id; 1280 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1281 1282 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1283 } 1284 1285 static void its_send_vmovi(struct its_device *dev, u32 id) 1286 { 1287 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1288 struct its_cmd_desc desc; 1289 1290 desc.its_vmovi_cmd.vpe = map->vpe; 1291 desc.its_vmovi_cmd.dev = dev; 1292 desc.its_vmovi_cmd.event_id = id; 1293 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1294 1295 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1296 } 1297 1298 static void its_send_vmapp(struct its_node *its, 1299 struct its_vpe *vpe, bool valid) 1300 { 1301 struct its_cmd_desc desc; 1302 1303 desc.its_vmapp_cmd.vpe = vpe; 1304 desc.its_vmapp_cmd.valid = valid; 1305 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1306 1307 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1308 } 1309 1310 static void its_send_vmovp(struct its_vpe *vpe) 1311 { 1312 struct its_cmd_desc desc = {}; 1313 struct its_node *its; 1314 unsigned long flags; 1315 int col_id = vpe->col_idx; 1316 1317 desc.its_vmovp_cmd.vpe = vpe; 1318 1319 if (!its_list_map) { 1320 its = list_first_entry(&its_nodes, struct its_node, entry); 1321 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1322 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1323 return; 1324 } 1325 1326 /* 1327 * Yet another marvel of the architecture. If using the 1328 * its_list "feature", we need to make sure that all ITSs 1329 * receive all VMOVP commands in the same order. The only way 1330 * to guarantee this is to make vmovp a serialization point. 1331 * 1332 * Wall <-- Head. 1333 */ 1334 raw_spin_lock_irqsave(&vmovp_lock, flags); 1335 1336 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1337 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1338 1339 /* Emit VMOVPs */ 1340 list_for_each_entry(its, &its_nodes, entry) { 1341 if (!is_v4(its)) 1342 continue; 1343 1344 if (!require_its_list_vmovp(vpe->its_vm, its)) 1345 continue; 1346 1347 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1348 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1349 } 1350 1351 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1352 } 1353 1354 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1355 { 1356 struct its_cmd_desc desc; 1357 1358 desc.its_vinvall_cmd.vpe = vpe; 1359 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1360 } 1361 1362 static void its_send_vinv(struct its_device *dev, u32 event_id) 1363 { 1364 struct its_cmd_desc desc; 1365 1366 /* 1367 * There is no real VINV command. This is just a normal INV, 1368 * with a VSYNC instead of a SYNC. 1369 */ 1370 desc.its_inv_cmd.dev = dev; 1371 desc.its_inv_cmd.event_id = event_id; 1372 1373 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1374 } 1375 1376 static void its_send_vint(struct its_device *dev, u32 event_id) 1377 { 1378 struct its_cmd_desc desc; 1379 1380 /* 1381 * There is no real VINT command. This is just a normal INT, 1382 * with a VSYNC instead of a SYNC. 1383 */ 1384 desc.its_int_cmd.dev = dev; 1385 desc.its_int_cmd.event_id = event_id; 1386 1387 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1388 } 1389 1390 static void its_send_vclear(struct its_device *dev, u32 event_id) 1391 { 1392 struct its_cmd_desc desc; 1393 1394 /* 1395 * There is no real VCLEAR command. This is just a normal CLEAR, 1396 * with a VSYNC instead of a SYNC. 1397 */ 1398 desc.its_clear_cmd.dev = dev; 1399 desc.its_clear_cmd.event_id = event_id; 1400 1401 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1402 } 1403 1404 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1405 { 1406 struct its_cmd_desc desc; 1407 1408 desc.its_invdb_cmd.vpe = vpe; 1409 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1410 } 1411 1412 /* 1413 * irqchip functions - assumes MSI, mostly. 1414 */ 1415 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1416 { 1417 struct its_vlpi_map *map = get_vlpi_map(d); 1418 irq_hw_number_t hwirq; 1419 void *va; 1420 u8 *cfg; 1421 1422 if (map) { 1423 va = page_address(map->vm->vprop_page); 1424 hwirq = map->vintid; 1425 1426 /* Remember the updated property */ 1427 map->properties &= ~clr; 1428 map->properties |= set | LPI_PROP_GROUP1; 1429 } else { 1430 va = gic_rdists->prop_table_va; 1431 hwirq = d->hwirq; 1432 } 1433 1434 cfg = va + hwirq - 8192; 1435 *cfg &= ~clr; 1436 *cfg |= set | LPI_PROP_GROUP1; 1437 1438 /* 1439 * Make the above write visible to the redistributors. 1440 * And yes, we're flushing exactly: One. Single. Byte. 1441 * Humpf... 1442 */ 1443 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1444 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1445 else 1446 dsb(ishst); 1447 } 1448 1449 static void wait_for_syncr(void __iomem *rdbase) 1450 { 1451 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1452 cpu_relax(); 1453 } 1454 1455 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1456 { 1457 void __iomem *rdbase; 1458 unsigned long flags; 1459 int cpu; 1460 1461 /* Target the redistributor this LPI is currently routed to */ 1462 cpu = irq_to_cpuid_lock(d, &flags); 1463 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1464 1465 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1466 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1467 wait_for_syncr(rdbase); 1468 1469 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1470 irq_to_cpuid_unlock(d, flags); 1471 } 1472 1473 static void direct_lpi_inv(struct irq_data *d) 1474 { 1475 struct its_vlpi_map *map = get_vlpi_map(d); 1476 u64 val; 1477 1478 if (map) { 1479 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1480 1481 WARN_ON(!is_v4_1(its_dev->its)); 1482 1483 val = GICR_INVLPIR_V; 1484 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1485 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1486 } else { 1487 val = d->hwirq; 1488 } 1489 1490 __direct_lpi_inv(d, val); 1491 } 1492 1493 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1494 { 1495 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1496 1497 lpi_write_config(d, clr, set); 1498 if (gic_rdists->has_direct_lpi && 1499 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1500 direct_lpi_inv(d); 1501 else if (!irqd_is_forwarded_to_vcpu(d)) 1502 its_send_inv(its_dev, its_get_event_id(d)); 1503 else 1504 its_send_vinv(its_dev, its_get_event_id(d)); 1505 } 1506 1507 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1508 { 1509 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1510 u32 event = its_get_event_id(d); 1511 struct its_vlpi_map *map; 1512 1513 /* 1514 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1515 * here. 1516 */ 1517 if (is_v4_1(its_dev->its)) 1518 return; 1519 1520 map = dev_event_to_vlpi_map(its_dev, event); 1521 1522 if (map->db_enabled == enable) 1523 return; 1524 1525 map->db_enabled = enable; 1526 1527 /* 1528 * More fun with the architecture: 1529 * 1530 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1531 * value or to 1023, depending on the enable bit. But that 1532 * would be issuing a mapping for an /existing/ DevID+EventID 1533 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1534 * to the /same/ vPE, using this opportunity to adjust the 1535 * doorbell. Mouahahahaha. We loves it, Precious. 1536 */ 1537 its_send_vmovi(its_dev, event); 1538 } 1539 1540 static void its_mask_irq(struct irq_data *d) 1541 { 1542 if (irqd_is_forwarded_to_vcpu(d)) 1543 its_vlpi_set_doorbell(d, false); 1544 1545 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1546 } 1547 1548 static void its_unmask_irq(struct irq_data *d) 1549 { 1550 if (irqd_is_forwarded_to_vcpu(d)) 1551 its_vlpi_set_doorbell(d, true); 1552 1553 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1554 } 1555 1556 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1557 { 1558 if (irqd_affinity_is_managed(d)) 1559 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1560 1561 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1562 } 1563 1564 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1565 { 1566 if (irqd_affinity_is_managed(d)) 1567 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1568 else 1569 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1570 } 1571 1572 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1573 { 1574 if (irqd_affinity_is_managed(d)) 1575 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1576 else 1577 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1578 } 1579 1580 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1581 const struct cpumask *cpu_mask) 1582 { 1583 unsigned int cpu = nr_cpu_ids, tmp; 1584 int count = S32_MAX; 1585 1586 for_each_cpu(tmp, cpu_mask) { 1587 int this_count = its_read_lpi_count(d, tmp); 1588 if (this_count < count) { 1589 cpu = tmp; 1590 count = this_count; 1591 } 1592 } 1593 1594 return cpu; 1595 } 1596 1597 /* 1598 * As suggested by Thomas Gleixner in: 1599 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1600 */ 1601 static int its_select_cpu(struct irq_data *d, 1602 const struct cpumask *aff_mask) 1603 { 1604 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1605 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1606 static struct cpumask __tmpmask; 1607 struct cpumask *tmpmask; 1608 unsigned long flags; 1609 int cpu, node; 1610 node = its_dev->its->numa_node; 1611 tmpmask = &__tmpmask; 1612 1613 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1614 1615 if (!irqd_affinity_is_managed(d)) { 1616 /* First try the NUMA node */ 1617 if (node != NUMA_NO_NODE) { 1618 /* 1619 * Try the intersection of the affinity mask and the 1620 * node mask (and the online mask, just to be safe). 1621 */ 1622 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1623 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1624 1625 /* 1626 * Ideally, we would check if the mask is empty, and 1627 * try again on the full node here. 1628 * 1629 * But it turns out that the way ACPI describes the 1630 * affinity for ITSs only deals about memory, and 1631 * not target CPUs, so it cannot describe a single 1632 * ITS placed next to two NUMA nodes. 1633 * 1634 * Instead, just fallback on the online mask. This 1635 * diverges from Thomas' suggestion above. 1636 */ 1637 cpu = cpumask_pick_least_loaded(d, tmpmask); 1638 if (cpu < nr_cpu_ids) 1639 goto out; 1640 1641 /* If we can't cross sockets, give up */ 1642 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1643 goto out; 1644 1645 /* If the above failed, expand the search */ 1646 } 1647 1648 /* Try the intersection of the affinity and online masks */ 1649 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1650 1651 /* If that doesn't fly, the online mask is the last resort */ 1652 if (cpumask_empty(tmpmask)) 1653 cpumask_copy(tmpmask, cpu_online_mask); 1654 1655 cpu = cpumask_pick_least_loaded(d, tmpmask); 1656 } else { 1657 cpumask_copy(tmpmask, aff_mask); 1658 1659 /* If we cannot cross sockets, limit the search to that node */ 1660 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1661 node != NUMA_NO_NODE) 1662 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1663 1664 cpu = cpumask_pick_least_loaded(d, tmpmask); 1665 } 1666 out: 1667 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1668 1669 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1670 return cpu; 1671 } 1672 1673 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1674 bool force) 1675 { 1676 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1677 struct its_collection *target_col; 1678 u32 id = its_get_event_id(d); 1679 int cpu, prev_cpu; 1680 1681 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1682 if (irqd_is_forwarded_to_vcpu(d)) 1683 return -EINVAL; 1684 1685 prev_cpu = its_dev->event_map.col_map[id]; 1686 its_dec_lpi_count(d, prev_cpu); 1687 1688 if (!force) 1689 cpu = its_select_cpu(d, mask_val); 1690 else 1691 cpu = cpumask_pick_least_loaded(d, mask_val); 1692 1693 if (cpu < 0 || cpu >= nr_cpu_ids) 1694 goto err; 1695 1696 /* don't set the affinity when the target cpu is same as current one */ 1697 if (cpu != prev_cpu) { 1698 target_col = &its_dev->its->collections[cpu]; 1699 its_send_movi(its_dev, target_col, id); 1700 its_dev->event_map.col_map[id] = cpu; 1701 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1702 } 1703 1704 its_inc_lpi_count(d, cpu); 1705 1706 return IRQ_SET_MASK_OK_DONE; 1707 1708 err: 1709 its_inc_lpi_count(d, prev_cpu); 1710 return -EINVAL; 1711 } 1712 1713 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1714 { 1715 struct its_node *its = its_dev->its; 1716 1717 return its->phys_base + GITS_TRANSLATER; 1718 } 1719 1720 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1721 { 1722 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1723 struct its_node *its; 1724 u64 addr; 1725 1726 its = its_dev->its; 1727 addr = its->get_msi_base(its_dev); 1728 1729 msg->address_lo = lower_32_bits(addr); 1730 msg->address_hi = upper_32_bits(addr); 1731 msg->data = its_get_event_id(d); 1732 1733 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1734 } 1735 1736 static int its_irq_set_irqchip_state(struct irq_data *d, 1737 enum irqchip_irq_state which, 1738 bool state) 1739 { 1740 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1741 u32 event = its_get_event_id(d); 1742 1743 if (which != IRQCHIP_STATE_PENDING) 1744 return -EINVAL; 1745 1746 if (irqd_is_forwarded_to_vcpu(d)) { 1747 if (state) 1748 its_send_vint(its_dev, event); 1749 else 1750 its_send_vclear(its_dev, event); 1751 } else { 1752 if (state) 1753 its_send_int(its_dev, event); 1754 else 1755 its_send_clear(its_dev, event); 1756 } 1757 1758 return 0; 1759 } 1760 1761 static int its_irq_retrigger(struct irq_data *d) 1762 { 1763 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1764 } 1765 1766 /* 1767 * Two favourable cases: 1768 * 1769 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1770 * for vSGI delivery 1771 * 1772 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1773 * and we're better off mapping all VPEs always 1774 * 1775 * If neither (a) nor (b) is true, then we map vPEs on demand. 1776 * 1777 */ 1778 static bool gic_requires_eager_mapping(void) 1779 { 1780 if (!its_list_map || gic_rdists->has_rvpeid) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1787 { 1788 unsigned long flags; 1789 1790 if (gic_requires_eager_mapping()) 1791 return; 1792 1793 raw_spin_lock_irqsave(&vmovp_lock, flags); 1794 1795 /* 1796 * If the VM wasn't mapped yet, iterate over the vpes and get 1797 * them mapped now. 1798 */ 1799 vm->vlpi_count[its->list_nr]++; 1800 1801 if (vm->vlpi_count[its->list_nr] == 1) { 1802 int i; 1803 1804 for (i = 0; i < vm->nr_vpes; i++) { 1805 struct its_vpe *vpe = vm->vpes[i]; 1806 struct irq_data *d = irq_get_irq_data(vpe->irq); 1807 1808 /* Map the VPE to the first possible CPU */ 1809 vpe->col_idx = cpumask_first(cpu_online_mask); 1810 its_send_vmapp(its, vpe, true); 1811 its_send_vinvall(its, vpe); 1812 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1813 } 1814 } 1815 1816 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1817 } 1818 1819 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1820 { 1821 unsigned long flags; 1822 1823 /* Not using the ITS list? Everything is always mapped. */ 1824 if (gic_requires_eager_mapping()) 1825 return; 1826 1827 raw_spin_lock_irqsave(&vmovp_lock, flags); 1828 1829 if (!