1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
46 
47 /*
48  * Collection structure - just an ID, and a redistributor address to
49  * ping. We use one per CPU as a bag of interrupts assigned to this
50  * CPU.
51  */
52 struct its_collection {
53 	u64			target_address;
54 	u16			col_id;
55 };
56 
57 /*
58  * The ITS_BASER structure - contains memory information and cached
59  * value of BASER register configuration.
60  */
61 struct its_baser {
62 	void		*base;
63 	u64		val;
64 	u32		order;
65 };
66 
67 /*
68  * The ITS structure - contains most of the infrastructure, with the
69  * top-level MSI domain, the command queue, the collections, and the
70  * list of devices writing to it.
71  */
72 struct its_node {
73 	raw_spinlock_t		lock;
74 	struct list_head	entry;
75 	void __iomem		*base;
76 	unsigned long		phys_base;
77 	struct its_cmd_block	*cmd_base;
78 	struct its_cmd_block	*cmd_write;
79 	struct its_baser	tables[GITS_BASER_NR_REGS];
80 	struct its_collection	*collections;
81 	struct list_head	its_device_list;
82 	u64			flags;
83 	u32			ite_size;
84 	u32			device_ids;
85 };
86 
87 #define ITS_ITT_ALIGN		SZ_256
88 
89 /* Convert page order to size in bytes */
90 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
91 
92 struct event_lpi_map {
93 	unsigned long		*lpi_map;
94 	u16			*col_map;
95 	irq_hw_number_t		lpi_base;
96 	int			nr_lpis;
97 };
98 
99 /*
100  * The ITS view of a device - belongs to an ITS, a collection, owns an
101  * interrupt translation table, and a list of interrupts.
102  */
103 struct its_device {
104 	struct list_head	entry;
105 	struct its_node		*its;
106 	struct event_lpi_map	event_map;
107 	void			*itt;
108 	u32			nr_ites;
109 	u32			device_id;
110 };
111 
112 static LIST_HEAD(its_nodes);
113 static DEFINE_SPINLOCK(its_lock);
114 static struct rdists *gic_rdists;
115 
116 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
117 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
118 
119 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
120 					       u32 event)
121 {
122 	struct its_node *its = its_dev->its;
123 
124 	return its->collections + its_dev->event_map.col_map[event];
125 }
126 
127 /*
128  * ITS command descriptors - parameters to be encoded in a command
129  * block.
130  */
131 struct its_cmd_desc {
132 	union {
133 		struct {
134 			struct its_device *dev;
135 			u32 event_id;
136 		} its_inv_cmd;
137 
138 		struct {
139 			struct its_device *dev;
140 			u32 event_id;
141 		} its_int_cmd;
142 
143 		struct {
144 			struct its_device *dev;
145 			int valid;
146 		} its_mapd_cmd;
147 
148 		struct {
149 			struct its_collection *col;
150 			int valid;
151 		} its_mapc_cmd;
152 
153 		struct {
154 			struct its_device *dev;
155 			u32 phys_id;
156 			u32 event_id;
157 		} its_mapvi_cmd;
158 
159 		struct {
160 			struct its_device *dev;
161 			struct its_collection *col;
162 			u32 event_id;
163 		} its_movi_cmd;
164 
165 		struct {
166 			struct its_device *dev;
167 			u32 event_id;
168 		} its_discard_cmd;
169 
170 		struct {
171 			struct its_collection *col;
172 		} its_invall_cmd;
173 	};
174 };
175 
176 /*
177  * The ITS command block, which is what the ITS actually parses.
178  */
179 struct its_cmd_block {
180 	u64	raw_cmd[4];
181 };
182 
183 #define ITS_CMD_QUEUE_SZ		SZ_64K
184 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
185 
186 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
187 						    struct its_cmd_desc *);
188 
189 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
190 {
191 	cmd->raw_cmd[0] &= ~0xffUL;
192 	cmd->raw_cmd[0] |= cmd_nr;
193 }
194 
195 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
196 {
197 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
198 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
199 }
200 
201 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
202 {
203 	cmd->raw_cmd[1] &= ~0xffffffffUL;
204 	cmd->raw_cmd[1] |= id;
205 }
206 
207 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
208 {
209 	cmd->raw_cmd[1] &= 0xffffffffUL;
210 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
211 }
212 
213 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
214 {
215 	cmd->raw_cmd[1] &= ~0x1fUL;
216 	cmd->raw_cmd[1] |= size & 0x1f;
217 }
218 
219 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
220 {
221 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
222 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
223 }
224 
225 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
226 {
227 	cmd->raw_cmd[2] &= ~(1UL << 63);
228 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
229 }
230 
231 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
232 {
233 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
234 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
235 }
236 
237 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
238 {
239 	cmd->raw_cmd[2] &= ~0xffffUL;
240 	cmd->raw_cmd[2] |= col;
241 }
242 
243 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
244 {
245 	/* Let's fixup BE commands */
246 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
247 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
248 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
249 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
250 }
251 
252 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
253 						 struct its_cmd_desc *desc)
254 {
255 	unsigned long itt_addr;
256 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
