xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
40 
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
43 
44 #include "irq-gic-common.h"
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
51 
52 static u32 lpi_id_bits;
53 
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS		lpi_id_bits
60 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62 
63 #define LPI_PROP_DEFAULT_PRIO	0xa0
64 
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71 	u64			target_address;
72 	u16			col_id;
73 };
74 
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80 	void		*base;
81 	u64		val;
82 	u32		order;
83 	u32		psz;
84 };
85 
86 struct its_device;
87 
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  */
93 struct its_node {
94 	raw_spinlock_t		lock;
95 	struct list_head	entry;
96 	void __iomem		*base;
97 	phys_addr_t		phys_base;
98 	struct its_cmd_block	*cmd_base;
99 	struct its_cmd_block	*cmd_write;
100 	struct its_baser	tables[GITS_BASER_NR_REGS];
101 	struct its_collection	*collections;
102 	struct fwnode_handle	*fwnode_handle;
103 	u64			(*get_msi_base)(struct its_device *its_dev);
104 	struct list_head	its_device_list;
105 	u64			flags;
106 	unsigned long		list_nr;
107 	u32			ite_size;
108 	u32			device_ids;
109 	int			numa_node;
110 	unsigned int		msi_domain_flags;
111 	u32			pre_its_base; /* for Socionext Synquacer */
112 	bool			is_v4;
113 	int			vlpi_redist_offset;
114 };
115 
116 #define ITS_ITT_ALIGN		SZ_256
117 
118 /* The maximum number of VPEID bits supported by VLPI commands */
119 #define ITS_MAX_VPEID_BITS	(16)
120 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
121 
122 /* Convert page order to size in bytes */
123 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
124 
125 struct event_lpi_map {
126 	unsigned long		*lpi_map;
127 	u16			*col_map;
128 	irq_hw_number_t		lpi_base;
129 	int			nr_lpis;
130 	struct mutex		vlpi_lock;
131 	struct its_vm		*vm;
132 	struct its_vlpi_map	*vlpi_maps;
133 	int			nr_vlpis;
134 };
135 
136 /*
137  * The ITS view of a device - belongs to an ITS, owns an interrupt
138  * translation table, and a list of interrupts.  If it some of its
139  * LPIs are injected into a guest (GICv4), the event_map.vm field
140  * indicates which one.
141  */
142 struct its_device {
143 	struct list_head	entry;
144 	struct its_node		*its;
145 	struct event_lpi_map	event_map;
146 	void			*itt;
147 	u32			nr_ites;
148 	u32			device_id;
149 };
150 
151 static struct {
152 	raw_spinlock_t		lock;
153 	struct its_device	*dev;
154 	struct its_vpe		**vpes;
155 	int			next_victim;
156 } vpe_proxy;
157 
158 static LIST_HEAD(its_nodes);
159 static DEFINE_SPINLOCK(its_lock);
160 static struct rdists *gic_rdists;
161 static struct irq_domain *its_parent;
162 
163 static unsigned long its_list_map;
164 static u16 vmovp_seq_num;
165 static DEFINE_RAW_SPINLOCK(vmovp_lock);
166 
167 static DEFINE_IDA(its_vpeid_ida);
168 
169 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
170 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
171 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
172 
173 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
174 					       u32 event)
175 {
176 	struct its_node *its = its_dev->its;
177 
178 	return its->collections + its_dev->event_map.col_map[event];
179 }
180 
181 /*
182  * ITS command descriptors - parameters to be encoded in a command
183  * block.
184  */
185 struct its_cmd_desc {
186 	union {
187 		struct {
188 			struct its_device *dev;
189 			u32 event_id;
190 		} its_inv_cmd;
191 
192 		struct {
193 			struct its_device *dev;
194 			u32 event_id;
195 		} its_clear_cmd;
196 
197 		struct {
198 			struct its_device *dev;
199 			u32 event_id;
200 		} its_int_cmd;
201 
202 		struct {
203 			struct its_device *dev;
204 			int valid;
205 		} its_mapd_cmd;
206 
207 		struct {
208 			struct its_collection *col;
209 			int valid;
210 		} its_mapc_cmd;
211 
212 		struct {
213 			struct its_device *dev;
214 			u32 phys_id;
215 			u32 event_id;
216 		} its_mapti_cmd;
217 
218 		struct {
219 			struct its_device *dev;
220 			struct its_collection *col;
221 			u32 event_id;
222 		} its_movi_cmd;
223 
224 		struct {
225 			struct its_device *dev;
226 			u32 event_id;
227 		} its_discard_cmd;
228 
229 		struct {
230 			struct its_collection *col;
231 		} its_invall_cmd;
232 
233 		struct {
234 			struct its_vpe *vpe;
235 		} its_vinvall_cmd;
236 
237 		struct {
238 			struct its_vpe *vpe;
239 			struct its_collection *col;
240 			bool valid;
241 		} its_vmapp_cmd;
242 
243 		struct {
244 			struct its_vpe *vpe;
245 			struct its_device *dev;
246 			u32 virt_id;
247 			u32 event_id;
248 			bool db_enabled;
249 		} its_vmapti_cmd;
250 
251 		struct {
252 			struct its_vpe *vpe;
253 			struct its_device *dev;
254 			u32 event_id;
255 			bool db_enabled;
256 		} its_vmovi_cmd;
257 
258 		struct {
259 			struct its_vpe *vpe;
260 			struct its_collection *col;
261 			u16 seq_num;
262 			u16 its_list;
263 		} its_vmovp_cmd;
264 	};
265 };
266 
267 /*
268  * The ITS command block, which is what the ITS actually parses.
269  */
270 struct its_cmd_block {
271 	u64	raw_cmd[4];
272 };
273 
274 #define ITS_CMD_QUEUE_SZ		SZ_64K
275 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
276 
277 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
278 						    struct its_cmd_block *,
279 						    struct its_cmd_desc *);
280 
281 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
282 					      struct its_cmd_block *,
283 					      struct its_cmd_desc *);
284 
285 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
286 {
287 	u64 mask = GENMASK_ULL(h, l);
288 	*raw_cmd &= ~mask;
289 	*raw_cmd |= (val << l) & mask;
290 }
291 
292 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
293 {
294 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
295 }
296 
297 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
298 {
299 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
300 }
301 
302 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
303 {
304 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
305 }
306 
307 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
308 {
309 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
310 }
311 
312 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
313 {
314 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
315 }
316 
317 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
318 {
319 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
320 }
321 
322 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
323 {
324 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
325 }
326 
327 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
328 {
329 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
330 }
331 
332 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
333 {
334 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
335 }
336 
337 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
338 {
339 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
340 }
341 
342 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
343 {
344 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
345 }
346 
347 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
348 {
349 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
350 }
351 
352 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
353 {
354 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
355 }
356 
357 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
358 {
359 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
360 }
361 
362 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
363 {
364 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
365 }
366 
367 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
368 {
369 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
370 }
371 
372 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
373 {
374 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
375 }
376 
377 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
378 {
379 	/* Let's fixup BE commands */
380 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
381 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
382 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
383 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
384 }
385 
386 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
387 						 struct its_cmd_block *cmd,
388 						 struct its_cmd_desc *desc)
389 {
390 	unsigned long itt_addr;
391 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
392 
393 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
394 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
395 
396 	its_encode_cmd(cmd, GITS_CMD_MAPD);
397 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
398 	its_encode_size(cmd, size - 1);
399 	its_encode_itt(cmd, itt_addr);
400 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
401 
402 	its_fixup_cmd(cmd);
403 
404 	return NULL;
405 }
406 
407 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
408 						 struct its_cmd_block *cmd,
409 						 struct its_cmd_desc *desc)
410 {
411 	its_encode_cmd(cmd, GITS_CMD_MAPC);
412 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
413 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
414 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
415 
416 	its_fixup_cmd(cmd);
417 
418 	return desc->its_mapc_cmd.col;
419 }
420 
421 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
422 						  struct its_cmd_block *cmd,
423 						  struct its_cmd_desc *desc)
424 {
425 	struct its_collection *col;
426 
427 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
428 			       desc->its_mapti_cmd.event_id);
429 
430 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
431 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
432 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
433 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
434 	its_encode_collection(cmd, col->col_id);
435 
436 	its_fixup_cmd(cmd);
437 
438 	return col;
439 }
440 
441 static struct its_collection *its_build_movi_cmd(struct its_node *its,
442 						 struct its_cmd_block *cmd,
443 						 struct its_cmd_desc *desc)
444 {
445 	struct its_collection *col;
446 
447 	col = dev_event_to_col(desc->its_movi_cmd.dev,
448 			       desc->its_movi_cmd.event_id);
449 
450 	its_encode_cmd(cmd, GITS_CMD_MOVI);
451 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
452 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
453 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
454 
455 	its_fixup_cmd(cmd);
456 
457 	return col;
458 }
459 
460 static struct its_collection *its_build_discard_cmd(struct its_node *its,
461 						    struct its_cmd_block *cmd,
462 						    struct its_cmd_desc *desc)
463 {
464 	struct its_collection *col;
465 
466 	col = dev_event_to_col(desc->its_discard_cmd.dev,
467 			       desc->its_discard_cmd.event_id);
468 
469 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
470 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
471 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
472 
473 	its_fixup_cmd(cmd);
474 
475 	return col;
476 }
477 
478 static struct its_collection *its_build_inv_cmd(struct its_node *its,
479 						struct its_cmd_block *cmd,
480 						struct its_cmd_desc *desc)
481 {
482 	struct its_collection *col;
483 
484 	col = dev_event_to_col(desc->its_inv_cmd.dev,
485 			       desc->its_inv_cmd.event_id);
486 
487 	its_encode_cmd(cmd, GITS_CMD_INV);
488 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
489 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
490 
491 	its_fixup_cmd(cmd);
492 
493 	return col;
494 }
495 
496 static struct its_collection *its_build_int_cmd(struct its_node *its,
497 						struct its_cmd_block *cmd,
498 						struct its_cmd_desc *desc)
499 {
500 	struct its_collection *col;
501 
502 	col = dev_event_to_col(desc->its_int_cmd.dev,
503 			       desc->its_int_cmd.event_id);
504 
505 	its_encode_cmd(cmd, GITS_CMD_INT);
506 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
507 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
508 
509 	its_fixup_cmd(cmd);
510 
511 	return col;
512 }
513 
514 static struct its_collection *its_build_clear_cmd(struct its_node *its,
515 						  struct its_cmd_block *cmd,
516 						  struct its_cmd_desc *desc)
517 {
518 	struct its_collection *col;
519 
520 	col = dev_event_to_col(desc->its_clear_cmd.dev,
521 			       desc->its_clear_cmd.event_id);
522 
523 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
524 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
525 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
