xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision a436194d0ee94ec67522647ace5a36a2126b6a0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE		(1 << 2)
50 
51 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
54 
55 static u32 lpi_id_bits;
56 
57 /*
58  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59  * deal with (one configuration byte per interrupt). PENDBASE has to
60  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61  */
62 #define LPI_NRBITS		lpi_id_bits
63 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65 
66 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
67 
68 /*
69  * Collection structure - just an ID, and a redistributor address to
70  * ping. We use one per CPU as a bag of interrupts assigned to this
71  * CPU.
72  */
73 struct its_collection {
74 	u64			target_address;
75 	u16			col_id;
76 };
77 
78 /*
79  * The ITS_BASER structure - contains memory information, cached
80  * value of BASER register configuration and ITS page size.
81  */
82 struct its_baser {
83 	void		*base;
84 	u64		val;
85 	u32		order;
86 	u32		psz;
87 };
88 
89 struct its_device;
90 
91 /*
92  * The ITS structure - contains most of the infrastructure, with the
93  * top-level MSI domain, the command queue, the collections, and the
94  * list of devices writing to it.
95  *
96  * dev_alloc_lock has to be taken for device allocations, while the
97  * spinlock must be taken to parse data structures such as the device
98  * list.
99  */
100 struct its_node {
101 	raw_spinlock_t		lock;
102 	struct mutex		dev_alloc_lock;
103 	struct list_head	entry;
104 	void __iomem		*base;
105 	void __iomem		*sgir_base;
106 	phys_addr_t		phys_base;
107 	struct its_cmd_block	*cmd_base;
108 	struct its_cmd_block	*cmd_write;
109 	struct its_baser	tables[GITS_BASER_NR_REGS];
110 	struct its_collection	*collections;
111 	struct fwnode_handle	*fwnode_handle;
112 	u64			(*get_msi_base)(struct its_device *its_dev);
113 	u64			typer;
114 	u64			cbaser_save;
115 	u32			ctlr_save;
116 	u32			mpidr;
117 	struct list_head	its_device_list;
118 	u64			flags;
119 	unsigned long		list_nr;
120 	int			numa_node;
121 	unsigned int		msi_domain_flags;
122 	u32			pre_its_base; /* for Socionext Synquacer */
123 	int			vlpi_redist_offset;
124 };
125 
126 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
129 
130 #define ITS_ITT_ALIGN		SZ_256
131 
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS						\
134 	({								\
135 		int nvpeid = 16;					\
136 		if (gic_rdists->has_rvpeid &&				\
137 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
138 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
139 				      GICD_TYPER2_VID);			\
140 									\
141 		nvpeid;							\
142 	})
143 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
144 
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
147 
148 struct event_lpi_map {
149 	unsigned long		*lpi_map;
150 	u16			*col_map;
151 	irq_hw_number_t		lpi_base;
152 	int			nr_lpis;
153 	raw_spinlock_t		vlpi_lock;
154 	struct its_vm		*vm;
155 	struct its_vlpi_map	*vlpi_maps;
156 	int			nr_vlpis;
157 };
158 
159 /*
160  * The ITS view of a device - belongs to an ITS, owns an interrupt
161  * translation table, and a list of interrupts.  If it some of its
162  * LPIs are injected into a guest (GICv4), the event_map.vm field
163  * indicates which one.
164  */
165 struct its_device {
166 	struct list_head	entry;
167 	struct its_node		*its;
168 	struct event_lpi_map	event_map;
169 	void			*itt;
170 	u32			nr_ites;
171 	u32			device_id;
172 	bool			shared;
173 };
174 
175 static struct {
176 	raw_spinlock_t		lock;
177 	struct its_device	*dev;
178 	struct its_vpe		**vpes;
179 	int			next_victim;
180 } vpe_proxy;
181 
182 struct cpu_lpi_count {
183 	atomic_t	managed;
184 	atomic_t	unmanaged;
185 };
186 
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188 
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
193 
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
197 
198 static DEFINE_IDA(its_vpeid_ida);
199 
200 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
204 
205 /*
206  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207  * always have vSGIs mapped.
208  */
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210 {
211 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212 }
213 
214 static u16 get_its_list(struct its_vm *vm)
215 {
216 	struct its_node *its;
217 	unsigned long its_list = 0;
218 
219 	list_for_each_entry(its, &its_nodes, entry) {
220 		if (!is_v4(its))
221 			continue;
222 
223 		if (require_its_list_vmovp(vm, its))
224 			__set_bit(its->list_nr, &its_list);
225 	}
226 
227 	return (u16)its_list;
228 }
229 
230 static inline u32 its_get_event_id(struct irq_data *d)
231 {
232 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233 	return d->hwirq - its_dev->event_map.lpi_base;
234 }
235 
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237 					       u32 event)
238 {
239 	struct its_node *its = its_dev->its;
240 
241 	return its->collections + its_dev->event_map.col_map[event];
242 }
243 
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245 					       u32 event)
246 {
247 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248 		return NULL;
249 
250 	return &its_dev->event_map.vlpi_maps[event];
251 }
252 
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254 {
255 	if (irqd_is_forwarded_to_vcpu(d)) {
256 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257 		u32 event = its_get_event_id(d);
258 
259 		return dev_event_to_vlpi_map(its_dev, event);
260 	}
261 
262 	return NULL;
263 }
264 
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266 {
267 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268 	return vpe->col_idx;
269 }
270 
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272 {
273 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274 }
275 
276 static struct irq_chip its_vpe_irq_chip;
277 
278 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
279 {
280 	struct its_vpe *vpe = NULL;
281 	int cpu;
282 
283 	if (d->chip == &its_vpe_irq_chip) {
284 		vpe = irq_data_get_irq_chip_data(d);
285 	} else {
286 		struct its_vlpi_map *map = get_vlpi_map(d);
287 		if (map)
288 			vpe = map->vpe;
289 	}
290 
291 	if (vpe) {
292 		cpu = vpe_to_cpuid_lock(vpe, flags);
293 	} else {
294 		/* Physical LPIs are already locked via the irq_desc lock */
295 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
296 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
297 		/* Keep GCC quiet... */
298 		*flags = 0;
299 	}
300 
301 	return cpu;
302 }
303 
304 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
305 {
306 	struct its_vpe *vpe = NULL;
307 
308 	if (d->chip == &its_vpe_irq_chip) {
309 		vpe = irq_data_get_irq_chip_data(d);
310 	} else {
311 		struct its_vlpi_map *map = get_vlpi_map(d);
312 		if (map)
313 			vpe = map->vpe;
314 	}
315 
316 	if (vpe)
317 		vpe_to_cpuid_unlock(vpe, flags);
318 }
319 
320 static struct its_collection *valid_col(struct its_collection *col)
321 {
322 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
323 		return NULL;
324 
325 	return col;
326 }
327 
328 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
329 {
330 	if (valid_col(its->collections + vpe->col_idx))
331 		return vpe;
332 
333 	return NULL;
334 }
335 
336 /*
337  * ITS command descriptors - parameters to be encoded in a command
338  * block.
339  */
340 struct its_cmd_desc {
341 	union {
342 		struct {
343 			struct its_device *dev;
344 			u32 event_id;
345 		} its_inv_cmd;
346 
347 		struct {
348 			struct its_device *dev;
349 			u32 event_id;
350 		} its_clear_cmd;
351 
352 		struct {
353 			struct its_device *dev;
354 			u32 event_id;
355 		} its_int_cmd;
356 
357 		struct {
358 			struct its_device *dev;
359 			int valid;
360 		} its_mapd_cmd;
361 
362 		struct {
363 			struct its_collection *col;
364 			int valid;
365 		} its_mapc_cmd;
366 
367 		struct {
368 			struct its_device *dev;
369 			u32 phys_id;
370 			u32 event_id;
371 		} its_mapti_cmd;
372 
373 		struct {
374 			struct its_device *dev;
375 			struct its_collection *col;
376 			u32 event_id;
377 		} its_movi_cmd;
378 
379 		struct {
380 			struct its_device *dev;
381 			u32 event_id;
382 		} its_discard_cmd;
383 
384 		struct {
385 			struct its_collection *col;
386 		} its_invall_cmd;
387 
388 		struct {
389 			struct its_vpe *vpe;
390 		} its_vinvall_cmd;
391 
392 		struct {
393 			struct its_vpe *vpe;
394 			struct its_collection *col;
395 			bool valid;
396 		} its_vmapp_cmd;
397 
398 		struct {
399 			struct its_vpe *vpe;
400 			struct its_device *dev;
401 			u32 virt_id;
402 			u32 event_id;
403 			bool db_enabled;
404 		} its_vmapti_cmd;
405 
406 		struct {
407 			struct its_vpe *vpe;
408 			struct its_device *dev;
409 			u32 event_id;
410 			bool db_enabled;
411 		} its_vmovi_cmd;
412 
413 		struct {
414 			struct its_vpe *vpe;
415 			struct its_collection *col;
416 			u16 seq_num;
417 			u16 its_list;
418 		} its_vmovp_cmd;
419 
420 		struct {
421 			struct its_vpe *vpe;
422 		} its_invdb_cmd;
423 
424 		struct {
425 			struct its_vpe *vpe;
426 			u8 sgi;
427 			u8 priority;
428 			bool enable;
429 			bool group;
430 			bool clear;
431 		} its_vsgi_cmd;
432 	};
433 };
434 
435 /*
436  * The ITS command block, which is what the ITS actually parses.
437  */
438 struct its_cmd_block {
439 	union {
440 		u64	raw_cmd[4];
441 		__le64	raw_cmd_le[4];
442 	};
443 };
444 
445 #define ITS_CMD_QUEUE_SZ		SZ_64K
446 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
447 
448 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
449 						    struct its_cmd_block *,
450 						    struct its_cmd_desc *);
451 
452 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
453 					      struct its_cmd_block *,
454 					      struct its_cmd_desc *);
455 
456 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
457 {
458 	u64 mask = GENMASK_ULL(h, l);
459 	*raw_cmd &= ~mask;
460 	*raw_cmd |= (val << l) & mask;
461 }
462 
463 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
464 {
465 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
466 }
467 
468 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
469 {
470 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
471 }
472 
473 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
474 {
475 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
476 }
477 
478 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
479 {
480 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
481 }
482 
483 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
484 {
485 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
486 }
487 
488 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
489 {
490 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
491 }
492 
493 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
494 {
495 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
496 }
497 
498 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
499 {
500 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
501 }
502 
503 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
504 {
505 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
506 }
507 
508 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
509 {
510 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
511 }
512 
513 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
514 {
515 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
516 }
517 
518 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
519 {
520 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
521 }
522 
523 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
524 {
525 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
526 }
527 
528 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
529 {
530 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
531 }
532 
533 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
534 {
535 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
536 }
537 
538 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
539 {
540 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
541 }
542 
543 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
544 {
545 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
546 }
547 
548 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
549 {
550 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
551 }
552 
553 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
554 {
555 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
556 }
557 
558 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
559 {
560 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
561 }
562 
563 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
564 					u32 vpe_db_lpi)
565 {
566 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
567 }
568 
569 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
570 					u32 vpe_db_lpi)
571 {
572 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
573 }
574 
575 static void its_encode_db(struct its_cmd_block *cmd, bool db)
576 {
577 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
578 }
579 
580 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
581 {
582 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
583 }
584 
585 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
586 {
587 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
588 }
589 
590 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
591 {
592 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
593 }
594 
595 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
596 {
597 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
598 }
599 
600 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
601 {
602 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
603 }
604 
605 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
606 {
607 	/* Let's fixup BE commands */
608 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
609 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
610 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
611 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
612 }
613 
614 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
615 						 struct its_cmd_block *cmd,
616 						 struct its_cmd_desc *desc)
617 {
618 	unsigned long itt_addr;
619 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
620 
621 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
622 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
623 
624 	its_encode_cmd(cmd, GITS_CMD_MAPD);
625 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
626 	its_encode_size(cmd, size - 1);
627 	its_encode_itt(cmd, itt_addr);
628 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
629 
630 	its_fixup_cmd(cmd);
631 
632 	return NULL;
633 }
634 
635 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
636 						 struct its_cmd_block *cmd,
637 						 struct its_cmd_desc *desc)
638 {
639 	its_encode_cmd(cmd, GITS_CMD_MAPC);
640 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
641 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
642 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
643 
644 	its_fixup_cmd(cmd);
645 
646 	return desc->its_mapc_cmd.col;
647 }
648 
649 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
650 						  struct its_cmd_block *cmd,
651 						  struct its_cmd_desc *desc)
652 {
653 	struct its_collection *col;
654 
655 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
656 			       desc->its_mapti_cmd.event_id);
657 
658 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
659 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
660 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
661 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
662 	its_encode_collection(cmd, col->col_id);
663 
664 	its_fixup_cmd(cmd);
665 
666 	return valid_col(col);
667 }
668 
669 static struct its_collection *its_build_movi_cmd(struct its_node *its,
670 						 struct its_cmd_block *cmd,
671 						 struct its_cmd_desc *desc)
672 {
673 	struct its_collection *col;
674 
675 	col = dev_event_to_col(desc->its_movi_cmd.dev,
676 			       desc->its_movi_cmd.event_id);
677 
678 	its_encode_cmd(cmd, GITS_CMD_MOVI);
679 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
680 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
681 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
682 
683 	its_fixup_cmd(cmd);
684 
685 	return valid_col(col);
686 }
687 
688 static struct its_collection *its_build_discard_cmd(struct its_node *its,
689 						    struct its_cmd_block *cmd,
690 						    struct its_cmd_desc *desc)
691 {
692 	struct its_collection *col;
693 
694 	col = dev_event_to_col(desc->its_discard_cmd.dev,
695 			       desc->its_discard_cmd.event_id);
696 
697 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
698 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
699 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
700 
701 	its_fixup_cmd(cmd);
702 
703 	return valid_col(col);
704 }
705 
706 static struct its_collection *its_build_inv_cmd(struct its_node *its,
707 						struct its_cmd_block *cmd,
708 						struct its_cmd_desc *desc)
709 {
710 	struct its_collection *col;
711 
712 	col = dev_event_to_col(desc->its_inv_cmd.dev,
713 			       desc->its_inv_cmd.event_id);
714 
715 	its_encode_cmd(cmd, GITS_CMD_INV);
716 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
718 
719 	its_fixup_cmd(cmd);
720 
721 	return valid_col(col);
722 }
723 
724 static struct its_collection *its_build_int_cmd(struct its_node *its,
725 						struct its_cmd_block *cmd,
726 						struct its_cmd_desc *desc)
727 {
728 	struct its_collection *col;
729 
730 	col = dev_event_to_col(desc->its_int_cmd.dev,
731 			       desc->its_int_cmd.event_id);
732 
733 	its_encode_cmd(cmd, GITS_CMD_INT);
734 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
736 
737 	its_fixup_cmd(cmd);
738 
739 	return valid_col(col);
740 }
741 
742 static struct its_collection *its_build_clear_cmd(struct its_node *its,
743 						  struct its_cmd_block *cmd,
744 						  struct its_cmd_desc *desc)
745 {
746 	struct its_collection *col;
747 
748 	col = dev_event_to_col(desc->its_clear_cmd.dev,
749 			       desc->its_clear_cmd.event_id);
750 
751 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
752 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
754 
755 	its_fixup_cmd(cmd);
756 
757 	return valid_col(col);
758 }
759 
760 static struct its_collection *its_build_invall_cmd(struct its_node *its,
761 						   struct its_cmd_block *cmd,
762 						   struct its_cmd_desc *desc)
763 {
764 	its_encode_cmd(cmd, GITS_CMD_INVALL);
765 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
766 
767 	its_fixup_cmd(cmd);
768 
769 	return desc->its_invall_cmd.col;
770 }
771 
772 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
773 					     struct its_cmd_block *cmd,
774 					     struct its_cmd_desc *desc)
775 {
776 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
777 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
778 
779 	its_fixup_cmd(cmd);
780 
781 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
782 }
783 
784 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
785 					   struct its_cmd_block *cmd,
786 					   struct its_cmd_desc *desc)
787 {
788 	unsigned long vpt_addr, vconf_addr;
789 	u64 target;
790 	bool alloc;
791 
792 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
793 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
794 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
795 
796 	if (!desc->its_vmapp_cmd.valid) {
797 		if (is_v4_1(its)) {
798 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
799 			its_encode_alloc(cmd, alloc);
800 		}
801 
802 		goto out;
803 	}
804 
805 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
806 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
807 
808 	its_encode_target(cmd, target);
809 	its_encode_vpt_addr(cmd, vpt_addr);
810 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
811 
812 	if (!is_v4_1(its))
813 		goto out;
814 
815 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
816 
817 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
818 
819 	its_encode_alloc(cmd, alloc);
820 
821 	/*
822 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
823 	 * to be unmapped first, and in this case, we may remap the vPE
824 	 * back while the VPT is not empty. So we can't assume that the
825 	 * VPT is empty on map. This is why we never advertise PTZ.