257 
258 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
259 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
260 
261 	its_encode_cmd(cmd, GITS_CMD_MAPD);
262 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
263 	its_encode_size(cmd, size - 1);
264 	its_encode_itt(cmd, itt_addr);
265 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
266 
267 	its_fixup_cmd(cmd);
268 
269 	return NULL;
270 }
271 
272 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
273 						 struct its_cmd_desc *desc)
274 {
275 	its_encode_cmd(cmd, GITS_CMD_MAPC);
276 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
277 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
278 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
279 
280 	its_fixup_cmd(cmd);
281 
282 	return desc->its_mapc_cmd.col;
283 }
284 
285 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
286 						  struct its_cmd_desc *desc)
287 {
288 	struct its_collection *col;
289 
290 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
291 			       desc->its_mapvi_cmd.event_id);
292 
293 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
294 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
295 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
296 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
297 	its_encode_collection(cmd, col->col_id);
298 
299 	its_fixup_cmd(cmd);
300 
301 	return col;
302 }
303 
304 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
305 						 struct its_cmd_desc *desc)
306 {
307 	struct its_collection *col;
308 
309 	col = dev_event_to_col(desc->its_movi_cmd.dev,
310 			       desc->its_movi_cmd.event_id);
311 
312 	its_encode_cmd(cmd, GITS_CMD_MOVI);
313 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
314 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
315 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
316 
317 	its_fixup_cmd(cmd);
318 
319 	return col;
320 }
321 
322 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
323 						    struct its_cmd_desc *desc)
324 {
325 	struct its_collection *col;
326 
327 	col = dev_event_to_col(desc->its_discard_cmd.dev,
328 			       desc->its_discard_cmd.event_id);
329 
330 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
331 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
332 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
333 
334 	its_fixup_cmd(cmd);
335 
336 	return col;
337 }
338 
339 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
340 						struct its_cmd_desc *desc)
341 {
342 	struct its_collection *col;
343 
344 	col = dev_event_to_col(desc->its_inv_cmd.dev,
345 			       desc->its_inv_cmd.event_id);
346 
347 	its_encode_cmd(cmd, GITS_CMD_INV);
348 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
349 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
350 
351 	its_fixup_cmd(cmd);
352 
353 	return col;
354 }
355 
356 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
357 						   struct its_cmd_desc *desc)
358 {
359 	its_encode_cmd(cmd, GITS_CMD_INVALL);
360 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
361 
362 	its_fixup_cmd(cmd);
363 
364 	return NULL;
365 }
366 
367 static u64 its_cmd_ptr_to_offset(struct its_node *its,
368 				 struct its_cmd_block *ptr)
369 {
370 	return (ptr - its->cmd_base) * sizeof(*ptr);
371 }
372 
373 static int its_queue_full(struct its_node *its)
374 {
375 	int widx;
376 	int ridx;
377 
378 	widx = its->cmd_write - its->cmd_base;
379 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
380 
381 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
382 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
389 {
390 	struct its_cmd_block *cmd;
391 	u32 count = 1000000;	/* 1s! */
392 
393 	while (its_queue_full(its)) {
394 		count--;
395 		if (!count) {
396 			pr_err_ratelimited("ITS queue not draining\n");
397 			return NULL;
398 		}
399 		cpu_relax();
400 		udelay(1);
401 	}
402 
403 	cmd = its->cmd_write++;
404 
405 	/* Handle queue wrapping */
406 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
407 		its->cmd_write = its->cmd_base;
408 
409 	return cmd;
410 }
411 
412 static struct its_cmd_block *its_post_commands(struct its_node *its)
413 {
414 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
415 
416 	writel_relaxed(wr, its->base + GITS_CWRITER);
417 
418 	return its->cmd_write;
419 }
420 
421 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
422 {
423 	/*
424 	 * Make sure the commands written to memory are observable by
425 	 * the ITS.
426 	 */
427 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
428 		__flush_dcache_area(cmd, sizeof(*cmd));
429 	else
430 		dsb(ishst);
431 }
432 
433 static void its_wait_for_range_completion(struct its_node *its,
434 					  struct its_cmd_block *from,
435 					  struct its_cmd_block *to)
436 {
437 	u64 rd_idx, from_idx, to_idx;
438 	u32 count = 1000000;	/* 1s! */
439 
440 	from_idx = its_cmd_ptr_to_offset(its, from);
441 	to_idx = its_cmd_ptr_to_offset(its, to);
442 
443 	while (1) {
444 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
445 		if (rd_idx >= to_idx || rd_idx < from_idx)
446 			break;
447 
448 		count--;
449 		if (!count) {
450 			pr_err_ratelimited("ITS queue timeout\n");
451 			return;
452 		}
453 		cpu_relax();
454 		udelay(1);
455 	}
456 }
457 
458 static void its_send_single_command(struct its_node *its,
459 				    its_cmd_builder_t builder,
460 				    struct its_cmd_desc *desc)
461 {
462 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