--vm->vlpi_count[its->list_nr]) { 1830 int i; 1831 1832 for (i = 0; i < vm->nr_vpes; i++) 1833 its_send_vmapp(its, vm->vpes[i], false); 1834 } 1835 1836 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1837 } 1838 1839 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1840 { 1841 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1842 u32 event = its_get_event_id(d); 1843 1844 if (!info->map) 1845 return -EINVAL; 1846 1847 if (!its_dev->event_map.vm) { 1848 struct its_vlpi_map *maps; 1849 1850 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1851 GFP_ATOMIC); 1852 if (!maps) 1853 return -ENOMEM; 1854 1855 its_dev->event_map.vm = info->map->vm; 1856 its_dev->event_map.vlpi_maps = maps; 1857 } else if (its_dev->event_map.vm != info->map->vm) { 1858 return -EINVAL; 1859 } 1860 1861 /* Get our private copy of the mapping information */ 1862 its_dev->event_map.vlpi_maps[event] = *info->map; 1863 1864 if (irqd_is_forwarded_to_vcpu(d)) { 1865 /* Already mapped, move it around */ 1866 its_send_vmovi(its_dev, event); 1867 } else { 1868 /* Ensure all the VPEs are mapped on this ITS */ 1869 its_map_vm(its_dev->its, info->map->vm); 1870 1871 /* 1872 * Flag the interrupt as forwarded so that we can 1873 * start poking the virtual property table. 1874 */ 1875 irqd_set_forwarded_to_vcpu(d); 1876 1877 /* Write out the property to the prop table */ 1878 lpi_write_config(d, 0xff, info->map->properties); 1879 1880 /* Drop the physical mapping */ 1881 its_send_discard(its_dev, event); 1882 1883 /* and install the virtual one */ 1884 its_send_vmapti(its_dev, event); 1885 1886 /* Increment the number of VLPIs */ 1887 its_dev->event_map.nr_vlpis++; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1894 { 1895 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1896 struct its_vlpi_map *map; 1897 1898 map = get_vlpi_map(d); 1899 1900 if (!its_dev->event_map.vm || !map) 1901 return -EINVAL; 1902 1903 /* Copy our mapping information to the incoming request */ 1904 *info->map = *map; 1905 1906 return 0; 1907 } 1908 1909 static int its_vlpi_unmap(struct irq_data *d) 1910 { 1911 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1912 u32 event = its_get_event_id(d); 1913 1914 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1915 return -EINVAL; 1916 1917 /* Drop the virtual mapping */ 1918 its_send_discard(its_dev, event); 1919 1920 /* and restore the physical one */ 1921 irqd_clr_forwarded_to_vcpu(d); 1922 its_send_mapti(its_dev, d->hwirq, event); 1923 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1924 LPI_PROP_ENABLED | 1925 LPI_PROP_GROUP1)); 1926 1927 /* Potentially unmap the VM from this ITS */ 1928 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1929 1930 /* 1931 * Drop the refcount and make the device available again if 1932 * this was the last VLPI. 1933 */ 1934 if (!--its_dev->event_map.nr_vlpis) { 1935 its_dev->event_map.vm = NULL; 1936 kfree(its_dev->event_map.vlpi_maps); 1937 } 1938 1939 return 0; 1940 } 1941 1942 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1943 { 1944 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1945 1946 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1947 return -EINVAL; 1948 1949 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1950 lpi_update_config(d, 0xff, info->config); 1951 else 1952 lpi_write_config(d, 0xff, info->config); 1953 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1954 1955 return 0; 1956 } 1957 1958 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1959 { 1960 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1961 struct its_cmd_info *info = vcpu_info; 1962 1963 /* Need a v4 ITS */ 1964 if (!is_v4(its_dev->its)) 1965 return -EINVAL; 1966 1967 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 1968 1969 /* Unmap request? */ 1970 if (!info) 1971 return its_vlpi_unmap(d); 1972 1973 switch (info->cmd_type) { 1974 case MAP_VLPI: 1975 return its_vlpi_map(d, info); 1976 1977 case GET_VLPI: 1978 return its_vlpi_get(d, info); 1979 1980 case PROP_UPDATE_VLPI: 1981 case PROP_UPDATE_AND_INV_VLPI: 1982 return its_vlpi_prop_update(d, info); 1983 1984 default: 1985 return -EINVAL; 1986 } 1987 } 1988 1989 static struct irq_chip its_irq_chip = { 1990 .name = "ITS", 1991 .irq_mask = its_mask_irq, 1992 .irq_unmask = its_unmask_irq, 1993 .irq_eoi = irq_chip_eoi_parent, 1994 .irq_set_affinity = its_set_affinity, 1995 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1996 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1997 .irq_retrigger = its_irq_retrigger, 1998 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1999 }; 2000 2001 2002 /* 2003 * How we allocate LPIs: 2004 * 2005 * lpi_range_list contains ranges of LPIs that are to available to 2006 * allocate from. To allocate LPIs, just pick the first range that 2007 * fits the required allocation, and reduce it by the required 2008 * amount. Once empty, remove the range from the list. 2009 * 2010 * To free a range of LPIs, add a free range to the list, sort it and 2011 * merge the result if the new range happens to be adjacent to an 2012 * already free block. 2013 * 2014 * The consequence of the above is that allocation is cost is low, but 2015 * freeing is expensive. We assumes that freeing rarely occurs. 2016 */ 2017 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2018 2019 static DEFINE_MUTEX(lpi_range_lock); 2020 static LIST_HEAD(lpi_range_list); 2021 2022 struct lpi_range { 2023 struct list_head entry; 2024 u32 base_id; 2025 u32 span; 2026 }; 2027 2028 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2029 { 2030 struct lpi_range *range; 2031 2032 range = kmalloc(sizeof(*range), GFP_KERNEL); 2033 if (range) { 2034 range->base_id = base; 2035 range->span = span; 2036 } 2037 2038 return range; 2039 } 2040 2041 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2042 { 2043 struct lpi_range *range, *tmp; 2044 int err = -ENOSPC; 2045 2046 mutex_lock(&lpi_range_lock); 2047 2048 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2049 if (range->span >= nr_lpis) { 2050 *base = range->base_id; 2051 range->base_id += nr_lpis; 2052 range->span -= nr_lpis; 2053 2054 if (range->span == 0) { 2055 list_del(&range->entry); 2056 kfree(range); 2057 } 2058 2059 err = 0; 2060 break; 2061 } 2062 } 2063 2064 mutex_unlock(&lpi_range_lock); 2065 2066 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2067 return err; 2068 } 2069 2070 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2071 { 2072 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2073 return; 2074 if (a->base_id + a->span != b->base_id) 2075 return; 2076 b->base_id = a->base_id; 2077 b->span += a->span; 2078 list_del(&a->entry); 2079 kfree(a); 2080 } 2081 2082 static int free_lpi_range(u32 base, u32 nr_lpis) 2083 { 2084 struct lpi_range *new, *old; 2085 2086 new = mk_lpi_range(base, nr_lpis); 2087 if (!new) 2088 return -ENOMEM; 2089 2090 mutex_lock(&lpi_range_lock); 2091 2092 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2093 if (old->base_id < base) 2094 break; 2095 } 2096 /* 2097 * old is the last element with ->base_id smaller than base, 2098 * so new goes right after it. If there are no elements with 2099 * ->base_id smaller than base, &old->entry ends up pointing 2100 * at the head of the list, and inserting new it the start of 2101 * the list is the right thing to do in that case as well. 2102 */ 2103 list_add(&new->entry, &old->entry); 2104 /* 2105 * Now check if we can merge with the preceding and/or 2106 * following ranges. 2107 */ 2108 merge_lpi_ranges(old, new); 2109 merge_lpi_ranges(new, list_next_entry(new, entry)); 2110 2111 mutex_unlock(&lpi_range_lock); 2112 return 0; 2113 } 2114 2115 static int __init its_lpi_init(u32 id_bits) 2116 { 2117 u32 lpis = (1UL << id_bits) - 8192; 2118 u32 numlpis; 2119 int err; 2120 2121 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2122 2123 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2124 lpis = numlpis; 2125 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2126 lpis); 2127 } 2128 2129 /* 2130 * Initializing the allocator is just the same as freeing the 2131 * full range of LPIs. 2132 */ 2133 err = free_lpi_range(8192, lpis); 2134 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2135 return err; 2136 } 2137 2138 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2139 { 2140 unsigned long *bitmap = NULL; 2141 int err = 0; 2142 2143 do { 2144 err = alloc_lpi_range(nr_irqs, base); 2145 if (!err) 2146 break; 2147 2148 nr_irqs /= 2; 2149 } while (nr_irqs > 0); 2150 2151 if (!nr_irqs) 2152 err = -ENOSPC; 2153 2154 if (err) 2155 goto out; 2156 2157 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2158 if (!bitmap) 2159 goto out; 2160 2161 *nr_ids = nr_irqs; 2162 2163 out: 2164 if (!bitmap) 2165 *base = *nr_ids = 0; 2166 2167 return bitmap; 2168 } 2169 2170 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2171 { 2172 WARN_ON(free_lpi_range(base, nr_ids)); 2173 bitmap_free(bitmap); 2174 } 2175 2176 static void gic_reset_prop_table(void *va) 2177 { 2178 /* Priority 0xa0, Group-1, disabled */ 2179 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2180 2181 /* Make sure the GIC will observe the written configuration */ 2182 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2183 } 2184 2185 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2186 { 2187 struct page *prop_page; 2188 2189 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2190 if (!prop_page) 2191 return NULL; 2192 2193 gic_reset_prop_table(page_address(prop_page)); 2194 2195 return prop_page; 2196 } 2197 2198 static void its_free_prop_table(struct page *prop_page) 2199 { 2200 free_pages((unsigned long)page_address(prop_page), 2201 get_order(LPI_PROPBASE_SZ)); 2202 } 2203 2204 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2205 { 2206 phys_addr_t start, end, addr_end; 2207 u64 i; 2208 2209 /* 2210 * We don't bother checking for a kdump kernel as by 2211 * construction, the LPI tables are out of this kernel's 2212 * memory map. 2213 */ 2214 if (is_kdump_kernel()) 2215 return true; 2216 2217 addr_end = addr + size - 1; 2218 2219 for_each_reserved_mem_range(i, &start, &end) { 2220 if (addr >= start && addr_end <= end) 2221 return true; 2222 } 2223 2224 /* Not found, not a good sign... */ 2225 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2226 &addr, &addr_end); 2227 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2228 return false; 2229 } 2230 2231 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2232 { 2233 if (efi_enabled(EFI_CONFIG_TABLES)) 2234 return efi_mem_reserve_persistent(addr, size); 2235 2236 return 0; 2237 } 2238 2239 static int __init its_setup_lpi_prop_table(void) 2240 { 2241 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2242 u64 val; 2243 2244 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2245 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2246 2247 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2248 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2249 LPI_PROPBASE_SZ, 2250 MEMREMAP_WB); 2251 gic_reset_prop_table(gic_rdists->prop_table_va); 2252 } else { 2253 struct page *page; 2254 2255 lpi_id_bits = min_t(u32, 2256 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2257 ITS_MAX_LPI_NRBITS); 2258 page = its_allocate_prop_table(GFP_NOWAIT); 2259 if (!page) { 2260 pr_err("Failed to allocate PROPBASE\n"); 2261 return -ENOMEM; 2262 } 2263 2264 gic_rdists->prop_table_pa = page_to_phys(page); 2265 gic_rdists->prop_table_va = page_address(page); 2266 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2267 LPI_PROPBASE_SZ)); 2268 } 2269 2270 pr_info("GICv3: using LPI property table @%pa\n", 2271 &gic_rdists->prop_table_pa); 2272 2273 return its_lpi_init(lpi_id_bits); 2274 } 2275 2276 static const char *its_base_type_string[] = { 2277 [GITS_BASER_TYPE_DEVICE] = "Devices", 2278 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2279 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2280 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2281 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2282 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2283 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2284 }; 2285 2286 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2287 { 2288 u32 idx = baser - its->tables; 2289 2290 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2291 } 2292 2293 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2294 u64 val) 2295 { 2296 u32 idx = baser - its->tables; 2297 2298 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2299 baser->val = its_read_baser(its, baser); 2300 } 2301 2302 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2303 u64 cache, u64 shr, u32 order, bool indirect) 2304 { 2305 u64 val = its_read_baser(its, baser); 2306 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2307 u64 type = GITS_BASER_TYPE(val); 2308 u64 baser_phys, tmp; 2309 u32 alloc_pages, psz; 2310 struct page *page; 2311 void *base; 2312 2313 psz = baser->psz; 2314 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2315 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2316 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2317 &its->phys_base, its_base_type_string[type], 2318 alloc_pages, GITS_BASER_PAGES_MAX); 2319 alloc_pages = GITS_BASER_PAGES_MAX; 2320 order = get_order(GITS_BASER_PAGES_MAX * psz); 2321 } 2322 2323 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2324 if (!page) 2325 return -ENOMEM; 2326 2327 base = (void *)page_address(page); 2328 baser_phys = virt_to_phys(base); 2329 2330 /* Check if the physical address of the memory is above 48bits */ 2331 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2332 2333 /* 52bit PA is supported only when PageSize=64K */ 2334 if (psz != SZ_64K) { 2335 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2336 free_pages((unsigned long)base, order); 2337 return -ENXIO; 2338 } 2339 2340 /* Convert 52bit PA to 48bit field */ 2341 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2342 } 2343 2344 retry_baser: 2345 val = (baser_phys | 2346 (type << GITS_BASER_TYPE_SHIFT) | 2347 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2348 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2349 cache | 2350 shr | 2351 GITS_BASER_VALID); 2352 2353 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2354 2355 switch (psz) { 2356 case SZ_4K: 2357 val |= GITS_BASER_PAGE_SIZE_4K; 2358 break; 2359 case SZ_16K: 2360 val |= GITS_BASER_PAGE_SIZE_16K; 2361 break; 2362 case SZ_64K: 2363 val |= GITS_BASER_PAGE_SIZE_64K; 2364 break; 2365 } 2366 2367 if (!shr) 2368 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2369 2370 its_write_baser(its, baser, val); 2371 tmp = baser->val; 2372 2373 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2374 /* 2375 * Shareability didn't stick. Just use 2376 * whatever the read reported, which is likely 2377 * to be the only thing this redistributor 2378 * supports. If that's zero, make it 2379 * non-cacheable as well. 2380 */ 2381 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2382 if (!shr) 2383 cache = GITS_BASER_nC; 2384 2385 goto retry_baser; 2386 } 2387 2388 if (val != tmp) { 2389 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2390 &its->phys_base, its_base_type_string[type], 2391 val, tmp); 2392 free_pages((unsigned long)base, order); 2393 return -ENXIO; 2394 } 2395 2396 baser->order = order; 2397 baser->base = base; 2398 baser->psz = psz; 2399 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2400 2401 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2402 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2403 its_base_type_string[type], 2404 (unsigned long)virt_to_phys(base), 2405 indirect ? "indirect" : "flat", (int)esz, 2406 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2407 2408 return 0; 2409 } 2410 2411 static bool its_parse_indirect_baser(struct its_node *its, 2412 struct its_baser *baser, 2413 u32 *order, u32 ids) 2414 { 2415 u64 tmp = its_read_baser(its, baser); 2416 u64 type = GITS_BASER_TYPE(tmp); 2417 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2418 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2419 u32 new_order = *order; 2420 u32 psz = baser->psz; 2421 bool indirect = false; 2422 2423 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2424 if ((esz << ids) > (psz * 2)) { 2425 /* 2426 * Find out whether hw supports a single or two-level table by 2427 * table by reading bit at offset '62' after writing '1' to it. 2428 */ 2429 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2430 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2431 2432 if (indirect) { 2433 /* 2434 * The size of the lvl2 table is equal to ITS page size 2435 * which is 'psz'. For computing lvl1 table size, 2436 * subtract ID bits that sparse lvl2 table from 'ids' 2437 * which is reported by ITS hardware times lvl1 table 2438 * entry size. 2439 */ 2440 ids -= ilog2(psz / (int)esz); 2441 esz = GITS_LVL1_ENTRY_SIZE; 2442 } 2443 } 2444 2445 /* 2446 * Allocate as many entries as required to fit the 2447 * range of device IDs that the ITS can grok... The ID 2448 * space being incredibly sparse, this results in a 2449 * massive waste of memory if two-level device table 2450 * feature is not supported by hardware. 