526 
527 	its_fixup_cmd(cmd);
528 
529 	return col;
530 }
531 
532 static struct its_collection *its_build_invall_cmd(struct its_node *its,
533 						   struct its_cmd_block *cmd,
534 						   struct its_cmd_desc *desc)
535 {
536 	its_encode_cmd(cmd, GITS_CMD_INVALL);
537 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
538 
539 	its_fixup_cmd(cmd);
540 
541 	return NULL;
542 }
543 
544 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
545 					     struct its_cmd_block *cmd,
546 					     struct its_cmd_desc *desc)
547 {
548 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
549 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
550 
551 	its_fixup_cmd(cmd);
552 
553 	return desc->its_vinvall_cmd.vpe;
554 }
555 
556 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
557 					   struct its_cmd_block *cmd,
558 					   struct its_cmd_desc *desc)
559 {
560 	unsigned long vpt_addr;
561 	u64 target;
562 
563 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
564 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
565 
566 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
567 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
568 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
569 	its_encode_target(cmd, target);
570 	its_encode_vpt_addr(cmd, vpt_addr);
571 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
572 
573 	its_fixup_cmd(cmd);
574 
575 	return desc->its_vmapp_cmd.vpe;
576 }
577 
578 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
579 					    struct its_cmd_block *cmd,
580 					    struct its_cmd_desc *desc)
581 {
582 	u32 db;
583 
584 	if (desc->its_vmapti_cmd.db_enabled)
585 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
586 	else
587 		db = 1023;
588 
589 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
590 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
591 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
592 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
593 	its_encode_db_phys_id(cmd, db);
594 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
595 
596 	its_fixup_cmd(cmd);
597 
598 	return desc->its_vmapti_cmd.vpe;
599 }
600 
601 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
602 					   struct its_cmd_block *cmd,
603 					   struct its_cmd_desc *desc)
604 {
605 	u32 db;
606 
607 	if (desc->its_vmovi_cmd.db_enabled)
608 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
609 	else
610 		db = 1023;
611 
612 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
613 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
614 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
615 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
616 	its_encode_db_phys_id(cmd, db);
617 	its_encode_db_valid(cmd, true);
618 
619 	its_fixup_cmd(cmd);
620 
621 	return desc->its_vmovi_cmd.vpe;
622 }
623 
624 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
625 					   struct its_cmd_block *cmd,
626 					   struct its_cmd_desc *desc)
627 {
628 	u64 target;
629 
630 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
631 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
632 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
633 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
634 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
635 	its_encode_target(cmd, target);
636 
637 	its_fixup_cmd(cmd);
638 
639 	return desc->its_vmovp_cmd.vpe;
640 }
641 
642 static u64 its_cmd_ptr_to_offset(struct its_node *its,
643 				 struct its_cmd_block *ptr)
644 {
645 	return (ptr - its->cmd_base) * sizeof(*ptr);
646 }
647 
648 static int its_queue_full(struct its_node *its)
649 {
650 	int widx;
651 	int ridx;
652 
653 	widx = its->cmd_write - its->cmd_base;
654 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
655 
656 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
657 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
658 		return 1;
659 
660 	return 0;
661 }
662 
663 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
664 {
665 	struct its_cmd_block *cmd;
666 	u32 count = 1000000;	/* 1s! */
667 
668 	while (its_queue_full(its)) {
669 		count--;
670 		if (!count) {
671 			pr_err_ratelimited("ITS queue not draining\n");
672 			return NULL;
673 		}
674 		cpu_relax();
675 		udelay(1);
676 	}
677 
678 	cmd = its->cmd_write++;
679 
680 	/* Handle queue wrapping */
681 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
682 		its->cmd_write = its->cmd_base;
683 
684 	/* Clear command  */
685 	cmd->raw_cmd[0] = 0;
686 	cmd->raw_cmd[1] = 0;
687 	cmd->raw_cmd[2] = 0;
688 	cmd->raw_cmd[3] = 0;
689 
690 	return cmd;
691 }
692 
693 static struct its_cmd_block *its_post_commands(struct its_node *its)
694 {
695 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
696 
697 	writel_relaxed(wr, its->base + GITS_CWRITER);
698 
699 	return its->cmd_write;
700 }
701 
702 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
703 {
704 	/*
705 	 * Make sure the commands written to memory are observable by
706 	 * the ITS.
707 	 */
708 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
709 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
710 	else
711 		dsb(ishst);
712 }
713 
714 static int its_wait_for_range_completion(struct its_node *its,
715 					 struct its_cmd_block *from,
716 					 struct its_cmd_block *to)
717 {
718 	u64 rd_idx, from_idx, to_idx;
719 	u32 count = 1000000;	/* 1s! */
720 
721 	from_idx = its_cmd_ptr_to_offset(its, from);
722 	to_idx = its_cmd_ptr_to_offset(its, to);
723 
724 	while (1) {
725 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
726 
727 		/* Direct case */
728 		if (from_idx < to_idx && rd_idx >= to_idx)
729 			break;
730 
731 		/* Wrapped case */
732 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
733 			break;
734 
735 		count--;
736 		if (!count) {
737 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
738 					   from_idx, to_idx, rd_idx);
739 			return -1;
740 		}
741 		cpu_relax();
742 		udelay(1);
743 	}
744 
745 	return 0;
746 }
747 
748 /* Warning, macro hell follows */
749 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
750 void name(struct its_node *its,						\
751 	  buildtype builder,						\
752 	  struct its_cmd_desc *desc)					\
753 {									\
754 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
755 	synctype *sync_obj;						\
756 	unsigned long flags;						\
757 									\
758 	raw_spin_lock_irqsave(&its->lock, flags);			\
759 									\
760 	cmd = its_allocate_entry(its);					\
761 	if (!cmd) {		/* We're soooooo screewed... */		\
762 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
763 		return;							\
764 	}								\
765 	sync_obj = builder(its, cmd, desc);				\
766 	its_flush_cmd(its, cmd);					\
767 									\
768 	if (sync_obj) {							\
769 		sync_cmd = its_allocate_entry(its);			\
770 		if (!sync_cmd)						\
771 			goto post;					\
772 									\
773 		buildfn(its, sync_cmd, sync_obj);			\
774 		its_flush_cmd(its, sync_cmd);				\
775 	}								\
776 									\
777 post:									\
778 	next_cmd = its_post_commands(its);				\
779 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
780 									\
781 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
782 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
783 }
784 
785 static void its_build_sync_cmd(struct its_node *its,
786 			       struct its_cmd_block *sync_cmd,
787 			       struct its_collection *sync_col)
788 {
789 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
790 	its_encode_target(sync_cmd, sync_col->target_address);
791 
792 	its_fixup_cmd(sync_cmd);
793 }
794 
795 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
796 			     struct its_collection, its_build_sync_cmd)
797 
798 static void its_build_vsync_cmd(struct its_node *its,
799 				struct its_cmd_block *sync_cmd,
800 				struct its_vpe *sync_vpe)
801 {
802 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
803 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
804 
805 	its_fixup_cmd(sync_cmd);
806 }
807 
808 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
809 			     struct its_vpe, its_build_vsync_cmd)
810 
811 static void its_send_int(struct its_device *dev, u32 event_id)
812 {
813 	struct its_cmd_desc desc;
814 
815 	desc.its_int_cmd.dev = dev;
816 	desc.its_int_cmd.event_id = event_id;
817 
818 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
819 }
820 
821 static void its_send_clear(struct its_device *dev, u32 event_id)
822 {
823 	struct its_cmd_desc desc;
824 
825 	desc.its_clear_cmd.dev = dev;
826 	desc.its_clear_cmd.event_id = event_id;
827 
828 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
829 }
830 
831 static void its_send_inv(struct its_device *dev, u32 event_id)
832 {
833 	struct its_cmd_desc desc;
834 
835 	desc.its_inv_cmd.dev = dev;
836 	desc.its_inv_cmd.event_id = event_id;
837 
838 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
839 }
840 
841 static void its_send_mapd(struct its_device *dev, int valid)
842 {
843 	struct its_cmd_desc desc;
844 
845 	desc.its_mapd_cmd.dev = dev;
846 	desc.its_mapd_cmd.valid = !!valid;
847 
848 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
849 }
850 
851 static void its_send_mapc(struct its_node *its, struct its_collection *col,
852 			  int valid)
853 {
854 	struct its_cmd_desc desc;
855 
856 	desc.its_mapc_cmd.col = col;
857 	desc.its_mapc_cmd.valid = !!valid;
858 
859 	its_send_single_command(its, its_build_mapc_cmd, &desc);
860 }
861 
862 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
863 {
864 	struct its_cmd_desc desc;
865 
866 	desc.its_mapti_cmd.dev = dev;
867 	desc.its_mapti_cmd.phys_id = irq_id;
868 	desc.its_mapti_cmd.event_id = id;
869 
870 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
871 }
872 
873 static void its_send_movi(struct its_device *dev,
874 			  struct its_collection *col, u32 id)
875 {
876 	struct its_cmd_desc desc;
877 
878 	desc.its_movi_cmd.dev = dev;
879 	desc.its_movi_cmd.col = col;
880 	desc.its_movi_cmd.event_id = id;
881 
882 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
883 }
884 
885 static void its_send_discard(struct its_device *dev, u32 id)
886 {
887 	struct its_cmd_desc desc;
888 
889 	desc.its_discard_cmd.dev = dev;
890 	desc.its_discard_cmd.event_id = id;
891 
892 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
893 }
894 
895 static void its_send_invall(struct its_node *its, struct its_collection *col)
896 {
897 	struct its_cmd_desc desc;
898 
899 	desc.its_invall_cmd.col = col;
900 
901 	its_send_single_command(its, its_build_invall_cmd, &desc);
902 }
903 
904 static void its_send_vmapti(struct its_device *dev, u32 id)
905 {
906 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
907 	struct its_cmd_desc desc;
908 
909 	desc.its_vmapti_cmd.vpe = map->vpe;
910 	desc.its_vmapti_cmd.dev = dev;
911 	desc.its_vmapti_cmd.virt_id = map->vintid;
912 	desc.its_vmapti_cmd.event_id = id;
913 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
914 
915 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
916 }
917 
918 static void its_send_vmovi(struct its_device *dev, u32 id)
919 {
920 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
921 	struct its_cmd_desc desc;
922 
923 	desc.its_vmovi_cmd.vpe = map->vpe;
924 	desc.its_vmovi_cmd.dev = dev;
925 	desc.its_vmovi_cmd.event_id = id;
926 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
927 
928 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
929 }
930 
931 static void its_send_vmapp(struct its_node *its,
932 			   struct its_vpe *vpe, bool valid)
933 {
934 	struct its_cmd_desc desc;
935 
936 	desc.its_vmapp_cmd.vpe = vpe;
937 	desc.its_vmapp_cmd.valid = valid;
938 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
939 
940 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
941 }
942 
943 static void its_send_vmovp(struct its_vpe *vpe)
944 {
945 	struct its_cmd_desc desc;
946 	struct its_node *its;
947 	unsigned long flags;
948 	int col_id = vpe->col_idx;
949 
950 	desc.its_vmovp_cmd.vpe = vpe;
951 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
952 
953 	if (!its_list_map) {
954 		its = list_first_entry(&its_nodes, struct its_node, entry);
955 		desc.its_vmovp_cmd.seq_num = 0;
956 		desc.its_vmovp_cmd.col = &its->collections[col_id];
957 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
958 		return;
959 	}
960 
961 	/*
962 	 * Yet another marvel of the architecture. If using the
963 	 * its_list "feature", we need to make sure that all ITSs
964 	 * receive all VMOVP commands in the same order. The only way
965 	 * to guarantee this is to make vmovp a serialization point.
966 	 *
967 	 * Wall <-- Head.