463 	struct its_collection *sync_col;
464 	unsigned long flags;
465 
466 	raw_spin_lock_irqsave(&its->lock, flags);
467 
468 	cmd = its_allocate_entry(its);
469 	if (!cmd) {		/* We're soooooo screewed... */
470 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
471 		raw_spin_unlock_irqrestore(&its->lock, flags);
472 		return;
473 	}
474 	sync_col = builder(cmd, desc);
475 	its_flush_cmd(its, cmd);
476 
477 	if (sync_col) {
478 		sync_cmd = its_allocate_entry(its);
479 		if (!sync_cmd) {
480 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
481 			goto post;
482 		}
483 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
484 		its_encode_target(sync_cmd, sync_col->target_address);
485 		its_fixup_cmd(sync_cmd);
486 		its_flush_cmd(its, sync_cmd);
487 	}
488 
489 post:
490 	next_cmd = its_post_commands(its);
491 	raw_spin_unlock_irqrestore(&its->lock, flags);
492 
493 	its_wait_for_range_completion(its, cmd, next_cmd);
494 }
495 
496 static void its_send_inv(struct its_device *dev, u32 event_id)
497 {
498 	struct its_cmd_desc desc;
499 
500 	desc.its_inv_cmd.dev = dev;
501 	desc.its_inv_cmd.event_id = event_id;
502 
503 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
504 }
505 
506 static void its_send_mapd(struct its_device *dev, int valid)
507 {
508 	struct its_cmd_desc desc;
509 
510 	desc.its_mapd_cmd.dev = dev;
511 	desc.its_mapd_cmd.valid = !!valid;
512 
513 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
514 }
515 
516 static void its_send_mapc(struct its_node *its, struct its_collection *col,
517 			  int valid)
518 {
519 	struct its_cmd_desc desc;
520 
521 	desc.its_mapc_cmd.col = col;
522 	desc.its_mapc_cmd.valid = !!valid;
523 
524 	its_send_single_command(its, its_build_mapc_cmd, &desc);
525 }
526 
527 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
528 {
529 	struct its_cmd_desc desc;
530 
531 	desc.its_mapvi_cmd.dev = dev;
532 	desc.its_mapvi_cmd.phys_id = irq_id;
533 	desc.its_mapvi_cmd.event_id = id;
534 
535 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
536 }
537 
538 static void its_send_movi(struct its_device *dev,
539 			  struct its_collection *col, u32 id)
540 {
541 	struct its_cmd_desc desc;
542 
543 	desc.its_movi_cmd.dev = dev;
544 	desc.its_movi_cmd.col = col;
545 	desc.its_movi_cmd.event_id = id;
546 
547 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
548 }
549 
550 static void its_send_discard(struct its_device *dev, u32 id)
551 {
552 	struct its_cmd_desc desc;
553 
554 	desc.its_discard_cmd.dev = dev;
555 	desc.its_discard_cmd.event_id = id;
556 
557 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
558 }
559 
560 static void its_send_invall(struct its_node *its, struct its_collection *col)
561 {
562 	struct its_cmd_desc desc;
563 
564 	desc.its_invall_cmd.col = col;
565 
566 	its_send_single_command(its, its_build_invall_cmd, &desc);
567 }
568 
569 /*
570  * irqchip functions - assumes MSI, mostly.
571  */
572 
573 static inline u32 its_get_event_id(struct irq_data *d)
574 {
575 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
576 	return d->hwirq - its_dev->event_map.lpi_base;
577 }
578 
579 static void lpi_set_config(struct irq_data *d, bool enable)
580 {
581 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
582 	irq_hw_number_t hwirq = d->hwirq;
583 	u32 id = its_get_event_id(d);
584 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
585 
586 	if (enable)
587 		*cfg |= LPI_PROP_ENABLED;
588 	else
589 		*cfg &= ~LPI_PROP_ENABLED;
590 
591 	/*
592 	 * Make the above write visible to the redistributors.
593 	 * And yes, we're flushing exactly: One. Single. Byte.
594 	 * Humpf...
595 	 */
596 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
597 		__flush_dcache_area(cfg, sizeof(*cfg));
598 	else
599 		dsb(ishst);
600 	its_send_inv(its_dev, id);
601 }
602 
603 static void its_mask_irq(struct irq_data *d)
604 {
605 	lpi_set_config(d, false);
606 }
607 
608 static void its_unmask_irq(struct irq_data *d)
609 {
610 	lpi_set_config(d, true);
611 }
612 
613 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
614 			    bool force)
615 {
616 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
617 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
618 	struct its_collection *target_col;
619 	u32 id = its_get_event_id(d);
620 
621 	if (cpu >= nr_cpu_ids)
622 		return -EINVAL;
623 
624 	target_col = &its_dev->its->collections[cpu];
625 	its_send_movi(its_dev, target_col, id);
626 	its_dev->event_map.col_map[id] = cpu;
627 
628 	return IRQ_SET_MASK_OK_DONE;
629 }
630 
631 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
632 {
633 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
634 	struct its_node *its;
635 	u64 addr;
636 
637 	its = its_dev->its;
638 	addr = its->phys_base + GITS_TRANSLATER;
639 
640 	msg->address_lo		= addr & ((1UL << 32) - 1);
641 	msg->address_hi		= addr >> 32;
642 	msg->data		= its_get_event_id(d);
643 }
644 
645 static struct irq_chip its_irq_chip = {
646 	.name			= "ITS",
647 	.irq_mask		= its_mask_irq,
648 	.irq_unmask		= its_unmask_irq,
649 	.irq_eoi		= irq_chip_eoi_parent,
650 	.irq_set_affinity	= its_set_affinity,
651 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
652 };
653 
654 /*
655  * How we allocate LPIs:
656  *
657  * The GIC has id_bits bits for interrupt identifiers. From there, we
658  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
659  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
660  * bits to the right.