826 	 */
827 	its_encode_ptz(cmd, false);
828 	its_encode_vconf_addr(cmd, vconf_addr);
829 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
830 
831 out:
832 	its_fixup_cmd(cmd);
833 
834 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
835 }
836 
837 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
838 					    struct its_cmd_block *cmd,
839 					    struct its_cmd_desc *desc)
840 {
841 	u32 db;
842 
843 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
844 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
845 	else
846 		db = 1023;
847 
848 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
849 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
850 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
851 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
852 	its_encode_db_phys_id(cmd, db);
853 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
854 
855 	its_fixup_cmd(cmd);
856 
857 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
858 }
859 
860 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
861 					   struct its_cmd_block *cmd,
862 					   struct its_cmd_desc *desc)
863 {
864 	u32 db;
865 
866 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
867 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
868 	else
869 		db = 1023;
870 
871 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
872 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
873 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
874 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
875 	its_encode_db_phys_id(cmd, db);
876 	its_encode_db_valid(cmd, true);
877 
878 	its_fixup_cmd(cmd);
879 
880 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
881 }
882 
883 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
884 					   struct its_cmd_block *cmd,
885 					   struct its_cmd_desc *desc)
886 {
887 	u64 target;
888 
889 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
890 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
891 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
892 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
893 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
894 	its_encode_target(cmd, target);
895 
896 	if (is_v4_1(its)) {
897 		its_encode_db(cmd, true);
898 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
899 	}
900 
901 	its_fixup_cmd(cmd);
902 
903 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
904 }
905 
906 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
907 					  struct its_cmd_block *cmd,
908 					  struct its_cmd_desc *desc)
909 {
910 	struct its_vlpi_map *map;
911 
912 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
913 				    desc->its_inv_cmd.event_id);
914 
915 	its_encode_cmd(cmd, GITS_CMD_INV);
916 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
917 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
918 
919 	its_fixup_cmd(cmd);
920 
921 	return valid_vpe(its, map->vpe);
922 }
923 
924 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
925 					  struct its_cmd_block *cmd,
926 					  struct its_cmd_desc *desc)
927 {
928 	struct its_vlpi_map *map;
929 
930 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
931 				    desc->its_int_cmd.event_id);
932 
933 	its_encode_cmd(cmd, GITS_CMD_INT);
934 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
935 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
936 
937 	its_fixup_cmd(cmd);
938 
939 	return valid_vpe(its, map->vpe);
940 }
941 
942 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
943 					    struct its_cmd_block *cmd,
944 					    struct its_cmd_desc *desc)
945 {
946 	struct its_vlpi_map *map;
947 
948 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
949 				    desc->its_clear_cmd.event_id);
950 
951 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
952 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
953 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
954 
955 	its_fixup_cmd(cmd);
956 
957 	return valid_vpe(its, map->vpe);
958 }
959 
960 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
961 					   struct its_cmd_block *cmd,
962 					   struct its_cmd_desc *desc)
963 {
964 	if (WARN_ON(!is_v4_1(its)))
965 		return NULL;
966 
967 	its_encode_cmd(cmd, GITS_CMD_INVDB);
968 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
969 
970 	its_fixup_cmd(cmd);
971 
972 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
973 }
974 
975 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
976 					  struct its_cmd_block *cmd,
977 					  struct its_cmd_desc *desc)
978 {
979 	if (WARN_ON(!is_v4_1(its)))
980 		return NULL;
981 
982 	its_encode_cmd(cmd, GITS_CMD_VSGI);
983 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
984 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
985 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
986 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
987 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
988 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
989 
990 	its_fixup_cmd(cmd);
991 
992 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
993 }
994 
995 static u64 its_cmd_ptr_to_offset(struct its_node *its,
996 				 struct its_cmd_block *ptr)
997 {
998 	return (ptr - its->cmd_base) * sizeof(*ptr);
999 }
1000 
1001 static int its_queue_full(struct its_node *its)
1002 {
1003 	int widx;
1004 	int ridx;
1005 
1006 	widx = its->cmd_write - its->cmd_base;
1007 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1008 
1009 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1010 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1011 		return 1;
1012 
1013 	return 0;
1014 }
1015 
1016 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1017 {
1018 	struct its_cmd_block *cmd;
1019 	u32 count = 1000000;	/* 1s! */
1020 
1021 	while (its_queue_full(its)) {
1022 		count--;
1023 		if (!count) {
1024 			pr_err_ratelimited("ITS queue not draining\n");
1025 			return NULL;
1026 		}
1027 		cpu_relax();
1028 		udelay(1);
1029 	}
1030 
1031 	cmd = its->cmd_write++;
1032 
1033 	/* Handle queue wrapping */
1034 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1035 		its->cmd_write = its->cmd_base;
1036 
1037 	/* Clear command  */
1038 	cmd->raw_cmd[0] = 0;
1039 	cmd->raw_cmd[1] = 0;
1040 	cmd->raw_cmd[2] = 0;
1041 	cmd->raw_cmd[3] = 0;
1042 
1043 	return cmd;
1044 }
1045 
1046 static struct its_cmd_block *its_post_commands(struct its_node *its)
1047 {
1048 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1049 
1050 	writel_relaxed(wr, its->base + GITS_CWRITER);
1051 
1052 	return its->cmd_write;
1053 }
1054 
1055 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1056 {
1057 	/*
1058 	 * Make sure the commands written to memory are observable by
1059 	 * the ITS.
1060 	 */
1061 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1062 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1063 	else
1064 		dsb(ishst);
1065 }
1066 
1067 static int its_wait_for_range_completion(struct its_node *its,
1068 					 u64	prev_idx,
1069 					 struct its_cmd_block *to)
1070 {
1071 	u64 rd_idx, to_idx, linear_idx;
1072 	u32 count = 1000000;	/* 1s! */
1073 
1074 	/* Linearize to_idx if the command set has wrapped around */
1075 	to_idx = its_cmd_ptr_to_offset(its, to);
1076 	if (to_idx < prev_idx)
1077 		to_idx += ITS_CMD_QUEUE_SZ;
1078 
1079 	linear_idx = prev_idx;
1080 
1081 	while (1) {
1082 		s64 delta;
1083 
1084 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1085 
1086 		/*
1087 		 * Compute the read pointer progress, taking the
1088 		 * potential wrap-around into account.
1089 		 */
1090 		delta = rd_idx - prev_idx;
1091 		if (rd_idx < prev_idx)
1092 			delta += ITS_CMD_QUEUE_SZ;
1093 
1094 		linear_idx += delta;
1095 		if (linear_idx >= to_idx)
1096 			break;
1097 
1098 		count--;
1099 		if (!count) {
1100 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1101 					   to_idx, linear_idx);
1102 			return -1;
1103 		}
1104 		prev_idx = rd_idx;
1105 		cpu_relax();
1106 		udelay(1);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /* Warning, macro hell follows */
1113 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1114 void name(struct its_node *its,						\
1115 	  buildtype builder,						\
1116 	  struct its_cmd_desc *desc)					\
1117 {									\
1118 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1119 	synctype *sync_obj;						\
1120 	unsigned long flags;						\
1121 	u64 rd_idx;							\
1122 									\
1123 	raw_spin_lock_irqsave(&its->lock, flags);			\
1124 									\
1125 	cmd = its_allocate_entry(its);					\
1126 	if (!cmd) {		/* We're soooooo screewed... */		\
1127 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1128 		return;							\
1129 	}								\
1130 	sync_obj = builder(its, cmd, desc);				\
1131 	its_flush_cmd(its, cmd);					\
1132 									\
1133 	if (sync_obj) {							\
1134 		sync_cmd = its_allocate_entry(its);			\
1135 		if (!sync_cmd)						\
1136 			goto post;					\
1137 									\
1138 		buildfn(its, sync_cmd, sync_obj);			\
1139 		its_flush_cmd(its, sync_cmd);				\
1140 	}								\
1141 									\
1142 post:									\
1143 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1144 	next_cmd = its_post_commands(its);				\
1145 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1146 									\
1147 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1148 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1149 }
1150 
1151 static void its_build_sync_cmd(struct its_node *its,
1152 			       struct its_cmd_block *sync_cmd,
1153 			       struct its_collection *sync_col)
1154 {
1155 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1156 	its_encode_target(sync_cmd, sync_col->target_address);
1157 
1158 	its_fixup_cmd(sync_cmd);
1159 }
1160 
1161 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1162 			     struct its_collection, its_build_sync_cmd)
1163 
1164 static void its_build_vsync_cmd(struct its_node *its,
1165 				struct its_cmd_block *sync_cmd,
1166 				struct its_vpe *sync_vpe)
1167 {
1168 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1169 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1170 
1171 	its_fixup_cmd(sync_cmd);
1172 }
1173 
1174 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1175 			     struct its_vpe, its_build_vsync_cmd)
1176 
1177 static void its_send_int(struct its_device *dev, u32 event_id)
1178 {
1179 	struct its_cmd_desc desc;
1180 
1181 	desc.its_int_cmd.dev = dev;
1182 	desc.its_int_cmd.event_id = event_id;
1183 
1184 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1185 }
1186 
1187 static void its_send_clear(struct its_device *dev, u32 event_id)
1188 {
1189 	struct its_cmd_desc desc;
1190 
1191 	desc.its_clear_cmd.dev = dev;
1192 	desc.its_clear_cmd.event_id = event_id;
1193 
1194 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1195 }
1196 
1197 static void its_send_inv(struct its_device *dev, u32 event_id)
1198 {
1199 	struct its_cmd_desc desc;
1200 
1201 	desc.its_inv_cmd.dev = dev;
1202 	desc.its_inv_cmd.event_id = event_id;
1203 
1204 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1205 }
1206 
1207 static void its_send_mapd(struct its_device *dev, int valid)
1208 {
1209 	struct its_cmd_desc desc;
1210 
1211 	desc.its_mapd_cmd.dev = dev;
1212 	desc.its_mapd_cmd.valid = !!valid;
1213 
1214 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1215 }
1216 
1217 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1218 			  int valid)
1219 {
1220 	struct its_cmd_desc desc;
1221 
1222 	desc.its_mapc_cmd.col = col;
1223 	desc.its_mapc_cmd.valid = !!valid;
1224 
1225 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1226 }
1227 
1228 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1229 {
1230 	struct its_cmd_desc desc;
1231 
1232 	desc.its_mapti_cmd.dev = dev;
1233 	desc.its_mapti_cmd.phys_id = irq_id;
1234 	desc.its_mapti_cmd.event_id = id;
1235 
1236 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1237 }
1238 
1239 static void its_send_movi(struct its_device *dev,
1240 			  struct its_collection *col, u32 id)
1241 {
1242 	struct its_cmd_desc desc;
1243 
1244 	desc.its_movi_cmd.dev = dev;
1245 	desc.its_movi_cmd.col = col;
1246 	desc.its_movi_cmd.event_id = id;
1247 
1248 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1249 }
1250 
1251 static void its_send_discard(struct its_device *dev, u32 id)
1252 {
1253 	struct its_cmd_desc desc;
1254 
1255 	desc.its_discard_cmd.dev = dev;
1256 	desc.its_discard_cmd.event_id = id;
1257 
1258 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1259 }
1260 
1261 static void its_send_invall(struct its_node *its, struct its_collection *col)
1262 {
1263 	struct its_cmd_desc desc;
1264 
1265 	desc.its_invall_cmd.col = col;
1266 
1267 	its_send_single_command(its, its_build_invall_cmd, &desc);
1268 }
1269 
1270 static void its_send_vmapti(struct its_device *dev, u32 id)
1271 {
1272 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1273 	struct its_cmd_desc desc;
1274 
1275 	desc.its_vmapti_cmd.vpe = map->vpe;
1276 	desc.its_vmapti_cmd.dev = dev;
1277 	desc.its_vmapti_cmd.virt_id = map->vintid;
1278 	desc.its_vmapti_cmd.event_id = id;
1279 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1280 
1281 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1282 }
1283 
1284 static void its_send_vmovi(struct its_device *dev, u32 id)
1285 {
1286 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1287 	struct its_cmd_desc desc;
1288 
1289 	desc.its_vmovi_cmd.vpe = map->vpe;
1290 	desc.its_vmovi_cmd.dev = dev;
1291 	desc.its_vmovi_cmd.event_id = id;
1292 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1293 
1294 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1295 }
1296 
1297 static void its_send_vmapp(struct its_node *its,
1298 			   struct its_vpe *vpe, bool valid)
1299 {
1300 	struct its_cmd_desc desc;
1301 
1302 	desc.its_vmapp_cmd.vpe = vpe;
1303 	desc.its_vmapp_cmd.valid = valid;
1304 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1305 
1306 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1307 }
1308 
1309 static void its_send_vmovp(struct its_vpe *vpe)
1310 {
1311 	struct its_cmd_desc desc = {};
1312 	struct its_node *its;
1313 	unsigned long flags;
1314 	int col_id = vpe->col_idx;
1315 
1316 	desc.its_vmovp_cmd.vpe = vpe;
1317 
1318 	if (!its_list_map) {
1319 		its = list_first_entry(&its_nodes, struct its_node, entry);
1320 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1321 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1322 		return;
1323 	}
1324 
1325 	/*
1326 	 * Yet another marvel of the architecture. If using the
1327 	 * its_list "feature", we need to make sure that all ITSs
1328 	 * receive all VMOVP commands in the same order. The only way
1329 	 * to guarantee this is to make vmovp a serialization point.
1330 	 *
1331 	 * Wall <-- Head.
1332 	 */
1333 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1334 
1335 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1336 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1337 
1338 	/* Emit VMOVPs */
1339 	list_for_each_entry(its, &its_nodes, entry) {
1340 		if (!is_v4(its))
1341 			continue;
1342 
1343 		if (!require_its_list_vmovp(vpe->its_vm, its))
1344 			continue;
1345 
1346 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1347 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1348 	}
1349 
1350 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1351 }
1352 
1353 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1354 {
1355 	struct its_cmd_desc desc;
1356 
1357 	desc.its_vinvall_cmd.vpe = vpe;
1358 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1359 }
1360 
1361 static void its_send_vinv(struct its_device *dev, u32 event_id)
1362 {
1363 	struct its_cmd_desc desc;
1364 
1365 	/*
1366 	 * There is no real VINV command. This is just a normal INV,
1367 	 * with a VSYNC instead of a SYNC.
1368 	 */
1369 	desc.its_inv_cmd.dev = dev;
1370 	desc.its_inv_cmd.event_id = event_id;
1371 
1372 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1373 }
1374 
1375 static void its_send_vint(struct its_device *dev, u32 event_id)
1376 {
1377 	struct its_cmd_desc desc;
1378 
1379 	/*
1380 	 * There is no real VINT command. This is just a normal INT,
1381 	 * with a VSYNC instead of a SYNC.
1382 	 */
1383 	desc.its_int_cmd.dev = dev;
1384 	desc.its_int_cmd.event_id = event_id;
1385 
1386 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1387 }
1388 
1389 static void its_send_vclear(struct its_device *dev, u32 event_id)
1390 {
1391 	struct its_cmd_desc desc;
1392 
1393 	/*
1394 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1395 	 * with a VSYNC instead of a SYNC.
1396 	 */
1397 	desc.its_clear_cmd.dev = dev;
1398 	desc.its_clear_cmd.event_id = event_id;
1399 
1400 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1401 }
1402 
1403 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1404 {
1405 	struct its_cmd_desc desc;
1406 
1407 	desc.its_invdb_cmd.vpe = vpe;
1408 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1409 }
1410 
1411 /*
1412  * irqchip functions - assumes MSI, mostly.
1413  */
1414 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1415 {
1416 	struct its_vlpi_map *map = get_vlpi_map(d);
1417 	irq_hw_number_t hwirq;
1418 	void *va;
1419 	u8 *cfg;
1420 
1421 	if (map) {
1422 		va = page_address(map->vm->vprop_page);
1423 		hwirq = map->vintid;
1424 
1425 		/* Remember the updated property */
1426 		map->properties &= ~clr;
1427 		map->properties |= set | LPI_PROP_GROUP1;
1428 	} else {
1429 		va = gic_rdists->prop_table_va;
1430 		hwirq = d->hwirq;
1431 	}
1432 
1433 	cfg = va + hwirq - 8192;
1434 	*cfg &= ~clr;
1435 	*cfg |= set | LPI_PROP_GROUP1;
1436 
1437 	/*
1438 	 * Make the above write visible to the redistributors.
1439 	 * And yes, we're flushing exactly: One. Single. Byte.
1440 	 * Humpf...
1441 	 */
1442 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1443 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1444 	else
1445 		dsb(ishst);
1446 }
1447 
1448 static void wait_for_syncr(void __iomem *rdbase)
1449 {
1450 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1451 		cpu_relax();
1452 }
1453 
1454 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1455 {
1456 	void __iomem *rdbase;
1457 	unsigned long flags;
1458 	int cpu;
1459 
1460 	/* Target the redistributor this LPI is currently routed to */
1461 	cpu = irq_to_cpuid_lock(d, &flags);
1462 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1463 
1464 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1465 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1466 	wait_for_syncr(rdbase);
1467 
1468 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1469 	irq_to_cpuid_unlock(d, flags);
1470 }
1471 
1472 static void direct_lpi_inv(struct irq_data *d)
1473 {
1474 	struct its_vlpi_map *map = get_vlpi_map(d);
1475 	u64 val;
1476 
1477 	if (map) {
1478 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1479 
1480 		WARN_ON(!is_v4_1(its_dev->its));
1481 
1482 		val  = GICR_INVLPIR_V;
1483 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1484 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1485 	} else {
1486 		val = d->hwirq;
1487 	}
1488 
1489 	__direct_lpi_inv(d, val);
1490 }
1491 
1492 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1493 {
1494 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1495 
1496 	lpi_write_config(d, clr, set);
1497 	if (gic_rdists->has_direct_lpi &&
1498 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1499 		direct_lpi_inv(d);
1500 	else if (!irqd_is_forwarded_to_vcpu(d))
1501 		its_send_inv(its_dev, its_get_event_id(d));
1502 	else
1503 		its_send_vinv(its_dev, its_get_event_id(d));
1504 }
1505 
1506 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1507 {
1508 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1509 	u32 event = its_get_event_id(d);
1510 	struct its_vlpi_map *map;
1511 
1512 	/*
1513 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1514 	 * here.
1515 	 */
1516 	if (is_v4_1(its_dev->its))
1517 		return;
1518 
1519 	map = dev_event_to_vlpi_map(its_dev, event);
1520 
1521 	if (map->db_enabled == enable)
1522 		return;
1523 
1524 	map->db_enabled = enable;
1525 
1526 	/*
1527 	 * More fun with the architecture:
1528 	 *
1529 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1530 	 * value or to 1023, depending on the enable bit. But that
1531 	 * would be issuing a mapping for an /existing/ DevID+EventID
1532 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1533 	 * to the /same/ vPE, using this opportunity to adjust the
1534 	 * doorbell. Mouahahahaha. We loves it, Precious.
1535 	 */
1536 	its_send_vmovi(its_dev, event);
1537 }
1538 
1539 static void its_mask_irq(struct irq_data *d)
1540 {
1541 	if (irqd_is_forwarded_to_vcpu(d))
1542 		its_vlpi_set_doorbell(d, false);
1543 
1544 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1545 }
1546 
1547 static void its_unmask_irq(struct irq_data *d)
1548 {
1549 	if (irqd_is_forwarded_to_vcpu(d))
1550 		its_vlpi_set_doorbell(d, true);
1551 
1552 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1553 }
1554 
1555 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1556 {
1557 	if (irqd_affinity_is_managed(d))
1558 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1559 
1560 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1561 }
1562 
1563 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1564 {
1565 	if (irqd_affinity_is_managed(d))
1566 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1567 	else
1568 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1569 }
1570 
1571 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1572 {
1573 	if (irqd_affinity_is_managed(d))
1574 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1575 	else
1576 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1577 }
1578 
1579 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1580 					      const struct cpumask *cpu_mask)
1581 {
1582 	unsigned int cpu = nr_cpu_ids, tmp;
1583 	int count = S32_MAX;
1584 
1585 	for_each_cpu(tmp, cpu_mask) {
1586 		int this_count = its_read_lpi_count(d, tmp);
1587 		if (this_count < count) {
1588 			cpu = tmp;
1589 		        count = this_count;
1590 		}
1591 	}
1592 
1593 	return cpu;
1594 }
1595 
1596 /*
1597  * As suggested by Thomas Gleixner in:
1598  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1599  */
1600 static int its_select_cpu(struct irq_data *d,
1601 			  const struct cpumask *aff_mask)
1602 {
1603 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1604 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1605 	static struct cpumask __tmpmask;
1606 	struct cpumask *tmpmask;
1607 	unsigned long flags;
1608 	int cpu, node;
1609 	node = its_dev->its->numa_node;
1610 	tmpmask = &__tmpmask;
1611 
1612 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1613 
1614 	if (!irqd_affinity_is_managed(d)) {
1615 		/* First try the NUMA node */
1616 		if (node != NUMA_NO_NODE) {
1617 			/*
1618 			 * Try the intersection of the affinity mask and the
1619 			 * node mask (and the online mask, just to be safe).