2451 */ 2452 new_order = max_t(u32, get_order(esz << ids), new_order); 2453 if (new_order > MAX_ORDER) { 2454 new_order = MAX_ORDER; 2455 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2456 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2457 &its->phys_base, its_base_type_string[type], 2458 device_ids(its), ids); 2459 } 2460 2461 *order = new_order; 2462 2463 return indirect; 2464 } 2465 2466 static u32 compute_common_aff(u64 val) 2467 { 2468 u32 aff, clpiaff; 2469 2470 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2471 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2472 2473 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2474 } 2475 2476 static u32 compute_its_aff(struct its_node *its) 2477 { 2478 u64 val; 2479 u32 svpet; 2480 2481 /* 2482 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2483 * the resulting affinity. We then use that to see if this match 2484 * our own affinity. 2485 */ 2486 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2487 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2488 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2489 return compute_common_aff(val); 2490 } 2491 2492 static struct its_node *find_sibling_its(struct its_node *cur_its) 2493 { 2494 struct its_node *its; 2495 u32 aff; 2496 2497 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2498 return NULL; 2499 2500 aff = compute_its_aff(cur_its); 2501 2502 list_for_each_entry(its, &its_nodes, entry) { 2503 u64 baser; 2504 2505 if (!is_v4_1(its) || its == cur_its) 2506 continue; 2507 2508 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2509 continue; 2510 2511 if (aff != compute_its_aff(its)) 2512 continue; 2513 2514 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2515 baser = its->tables[2].val; 2516 if (!(baser & GITS_BASER_VALID)) 2517 continue; 2518 2519 return its; 2520 } 2521 2522 return NULL; 2523 } 2524 2525 static void its_free_tables(struct its_node *its) 2526 { 2527 int i; 2528 2529 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2530 if (its->tables[i].base) { 2531 free_pages((unsigned long)its->tables[i].base, 2532 its->tables[i].order); 2533 its->tables[i].base = NULL; 2534 } 2535 } 2536 } 2537 2538 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2539 { 2540 u64 psz = SZ_64K; 2541 2542 while (psz) { 2543 u64 val, gpsz; 2544 2545 val = its_read_baser(its, baser); 2546 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2547 2548 switch (psz) { 2549 case SZ_64K: 2550 gpsz = GITS_BASER_PAGE_SIZE_64K; 2551 break; 2552 case SZ_16K: 2553 gpsz = GITS_BASER_PAGE_SIZE_16K; 2554 break; 2555 case SZ_4K: 2556 default: 2557 gpsz = GITS_BASER_PAGE_SIZE_4K; 2558 break; 2559 } 2560 2561 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2562 2563 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2564 its_write_baser(its, baser, val); 2565 2566 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2567 break; 2568 2569 switch (psz) { 2570 case SZ_64K: 2571 psz = SZ_16K; 2572 break; 2573 case SZ_16K: 2574 psz = SZ_4K; 2575 break; 2576 case SZ_4K: 2577 default: 2578 return -1; 2579 } 2580 } 2581 2582 baser->psz = psz; 2583 return 0; 2584 } 2585 2586 static int its_alloc_tables(struct its_node *its) 2587 { 2588 u64 shr = GITS_BASER_InnerShareable; 2589 u64 cache = GITS_BASER_RaWaWb; 2590 int err, i; 2591 2592 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2593 /* erratum 24313: ignore memory access type */ 2594 cache = GITS_BASER_nCnB; 2595 2596 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2597 cache = GITS_BASER_nC; 2598 shr = 0; 2599 } 2600 2601 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2602 struct its_baser *baser = its->tables + i; 2603 u64 val = its_read_baser(its, baser); 2604 u64 type = GITS_BASER_TYPE(val); 2605 bool indirect = false; 2606 u32 order; 2607 2608 if (type == GITS_BASER_TYPE_NONE) 2609 continue; 2610 2611 if (its_probe_baser_psz(its, baser)) { 2612 its_free_tables(its); 2613 return -ENXIO; 2614 } 2615 2616 order = get_order(baser->psz); 2617 2618 switch (type) { 2619 case GITS_BASER_TYPE_DEVICE: 2620 indirect = its_parse_indirect_baser(its, baser, &order, 2621 device_ids(its)); 2622 break; 2623 2624 case GITS_BASER_TYPE_VCPU: 2625 if (is_v4_1(its)) { 2626 struct its_node *sibling; 2627 2628 WARN_ON(i != 2); 2629 if ((sibling = find_sibling_its(its))) { 2630 *baser = sibling->tables[2]; 2631 its_write_baser(its, baser, baser->val); 2632 continue; 2633 } 2634 } 2635 2636 indirect = its_parse_indirect_baser(its, baser, &order, 2637 ITS_MAX_VPEID_BITS); 2638 break; 2639 } 2640 2641 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2642 if (err < 0) { 2643 its_free_tables(its); 2644 return err; 2645 } 2646 2647 /* Update settings which will be used for next BASERn */ 2648 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2649 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2650 } 2651 2652 return 0; 2653 } 2654 2655 static u64 inherit_vpe_l1_table_from_its(void) 2656 { 2657 struct its_node *its; 2658 u64 val; 2659 u32 aff; 2660 2661 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2662 aff = compute_common_aff(val); 2663 2664 list_for_each_entry(its, &its_nodes, entry) { 2665 u64 baser, addr; 2666 2667 if (!is_v4_1(its)) 2668 continue; 2669 2670 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2671 continue; 2672 2673 if (aff != compute_its_aff(its)) 2674 continue; 2675 2676 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2677 baser = its->tables[2].val; 2678 if (!(baser & GITS_BASER_VALID)) 2679 continue; 2680 2681 /* We have a winner! */ 2682 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2683 2684 val = GICR_VPROPBASER_4_1_VALID; 2685 if (baser & GITS_BASER_INDIRECT) 2686 val |= GICR_VPROPBASER_4_1_INDIRECT; 2687 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2688 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2689 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2690 case GIC_PAGE_SIZE_64K: 2691 addr = GITS_BASER_ADDR_48_to_52(baser); 2692 break; 2693 default: 2694 addr = baser & GENMASK_ULL(47, 12); 2695 break; 2696 } 2697 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2698 if (rdists_support_shareable()) { 2699 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2700 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2701 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2702 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2703 } 2704 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2705 2706 return val; 2707 } 2708 2709 return 0; 2710 } 2711 2712 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2713 { 2714 u32 aff; 2715 u64 val; 2716 int cpu; 2717 2718 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2719 aff = compute_common_aff(val); 2720 2721 for_each_possible_cpu(cpu) { 2722 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2723 2724 if (!base || cpu == smp_processor_id()) 2725 continue; 2726 2727 val = gic_read_typer(base + GICR_TYPER); 2728 if (aff != compute_common_aff(val)) 2729 continue; 2730 2731 /* 2732 * At this point, we have a victim. This particular CPU 2733 * has already booted, and has an affinity that matches 2734 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2735 * Make sure we don't write the Z bit in that case. 2736 */ 2737 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2738 val &= ~GICR_VPROPBASER_4_1_Z; 2739 2740 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2741 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2742 2743 return val; 2744 } 2745 2746 return 0; 2747 } 2748 2749 static bool allocate_vpe_l2_table(int cpu, u32 id) 2750 { 2751 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2752 unsigned int psz, esz, idx, npg, gpsz; 2753 u64 val; 2754 struct page *page; 2755 __le64 *table; 2756 2757 if (!gic_rdists->has_rvpeid) 2758 return true; 2759 2760 /* Skip non-present CPUs */ 2761 if (!base) 2762 return true; 2763 2764 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2765 2766 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2767 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2768 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2769 2770 switch (gpsz) { 2771 default: 2772 WARN_ON(1); 2773 fallthrough; 2774 case GIC_PAGE_SIZE_4K: 2775 psz = SZ_4K; 2776 break; 2777 case GIC_PAGE_SIZE_16K: 2778 psz = SZ_16K; 2779 break; 2780 case GIC_PAGE_SIZE_64K: 2781 psz = SZ_64K; 2782 break; 2783 } 2784 2785 /* Don't allow vpe_id that exceeds single, flat table limit */ 2786 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2787 return (id < (npg * psz / (esz * SZ_8))); 2788 2789 /* Compute 1st level table index & check if that exceeds table limit */ 2790 idx = id >> ilog2(psz / (esz * SZ_8)); 2791 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2792 return false; 2793 2794 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2795 2796 /* Allocate memory for 2nd level table */ 2797 if (!table[idx]) { 2798 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2799 if (!page) 2800 return false; 2801 2802 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2803 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2804 gic_flush_dcache_to_poc(page_address(page), psz); 2805 2806 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2807 2808 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2809 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2810 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2811 2812 /* Ensure updated table contents are visible to RD hardware */ 2813 dsb(sy); 2814 } 2815 2816 return true; 2817 } 2818 2819 static int allocate_vpe_l1_table(void) 2820 { 2821 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2822 u64 val, gpsz, npg, pa; 2823 unsigned int psz = SZ_64K; 2824 unsigned int np, epp, esz; 2825 struct page *page; 2826 2827 if (!gic_rdists->has_rvpeid) 2828 return 0; 2829 2830 /* 2831 * if VPENDBASER.Valid is set, disable any previously programmed 2832 * VPE by setting PendingLast while clearing Valid. This has the 2833 * effect of making sure no doorbell will be generated and we can 2834 * then safely clear VPROPBASER.Valid. 2835 */ 2836 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2837 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2838 vlpi_base + GICR_VPENDBASER); 2839 2840 /* 2841 * If we can inherit the configuration from another RD, let's do 2842 * so. Otherwise, we have to go through the allocation process. We 2843 * assume that all RDs have the exact same requirements, as 2844 * nothing will work otherwise. 2845 */ 2846 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2847 if (val & GICR_VPROPBASER_4_1_VALID) 2848 goto out; 2849 2850 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2851 if (!gic_data_rdist()->vpe_table_mask) 2852 return -ENOMEM; 2853 2854 val = inherit_vpe_l1_table_from_its(); 2855 if (val & GICR_VPROPBASER_4_1_VALID) 2856 goto out; 2857 2858 /* First probe the page size */ 2859 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2860 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2861 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2862 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2863 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2864 2865 switch (gpsz) { 2866 default: 2867 gpsz = GIC_PAGE_SIZE_4K; 2868 fallthrough; 2869 case GIC_PAGE_SIZE_4K: 2870 psz = SZ_4K; 2871 break; 2872 case GIC_PAGE_SIZE_16K: 2873 psz = SZ_16K; 2874 break; 2875 case GIC_PAGE_SIZE_64K: 2876 psz = SZ_64K; 2877 break; 2878 } 2879 2880 /* 2881 * Start populating the register from scratch, including RO fields 2882 * (which we want to print in debug cases...) 2883 */ 2884 val = 0; 2885 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2886 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2887 2888 /* How many entries per GIC page? */ 2889 esz++; 2890 epp = psz / (esz * SZ_8); 2891 2892 /* 2893 * If we need more than just a single L1 page, flag the table 2894 * as indirect and compute the number of required L1 pages. 2895 */ 2896 if (epp < ITS_MAX_VPEID) { 2897 int nl2; 2898 2899 val |= GICR_VPROPBASER_4_1_INDIRECT; 2900 2901 /* Number of L2 pages required to cover the VPEID space */ 2902 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2903 2904 /* Number of L1 pages to point to the L2 pages */ 2905 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2906 } else { 2907 npg = 1; 2908 } 2909 2910 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2911 2912 /* Right, that's the number of CPU pages we need for L1 */ 2913 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2914 2915 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2916 np, npg, psz, epp, esz); 2917 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2918 if (!page) 2919 return -ENOMEM; 2920 2921 gic_data_rdist()->vpe_l1_base = page_address(page); 2922 pa = virt_to_phys(page_address(page)); 2923 WARN_ON(!IS_ALIGNED(pa, psz)); 2924 2925 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2926 if (rdists_support_shareable()) { 2927 val |= GICR_VPROPBASER_RaWb; 2928 val |= GICR_VPROPBASER_InnerShareable; 2929 } 2930 val |= GICR_VPROPBASER_4_1_Z; 2931 val |= GICR_VPROPBASER_4_1_VALID; 2932 2933 out: 2934 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2935 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2936 2937 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2938 smp_processor_id(), val, 2939 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2940 2941 return 0; 2942 } 2943 2944 static int its_alloc_collections(struct its_node *its) 2945 { 2946 int i; 2947 2948 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2949 GFP_KERNEL); 2950 if (!its->collections) 2951 return -ENOMEM; 2952 2953 for (i = 0; i < nr_cpu_ids; i++) 2954 its->collections[i].target_address = ~0ULL; 2955 2956 return 0; 2957 } 2958 2959 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2960 { 2961 struct page *pend_page; 2962 2963 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2964 get_order(LPI_PENDBASE_SZ)); 2965 if (!pend_page) 2966 return NULL; 2967 2968 /* Make sure the GIC will observe the zero-ed page */ 2969 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2970 2971 return pend_page; 2972 } 2973 2974 static void its_free_pending_table(struct page *pt) 2975 { 2976 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2977 } 2978 2979 /* 2980 * Booting with kdump and LPIs enabled is generally fine. Any other 2981 * case is wrong in the absence of firmware/EFI support. 