661  *
662  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
663  */
664 #define IRQS_PER_CHUNK_SHIFT	5
665 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
666 
667 static unsigned long *lpi_bitmap;
668 static u32 lpi_chunks;
669 static DEFINE_SPINLOCK(lpi_lock);
670 
671 static int its_lpi_to_chunk(int lpi)
672 {
673 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
674 }
675 
676 static int its_chunk_to_lpi(int chunk)
677 {
678 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
679 }
680 
681 static int __init its_lpi_init(u32 id_bits)
682 {
683 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
684 
685 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
686 			     GFP_KERNEL);
687 	if (!lpi_bitmap) {
688 		lpi_chunks = 0;
689 		return -ENOMEM;
690 	}
691 
692 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
693 	return 0;
694 }
695 
696 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
697 {
698 	unsigned long *bitmap = NULL;
699 	int chunk_id;
700 	int nr_chunks;
701 	int i;
702 
703 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
704 
705 	spin_lock(&lpi_lock);
706 
707 	do {
708 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
709 						      0, nr_chunks, 0);
710 		if (chunk_id < lpi_chunks)
711 			break;
712 
713 		nr_chunks--;
714 	} while (nr_chunks > 0);
715 
716 	if (!nr_chunks)
717 		goto out;
718 
719 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
720 			 GFP_ATOMIC);
721 	if (!bitmap)
722 		goto out;
723 
724 	for (i = 0; i < nr_chunks; i++)
725 		set_bit(chunk_id + i, lpi_bitmap);
726 
727 	*base = its_chunk_to_lpi(chunk_id);
728 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
729 
730 out:
731 	spin_unlock(&lpi_lock);
732 
733 	if (!bitmap)
734 		*base = *nr_ids = 0;
735 
736 	return bitmap;
737 }
738 
739 static void its_lpi_free(struct event_lpi_map *map)
740 {
741 	int base = map->lpi_base;
742 	int nr_ids = map->nr_lpis;
743 	int lpi;
744 
745 	spin_lock(&lpi_lock);
746 
747 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
748 		int chunk = its_lpi_to_chunk(lpi);
749 		BUG_ON(chunk > lpi_chunks);
750 		if (test_bit(chunk, lpi_bitmap)) {
751 			clear_bit(chunk, lpi_bitmap);
752 		} else {
753 			pr_err("Bad LPI chunk %d\n", chunk);
754 		}
755 	}
756 
757 	spin_unlock(&lpi_lock);
758 
759 	kfree(map->lpi_map);
760 	kfree(map->col_map);
761 }
762 
763 /*
764  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
765  * deal with (one configuration byte per interrupt). PENDBASE has to
766  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
767  */
768 #define LPI_PROPBASE_SZ		SZ_64K
769 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
770 
771 /*
772  * This is how many bits of ID we need, including the useless ones.
773  */
774 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
775 
776 #define LPI_PROP_DEFAULT_PRIO	0xa0
777 
778 static int __init its_alloc_lpi_tables(void)
779 {
780 	phys_addr_t paddr;
781 
782 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
783 					   get_order(LPI_PROPBASE_SZ));
784 	if (!gic_rdists->prop_page) {
785 		pr_err("Failed to allocate PROPBASE\n");
786 		return -ENOMEM;
787 	}
788 
789 	paddr = page_to_phys(gic_rdists->prop_page);
790 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
791 
792 	/* Priority 0xa0, Group-1, disabled */
793 	memset(page_address(gic_rdists->prop_page),
794 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
795 	       LPI_PROPBASE_SZ);
796 
797 	/* Make sure the GIC will observe the written configuration */
798 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
799 
800 	return 0;
801 }
802 
803 static const char *its_base_type_string[] = {
804 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
805 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
806 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
807 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
808 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
809 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
810 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
811 };
812 
813 static void its_free_tables(struct its_node *its)
814 {
815 	int i;
816 
817 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
818 		if (its->tables[i].base) {
819 			free_pages((unsigned long)its->tables[i].base,
820 				   its->tables[i].order);
821 			its->tables[i].base = NULL;
822 		}
823 	}
824 }
825 
826 static int its_alloc_tables(const char *node_name, struct its_node *its)
827 {
828 	int err;
829 	int i;
830 	int psz = SZ_64K;
831 	u64 shr = GITS_BASER_InnerShareable;
832 	u64 cache;
833 	u64 typer;
834 	u32 ids;
835 
836 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
837 		/*
838 		 * erratum 22375: only alloc 8MB table size
839 		 * erratum 24313: ignore memory access type
840 		 */
841 		cache	= 0;
842 		ids	= 0x14;			/* 20 bits, 8MB */
843 	} else {
844 		cache	= GITS_BASER_WaWb;
845 		typer	= readq_relaxed(its->base + GITS_TYPER);
846 		ids	= GITS_TYPER_DEVBITS(typer);
847 	}
848 
849 	its->device_ids = ids;
850 
851 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
852 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
853 		u64 type = GITS_BASER_TYPE(val);
854 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
855 		int order = get_order(psz);
856 		int alloc_pages;
857 		u64 tmp;
858 		void *base;
859 
860 		if (type == GITS_BASER_TYPE_NONE)
861 			continue;
862 
863 		/*
864 		 * Allocate as many entries as required to fit the
865 		 * range of device IDs that the ITS can grok... The ID
866 		 * space being incredibly sparse, this results in a
867 		 * massive waste of memory.
868 		 *
869 		 * For other tables, only allocate a single page.
870 		 */
871 		if (type == GITS_BASER_TYPE_DEVICE) {
872 			/*
873 			 * 'order' was initialized earlier to the default page
874 			 * granule of the the ITS.  We can't have an allocation
875 			 * smaller than that.  If the requested allocation
876 			 * is smaller, round up to the default page granule.