1620 			 */
1621 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1622 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1623 
1624 			/*
1625 			 * Ideally, we would check if the mask is empty, and
1626 			 * try again on the full node here.
1627 			 *
1628 			 * But it turns out that the way ACPI describes the
1629 			 * affinity for ITSs only deals about memory, and
1630 			 * not target CPUs, so it cannot describe a single
1631 			 * ITS placed next to two NUMA nodes.
1632 			 *
1633 			 * Instead, just fallback on the online mask. This
1634 			 * diverges from Thomas' suggestion above.
1635 			 */
1636 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1637 			if (cpu < nr_cpu_ids)
1638 				goto out;
1639 
1640 			/* If we can't cross sockets, give up */
1641 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1642 				goto out;
1643 
1644 			/* If the above failed, expand the search */
1645 		}
1646 
1647 		/* Try the intersection of the affinity and online masks */
1648 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1649 
1650 		/* If that doesn't fly, the online mask is the last resort */
1651 		if (cpumask_empty(tmpmask))
1652 			cpumask_copy(tmpmask, cpu_online_mask);
1653 
1654 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1655 	} else {
1656 		cpumask_copy(tmpmask, aff_mask);
1657 
1658 		/* If we cannot cross sockets, limit the search to that node */
1659 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1660 		    node != NUMA_NO_NODE)
1661 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1662 
1663 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1664 	}
1665 out:
1666 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1667 
1668 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1669 	return cpu;
1670 }
1671 
1672 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1673 			    bool force)
1674 {
1675 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1676 	struct its_collection *target_col;
1677 	u32 id = its_get_event_id(d);
1678 	int cpu, prev_cpu;
1679 
1680 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1681 	if (irqd_is_forwarded_to_vcpu(d))
1682 		return -EINVAL;
1683 
1684 	prev_cpu = its_dev->event_map.col_map[id];
1685 	its_dec_lpi_count(d, prev_cpu);
1686 
1687 	if (!force)
1688 		cpu = its_select_cpu(d, mask_val);
1689 	else
1690 		cpu = cpumask_pick_least_loaded(d, mask_val);
1691 
1692 	if (cpu < 0 || cpu >= nr_cpu_ids)
1693 		goto err;
1694 
1695 	/* don't set the affinity when the target cpu is same as current one */
1696 	if (cpu != prev_cpu) {
1697 		target_col = &its_dev->its->collections[cpu];
1698 		its_send_movi(its_dev, target_col, id);
1699 		its_dev->event_map.col_map[id] = cpu;
1700 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1701 	}
1702 
1703 	its_inc_lpi_count(d, cpu);
1704 
1705 	return IRQ_SET_MASK_OK_DONE;
1706 
1707 err:
1708 	its_inc_lpi_count(d, prev_cpu);
1709 	return -EINVAL;
1710 }
1711 
1712 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1713 {
1714 	struct its_node *its = its_dev->its;
1715 
1716 	return its->phys_base + GITS_TRANSLATER;
1717 }
1718 
1719 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1720 {
1721 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1722 	struct its_node *its;
1723 	u64 addr;
1724 
1725 	its = its_dev->its;
1726 	addr = its->get_msi_base(its_dev);
1727 
1728 	msg->address_lo		= lower_32_bits(addr);
1729 	msg->address_hi		= upper_32_bits(addr);
1730 	msg->data		= its_get_event_id(d);
1731 
1732 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1733 }
1734 
1735 static int its_irq_set_irqchip_state(struct irq_data *d,
1736 				     enum irqchip_irq_state which,
1737 				     bool state)
1738 {
1739 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1740 	u32 event = its_get_event_id(d);
1741 
1742 	if (which != IRQCHIP_STATE_PENDING)
1743 		return -EINVAL;
1744 
1745 	if (irqd_is_forwarded_to_vcpu(d)) {
1746 		if (state)
1747 			its_send_vint(its_dev, event);
1748 		else
1749 			its_send_vclear(its_dev, event);
1750 	} else {
1751 		if (state)
1752 			its_send_int(its_dev, event);
1753 		else
1754 			its_send_clear(its_dev, event);
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 static int its_irq_retrigger(struct irq_data *d)
1761 {
1762 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1763 }
1764 
1765 /*
1766  * Two favourable cases:
1767  *
1768  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1769  *     for vSGI delivery
1770  *
1771  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1772  *     and we're better off mapping all VPEs always
1773  *
1774  * If neither (a) nor (b) is true, then we map vPEs on demand.
1775  *
1776  */
1777 static bool gic_requires_eager_mapping(void)
1778 {
1779 	if (!its_list_map || gic_rdists->has_rvpeid)
1780 		return true;
1781 
1782 	return false;
1783 }
1784 
1785 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1786 {
1787 	unsigned long flags;
1788 
1789 	if (gic_requires_eager_mapping())
1790 		return;
1791 
1792 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1793 
1794 	/*
1795 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1796 	 * them mapped now.
1797 	 */
1798 	vm->vlpi_count[its->list_nr]++;
1799 
1800 	if (vm->vlpi_count[its->list_nr] == 1) {
1801 		int i;
1802 
1803 		for (i = 0; i < vm->nr_vpes; i++) {
1804 			struct its_vpe *vpe = vm->vpes[i];
1805 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1806 
1807 			/* Map the VPE to the first possible CPU */
1808 			vpe->col_idx = cpumask_first(cpu_online_mask);
1809 			its_send_vmapp(its, vpe, true);
1810 			its_send_vinvall(its, vpe);
1811 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1812 		}
1813 	}
1814 
1815 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1816 }
1817 
1818 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1819 {
1820 	unsigned long flags;
1821 
1822 	/* Not using the ITS list? Everything is always mapped. */
1823 	if (gic_requires_eager_mapping())
1824 		return;
1825 
1826 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1827 
1828 	if (!--vm->vlpi_count[its->list_nr]) {
1829 		int i;
1830 
1831 		for (i = 0; i < vm->nr_vpes; i++)
1832 			its_send_vmapp(its, vm->vpes[i], false);
1833 	}
1834 
1835 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1836 }
1837 
1838 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1839 {
1840 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1841 	u32 event = its_get_event_id(d);
1842 	int ret = 0;
1843 
1844 	if (!info->map)
1845 		return -EINVAL;
1846 
1847 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1848 
1849 	if (!its_dev->event_map.vm) {
1850 		struct its_vlpi_map *maps;
1851 
1852 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1853 			       GFP_ATOMIC);
1854 		if (!maps) {
1855 			ret = -ENOMEM;
1856 			goto out;
1857 		}
1858 
1859 		its_dev->event_map.vm = info->map->vm;
1860 		its_dev->event_map.vlpi_maps = maps;
1861 	} else if (its_dev->event_map.vm != info->map->vm) {
1862 		ret = -EINVAL;
1863 		goto out;
1864 	}
1865 
1866 	/* Get our private copy of the mapping information */
1867 	its_dev->event_map.vlpi_maps[event] = *info->map;
1868 
1869 	if (irqd_is_forwarded_to_vcpu(d)) {
1870 		/* Already mapped, move it around */
1871 		its_send_vmovi(its_dev, event);
1872 	} else {
1873 		/* Ensure all the VPEs are mapped on this ITS */
1874 		its_map_vm(its_dev->its, info->map->vm);
1875 
1876 		/*
1877 		 * Flag the interrupt as forwarded so that we can
1878 		 * start poking the virtual property table.
1879 		 */
1880 		irqd_set_forwarded_to_vcpu(d);
1881 
1882 		/* Write out the property to the prop table */
1883 		lpi_write_config(d, 0xff, info->map->properties);
1884 
1885 		/* Drop the physical mapping */
1886 		its_send_discard(its_dev, event);
1887 
1888 		/* and install the virtual one */
1889 		its_send_vmapti(its_dev, event);
1890 
1891 		/* Increment the number of VLPIs */
1892 		its_dev->event_map.nr_vlpis++;
1893 	}
1894 
1895 out:
1896 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1897 	return ret;
1898 }
1899 
1900 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1901 {
1902 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1903 	struct its_vlpi_map *map;
1904 	int ret = 0;
1905 
1906 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1907 
1908 	map = get_vlpi_map(d);
1909 
1910 	if (!its_dev->event_map.vm || !map) {
1911 		ret = -EINVAL;
1912 		goto out;
1913 	}
1914 
1915 	/* Copy our mapping information to the incoming request */
1916 	*info->map = *map;
1917 
1918 out:
1919 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1920 	return ret;
1921 }
1922 
1923 static int its_vlpi_unmap(struct irq_data *d)
1924 {
1925 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1926 	u32 event = its_get_event_id(d);
1927 	int ret = 0;
1928 
1929 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1930 
1931 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1932 		ret = -EINVAL;
1933 		goto out;
1934 	}
1935 
1936 	/* Drop the virtual mapping */
1937 	its_send_discard(its_dev, event);
1938 
1939 	/* and restore the physical one */
1940 	irqd_clr_forwarded_to_vcpu(d);
1941 	its_send_mapti(its_dev, d->hwirq, event);
1942 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1943 				    LPI_PROP_ENABLED |
1944 				    LPI_PROP_GROUP1));
1945 
1946 	/* Potentially unmap the VM from this ITS */
1947 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1948 
1949 	/*
1950 	 * Drop the refcount and make the device available again if
1951 	 * this was the last VLPI.
1952 	 */
1953 	if (!--its_dev->event_map.nr_vlpis) {
1954 		its_dev->event_map.vm = NULL;
1955 		kfree(its_dev->event_map.vlpi_maps);
1956 	}
1957 
1958 out:
1959 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1960 	return ret;
1961 }
1962 
1963 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1964 {
1965 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1966 
1967 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1968 		return -EINVAL;
1969 
1970 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1971 		lpi_update_config(d, 0xff, info->config);
1972 	else
1973 		lpi_write_config(d, 0xff, info->config);
1974 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1975 
1976 	return 0;
1977 }
1978 
1979 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1980 {
1981 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1982 	struct its_cmd_info *info = vcpu_info;
1983 
1984 	/* Need a v4 ITS */
1985 	if (!is_v4(its_dev->its))
1986 		return -EINVAL;
1987 
1988 	/* Unmap request? */
1989 	if (!info)
1990 		return its_vlpi_unmap(d);
1991 
1992 	switch (info->cmd_type) {
1993 	case MAP_VLPI:
1994 		return its_vlpi_map(d, info);
1995 
1996 	case GET_VLPI:
1997 		return its_vlpi_get(d, info);
1998 
1999 	case PROP_UPDATE_VLPI:
2000 	case PROP_UPDATE_AND_INV_VLPI:
2001 		return its_vlpi_prop_update(d, info);
2002 
2003 	default:
2004 		return -EINVAL;
2005 	}
2006 }
2007 
2008 static struct irq_chip its_irq_chip = {
2009 	.name			= "ITS",
2010 	.irq_mask		= its_mask_irq,
2011 	.irq_unmask		= its_unmask_irq,
2012 	.irq_eoi		= irq_chip_eoi_parent,
2013 	.irq_set_affinity	= its_set_affinity,
2014 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2015 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2016 	.irq_retrigger		= its_irq_retrigger,
2017 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2018 };
2019 
2020 
2021 /*
2022  * How we allocate LPIs:
2023  *
2024  * lpi_range_list contains ranges of LPIs that are to available to
2025  * allocate from. To allocate LPIs, just pick the first range that
2026  * fits the required allocation, and reduce it by the required
2027  * amount. Once empty, remove the range from the list.
2028  *
2029  * To free a range of LPIs, add a free range to the list, sort it and
2030  * merge the result if the new range happens to be adjacent to an
2031  * already free block.
2032  *
2033  * The consequence of the above is that allocation is cost is low, but
2034  * freeing is expensive. We assumes that freeing rarely occurs.
2035  */
2036 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2037 
2038 static DEFINE_MUTEX(lpi_range_lock);
2039 static LIST_HEAD(lpi_range_list);
2040 
2041 struct lpi_range {
2042 	struct list_head	entry;
2043 	u32			base_id;
2044 	u32			span;
2045 };
2046 
2047 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2048 {
2049 	struct lpi_range *range;
2050 
2051 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2052 	if (range) {
2053 		range->base_id = base;
2054 		range->span = span;
2055 	}
2056 
2057 	return range;
2058 }
2059 
2060 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2061 {
2062 	struct lpi_range *range, *tmp;
2063 	int err = -ENOSPC;
2064 
2065 	mutex_lock(&lpi_range_lock);
2066 
2067 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2068 		if (range->span >= nr_lpis) {
2069 			*base = range->base_id;
2070 			range->base_id += nr_lpis;
2071 			range->span -= nr_lpis;
2072 
2073 			if (range->span == 0) {
2074 				list_del(&range->entry);
2075 				kfree(range);
2076 			}
2077 
2078 			err = 0;
2079 			break;
2080 		}
2081 	}
2082 
2083 	mutex_unlock(&lpi_range_lock);
2084 
2085 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2086 	return err;
2087 }
2088 
2089 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2090 {
2091 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2092 		return;
2093 	if (a->base_id + a->span != b->base_id)
2094 		return;
2095 	b->base_id = a->base_id;
2096 	b->span += a->span;
2097 	list_del(&a->entry);
2098 	kfree(a);
2099 }
2100 
2101 static int free_lpi_range(u32 base, u32 nr_lpis)
2102 {
2103 	struct lpi_range *new, *old;
2104 
2105 	new = mk_lpi_range(base, nr_lpis);
2106 	if (!new)
2107 		return -ENOMEM;
2108 
2109 	mutex_lock(&lpi_range_lock);
2110 
2111 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2112 		if (old->base_id < base)
2113 			break;
2114 	}
2115 	/*
2116 	 * old is the last element with ->base_id smaller than base,
2117 	 * so new goes right after it. If there are no elements with
2118 	 * ->base_id smaller than base, &old->entry ends up pointing
2119 	 * at the head of the list, and inserting new it the start of
2120 	 * the list is the right thing to do in that case as well.
2121 	 */
2122 	list_add(&new->entry, &old->entry);
2123 	/*
2124 	 * Now check if we can merge with the preceding and/or
2125 	 * following ranges.
2126 	 */
2127 	merge_lpi_ranges(old, new);
2128 	merge_lpi_ranges(new, list_next_entry(new, entry));
2129 
2130 	mutex_unlock(&lpi_range_lock);
2131 	return 0;
2132 }
2133 
2134 static int __init its_lpi_init(u32 id_bits)
2135 {
2136 	u32 lpis = (1UL << id_bits) - 8192;
2137 	u32 numlpis;
2138 	int err;
2139 
2140 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2141 
2142 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2143 		lpis = numlpis;
2144 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2145 			lpis);
2146 	}
2147 
2148 	/*
2149 	 * Initializing the allocator is just the same as freeing the
2150 	 * full range of LPIs.
2151 	 */
2152 	err = free_lpi_range(8192, lpis);
2153 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2154 	return err;
2155 }
2156 
2157 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2158 {
2159 	unsigned long *bitmap = NULL;
2160 	int err = 0;
2161 
2162 	do {
2163 		err = alloc_lpi_range(nr_irqs, base);
2164 		if (!err)
2165 			break;
2166 
2167 		nr_irqs /= 2;
2168 	} while (nr_irqs > 0);
2169 
2170 	if (!nr_irqs)
2171 		err = -ENOSPC;
2172 
2173 	if (err)
2174 		goto out;
2175 
2176 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2177 	if (!bitmap)
2178 		goto out;
2179 
2180 	*nr_ids = nr_irqs;
2181 
2182 out:
2183 	if (!bitmap)
2184 		*base = *nr_ids = 0;
2185 
2186 	return bitmap;
2187 }
2188 
2189 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2190 {
2191 	WARN_ON(free_lpi_range(base, nr_ids));
2192 	bitmap_free(bitmap);
2193 }
2194 
2195 static void gic_reset_prop_table(void *va)
2196 {
2197 	/* Priority 0xa0, Group-1, disabled */
2198 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2199 
2200 	/* Make sure the GIC will observe the written configuration */
2201 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2202 }
2203 
2204 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2205 {
2206 	struct page *prop_page;
2207 
2208 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2209 	if (!prop_page)
2210 		return NULL;
2211 
2212 	gic_reset_prop_table(page_address(prop_page));
2213 
2214 	return prop_page;
2215 }
2216 
2217 static void its_free_prop_table(struct page *prop_page)
2218 {
2219 	free_pages((unsigned long)page_address(prop_page),
2220 		   get_order(LPI_PROPBASE_SZ));
2221 }
2222 
2223 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2224 {
2225 	phys_addr_t start, end, addr_end;
2226 	u64 i;
2227 
2228 	/*
2229 	 * We don't bother checking for a kdump kernel as by
2230 	 * construction, the LPI tables are out of this kernel's
2231 	 * memory map.