968 	 */
969 	raw_spin_lock_irqsave(&vmovp_lock, flags);
970 
971 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
972 
973 	/* Emit VMOVPs */
974 	list_for_each_entry(its, &its_nodes, entry) {
975 		if (!its->is_v4)
976 			continue;
977 
978 		if (!vpe->its_vm->vlpi_count[its->list_nr])
979 			continue;
980 
981 		desc.its_vmovp_cmd.col = &its->collections[col_id];
982 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
983 	}
984 
985 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
986 }
987 
988 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
989 {
990 	struct its_cmd_desc desc;
991 
992 	desc.its_vinvall_cmd.vpe = vpe;
993 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
994 }
995 
996 /*
997  * irqchip functions - assumes MSI, mostly.
998  */
999 
1000 static inline u32 its_get_event_id(struct irq_data *d)
1001 {
1002 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1003 	return d->hwirq - its_dev->event_map.lpi_base;
1004 }
1005 
1006 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1007 {
1008 	irq_hw_number_t hwirq;
1009 	struct page *prop_page;
1010 	u8 *cfg;
1011 
1012 	if (irqd_is_forwarded_to_vcpu(d)) {
1013 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1014 		u32 event = its_get_event_id(d);
1015 		struct its_vlpi_map *map;
1016 
1017 		prop_page = its_dev->event_map.vm->vprop_page;
1018 		map = &its_dev->event_map.vlpi_maps[event];
1019 		hwirq = map->vintid;
1020 
1021 		/* Remember the updated property */
1022 		map->properties &= ~clr;
1023 		map->properties |= set | LPI_PROP_GROUP1;
1024 	} else {
1025 		prop_page = gic_rdists->prop_page;
1026 		hwirq = d->hwirq;
1027 	}
1028 
1029 	cfg = page_address(prop_page) + hwirq - 8192;
1030 	*cfg &= ~clr;
1031 	*cfg |= set | LPI_PROP_GROUP1;
1032 
1033 	/*
1034 	 * Make the above write visible to the redistributors.
1035 	 * And yes, we're flushing exactly: One. Single. Byte.
1036 	 * Humpf...
1037 	 */
1038 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1039 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1040 	else
1041 		dsb(ishst);
1042 }
1043 
1044 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1045 {
1046 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047 
1048 	lpi_write_config(d, clr, set);
1049 	its_send_inv(its_dev, its_get_event_id(d));
1050 }
1051 
1052 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1053 {
1054 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1055 	u32 event = its_get_event_id(d);
1056 
1057 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1058 		return;
1059 
1060 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1061 
1062 	/*
1063 	 * More fun with the architecture:
1064 	 *
1065 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1066 	 * value or to 1023, depending on the enable bit. But that
1067 	 * would be issueing a mapping for an /existing/ DevID+EventID
1068 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1069 	 * to the /same/ vPE, using this opportunity to adjust the
1070 	 * doorbell. Mouahahahaha. We loves it, Precious.
1071 	 */
1072 	its_send_vmovi(its_dev, event);
1073 }
1074 
1075 static void its_mask_irq(struct irq_data *d)
1076 {
1077 	if (irqd_is_forwarded_to_vcpu(d))
1078 		its_vlpi_set_doorbell(d, false);
1079 
1080 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1081 }
1082 
1083 static void its_unmask_irq(struct irq_data *d)
1084 {
1085 	if (irqd_is_forwarded_to_vcpu(d))
1086 		its_vlpi_set_doorbell(d, true);
1087 
1088 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1089 }
1090 
1091 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1092 			    bool force)
1093 {
1094 	unsigned int cpu;
1095 	const struct cpumask *cpu_mask = cpu_online_mask;
1096 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1097 	struct its_collection *target_col;
1098 	u32 id = its_get_event_id(d);
1099 
1100 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1101 	if (irqd_is_forwarded_to_vcpu(d))
1102 		return -EINVAL;
1103 
1104        /* lpi cannot be routed to a redistributor that is on a foreign node */
1105 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1106 		if (its_dev->its->numa_node >= 0) {
1107 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1108 			if (!cpumask_intersects(mask_val, cpu_mask))
1109 				return -EINVAL;
1110 		}
1111 	}
1112 
1113 	cpu = cpumask_any_and(mask_val, cpu_mask);
1114 
1115 	if (cpu >= nr_cpu_ids)
1116 		return -EINVAL;
1117 
1118 	/* don't set the affinity when the target cpu is same as current one */
1119 	if (cpu != its_dev->event_map.col_map[id]) {
1120 		target_col = &its_dev->its->collections[cpu];
1121 		its_send_movi(its_dev, target_col, id);
1122 		its_dev->event_map.col_map[id] = cpu;
1123 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1124 	}
1125 
1126 	return IRQ_SET_MASK_OK_DONE;
1127 }
1128 
1129 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1130 {
1131 	struct its_node *its = its_dev->its;
1132 
1133 	return its->phys_base + GITS_TRANSLATER;
1134 }
1135 
1136 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1137 {
1138 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1139 	struct its_node *its;
1140 	u64 addr;
1141 
1142 	its = its_dev->its;
1143 	addr = its->get_msi_base(its_dev);
1144 
1145 	msg->address_lo		= lower_32_bits(addr);
1146 	msg->address_hi		= upper_32_bits(addr);
1147 	msg->data		= its_get_event_id(d);
1148 
1149 	iommu_dma_map_msi_msg(d->irq, msg);
1150 }
1151 
1152 static int its_irq_set_irqchip_state(struct irq_data *d,
1153 				     enum irqchip_irq_state which,
1154 				     bool state)
1155 {
1156 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1157 	u32 event = its_get_event_id(d);
1158 
1159 	if (which != IRQCHIP_STATE_PENDING)
1160 		return -EINVAL;
1161 
1162 	if (state)
1163 		its_send_int(its_dev, event);
1164 	else
1165 		its_send_clear(its_dev, event);
1166 
1167 	return 0;
1168 }
1169 
1170 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1171 {
1172 	unsigned long flags;
1173 
1174 	/* Not using the ITS list? Everything is always mapped. */
1175 	if (!its_list_map)
1176 		return;
1177 
1178 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1179 
1180 	/*
1181 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1182 	 * them mapped now.
1183 	 */
1184 	vm->vlpi_count[its->list_nr]++;
1185 
1186 	if (vm->vlpi_count[its->list_nr] == 1) {
1187 		int i;
1188 
1189 		for (i = 0; i < vm->nr_vpes; i++) {
1190 			struct its_vpe *vpe = vm->vpes[i];
1191 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1192 
1193 			/* Map the VPE to the first possible CPU */
1194 			vpe->col_idx = cpumask_first(cpu_online_mask);
1195 			its_send_vmapp(its, vpe, true);
1196 			its_send_vinvall(its, vpe);
1197 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1198 		}
1199 	}
1200 
1201 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1202 }
1203 
1204 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1205 {
1206 	unsigned long flags;
1207 
1208 	/* Not using the ITS list? Everything is always mapped. */
1209 	if (!its_list_map)
1210 		return;
1211 
1212 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1213 
1214 	if (!--vm->vlpi_count[its->list_nr]) {
1215 		int i;
1216 
1217 		for (i = 0; i < vm->nr_vpes; i++)
1218 			its_send_vmapp(its, vm->vpes[i], false);
1219 	}
1220 
1221 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1222 }
1223 
1224 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1225 {
1226 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1227 	u32 event = its_get_event_id(d);
1228 	int ret = 0;
1229 
1230 	if (!info->map)
1231 		return -EINVAL;
1232 
1233 	mutex_lock(&its_dev->event_map.vlpi_lock);
1234 
1235 	if (!its_dev->event_map.vm) {
1236 		struct its_vlpi_map *maps;
1237 
1238 		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1239 			       GFP_KERNEL);
1240 		if (!maps) {
1241 			ret = -ENOMEM;
1242 			goto out;
1243 		}
1244 
1245 		its_dev->event_map.vm = info->map->vm;
1246 		its_dev->event_map.vlpi_maps = maps;
1247 	} else if (its_dev->event_map.vm != info->map->vm) {
1248 		ret = -EINVAL;
1249 		goto out;
1250 	}
1251 
1252 	/* Get our private copy of the mapping information */
1253 	its_dev->event_map.vlpi_maps[event] = *info->map;
1254 
1255 	if (irqd_is_forwarded_to_vcpu(d)) {
1256 		/* Already mapped, move it around */
1257 		its_send_vmovi(its_dev, event);
1258 	} else {
1259 		/* Ensure all the VPEs are mapped on this ITS */
1260 		its_map_vm(its_dev->its, info->map->vm);
1261 
1262 		/*
1263 		 * Flag the interrupt as forwarded so that we can
1264 		 * start poking the virtual property table.
1265 		 */
1266 		irqd_set_forwarded_to_vcpu(d);
1267 
1268 		/* Write out the property to the prop table */
1269 		lpi_write_config(d, 0xff, info->map->properties);
1270 
1271 		/* Drop the physical mapping */
1272 		its_send_discard(its_dev, event);
1273 
1274 		/* and install the virtual one */
1275 		its_send_vmapti(its_dev, event);
1276 
1277 		/* Increment the number of VLPIs */
1278 		its_dev->event_map.nr_vlpis++;
1279 	}
1280 
1281 out:
1282 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1283 	return ret;
1284 }
1285 
1286 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1287 {
1288 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1289 	u32 event = its_get_event_id(d);
1290 	int ret = 0;
1291 
1292 	mutex_lock(&its_dev->event_map.vlpi_lock);
1293 
1294 	if (!its_dev->event_map.vm ||
1295 	    !its_dev->event_map.vlpi_maps[event].vm) {
1296 		ret = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	/* Copy our mapping information to the incoming request */
1301 	*info->map = its_dev->event_map.vlpi_maps[event];
1302 
1303 out:
1304 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1305 	return ret;
1306 }
1307 
1308 static int its_vlpi_unmap(struct irq_data *d)
1309 {
1310 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311 	u32 event = its_get_event_id(d);
1312 	int ret = 0;
1313 
1314 	mutex_lock(&its_dev->event_map.vlpi_lock);
1315 
1316 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1317 		ret = -EINVAL;
1318 		goto out;
1319 	}
1320 
1321 	/* Drop the virtual mapping */
1322 	its_send_discard(its_dev, event);
1323 
1324 	/* and restore the physical one */
1325 	irqd_clr_forwarded_to_vcpu(d);
1326 	its_send_mapti(its_dev, d->hwirq, event);
1327 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1328 				    LPI_PROP_ENABLED |
1329 				    LPI_PROP_GROUP1));
1330 
1331 	/* Potentially unmap the VM from this ITS */
1332 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1333 
1334 	/*
1335 	 * Drop the refcount and make the device available again if
1336 	 * this was the last VLPI.