877 			 */
878 			order = max(get_order((1UL << ids) * entry_size),
879 				    order);
880 			if (order >= MAX_ORDER) {
881 				order = MAX_ORDER - 1;
882 				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
883 					node_name, order);
884 			}
885 		}
886 
887 retry_alloc_baser:
888 		alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
889 		if (alloc_pages > GITS_BASER_PAGES_MAX) {
890 			alloc_pages = GITS_BASER_PAGES_MAX;
891 			order = get_order(GITS_BASER_PAGES_MAX * psz);
892 			pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
893 				node_name, order, alloc_pages);
894 		}
895 
896 		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
897 		if (!base) {
898 			err = -ENOMEM;
899 			goto out_free;
900 		}
901 
902 		its->tables[i].base = base;
903 		its->tables[i].order = order;
904 
905 retry_baser:
906 		val = (virt_to_phys(base) 				 |
907 		       (type << GITS_BASER_TYPE_SHIFT)			 |
908 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
909 		       cache						 |
910 		       shr						 |
911 		       GITS_BASER_VALID);
912 
913 		switch (psz) {
914 		case SZ_4K:
915 			val |= GITS_BASER_PAGE_SIZE_4K;
916 			break;
917 		case SZ_16K:
918 			val |= GITS_BASER_PAGE_SIZE_16K;
919 			break;
920 		case SZ_64K:
921 			val |= GITS_BASER_PAGE_SIZE_64K;
922 			break;
923 		}
924 
925 		val |= alloc_pages - 1;
926 		its->tables[i].val = val;
927 
928 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
929 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
930 
931 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
932 			/*
933 			 * Shareability didn't stick. Just use
934 			 * whatever the read reported, which is likely
935 			 * to be the only thing this redistributor
936 			 * supports. If that's zero, make it
937 			 * non-cacheable as well.
938 			 */
939 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
940 			if (!shr) {
941 				cache = GITS_BASER_nC;
942 				__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
943 			}
944 			goto retry_baser;
945 		}
946 
947 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
948 			/*
949 			 * Page size didn't stick. Let's try a smaller
950 			 * size and retry. If we reach 4K, then
951 			 * something is horribly wrong...
952 			 */
953 			free_pages((unsigned long)base, order);
954 			its->tables[i].base = NULL;
955 
956 			switch (psz) {
957 			case SZ_16K:
958 				psz = SZ_4K;
959 				goto retry_alloc_baser;
960 			case SZ_64K:
961 				psz = SZ_16K;
962 				goto retry_alloc_baser;
963 			}
964 		}
965 
966 		if (val != tmp) {
967 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
968 			       node_name, i,
969 			       (unsigned long) val, (unsigned long) tmp);
970 			err = -ENXIO;
971 			goto out_free;
972 		}
973 
974 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
975 			(int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
976 			its_base_type_string[type],
977 			(unsigned long)virt_to_phys(base),
978 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
979 	}
980 
981 	return 0;
982 
983 out_free:
984 	its_free_tables(its);
985 
986 	return err;
987 }
988 
989 static int its_alloc_collections(struct its_node *its)
990 {
991 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
992 				   GFP_KERNEL);
993 	if (!its->collections)
994 		return -ENOMEM;
995 
996 	return 0;
997 }
998 
999 static void its_cpu_init_lpis(void)
1000 {
1001 	void __iomem *rbase = gic_data_rdist_rd_base();
1002 	struct page *pend_page;
1003 	u64 val, tmp;
1004 
1005 	/* If we didn't allocate the pending table yet, do it now */
1006 	pend_page = gic_data_rdist()->pend_page;
1007 	if (!pend_page) {
1008 		phys_addr_t paddr;
1009 		/*
1010 		 * The pending pages have to be at least 64kB aligned,
1011 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1012 		 */
1013 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1014 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1015 		if (!pend_page) {
1016 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1017 			       smp_processor_id());
1018 			return;
1019 		}
1020 
1021 		/* Make sure the GIC will observe the zero-ed page */
1022 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1023 
1024 		paddr = page_to_phys(pend_page);
1025 		pr_info("CPU%d: using LPI pending table @%pa\n",
1026 			smp_processor_id(), &paddr);
1027 		gic_data_rdist()->pend_page = pend_page;
1028 	}
1029 
1030 	/* Disable LPIs */
1031 	val = readl_relaxed(rbase + GICR_CTLR);
1032 	val &= ~GICR_CTLR_ENABLE_LPIS;
1033 	writel_relaxed(val, rbase + GICR_CTLR);
1034 
1035 	/*
1036 	 * Make sure any change to the table is observable by the GIC.
1037 	 */
1038 	dsb(sy);
1039 
1040 	/* set PROPBASE */
1041 	val = (page_to_phys(gic_rdists->prop_page) |
1042 	       GICR_PROPBASER_InnerShareable |
1043 	       GICR_PROPBASER_WaWb |
1044 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1045 
1046 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1047 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1048 
1049 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1050 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1051 			/*
1052 			 * The HW reports non-shareable, we must
1053 			 * remove the cacheability attributes as
1054 			 * well.
1055 			 */
1056 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1057 				 GICR_PROPBASER_CACHEABILITY_MASK);
1058 			val |= GICR_PROPBASER_nC;
1059 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1060 		}
1061 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1062 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1063 	}
1064 
1065 	/* set PENDBASE */
1066 	val = (page_to_phys(pend_page) |
1067 	       GICR_PENDBASER_InnerShareable |
1068 	       GICR_PENDBASER_WaWb);
1069 
1070 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1071 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1072 
1073 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1074 		/*
1075 		 * The HW reports non-shareable, we must remove the
1076 		 * cacheability attributes as well.
1077 		 */
1078 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1079 			 GICR_PENDBASER_CACHEABILITY_MASK);
1080 		val |= GICR_PENDBASER_nC;
1081 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1082 	}
1083 
1084 	/* Enable LPIs */
1085 	val = readl_relaxed(rbase + GICR_CTLR);
1086 	val |= GICR_CTLR_ENABLE_LPIS;
1087 	writel_relaxed(val, rbase + GICR_CTLR);
1088 
1089 	/* Make sure the GIC has seen the above */
1090 	dsb(sy);
1091 }
1092 
1093 static void its_cpu_init_collection(void)
1094 {
1095 	struct its_node *its;
1096 	int cpu;
1097 
1098 	spin_lock(&its_lock);
1099 	cpu = smp_processor_id();
1100 
1101 	list_for_each_entry(its, &its_nodes, entry) {
1102 		u64 target;
1103 
1104 		/*
1105 		 * We now have to bind each collection to its target
1106 		 * redistributor.