2232 	 */
2233 	if (is_kdump_kernel())
2234 		return true;
2235 
2236 	addr_end = addr + size - 1;
2237 
2238 	for_each_reserved_mem_range(i, &start, &end) {
2239 		if (addr >= start && addr_end <= end)
2240 			return true;
2241 	}
2242 
2243 	/* Not found, not a good sign... */
2244 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2245 		&addr, &addr_end);
2246 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2247 	return false;
2248 }
2249 
2250 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2251 {
2252 	if (efi_enabled(EFI_CONFIG_TABLES))
2253 		return efi_mem_reserve_persistent(addr, size);
2254 
2255 	return 0;
2256 }
2257 
2258 static int __init its_setup_lpi_prop_table(void)
2259 {
2260 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2261 		u64 val;
2262 
2263 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2264 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2265 
2266 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2267 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2268 						     LPI_PROPBASE_SZ,
2269 						     MEMREMAP_WB);
2270 		gic_reset_prop_table(gic_rdists->prop_table_va);
2271 	} else {
2272 		struct page *page;
2273 
2274 		lpi_id_bits = min_t(u32,
2275 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2276 				    ITS_MAX_LPI_NRBITS);
2277 		page = its_allocate_prop_table(GFP_NOWAIT);
2278 		if (!page) {
2279 			pr_err("Failed to allocate PROPBASE\n");
2280 			return -ENOMEM;
2281 		}
2282 
2283 		gic_rdists->prop_table_pa = page_to_phys(page);
2284 		gic_rdists->prop_table_va = page_address(page);
2285 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2286 					  LPI_PROPBASE_SZ));
2287 	}
2288 
2289 	pr_info("GICv3: using LPI property table @%pa\n",
2290 		&gic_rdists->prop_table_pa);
2291 
2292 	return its_lpi_init(lpi_id_bits);
2293 }
2294 
2295 static const char *its_base_type_string[] = {
2296 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2297 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2298 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2299 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2300 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2301 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2302 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2303 };
2304 
2305 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2306 {
2307 	u32 idx = baser - its->tables;
2308 
2309 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2310 }
2311 
2312 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2313 			    u64 val)
2314 {
2315 	u32 idx = baser - its->tables;
2316 
2317 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2318 	baser->val = its_read_baser(its, baser);
2319 }
2320 
2321 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2322 			   u64 cache, u64 shr, u32 order, bool indirect)
2323 {
2324 	u64 val = its_read_baser(its, baser);
2325 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2326 	u64 type = GITS_BASER_TYPE(val);
2327 	u64 baser_phys, tmp;
2328 	u32 alloc_pages, psz;
2329 	struct page *page;
2330 	void *base;
2331 
2332 	psz = baser->psz;
2333 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2334 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2335 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2336 			&its->phys_base, its_base_type_string[type],
2337 			alloc_pages, GITS_BASER_PAGES_MAX);
2338 		alloc_pages = GITS_BASER_PAGES_MAX;
2339 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2340 	}
2341 
2342 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2343 	if (!page)
2344 		return -ENOMEM;
2345 
2346 	base = (void *)page_address(page);
2347 	baser_phys = virt_to_phys(base);
2348 
2349 	/* Check if the physical address of the memory is above 48bits */
2350 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2351 
2352 		/* 52bit PA is supported only when PageSize=64K */
2353 		if (psz != SZ_64K) {
2354 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2355 			free_pages((unsigned long)base, order);
2356 			return -ENXIO;
2357 		}
2358 
2359 		/* Convert 52bit PA to 48bit field */
2360 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2361 	}
2362 
2363 retry_baser:
2364 	val = (baser_phys					 |
2365 		(type << GITS_BASER_TYPE_SHIFT)			 |
2366 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2367 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2368 		cache						 |
2369 		shr						 |
2370 		GITS_BASER_VALID);
2371 
2372 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2373 
2374 	switch (psz) {
2375 	case SZ_4K:
2376 		val |= GITS_BASER_PAGE_SIZE_4K;
2377 		break;
2378 	case SZ_16K:
2379 		val |= GITS_BASER_PAGE_SIZE_16K;
2380 		break;
2381 	case SZ_64K:
2382 		val |= GITS_BASER_PAGE_SIZE_64K;
2383 		break;
2384 	}
2385 
2386 	its_write_baser(its, baser, val);
2387 	tmp = baser->val;
2388 
2389 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2390 		tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2391 
2392 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2393 		/*
2394 		 * Shareability didn't stick. Just use
2395 		 * whatever the read reported, which is likely
2396 		 * to be the only thing this redistributor
2397 		 * supports. If that's zero, make it
2398 		 * non-cacheable as well.
2399 		 */
2400 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2401 		if (!shr) {
2402 			cache = GITS_BASER_nC;
2403 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2404 		}
2405 		goto retry_baser;
2406 	}
2407 
2408 	if (val != tmp) {
2409 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410 		       &its->phys_base, its_base_type_string[type],
2411 		       val, tmp);
2412 		free_pages((unsigned long)base, order);
2413 		return -ENXIO;
2414 	}
2415 
2416 	baser->order = order;
2417 	baser->base = base;
2418 	baser->psz = psz;
2419 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420 
2421 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423 		its_base_type_string[type],
2424 		(unsigned long)virt_to_phys(base),
2425 		indirect ? "indirect" : "flat", (int)esz,
2426 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427 
2428 	return 0;
2429 }
2430 
2431 static bool its_parse_indirect_baser(struct its_node *its,
2432 				     struct its_baser *baser,
2433 				     u32 *order, u32 ids)
2434 {
2435 	u64 tmp = its_read_baser(its, baser);
2436 	u64 type = GITS_BASER_TYPE(tmp);
2437 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439 	u32 new_order = *order;
2440 	u32 psz = baser->psz;
2441 	bool indirect = false;
2442 
2443 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444 	if ((esz << ids) > (psz * 2)) {
2445 		/*
2446 		 * Find out whether hw supports a single or two-level table by
2447 		 * table by reading bit at offset '62' after writing '1' to it.
2448 		 */
2449 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451 
2452 		if (indirect) {
2453 			/*
2454 			 * The size of the lvl2 table is equal to ITS page size
2455 			 * which is 'psz'. For computing lvl1 table size,
2456 			 * subtract ID bits that sparse lvl2 table from 'ids'
2457 			 * which is reported by ITS hardware times lvl1 table
2458 			 * entry size.
2459 			 */
2460 			ids -= ilog2(psz / (int)esz);
2461 			esz = GITS_LVL1_ENTRY_SIZE;
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * Allocate as many entries as required to fit the
2467 	 * range of device IDs that the ITS can grok... The ID
2468 	 * space being incredibly sparse, this results in a
2469 	 * massive waste of memory if two-level device table
2470 	 * feature is not supported by hardware.
2471 	 */
2472 	new_order = max_t(u32, get_order(esz << ids), new_order);
2473 	if (new_order > MAX_ORDER) {
2474 		new_order = MAX_ORDER;
2475 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477 			&its->phys_base, its_base_type_string[type],
2478 			device_ids(its), ids);
2479 	}
2480 
2481 	*order = new_order;
2482 
2483 	return indirect;
2484 }
2485 
2486 static u32 compute_common_aff(u64 val)
2487 {
2488 	u32 aff, clpiaff;
2489 
2490 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492 
2493 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494 }
2495 
2496 static u32 compute_its_aff(struct its_node *its)
2497 {
2498 	u64 val;
2499 	u32 svpet;
2500 
2501 	/*
2502 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503 	 * the resulting affinity. We then use that to see if this match
2504 	 * our own affinity.
2505 	 */
2506 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509 	return compute_common_aff(val);
2510 }
2511 
2512 static struct its_node *find_sibling_its(struct its_node *cur_its)
2513 {
2514 	struct its_node *its;
2515 	u32 aff;
2516 
2517 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518 		return NULL;
2519 
2520 	aff = compute_its_aff(cur_its);
2521 
2522 	list_for_each_entry(its, &its_nodes, entry) {
2523 		u64 baser;
2524 
2525 		if (!is_v4_1(its) || its == cur_its)
2526 			continue;
2527 
2528 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529 			continue;
2530 
2531 		if (aff != compute_its_aff(its))
2532 			continue;
2533 
2534 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535 		baser = its->tables[2].val;
2536 		if (!(baser & GITS_BASER_VALID))
2537 			continue;
2538 
2539 		return its;
2540 	}
2541 
2542 	return NULL;
2543 }
2544 
2545 static void its_free_tables(struct its_node *its)
2546 {
2547 	int i;
2548 
2549 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550 		if (its->tables[i].base) {
2551 			free_pages((unsigned long)its->tables[i].base,
2552 				   its->tables[i].order);
2553 			its->tables[i].base = NULL;
2554 		}
2555 	}
2556 }
2557 
2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560 	u64 psz = SZ_64K;
2561 
2562 	while (psz) {
2563 		u64 val, gpsz;
2564 
2565 		val = its_read_baser(its, baser);
2566 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567 
2568 		switch (psz) {
2569 		case SZ_64K:
2570 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571 			break;
2572 		case SZ_16K:
2573 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574 			break;
2575 		case SZ_4K:
2576 		default:
2577 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578 			break;
2579 		}
2580 
2581 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582 
2583 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 		its_write_baser(its, baser, val);
2585 
2586 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 			break;
2588 
2589 		switch (psz) {
2590 		case SZ_64K:
2591 			psz = SZ_16K;
2592 			break;
2593 		case SZ_16K:
2594 			psz = SZ_4K;
2595 			break;
2596 		case SZ_4K:
2597 		default:
2598 			return -1;
2599 		}
2600 	}
2601 
2602 	baser->psz = psz;
2603 	return 0;
2604 }
2605 
2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608 	u64 shr = GITS_BASER_InnerShareable;
2609 	u64 cache = GITS_BASER_RaWaWb;
2610 	int err, i;
2611 
2612 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 		/* erratum 24313: ignore memory access type */
2614 		cache = GITS_BASER_nCnB;
2615 
2616 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 		struct its_baser *baser = its->tables + i;
2618 		u64 val = its_read_baser(its, baser);
2619 		u64 type = GITS_BASER_TYPE(val);
2620 		bool indirect = false;
2621 		u32 order;
2622 
2623 		if (type == GITS_BASER_TYPE_NONE)
2624 			continue;
2625 
2626 		if (its_probe_baser_psz(its, baser)) {
2627 			its_free_tables(its);
2628 			return -ENXIO;
2629 		}
2630 
2631 		order = get_order(baser->psz);
2632 
2633 		switch (type) {
2634 		case GITS_BASER_TYPE_DEVICE:
2635 			indirect = its_parse_indirect_baser(its, baser, &order,
2636 							    device_ids(its));
2637 			break;
2638 
2639 		case GITS_BASER_TYPE_VCPU:
2640 			if (is_v4_1(its)) {
2641 				struct its_node *sibling;
2642 
2643 				WARN_ON(i != 2);
2644 				if ((sibling = find_sibling_its(its))) {
2645 					*baser = sibling->tables[2];
2646 					its_write_baser(its, baser, baser->val);
2647 					continue;
2648 				}
2649 			}
2650 
2651 			indirect = its_parse_indirect_baser(its, baser, &order,
2652 							    ITS_MAX_VPEID_BITS);
2653 			break;
2654 		}
2655 
2656 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657 		if (err < 0) {
2658 			its_free_tables(its);
2659 			return err;
2660 		}
2661 
2662 		/* Update settings which will be used for next BASERn */
2663 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672 	struct its_node *its;
2673 	u64 val;
2674 	u32 aff;
2675 
2676 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 	aff = compute_common_aff(val);
2678 
2679 	list_for_each_entry(its, &its_nodes, entry) {
2680 		u64 baser, addr;
2681 
2682 		if (!is_v4_1(its))
2683 			continue;
2684 
2685 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 			continue;
2687 
2688 		if (aff != compute_its_aff(its))
2689 			continue;
2690 
2691 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 		baser = its->tables[2].val;
2693 		if (!(baser & GITS_BASER_VALID))
2694 			continue;
2695 
2696 		/* We have a winner! */
2697 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698 
2699 		val  = GICR_VPROPBASER_4_1_VALID;
2700 		if (baser & GITS_BASER_INDIRECT)
2701 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 		case GIC_PAGE_SIZE_64K:
2706 			addr = GITS_BASER_ADDR_48_to_52(baser);
2707 			break;
2708 		default:
2709 			addr = baser & GENMASK_ULL(47, 12);
2710 			break;
2711 		}
2712 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718 
2719 		return val;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727 	u32 aff;
2728 	u64 val;
2729 	int cpu;
2730 
2731 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 	aff = compute_common_aff(val);
2733 
2734 	for_each_possible_cpu(cpu) {
2735 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736 
2737 		if (!base || cpu == smp_processor_id())
2738 			continue;
2739 
2740 		val = gic_read_typer(base + GICR_TYPER);
2741 		if (aff != compute_common_aff(val))
2742 			continue;
2743 
2744 		/*
2745 		 * At this point, we have a victim. This particular CPU
2746 		 * has already booted, and has an affinity that matches
2747 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 		 * Make sure we don't write the Z bit in that case.
2749 		 */
2750 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 		val &= ~GICR_VPROPBASER_4_1_Z;
2752 
2753 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755 
2756 		return val;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 	unsigned int psz, esz, idx, npg, gpsz;
2766 	u64 val;
2767 	struct page *page;
2768 	__le64 *table;
2769 
2770 	if (!gic_rdists->has_rvpeid)
2771 		return true;
2772 
2773 	/* Skip non-present CPUs */
2774 	if (!base)
2775 		return true;
2776 
2777 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778 
2779 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782 
2783 	switch (gpsz) {
2784 	default:
2785 		WARN_ON(1);
2786 		fallthrough;
2787 	case GIC_PAGE_SIZE_4K:
2788 		psz = SZ_4K;
2789 		break;
2790 	case GIC_PAGE_SIZE_16K:
2791 		psz = SZ_16K;
2792 		break;
2793 	case GIC_PAGE_SIZE_64K:
2794 		psz = SZ_64K;
2795 		break;
2796 	}
2797 
2798 	/* Don't allow vpe_id that exceeds single, flat table limit */
2799 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 		return (id < (npg * psz / (esz * SZ_8)));
2801 
2802 	/* Compute 1st level table index & check if that exceeds table limit */
2803 	idx = id >> ilog2(psz / (esz * SZ_8));
2804 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 		return false;
2806 
2807 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808 
2809 	/* Allocate memory for 2nd level table */
2810 	if (!table[idx]) {
2811 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 		if (!page)
2813 			return false;
2814 
2815 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 			gic_flush_dcache_to_poc(page_address(page), psz);
2818 
2819 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820 
2821 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824 
2825 		/* Ensure updated table contents are visible to RD hardware */
2826 		dsb(sy);
2827 	}
2828 
2829 	return true;
2830 }
2831 
2832 static int allocate_vpe_l1_table(void)
2833 {
2834 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 	u64 val, gpsz, npg, pa;
2836 	unsigned int psz = SZ_64K;
2837 	unsigned int np, epp, esz;
2838 	struct page *page;
2839 
2840 	if (!gic_rdists->has_rvpeid)
2841 		return 0;
2842 
2843 	/*
2844 	 * if VPENDBASER.Valid is set, disable any previously programmed
2845 	 * VPE by setting PendingLast while clearing Valid. This has the
2846 	 * effect of making sure no doorbell will be generated and we can
2847 	 * then safely clear VPROPBASER.Valid.
2848 	 */
2849 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 				      vlpi_base + GICR_VPENDBASER);
2852 
2853 	/*
2854 	 * If we can inherit the configuration from another RD, let's do
2855 	 * so. Otherwise, we have to go through the allocation process. We
2856 	 * assume that all RDs have the exact same requirements, as
2857 	 * nothing will work otherwise.
2858 	 */
2859 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 	if (val & GICR_VPROPBASER_4_1_VALID)
2861 		goto out;
2862 
2863 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 	if (!gic_data_rdist()->vpe_table_mask)
2865 		return -ENOMEM;
2866 
2867 	val = inherit_vpe_l1_table_from_its();
2868 	if (val & GICR_VPROPBASER_4_1_VALID)
2869 		goto out;
2870 
2871 	/* First probe the page size */
2872 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877 
2878 	switch (gpsz) {
2879 	default:
2880 		gpsz = GIC_PAGE_SIZE_4K;
2881 		fallthrough;
2882 	case GIC_PAGE_SIZE_4K:
2883 		psz = SZ_4K;
2884 		break;
2885 	case GIC_PAGE_SIZE_16K:
2886 		psz = SZ_16K;
2887 		break;
2888 	case GIC_PAGE_SIZE_64K:
2889 		psz = SZ_64K;
2890 		break;
2891 	}
2892 
2893 	/*
2894 	 * Start populating the register from scratch, including RO fields
2895 	 * (which we want to print in debug cases...)
2896 	 */
2897 	val = 0;
2898 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900 
2901 	/* How many entries per GIC page? */
2902 	esz++;
2903 	epp = psz / (esz * SZ_8);
2904 
2905 	/*
2906 	 * If we need more than just a single L1 page, flag the table
2907 	 * as indirect and compute the number of required L1 pages.
2908 	 */
2909 	if (epp < ITS_MAX_VPEID) {
2910 		int nl2;
2911 
2912 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2913 
2914 		/* Number of L2 pages required to cover the VPEID space */
2915 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916 
2917 		/* Number of L1 pages to point to the L2 pages */
2918 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 	} else {
2920 		npg = 1;
2921 	}
2922 
2923 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924 
2925 	/* Right, that's the number of CPU pages we need for L1 */
2926 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927 
2928 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 		 np, npg, psz, epp, esz);
2930 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931 	if (!page)
2932 		return -ENOMEM;
2933 
2934 	gic_data_rdist()->vpe_l1_base = page_address(page);
2935 	pa = virt_to_phys(page_address(page));
2936 	WARN_ON(!IS_ALIGNED(pa, psz));
2937 
2938 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 	val |= GICR_VPROPBASER_RaWb;
2940 	val |= GICR_VPROPBASER_InnerShareable;
2941 	val |= GICR_VPROPBASER_4_1_Z;
2942 	val |= GICR_VPROPBASER_4_1_VALID;
2943 
2944 out:
2945 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947 
2948 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 		 smp_processor_id(), val,
2950 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951 
2952 	return 0;
2953 }
2954 
2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957 	int i;
2958 
2959 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960 				   GFP_KERNEL);
2961 	if (!its->collections)
2962 		return -ENOMEM;
2963 
2964 	for (i = 0; i < nr_cpu_ids; i++)
2965 		its->collections[i].target_address = ~0ULL;
2966 
2967 	return 0;
2968 }
2969 
2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972 	struct page *pend_page;
2973 
2974 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2975 				get_order(LPI_PENDBASE_SZ));
2976 	if (!pend_page)
2977 		return NULL;
2978 
2979 	/* Make sure the GIC will observe the zero-ed page */
2980 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2981 
2982 	return pend_page;
2983 }
2984 
2985 static void its_free_pending_table(struct page *pt)
2986 {
2987 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2988 }
2989 
2990 /*
2991  * Booting with kdump and LPIs enabled is generally fine. Any other
2992  * case is wrong in the absence of firmware/EFI support.
2993  */
2994 static bool enabled_lpis_allowed(void)
2995 {
2996 	phys_addr_t addr;
2997 	u64 val;
2998 
2999 	/* Check whether the property table is in a reserved region */
3000 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001 	addr = val & GENMASK_ULL(51, 12);
3002 
3003 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3004 }
3005 
3006 static int __init allocate_lpi_tables(void)
3007 {
3008 	u64 val;
3009 	int err, cpu;
3010 
3011 	/*
3012 	 * If LPIs are enabled while we run this from the boot CPU,
3013 	 * flag the RD tables as pre-allocated if the stars do align.