1337 	 */
1338 	if (!--its_dev->event_map.nr_vlpis) {
1339 		its_dev->event_map.vm = NULL;
1340 		kfree(its_dev->event_map.vlpi_maps);
1341 	}
1342 
1343 out:
1344 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1345 	return ret;
1346 }
1347 
1348 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1349 {
1350 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1351 
1352 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1353 		return -EINVAL;
1354 
1355 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1356 		lpi_update_config(d, 0xff, info->config);
1357 	else
1358 		lpi_write_config(d, 0xff, info->config);
1359 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1360 
1361 	return 0;
1362 }
1363 
1364 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1365 {
1366 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1367 	struct its_cmd_info *info = vcpu_info;
1368 
1369 	/* Need a v4 ITS */
1370 	if (!its_dev->its->is_v4)
1371 		return -EINVAL;
1372 
1373 	/* Unmap request? */
1374 	if (!info)
1375 		return its_vlpi_unmap(d);
1376 
1377 	switch (info->cmd_type) {
1378 	case MAP_VLPI:
1379 		return its_vlpi_map(d, info);
1380 
1381 	case GET_VLPI:
1382 		return its_vlpi_get(d, info);
1383 
1384 	case PROP_UPDATE_VLPI:
1385 	case PROP_UPDATE_AND_INV_VLPI:
1386 		return its_vlpi_prop_update(d, info);
1387 
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 }
1392 
1393 static struct irq_chip its_irq_chip = {
1394 	.name			= "ITS",
1395 	.irq_mask		= its_mask_irq,
1396 	.irq_unmask		= its_unmask_irq,
1397 	.irq_eoi		= irq_chip_eoi_parent,
1398 	.irq_set_affinity	= its_set_affinity,
1399 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1400 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1401 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1402 };
1403 
1404 /*
1405  * How we allocate LPIs:
1406  *
1407  * The GIC has id_bits bits for interrupt identifiers. From there, we
1408  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1409  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1410  * bits to the right.
1411  *
1412  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1413  */
1414 #define IRQS_PER_CHUNK_SHIFT	5
1415 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
1416 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1417 
1418 static unsigned long *lpi_bitmap;
1419 static u32 lpi_chunks;
1420 static DEFINE_SPINLOCK(lpi_lock);
1421 
1422 static int its_lpi_to_chunk(int lpi)
1423 {
1424 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1425 }
1426 
1427 static int its_chunk_to_lpi(int chunk)
1428 {
1429 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1430 }
1431 
1432 static int __init its_lpi_init(u32 id_bits)
1433 {
1434 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1435 
1436 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1437 			     GFP_KERNEL);
1438 	if (!lpi_bitmap) {
1439 		lpi_chunks = 0;
1440 		return -ENOMEM;
1441 	}
1442 
1443 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1444 	return 0;
1445 }
1446 
1447 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1448 {
1449 	unsigned long *bitmap = NULL;
1450 	int chunk_id;
1451 	int nr_chunks;
1452 	int i;
1453 
1454 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1455 
1456 	spin_lock(&lpi_lock);
1457 
1458 	do {
1459 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1460 						      0, nr_chunks, 0);
1461 		if (chunk_id < lpi_chunks)
1462 			break;
1463 
1464 		nr_chunks--;
1465 	} while (nr_chunks > 0);
1466 
1467 	if (!nr_chunks)
1468 		goto out;
1469 
1470 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1471 			 GFP_ATOMIC);
1472 	if (!bitmap)
1473 		goto out;
1474 
1475 	for (i = 0; i < nr_chunks; i++)
1476 		set_bit(chunk_id + i, lpi_bitmap);
1477 
1478 	*base = its_chunk_to_lpi(chunk_id);
1479 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1480 
1481 out:
1482 	spin_unlock(&lpi_lock);
1483 
1484 	if (!bitmap)
1485 		*base = *nr_ids = 0;
1486 
1487 	return bitmap;
1488 }
1489 
1490 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1491 {
1492 	int lpi;
1493 
1494 	spin_lock(&lpi_lock);
1495 
1496 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1497 		int chunk = its_lpi_to_chunk(lpi);
1498 
1499 		BUG_ON(chunk > lpi_chunks);
1500 		if (test_bit(chunk, lpi_bitmap)) {
1501 			clear_bit(chunk, lpi_bitmap);
1502 		} else {
1503 			pr_err("Bad LPI chunk %d\n", chunk);
1504 		}
1505 	}
1506 
1507 	spin_unlock(&lpi_lock);
1508 
1509 	kfree(bitmap);
1510 }
1511 
1512 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1513 {
1514 	struct page *prop_page;
1515 
1516 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1517 	if (!prop_page)
1518 		return NULL;
1519 
1520 	/* Priority 0xa0, Group-1, disabled */
1521 	memset(page_address(prop_page),
1522 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1523 	       LPI_PROPBASE_SZ);
1524 
1525 	/* Make sure the GIC will observe the written configuration */
1526 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1527 
1528 	return prop_page;
1529 }
1530 
1531 static void its_free_prop_table(struct page *prop_page)
1532 {
1533 	free_pages((unsigned long)page_address(prop_page),
1534 		   get_order(LPI_PROPBASE_SZ));
1535 }
1536 
1537 static int __init its_alloc_lpi_tables(void)
1538 {
1539 	phys_addr_t paddr;
1540 
1541 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1542 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1543 	if (!gic_rdists->prop_page) {
1544 		pr_err("Failed to allocate PROPBASE\n");
1545 		return -ENOMEM;
1546 	}
1547 
1548 	paddr = page_to_phys(gic_rdists->prop_page);
1549 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1550 
1551 	return its_lpi_init(lpi_id_bits);
1552 }
1553 
1554 static const char *its_base_type_string[] = {
1555 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1556 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1557 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1558 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1559 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1560 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1561 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1562 };
1563 
1564 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1565 {
1566 	u32 idx = baser - its->tables;
1567 
1568 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1569 }
1570 
1571 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1572 			    u64 val)
1573 {
1574 	u32 idx = baser - its->tables;
1575 
1576 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1577 	baser->val = its_read_baser(its, baser);
1578 }
1579 
1580 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1581 			   u64 cache, u64 shr, u32 psz, u32 order,
1582 			   bool indirect)
1583 {
1584 	u64 val = its_read_baser(its, baser);
1585 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1586 	u64 type = GITS_BASER_TYPE(val);
1587 	u64 baser_phys, tmp;
1588 	u32 alloc_pages;
1589 	void *base;
1590 
1591 retry_alloc_baser:
1592 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1593 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1594 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1595 			&its->phys_base, its_base_type_string[type],
1596 			alloc_pages, GITS_BASER_PAGES_MAX);
1597 		alloc_pages = GITS_BASER_PAGES_MAX;
1598 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1599 	}
1600 
1601 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1602 	if (!base)
1603 		return -ENOMEM;
1604 
1605 	baser_phys = virt_to_phys(base);
1606 
1607 	/* Check if the physical address of the memory is above 48bits */
1608 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1609 
1610 		/* 52bit PA is supported only when PageSize=64K */
1611 		if (psz != SZ_64K) {
1612 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1613 			free_pages((unsigned long)base, order);
1614 			return -ENXIO;
1615 		}
1616 
1617 		/* Convert 52bit PA to 48bit field */
1618 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1619 	}
1620 
1621 retry_baser:
1622 	val = (baser_phys					 |
1623 		(type << GITS_BASER_TYPE_SHIFT)			 |
1624 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1625 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1626 		cache						 |
1627 		shr						 |
1628 		GITS_BASER_VALID);
1629 
1630 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1631 
1632 	switch (psz) {
1633 	case SZ_4K:
1634 		val |= GITS_BASER_PAGE_SIZE_4K;
1635 		break;
1636 	case SZ_16K:
1637 		val |= GITS_BASER_PAGE_SIZE_16K;
1638 		break;
1639 	case SZ_64K:
1640 		val |= GITS_BASER_PAGE_SIZE_64K;
1641 		break;
1642 	}
1643 
1644 	its_write_baser(its, baser, val);
1645 	tmp = baser->val;
1646 
1647 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1648 		/*
1649 		 * Shareability didn't stick. Just use
1650 		 * whatever the read reported, which is likely
1651 		 * to be the only thing this redistributor
1652 		 * supports. If that's zero, make it
1653 		 * non-cacheable as well.
1654 		 */
1655 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1656 		if (!shr) {
1657 			cache = GITS_BASER_nC;
1658 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1659 		}
1660 		goto retry_baser;
1661 	}
1662 
1663 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1664 		/*
1665 		 * Page size didn't stick. Let's try a smaller
1666 		 * size and retry. If we reach 4K, then
1667 		 * something is horribly wrong...
1668 		 */
1669 		free_pages((unsigned long)base, order);
1670 		baser->base = NULL;
1671 
1672 		switch (psz) {
1673 		case SZ_16K:
1674 			psz = SZ_4K;
1675 			goto retry_alloc_baser;
1676 		case SZ_64K:
1677 			psz = SZ_16K;
1678 			goto retry_alloc_baser;
1679 		}
1680 	}
1681 
1682 	if (val != tmp) {
1683 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1684 		       &its->phys_base, its_base_type_string[type],
1685 		       val, tmp);
1686 		free_pages((unsigned long)base, order);
1687 		return -ENXIO;
1688 	}
1689 
1690 	baser->order = order;
1691 	baser->base = base;
1692 	baser->psz = psz;
1693 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1694 
1695 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1696 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1697 		its_base_type_string[type],
1698 		(unsigned long)virt_to_phys(base),
1699 		indirect ? "indirect" : "flat", (int)esz,
1700 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1701 
1702 	return 0;
1703 }
1704 
1705 static bool its_parse_indirect_baser(struct its_node *its,
1706 				     struct its_baser *baser,
1707 				     u32 psz, u32 *order, u32 ids)
1708 {
1709 	u64 tmp = its_read_baser(its, baser);
1710 	u64 type = GITS_BASER_TYPE(tmp);
1711 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1712 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1713 	u32 new_order = *order;
1714 	bool indirect = false;
1715 
1716 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1717 	if ((esz << ids) > (psz * 2)) {
1718 		/*
1719 		 * Find out whether hw supports a single or two-level table by
1720 		 * table by reading bit at offset '62' after writing '1' to it.
1721 		 */
1722 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1723 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1724 
1725 		if (indirect) {
1726 			/*
1727 			 * The size of the lvl2 table is equal to ITS page size
1728 			 * which is 'psz'. For computing lvl1 table size,
1729 			 * subtract ID bits that sparse lvl2 table from 'ids'
1730 			 * which is reported by ITS hardware times lvl1 table
1731 			 * entry size.
1732 			 */
1733 			ids -= ilog2(psz / (int)esz);
1734 			esz = GITS_LVL1_ENTRY_SIZE;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Allocate as many entries as required to fit the
1740 	 * range of device IDs that the ITS can grok... The ID
1741 	 * space being incredibly sparse, this results in a
1742 	 * massive waste of memory if two-level device table
1743 	 * feature is not supported by hardware.