2982 */ 2983 static bool enabled_lpis_allowed(void) 2984 { 2985 phys_addr_t addr; 2986 u64 val; 2987 2988 /* Check whether the property table is in a reserved region */ 2989 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2990 addr = val & GENMASK_ULL(51, 12); 2991 2992 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2993 } 2994 2995 static int __init allocate_lpi_tables(void) 2996 { 2997 u64 val; 2998 int err, cpu; 2999 3000 /* 3001 * If LPIs are enabled while we run this from the boot CPU, 3002 * flag the RD tables as pre-allocated if the stars do align. 3003 */ 3004 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3005 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3006 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3007 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3008 pr_info("GICv3: Using preallocated redistributor tables\n"); 3009 } 3010 3011 err = its_setup_lpi_prop_table(); 3012 if (err) 3013 return err; 3014 3015 /* 3016 * We allocate all the pending tables anyway, as we may have a 3017 * mix of RDs that have had LPIs enabled, and some that 3018 * don't. We'll free the unused ones as each CPU comes online. 3019 */ 3020 for_each_possible_cpu(cpu) { 3021 struct page *pend_page; 3022 3023 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3024 if (!pend_page) { 3025 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3026 return -ENOMEM; 3027 } 3028 3029 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3030 } 3031 3032 return 0; 3033 } 3034 3035 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3036 { 3037 u32 count = 1000000; /* 1s! */ 3038 bool clean; 3039 u64 val; 3040 3041 do { 3042 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3043 clean = !(val & GICR_VPENDBASER_Dirty); 3044 if (!clean) { 3045 count--; 3046 cpu_relax(); 3047 udelay(1); 3048 } 3049 } while (!clean && count); 3050 3051 if (unlikely(!clean)) 3052 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3053 3054 return val; 3055 } 3056 3057 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3058 { 3059 u64 val; 3060 3061 /* Make sure we wait until the RD is done with the initial scan */ 3062 val = read_vpend_dirty_clear(vlpi_base); 3063 val &= ~GICR_VPENDBASER_Valid; 3064 val &= ~clr; 3065 val |= set; 3066 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3067 3068 val = read_vpend_dirty_clear(vlpi_base); 3069 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3070 val |= GICR_VPENDBASER_PendingLast; 3071 3072 return val; 3073 } 3074 3075 static void its_cpu_init_lpis(void) 3076 { 3077 void __iomem *rbase = gic_data_rdist_rd_base(); 3078 struct page *pend_page; 3079 phys_addr_t paddr; 3080 u64 val, tmp; 3081 3082 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3083 return; 3084 3085 val = readl_relaxed(rbase + GICR_CTLR); 3086 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3087 (val & GICR_CTLR_ENABLE_LPIS)) { 3088 /* 3089 * Check that we get the same property table on all 3090 * RDs. If we don't, this is hopeless. 3091 */ 3092 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3093 paddr &= GENMASK_ULL(51, 12); 3094 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3095 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3096 3097 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3098 paddr &= GENMASK_ULL(51, 16); 3099 3100 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3101 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3102 3103 goto out; 3104 } 3105 3106 pend_page = gic_data_rdist()->pend_page; 3107 paddr = page_to_phys(pend_page); 3108 3109 /* set PROPBASE */ 3110 val = (gic_rdists->prop_table_pa | 3111 GICR_PROPBASER_InnerShareable | 3112 GICR_PROPBASER_RaWaWb | 3113 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3114 3115 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3116 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3117 3118 if (!rdists_support_shareable()) 3119 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3120 3121 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3122 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3123 /* 3124 * The HW reports non-shareable, we must 3125 * remove the cacheability attributes as 3126 * well. 3127 */ 3128 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3129 GICR_PROPBASER_CACHEABILITY_MASK); 3130 val |= GICR_PROPBASER_nC; 3131 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3132 } 3133 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3134 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3135 } 3136 3137 /* set PENDBASE */ 3138 val = (page_to_phys(pend_page) | 3139 GICR_PENDBASER_InnerShareable | 3140 GICR_PENDBASER_RaWaWb); 3141 3142 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3143 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3144 3145 if (!rdists_support_shareable()) 3146 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3147 3148 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3149 /* 3150 * The HW reports non-shareable, we must remove the 3151 * cacheability attributes as well. 3152 */ 3153 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3154 GICR_PENDBASER_CACHEABILITY_MASK); 3155 val |= GICR_PENDBASER_nC; 3156 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3157 } 3158 3159 /* Enable LPIs */ 3160 val = readl_relaxed(rbase + GICR_CTLR); 3161 val |= GICR_CTLR_ENABLE_LPIS; 3162 writel_relaxed(val, rbase + GICR_CTLR); 3163 3164 out: 3165 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3166 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3167 3168 /* 3169 * It's possible for CPU to receive VLPIs before it is 3170 * scheduled as a vPE, especially for the first CPU, and the 3171 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3172 * as out of range and dropped by GIC. 3173 * So we initialize IDbits to known value to avoid VLPI drop. 3174 */ 3175 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3176 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3177 smp_processor_id(), val); 3178 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3179 3180 /* 3181 * Also clear Valid bit of GICR_VPENDBASER, in case some 3182 * ancient programming gets left in and has possibility of 3183 * corrupting memory. 3184 */ 3185 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3186 } 3187 3188 if (allocate_vpe_l1_table()) { 3189 /* 3190 * If the allocation has failed, we're in massive trouble. 3191 * Disable direct injection, and pray that no VM was 3192 * already running... 3193 */ 3194 gic_rdists->has_rvpeid = false; 3195 gic_rdists->has_vlpis = false; 3196 } 3197 3198 /* Make sure the GIC has seen the above */ 3199 dsb(sy); 3200 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3201 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3202 smp_processor_id(), 3203 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3204 "reserved" : "allocated", 3205 &paddr); 3206 } 3207 3208 static void its_cpu_init_collection(struct its_node *its) 3209 { 3210 int cpu = smp_processor_id(); 3211 u64 target; 3212 3213 /* avoid cross node collections and its mapping */ 3214 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3215 struct device_node *cpu_node; 3216 3217 cpu_node = of_get_cpu_node(cpu, NULL); 3218 if (its->numa_node != NUMA_NO_NODE && 3219 its->numa_node != of_node_to_nid(cpu_node)) 3220 return; 3221 } 3222 3223 /* 3224 * We now have to bind each collection to its target 3225 * redistributor. 3226 */ 3227 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3228 /* 3229 * This ITS wants the physical address of the 3230 * redistributor. 3231 */ 3232 target = gic_data_rdist()->phys_base; 3233 } else { 3234 /* This ITS wants a linear CPU number. */ 3235 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3236 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3237 } 3238 3239 /* Perform collection mapping */ 3240 its->collections[cpu].target_address = target; 3241 its->collections[cpu].col_id = cpu; 3242 3243 its_send_mapc(its, &its->collections[cpu], 1); 3244 its_send_invall(its, &its->collections[cpu]); 3245 } 3246 3247 static void its_cpu_init_collections(void) 3248 { 3249 struct its_node *its; 3250 3251 raw_spin_lock(&its_lock); 3252 3253 list_for_each_entry(its, &its_nodes, entry) 3254 its_cpu_init_collection(its); 3255 3256 raw_spin_unlock(&its_lock); 3257 } 3258 3259 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3260 { 3261 struct its_device *its_dev = NULL, *tmp; 3262 unsigned long flags; 3263 3264 raw_spin_lock_irqsave(&its->lock, flags); 3265 3266 list_for_each_entry(tmp, &its->its_device_list, entry) { 3267 if (tmp->device_id == dev_id) { 3268 its_dev = tmp; 3269 break; 3270 } 3271 } 3272 3273 raw_spin_unlock_irqrestore(&its->lock, flags); 3274 3275 return its_dev; 3276 } 3277 3278 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3279 { 3280 int i; 3281 3282 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3283 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3284 return &its->tables[i]; 3285 } 3286 3287 return NULL; 3288 } 3289 3290 static bool its_alloc_table_entry(struct its_node *its, 3291 struct its_baser *baser, u32 id) 3292 { 3293 struct page *page; 3294 u32 esz, idx; 3295 __le64 *table; 3296 3297 /* Don't allow device id that exceeds single, flat table limit */ 3298 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3299 if (!(baser->val & GITS_BASER_INDIRECT)) 3300 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3301 3302 /* Compute 1st level table index & check if that exceeds table limit */ 3303 idx = id >> ilog2(baser->psz / esz); 3304 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3305 return false; 3306 3307 table = baser->base; 3308 3309 /* Allocate memory for 2nd level table */ 3310 if (!table[idx]) { 3311 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3312 get_order(baser->psz)); 3313 if (!page) 3314 return false; 3315 3316 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3317 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3318 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3319 3320 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3321 3322 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3323 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3324 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3325 3326 /* Ensure updated table contents are visible to ITS hardware */ 3327 dsb(sy); 3328 } 3329 3330 return true; 3331 } 3332 3333 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3334 { 3335 struct its_baser *baser; 3336 3337 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3338 3339 /* Don't allow device id that exceeds ITS hardware limit */ 3340 if (!baser) 3341 return (ilog2(dev_id) < device_ids(its)); 3342 3343 return its_alloc_table_entry(its, baser, dev_id); 3344 } 3345 3346 static bool its_alloc_vpe_table(u32 vpe_id) 3347 { 3348 struct its_node *its; 3349 int cpu; 3350 3351 /* 3352 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3353 * could try and only do it on ITSs corresponding to devices 3354 * that have interrupts targeted at this VPE, but the 3355 * complexity becomes crazy (and you have tons of memory 3356 * anyway, right?). 3357 */ 3358 list_for_each_entry(its, &its_nodes, entry) { 3359 struct its_baser *baser; 3360 3361 if (!is_v4(its)) 3362 continue; 3363 3364 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3365 if (!baser) 3366 return false; 3367 3368 if (!its_alloc_table_entry(its, baser, vpe_id)) 3369 return false; 3370 } 3371 3372 /* Non v4.1? No need to iterate RDs and go back early. */ 3373 if (!gic_rdists->has_rvpeid) 3374 return true; 3375 3376 /* 3377 * Make sure the L2 tables are allocated for all copies of 3378 * the L1 table on *all* v4.1 RDs. 3379 */ 3380 for_each_possible_cpu(cpu) { 3381 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3382 return false; 3383 } 3384 3385 return true; 3386 } 3387 3388 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3389 int nvecs, bool alloc_lpis) 3390 { 3391 struct its_device *dev; 3392 unsigned long *lpi_map = NULL; 3393 unsigned long flags; 3394 u16 *col_map = NULL; 3395 void *itt; 3396 int lpi_base; 3397 int nr_lpis; 3398 int nr_ites; 3399 int sz; 3400 3401 if (!its_alloc_device_table(its, dev_id)) 3402 return NULL; 3403 3404 if (WARN_ON(!is_power_of_2(nvecs))) 3405 nvecs = roundup_pow_of_two(nvecs); 3406 3407 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3408 /* 3409 * Even if the device wants a single LPI, the ITT must be 3410 * sized as a power of two (and you need at least one bit...). 3411 */ 3412 nr_ites = max(2, nvecs); 3413 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3414 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3415 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3416 if (alloc_lpis) { 3417 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3418 if (lpi_map) 3419 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3420 GFP_KERNEL); 3421 } else { 3422 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3423 nr_lpis = 0; 3424 lpi_base = 0; 3425 } 3426 3427 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3428 kfree(dev); 3429 kfree(itt); 3430 bitmap_free(lpi_map); 3431 kfree(col_map); 3432 return NULL; 3433 } 3434 3435 gic_flush_dcache_to_poc(itt, sz); 3436 3437 dev->its = its; 3438 dev->itt = itt; 3439 dev->nr_ites = nr_ites; 3440 dev->event_map.lpi_map = lpi_map; 3441 dev->event_map.col_map = col_map; 3442 dev->event_map.lpi_base = lpi_base; 3443 dev->event_map.nr_lpis = nr_lpis; 3444 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3445 dev->device_id = dev_id; 3446 INIT_LIST_HEAD(&dev->entry); 3447 3448 raw_spin_lock_irqsave(&its->lock, flags); 3449 list_add(&dev->entry, &its->its_device_list); 3450 raw_spin_unlock_irqrestore(&its->lock, flags); 3451 3452 /* Map device to its ITT */ 3453 its_send_mapd(dev, 1); 3454 3455 return dev; 3456 } 3457 3458 static void its_free_device(struct its_device *its_dev) 3459 { 3460 unsigned long flags; 3461 3462 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3463 list_del(&its_dev->entry); 3464 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3465 kfree(its_dev->event_map.col_map); 3466 kfree(its_dev->itt); 3467 kfree(its_dev); 3468 } 3469 3470 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3471 { 3472 int idx; 3473 3474 /* Find a free LPI region in lpi_map and allocate them. */ 3475 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3476 dev->event_map.nr_lpis, 3477 get_count_order(nvecs)); 3478 if (idx < 0) 3479 return -ENOSPC; 3480 3481 *hwirq = dev->event_map.lpi_base + idx; 3482 3483 return 0; 3484 } 3485 3486 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3487 int nvec, msi_alloc_info_t *info) 3488 { 3489 struct its_node *its; 3490 struct its_device *its_dev; 3491 struct msi_domain_info *msi_info; 3492 u32 dev_id; 3493 int err = 0; 3494 3495 /* 3496 * We ignore "dev" entirely, and rely on the dev_id that has 3497 * been passed via the scratchpad. This limits this domain's 3498 * usefulness to upper layers that definitely know that they 3499 * are built on top of the ITS. 3500 */ 3501 dev_id = info->scratchpad[0].ul; 3502 3503 msi_info = msi_get_domain_info(domain); 3504 its = msi_info->data; 3505 3506 if (!gic_rdists->has_direct_lpi && 3507 vpe_proxy.dev && 3508 vpe_proxy.dev->its == its && 3509 dev_id == vpe_proxy.dev->device_id) { 3510 /* Bad luck. Get yourself a better implementation */ 3511 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3512 dev_id); 3513 return -EINVAL; 3514 } 3515 3516 mutex_lock(&its->dev_alloc_lock); 3517 its_dev = its_find_device(its, dev_id); 3518 if (its_dev) { 3519 /* 3520 * We already have seen this ID, probably through 3521 * another alias (PCI bridge of some sort). No need to 3522 * create the device. 