3014 	 */
3015 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019 		pr_info("GICv3: Using preallocated redistributor tables\n");
3020 	}
3021 
3022 	err = its_setup_lpi_prop_table();
3023 	if (err)
3024 		return err;
3025 
3026 	/*
3027 	 * We allocate all the pending tables anyway, as we may have a
3028 	 * mix of RDs that have had LPIs enabled, and some that
3029 	 * don't. We'll free the unused ones as each CPU comes online.
3030 	 */
3031 	for_each_possible_cpu(cpu) {
3032 		struct page *pend_page;
3033 
3034 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3035 		if (!pend_page) {
3036 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3037 			return -ENOMEM;
3038 		}
3039 
3040 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3047 {
3048 	u32 count = 1000000;	/* 1s! */
3049 	bool clean;
3050 	u64 val;
3051 
3052 	do {
3053 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3054 		clean = !(val & GICR_VPENDBASER_Dirty);
3055 		if (!clean) {
3056 			count--;
3057 			cpu_relax();
3058 			udelay(1);
3059 		}
3060 	} while (!clean && count);
3061 
3062 	if (unlikely(!clean))
3063 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3064 
3065 	return val;
3066 }
3067 
3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3069 {
3070 	u64 val;
3071 
3072 	/* Make sure we wait until the RD is done with the initial scan */
3073 	val = read_vpend_dirty_clear(vlpi_base);
3074 	val &= ~GICR_VPENDBASER_Valid;
3075 	val &= ~clr;
3076 	val |= set;
3077 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3078 
3079 	val = read_vpend_dirty_clear(vlpi_base);
3080 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3081 		val |= GICR_VPENDBASER_PendingLast;
3082 
3083 	return val;
3084 }
3085 
3086 static void its_cpu_init_lpis(void)
3087 {
3088 	void __iomem *rbase = gic_data_rdist_rd_base();
3089 	struct page *pend_page;
3090 	phys_addr_t paddr;
3091 	u64 val, tmp;
3092 
3093 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3094 		return;
3095 
3096 	val = readl_relaxed(rbase + GICR_CTLR);
3097 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3099 		/*
3100 		 * Check that we get the same property table on all
3101 		 * RDs. If we don't, this is hopeless.
3102 		 */
3103 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 		paddr &= GENMASK_ULL(51, 12);
3105 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3107 
3108 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109 		paddr &= GENMASK_ULL(51, 16);
3110 
3111 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3112 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3113 
3114 		goto out;
3115 	}
3116 
3117 	pend_page = gic_data_rdist()->pend_page;
3118 	paddr = page_to_phys(pend_page);
3119 
3120 	/* set PROPBASE */
3121 	val = (gic_rdists->prop_table_pa |
3122 	       GICR_PROPBASER_InnerShareable |
3123 	       GICR_PROPBASER_RaWaWb |
3124 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3125 
3126 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3128 
3129 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3131 
3132 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3133 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3134 			/*
3135 			 * The HW reports non-shareable, we must
3136 			 * remove the cacheability attributes as
3137 			 * well.
3138 			 */
3139 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140 				 GICR_PROPBASER_CACHEABILITY_MASK);
3141 			val |= GICR_PROPBASER_nC;
3142 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3143 		}
3144 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3145 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3146 	}
3147 
3148 	/* set PENDBASE */
3149 	val = (page_to_phys(pend_page) |
3150 	       GICR_PENDBASER_InnerShareable |
3151 	       GICR_PENDBASER_RaWaWb);
3152 
3153 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3155 
3156 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3158 
3159 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3160 		/*
3161 		 * The HW reports non-shareable, we must remove the
3162 		 * cacheability attributes as well.
3163 		 */
3164 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165 			 GICR_PENDBASER_CACHEABILITY_MASK);
3166 		val |= GICR_PENDBASER_nC;
3167 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3168 	}
3169 
3170 	/* Enable LPIs */
3171 	val = readl_relaxed(rbase + GICR_CTLR);
3172 	val |= GICR_CTLR_ENABLE_LPIS;
3173 	writel_relaxed(val, rbase + GICR_CTLR);
3174 
3175 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3176 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3177 
3178 		/*
3179 		 * It's possible for CPU to receive VLPIs before it is
3180 		 * scheduled as a vPE, especially for the first CPU, and the
3181 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182 		 * as out of range and dropped by GIC.
3183 		 * So we initialize IDbits to known value to avoid VLPI drop.
3184 		 */
3185 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187 			smp_processor_id(), val);
3188 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3189 
3190 		/*
3191 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3192 		 * ancient programming gets left in and has possibility of
3193 		 * corrupting memory.
3194 		 */
3195 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3196 	}
3197 
3198 	if (allocate_vpe_l1_table()) {
3199 		/*
3200 		 * If the allocation has failed, we're in massive trouble.
3201 		 * Disable direct injection, and pray that no VM was
3202 		 * already running...
3203 		 */
3204 		gic_rdists->has_rvpeid = false;
3205 		gic_rdists->has_vlpis = false;
3206 	}
3207 
3208 	/* Make sure the GIC has seen the above */
3209 	dsb(sy);
3210 out:
3211 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3212 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3213 		smp_processor_id(),
3214 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215 		"reserved" : "allocated",
3216 		&paddr);
3217 }
3218 
3219 static void its_cpu_init_collection(struct its_node *its)
3220 {
3221 	int cpu = smp_processor_id();
3222 	u64 target;
3223 
3224 	/* avoid cross node collections and its mapping */
3225 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226 		struct device_node *cpu_node;
3227 
3228 		cpu_node = of_get_cpu_node(cpu, NULL);
3229 		if (its->numa_node != NUMA_NO_NODE &&
3230 			its->numa_node != of_node_to_nid(cpu_node))
3231 			return;
3232 	}
3233 
3234 	/*
3235 	 * We now have to bind each collection to its target
3236 	 * redistributor.
3237 	 */
3238 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3239 		/*
3240 		 * This ITS wants the physical address of the
3241 		 * redistributor.
3242 		 */
3243 		target = gic_data_rdist()->phys_base;
3244 	} else {
3245 		/* This ITS wants a linear CPU number. */
3246 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3248 	}
3249 
3250 	/* Perform collection mapping */
3251 	its->collections[cpu].target_address = target;
3252 	its->collections[cpu].col_id = cpu;
3253 
3254 	its_send_mapc(its, &its->collections[cpu], 1);
3255 	its_send_invall(its, &its->collections[cpu]);
3256 }
3257 
3258 static void its_cpu_init_collections(void)
3259 {
3260 	struct its_node *its;
3261 
3262 	raw_spin_lock(&its_lock);
3263 
3264 	list_for_each_entry(its, &its_nodes, entry)
3265 		its_cpu_init_collection(its);
3266 
3267 	raw_spin_unlock(&its_lock);
3268 }
3269 
3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3271 {
3272 	struct its_device *its_dev = NULL, *tmp;
3273 	unsigned long flags;
3274 
3275 	raw_spin_lock_irqsave(&its->lock, flags);
3276 
3277 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3278 		if (tmp->device_id == dev_id) {
3279 			its_dev = tmp;
3280 			break;
3281 		}
3282 	}
3283 
3284 	raw_spin_unlock_irqrestore(&its->lock, flags);
3285 
3286 	return its_dev;
3287 }
3288 
3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3290 {
3291 	int i;
3292 
3293 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295 			return &its->tables[i];
3296 	}
3297 
3298 	return NULL;
3299 }
3300 
3301 static bool its_alloc_table_entry(struct its_node *its,
3302 				  struct its_baser *baser, u32 id)
3303 {
3304 	struct page *page;
3305 	u32 esz, idx;
3306 	__le64 *table;
3307 
3308 	/* Don't allow device id that exceeds single, flat table limit */
3309 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310 	if (!(baser->val & GITS_BASER_INDIRECT))
3311 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3312 
3313 	/* Compute 1st level table index & check if that exceeds table limit */
3314 	idx = id >> ilog2(baser->psz / esz);
3315 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3316 		return false;
3317 
3318 	table = baser->base;
3319 
3320 	/* Allocate memory for 2nd level table */
3321 	if (!table[idx]) {
3322 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323 					get_order(baser->psz));
3324 		if (!page)
3325 			return false;
3326 
3327 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3329 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3330 
3331 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3332 
3333 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3335 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3336 
3337 		/* Ensure updated table contents are visible to ITS hardware */
3338 		dsb(sy);
3339 	}
3340 
3341 	return true;
3342 }
3343 
3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3345 {
3346 	struct its_baser *baser;
3347 
3348 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3349 
3350 	/* Don't allow device id that exceeds ITS hardware limit */
3351 	if (!baser)
3352 		return (ilog2(dev_id) < device_ids(its));
3353 
3354 	return its_alloc_table_entry(its, baser, dev_id);
3355 }
3356 
3357 static bool its_alloc_vpe_table(u32 vpe_id)
3358 {
3359 	struct its_node *its;
3360 	int cpu;
3361 
3362 	/*
3363 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364 	 * could try and only do it on ITSs corresponding to devices
3365 	 * that have interrupts targeted at this VPE, but the
3366 	 * complexity becomes crazy (and you have tons of memory
3367 	 * anyway, right?).
3368 	 */
3369 	list_for_each_entry(its, &its_nodes, entry) {
3370 		struct its_baser *baser;
3371 
3372 		if (!is_v4(its))
3373 			continue;
3374 
3375 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3376 		if (!baser)
3377 			return false;
3378 
3379 		if (!its_alloc_table_entry(its, baser, vpe_id))
3380 			return false;
3381 	}
3382 
3383 	/* Non v4.1? No need to iterate RDs and go back early. */
3384 	if (!gic_rdists->has_rvpeid)
3385 		return true;
3386 
3387 	/*
3388 	 * Make sure the L2 tables are allocated for all copies of
3389 	 * the L1 table on *all* v4.1 RDs.
3390 	 */
3391 	for_each_possible_cpu(cpu) {
3392 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3393 			return false;
3394 	}
3395 
3396 	return true;
3397 }
3398 
3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3400 					    int nvecs, bool alloc_lpis)
3401 {
3402 	struct its_device *dev;
3403 	unsigned long *lpi_map = NULL;
3404 	unsigned long flags;
3405 	u16 *col_map = NULL;
3406 	void *itt;
3407 	int lpi_base;
3408 	int nr_lpis;
3409 	int nr_ites;
3410 	int sz;
3411 
3412 	if (!its_alloc_device_table(its, dev_id))
3413 		return NULL;
3414 
3415 	if (WARN_ON(!is_power_of_2(nvecs)))
3416 		nvecs = roundup_pow_of_two(nvecs);
3417 
3418 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3419 	/*
3420 	 * Even if the device wants a single LPI, the ITT must be
3421 	 * sized as a power of two (and you need at least one bit...).
3422 	 */
3423 	nr_ites = max(2, nvecs);
3424 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3425 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3426 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3427 	if (alloc_lpis) {
3428 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3429 		if (lpi_map)
3430 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3431 					  GFP_KERNEL);
3432 	} else {
3433 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3434 		nr_lpis = 0;
3435 		lpi_base = 0;
3436 	}
3437 
3438 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3439 		kfree(dev);
3440 		kfree(itt);
3441 		bitmap_free(lpi_map);
3442 		kfree(col_map);
3443 		return NULL;
3444 	}
3445 
3446 	gic_flush_dcache_to_poc(itt, sz);
3447 
3448 	dev->its = its;
3449 	dev->itt = itt;
3450 	dev->nr_ites = nr_ites;
3451 	dev->event_map.lpi_map = lpi_map;
3452 	dev->event_map.col_map = col_map;
3453 	dev->event_map.lpi_base = lpi_base;
3454 	dev->event_map.nr_lpis = nr_lpis;
3455 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3456 	dev->device_id = dev_id;
3457 	INIT_LIST_HEAD(&dev->entry);
3458 
3459 	raw_spin_lock_irqsave(&its->lock, flags);
3460 	list_add(&dev->entry, &its->its_device_list);
3461 	raw_spin_unlock_irqrestore(&its->lock, flags);
3462 
3463 	/* Map device to its ITT */
3464 	its_send_mapd(dev, 1);
3465 
3466 	return dev;
3467 }
3468 
3469 static void its_free_device(struct its_device *its_dev)
3470 {
3471 	unsigned long flags;
3472 
3473 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3474 	list_del(&its_dev->entry);
3475 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3476 	kfree(its_dev->event_map.col_map);
3477 	kfree(its_dev->itt);
3478 	kfree(its_dev);
3479 }
3480 
3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3482 {
3483 	int idx;
3484 
3485 	/* Find a free LPI region in lpi_map and allocate them. */
3486 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487 				      dev->event_map.nr_lpis,
3488 				      get_count_order(nvecs));
3489 	if (idx < 0)
3490 		return -ENOSPC;
3491 
3492 	*hwirq = dev->event_map.lpi_base + idx;
3493 
3494 	return 0;
3495 }
3496 
3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498 			   int nvec, msi_alloc_info_t *info)
3499 {
3500 	struct its_node *its;
3501 	struct its_device *its_dev;
3502 	struct msi_domain_info *msi_info;
3503 	u32 dev_id;
3504 	int err = 0;
3505 
3506 	/*
3507 	 * We ignore "dev" entirely, and rely on the dev_id that has
3508 	 * been passed via the scratchpad. This limits this domain's
3509 	 * usefulness to upper layers that definitely know that they
3510 	 * are built on top of the ITS.
3511 	 */
3512 	dev_id = info->scratchpad[0].ul;
3513 
3514 	msi_info = msi_get_domain_info(domain);
3515 	its = msi_info->data;
3516 
3517 	if (!gic_rdists->has_direct_lpi &&
3518 	    vpe_proxy.dev &&
3519 	    vpe_proxy.dev->its == its &&
3520 	    dev_id == vpe_proxy.dev->device_id) {
3521 		/* Bad luck. Get yourself a better implementation */
3522 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3523 			  dev_id);
3524 		return -EINVAL;
3525 	}
3526 
3527 	mutex_lock(&its->dev_alloc_lock);
3528 	its_dev = its_find_device(its, dev_id);
3529 	if (its_dev) {
3530 		/*
3531 		 * We already have seen this ID, probably through
3532 		 * another alias (PCI bridge of some sort). No need to
3533 		 * create the device.
3534 		 */
3535 		its_dev->shared = true;
3536 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3537 		goto out;
3538 	}
3539 
3540 	its_dev = its_create_device(its, dev_id, nvec, true);
3541 	if (!its_dev) {
3542 		err = -ENOMEM;
3543 		goto out;
3544 	}
3545 
3546 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547 		its_dev->shared = true;
3548 
3549 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3550 out:
3551 	mutex_unlock(&its->dev_alloc_lock);
3552 	info->scratchpad[0].ptr = its_dev;
3553 	return err;
3554 }
3555 
3556 static struct msi_domain_ops its_msi_domain_ops = {
3557 	.msi_prepare	= its_msi_prepare,
3558 };
3559 
3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3561 				    unsigned int virq,
3562 				    irq_hw_number_t hwirq)
3563 {
3564 	struct irq_fwspec fwspec;
3565 
3566 	if (irq_domain_get_of_node(domain->parent)) {
3567 		fwspec.fwnode = domain->parent->fwnode;
3568 		fwspec.param_count = 3;
3569 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570 		fwspec.param[1] = hwirq;
3571 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3572 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573 		fwspec.fwnode = domain->parent->fwnode;
3574 		fwspec.param_count = 2;
3575 		fwspec.param[0] = hwirq;
3576 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3577 	} else {
3578 		return -EINVAL;
3579 	}
3580 
3581 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3582 }
3583 
3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585 				unsigned int nr_irqs, void *args)
3586 {
3587 	msi_alloc_info_t *info = args;
3588 	struct its_device *its_dev = info->scratchpad[0].ptr;
3589 	struct its_node *its = its_dev->its;
3590 	struct irq_data *irqd;
3591 	irq_hw_number_t hwirq;
3592 	int err;
3593 	int i;
3594 
3595 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3596 	if (err)
3597 		return err;
3598 
3599 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3600 	if (err)
3601 		return err;
3602 
3603 	for (i = 0; i < nr_irqs; i++) {
3604 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3605 		if (err)
3606 			return err;
3607 
3608 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3609 					      hwirq + i, &its_irq_chip, its_dev);
3610 		irqd = irq_get_irq_data(virq + i);
3611 		irqd_set_single_target(irqd);
3612 		irqd_set_affinity_on_activate(irqd);
3613 		irqd_set_resend_when_in_progress(irqd);
3614 		pr_debug("ID:%d pID:%d vID:%d\n",
3615 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3616 			 (int)(hwirq + i), virq + i);
3617 	}
3618 
3619 	return 0;
3620 }
3621 
3622 static int its_irq_domain_activate(struct irq_domain *domain,
3623 				   struct irq_data *d, bool reserve)
3624 {
3625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626 	u32 event = its_get_event_id(d);
3627 	int cpu;
3628 
3629 	cpu = its_select_cpu(d, cpu_online_mask);
3630 	if (cpu < 0 || cpu >= nr_cpu_ids)
3631 		return -EINVAL;
3632 
3633 	its_inc_lpi_count(d, cpu);
3634 	its_dev->event_map.col_map[event] = cpu;
3635 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3636 
3637 	/* Map the GIC IRQ and event to the device */
3638 	its_send_mapti(its_dev, d->hwirq, event);
3639 	return 0;
3640 }
3641 
3642 static void its_irq_domain_deactivate(struct irq_domain *domain,
3643 				      struct irq_data *d)
3644 {
3645 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646 	u32 event = its_get_event_id(d);
3647 
3648 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3649 	/* Stop the delivery of interrupts */
3650 	its_send_discard(its_dev, event);
3651 }
3652 
3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654 				unsigned int nr_irqs)
3655 {
3656 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3658 	struct its_node *its = its_dev->its;
3659 	int i;
3660 
3661 	bitmap_release_region(its_dev->event_map.lpi_map,
3662 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663 			      get_count_order(nr_irqs));
3664 
3665 	for (i = 0; i < nr_irqs; i++) {
3666 		struct irq_data *data = irq_domain_get_irq_data(domain,
3667 								virq + i);
3668 		/* Nuke the entry in the domain */
3669 		irq_domain_reset_irq_data(data);
3670 	}
3671 
3672 	mutex_lock(&its->dev_alloc_lock);
3673 
3674 	/*
3675 	 * If all interrupts have been freed, start mopping the
3676 	 * floor. This is conditioned on the device not being shared.