1744 	 */
1745 	new_order = max_t(u32, get_order(esz << ids), new_order);
1746 	if (new_order >= MAX_ORDER) {
1747 		new_order = MAX_ORDER - 1;
1748 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1749 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1750 			&its->phys_base, its_base_type_string[type],
1751 			its->device_ids, ids);
1752 	}
1753 
1754 	*order = new_order;
1755 
1756 	return indirect;
1757 }
1758 
1759 static void its_free_tables(struct its_node *its)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1764 		if (its->tables[i].base) {
1765 			free_pages((unsigned long)its->tables[i].base,
1766 				   its->tables[i].order);
1767 			its->tables[i].base = NULL;
1768 		}
1769 	}
1770 }
1771 
1772 static int its_alloc_tables(struct its_node *its)
1773 {
1774 	u64 shr = GITS_BASER_InnerShareable;
1775 	u64 cache = GITS_BASER_RaWaWb;
1776 	u32 psz = SZ_64K;
1777 	int err, i;
1778 
1779 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1780 		/* erratum 24313: ignore memory access type */
1781 		cache = GITS_BASER_nCnB;
1782 
1783 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1784 		struct its_baser *baser = its->tables + i;
1785 		u64 val = its_read_baser(its, baser);
1786 		u64 type = GITS_BASER_TYPE(val);
1787 		u32 order = get_order(psz);
1788 		bool indirect = false;
1789 
1790 		switch (type) {
1791 		case GITS_BASER_TYPE_NONE:
1792 			continue;
1793 
1794 		case GITS_BASER_TYPE_DEVICE:
1795 			indirect = its_parse_indirect_baser(its, baser,
1796 							    psz, &order,
1797 							    its->device_ids);
1798 		case GITS_BASER_TYPE_VCPU:
1799 			indirect = its_parse_indirect_baser(its, baser,
1800 							    psz, &order,
1801 							    ITS_MAX_VPEID_BITS);
1802 			break;
1803 		}
1804 
1805 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1806 		if (err < 0) {
1807 			its_free_tables(its);
1808 			return err;
1809 		}
1810 
1811 		/* Update settings which will be used for next BASERn */
1812 		psz = baser->psz;
1813 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1814 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 static int its_alloc_collections(struct its_node *its)
1821 {
1822 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1823 				   GFP_KERNEL);
1824 	if (!its->collections)
1825 		return -ENOMEM;
1826 
1827 	return 0;
1828 }
1829 
1830 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1831 {
1832 	struct page *pend_page;
1833 	/*
1834 	 * The pending pages have to be at least 64kB aligned,
1835 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1836 	 */
1837 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1838 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1839 	if (!pend_page)
1840 		return NULL;
1841 
1842 	/* Make sure the GIC will observe the zero-ed page */
1843 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1844 
1845 	return pend_page;
1846 }
1847 
1848 static void its_free_pending_table(struct page *pt)
1849 {
1850 	free_pages((unsigned long)page_address(pt),
1851 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1852 }
1853 
1854 static void its_cpu_init_lpis(void)
1855 {
1856 	void __iomem *rbase = gic_data_rdist_rd_base();
1857 	struct page *pend_page;
1858 	u64 val, tmp;
1859 
1860 	/* If we didn't allocate the pending table yet, do it now */
1861 	pend_page = gic_data_rdist()->pend_page;
1862 	if (!pend_page) {
1863 		phys_addr_t paddr;
1864 
1865 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1866 		if (!pend_page) {
1867 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1868 			       smp_processor_id());
1869 			return;
1870 		}
1871 
1872 		paddr = page_to_phys(pend_page);
1873 		pr_info("CPU%d: using LPI pending table @%pa\n",
1874 			smp_processor_id(), &paddr);
1875 		gic_data_rdist()->pend_page = pend_page;
1876 	}
1877 
1878 	/* Disable LPIs */
1879 	val = readl_relaxed(rbase + GICR_CTLR);
1880 	val &= ~GICR_CTLR_ENABLE_LPIS;
1881 	writel_relaxed(val, rbase + GICR_CTLR);
1882 
1883 	/*
1884 	 * Make sure any change to the table is observable by the GIC.
1885 	 */
1886 	dsb(sy);
1887 
1888 	/* set PROPBASE */
1889 	val = (page_to_phys(gic_rdists->prop_page) |
1890 	       GICR_PROPBASER_InnerShareable |
1891 	       GICR_PROPBASER_RaWaWb |
1892 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1893 
1894 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1895 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1896 
1897 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1898 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1899 			/*
1900 			 * The HW reports non-shareable, we must
1901 			 * remove the cacheability attributes as
1902 			 * well.
1903 			 */
1904 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1905 				 GICR_PROPBASER_CACHEABILITY_MASK);
1906 			val |= GICR_PROPBASER_nC;
1907 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1908 		}
1909 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1910 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1911 	}
1912 
1913 	/* set PENDBASE */
1914 	val = (page_to_phys(pend_page) |
1915 	       GICR_PENDBASER_InnerShareable |
1916 	       GICR_PENDBASER_RaWaWb);
1917 
1918 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1919 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1920 
1921 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1922 		/*
1923 		 * The HW reports non-shareable, we must remove the
1924 		 * cacheability attributes as well.
1925 		 */
1926 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1927 			 GICR_PENDBASER_CACHEABILITY_MASK);
1928 		val |= GICR_PENDBASER_nC;
1929 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1930 	}
1931 
1932 	/* Enable LPIs */
1933 	val = readl_relaxed(rbase + GICR_CTLR);
1934 	val |= GICR_CTLR_ENABLE_LPIS;
1935 	writel_relaxed(val, rbase + GICR_CTLR);
1936 
1937 	/* Make sure the GIC has seen the above */
1938 	dsb(sy);
1939 }
1940 
1941 static void its_cpu_init_collection(void)
1942 {
1943 	struct its_node *its;
1944 	int cpu;
1945 
1946 	spin_lock(&its_lock);
1947 	cpu = smp_processor_id();
1948 
1949 	list_for_each_entry(its, &its_nodes, entry) {
1950 		u64 target;
1951 
1952 		/* avoid cross node collections and its mapping */
1953 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1954 			struct device_node *cpu_node;
1955 
1956 			cpu_node = of_get_cpu_node(cpu, NULL);
1957 			if (its->numa_node != NUMA_NO_NODE &&
1958 				its->numa_node != of_node_to_nid(cpu_node))
1959 				continue;
1960 		}
1961 
1962 		/*
1963 		 * We now have to bind each collection to its target
1964 		 * redistributor.
1965 		 */
1966 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1967 			/*
1968 			 * This ITS wants the physical address of the
1969 			 * redistributor.
1970 			 */
1971 			target = gic_data_rdist()->phys_base;
1972 		} else {
1973 			/*
1974 			 * This ITS wants a linear CPU number.
1975 			 */
1976 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1977 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1978 		}
1979 
1980 		/* Perform collection mapping */
1981 		its->collections[cpu].target_address = target;
1982 		its->collections[cpu].col_id = cpu;
1983 
1984 		its_send_mapc(its, &its->collections[cpu], 1);
1985 		its_send_invall(its, &its->collections[cpu]);
1986 	}
1987 
1988 	spin_unlock(&its_lock);
1989 }
1990 
1991 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1992 {
1993 	struct its_device *its_dev = NULL, *tmp;
1994 	unsigned long flags;
1995 
1996 	raw_spin_lock_irqsave(&its->lock, flags);
1997 
1998 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1999 		if (tmp->device_id == dev_id) {
2000 			its_dev = tmp;
2001 			break;
2002 		}
2003 	}
2004 
2005 	raw_spin_unlock_irqrestore(&its->lock, flags);
2006 
2007 	return its_dev;
2008 }
2009 
2010 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2011 {
2012 	int i;
2013 
2014 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2015 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2016 			return &its->tables[i];
2017 	}
2018 
2019 	return NULL;
2020 }
2021 
2022 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2023 {
2024 	struct page *page;
2025 	u32 esz, idx;
2026 	__le64 *table;
2027 
2028 	/* Don't allow device id that exceeds single, flat table limit */
2029 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2030 	if (!(baser->val & GITS_BASER_INDIRECT))
2031 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2032 
2033 	/* Compute 1st level table index & check if that exceeds table limit */
2034 	idx = id >> ilog2(baser->psz / esz);
2035 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2036 		return false;
2037 
2038 	table = baser->base;
2039 
2040 	/* Allocate memory for 2nd level table */
2041 	if (!table[idx]) {
2042 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2043 		if (!page)
2044 			return false;
2045 
2046 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2047 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2048 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2049 
2050 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2051 
2052 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2053 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2054 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2055 
2056 		/* Ensure updated table contents are visible to ITS hardware */
2057 		dsb(sy);
2058 	}
2059 
2060 	return true;
2061 }
2062 
2063 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2064 {
2065 	struct its_baser *baser;
2066 
2067 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2068 
2069 	/* Don't allow device id that exceeds ITS hardware limit */
2070 	if (!baser)
2071 		return (ilog2(dev_id) < its->device_ids);
2072 
2073 	return its_alloc_table_entry(baser, dev_id);
2074 }
2075 
2076 static bool its_alloc_vpe_table(u32 vpe_id)
2077 {
2078 	struct its_node *its;
2079 
2080 	/*
2081 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2082 	 * could try and only do it on ITSs corresponding to devices
2083 	 * that have interrupts targeted at this VPE, but the
2084 	 * complexity becomes crazy (and you have tons of memory
2085 	 * anyway, right?).
2086 	 */
2087 	list_for_each_entry(its, &its_nodes, entry) {
2088 		struct its_baser *baser;
2089 
2090 		if (!its->is_v4)
2091 			continue;
2092 
2093 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2094 		if (!baser)
2095 			return false;
2096 
2097 		if (!its_alloc_table_entry(baser, vpe_id))
2098 			return false;
2099 	}
2100 
2101 	return true;
2102 }
2103 
2104 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2105 					    int nvecs, bool alloc_lpis)
2106 {
2107 	struct its_device *dev;
2108 	unsigned long *lpi_map = NULL;
2109 	unsigned long flags;
2110 	u16 *col_map = NULL;
2111 	void *itt;
2112 	int lpi_base;
2113 	int nr_lpis;
2114 	int nr_ites;
2115 	int sz;
2116 
2117 	if (!its_alloc_device_table(its, dev_id))
2118 		return NULL;
2119 
2120 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2121 	/*
2122 	 * At least one bit of EventID is being used, hence a minimum
2123 	 * of two entries. No, the architecture doesn't let you
2124 	 * express an ITT with a single entry.
2125 	 */
2126 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
2127 	sz = nr_ites * its->ite_size;
2128 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2129 	itt = kzalloc(sz, GFP_KERNEL);
2130 	if (alloc_lpis) {
2131 		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2132 		if (lpi_map)
2133 			col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2134 					  GFP_KERNEL);
2135 	} else {
2136 		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2137 		nr_lpis = 0;
2138 		lpi_base = 0;
2139 	}
2140 
2141 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2142 		kfree(dev);
2143 		kfree(itt);
2144 		kfree(lpi_map);
2145 		kfree(col_map);
2146 		return NULL;
2147 	}
2148 
2149 	gic_flush_dcache_to_poc(itt, sz);
2150 
2151 	dev->its = its;
2152 	dev->itt = itt;
2153 	dev->nr_ites = nr_ites;
2154 	dev->event_map.lpi_map = lpi_map;
2155 	dev->event_map.col_map = col_map;
2156 	dev->event_map.lpi_base = lpi_base;
2157 	dev->event_map.nr_lpis = nr_lpis;
2158 	mutex_init(&dev->event_map.vlpi_lock);
2159 	dev->device_id = dev_id;
2160 	INIT_LIST_HEAD(&dev->entry);
2161 
2162 	raw_spin_lock_irqsave(&its->lock, flags);
2163 	list_add(&dev->entry, &its->its_device_list);
2164 	raw_spin_unlock_irqrestore(&its->lock, flags);
2165 
2166 	/* Map device to its ITT */
2167 	its_send_mapd(dev, 1);
2168 
2169 	return dev;
2170 }
2171 
2172 static void its_free_device(struct its_device *its_dev)
2173 {
2174 	unsigned long flags;
2175 
2176 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2177 	list_del(&its_dev->entry);
2178 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2179 	kfree(its_dev->itt);
2180 	kfree(its_dev);
2181 }
2182 
2183 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2184 {
2185 	int idx;
2186 
2187 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2188 				  dev->event_map.nr_lpis);
2189 	if (idx == dev->event_map.nr_lpis)
2190 		return -ENOSPC;
2191 
2192 	*hwirq = dev->event_map.lpi_base + idx;
2193 	set_bit(idx, dev->event_map.lpi_map);
2194 
2195 	return 0;
2196 }
2197 
2198 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2199 			   int nvec, msi_alloc_info_t *info)
2200 {
2201 	struct its_node *its;
2202 	struct its_device *its_dev;
2203 	struct msi_domain_info *msi_info;
2204 	u32 dev_id;
2205 
2206 	/*
2207 	 * We ignore "dev" entierely, and rely on the dev_id that has
2208 	 * been passed via the scratchpad. This limits this domain's
2209 	 * usefulness to upper layers that definitely know that they
2210 	 * are built on top of the ITS.