1107 		 */
1108 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1109 			/*
1110 			 * This ITS wants the physical address of the
1111 			 * redistributor.
1112 			 */
1113 			target = gic_data_rdist()->phys_base;
1114 		} else {
1115 			/*
1116 			 * This ITS wants a linear CPU number.
1117 			 */
1118 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1119 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1120 		}
1121 
1122 		/* Perform collection mapping */
1123 		its->collections[cpu].target_address = target;
1124 		its->collections[cpu].col_id = cpu;
1125 
1126 		its_send_mapc(its, &its->collections[cpu], 1);
1127 		its_send_invall(its, &its->collections[cpu]);
1128 	}
1129 
1130 	spin_unlock(&its_lock);
1131 }
1132 
1133 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1134 {
1135 	struct its_device *its_dev = NULL, *tmp;
1136 	unsigned long flags;
1137 
1138 	raw_spin_lock_irqsave(&its->lock, flags);
1139 
1140 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1141 		if (tmp->device_id == dev_id) {
1142 			its_dev = tmp;
1143 			break;
1144 		}
1145 	}
1146 
1147 	raw_spin_unlock_irqrestore(&its->lock, flags);
1148 
1149 	return its_dev;
1150 }
1151 
1152 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1153 {
1154 	int i;
1155 
1156 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1157 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1158 			return &its->tables[i];
1159 	}
1160 
1161 	return NULL;
1162 }
1163 
1164 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1165 					    int nvecs)
1166 {
1167 	struct its_baser *baser;
1168 	struct its_device *dev;
1169 	unsigned long *lpi_map;
1170 	unsigned long flags;
1171 	u16 *col_map = NULL;
1172 	void *itt;
1173 	int lpi_base;
1174 	int nr_lpis;
1175 	int nr_ites;
1176 	int sz;
1177 
1178 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1179 
1180 	/* Don't allow 'dev_id' that exceeds single, flat table limit */
1181 	if (baser) {
1182 		if (dev_id >= (PAGE_ORDER_TO_SIZE(baser->order) /
1183 			      GITS_BASER_ENTRY_SIZE(baser->val)))
1184 			return NULL;
1185 	} else if (ilog2(dev_id) >= its->device_ids)
1186 		return NULL;
1187 
1188 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1189 	/*
1190 	 * At least one bit of EventID is being used, hence a minimum
1191 	 * of two entries. No, the architecture doesn't let you
1192 	 * express an ITT with a single entry.
1193 	 */
1194 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1195 	sz = nr_ites * its->ite_size;
1196 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1197 	itt = kzalloc(sz, GFP_KERNEL);
1198 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1199 	if (lpi_map)
1200 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1201 
1202 	if (!dev || !itt || !lpi_map || !col_map) {
1203 		kfree(dev);
1204 		kfree(itt);
1205 		kfree(lpi_map);
1206 		kfree(col_map);
1207 		return NULL;
1208 	}
1209 
1210 	__flush_dcache_area(itt, sz);
1211 
1212 	dev->its = its;
1213 	dev->itt = itt;
1214 	dev->nr_ites = nr_ites;
1215 	dev->event_map.lpi_map = lpi_map;
1216 	dev->event_map.col_map = col_map;
1217 	dev->event_map.lpi_base = lpi_base;
1218 	dev->event_map.nr_lpis = nr_lpis;
1219 	dev->device_id = dev_id;
1220 	INIT_LIST_HEAD(&dev->entry);
1221 
1222 	raw_spin_lock_irqsave(&its->lock, flags);
1223 	list_add(&dev->entry, &its->its_device_list);
1224 	raw_spin_unlock_irqrestore(&its->lock, flags);
1225 
1226 	/* Map device to its ITT */
1227 	its_send_mapd(dev, 1);
1228 
1229 	return dev;
1230 }
1231 
1232 static void its_free_device(struct its_device *its_dev)
1233 {
1234 	unsigned long flags;
1235 
1236 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1237 	list_del(&its_dev->entry);
1238 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1239 	kfree(its_dev->itt);
1240 	kfree(its_dev);
1241 }
1242 
1243 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1244 {
1245 	int idx;
1246 
1247 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1248 				  dev->event_map.nr_lpis);
1249 	if (idx == dev->event_map.nr_lpis)
1250 		return -ENOSPC;
1251 
1252 	*hwirq = dev->event_map.lpi_base + idx;
1253 	set_bit(idx, dev->event_map.lpi_map);
1254 
1255 	return 0;
1256 }
1257 
1258 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1259 			   int nvec, msi_alloc_info_t *info)
1260 {
1261 	struct its_node *its;
1262 	struct its_device *its_dev;
1263 	struct msi_domain_info *msi_info;
1264 	u32 dev_id;
1265 
1266 	/*
1267 	 * We ignore "dev" entierely, and rely on the dev_id that has
1268 	 * been passed via the scratchpad. This limits this domain's
1269 	 * usefulness to upper layers that definitely know that they
1270 	 * are built on top of the ITS.