3677 	 */
3678 	if (!its_dev->shared &&
3679 	    bitmap_empty(its_dev->event_map.lpi_map,
3680 			 its_dev->event_map.nr_lpis)) {
3681 		its_lpi_free(its_dev->event_map.lpi_map,
3682 			     its_dev->event_map.lpi_base,
3683 			     its_dev->event_map.nr_lpis);
3684 
3685 		/* Unmap device/itt */
3686 		its_send_mapd(its_dev, 0);
3687 		its_free_device(its_dev);
3688 	}
3689 
3690 	mutex_unlock(&its->dev_alloc_lock);
3691 
3692 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3693 }
3694 
3695 static const struct irq_domain_ops its_domain_ops = {
3696 	.alloc			= its_irq_domain_alloc,
3697 	.free			= its_irq_domain_free,
3698 	.activate		= its_irq_domain_activate,
3699 	.deactivate		= its_irq_domain_deactivate,
3700 };
3701 
3702 /*
3703  * This is insane.
3704  *
3705  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3706  * likely), the only way to perform an invalidate is to use a fake
3707  * device to issue an INV command, implying that the LPI has first
3708  * been mapped to some event on that device. Since this is not exactly
3709  * cheap, we try to keep that mapping around as long as possible, and
3710  * only issue an UNMAP if we're short on available slots.
3711  *
3712  * Broken by design(tm).
3713  *
3714  * GICv4.1, on the other hand, mandates that we're able to invalidate
3715  * by writing to a MMIO register. It doesn't implement the whole of
3716  * DirectLPI, but that's good enough. And most of the time, we don't
3717  * even have to invalidate anything, as the redistributor can be told
3718  * whether to generate a doorbell or not (we thus leave it enabled,
3719  * always).
3720  */
3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3722 {
3723 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 	if (gic_rdists->has_rvpeid)
3725 		return;
3726 
3727 	/* Already unmapped? */
3728 	if (vpe->vpe_proxy_event == -1)
3729 		return;
3730 
3731 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3733 
3734 	/*
3735 	 * We don't track empty slots at all, so let's move the
3736 	 * next_victim pointer if we can quickly reuse that slot
3737 	 * instead of nuking an existing entry. Not clear that this is
3738 	 * always a win though, and this might just generate a ripple
3739 	 * effect... Let's just hope VPEs don't migrate too often.
3740 	 */
3741 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3743 
3744 	vpe->vpe_proxy_event = -1;
3745 }
3746 
3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3748 {
3749 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 	if (gic_rdists->has_rvpeid)
3751 		return;
3752 
3753 	if (!gic_rdists->has_direct_lpi) {
3754 		unsigned long flags;
3755 
3756 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757 		its_vpe_db_proxy_unmap_locked(vpe);
3758 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3759 	}
3760 }
3761 
3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3763 {
3764 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 	if (gic_rdists->has_rvpeid)
3766 		return;
3767 
3768 	/* Already mapped? */
3769 	if (vpe->vpe_proxy_event != -1)
3770 		return;
3771 
3772 	/* This slot was already allocated. Kick the other VPE out. */
3773 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3775 
3776 	/* Map the new VPE instead */
3777 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3780 
3781 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3783 }
3784 
3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3786 {
3787 	unsigned long flags;
3788 	struct its_collection *target_col;
3789 
3790 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3791 	if (gic_rdists->has_rvpeid)
3792 		return;
3793 
3794 	if (gic_rdists->has_direct_lpi) {
3795 		void __iomem *rdbase;
3796 
3797 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3799 		wait_for_syncr(rdbase);
3800 
3801 		return;
3802 	}
3803 
3804 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3805 
3806 	its_vpe_db_proxy_map_locked(vpe);
3807 
3808 	target_col = &vpe_proxy.dev->its->collections[to];
3809 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3811 
3812 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3813 }
3814 
3815 static int its_vpe_set_affinity(struct irq_data *d,
3816 				const struct cpumask *mask_val,
3817 				bool force)
3818 {
3819 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3820 	int from, cpu = cpumask_first(mask_val);
3821 	unsigned long flags;
3822 
3823 	/*
3824 	 * Changing affinity is mega expensive, so let's be as lazy as
3825 	 * we can and only do it if we really have to. Also, if mapped
3826 	 * into the proxy device, we need to move the doorbell
3827 	 * interrupt to its new location.
3828 	 *
3829 	 * Another thing is that changing the affinity of a vPE affects
3830 	 * *other interrupts* such as all the vLPIs that are routed to
3831 	 * this vPE. This means that the irq_desc lock is not enough to
3832 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3833 	 * during the update, hence the lock below which must also be
3834 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3835 	 */
3836 	from = vpe_to_cpuid_lock(vpe, &flags);
3837 	if (from == cpu)
3838 		goto out;
3839 
3840 	vpe->col_idx = cpu;
3841 
3842 	/*
3843 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844 	 * is sharing its VPE table with the current one.
3845 	 */
3846 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3848 		goto out;
3849 
3850 	its_send_vmovp(vpe);
3851 	its_vpe_db_proxy_move(vpe, from, cpu);
3852 
3853 out:
3854 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 	vpe_to_cpuid_unlock(vpe, flags);
3856 
3857 	return IRQ_SET_MASK_OK_DONE;
3858 }
3859 
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 	u64 val;
3864 
3865 	if (!gic_rdists->has_vpend_valid_dirty)
3866 		return;
3867 
3868 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869 						       val,
3870 						       !(val & GICR_VPENDBASER_Dirty),
3871 						       1, 500));
3872 }
3873 
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877 	u64 val;
3878 
3879 	/* Schedule the VPE */
3880 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 		GENMASK_ULL(51, 12);
3882 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 	val |= GICR_VPROPBASER_RaWb;
3884 	val |= GICR_VPROPBASER_InnerShareable;
3885 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3886 
3887 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3888 		GENMASK_ULL(51, 16);
3889 	val |= GICR_VPENDBASER_RaWaWb;
3890 	val |= GICR_VPENDBASER_InnerShareable;
3891 	/*
3892 	 * There is no good way of finding out if the pending table is
3893 	 * empty as we can race against the doorbell interrupt very
3894 	 * easily. So in the end, vpe->pending_last is only an
3895 	 * indication that the vcpu has something pending, not one
3896 	 * that the pending table is empty. A good implementation
3897 	 * would be able to read its coarse map pretty quickly anyway,
3898 	 * making this a tolerable issue.
3899 	 */
3900 	val |= GICR_VPENDBASER_PendingLast;
3901 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902 	val |= GICR_VPENDBASER_Valid;
3903 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3904 }
3905 
3906 static void its_vpe_deschedule(struct its_vpe *vpe)
3907 {
3908 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3909 	u64 val;
3910 
3911 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3912 
3913 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3915 }
3916 
3917 static void its_vpe_invall(struct its_vpe *vpe)
3918 {
3919 	struct its_node *its;
3920 
3921 	list_for_each_entry(its, &its_nodes, entry) {
3922 		if (!is_v4(its))
3923 			continue;
3924 
3925 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3926 			continue;
3927 
3928 		/*
3929 		 * Sending a VINVALL to a single ITS is enough, as all
3930 		 * we need is to reach the redistributors.
3931 		 */
3932 		its_send_vinvall(its, vpe);
3933 		return;
3934 	}
3935 }
3936 
3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3938 {
3939 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940 	struct its_cmd_info *info = vcpu_info;
3941 
3942 	switch (info->cmd_type) {
3943 	case SCHEDULE_VPE:
3944 		its_vpe_schedule(vpe);
3945 		return 0;
3946 
3947 	case DESCHEDULE_VPE:
3948 		its_vpe_deschedule(vpe);
3949 		return 0;
3950 
3951 	case COMMIT_VPE:
3952 		its_wait_vpt_parse_complete();
3953 		return 0;
3954 
3955 	case INVALL_VPE:
3956 		its_vpe_invall(vpe);
3957 		return 0;
3958 
3959 	default:
3960 		return -EINVAL;
3961 	}
3962 }
3963 
3964 static void its_vpe_send_cmd(struct its_vpe *vpe,
3965 			     void (*cmd)(struct its_device *, u32))
3966 {
3967 	unsigned long flags;
3968 
3969 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3970 
3971 	its_vpe_db_proxy_map_locked(vpe);
3972 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3973 
3974 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3975 }
3976 
3977 static void its_vpe_send_inv(struct irq_data *d)
3978 {
3979 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3980 
3981 	if (gic_rdists->has_direct_lpi)
3982 		__direct_lpi_inv(d, d->parent_data->hwirq);
3983 	else
3984 		its_vpe_send_cmd(vpe, its_send_inv);
3985 }
3986 
3987 static void its_vpe_mask_irq(struct irq_data *d)
3988 {
3989 	/*
3990 	 * We need to unmask the LPI, which is described by the parent
3991 	 * irq_data. Instead of calling into the parent (which won't
3992 	 * exactly do the right thing, let's simply use the
3993 	 * parent_data pointer. Yes, I'm naughty.
3994 	 */
3995 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996 	its_vpe_send_inv(d);
3997 }
3998 
3999 static void its_vpe_unmask_irq(struct irq_data *d)
4000 {
4001 	/* Same hack as above... */
4002 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003 	its_vpe_send_inv(d);
4004 }
4005 
4006 static int its_vpe_set_irqchip_state(struct irq_data *d,
4007 				     enum irqchip_irq_state which,
4008 				     bool state)
4009 {
4010 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4011 
4012 	if (which != IRQCHIP_STATE_PENDING)
4013 		return -EINVAL;
4014 
4015 	if (gic_rdists->has_direct_lpi) {
4016 		void __iomem *rdbase;
4017 
4018 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4019 		if (state) {
4020 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4021 		} else {
4022 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4023 			wait_for_syncr(rdbase);
4024 		}
4025 	} else {
4026 		if (state)
4027 			its_vpe_send_cmd(vpe, its_send_int);
4028 		else
4029 			its_vpe_send_cmd(vpe, its_send_clear);
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 static int its_vpe_retrigger(struct irq_data *d)
4036 {
4037 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4038 }
4039 
4040 static struct irq_chip its_vpe_irq_chip = {
4041 	.name			= "GICv4-vpe",
4042 	.irq_mask		= its_vpe_mask_irq,
4043 	.irq_unmask		= its_vpe_unmask_irq,
4044 	.irq_eoi		= irq_chip_eoi_parent,
4045 	.irq_set_affinity	= its_vpe_set_affinity,
4046 	.irq_retrigger		= its_vpe_retrigger,
4047 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4048 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4049 };
4050 
4051 static struct its_node *find_4_1_its(void)
4052 {
4053 	static struct its_node *its = NULL;
4054 
4055 	if (!its) {
4056 		list_for_each_entry(its, &its_nodes, entry) {
4057 			if (is_v4_1(its))
4058 				return its;
4059 		}
4060 
4061 		/* Oops? */
4062 		its = NULL;
4063 	}
4064 
4065 	return its;
4066 }
4067 
4068 static void its_vpe_4_1_send_inv(struct irq_data *d)
4069 {
4070 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071 	struct its_node *its;
4072 
4073 	/*
4074 	 * GICv4.1 wants doorbells to be invalidated using the
4075 	 * INVDB command in order to be broadcast to all RDs. Send
4076 	 * it to the first valid ITS, and let the HW do its magic.
4077 	 */
4078 	its = find_4_1_its();
4079 	if (its)
4080 		its_send_invdb(its, vpe);
4081 }
4082 
4083 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4084 {
4085 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086 	its_vpe_4_1_send_inv(d);
4087 }
4088 
4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4090 {
4091 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092 	its_vpe_4_1_send_inv(d);
4093 }
4094 
4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096 				 struct its_cmd_info *info)
4097 {
4098 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4099 	u64 val = 0;
4100 
4101 	/* Schedule the VPE */
4102 	val |= GICR_VPENDBASER_Valid;
4103 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4106 
4107 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4108 }
4109 
4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111 				   struct its_cmd_info *info)
4112 {
4113 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4114 	u64 val;
4115 
4116 	if (info->req_db) {
4117 		unsigned long flags;
4118 
4119 		/*
4120 		 * vPE is going to block: make the vPE non-resident with
4121 		 * PendingLast clear and DB set. The GIC guarantees that if
4122 		 * we read-back PendingLast clear, then a doorbell will be
4123 		 * delivered when an interrupt comes.
4124 		 *
4125 		 * Note the locking to deal with the concurrent update of
4126 		 * pending_last from the doorbell interrupt handler that can
4127 		 * run concurrently.
4128 		 */
4129 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4130 		val = its_clear_vpend_valid(vlpi_base,
4131 					    GICR_VPENDBASER_PendingLast,
4132 					    GICR_VPENDBASER_4_1_DB);
4133 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4134 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4135 	} else {
4136 		/*
4137 		 * We're not blocking, so just make the vPE non-resident
4138 		 * with PendingLast set, indicating that we'll be back.
4139 		 */
4140 		val = its_clear_vpend_valid(vlpi_base,
4141 					    0,
4142 					    GICR_VPENDBASER_PendingLast);
4143 		vpe->pending_last = true;
4144 	}
4145 }
4146 
4147 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4148 {
4149 	void __iomem *rdbase;
4150 	unsigned long flags;
4151 	u64 val;
4152 	int cpu;
4153 
4154 	val  = GICR_INVALLR_V;
4155 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4156 
4157 	/* Target the redistributor this vPE is currently known on */
4158 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4159 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4161 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4162 
4163 	wait_for_syncr(rdbase);
4164 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165 	vpe_to_cpuid_unlock(vpe, flags);
4166 }
4167 
4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4169 {
4170 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171 	struct its_cmd_info *info = vcpu_info;
4172 
4173 	switch (info->cmd_type) {
4174 	case SCHEDULE_VPE:
4175 		its_vpe_4_1_schedule(vpe, info);
4176 		return 0;
4177 
4178 	case DESCHEDULE_VPE:
4179 		its_vpe_4_1_deschedule(vpe, info);
4180 		return 0;
4181 
4182 	case COMMIT_VPE:
4183 		its_wait_vpt_parse_complete();
4184 		return 0;
4185 
4186 	case INVALL_VPE:
4187 		its_vpe_4_1_invall(vpe);
4188 		return 0;
4189 
4190 	default:
4191 		return -EINVAL;
4192 	}
4193 }
4194 
4195 static struct irq_chip its_vpe_4_1_irq_chip = {
4196 	.name			= "GICv4.1-vpe",
4197 	.irq_mask		= its_vpe_4_1_mask_irq,
4198 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4199 	.irq_eoi		= irq_chip_eoi_parent,
4200 	.irq_set_affinity	= its_vpe_set_affinity,
4201 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4202 };
4203 
4204 static void its_configure_sgi(struct irq_data *d, bool clear)
4205 {
4206 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207 	struct its_cmd_desc desc;
4208 
4209 	desc.its_vsgi_cmd.vpe = vpe;
4210 	desc.its_vsgi_cmd.sgi = d->hwirq;
4211 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214 	desc.its_vsgi_cmd.clear = clear;
4215 
4216 	/*
4217 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218 	 * destination VPE is mapped there. Since we map them eagerly at
4219 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4220 	 */
4221 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4222 }
4223 
4224 static void its_sgi_mask_irq(struct irq_data *d)
4225 {
4226 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4227 
4228 	vpe->sgi_config[d->hwirq].enabled = false;
4229 	its_configure_sgi(d, false);
4230 }
4231 
4232 static void its_sgi_unmask_irq(struct irq_data *d)
4233 {
4234 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235 
4236 	vpe->sgi_config[d->hwirq].enabled = true;
4237 	its_configure_sgi(d, false);
4238 }
4239 
4240 static int its_sgi_set_affinity(struct irq_data *d,
4241 				const struct cpumask *mask_val,
4242 				bool force)
4243 {
4244 	/*
4245 	 * There is no notion of affinity for virtual SGIs, at least
4246 	 * not on the host (since they can only be targeting a vPE).
4247 	 * Tell the kernel we've done whatever it asked for.
4248 	 */
4249 	irq_data_update_effective_affinity(d, mask_val);
4250 	return IRQ_SET_MASK_OK;
4251 }
4252 
4253 static int its_sgi_set_irqchip_state(struct irq_data *d,
4254 				     enum irqchip_irq_state which,
4255 				     bool state)
4256 {
4257 	if (which != IRQCHIP_STATE_PENDING)
4258 		return -EINVAL;
4259 
4260 	if (state) {
4261 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262 		struct its_node *its = find_4_1_its();
4263 		u64 val;
4264 
4265 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4268 	} else {
4269 		its_configure_sgi(d, true);
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static int its_sgi_get_irqchip_state(struct irq_data *d,
4276 				     enum irqchip_irq_state which, bool *val)
4277 {
4278 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 	void __iomem *base;
4280 	unsigned long flags;
4281 	u32 count = 1000000;	/* 1s! */
4282 	u32 status;
4283 	int cpu;
4284 
4285 	if (which != IRQCHIP_STATE_PENDING)
4286 		return -EINVAL;
4287 
4288 	/*
4289 	 * Locking galore! We can race against two different events:
4290 	 *
4291 	 * - Concurrent vPE affinity change: we must make sure it cannot
4292 	 *   happen, or we'll talk to the wrong redistributor. This is
4293 	 *   identical to what happens with vLPIs.
4294 	 *
4295 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4296 	 *   MMIO registers, this must be made atomic one way or another.