2211 	 */
2212 	dev_id = info->scratchpad[0].ul;
2213 
2214 	msi_info = msi_get_domain_info(domain);
2215 	its = msi_info->data;
2216 
2217 	if (!gic_rdists->has_direct_lpi &&
2218 	    vpe_proxy.dev &&
2219 	    vpe_proxy.dev->its == its &&
2220 	    dev_id == vpe_proxy.dev->device_id) {
2221 		/* Bad luck. Get yourself a better implementation */
2222 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2223 			  dev_id);
2224 		return -EINVAL;
2225 	}
2226 
2227 	its_dev = its_find_device(its, dev_id);
2228 	if (its_dev) {
2229 		/*
2230 		 * We already have seen this ID, probably through
2231 		 * another alias (PCI bridge of some sort). No need to
2232 		 * create the device.
2233 		 */
2234 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2235 		goto out;
2236 	}
2237 
2238 	its_dev = its_create_device(its, dev_id, nvec, true);
2239 	if (!its_dev)
2240 		return -ENOMEM;
2241 
2242 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2243 out:
2244 	info->scratchpad[0].ptr = its_dev;
2245 	return 0;
2246 }
2247 
2248 static struct msi_domain_ops its_msi_domain_ops = {
2249 	.msi_prepare	= its_msi_prepare,
2250 };
2251 
2252 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2253 				    unsigned int virq,
2254 				    irq_hw_number_t hwirq)
2255 {
2256 	struct irq_fwspec fwspec;
2257 
2258 	if (irq_domain_get_of_node(domain->parent)) {
2259 		fwspec.fwnode = domain->parent->fwnode;
2260 		fwspec.param_count = 3;
2261 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2262 		fwspec.param[1] = hwirq;
2263 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2264 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2265 		fwspec.fwnode = domain->parent->fwnode;
2266 		fwspec.param_count = 2;
2267 		fwspec.param[0] = hwirq;
2268 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2269 	} else {
2270 		return -EINVAL;
2271 	}
2272 
2273 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2274 }
2275 
2276 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2277 				unsigned int nr_irqs, void *args)
2278 {
2279 	msi_alloc_info_t *info = args;
2280 	struct its_device *its_dev = info->scratchpad[0].ptr;
2281 	irq_hw_number_t hwirq;
2282 	int err;
2283 	int i;
2284 
2285 	for (i = 0; i < nr_irqs; i++) {
2286 		err = its_alloc_device_irq(its_dev, &hwirq);
2287 		if (err)
2288 			return err;
2289 
2290 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2291 		if (err)
2292 			return err;
2293 
2294 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2295 					      hwirq, &its_irq_chip, its_dev);
2296 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2297 		pr_debug("ID:%d pID:%d vID:%d\n",
2298 			 (int)(hwirq - its_dev->event_map.lpi_base),
2299 			 (int) hwirq, virq + i);
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int its_irq_domain_activate(struct irq_domain *domain,
2306 				   struct irq_data *d, bool reserve)
2307 {
2308 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2309 	u32 event = its_get_event_id(d);
2310 	const struct cpumask *cpu_mask = cpu_online_mask;
2311 	int cpu;
2312 
2313 	/* get the cpu_mask of local node */
2314 	if (its_dev->its->numa_node >= 0)
2315 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2316 
2317 	/* Bind the LPI to the first possible CPU */
2318 	cpu = cpumask_first(cpu_mask);
2319 	its_dev->event_map.col_map[event] = cpu;
2320 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2321 
2322 	/* Map the GIC IRQ and event to the device */
2323 	its_send_mapti(its_dev, d->hwirq, event);
2324 	return 0;
2325 }
2326 
2327 static void its_irq_domain_deactivate(struct irq_domain *domain,
2328 				      struct irq_data *d)
2329 {
2330 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2331 	u32 event = its_get_event_id(d);
2332 
2333 	/* Stop the delivery of interrupts */
2334 	its_send_discard(its_dev, event);
2335 }
2336 
2337 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2338 				unsigned int nr_irqs)
2339 {
2340 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2341 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2342 	int i;
2343 
2344 	for (i = 0; i < nr_irqs; i++) {
2345 		struct irq_data *data = irq_domain_get_irq_data(domain,
2346 								virq + i);
2347 		u32 event = its_get_event_id(data);
2348 
2349 		/* Mark interrupt index as unused */
2350 		clear_bit(event, its_dev->event_map.lpi_map);
2351 
2352 		/* Nuke the entry in the domain */
2353 		irq_domain_reset_irq_data(data);
2354 	}
2355 
2356 	/* If all interrupts have been freed, start mopping the floor */
2357 	if (bitmap_empty(its_dev->event_map.lpi_map,
2358 			 its_dev->event_map.nr_lpis)) {
2359 		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2360 				    its_dev->event_map.lpi_base,
2361 				    its_dev->event_map.nr_lpis);
2362 		kfree(its_dev->event_map.col_map);
2363 
2364 		/* Unmap device/itt */
2365 		its_send_mapd(its_dev, 0);
2366 		its_free_device(its_dev);
2367 	}
2368 
2369 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2370 }
2371 
2372 static const struct irq_domain_ops its_domain_ops = {
2373 	.alloc			= its_irq_domain_alloc,
2374 	.free			= its_irq_domain_free,
2375 	.activate		= its_irq_domain_activate,
2376 	.deactivate		= its_irq_domain_deactivate,
2377 };
2378 
2379 /*
2380  * This is insane.
2381  *
2382  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2383  * likely), the only way to perform an invalidate is to use a fake
2384  * device to issue an INV command, implying that the LPI has first
2385  * been mapped to some event on that device. Since this is not exactly
2386  * cheap, we try to keep that mapping around as long as possible, and
2387  * only issue an UNMAP if we're short on available slots.
2388  *
2389  * Broken by design(tm).
2390  */
2391 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2392 {
2393 	/* Already unmapped? */
2394 	if (vpe->vpe_proxy_event == -1)
2395 		return;
2396 
2397 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2398 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2399 
2400 	/*
2401 	 * We don't track empty slots at all, so let's move the
2402 	 * next_victim pointer if we can quickly reuse that slot
2403 	 * instead of nuking an existing entry. Not clear that this is
2404 	 * always a win though, and this might just generate a ripple
2405 	 * effect... Let's just hope VPEs don't migrate too often.
2406 	 */
2407 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2408 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2409 
2410 	vpe->vpe_proxy_event = -1;
2411 }
2412 
2413 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2414 {
2415 	if (!gic_rdists->has_direct_lpi) {
2416 		unsigned long flags;
2417 
2418 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2419 		its_vpe_db_proxy_unmap_locked(vpe);
2420 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2421 	}
2422 }
2423 
2424 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2425 {
2426 	/* Already mapped? */
2427 	if (vpe->vpe_proxy_event != -1)
2428 		return;
2429 
2430 	/* This slot was already allocated. Kick the other VPE out. */
2431 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2432 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2433 
2434 	/* Map the new VPE instead */
2435 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2436 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2437 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2438 
2439 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2440 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2441 }
2442 
2443 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2444 {
2445 	unsigned long flags;
2446 	struct its_collection *target_col;
2447 
2448 	if (gic_rdists->has_direct_lpi) {
2449 		void __iomem *rdbase;
2450 
2451 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2452 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2453 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2454 			cpu_relax();
2455 
2456 		return;
2457 	}
2458 
2459 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2460 
2461 	its_vpe_db_proxy_map_locked(vpe);
2462 
2463 	target_col = &vpe_proxy.dev->its->collections[to];
2464 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2465 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2466 
2467 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2468 }
2469 
2470 static int its_vpe_set_affinity(struct irq_data *d,
2471 				const struct cpumask *mask_val,
2472 				bool force)
2473 {
2474 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2475 	int cpu = cpumask_first(mask_val);
2476 
2477 	/*
2478 	 * Changing affinity is mega expensive, so let's be as lazy as
2479 	 * we can and only do it if we really have to. Also, if mapped
2480 	 * into the proxy device, we need to move the doorbell
2481 	 * interrupt to its new location.
2482 	 */
2483 	if (vpe->col_idx != cpu) {
2484 		int from = vpe->col_idx;
2485 
2486 		vpe->col_idx = cpu;
2487 		its_send_vmovp(vpe);
2488 		its_vpe_db_proxy_move(vpe, from, cpu);
2489 	}
2490 
2491 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2492 
2493 	return IRQ_SET_MASK_OK_DONE;
2494 }
2495 
2496 static void its_vpe_schedule(struct its_vpe *vpe)
2497 {
2498 	void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2499 	u64 val;
2500 
2501 	/* Schedule the VPE */
2502 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2503 		GENMASK_ULL(51, 12);
2504 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2505 	val |= GICR_VPROPBASER_RaWb;
2506 	val |= GICR_VPROPBASER_InnerShareable;
2507 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2508 
2509 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2510 		GENMASK_ULL(51, 16);
2511 	val |= GICR_VPENDBASER_RaWaWb;
2512 	val |= GICR_VPENDBASER_NonShareable;
2513 	/*
2514 	 * There is no good way of finding out if the pending table is
2515 	 * empty as we can race against the doorbell interrupt very
2516 	 * easily. So in the end, vpe->pending_last is only an
2517 	 * indication that the vcpu has something pending, not one
2518 	 * that the pending table is empty. A good implementation
2519 	 * would be able to read its coarse map pretty quickly anyway,
2520 	 * making this a tolerable issue.
2521 	 */
2522 	val |= GICR_VPENDBASER_PendingLast;
2523 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2524 	val |= GICR_VPENDBASER_Valid;
2525 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2526 }
2527 
2528 static void its_vpe_deschedule(struct its_vpe *vpe)
2529 {
2530 	void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2531 	u32 count = 1000000;	/* 1s! */
2532 	bool clean;
2533 	u64 val;
2534 
2535 	/* We're being scheduled out */
2536 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2537 	val &= ~GICR_VPENDBASER_Valid;
2538 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2539 
2540 	do {
2541 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2542 		clean = !(val & GICR_VPENDBASER_Dirty);
2543 		if (!clean) {
2544 			count--;
2545 			cpu_relax();
2546 			udelay(1);
2547 		}
2548 	} while (!clean && count);
2549 
2550 	if (unlikely(!clean && !count)) {
2551 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2552 		vpe->idai = false;
2553 		vpe->pending_last = true;
2554 	} else {
2555 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2556 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2557 	}
2558 }
2559 
2560 static void its_vpe_invall(struct its_vpe *vpe)
2561 {
2562 	struct its_node *its;
2563 
2564 	list_for_each_entry(its, &its_nodes, entry) {
2565 		if (!its->is_v4)
2566 			continue;
2567 
2568 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2569 			continue;
2570 
2571 		/*
2572 		 * Sending a VINVALL to a single ITS is enough, as all
2573 		 * we need is to reach the redistributors.