3523 */ 3524 its_dev->shared = true; 3525 pr_debug("Reusing ITT for devID %x\n", dev_id); 3526 goto out; 3527 } 3528 3529 its_dev = its_create_device(its, dev_id, nvec, true); 3530 if (!its_dev) { 3531 err = -ENOMEM; 3532 goto out; 3533 } 3534 3535 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3536 its_dev->shared = true; 3537 3538 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3539 out: 3540 mutex_unlock(&its->dev_alloc_lock); 3541 info->scratchpad[0].ptr = its_dev; 3542 return err; 3543 } 3544 3545 static struct msi_domain_ops its_msi_domain_ops = { 3546 .msi_prepare = its_msi_prepare, 3547 }; 3548 3549 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3550 unsigned int virq, 3551 irq_hw_number_t hwirq) 3552 { 3553 struct irq_fwspec fwspec; 3554 3555 if (irq_domain_get_of_node(domain->parent)) { 3556 fwspec.fwnode = domain->parent->fwnode; 3557 fwspec.param_count = 3; 3558 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3559 fwspec.param[1] = hwirq; 3560 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3561 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3562 fwspec.fwnode = domain->parent->fwnode; 3563 fwspec.param_count = 2; 3564 fwspec.param[0] = hwirq; 3565 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3566 } else { 3567 return -EINVAL; 3568 } 3569 3570 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3571 } 3572 3573 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3574 unsigned int nr_irqs, void *args) 3575 { 3576 msi_alloc_info_t *info = args; 3577 struct its_device *its_dev = info->scratchpad[0].ptr; 3578 struct its_node *its = its_dev->its; 3579 struct irq_data *irqd; 3580 irq_hw_number_t hwirq; 3581 int err; 3582 int i; 3583 3584 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3585 if (err) 3586 return err; 3587 3588 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3589 if (err) 3590 return err; 3591 3592 for (i = 0; i < nr_irqs; i++) { 3593 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3594 if (err) 3595 return err; 3596 3597 irq_domain_set_hwirq_and_chip(domain, virq + i, 3598 hwirq + i, &its_irq_chip, its_dev); 3599 irqd = irq_get_irq_data(virq + i); 3600 irqd_set_single_target(irqd); 3601 irqd_set_affinity_on_activate(irqd); 3602 irqd_set_resend_when_in_progress(irqd); 3603 pr_debug("ID:%d pID:%d vID:%d\n", 3604 (int)(hwirq + i - its_dev->event_map.lpi_base), 3605 (int)(hwirq + i), virq + i); 3606 } 3607 3608 return 0; 3609 } 3610 3611 static int its_irq_domain_activate(struct irq_domain *domain, 3612 struct irq_data *d, bool reserve) 3613 { 3614 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3615 u32 event = its_get_event_id(d); 3616 int cpu; 3617 3618 cpu = its_select_cpu(d, cpu_online_mask); 3619 if (cpu < 0 || cpu >= nr_cpu_ids) 3620 return -EINVAL; 3621 3622 its_inc_lpi_count(d, cpu); 3623 its_dev->event_map.col_map[event] = cpu; 3624 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3625 3626 /* Map the GIC IRQ and event to the device */ 3627 its_send_mapti(its_dev, d->hwirq, event); 3628 return 0; 3629 } 3630 3631 static void its_irq_domain_deactivate(struct irq_domain *domain, 3632 struct irq_data *d) 3633 { 3634 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3635 u32 event = its_get_event_id(d); 3636 3637 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3638 /* Stop the delivery of interrupts */ 3639 its_send_discard(its_dev, event); 3640 } 3641 3642 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3643 unsigned int nr_irqs) 3644 { 3645 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3646 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3647 struct its_node *its = its_dev->its; 3648 int i; 3649 3650 bitmap_release_region(its_dev->event_map.lpi_map, 3651 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3652 get_count_order(nr_irqs)); 3653 3654 for (i = 0; i < nr_irqs; i++) { 3655 struct irq_data *data = irq_domain_get_irq_data(domain, 3656 virq + i); 3657 /* Nuke the entry in the domain */ 3658 irq_domain_reset_irq_data(data); 3659 } 3660 3661 mutex_lock(&its->dev_alloc_lock); 3662 3663 /* 3664 * If all interrupts have been freed, start mopping the 3665 * floor. This is conditioned on the device not being shared. 3666 */ 3667 if (!its_dev->shared && 3668 bitmap_empty(its_dev->event_map.lpi_map, 3669 its_dev->event_map.nr_lpis)) { 3670 its_lpi_free(its_dev->event_map.lpi_map, 3671 its_dev->event_map.lpi_base, 3672 its_dev->event_map.nr_lpis); 3673 3674 /* Unmap device/itt */ 3675 its_send_mapd(its_dev, 0); 3676 its_free_device(its_dev); 3677 } 3678 3679 mutex_unlock(&its->dev_alloc_lock); 3680 3681 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3682 } 3683 3684 static const struct irq_domain_ops its_domain_ops = { 3685 .alloc = its_irq_domain_alloc, 3686 .free = its_irq_domain_free, 3687 .activate = its_irq_domain_activate, 3688 .deactivate = its_irq_domain_deactivate, 3689 }; 3690 3691 /* 3692 * This is insane. 3693 * 3694 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3695 * likely), the only way to perform an invalidate is to use a fake 3696 * device to issue an INV command, implying that the LPI has first 3697 * been mapped to some event on that device. Since this is not exactly 3698 * cheap, we try to keep that mapping around as long as possible, and 3699 * only issue an UNMAP if we're short on available slots. 3700 * 3701 * Broken by design(tm). 3702 * 3703 * GICv4.1, on the other hand, mandates that we're able to invalidate 3704 * by writing to a MMIO register. It doesn't implement the whole of 3705 * DirectLPI, but that's good enough. And most of the time, we don't 3706 * even have to invalidate anything, as the redistributor can be told 3707 * whether to generate a doorbell or not (we thus leave it enabled, 3708 * always). 3709 */ 3710 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3711 { 3712 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3713 if (gic_rdists->has_rvpeid) 3714 return; 3715 3716 /* Already unmapped? */ 3717 if (vpe->vpe_proxy_event == -1) 3718 return; 3719 3720 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3721 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3722 3723 /* 3724 * We don't track empty slots at all, so let's move the 3725 * next_victim pointer if we can quickly reuse that slot 3726 * instead of nuking an existing entry. Not clear that this is 3727 * always a win though, and this might just generate a ripple 3728 * effect... Let's just hope VPEs don't migrate too often. 3729 */ 3730 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3731 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3732 3733 vpe->vpe_proxy_event = -1; 3734 } 3735 3736 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3737 { 3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3739 if (gic_rdists->has_rvpeid) 3740 return; 3741 3742 if (!gic_rdists->has_direct_lpi) { 3743 unsigned long flags; 3744 3745 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3746 its_vpe_db_proxy_unmap_locked(vpe); 3747 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3748 } 3749 } 3750 3751 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3752 { 3753 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3754 if (gic_rdists->has_rvpeid) 3755 return; 3756 3757 /* Already mapped? */ 3758 if (vpe->vpe_proxy_event != -1) 3759 return; 3760 3761 /* This slot was already allocated. Kick the other VPE out. */ 3762 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3763 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3764 3765 /* Map the new VPE instead */ 3766 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3767 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3768 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3769 3770 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3771 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3772 } 3773 3774 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3775 { 3776 unsigned long flags; 3777 struct its_collection *target_col; 3778 3779 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3780 if (gic_rdists->has_rvpeid) 3781 return; 3782 3783 if (gic_rdists->has_direct_lpi) { 3784 void __iomem *rdbase; 3785 3786 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3787 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3788 wait_for_syncr(rdbase); 3789 3790 return; 3791 } 3792 3793 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3794 3795 its_vpe_db_proxy_map_locked(vpe); 3796 3797 target_col = &vpe_proxy.dev->its->collections[to]; 3798 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3799 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3800 3801 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3802 } 3803 3804 static int its_vpe_set_affinity(struct irq_data *d, 3805 const struct cpumask *mask_val, 3806 bool force) 3807 { 3808 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3809 struct cpumask common, *table_mask; 3810 unsigned long flags; 3811 int from, cpu; 3812 3813 /* 3814 * Changing affinity is mega expensive, so let's be as lazy as 3815 * we can and only do it if we really have to. Also, if mapped 3816 * into the proxy device, we need to move the doorbell 3817 * interrupt to its new location. 3818 * 3819 * Another thing is that changing the affinity of a vPE affects 3820 * *other interrupts* such as all the vLPIs that are routed to 3821 * this vPE. This means that the irq_desc lock is not enough to 3822 * protect us, and that we must ensure nobody samples vpe->col_idx 3823 * during the update, hence the lock below which must also be 3824 * taken on any vLPI handling path that evaluates vpe->col_idx. 3825 */ 3826 from = vpe_to_cpuid_lock(vpe, &flags); 3827 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3828 3829 /* 3830 * If we are offered another CPU in the same GICv4.1 ITS 3831 * affinity, pick this one. Otherwise, any CPU will do. 3832 */ 3833 if (table_mask && cpumask_and(&common, mask_val, table_mask)) 3834 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common); 3835 else 3836 cpu = cpumask_first(mask_val); 3837 3838 if (from == cpu) 3839 goto out; 3840 3841 vpe->col_idx = cpu; 3842 3843 its_send_vmovp(vpe); 3844 its_vpe_db_proxy_move(vpe, from, cpu); 3845 3846 out: 3847 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3848 vpe_to_cpuid_unlock(vpe, flags); 3849 3850 return IRQ_SET_MASK_OK_DONE; 3851 } 3852 3853 static void its_wait_vpt_parse_complete(void) 3854 { 3855 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3856 u64 val; 3857 3858 if (!gic_rdists->has_vpend_valid_dirty) 3859 return; 3860 3861 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3862 val, 3863 !(val & GICR_VPENDBASER_Dirty), 3864 1, 500)); 3865 } 3866 3867 static void its_vpe_schedule(struct its_vpe *vpe) 3868 { 3869 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3870 u64 val; 3871 3872 /* Schedule the VPE */ 3873 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3874 GENMASK_ULL(51, 12); 3875 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3876 if (rdists_support_shareable()) { 3877 val |= GICR_VPROPBASER_RaWb; 3878 val |= GICR_VPROPBASER_InnerShareable; 3879 } 3880 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3881 3882 val = virt_to_phys(page_address(vpe->vpt_page)) & 3883 GENMASK_ULL(51, 16); 3884 if (rdists_support_shareable()) { 3885 val |= GICR_VPENDBASER_RaWaWb; 3886 val |= GICR_VPENDBASER_InnerShareable; 3887 } 3888 /* 3889 * There is no good way of finding out if the pending table is 3890 * empty as we can race against the doorbell interrupt very 3891 * easily. So in the end, vpe->pending_last is only an 3892 * indication that the vcpu has something pending, not one 3893 * that the pending table is empty. A good implementation 3894 * would be able to read its coarse map pretty quickly anyway, 3895 * making this a tolerable issue. 3896 */ 3897 val |= GICR_VPENDBASER_PendingLast; 3898 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3899 val |= GICR_VPENDBASER_Valid; 3900 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3901 } 3902 3903 static void its_vpe_deschedule(struct its_vpe *vpe) 3904 { 3905 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3906 u64 val; 3907 3908 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3909 3910 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3911 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3912 } 3913 3914 static void its_vpe_invall(struct its_vpe *vpe) 3915 { 3916 struct its_node *its; 3917 3918 list_for_each_entry(its, &its_nodes, entry) { 3919 if (!is_v4(its)) 3920 continue; 3921 3922 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3923 continue; 3924 3925 /* 3926 * Sending a VINVALL to a single ITS is enough, as all 3927 * we need is to reach the redistributors. 3928 */ 3929 its_send_vinvall(its, vpe); 3930 return; 3931 } 3932 } 3933 3934 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3935 { 3936 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3937 struct its_cmd_info *info = vcpu_info; 3938 3939 switch (info->cmd_type) { 3940 case SCHEDULE_VPE: 3941 its_vpe_schedule(vpe); 3942 return 0; 3943 3944 case DESCHEDULE_VPE: 3945 its_vpe_deschedule(vpe); 3946 return 0; 3947 3948 case COMMIT_VPE: 3949 its_wait_vpt_parse_complete(); 3950 return 0; 3951 3952 case INVALL_VPE: 3953 its_vpe_invall(vpe); 3954 return 0; 3955 3956 default: 3957 return -EINVAL; 3958 } 3959 } 3960 3961 static void its_vpe_send_cmd(struct its_vpe *vpe, 3962 void (*cmd)(struct its_device *, u32)) 3963 { 3964 unsigned long flags; 3965 3966 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3967 3968 its_vpe_db_proxy_map_locked(vpe); 3969 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3970 3971 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3972 } 3973 3974 static void its_vpe_send_inv(struct irq_data *d) 3975 { 3976 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3977 3978 if (gic_rdists->has_direct_lpi) 3979 __direct_lpi_inv(d, d->parent_data->hwirq); 3980 else 3981 its_vpe_send_cmd(vpe, its_send_inv); 3982 } 3983 3984 static void its_vpe_mask_irq(struct irq_data *d) 3985 { 3986 /* 3987 * We need to unmask the LPI, which is described by the parent 3988 * irq_data. Instead of calling into the parent (which won't 3989 * exactly do the right thing, let's simply use the 3990 * parent_data pointer. Yes, I'm naughty. 