4297 	 */
4298 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4299 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4302 	do {
4303 		status = readl_relaxed(base + GICR_VSGIPENDR);
4304 		if (!(status & GICR_VSGIPENDR_BUSY))
4305 			goto out;
4306 
4307 		count--;
4308 		if (!count) {
4309 			pr_err_ratelimited("Unable to get SGI status\n");
4310 			goto out;
4311 		}
4312 		cpu_relax();
4313 		udelay(1);
4314 	} while (count);
4315 
4316 out:
4317 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318 	vpe_to_cpuid_unlock(vpe, flags);
4319 
4320 	if (!count)
4321 		return -ENXIO;
4322 
4323 	*val = !!(status & (1 << d->hwirq));
4324 
4325 	return 0;
4326 }
4327 
4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4329 {
4330 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331 	struct its_cmd_info *info = vcpu_info;
4332 
4333 	switch (info->cmd_type) {
4334 	case PROP_UPDATE_VSGI:
4335 		vpe->sgi_config[d->hwirq].priority = info->priority;
4336 		vpe->sgi_config[d->hwirq].group = info->group;
4337 		its_configure_sgi(d, false);
4338 		return 0;
4339 
4340 	default:
4341 		return -EINVAL;
4342 	}
4343 }
4344 
4345 static struct irq_chip its_sgi_irq_chip = {
4346 	.name			= "GICv4.1-sgi",
4347 	.irq_mask		= its_sgi_mask_irq,
4348 	.irq_unmask		= its_sgi_unmask_irq,
4349 	.irq_set_affinity	= its_sgi_set_affinity,
4350 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4351 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4352 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4353 };
4354 
4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356 				    unsigned int virq, unsigned int nr_irqs,
4357 				    void *args)
4358 {
4359 	struct its_vpe *vpe = args;
4360 	int i;
4361 
4362 	/* Yes, we do want 16 SGIs */
4363 	WARN_ON(nr_irqs != 16);
4364 
4365 	for (i = 0; i < 16; i++) {
4366 		vpe->sgi_config[i].priority = 0;
4367 		vpe->sgi_config[i].enabled = false;
4368 		vpe->sgi_config[i].group = false;
4369 
4370 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371 					      &its_sgi_irq_chip, vpe);
4372 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4379 				    unsigned int virq,
4380 				    unsigned int nr_irqs)
4381 {
4382 	/* Nothing to do */
4383 }
4384 
4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386 				       struct irq_data *d, bool reserve)
4387 {
4388 	/* Write out the initial SGI configuration */
4389 	its_configure_sgi(d, false);
4390 	return 0;
4391 }
4392 
4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4394 					  struct irq_data *d)
4395 {
4396 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4397 
4398 	/*
4399 	 * The VSGI command is awkward:
4400 	 *
4401 	 * - To change the configuration, CLEAR must be set to false,
4402 	 *   leaving the pending bit unchanged.
4403 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4404 	 *   the configuration unchanged.
4405 	 *
4406 	 * You just can't do both at once, hence the two commands below.
4407 	 */
4408 	vpe->sgi_config[d->hwirq].enabled = false;
4409 	its_configure_sgi(d, false);
4410 	its_configure_sgi(d, true);
4411 }
4412 
4413 static const struct irq_domain_ops its_sgi_domain_ops = {
4414 	.alloc		= its_sgi_irq_domain_alloc,
4415 	.free		= its_sgi_irq_domain_free,
4416 	.activate	= its_sgi_irq_domain_activate,
4417 	.deactivate	= its_sgi_irq_domain_deactivate,
4418 };
4419 
4420 static int its_vpe_id_alloc(void)
4421 {
4422 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4423 }
4424 
4425 static void its_vpe_id_free(u16 id)
4426 {
4427 	ida_simple_remove(&its_vpeid_ida, id);
4428 }
4429 
4430 static int its_vpe_init(struct its_vpe *vpe)
4431 {
4432 	struct page *vpt_page;
4433 	int vpe_id;
4434 
4435 	/* Allocate vpe_id */
4436 	vpe_id = its_vpe_id_alloc();
4437 	if (vpe_id < 0)
4438 		return vpe_id;
4439 
4440 	/* Allocate VPT */
4441 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4442 	if (!vpt_page) {
4443 		its_vpe_id_free(vpe_id);
4444 		return -ENOMEM;
4445 	}
4446 
4447 	if (!its_alloc_vpe_table(vpe_id)) {
4448 		its_vpe_id_free(vpe_id);
4449 		its_free_pending_table(vpt_page);
4450 		return -ENOMEM;
4451 	}
4452 
4453 	raw_spin_lock_init(&vpe->vpe_lock);
4454 	vpe->vpe_id = vpe_id;
4455 	vpe->vpt_page = vpt_page;
4456 	if (gic_rdists->has_rvpeid)
4457 		atomic_set(&vpe->vmapp_count, 0);
4458 	else
4459 		vpe->vpe_proxy_event = -1;
4460 
4461 	return 0;
4462 }
4463 
4464 static void its_vpe_teardown(struct its_vpe *vpe)
4465 {
4466 	its_vpe_db_proxy_unmap(vpe);
4467 	its_vpe_id_free(vpe->vpe_id);
4468 	its_free_pending_table(vpe->vpt_page);
4469 }
4470 
4471 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4472 				    unsigned int virq,
4473 				    unsigned int nr_irqs)
4474 {
4475 	struct its_vm *vm = domain->host_data;
4476 	int i;
4477 
4478 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4479 
4480 	for (i = 0; i < nr_irqs; i++) {
4481 		struct irq_data *data = irq_domain_get_irq_data(domain,
4482 								virq + i);
4483 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4484 
4485 		BUG_ON(vm != vpe->its_vm);
4486 
4487 		clear_bit(data->hwirq, vm->db_bitmap);
4488 		its_vpe_teardown(vpe);
4489 		irq_domain_reset_irq_data(data);
4490 	}
4491 
4492 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4493 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4494 		its_free_prop_table(vm->vprop_page);
4495 	}
4496 }
4497 
4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499 				    unsigned int nr_irqs, void *args)
4500 {
4501 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4502 	struct its_vm *vm = args;
4503 	unsigned long *bitmap;
4504 	struct page *vprop_page;
4505 	int base, nr_ids, i, err = 0;
4506 
4507 	BUG_ON(!vm);
4508 
4509 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4510 	if (!bitmap)
4511 		return -ENOMEM;
4512 
4513 	if (nr_ids < nr_irqs) {
4514 		its_lpi_free(bitmap, base, nr_ids);
4515 		return -ENOMEM;
4516 	}
4517 
4518 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4519 	if (!vprop_page) {
4520 		its_lpi_free(bitmap, base, nr_ids);
4521 		return -ENOMEM;
4522 	}
4523 
4524 	vm->db_bitmap = bitmap;
4525 	vm->db_lpi_base = base;
4526 	vm->nr_db_lpis = nr_ids;
4527 	vm->vprop_page = vprop_page;
4528 
4529 	if (gic_rdists->has_rvpeid)
4530 		irqchip = &its_vpe_4_1_irq_chip;
4531 
4532 	for (i = 0; i < nr_irqs; i++) {
4533 		vm->vpes[i]->vpe_db_lpi = base + i;
4534 		err = its_vpe_init(vm->vpes[i]);
4535 		if (err)
4536 			break;
4537 		err = its_irq_gic_domain_alloc(domain, virq + i,
4538 					       vm->vpes[i]->vpe_db_lpi);
4539 		if (err)
4540 			break;
4541 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4542 					      irqchip, vm->vpes[i]);
4543 		set_bit(i, bitmap);
4544 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4545 	}
4546 
4547 	if (err) {
4548 		if (i > 0)
4549 			its_vpe_irq_domain_free(domain, virq, i);
4550 
4551 		its_lpi_free(bitmap, base, nr_ids);
4552 		its_free_prop_table(vprop_page);
4553 	}
4554 
4555 	return err;
4556 }
4557 
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 				       struct irq_data *d, bool reserve)
4560 {
4561 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 	struct its_node *its;
4563 
4564 	/*
4565 	 * If we use the list map, we issue VMAPP on demand... Unless
4566 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567 	 * so that VSGIs can work.
4568 	 */
4569 	if (!gic_requires_eager_mapping())
4570 		return 0;
4571 
4572 	/* Map the VPE to the first possible CPU */
4573 	vpe->col_idx = cpumask_first(cpu_online_mask);
4574 
4575 	list_for_each_entry(its, &its_nodes, entry) {
4576 		if (!is_v4(its))
4577 			continue;
4578 
4579 		its_send_vmapp(its, vpe, true);
4580 		its_send_vinvall(its, vpe);
4581 	}
4582 
4583 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4584 
4585 	return 0;
4586 }
4587 
4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4589 					  struct irq_data *d)
4590 {
4591 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4592 	struct its_node *its;
4593 
4594 	/*
4595 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4596 	 * VLPIs are associated with the VM.
4597 	 */
4598 	if (!gic_requires_eager_mapping())
4599 		return;
4600 
4601 	list_for_each_entry(its, &its_nodes, entry) {
4602 		if (!is_v4(its))
4603 			continue;
4604 
4605 		its_send_vmapp(its, vpe, false);
4606 	}
4607 
4608 	/*
4609 	 * There may be a direct read to the VPT after unmapping the
4610 	 * vPE, to guarantee the validity of this, we make the VPT
4611 	 * memory coherent with the CPU caches here.
4612 	 */
4613 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4615 					LPI_PENDBASE_SZ);
4616 }
4617 
4618 static const struct irq_domain_ops its_vpe_domain_ops = {
4619 	.alloc			= its_vpe_irq_domain_alloc,
4620 	.free			= its_vpe_irq_domain_free,
4621 	.activate		= its_vpe_irq_domain_activate,
4622 	.deactivate		= its_vpe_irq_domain_deactivate,
4623 };
4624 
4625 static int its_force_quiescent(void __iomem *base)
4626 {
4627 	u32 count = 1000000;	/* 1s */
4628 	u32 val;
4629 
4630 	val = readl_relaxed(base + GITS_CTLR);
4631 	/*
4632 	 * GIC architecture specification requires the ITS to be both
4633 	 * disabled and quiescent for writes to GITS_BASER<n> or
4634 	 * GITS_CBASER to not have UNPREDICTABLE results.
4635 	 */
4636 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4637 		return 0;
4638 
4639 	/* Disable the generation of all interrupts to this ITS */
4640 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4641 	writel_relaxed(val, base + GITS_CTLR);
4642 
4643 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644 	while (1) {
4645 		val = readl_relaxed(base + GITS_CTLR);
4646 		if (val & GITS_CTLR_QUIESCENT)
4647 			return 0;
4648 
4649 		count--;
4650 		if (!count)
4651 			return -EBUSY;
4652 
4653 		cpu_relax();
4654 		udelay(1);
4655 	}
4656 }
4657 
4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4659 {
4660 	struct its_node *its = data;
4661 
4662 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4663 	its->typer &= ~GITS_TYPER_DEVBITS;
4664 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4665 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4666 
4667 	return true;
4668 }
4669 
4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4671 {
4672 	struct its_node *its = data;
4673 
4674 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4675 
4676 	return true;
4677 }
4678 
4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4680 {
4681 	struct its_node *its = data;
4682 
4683 	/* On QDF2400, the size of the ITE is 16Bytes */
4684 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4686 
4687 	return true;
4688 }
4689 
4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691 {
4692 	struct its_node *its = its_dev->its;
4693 
4694 	/*
4695 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696 	 * which maps 32-bit writes targeted at a separate window of
4697 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698 	 * with device ID taken from bits [device_id_bits + 1:2] of
4699 	 * the window offset.
4700 	 */
4701 	return its->pre_its_base + (its_dev->device_id << 2);
4702 }
4703 
4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705 {
4706 	struct its_node *its = data;
4707 	u32 pre_its_window[2];
4708 	u32 ids;
4709 
4710 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711 					   "socionext,synquacer-pre-its",
4712 					   pre_its_window,
4713 					   ARRAY_SIZE(pre_its_window))) {
4714 
4715 		its->pre_its_base = pre_its_window[0];
4716 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4717 
4718 		ids = ilog2(pre_its_window[1]) - 2;
4719 		if (device_ids(its) > ids) {
4720 			its->typer &= ~GITS_TYPER_DEVBITS;
4721 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4722 		}
4723 
4724 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4725 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4726 		return true;
4727 	}
4728 	return false;
4729 }
4730 
4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732 {
4733 	struct its_node *its = data;
4734 
4735 	/*
4736 	 * Hip07 insists on using the wrong address for the VLPI
4737 	 * page. Trick it into doing the right thing...
4738 	 */
4739 	its->vlpi_redist_offset = SZ_128K;
4740 	return true;
4741 }
4742 
4743 static bool __maybe_unused its_enable_rk3588001(void *data)
4744 {
4745 	struct its_node *its = data;
4746 
4747 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4748 	    !of_machine_is_compatible("rockchip,rk3588s"))
4749 		return false;
4750 
4751 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4753 
4754 	return true;
4755 }
4756 
4757 static const struct gic_quirk its_quirks[] = {
4758 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4759 	{
4760 		.desc	= "ITS: Cavium errata 22375, 24313",
4761 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4762 		.mask	= 0xffff0fff,
4763 		.init	= its_enable_quirk_cavium_22375,
4764 	},
4765 #endif
4766 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4767 	{
4768 		.desc	= "ITS: Cavium erratum 23144",
4769 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4770 		.mask	= 0xffff0fff,
4771 		.init	= its_enable_quirk_cavium_23144,
4772 	},
4773 #endif
4774 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4775 	{
4776 		.desc	= "ITS: QDF2400 erratum 0065",
4777 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4778 		.mask	= 0xffffffff,
4779 		.init	= its_enable_quirk_qdf2400_e0065,
4780 	},
4781 #endif
4782 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4783 	{
4784 		/*
4785 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4786 		 * implementation, but with a 'pre-ITS' added that requires
4787 		 * special handling in software.
4788 		 */
4789 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4790 		.iidr	= 0x0001143b,
4791 		.mask	= 0xffffffff,
4792 		.init	= its_enable_quirk_socionext_synquacer,
4793 	},
4794 #endif
4795 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4796 	{
4797 		.desc	= "ITS: Hip07 erratum 161600802",
4798 		.iidr	= 0x00000004,
4799 		.mask	= 0xffffffff,
4800 		.init	= its_enable_quirk_hip07_161600802,
4801 	},
4802 #endif
4803 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4804 	{
4805 		.desc   = "ITS: Rockchip erratum RK3588001",
4806 		.iidr   = 0x0201743b,
4807 		.mask   = 0xffffffff,
4808 		.init   = its_enable_rk3588001,
4809 	},
4810 #endif
4811 	{
4812 	}
4813 };
4814 
4815 static void its_enable_quirks(struct its_node *its)
4816 {
4817 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4818 
4819 	gic_enable_quirks(iidr, its_quirks, its);
4820 }
4821 
4822 static int its_save_disable(void)
4823 {
4824 	struct its_node *its;
4825 	int err = 0;
4826 
4827 	raw_spin_lock(&its_lock);
4828 	list_for_each_entry(its, &its_nodes, entry) {
4829 		void __iomem *base;
4830 
4831 		base = its->base;
4832 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4833 		err = its_force_quiescent(base);
4834 		if (err) {
4835 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4836 			       &its->phys_base, err);
4837 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838 			goto err;
4839 		}
4840 
4841 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4842 	}
4843 
4844 err:
4845 	if (err) {
4846 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4847 			void __iomem *base;
4848 
4849 			base = its->base;
4850 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4851 		}
4852 	}
4853 	raw_spin_unlock(&its_lock);
4854 
4855 	return err;
4856 }
4857 
4858 static void its_restore_enable(void)
4859 {
4860 	struct its_node *its;
4861 	int ret;
4862 
4863 	raw_spin_lock(&its_lock);
4864 	list_for_each_entry(its, &its_nodes, entry) {
4865 		void __iomem *base;
4866 		int i;
4867 
4868 		base = its->base;
4869 
4870 		/*
4871 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4872 		 * don't restore it since writing to CBASER or BASER<n>
4873 		 * registers is undefined according to the GIC v3 ITS
4874 		 * Specification.
4875 		 *
4876 		 * Firmware resuming with the ITS enabled is terminally broken.
4877 		 */
4878 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4879 		ret = its_force_quiescent(base);
4880 		if (ret) {
4881 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4882 			       &its->phys_base, ret);
4883 			continue;
4884 		}
4885 
4886 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4887 
4888 		/*
4889 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4890 		 * cmd_write line up with it.
4891 		 */
4892 		its->cmd_write = its->cmd_base;
4893 		gits_write_cwriter(0, base + GITS_CWRITER);
4894 
4895 		/* Restore GITS_BASER from the value cache. */
4896 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4897 			struct its_baser *baser = &its->tables[i];
4898 
4899 			if (!(baser->val & GITS_BASER_VALID))
4900 				continue;
4901 
4902 			its_write_baser(its, baser, baser->val);
4903 		}
4904 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4905 
4906 		/*
4907 		 * Reinit the collection if it's stored in the ITS. This is
4908 		 * indicated by the col_id being less than the HCC field.
4909 		 * CID < HCC as specified in the GIC v3 Documentation.
4910 		 */
4911 		if (its->collections[smp_processor_id()].col_id <
4912 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4913 			its_cpu_init_collection(its);
4914 	}
4915 	raw_spin_unlock(&its_lock);
4916 }
4917 
4918 static struct syscore_ops its_syscore_ops = {
4919 	.suspend = its_save_disable,
4920 	.resume = its_restore_enable,
4921 };
4922 
4923 static void __init __iomem *its_map_one(struct resource *res, int *err)
4924 {
4925 	void __iomem *its_base;
4926 	u32 val;
4927 
4928 	its_base = ioremap(res->start, SZ_64K);
4929 	if (!its_base) {
4930 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4931 		*err = -ENOMEM;
4932 		return NULL;
4933 	}
4934 
4935 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4936 	if (val != 0x30 && val != 0x40) {
4937 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4938 		*err = -ENODEV;
4939 		goto out_unmap;
4940 	}
4941 
4942 	*err = its_force_quiescent(its_base);
4943 	if (*err) {
4944 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4945 		goto out_unmap;
4946 	}
4947 
4948 	return its_base;
4949 
4950 out_unmap:
4951 	iounmap(its_base);
4952 	return NULL;
4953 }
4954 
4955 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4956 {
4957 	struct irq_domain *inner_domain;
4958 	struct msi_domain_info *info;
4959 
4960 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4961 	if (!info)
4962 		return -ENOMEM;
4963 
4964 	info->ops = &its_msi_domain_ops;
4965 	info->data = its;
4966 
4967 	inner_domain = irq_domain_create_hierarchy(its_parent,
4968 						   its->msi_domain_flags, 0,
4969 						   handle, &its_domain_ops,
4970 						   info);
4971 	if (!inner_domain) {
4972 		kfree(info);
4973 		return -ENOMEM;
4974 	}
4975 
4976 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4977 
4978 	return 0;
4979 }
4980 
4981 static int its_init_vpe_domain(void)
4982 {
4983 	struct its_node *its;
4984 	u32 devid;
4985 	int entries;
4986 
4987 	if (gic_rdists->has_direct_lpi) {
4988 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4989 		return 0;
4990 	}
4991 
4992 	/* Any ITS will do, even if not v4 */
4993 	its = list_first_entry(&its_nodes, struct its_node, entry);
4994 
4995 	entries = roundup_pow_of_two(nr_cpu_ids);
4996 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4997 				 GFP_KERNEL);
4998 	if (!vpe_proxy.vpes)
4999 		return -ENOMEM;
5000 
5001 	/* Use the last possible DevID */
5002 	devid = GENMASK(device_ids(its) - 1, 0);
5003 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5004 	if (!vpe_proxy.dev) {
5005 		kfree(vpe_proxy.vpes);
5006 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5007 		return -ENOMEM;
5008 	}
5009 
5010 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5011 
5012 	raw_spin_lock_init(&vpe_proxy.lock);
5013 	vpe_proxy.next_victim = 0;
5014 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5015 		devid, vpe_proxy.dev->nr_ites);
5016 
5017 	return 0;
5018 }
5019 
5020 static int __init its_compute_its_list_map(struct resource *res,
5021 					   void __iomem *its_base)
5022 {
5023 	int its_number;
5024 	u32 ctlr;
5025 
5026 	/*
5027 	 * This is assumed to be done early enough that we're
5028 	 * guaranteed to be single-threaded, hence no
5029 	 * locking. Should this change, we should address
5030 	 * this.