2574 		 */
2575 		its_send_vinvall(its, vpe);
2576 		return;
2577 	}
2578 }
2579 
2580 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2581 {
2582 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2583 	struct its_cmd_info *info = vcpu_info;
2584 
2585 	switch (info->cmd_type) {
2586 	case SCHEDULE_VPE:
2587 		its_vpe_schedule(vpe);
2588 		return 0;
2589 
2590 	case DESCHEDULE_VPE:
2591 		its_vpe_deschedule(vpe);
2592 		return 0;
2593 
2594 	case INVALL_VPE:
2595 		its_vpe_invall(vpe);
2596 		return 0;
2597 
2598 	default:
2599 		return -EINVAL;
2600 	}
2601 }
2602 
2603 static void its_vpe_send_cmd(struct its_vpe *vpe,
2604 			     void (*cmd)(struct its_device *, u32))
2605 {
2606 	unsigned long flags;
2607 
2608 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2609 
2610 	its_vpe_db_proxy_map_locked(vpe);
2611 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2612 
2613 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2614 }
2615 
2616 static void its_vpe_send_inv(struct irq_data *d)
2617 {
2618 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2619 
2620 	if (gic_rdists->has_direct_lpi) {
2621 		void __iomem *rdbase;
2622 
2623 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2624 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2625 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2626 			cpu_relax();
2627 	} else {
2628 		its_vpe_send_cmd(vpe, its_send_inv);
2629 	}
2630 }
2631 
2632 static void its_vpe_mask_irq(struct irq_data *d)
2633 {
2634 	/*
2635 	 * We need to unmask the LPI, which is described by the parent
2636 	 * irq_data. Instead of calling into the parent (which won't
2637 	 * exactly do the right thing, let's simply use the
2638 	 * parent_data pointer. Yes, I'm naughty.
2639 	 */
2640 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2641 	its_vpe_send_inv(d);
2642 }
2643 
2644 static void its_vpe_unmask_irq(struct irq_data *d)
2645 {
2646 	/* Same hack as above... */
2647 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2648 	its_vpe_send_inv(d);
2649 }
2650 
2651 static int its_vpe_set_irqchip_state(struct irq_data *d,
2652 				     enum irqchip_irq_state which,
2653 				     bool state)
2654 {
2655 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2656 
2657 	if (which != IRQCHIP_STATE_PENDING)
2658 		return -EINVAL;
2659 
2660 	if (gic_rdists->has_direct_lpi) {
2661 		void __iomem *rdbase;
2662 
2663 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2664 		if (state) {
2665 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2666 		} else {
2667 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2668 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2669 				cpu_relax();
2670 		}
2671 	} else {
2672 		if (state)
2673 			its_vpe_send_cmd(vpe, its_send_int);
2674 		else
2675 			its_vpe_send_cmd(vpe, its_send_clear);
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 static struct irq_chip its_vpe_irq_chip = {
2682 	.name			= "GICv4-vpe",
2683 	.irq_mask		= its_vpe_mask_irq,
2684 	.irq_unmask		= its_vpe_unmask_irq,
2685 	.irq_eoi		= irq_chip_eoi_parent,
2686 	.irq_set_affinity	= its_vpe_set_affinity,
2687 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2688 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2689 };
2690 
2691 static int its_vpe_id_alloc(void)
2692 {
2693 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2694 }
2695 
2696 static void its_vpe_id_free(u16 id)
2697 {
2698 	ida_simple_remove(&its_vpeid_ida, id);
2699 }
2700 
2701 static int its_vpe_init(struct its_vpe *vpe)
2702 {
2703 	struct page *vpt_page;
2704 	int vpe_id;
2705 
2706 	/* Allocate vpe_id */
2707 	vpe_id = its_vpe_id_alloc();
2708 	if (vpe_id < 0)
2709 		return vpe_id;
2710 
2711 	/* Allocate VPT */
2712 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2713 	if (!vpt_page) {
2714 		its_vpe_id_free(vpe_id);
2715 		return -ENOMEM;
2716 	}
2717 
2718 	if (!its_alloc_vpe_table(vpe_id)) {
2719 		its_vpe_id_free(vpe_id);
2720 		its_free_pending_table(vpe->vpt_page);
2721 		return -ENOMEM;
2722 	}
2723 
2724 	vpe->vpe_id = vpe_id;
2725 	vpe->vpt_page = vpt_page;
2726 	vpe->vpe_proxy_event = -1;
2727 
2728 	return 0;
2729 }
2730 
2731 static void its_vpe_teardown(struct its_vpe *vpe)
2732 {
2733 	its_vpe_db_proxy_unmap(vpe);
2734 	its_vpe_id_free(vpe->vpe_id);
2735 	its_free_pending_table(vpe->vpt_page);
2736 }
2737 
2738 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2739 				    unsigned int virq,
2740 				    unsigned int nr_irqs)
2741 {
2742 	struct its_vm *vm = domain->host_data;
2743 	int i;
2744 
2745 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2746 
2747 	for (i = 0; i < nr_irqs; i++) {
2748 		struct irq_data *data = irq_domain_get_irq_data(domain,
2749 								virq + i);
2750 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2751 
2752 		BUG_ON(vm != vpe->its_vm);
2753 
2754 		clear_bit(data->hwirq, vm->db_bitmap);
2755 		its_vpe_teardown(vpe);
2756 		irq_domain_reset_irq_data(data);
2757 	}
2758 
2759 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2760 		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2761 		its_free_prop_table(vm->vprop_page);
2762 	}
2763 }
2764 
2765 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2766 				    unsigned int nr_irqs, void *args)
2767 {
2768 	struct its_vm *vm = args;
2769 	unsigned long *bitmap;
2770 	struct page *vprop_page;
2771 	int base, nr_ids, i, err = 0;
2772 
2773 	BUG_ON(!vm);
2774 
2775 	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2776 	if (!bitmap)
2777 		return -ENOMEM;
2778 
2779 	if (nr_ids < nr_irqs) {
2780 		its_lpi_free_chunks(bitmap, base, nr_ids);
2781 		return -ENOMEM;
2782 	}
2783 
2784 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2785 	if (!vprop_page) {
2786 		its_lpi_free_chunks(bitmap, base, nr_ids);
2787 		return -ENOMEM;
2788 	}
2789 
2790 	vm->db_bitmap = bitmap;
2791 	vm->db_lpi_base = base;
2792 	vm->nr_db_lpis = nr_ids;
2793 	vm->vprop_page = vprop_page;
2794 
2795 	for (i = 0; i < nr_irqs; i++) {
2796 		vm->vpes[i]->vpe_db_lpi = base + i;
2797 		err = its_vpe_init(vm->vpes[i]);
2798 		if (err)
2799 			break;
2800 		err = its_irq_gic_domain_alloc(domain, virq + i,
2801 					       vm->vpes[i]->vpe_db_lpi);
2802 		if (err)
2803 			break;
2804 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2805 					      &its_vpe_irq_chip, vm->vpes[i]);
2806 		set_bit(i, bitmap);
2807 	}
2808 
2809 	if (err) {
2810 		if (i > 0)
2811 			its_vpe_irq_domain_free(domain, virq, i - 1);
2812 
2813 		its_lpi_free_chunks(bitmap, base, nr_ids);
2814 		its_free_prop_table(vprop_page);
2815 	}
2816 
2817 	return err;
2818 }
2819 
2820 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2821 				       struct irq_data *d, bool reserve)
2822 {
2823 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2824 	struct its_node *its;
2825 
2826 	/* If we use the list map, we issue VMAPP on demand... */
2827 	if (its_list_map)
2828 		return 0;
2829 
2830 	/* Map the VPE to the first possible CPU */
2831 	vpe->col_idx = cpumask_first(cpu_online_mask);
2832 
2833 	list_for_each_entry(its, &its_nodes, entry) {
2834 		if (!its->is_v4)
2835 			continue;
2836 
2837 		its_send_vmapp(its, vpe, true);
2838 		its_send_vinvall(its, vpe);
2839 	}
2840 
2841 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2842 
2843 	return 0;
2844 }
2845 
2846 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2847 					  struct irq_data *d)
2848 {
2849 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2850 	struct its_node *its;
2851 
2852 	/*
2853 	 * If we use the list map, we unmap the VPE once no VLPIs are
2854 	 * associated with the VM.
2855 	 */
2856 	if (its_list_map)
2857 		return;
2858 
2859 	list_for_each_entry(its, &its_nodes, entry) {
2860 		if (!its->is_v4)
2861 			continue;
2862 
2863 		its_send_vmapp(its, vpe, false);
2864 	}
2865 }
2866 
2867 static const struct irq_domain_ops its_vpe_domain_ops = {
2868 	.alloc			= its_vpe_irq_domain_alloc,
2869 	.free			= its_vpe_irq_domain_free,
2870 	.activate		= its_vpe_irq_domain_activate,
2871 	.deactivate		= its_vpe_irq_domain_deactivate,
2872 };
2873 
2874 static int its_force_quiescent(void __iomem *base)
2875 {
2876 	u32 count = 1000000;	/* 1s */
2877 	u32 val;
2878 
2879 	val = readl_relaxed(base + GITS_CTLR);
2880 	/*
2881 	 * GIC architecture specification requires the ITS to be both
2882 	 * disabled and quiescent for writes to GITS_BASER<n> or
2883 	 * GITS_CBASER to not have UNPREDICTABLE results.
2884 	 */
2885 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2886 		return 0;
2887 
2888 	/* Disable the generation of all interrupts to this ITS */
2889 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2890 	writel_relaxed(val, base + GITS_CTLR);
2891 
2892 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2893 	while (1) {
2894 		val = readl_relaxed(base + GITS_CTLR);
2895 		if (val & GITS_CTLR_QUIESCENT)
2896 			return 0;
2897 
2898 		count--;
2899 		if (!count)
2900 			return -EBUSY;
2901 
2902 		cpu_relax();
2903 		udelay(1);
2904 	}
2905 }
2906 
2907 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2908 {
2909 	struct its_node *its = data;
2910 
2911 	/* erratum 22375: only alloc 8MB table size */
2912 	its->device_ids = 0x14;		/* 20 bits, 8MB */
2913 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2914 
2915 	return true;
2916 }
2917 
2918 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2919 {
2920 	struct its_node *its = data;
2921 
2922 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2923 
2924 	return true;
2925 }
2926 
2927 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2928 {
2929 	struct its_node *its = data;
2930 
2931 	/* On QDF2400, the size of the ITE is 16Bytes */
2932 	its->ite_size = 16;
2933 
2934 	return true;
2935 }
2936 
2937 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2938 {
2939 	struct its_node *its = its_dev->its;
2940 
2941 	/*
2942 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2943 	 * which maps 32-bit writes targeted at a separate window of
2944 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2945 	 * with device ID taken from bits [device_id_bits + 1:2] of
2946 	 * the window offset.