1271 	 */
1272 	dev_id = info->scratchpad[0].ul;
1273 
1274 	msi_info = msi_get_domain_info(domain);
1275 	its = msi_info->data;
1276 
1277 	its_dev = its_find_device(its, dev_id);
1278 	if (its_dev) {
1279 		/*
1280 		 * We already have seen this ID, probably through
1281 		 * another alias (PCI bridge of some sort). No need to
1282 		 * create the device.
1283 		 */
1284 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1285 		goto out;
1286 	}
1287 
1288 	its_dev = its_create_device(its, dev_id, nvec);
1289 	if (!its_dev)
1290 		return -ENOMEM;
1291 
1292 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1293 out:
1294 	info->scratchpad[0].ptr = its_dev;
1295 	return 0;
1296 }
1297 
1298 static struct msi_domain_ops its_msi_domain_ops = {
1299 	.msi_prepare	= its_msi_prepare,
1300 };
1301 
1302 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1303 				    unsigned int virq,
1304 				    irq_hw_number_t hwirq)
1305 {
1306 	struct irq_fwspec fwspec;
1307 
1308 	if (irq_domain_get_of_node(domain->parent)) {
1309 		fwspec.fwnode = domain->parent->fwnode;
1310 		fwspec.param_count = 3;
1311 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1312 		fwspec.param[1] = hwirq;
1313 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1314 	} else {
1315 		return -EINVAL;
1316 	}
1317 
1318 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1319 }
1320 
1321 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1322 				unsigned int nr_irqs, void *args)
1323 {
1324 	msi_alloc_info_t *info = args;
1325 	struct its_device *its_dev = info->scratchpad[0].ptr;
1326 	irq_hw_number_t hwirq;
1327 	int err;
1328 	int i;
1329 
1330 	for (i = 0; i < nr_irqs; i++) {
1331 		err = its_alloc_device_irq(its_dev, &hwirq);
1332 		if (err)
1333 			return err;
1334 
1335 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1336 		if (err)
1337 			return err;
1338 
1339 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1340 					      hwirq, &its_irq_chip, its_dev);
1341 		pr_debug("ID:%d pID:%d vID:%d\n",
1342 			 (int)(hwirq - its_dev->event_map.lpi_base),
1343 			 (int) hwirq, virq + i);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 static void its_irq_domain_activate(struct irq_domain *domain,
1350 				    struct irq_data *d)
1351 {
1352 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1353 	u32 event = its_get_event_id(d);
1354 
1355 	/* Bind the LPI to the first possible CPU */
1356 	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1357 
1358 	/* Map the GIC IRQ and event to the device */
1359 	its_send_mapvi(its_dev, d->hwirq, event);
1360 }
1361 
1362 static void its_irq_domain_deactivate(struct irq_domain *domain,
1363 				      struct irq_data *d)
1364 {
1365 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1366 	u32 event = its_get_event_id(d);
1367 
1368 	/* Stop the delivery of interrupts */
1369 	its_send_discard(its_dev, event);
1370 }
1371 
1372 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1373 				unsigned int nr_irqs)
1374 {
1375 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1376 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1377 	int i;
1378 
1379 	for (i = 0; i < nr_irqs; i++) {
1380 		struct irq_data *data = irq_domain_get_irq_data(domain,
1381 								virq + i);
1382 		u32 event = its_get_event_id(data);
1383 
1384 		/* Mark interrupt index as unused */
1385 		clear_bit(event, its_dev->event_map.lpi_map);
1386 
1387 		/* Nuke the entry in the domain */
1388 		irq_domain_reset_irq_data(data);
1389 	}
1390 
1391 	/* If all interrupts have been freed, start mopping the floor */
1392 	if (bitmap_empty(its_dev->event_map.lpi_map,
1393 			 its_dev->event_map.nr_lpis)) {
1394 		its_lpi_free(&its_dev->event_map);
1395 
1396 		/* Unmap device/itt */
1397 		its_send_mapd(its_dev, 0);
1398 		its_free_device(its_dev);
1399 	}
1400 
1401 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1402 }
1403 
1404 static const struct irq_domain_ops its_domain_ops = {
1405 	.alloc			= its_irq_domain_alloc,
1406 	.free			= its_irq_domain_free,
1407 	.activate		= its_irq_domain_activate,
1408 	.deactivate		= its_irq_domain_deactivate,
1409 };
1410 
1411 static int its_force_quiescent(void __iomem *base)
1412 {
1413 	u32 count = 1000000;	/* 1s */
1414 	u32 val;
1415 
1416 	val = readl_relaxed(base + GITS_CTLR);
1417 	if (val & GITS_CTLR_QUIESCENT)
1418 		return 0;
1419 
1420 	/* Disable the generation of all interrupts to this ITS */
1421 	val &= ~GITS_CTLR_ENABLE;
1422 	writel_relaxed(val, base + GITS_CTLR);
1423 
1424 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1425 	while (1) {
1426 		val = readl_relaxed(base + GITS_CTLR);
1427 		if (val & GITS_CTLR_QUIESCENT)
1428 			return 0;
1429 
1430 		count--;
1431 		if (!count)
1432 			return -EBUSY;
1433 
1434 		cpu_relax();
1435 		udelay(1);
1436 	}
1437 }
1438 
1439 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1440 {
1441 	struct its_node *its = data;
1442 
1443 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1444 }
1445 
1446 static const struct gic_quirk its_quirks[] = {
1447 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1448 	{
1449 		.desc	= "ITS: Cavium errata 22375, 24313",
1450 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1451 		.mask	= 0xffff0fff,