5031 	 */
5032 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5033 	if (its_number >= GICv4_ITS_LIST_MAX) {
5034 		pr_err("ITS@%pa: No ITSList entry available!\n",
5035 		       &res->start);
5036 		return -EINVAL;
5037 	}
5038 
5039 	ctlr = readl_relaxed(its_base + GITS_CTLR);
5040 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5041 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5042 	writel_relaxed(ctlr, its_base + GITS_CTLR);
5043 	ctlr = readl_relaxed(its_base + GITS_CTLR);
5044 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5045 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5046 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5047 	}
5048 
5049 	if (test_and_set_bit(its_number, &its_list_map)) {
5050 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5051 		       &res->start, its_number);
5052 		return -EINVAL;
5053 	}
5054 
5055 	return its_number;
5056 }
5057 
5058 static int __init its_probe_one(struct resource *res,
5059 				struct fwnode_handle *handle, int numa_node)
5060 {
5061 	struct its_node *its;
5062 	void __iomem *its_base;
5063 	u64 baser, tmp, typer;
5064 	struct page *page;
5065 	u32 ctlr;
5066 	int err;
5067 
5068 	its_base = its_map_one(res, &err);
5069 	if (!its_base)
5070 		return err;
5071 
5072 	pr_info("ITS %pR\n", res);
5073 
5074 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5075 	if (!its) {
5076 		err = -ENOMEM;
5077 		goto out_unmap;
5078 	}
5079 
5080 	raw_spin_lock_init(&its->lock);
5081 	mutex_init(&its->dev_alloc_lock);
5082 	INIT_LIST_HEAD(&its->entry);
5083 	INIT_LIST_HEAD(&its->its_device_list);
5084 	typer = gic_read_typer(its_base + GITS_TYPER);
5085 	its->typer = typer;
5086 	its->base = its_base;
5087 	its->phys_base = res->start;
5088 	if (is_v4(its)) {
5089 		if (!(typer & GITS_TYPER_VMOVP)) {
5090 			err = its_compute_its_list_map(res, its_base);
5091 			if (err < 0)
5092 				goto out_free_its;
5093 
5094 			its->list_nr = err;
5095 
5096 			pr_info("ITS@%pa: Using ITS number %d\n",
5097 				&res->start, err);
5098 		} else {
5099 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5100 		}
5101 
5102 		if (is_v4_1(its)) {
5103 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5104 
5105 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5106 			if (!its->sgir_base) {
5107 				err = -ENOMEM;
5108 				goto out_free_its;
5109 			}
5110 
5111 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5112 
5113 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5114 				&res->start, its->mpidr, svpet);
5115 		}
5116 	}
5117 
5118 	its->numa_node = numa_node;
5119 
5120 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5121 				get_order(ITS_CMD_QUEUE_SZ));
5122 	if (!page) {
5123 		err = -ENOMEM;
5124 		goto out_unmap_sgir;
5125 	}
5126 	its->cmd_base = (void *)page_address(page);
5127 	its->cmd_write = its->cmd_base;
5128 	its->fwnode_handle = handle;
5129 	its->get_msi_base = its_irq_get_msi_base;
5130 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5131 
5132 	its_enable_quirks(its);
5133 
5134 	err = its_alloc_tables(its);
5135 	if (err)
5136 		goto out_free_cmd;
5137 
5138 	err = its_alloc_collections(its);
5139 	if (err)
5140 		goto out_free_tables;
5141 
5142 	baser = (virt_to_phys(its->cmd_base)	|
5143 		 GITS_CBASER_RaWaWb		|
5144 		 GITS_CBASER_InnerShareable	|
5145 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5146 		 GITS_CBASER_VALID);
5147 
5148 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5149 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5150 
5151 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5152 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5153 
5154 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5155 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5156 			/*
5157 			 * The HW reports non-shareable, we must
5158 			 * remove the cacheability attributes as
5159 			 * well.
5160 			 */
5161 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5162 				   GITS_CBASER_CACHEABILITY_MASK);
5163 			baser |= GITS_CBASER_nC;
5164 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5165 		}
5166 		pr_info("ITS: using cache flushing for cmd queue\n");
5167 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5168 	}
5169 
5170 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5171 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5172 	ctlr |= GITS_CTLR_ENABLE;
5173 	if (is_v4(its))
5174 		ctlr |= GITS_CTLR_ImDe;
5175 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5176 
5177 	err = its_init_domain(handle, its);
5178 	if (err)
5179 		goto out_free_tables;
5180 
5181 	raw_spin_lock(&its_lock);
5182 	list_add(&its->entry, &its_nodes);
5183 	raw_spin_unlock(&its_lock);
5184 
5185 	return 0;
5186 
5187 out_free_tables:
5188 	its_free_tables(its);
5189 out_free_cmd:
5190 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5191 out_unmap_sgir:
5192 	if (its->sgir_base)
5193 		iounmap(its->sgir_base);
5194 out_free_its:
5195 	kfree(its);
5196 out_unmap:
5197 	iounmap(its_base);
5198 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5199 	return err;
5200 }
5201 
5202 static bool gic_rdists_supports_plpis(void)
5203 {
5204 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5205 }
5206 
5207 static int redist_disable_lpis(void)
5208 {
5209 	void __iomem *rbase = gic_data_rdist_rd_base();
5210 	u64 timeout = USEC_PER_SEC;
5211 	u64 val;
5212 
5213 	if (!gic_rdists_supports_plpis()) {
5214 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5215 		return -ENXIO;
5216 	}
5217 
5218 	val = readl_relaxed(rbase + GICR_CTLR);
5219 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5220 		return 0;
5221 
5222 	/*
5223 	 * If coming via a CPU hotplug event, we don't need to disable
5224 	 * LPIs before trying to re-enable them. They are already
5225 	 * configured and all is well in the world.
5226 	 *
5227 	 * If running with preallocated tables, there is nothing to do.
5228 	 */
5229 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5230 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5231 		return 0;
5232 
5233 	/*
5234 	 * From that point on, we only try to do some damage control.
5235 	 */
5236 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5237 		smp_processor_id());
5238 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5239 
5240 	/* Disable LPIs */
5241 	val &= ~GICR_CTLR_ENABLE_LPIS;
5242 	writel_relaxed(val, rbase + GICR_CTLR);
5243 
5244 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5245 	dsb(sy);
5246 
5247 	/*
5248 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5249 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5250 	 * Error out if we time out waiting for RWP to clear.
5251 	 */
5252 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5253 		if (!timeout) {
5254 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5255 			       smp_processor_id());
5256 			return -ETIMEDOUT;
5257 		}
5258 		udelay(1);
5259 		timeout--;
5260 	}
5261 
5262 	/*
5263 	 * After it has been written to 1, it is IMPLEMENTATION
5264 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5265 	 * cleared to 0. Error out if clearing the bit failed.
5266 	 */
5267 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5268 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5269 		return -EBUSY;
5270 	}
5271 
5272 	return 0;
5273 }
5274 
5275 int its_cpu_init(void)
5276 {
5277 	if (!list_empty(&its_nodes)) {
5278 		int ret;
5279 
5280 		ret = redist_disable_lpis();
5281 		if (ret)
5282 			return ret;
5283 
5284 		its_cpu_init_lpis();
5285 		its_cpu_init_collections();
5286 	}
5287 
5288 	return 0;
5289 }
5290 
5291 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5292 {
5293 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5294 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5295 }
5296 
5297 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5298 		    rdist_memreserve_cpuhp_cleanup_workfn);
5299 
5300 static int its_cpu_memreserve_lpi(unsigned int cpu)
5301 {
5302 	struct page *pend_page;
5303 	int ret = 0;
5304 
5305 	/* This gets to run exactly once per CPU */
5306 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5307 		return 0;
5308 
5309 	pend_page = gic_data_rdist()->pend_page;
5310 	if (WARN_ON(!pend_page)) {
5311 		ret = -ENOMEM;
5312 		goto out;
5313 	}
5314 	/*
5315 	 * If the pending table was pre-programmed, free the memory we
5316 	 * preemptively allocated. Otherwise, reserve that memory for
5317 	 * later kexecs.
5318 	 */
5319 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5320 		its_free_pending_table(pend_page);
5321 		gic_data_rdist()->pend_page = NULL;
5322 	} else {
5323 		phys_addr_t paddr = page_to_phys(pend_page);
5324 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5325 	}
5326 
5327 out:
5328 	/* Last CPU being brought up gets to issue the cleanup */
5329 	if (!IS_ENABLED(CONFIG_SMP) ||
5330 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5331 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5332 
5333 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5334 	return ret;
5335 }
5336 
5337 /* Mark all the BASER registers as invalid before they get reprogrammed */
5338 static int __init its_reset_one(struct resource *res)
5339 {
5340 	void __iomem *its_base;
5341 	int err, i;
5342 
5343 	its_base = its_map_one(res, &err);
5344 	if (!its_base)
5345 		return err;
5346 
5347 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5348 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5349 
5350 	iounmap(its_base);
5351 	return 0;
5352 }
5353 
5354 static const struct of_device_id its_device_id[] = {
5355 	{	.compatible	= "arm,gic-v3-its",	},
5356 	{},
5357 };
5358 
5359 static int __init its_of_probe(struct device_node *node)
5360 {
5361 	struct device_node *np;
5362 	struct resource res;
5363 
5364 	/*
5365 	 * Make sure *all* the ITS are reset before we probe any, as
5366 	 * they may be sharing memory. If any of the ITS fails to
5367 	 * reset, don't even try to go any further, as this could
5368 	 * result in something even worse.
5369 	 */
5370 	for (np = of_find_matching_node(node, its_device_id); np;
5371 	     np = of_find_matching_node(np, its_device_id)) {
5372 		int err;
5373 
5374 		if (!of_device_is_available(np) ||
5375 		    !of_property_read_bool(np, "msi-controller") ||
5376 		    of_address_to_resource(np, 0, &res))
5377 			continue;
5378 
5379 		err = its_reset_one(&res);
5380 		if (err)
5381 			return err;
5382 	}
5383 
5384 	for (np = of_find_matching_node(node, its_device_id); np;
5385 	     np = of_find_matching_node(np, its_device_id)) {
5386 		if (!of_device_is_available(np))
5387 			continue;
5388 		if (!of_property_read_bool(np, "msi-controller")) {
5389 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5390 				np);
5391 			continue;
5392 		}
5393 
5394 		if (of_address_to_resource(np, 0, &res)) {
5395 			pr_warn("%pOF: no regs?\n", np);
5396 			continue;
5397 		}
5398 
5399 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5400 	}
5401 	return 0;
5402 }
5403 
5404 #ifdef CONFIG_ACPI
5405 
5406 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5407 
5408 #ifdef CONFIG_ACPI_NUMA
5409 struct its_srat_map {
5410 	/* numa node id */
5411 	u32	numa_node;
5412 	/* GIC ITS ID */
5413 	u32	its_id;
5414 };
5415 
5416 static struct its_srat_map *its_srat_maps __initdata;
5417 static int its_in_srat __initdata;
5418 
5419 static int __init acpi_get_its_numa_node(u32 its_id)
5420 {
5421 	int i;
5422 
5423 	for (i = 0; i < its_in_srat; i++) {
5424 		if (its_id == its_srat_maps[i].its_id)
5425 			return its_srat_maps[i].numa_node;
5426 	}
5427 	return NUMA_NO_NODE;
5428 }
5429 
5430 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5431 					  const unsigned long end)
5432 {
5433 	return 0;
5434 }
5435 
5436 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5437 			 const unsigned long end)
5438 {
5439 	int node;
5440 	struct acpi_srat_gic_its_affinity *its_affinity;
5441 
5442 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5443 	if (!its_affinity)
5444 		return -EINVAL;
5445 
5446 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5447 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5448 			its_affinity->header.length);
5449 		return -EINVAL;
5450 	}
5451 
5452 	/*
5453 	 * Note that in theory a new proximity node could be created by this
5454 	 * entry as it is an SRAT resource allocation structure.
5455 	 * We do not currently support doing so.
5456 	 */
5457 	node = pxm_to_node(its_affinity->proximity_domain);
5458 
5459 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5460 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5461 		return 0;
5462 	}
5463 
5464 	its_srat_maps[its_in_srat].numa_node = node;
5465 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5466 	its_in_srat++;
5467 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5468 		its_affinity->proximity_domain, its_affinity->its_id, node);
5469 
5470 	return 0;
5471 }
5472 
5473 static void __init acpi_table_parse_srat_its(void)
5474 {
5475 	int count;
5476 
5477 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5478 			sizeof(struct acpi_table_srat),
5479 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5480 			gic_acpi_match_srat_its, 0);
5481 	if (count <= 0)
5482 		return;
5483 
5484 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5485 				      GFP_KERNEL);
5486 	if (!its_srat_maps)
5487 		return;
5488 
5489 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5490 			sizeof(struct acpi_table_srat),
5491 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5492 			gic_acpi_parse_srat_its, 0);
5493 }
5494 
5495 /* free the its_srat_maps after ITS probing */
5496 static void __init acpi_its_srat_maps_free(void)
5497 {
5498 	kfree(its_srat_maps);
5499 }
5500 #else
5501 static void __init acpi_table_parse_srat_its(void)	{ }
5502 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5503 static void __init acpi_its_srat_maps_free(void) { }
5504 #endif
5505 
5506 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5507 					  const unsigned long end)
5508 {
5509 	struct acpi_madt_generic_translator *its_entry;
5510 	struct fwnode_handle *dom_handle;
5511 	struct resource res;
5512 	int err;
5513 
5514 	its_entry = (struct acpi_madt_generic_translator *)header;
5515 	memset(&res, 0, sizeof(res));
5516 	res.start = its_entry->base_address;
5517 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5518 	res.flags = IORESOURCE_MEM;
5519 
5520 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5521 	if (!dom_handle) {
5522 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5523 		       &res.start);
5524 		return -ENOMEM;
5525 	}
5526 
5527 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5528 					 dom_handle);
5529 	if (err) {
5530 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5531 		       &res.start, its_entry->translation_id);
5532 		goto dom_err;
5533 	}
5534 
5535 	err = its_probe_one(&res, dom_handle,
5536 			acpi_get_its_numa_node(its_entry->translation_id));
5537 	if (!err)
5538 		return 0;
5539 
5540 	iort_deregister_domain_token(its_entry->translation_id);
5541 dom_err:
5542 	irq_domain_free_fwnode(dom_handle);
5543 	return err;
5544 }
5545 
5546 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5547 				 const unsigned long end)
5548 {
5549 	struct acpi_madt_generic_translator *its_entry;
5550 	struct resource res;
5551 
5552 	its_entry = (struct acpi_madt_generic_translator *)header;
5553 	res = (struct resource) {
5554 		.start	= its_entry->base_address,
5555 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5556 		.flags	= IORESOURCE_MEM,
5557 	};
5558 
5559 	return its_reset_one(&res);
5560 }
5561 
5562 static void __init its_acpi_probe(void)
5563 {
5564 	acpi_table_parse_srat_its();
5565 	/*
5566 	 * Make sure *all* the ITS are reset before we probe any, as
5567 	 * they may be sharing memory. If any of the ITS fails to
5568 	 * reset, don't even try to go any further, as this could
5569 	 * result in something even worse.
5570 	 */
5571 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5572 				  its_acpi_reset, 0) > 0)
5573 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5574 				      gic_acpi_parse_madt_its, 0);
5575 	acpi_its_srat_maps_free();
5576 }
5577 #else
5578 static void __init its_acpi_probe(void) { }
5579 #endif
5580 
5581 int __init its_lpi_memreserve_init(void)
5582 {
5583 	int state;
5584 
5585 	if (!efi_enabled(EFI_CONFIG_TABLES))
5586 		return 0;
5587 
5588 	if (list_empty(&its_nodes))
5589 		return 0;
5590 
5591 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5592 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5593 				  "irqchip/arm/gicv3/memreserve:online",
5594 				  its_cpu_memreserve_lpi,
5595 				  NULL);
5596 	if (state < 0)
5597 		return state;
5598 
5599 	gic_rdists->cpuhp_memreserve_state = state;
5600 
5601 	return 0;
5602 }
5603 
5604 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5605 		    struct irq_domain *parent_domain)
5606 {
5607 	struct device_node *of_node;
5608 	struct its_node *its;
5609 	bool has_v4 = false;
5610 	bool has_v4_1 = false;
5611 	int err;
5612 
5613 	gic_rdists = rdists;
5614 
5615 	its_parent = parent_domain;
5616 	of_node = to_of_node(handle);
5617 	if (of_node)
5618 		its_of_probe(of_node);
5619 	else
5620 		its_acpi_probe();
5621 
5622 	if (list_empty(&its_nodes)) {
5623 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5624 		return -ENXIO;
5625 	}
5626 
5627 	err = allocate_lpi_tables();
5628 	if (err)
5629 		return err;
5630 
5631 	list_for_each_entry(its, &its_nodes, entry) {
5632 		has_v4 |= is_v4(its);
5633 		has_v4_1 |= is_v4_1(its);
5634 	}
5635 
5636 	/* Don't bother with inconsistent systems */
5637 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5638 		rdists->has_rvpeid = false;
5639 
5640 	if (has_v4 & rdists->has_vlpis) {
5641 		const struct irq_domain_ops *sgi_ops;
5642 
5643 		if (has_v4_1)
5644 			sgi_ops = &its_sgi_domain_ops;
5645 		else
5646 			sgi_ops = NULL;
5647 
5648 		if (its_init_vpe_domain() ||
5649 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5650 			rdists->has_vlpis = false;
5651 			pr_err("ITS: Disabling GICv4 support\n");
5652 		}
5653 	}
5654 
5655 	register_syscore_ops(&its_syscore_ops);
5656 
5657 	return 0;
5658 }
5659