3991 */ 3992 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3993 its_vpe_send_inv(d); 3994 } 3995 3996 static void its_vpe_unmask_irq(struct irq_data *d) 3997 { 3998 /* Same hack as above... */ 3999 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4000 its_vpe_send_inv(d); 4001 } 4002 4003 static int its_vpe_set_irqchip_state(struct irq_data *d, 4004 enum irqchip_irq_state which, 4005 bool state) 4006 { 4007 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4008 4009 if (which != IRQCHIP_STATE_PENDING) 4010 return -EINVAL; 4011 4012 if (gic_rdists->has_direct_lpi) { 4013 void __iomem *rdbase; 4014 4015 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4016 if (state) { 4017 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4018 } else { 4019 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4020 wait_for_syncr(rdbase); 4021 } 4022 } else { 4023 if (state) 4024 its_vpe_send_cmd(vpe, its_send_int); 4025 else 4026 its_vpe_send_cmd(vpe, its_send_clear); 4027 } 4028 4029 return 0; 4030 } 4031 4032 static int its_vpe_retrigger(struct irq_data *d) 4033 { 4034 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4035 } 4036 4037 static struct irq_chip its_vpe_irq_chip = { 4038 .name = "GICv4-vpe", 4039 .irq_mask = its_vpe_mask_irq, 4040 .irq_unmask = its_vpe_unmask_irq, 4041 .irq_eoi = irq_chip_eoi_parent, 4042 .irq_set_affinity = its_vpe_set_affinity, 4043 .irq_retrigger = its_vpe_retrigger, 4044 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4045 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4046 }; 4047 4048 static struct its_node *find_4_1_its(void) 4049 { 4050 static struct its_node *its = NULL; 4051 4052 if (!its) { 4053 list_for_each_entry(its, &its_nodes, entry) { 4054 if (is_v4_1(its)) 4055 return its; 4056 } 4057 4058 /* Oops? */ 4059 its = NULL; 4060 } 4061 4062 return its; 4063 } 4064 4065 static void its_vpe_4_1_send_inv(struct irq_data *d) 4066 { 4067 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4068 struct its_node *its; 4069 4070 /* 4071 * GICv4.1 wants doorbells to be invalidated using the 4072 * INVDB command in order to be broadcast to all RDs. Send 4073 * it to the first valid ITS, and let the HW do its magic. 4074 */ 4075 its = find_4_1_its(); 4076 if (its) 4077 its_send_invdb(its, vpe); 4078 } 4079 4080 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4081 { 4082 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4083 its_vpe_4_1_send_inv(d); 4084 } 4085 4086 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4087 { 4088 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4089 its_vpe_4_1_send_inv(d); 4090 } 4091 4092 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4093 struct its_cmd_info *info) 4094 { 4095 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4096 u64 val = 0; 4097 4098 /* Schedule the VPE */ 4099 val |= GICR_VPENDBASER_Valid; 4100 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4101 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4102 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4103 4104 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4105 } 4106 4107 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4108 struct its_cmd_info *info) 4109 { 4110 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4111 u64 val; 4112 4113 if (info->req_db) { 4114 unsigned long flags; 4115 4116 /* 4117 * vPE is going to block: make the vPE non-resident with 4118 * PendingLast clear and DB set. The GIC guarantees that if 4119 * we read-back PendingLast clear, then a doorbell will be 4120 * delivered when an interrupt comes. 4121 * 4122 * Note the locking to deal with the concurrent update of 4123 * pending_last from the doorbell interrupt handler that can 4124 * run concurrently. 4125 */ 4126 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4127 val = its_clear_vpend_valid(vlpi_base, 4128 GICR_VPENDBASER_PendingLast, 4129 GICR_VPENDBASER_4_1_DB); 4130 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4131 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4132 } else { 4133 /* 4134 * We're not blocking, so just make the vPE non-resident 4135 * with PendingLast set, indicating that we'll be back. 4136 */ 4137 val = its_clear_vpend_valid(vlpi_base, 4138 0, 4139 GICR_VPENDBASER_PendingLast); 4140 vpe->pending_last = true; 4141 } 4142 } 4143 4144 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4145 { 4146 void __iomem *rdbase; 4147 unsigned long flags; 4148 u64 val; 4149 int cpu; 4150 4151 val = GICR_INVALLR_V; 4152 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4153 4154 /* Target the redistributor this vPE is currently known on */ 4155 cpu = vpe_to_cpuid_lock(vpe, &flags); 4156 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4157 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4158 gic_write_lpir(val, rdbase + GICR_INVALLR); 4159 4160 wait_for_syncr(rdbase); 4161 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4162 vpe_to_cpuid_unlock(vpe, flags); 4163 } 4164 4165 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4166 { 4167 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4168 struct its_cmd_info *info = vcpu_info; 4169 4170 switch (info->cmd_type) { 4171 case SCHEDULE_VPE: 4172 its_vpe_4_1_schedule(vpe, info); 4173 return 0; 4174 4175 case DESCHEDULE_VPE: 4176 its_vpe_4_1_deschedule(vpe, info); 4177 return 0; 4178 4179 case COMMIT_VPE: 4180 its_wait_vpt_parse_complete(); 4181 return 0; 4182 4183 case INVALL_VPE: 4184 its_vpe_4_1_invall(vpe); 4185 return 0; 4186 4187 default: 4188 return -EINVAL; 4189 } 4190 } 4191 4192 static struct irq_chip its_vpe_4_1_irq_chip = { 4193 .name = "GICv4.1-vpe", 4194 .irq_mask = its_vpe_4_1_mask_irq, 4195 .irq_unmask = its_vpe_4_1_unmask_irq, 4196 .irq_eoi = irq_chip_eoi_parent, 4197 .irq_set_affinity = its_vpe_set_affinity, 4198 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4199 }; 4200 4201 static void its_configure_sgi(struct irq_data *d, bool clear) 4202 { 4203 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4204 struct its_cmd_desc desc; 4205 4206 desc.its_vsgi_cmd.vpe = vpe; 4207 desc.its_vsgi_cmd.sgi = d->hwirq; 4208 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4209 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4210 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4211 desc.its_vsgi_cmd.clear = clear; 4212 4213 /* 4214 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4215 * destination VPE is mapped there. Since we map them eagerly at 4216 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4217 */ 4218 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4219 } 4220 4221 static void its_sgi_mask_irq(struct irq_data *d) 4222 { 4223 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4224 4225 vpe->sgi_config[d->hwirq].enabled = false; 4226 its_configure_sgi(d, false); 4227 } 4228 4229 static void its_sgi_unmask_irq(struct irq_data *d) 4230 { 4231 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4232 4233 vpe->sgi_config[d->hwirq].enabled = true; 4234 its_configure_sgi(d, false); 4235 } 4236 4237 static int its_sgi_set_affinity(struct irq_data *d, 4238 const struct cpumask *mask_val, 4239 bool force) 4240 { 4241 /* 4242 * There is no notion of affinity for virtual SGIs, at least 4243 * not on the host (since they can only be targeting a vPE). 4244 * Tell the kernel we've done whatever it asked for. 4245 */ 4246 irq_data_update_effective_affinity(d, mask_val); 4247 return IRQ_SET_MASK_OK; 4248 } 4249 4250 static int its_sgi_set_irqchip_state(struct irq_data *d, 4251 enum irqchip_irq_state which, 4252 bool state) 4253 { 4254 if (which != IRQCHIP_STATE_PENDING) 4255 return -EINVAL; 4256 4257 if (state) { 4258 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4259 struct its_node *its = find_4_1_its(); 4260 u64 val; 4261 4262 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4263 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4264 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4265 } else { 4266 its_configure_sgi(d, true); 4267 } 4268 4269 return 0; 4270 } 4271 4272 static int its_sgi_get_irqchip_state(struct irq_data *d, 4273 enum irqchip_irq_state which, bool *val) 4274 { 4275 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4276 void __iomem *base; 4277 unsigned long flags; 4278 u32 count = 1000000; /* 1s! */ 4279 u32 status; 4280 int cpu; 4281 4282 if (which != IRQCHIP_STATE_PENDING) 4283 return -EINVAL; 4284 4285 /* 4286 * Locking galore! We can race against two different events: 4287 * 4288 * - Concurrent vPE affinity change: we must make sure it cannot 4289 * happen, or we'll talk to the wrong redistributor. This is 4290 * identical to what happens with vLPIs. 4291 * 4292 * - Concurrent VSGIPENDR access: As it involves accessing two 4293 * MMIO registers, this must be made atomic one way or another. 4294 */ 4295 cpu = vpe_to_cpuid_lock(vpe, &flags); 4296 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4297 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4298 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4299 do { 4300 status = readl_relaxed(base + GICR_VSGIPENDR); 4301 if (!(status & GICR_VSGIPENDR_BUSY)) 4302 goto out; 4303 4304 count--; 4305 if (!count) { 4306 pr_err_ratelimited("Unable to get SGI status\n"); 4307 goto out; 4308 } 4309 cpu_relax(); 4310 udelay(1); 4311 } while (count); 4312 4313 out: 4314 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4315 vpe_to_cpuid_unlock(vpe, flags); 4316 4317 if (!count) 4318 return -ENXIO; 4319 4320 *val = !!(status & (1 << d->hwirq)); 4321 4322 return 0; 4323 } 4324 4325 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4326 { 4327 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4328 struct its_cmd_info *info = vcpu_info; 4329 4330 switch (info->cmd_type) { 4331 case PROP_UPDATE_VSGI: 4332 vpe->sgi_config[d->hwirq].priority = info->priority; 4333 vpe->sgi_config[d->hwirq].group = info->group; 4334 its_configure_sgi(d, false); 4335 return 0; 4336 4337 default: 4338 return -EINVAL; 4339 } 4340 } 4341 4342 static struct irq_chip its_sgi_irq_chip = { 4343 .name = "GICv4.1-sgi", 4344 .irq_mask = its_sgi_mask_irq, 4345 .irq_unmask = its_sgi_unmask_irq, 4346 .irq_set_affinity = its_sgi_set_affinity, 4347 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4348 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4349 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4350 }; 4351 4352 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4353 unsigned int virq, unsigned int nr_irqs, 4354 void *args) 4355 { 4356 struct its_vpe *vpe = args; 4357 int i; 4358 4359 /* Yes, we do want 16 SGIs */ 4360 WARN_ON(nr_irqs != 16); 4361 4362 for (i = 0; i < 16; i++) { 4363 vpe->sgi_config[i].priority = 0; 4364 vpe->sgi_config[i].enabled = false; 4365 vpe->sgi_config[i].group = false; 4366 4367 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4368 &its_sgi_irq_chip, vpe); 4369 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4370 } 4371 4372 return 0; 4373 } 4374 4375 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4376 unsigned int virq, 4377 unsigned int nr_irqs) 4378 { 4379 /* Nothing to do */ 4380 } 4381 4382 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4383 struct irq_data *d, bool reserve) 4384 { 4385 /* Write out the initial SGI configuration */ 4386 its_configure_sgi(d, false); 4387 return 0; 4388 } 4389 4390 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4391 struct irq_data *d) 4392 { 4393 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4394 4395 /* 4396 * The VSGI command is awkward: 4397 * 4398 * - To change the configuration, CLEAR must be set to false, 4399 * leaving the pending bit unchanged. 4400 * - To clear the pending bit, CLEAR must be set to true, leaving 4401 * the configuration unchanged. 4402 * 4403 * You just can't do both at once, hence the two commands below. 4404 */ 4405 vpe->sgi_config[d->hwirq].enabled = false; 4406 its_configure_sgi(d, false); 4407 its_configure_sgi(d, true); 4408 } 4409 4410 static const struct irq_domain_ops its_sgi_domain_ops = { 4411 .alloc = its_sgi_irq_domain_alloc, 4412 .free = its_sgi_irq_domain_free, 4413 .activate = its_sgi_irq_domain_activate, 4414 .deactivate = its_sgi_irq_domain_deactivate, 4415 }; 4416 4417 static int its_vpe_id_alloc(void) 4418 { 4419 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4420 } 4421 4422 static void its_vpe_id_free(u16 id) 4423 { 4424 ida_simple_remove(&its_vpeid_ida, id); 4425 } 4426 4427 static int its_vpe_init(struct its_vpe *vpe) 4428 { 4429 struct page *vpt_page; 4430 int vpe_id; 4431 4432 /* Allocate vpe_id */ 4433 vpe_id = its_vpe_id_alloc(); 4434 if (vpe_id < 0) 4435 return vpe_id; 4436 4437 /* Allocate VPT */ 4438 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4439 if (!vpt_page) { 4440 its_vpe_id_free(vpe_id); 4441 return -ENOMEM; 4442 } 4443 4444 if (!its_alloc_vpe_table(vpe_id)) { 4445 its_vpe_id_free(vpe_id); 4446 its_free_pending_table(vpt_page); 4447 return -ENOMEM; 4448 } 4449 4450 raw_spin_lock_init(&vpe->vpe_lock); 4451 vpe->vpe_id = vpe_id; 4452 vpe->vpt_page = vpt_page; 4453 if (gic_rdists->has_rvpeid) 4454 atomic_set(&vpe->vmapp_count, 0); 4455 else 4456 vpe->vpe_proxy_event = -1; 4457 4458 return 0; 4459 } 4460 4461 static void its_vpe_teardown(struct its_vpe *vpe) 4462 { 4463 its_vpe_db_proxy_unmap(vpe); 4464 its_vpe_id_free(vpe->vpe_id); 4465 its_free_pending_table(vpe->vpt_page); 4466 } 4467 4468 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4469 unsigned int virq, 4470 unsigned int nr_irqs) 4471 { 4472 struct its_vm *vm = domain->host_data; 4473 int i; 4474 4475 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4476 4477 for (i = 0; i < nr_irqs; i++) { 4478 struct irq_data *data = irq_domain_get_irq_data(domain, 4479 virq + i); 4480 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4481 4482 BUG_ON(vm != vpe->its_vm); 4483 4484 clear_bit(data->hwirq, vm->db_bitmap); 4485 its_vpe_teardown(vpe); 4486 irq_domain_reset_irq_data(data); 4487 } 4488 4489 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4490 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4491 its_free_prop_table(vm->vprop_page); 4492 } 4493 } 4494 4495 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4496 unsigned int nr_irqs, void *args) 4497 { 4498 struct irq_chip *irqchip = &its_vpe_irq_chip; 4499 struct its_vm *vm = args; 4500 unsigned long *bitmap; 4501 struct page *vprop_page; 4502 int base, nr_ids, i, err = 0; 4503 4504 BUG_ON(!vm); 4505 4506 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4507 if (!bitmap) 4508 return -ENOMEM; 4509 4510 if (nr_ids < nr_irqs) { 4511 its_lpi_free(bitmap, base, nr_ids); 4512 return -ENOMEM; 4513 } 4514 4515 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4516 if (!vprop_page) { 4517 its_lpi_free(bitmap, base, nr_ids); 4518 return -ENOMEM; 4519 } 4520 4521 vm->db_bitmap = bitmap; 4522 vm->db_lpi_base = base; 4523 vm->nr_db_lpis = nr_ids; 4524 vm->vprop_page = vprop_page; 4525 4526 if (gic_rdists->has_rvpeid) 4527 irqchip = &its_vpe_4_1_irq_chip; 4528 4529 for (i = 0; i < nr_irqs; i++) { 4530 vm->vpes[i]->vpe_db_lpi = base + i; 4531 err = its_vpe_init(vm->vpes[i]); 4532 if (err) 4533 break; 4534 err = its_irq_gic_domain_alloc(domain, virq + i, 4535 vm->vpes[i]->vpe_db_lpi); 4536 if (err) 4537 break; 4538 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4539 irqchip, vm->vpes[i]); 4540 set_bit(i, bitmap); 4541 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4542 } 4543 4544 if (err) 4545 its_vpe_irq_domain_free(domain, virq, i); 4546 4547 return err; 4548 } 4549 4550 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4551 struct irq_data *d, bool reserve) 4552 { 4553 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4554 struct its_node *its; 4555 4556 /* 4557 * If we use the list map, we issue VMAPP on demand... Unless 4558 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4559 * so that VSGIs can work. 4560 */ 4561 if (!gic_requires_eager_mapping()) 4562 return 0; 4563 4564 /* Map the VPE to the first possible CPU */ 4565 vpe->col_idx = cpumask_first(cpu_online_mask); 4566 4567 list_for_each_entry(its, &its_nodes, entry) { 4568 if (!is_v4(its)) 4569 continue; 4570 4571 its_send_vmapp(its, vpe, true); 4572 its_send_vinvall(its, vpe); 4573 } 4574 4575 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4576 4577 return 0; 4578 } 4579 4580 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4581 struct irq_data *d) 4582 { 4583 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4584 struct its_node *its; 4585 4586 /* 4587 * If we use the list map on GICv4.0, we unmap the VPE once no 4588 * VLPIs are associated with the VM. 4589 */ 4590 if (!gic_requires_eager_mapping()) 4591 return; 4592 4593 list_for_each_entry(its, &its_nodes, entry) { 4594 if (!is_v4(its)) 4595 continue; 4596 4597 its_send_vmapp(its, vpe, false); 4598 } 4599 4600 /* 4601 * There may be a direct read to the VPT after unmapping the 4602 * vPE, to guarantee the validity of this, we make the VPT 4603 * memory coherent with the CPU caches here. 4604 */ 4605 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4606 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4607 LPI_PENDBASE_SZ); 4608 } 4609 4610 static const struct irq_domain_ops its_vpe_domain_ops = { 4611 .alloc = its_vpe_irq_domain_alloc, 4612 .free = its_vpe_irq_domain_free, 4613 .activate = its_vpe_irq_domain_activate, 4614 .deactivate = its_vpe_irq_domain_deactivate, 4615 }; 4616 4617 static int its_force_quiescent(void __iomem *base) 4618 { 4619 u32 count = 1000000; /* 1s */ 4620 u32 val; 4621 4622 val = readl_relaxed(base + GITS_CTLR); 4623 /* 4624 * GIC architecture specification requires the ITS to be both 4625 * disabled and quiescent for writes to GITS_BASER<n> or 4626 * GITS_CBASER to not have UNPREDICTABLE results. 