1452 		.init	= its_enable_quirk_cavium_22375,
1453 	},
1454 #endif
1455 	{
1456 	}
1457 };
1458 
1459 static void its_enable_quirks(struct its_node *its)
1460 {
1461 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1462 
1463 	gic_enable_quirks(iidr, its_quirks, its);
1464 }
1465 
1466 static int __init its_probe(struct device_node *node,
1467 			    struct irq_domain *parent)
1468 {
1469 	struct resource res;
1470 	struct its_node *its;
1471 	void __iomem *its_base;
1472 	struct irq_domain *inner_domain;
1473 	u32 val;
1474 	u64 baser, tmp;
1475 	int err;
1476 
1477 	err = of_address_to_resource(node, 0, &res);
1478 	if (err) {
1479 		pr_warn("%s: no regs?\n", node->full_name);
1480 		return -ENXIO;
1481 	}
1482 
1483 	its_base = ioremap(res.start, resource_size(&res));
1484 	if (!its_base) {
1485 		pr_warn("%s: unable to map registers\n", node->full_name);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1490 	if (val != 0x30 && val != 0x40) {
1491 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1492 		err = -ENODEV;
1493 		goto out_unmap;
1494 	}
1495 
1496 	err = its_force_quiescent(its_base);
1497 	if (err) {
1498 		pr_warn("%s: failed to quiesce, giving up\n",
1499 			node->full_name);
1500 		goto out_unmap;
1501 	}
1502 
1503 	pr_info("ITS: %s\n", node->full_name);
1504 
1505 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1506 	if (!its) {
1507 		err = -ENOMEM;
1508 		goto out_unmap;
1509 	}
1510 
1511 	raw_spin_lock_init(&its->lock);
1512 	INIT_LIST_HEAD(&its->entry);
1513 	INIT_LIST_HEAD(&its->its_device_list);
1514 	its->base = its_base;
1515 	its->phys_base = res.start;
1516 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1517 
1518 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1519 	if (!its->cmd_base) {
1520 		err = -ENOMEM;
1521 		goto out_free_its;
1522 	}
1523 	its->cmd_write = its->cmd_base;
1524 
1525 	its_enable_quirks(its);
1526 
1527 	err = its_alloc_tables(node->full_name, its);
1528 	if (err)
1529 		goto out_free_cmd;
1530 
1531 	err = its_alloc_collections(its);
1532 	if (err)
1533 		goto out_free_tables;
1534 
1535 	baser = (virt_to_phys(its->cmd_base)	|
1536 		 GITS_CBASER_WaWb		|
1537 		 GITS_CBASER_InnerShareable	|
1538 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1539 		 GITS_CBASER_VALID);
1540 
1541 	writeq_relaxed(baser, its->base + GITS_CBASER);
1542 	tmp = readq_relaxed(its->base + GITS_CBASER);
1543 
1544 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1545 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1546 			/*
1547 			 * The HW reports non-shareable, we must
1548 			 * remove the cacheability attributes as
1549 			 * well.
1550 			 */
1551 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1552 				   GITS_CBASER_CACHEABILITY_MASK);
1553 			baser |= GITS_CBASER_nC;
1554 			writeq_relaxed(baser, its->base + GITS_CBASER);
1555 		}
1556 		pr_info("ITS: using cache flushing for cmd queue\n");
1557 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1558 	}
1559 
1560 	writeq_relaxed(0, its->base + GITS_CWRITER);
1561 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1562 
1563 	if (of_property_read_bool(node, "msi-controller")) {
1564 		struct msi_domain_info *info;
1565 
1566 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1567 		if (!info) {
1568 			err = -ENOMEM;
1569 			goto out_free_tables;
1570 		}
1571 
1572 		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1573 		if (!inner_domain) {
1574 			err = -ENOMEM;
1575 			kfree(info);
1576 			goto out_free_tables;
1577 		}
1578 
1579 		inner_domain->parent = parent;
1580 		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1581 		info->ops = &its_msi_domain_ops;
1582 		info->data = its;
1583 		inner_domain->host_data = info;
1584 	}
1585 
1586 	spin_lock(&its_lock);
1587 	list_add(&its->entry, &its_nodes);
1588 	spin_unlock(&its_lock);
1589 
1590 	return 0;
1591 
1592 out_free_tables:
1593 	its_free_tables(its);
1594 out_free_cmd:
1595 	kfree(its->cmd_base);
1596 out_free_its:
1597 	kfree(its);
1598 out_unmap:
1599 	iounmap(its_base);
1600 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1601 	return err;
1602 }
1603 
1604 static bool gic_rdists_supports_plpis(void)
1605 {
1606 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1607 }
1608 
1609 int its_cpu_init(void)
1610 {
1611 	if (!list_empty(&its_nodes)) {
1612 		if (!gic_rdists_supports_plpis()) {
1613 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1614 			return -ENXIO;
1615 		}
1616 		its_cpu_init_lpis();
1617 		its_cpu_init_collection();
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static struct of_device_id its_device_id[] = {
1624 	{	.compatible	= "arm,gic-v3-its",	},
1625 	{},
1626 };
1627 
1628 int __init its_init(struct device_node *node, struct rdists *rdists,
1629 	     struct irq_domain *parent_domain)
1630 {
1631 	struct device_node *np;
1632 
1633 	for (np = of_find_matching_node(node, its_device_id); np;
1634 	     np = of_find_matching_node(np, its_device_id)) {
1635 		its_probe(np, parent_domain);
1636 	}
1637 
1638 	if (list_empty(&its_nodes)) {
1639 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1640 		return -ENXIO;
1641 	}
1642 
1643 	gic_rdists = rdists;
1644 	its_alloc_lpi_tables();
1645 	its_lpi_init(rdists->id_bits);
1646 
1647 	return 0;
1648 }
1649