4627 */ 4628 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4629 return 0; 4630 4631 /* Disable the generation of all interrupts to this ITS */ 4632 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4633 writel_relaxed(val, base + GITS_CTLR); 4634 4635 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4636 while (1) { 4637 val = readl_relaxed(base + GITS_CTLR); 4638 if (val & GITS_CTLR_QUIESCENT) 4639 return 0; 4640 4641 count--; 4642 if (!count) 4643 return -EBUSY; 4644 4645 cpu_relax(); 4646 udelay(1); 4647 } 4648 } 4649 4650 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4651 { 4652 struct its_node *its = data; 4653 4654 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4655 its->typer &= ~GITS_TYPER_DEVBITS; 4656 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4657 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4658 4659 return true; 4660 } 4661 4662 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4663 { 4664 struct its_node *its = data; 4665 4666 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4667 4668 return true; 4669 } 4670 4671 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4672 { 4673 struct its_node *its = data; 4674 4675 /* On QDF2400, the size of the ITE is 16Bytes */ 4676 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4677 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4678 4679 return true; 4680 } 4681 4682 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4683 { 4684 struct its_node *its = its_dev->its; 4685 4686 /* 4687 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4688 * which maps 32-bit writes targeted at a separate window of 4689 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4690 * with device ID taken from bits [device_id_bits + 1:2] of 4691 * the window offset. 4692 */ 4693 return its->pre_its_base + (its_dev->device_id << 2); 4694 } 4695 4696 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4697 { 4698 struct its_node *its = data; 4699 u32 pre_its_window[2]; 4700 u32 ids; 4701 4702 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4703 "socionext,synquacer-pre-its", 4704 pre_its_window, 4705 ARRAY_SIZE(pre_its_window))) { 4706 4707 its->pre_its_base = pre_its_window[0]; 4708 its->get_msi_base = its_irq_get_msi_base_pre_its; 4709 4710 ids = ilog2(pre_its_window[1]) - 2; 4711 if (device_ids(its) > ids) { 4712 its->typer &= ~GITS_TYPER_DEVBITS; 4713 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4714 } 4715 4716 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4717 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4718 return true; 4719 } 4720 return false; 4721 } 4722 4723 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4724 { 4725 struct its_node *its = data; 4726 4727 /* 4728 * Hip07 insists on using the wrong address for the VLPI 4729 * page. Trick it into doing the right thing... 4730 */ 4731 its->vlpi_redist_offset = SZ_128K; 4732 return true; 4733 } 4734 4735 static bool __maybe_unused its_enable_rk3588001(void *data) 4736 { 4737 struct its_node *its = data; 4738 4739 if (!of_machine_is_compatible("rockchip,rk3588") && 4740 !of_machine_is_compatible("rockchip,rk3588s")) 4741 return false; 4742 4743 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4744 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4745 4746 return true; 4747 } 4748 4749 static bool its_set_non_coherent(void *data) 4750 { 4751 struct its_node *its = data; 4752 4753 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4754 return true; 4755 } 4756 4757 static const struct gic_quirk its_quirks[] = { 4758 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4759 { 4760 .desc = "ITS: Cavium errata 22375, 24313", 4761 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4762 .mask = 0xffff0fff, 4763 .init = its_enable_quirk_cavium_22375, 4764 }, 4765 #endif 4766 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4767 { 4768 .desc = "ITS: Cavium erratum 23144", 4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4770 .mask = 0xffff0fff, 4771 .init = its_enable_quirk_cavium_23144, 4772 }, 4773 #endif 4774 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4775 { 4776 .desc = "ITS: QDF2400 erratum 0065", 4777 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4778 .mask = 0xffffffff, 4779 .init = its_enable_quirk_qdf2400_e0065, 4780 }, 4781 #endif 4782 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4783 { 4784 /* 4785 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4786 * implementation, but with a 'pre-ITS' added that requires 4787 * special handling in software. 4788 */ 4789 .desc = "ITS: Socionext Synquacer pre-ITS", 4790 .iidr = 0x0001143b, 4791 .mask = 0xffffffff, 4792 .init = its_enable_quirk_socionext_synquacer, 4793 }, 4794 #endif 4795 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4796 { 4797 .desc = "ITS: Hip07 erratum 161600802", 4798 .iidr = 0x00000004, 4799 .mask = 0xffffffff, 4800 .init = its_enable_quirk_hip07_161600802, 4801 }, 4802 #endif 4803 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4804 { 4805 .desc = "ITS: Rockchip erratum RK3588001", 4806 .iidr = 0x0201743b, 4807 .mask = 0xffffffff, 4808 .init = its_enable_rk3588001, 4809 }, 4810 #endif 4811 { 4812 .desc = "ITS: non-coherent attribute", 4813 .property = "dma-noncoherent", 4814 .init = its_set_non_coherent, 4815 }, 4816 { 4817 } 4818 }; 4819 4820 static void its_enable_quirks(struct its_node *its) 4821 { 4822 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4823 4824 gic_enable_quirks(iidr, its_quirks, its); 4825 4826 if (is_of_node(its->fwnode_handle)) 4827 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4828 its_quirks, its); 4829 } 4830 4831 static int its_save_disable(void) 4832 { 4833 struct its_node *its; 4834 int err = 0; 4835 4836 raw_spin_lock(&its_lock); 4837 list_for_each_entry(its, &its_nodes, entry) { 4838 void __iomem *base; 4839 4840 base = its->base; 4841 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4842 err = its_force_quiescent(base); 4843 if (err) { 4844 pr_err("ITS@%pa: failed to quiesce: %d\n", 4845 &its->phys_base, err); 4846 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4847 goto err; 4848 } 4849 4850 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4851 } 4852 4853 err: 4854 if (err) { 4855 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4856 void __iomem *base; 4857 4858 base = its->base; 4859 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4860 } 4861 } 4862 raw_spin_unlock(&its_lock); 4863 4864 return err; 4865 } 4866 4867 static void its_restore_enable(void) 4868 { 4869 struct its_node *its; 4870 int ret; 4871 4872 raw_spin_lock(&its_lock); 4873 list_for_each_entry(its, &its_nodes, entry) { 4874 void __iomem *base; 4875 int i; 4876 4877 base = its->base; 4878 4879 /* 4880 * Make sure that the ITS is disabled. If it fails to quiesce, 4881 * don't restore it since writing to CBASER or BASER<n> 4882 * registers is undefined according to the GIC v3 ITS 4883 * Specification. 4884 * 4885 * Firmware resuming with the ITS enabled is terminally broken. 4886 */ 4887 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4888 ret = its_force_quiescent(base); 4889 if (ret) { 4890 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4891 &its->phys_base, ret); 4892 continue; 4893 } 4894 4895 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4896 4897 /* 4898 * Writing CBASER resets CREADR to 0, so make CWRITER and 4899 * cmd_write line up with it. 4900 */ 4901 its->cmd_write = its->cmd_base; 4902 gits_write_cwriter(0, base + GITS_CWRITER); 4903 4904 /* Restore GITS_BASER from the value cache. */ 4905 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4906 struct its_baser *baser = &its->tables[i]; 4907 4908 if (!(baser->val & GITS_BASER_VALID)) 4909 continue; 4910 4911 its_write_baser(its, baser, baser->val); 4912 } 4913 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4914 4915 /* 4916 * Reinit the collection if it's stored in the ITS. This is 4917 * indicated by the col_id being less than the HCC field. 4918 * CID < HCC as specified in the GIC v3 Documentation. 4919 */ 4920 if (its->collections[smp_processor_id()].col_id < 4921 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4922 its_cpu_init_collection(its); 4923 } 4924 raw_spin_unlock(&its_lock); 4925 } 4926 4927 static struct syscore_ops its_syscore_ops = { 4928 .suspend = its_save_disable, 4929 .resume = its_restore_enable, 4930 }; 4931 4932 static void __init __iomem *its_map_one(struct resource *res, int *err) 4933 { 4934 void __iomem *its_base; 4935 u32 val; 4936 4937 its_base = ioremap(res->start, SZ_64K); 4938 if (!its_base) { 4939 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4940 *err = -ENOMEM; 4941 return NULL; 4942 } 4943 4944 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4945 if (val != 0x30 && val != 0x40) { 4946 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4947 *err = -ENODEV; 4948 goto out_unmap; 4949 } 4950 4951 *err = its_force_quiescent(its_base); 4952 if (*err) { 4953 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4954 goto out_unmap; 4955 } 4956 4957 return its_base; 4958 4959 out_unmap: 4960 iounmap(its_base); 4961 return NULL; 4962 } 4963 4964 static int its_init_domain(struct its_node *its) 4965 { 4966 struct irq_domain *inner_domain; 4967 struct msi_domain_info *info; 4968 4969 info = kzalloc(sizeof(*info), GFP_KERNEL); 4970 if (!info) 4971 return -ENOMEM; 4972 4973 info->ops = &its_msi_domain_ops; 4974 info->data = its; 4975 4976 inner_domain = irq_domain_create_hierarchy(its_parent, 4977 its->msi_domain_flags, 0, 4978 its->fwnode_handle, &its_domain_ops, 4979 info); 4980 if (!inner_domain) { 4981 kfree(info); 4982 return -ENOMEM; 4983 } 4984 4985 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4986 4987 return 0; 4988 } 4989 4990 static int its_init_vpe_domain(void) 4991 { 4992 struct its_node *its; 4993 u32 devid; 4994 int entries; 4995 4996 if (gic_rdists->has_direct_lpi) { 4997 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4998 return 0; 4999 } 5000 5001 /* Any ITS will do, even if not v4 */ 5002 its = list_first_entry(&its_nodes, struct its_node, entry); 5003 5004 entries = roundup_pow_of_two(nr_cpu_ids); 5005 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5006 GFP_KERNEL); 5007 if (!vpe_proxy.vpes) 5008 return -ENOMEM; 5009 5010 /* Use the last possible DevID */ 5011 devid = GENMASK(device_ids(its) - 1, 0); 5012 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5013 if (!vpe_proxy.dev) { 5014 kfree(vpe_proxy.vpes); 5015 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5016 return -ENOMEM; 5017 } 5018 5019 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5020 5021 raw_spin_lock_init(&vpe_proxy.lock); 5022 vpe_proxy.next_victim = 0; 5023 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5024 devid, vpe_proxy.dev->nr_ites); 5025 5026 return 0; 5027 } 5028 5029 static int __init its_compute_its_list_map(struct its_node *its) 5030 { 5031 int its_number; 5032 u32 ctlr; 5033 5034 /* 5035 * This is assumed to be done early enough that we're 5036 * guaranteed to be single-threaded, hence no 5037 * locking. Should this change, we should address 5038 * this. 5039 */ 5040 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5041 if (its_number >= GICv4_ITS_LIST_MAX) { 5042 pr_err("ITS@%pa: No ITSList entry available!\n", 5043 &its->phys_base); 5044 return -EINVAL; 5045 } 5046 5047 ctlr = readl_relaxed(its->base + GITS_CTLR); 5048 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5049 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5050 writel_relaxed(ctlr, its->base + GITS_CTLR); 5051 ctlr = readl_relaxed(its->base + GITS_CTLR); 5052 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5053 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5054 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5055 } 5056 5057 if (test_and_set_bit(its_number, &its_list_map)) { 5058 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5059 &its->phys_base, its_number); 5060 return -EINVAL; 5061 } 5062 5063 return its_number; 5064 } 5065 5066 static int __init its_probe_one(struct its_node *its) 5067 { 5068 u64 baser, tmp; 5069 struct page *page; 5070 u32 ctlr; 5071 int err; 5072 5073 its_enable_quirks(its); 5074 5075 if (is_v4(its)) { 5076 if (!(its->typer & GITS_TYPER_VMOVP)) { 5077 err = its_compute_its_list_map(its); 5078 if (err < 0) 5079 goto out; 5080 5081 its->list_nr = err; 5082 5083 pr_info("ITS@%pa: Using ITS number %d\n", 5084 &its->phys_base, err); 5085 } else { 5086 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5087 } 5088 5089 if (is_v4_1(its)) { 5090 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5091 5092 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5093 if (!its->sgir_base) { 5094 err = -ENOMEM; 5095 goto out; 5096 } 5097 5098 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5099 5100 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5101 &its->phys_base, its->mpidr, svpet); 5102 } 5103 } 5104 5105 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5106 get_order(ITS_CMD_QUEUE_SZ)); 5107 if (!page) { 5108 err = -ENOMEM; 5109 goto out_unmap_sgir; 5110 } 5111 its->cmd_base = (void *)page_address(page); 5112 its->cmd_write = its->cmd_base; 5113 5114 err = its_alloc_tables(its); 5115 if (err) 5116 goto out_free_cmd; 5117 5118 err = its_alloc_collections(its); 5119 if (err) 5120 goto out_free_tables; 5121 5122 baser = (virt_to_phys(its->cmd_base) | 5123 GITS_CBASER_RaWaWb | 5124 GITS_CBASER_InnerShareable | 5125 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5126 GITS_CBASER_VALID); 5127 5128 gits_write_cbaser(baser, its->base + GITS_CBASER); 5129 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5130 5131 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5132 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5133 5134 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5135 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5136 /* 5137 * The HW reports non-shareable, we must 5138 * remove the cacheability attributes as 5139 * well. 5140 */ 5141 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5142 GITS_CBASER_CACHEABILITY_MASK); 5143 baser |= GITS_CBASER_nC; 5144 gits_write_cbaser(baser, its->base + GITS_CBASER); 5145 } 5146 pr_info("ITS: using cache flushing for cmd queue\n"); 5147 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5148 } 5149 5150 gits_write_cwriter(0, its->base + GITS_CWRITER); 5151 ctlr = readl_relaxed(its->base + GITS_CTLR); 5152 ctlr |= GITS_CTLR_ENABLE; 5153 if (is_v4(its)) 5154 ctlr |= GITS_CTLR_ImDe; 5155 writel_relaxed(ctlr, its->base + GITS_CTLR); 5156 5157 err = its_init_domain(its); 5158 if (err) 5159 goto out_free_tables; 5160 5161 raw_spin_lock(&its_lock); 5162 list_add(&its->entry, &its_nodes); 5163 raw_spin_unlock(&its_lock); 5164 5165 return 0; 5166 5167 out_free_tables: 5168 its_free_tables(its); 5169 out_free_cmd: 5170 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5171 out_unmap_sgir: 5172 if (its->sgir_base) 5173 iounmap(its->sgir_base); 5174 out: 5175 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5176 return err; 5177 } 5178 5179 static bool gic_rdists_supports_plpis(void) 5180 { 5181 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5182 } 5183 5184 static int redist_disable_lpis(void) 5185 { 5186 void __iomem *rbase = gic_data_rdist_rd_base(); 5187 u64 timeout = USEC_PER_SEC; 5188 u64 val; 5189 5190 if (!gic_rdists_supports_plpis()) { 5191 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5192 return -ENXIO; 5193 } 5194 5195 val = readl_relaxed(rbase + GICR_CTLR); 5196 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5197 return 0; 5198 5199 /* 5200 * If coming via a CPU hotplug event, we don't need to disable 5201 * LPIs before trying to re-enable them. They are already 5202 * configured and all is well in the world. 5203 * 5204 * If running with preallocated tables, there is nothing to do. 5205 */ 5206 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5207 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5208 return 0; 5209 5210 /* 5211 * From that point on, we only try to do some damage control. 5212 */ 5213 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5214 smp_processor_id()); 5215 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5216 5217 /* Disable LPIs */ 5218 val &= ~GICR_CTLR_ENABLE_LPIS; 5219 writel_relaxed(val, rbase + GICR_CTLR); 5220 5221 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5222 dsb(sy); 5223 5224 /* 5225 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5226 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5227 * Error out if we time out waiting for RWP to clear. 5228 */ 5229 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5230 if (!timeout) { 5231 pr_err("CPU%d: Timeout while disabling LPIs\n", 5232 smp_processor_id()); 5233 return -ETIMEDOUT; 5234 } 5235 udelay(1); 5236 timeout--; 5237 } 5238 5239 /* 5240 * After it has been written to 1, it is IMPLEMENTATION 5241 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5242 * cleared to 0. Error out if clearing the bit failed. 5243 */ 5244 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5245 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5246 return -EBUSY; 5247 } 5248 5249 return 0; 5250 } 5251 5252 int its_cpu_init(void) 5253 { 5254 if (!list_empty(&its_nodes)) { 5255 int ret; 5256 5257 ret = redist_disable_lpis(); 5258 if (ret) 5259 return ret; 5260 5261 its_cpu_init_lpis(); 5262 its_cpu_init_collections(); 5263 } 5264 5265 return 0; 5266 } 5267 5268 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5269 { 5270 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5271 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5272 } 5273 5274 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5275 rdist_memreserve_cpuhp_cleanup_workfn); 5276 5277 static int its_cpu_memreserve_lpi(unsigned int cpu) 5278 { 5279 struct page *pend_page; 5280 int ret = 0; 5281 5282 /* This gets to run exactly once per CPU */ 5283 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5284 return 0; 5285 5286 pend_page = gic_data_rdist()->pend_page; 5287 if (WARN_ON(!pend_page)) { 5288 ret = -ENOMEM; 5289 goto out; 5290 } 5291 /* 5292 * If the pending table was pre-programmed, free the memory we 5293 * preemptively allocated. Otherwise, reserve that memory for 5294 * later kexecs. 5295 */ 5296 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5297 its_free_pending_table(pend_page); 5298 gic_data_rdist()->pend_page = NULL; 5299 } else { 5300 phys_addr_t paddr = page_to_phys(pend_page); 5301 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5302 } 5303 5304 out: 5305 /* Last CPU being brought up gets to issue the cleanup */ 5306 if (!IS_ENABLED(CONFIG_SMP) || 5307 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5308 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5309 5310 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5311 return ret; 5312 } 5313 5314 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5315 static int __init its_reset_one(struct resource *res) 5316 { 5317 void __iomem *its_base; 5318 int err, i; 5319 5320 its_base = its_map_one(res, &err); 5321 if (!its_base) 5322 return err; 5323 5324 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5325 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5326 5327 iounmap(its_base); 5328 return 0; 5329 } 5330 5331 static const struct of_device_id its_device_id[] = { 5332 { .compatible = "arm,gic-v3-its", }, 5333 {}, 5334 }; 5335 5336 static struct its_node __init *its_node_init(struct resource *res, 5337 struct fwnode_handle *handle, int numa_node) 5338 { 5339 void __iomem *its_base; 5340 struct its_node *its; 5341 int err; 5342 5343 its_base = its_map_one(res, &err); 5344 if (!its_base) 5345 return NULL; 5346 5347 pr_info("ITS %pR\n", res); 5348 5349 its = kzalloc(sizeof(*its), GFP_KERNEL); 5350 if (!its) 5351 goto out_unmap; 5352 5353 raw_spin_lock_init(&its->lock); 5354 mutex_init(&its->dev_alloc_lock); 5355 INIT_LIST_HEAD(&its->entry); 5356 INIT_LIST_HEAD(&its->its_device_list); 5357 5358 its->typer = gic_read_typer(its_base + GITS_TYPER); 5359 its->base = its_base; 5360 its->phys_base = res->start; 5361 its->get_msi_base = its_irq_get_msi_base; 5362 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5363 5364 its->numa_node = numa_node; 5365 its->fwnode_handle = handle; 5366 5367 return its; 5368 5369 out_unmap: 5370 iounmap(its_base); 5371 return NULL; 5372 } 5373 5374 static void its_node_destroy(struct its_node *its) 5375 { 5376 iounmap(its->base); 5377 kfree(its); 5378 } 5379 5380 static int __init its_of_probe(struct device_node *node) 5381 { 5382 struct device_node *np; 5383 struct resource res; 5384 int err; 5385 5386 /* 5387 * Make sure *all* the ITS are reset before we probe any, as 5388 * they may be sharing memory. If any of the ITS fails to 5389 * reset, don't even try to go any further, as this could 5390 * result in something even worse. 5391 */ 5392 for (np = of_find_matching_node(node, its_device_id); np; 5393 np = of_find_matching_node(np, its_device_id)) { 5394 if (!of_device_is_available(np) || 5395 !of_property_read_bool(np, "msi-controller") || 5396 of_address_to_resource(np, 0, &res)) 5397 continue; 5398 5399 err = its_reset_one(&res); 5400 if (err) 5401 return err; 5402 } 5403 5404 for (np = of_find_matching_node(node, its_device_id); np; 5405 np = of_find_matching_node(np, its_device_id)) { 5406 struct its_node *its; 5407 5408 if (!of_device_is_available(np)) 5409 continue; 5410 if (!of_property_read_bool(np, "msi-controller")) { 5411 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5412 np); 5413 continue; 5414 } 5415 5416 if (of_address_to_resource(np, 0, &res)) { 5417 pr_warn("%pOF: no regs?\n", np); 5418 continue; 5419 } 5420 5421 5422 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5423 if (!its) 5424 return -ENOMEM; 5425 5426 err = its_probe_one(its); 5427 if (err) { 5428 its_node_destroy(its); 5429 return err; 5430 } 5431 } 5432 return 0; 5433 } 5434 5435 #ifdef CONFIG_ACPI 5436 5437 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5438 5439 #ifdef CONFIG_ACPI_NUMA 5440 struct its_srat_map { 5441 /* numa node id */ 5442 u32 numa_node; 5443 /* GIC ITS ID */ 5444 u32 its_id; 5445 }; 5446 5447 static struct its_srat_map *its_srat_maps __initdata; 5448 static int its_in_srat __initdata; 5449 5450 static int __init acpi_get_its_numa_node(u32 its_id) 5451 { 5452 int i; 5453 5454 for (i = 0; i < its_in_srat; i++) { 5455 if (its_id == its_srat_maps[i].its_id) 5456 return its_srat_maps[i].numa_node; 5457 } 5458 return NUMA_NO_NODE; 5459 } 5460 5461 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5462 const unsigned long end) 5463 { 5464 return 0; 5465 } 5466 5467 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5468 const unsigned long end) 5469 { 5470 int node; 5471 struct acpi_srat_gic_its_affinity *its_affinity; 5472 5473 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5474 if (!its_affinity) 5475 return -EINVAL; 5476 5477 if (its_affinity->header.length < sizeof(*its_affinity)) { 5478 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5479 its_affinity->header.length); 5480 return -EINVAL; 5481 } 5482 5483 /* 5484 * Note that in theory a new proximity node could be created by this 5485 * entry as it is an SRAT resource allocation structure. 5486 * We do not currently support doing so. 5487 */ 5488 node = pxm_to_node(its_affinity->proximity_domain); 5489 5490 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5491 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5492 return 0; 5493 } 5494 5495 its_srat_maps[its_in_srat].numa_node = node; 5496 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5497 its_in_srat++; 5498 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5499 its_affinity->proximity_domain, its_affinity->its_id, node); 5500 5501 return 0; 5502 } 5503 5504 static void __init acpi_table_parse_srat_its(void) 5505 { 5506 int count; 5507 5508 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5509 sizeof(struct acpi_table_srat), 5510 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5511 gic_acpi_match_srat_its, 0); 5512 if (count <= 0) 5513 return; 5514 5515 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5516 GFP_KERNEL); 5517 if (!its_srat_maps) 5518 return; 5519 5520 acpi_table_parse_entries(ACPI_SIG_SRAT, 5521 sizeof(struct acpi_table_srat), 5522 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5523 gic_acpi_parse_srat_its, 0); 5524 } 5525 5526 /* free the its_srat_maps after ITS probing */ 5527 static void __init acpi_its_srat_maps_free(void) 5528 { 5529 kfree(its_srat_maps); 5530 } 5531 #else 5532 static void __init acpi_table_parse_srat_its(void) { } 5533 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5534 static void __init acpi_its_srat_maps_free(void) { } 5535 #endif 5536 5537 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5538 const unsigned long end) 5539 { 5540 struct acpi_madt_generic_translator *its_entry; 5541 struct fwnode_handle *dom_handle; 5542 struct its_node *its; 5543 struct resource res; 5544 int err; 5545 5546 its_entry = (struct acpi_madt_generic_translator *)header; 5547 memset(&res, 0, sizeof(res)); 5548 res.start = its_entry->base_address; 5549 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5550 res.flags = IORESOURCE_MEM; 5551 5552 dom_handle = irq_domain_alloc_fwnode(&res.start); 5553 if (!dom_handle) { 5554 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5555 &res.start); 5556 return -ENOMEM; 5557 } 5558 5559 err = iort_register_domain_token(its_entry->translation_id, res.start, 5560 dom_handle); 5561 if (err) { 5562 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5563 &res.start, its_entry->translation_id); 5564 goto dom_err; 5565 } 5566 5567 its = its_node_init(&res, dom_handle, 5568 acpi_get_its_numa_node(its_entry->translation_id)); 5569 if (!its) { 5570 err = -ENOMEM; 5571 goto node_err; 5572 } 5573 5574 err = its_probe_one(its); 5575 if (!err) 5576 return 0; 5577 5578 node_err: 5579 iort_deregister_domain_token(its_entry->translation_id); 5580 dom_err: 5581 irq_domain_free_fwnode(dom_handle); 5582 return err; 5583 } 5584 5585 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5586 const unsigned long end) 5587 { 5588 struct acpi_madt_generic_translator *its_entry; 5589 struct resource res; 5590 5591 its_entry = (struct acpi_madt_generic_translator *)header; 5592 res = (struct resource) { 5593 .start = its_entry->base_address, 5594 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5595 .flags = IORESOURCE_MEM, 5596 }; 5597 5598 return its_reset_one(&res); 5599 } 5600 5601 static void __init its_acpi_probe(void) 5602 { 5603 acpi_table_parse_srat_its(); 5604 /* 5605 * Make sure *all* the ITS are reset before we probe any, as 5606 * they may be sharing memory. If any of the ITS fails to 5607 * reset, don't even try to go any further, as this could 5608 * result in something even worse. 5609 */ 5610 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5611 its_acpi_reset, 0) > 0) 5612 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5613 gic_acpi_parse_madt_its, 0); 5614 acpi_its_srat_maps_free(); 5615 } 5616 #else 5617 static void __init its_acpi_probe(void) { } 5618 #endif 5619 5620 int __init its_lpi_memreserve_init(void) 5621 { 5622 int state; 5623 5624 if (!efi_enabled(EFI_CONFIG_TABLES)) 5625 return 0; 5626 5627 if (list_empty(&its_nodes)) 5628 return 0; 5629 5630 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5631 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5632 "irqchip/arm/gicv3/memreserve:online", 5633 its_cpu_memreserve_lpi, 5634 NULL); 5635 if (state < 0) 5636 return state; 5637 5638 gic_rdists->cpuhp_memreserve_state = state; 5639 5640 return 0; 5641 } 5642 5643 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5644 struct irq_domain *parent_domain) 5645 { 5646 struct device_node *of_node; 5647 struct its_node *its; 5648 bool has_v4 = false; 5649 bool has_v4_1 = false; 5650 int err; 5651 5652 gic_rdists = rdists; 5653 5654 its_parent = parent_domain; 5655 of_node = to_of_node(handle); 5656 if (of_node) 5657 its_of_probe(of_node); 5658 else 5659 its_acpi_probe(); 5660 5661 if (list_empty(&its_nodes)) { 5662 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5663 return -ENXIO; 5664 } 5665 5666 err = allocate_lpi_tables(); 5667 if (err) 5668 return err; 5669 5670 list_for_each_entry(its, &its_nodes, entry) { 5671 has_v4 |= is_v4(its); 5672 has_v4_1 |= is_v4_1(its); 5673 } 5674 5675 /* Don't bother with inconsistent systems */ 5676 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5677 rdists->has_rvpeid = false; 5678 5679 if (has_v4 & rdists->has_vlpis) { 5680 const struct irq_domain_ops *sgi_ops; 5681 5682 if (has_v4_1) 5683 sgi_ops = &its_sgi_domain_ops; 5684 else 5685 sgi_ops = NULL; 5686 5687 if (its_init_vpe_domain() || 5688 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5689 rdists->has_vlpis = false; 5690 pr_err("ITS: Disabling GICv4 support\n"); 5691 } 5692 } 5693 5694 register_syscore_ops(&its_syscore_ops); 5695 5696 return 0; 5697 } 5698