2947 	 */
2948 	return its->pre_its_base + (its_dev->device_id << 2);
2949 }
2950 
2951 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2952 {
2953 	struct its_node *its = data;
2954 	u32 pre_its_window[2];
2955 	u32 ids;
2956 
2957 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
2958 					   "socionext,synquacer-pre-its",
2959 					   pre_its_window,
2960 					   ARRAY_SIZE(pre_its_window))) {
2961 
2962 		its->pre_its_base = pre_its_window[0];
2963 		its->get_msi_base = its_irq_get_msi_base_pre_its;
2964 
2965 		ids = ilog2(pre_its_window[1]) - 2;
2966 		if (its->device_ids > ids)
2967 			its->device_ids = ids;
2968 
2969 		/* the pre-ITS breaks isolation, so disable MSI remapping */
2970 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2971 		return true;
2972 	}
2973 	return false;
2974 }
2975 
2976 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2977 {
2978 	struct its_node *its = data;
2979 
2980 	/*
2981 	 * Hip07 insists on using the wrong address for the VLPI
2982 	 * page. Trick it into doing the right thing...
2983 	 */
2984 	its->vlpi_redist_offset = SZ_128K;
2985 	return true;
2986 }
2987 
2988 static const struct gic_quirk its_quirks[] = {
2989 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2990 	{
2991 		.desc	= "ITS: Cavium errata 22375, 24313",
2992 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2993 		.mask	= 0xffff0fff,
2994 		.init	= its_enable_quirk_cavium_22375,
2995 	},
2996 #endif
2997 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2998 	{
2999 		.desc	= "ITS: Cavium erratum 23144",
3000 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3001 		.mask	= 0xffff0fff,
3002 		.init	= its_enable_quirk_cavium_23144,
3003 	},
3004 #endif
3005 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3006 	{
3007 		.desc	= "ITS: QDF2400 erratum 0065",
3008 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3009 		.mask	= 0xffffffff,
3010 		.init	= its_enable_quirk_qdf2400_e0065,
3011 	},
3012 #endif
3013 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3014 	{
3015 		/*
3016 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3017 		 * implementation, but with a 'pre-ITS' added that requires
3018 		 * special handling in software.
3019 		 */
3020 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3021 		.iidr	= 0x0001143b,
3022 		.mask	= 0xffffffff,
3023 		.init	= its_enable_quirk_socionext_synquacer,
3024 	},
3025 #endif
3026 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3027 	{
3028 		.desc	= "ITS: Hip07 erratum 161600802",
3029 		.iidr	= 0x00000004,
3030 		.mask	= 0xffffffff,
3031 		.init	= its_enable_quirk_hip07_161600802,
3032 	},
3033 #endif
3034 	{
3035 	}
3036 };
3037 
3038 static void its_enable_quirks(struct its_node *its)
3039 {
3040 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3041 
3042 	gic_enable_quirks(iidr, its_quirks, its);
3043 }
3044 
3045 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3046 {
3047 	struct irq_domain *inner_domain;
3048 	struct msi_domain_info *info;
3049 
3050 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3051 	if (!info)
3052 		return -ENOMEM;
3053 
3054 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3055 	if (!inner_domain) {
3056 		kfree(info);
3057 		return -ENOMEM;
3058 	}
3059 
3060 	inner_domain->parent = its_parent;
3061 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3062 	inner_domain->flags |= its->msi_domain_flags;
3063 	info->ops = &its_msi_domain_ops;
3064 	info->data = its;
3065 	inner_domain->host_data = info;
3066 
3067 	return 0;
3068 }
3069 
3070 static int its_init_vpe_domain(void)
3071 {
3072 	struct its_node *its;
3073 	u32 devid;
3074 	int entries;
3075 
3076 	if (gic_rdists->has_direct_lpi) {
3077 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3078 		return 0;
3079 	}
3080 
3081 	/* Any ITS will do, even if not v4 */
3082 	its = list_first_entry(&its_nodes, struct its_node, entry);
3083 
3084 	entries = roundup_pow_of_two(nr_cpu_ids);
3085 	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3086 				 GFP_KERNEL);
3087 	if (!vpe_proxy.vpes) {
3088 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3089 		return -ENOMEM;
3090 	}
3091 
3092 	/* Use the last possible DevID */
3093 	devid = GENMASK(its->device_ids - 1, 0);
3094 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3095 	if (!vpe_proxy.dev) {
3096 		kfree(vpe_proxy.vpes);
3097 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3098 		return -ENOMEM;
3099 	}
3100 
3101 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3102 
3103 	raw_spin_lock_init(&vpe_proxy.lock);
3104 	vpe_proxy.next_victim = 0;
3105 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3106 		devid, vpe_proxy.dev->nr_ites);
3107 
3108 	return 0;
3109 }
3110 
3111 static int __init its_compute_its_list_map(struct resource *res,
3112 					   void __iomem *its_base)
3113 {
3114 	int its_number;
3115 	u32 ctlr;
3116 
3117 	/*
3118 	 * This is assumed to be done early enough that we're
3119 	 * guaranteed to be single-threaded, hence no
3120 	 * locking. Should this change, we should address
3121 	 * this.
3122 	 */
3123 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3124 	if (its_number >= GICv4_ITS_LIST_MAX) {
3125 		pr_err("ITS@%pa: No ITSList entry available!\n",
3126 		       &res->start);
3127 		return -EINVAL;
3128 	}
3129 
3130 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3131 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3132 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3133 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3134 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3135 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3136 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3137 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3138 	}
3139 
3140 	if (test_and_set_bit(its_number, &its_list_map)) {
3141 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3142 		       &res->start, its_number);
3143 		return -EINVAL;
3144 	}
3145 
3146 	return its_number;
3147 }
3148 
3149 static int __init its_probe_one(struct resource *res,
3150 				struct fwnode_handle *handle, int numa_node)
3151 {
3152 	struct its_node *its;
3153 	void __iomem *its_base;
3154 	u32 val, ctlr;
3155 	u64 baser, tmp, typer;
3156 	int err;
3157 
3158 	its_base = ioremap(res->start, resource_size(res));
3159 	if (!its_base) {
3160 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3161 		return -ENOMEM;
3162 	}
3163 
3164 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3165 	if (val != 0x30 && val != 0x40) {
3166 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3167 		err = -ENODEV;
3168 		goto out_unmap;
3169 	}
3170 
3171 	err = its_force_quiescent(its_base);
3172 	if (err) {
3173 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3174 		goto out_unmap;
3175 	}
3176 
3177 	pr_info("ITS %pR\n", res);
3178 
3179 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3180 	if (!its) {
3181 		err = -ENOMEM;
3182 		goto out_unmap;
3183 	}
3184 
3185 	raw_spin_lock_init(&its->lock);
3186 	INIT_LIST_HEAD(&its->entry);
3187 	INIT_LIST_HEAD(&its->its_device_list);
3188 	typer = gic_read_typer(its_base + GITS_TYPER);
3189 	its->base = its_base;
3190 	its->phys_base = res->start;
3191 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3192 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3193 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3194 	if (its->is_v4) {
3195 		if (!(typer & GITS_TYPER_VMOVP)) {
3196 			err = its_compute_its_list_map(res, its_base);
3197 			if (err < 0)
3198 				goto out_free_its;
3199 
3200 			its->list_nr = err;
3201 
3202 			pr_info("ITS@%pa: Using ITS number %d\n",
3203 				&res->start, err);
3204 		} else {
3205 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3206 		}
3207 	}
3208 
3209 	its->numa_node = numa_node;
3210 
3211 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3212 						get_order(ITS_CMD_QUEUE_SZ));
3213 	if (!its->cmd_base) {
3214 		err = -ENOMEM;
3215 		goto out_free_its;
3216 	}
3217 	its->cmd_write = its->cmd_base;
3218 	its->fwnode_handle = handle;
3219 	its->get_msi_base = its_irq_get_msi_base;
3220 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3221 
3222 	its_enable_quirks(its);
3223 
3224 	err = its_alloc_tables(its);
3225 	if (err)
3226 		goto out_free_cmd;
3227 
3228 	err = its_alloc_collections(its);
3229 	if (err)
3230 		goto out_free_tables;
3231 
3232 	baser = (virt_to_phys(its->cmd_base)	|
3233 		 GITS_CBASER_RaWaWb		|
3234 		 GITS_CBASER_InnerShareable	|
3235 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3236 		 GITS_CBASER_VALID);
3237 
3238 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3239 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3240 
3241 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3242 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3243 			/*
3244 			 * The HW reports non-shareable, we must
3245 			 * remove the cacheability attributes as
3246 			 * well.
3247 			 */
3248 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3249 				   GITS_CBASER_CACHEABILITY_MASK);
3250 			baser |= GITS_CBASER_nC;
3251 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3252 		}
3253 		pr_info("ITS: using cache flushing for cmd queue\n");
3254 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3255 	}
3256 
3257 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3258 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3259 	ctlr |= GITS_CTLR_ENABLE;
3260 	if (its->is_v4)
3261 		ctlr |= GITS_CTLR_ImDe;
3262 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3263 
3264 	err = its_init_domain(handle, its);
3265 	if (err)
3266 		goto out_free_tables;
3267 
3268 	spin_lock(&its_lock);
3269 	list_add(&its->entry, &its_nodes);
3270 	spin_unlock(&its_lock);
3271 
3272 	return 0;
3273 
3274 out_free_tables:
3275 	its_free_tables(its);
3276 out_free_cmd:
3277 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3278 out_free_its:
3279 	kfree(its);
3280 out_unmap:
3281 	iounmap(its_base);
3282 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3283 	return err;
3284 }
3285 
3286 static bool gic_rdists_supports_plpis(void)
3287 {
3288 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3289 }
3290 
3291 int its_cpu_init(void)
3292 {
3293 	if (!list_empty(&its_nodes)) {
3294 		if (!gic_rdists_supports_plpis()) {
3295 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3296 			return -ENXIO;
3297 		}
3298 		its_cpu_init_lpis();
3299 		its_cpu_init_collection();
3300 	}
3301 
3302 	return 0;
3303 }
3304 
3305 static const struct of_device_id its_device_id[] = {
3306 	{	.compatible	= "arm,gic-v3-its",	},
3307 	{},
3308 };
3309 
3310 static int __init its_of_probe(struct device_node *node)
3311 {
3312 	struct device_node *np;
3313 	struct resource res;
3314 
3315 	for (np = of_find_matching_node(node, its_device_id); np;
3316 	     np = of_find_matching_node(np, its_device_id)) {
3317 		if (!of_property_read_bool(np, "msi-controller")) {
3318 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3319 				np);
3320 			continue;
3321 		}
3322 
3323 		if (of_address_to_resource(np, 0, &res)) {
3324 			pr_warn("%pOF: no regs?\n", np);
3325 			continue;
3326 		}
3327 
3328 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3329 	}
3330 	return 0;
3331 }
3332 
3333 #ifdef CONFIG_ACPI
3334 
3335 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3336 
3337 #ifdef CONFIG_ACPI_NUMA
3338 struct its_srat_map {
3339 	/* numa node id */
3340 	u32	numa_node;
3341 	/* GIC ITS ID */
3342 	u32	its_id;
3343 };
3344 
3345 static struct its_srat_map *its_srat_maps __initdata;
3346 static int its_in_srat __initdata;
3347 
3348 static int __init acpi_get_its_numa_node(u32 its_id)
3349 {
3350 	int i;
3351 
3352 	for (i = 0; i < its_in_srat; i++) {
3353 		if (its_id == its_srat_maps[i].its_id)
3354 			return its_srat_maps[i].numa_node;
3355 	}
3356 	return NUMA_NO_NODE;
3357 }
3358 
3359 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3360 					  const unsigned long end)
3361 {
3362 	return 0;
3363 }
3364 
3365 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3366 			 const unsigned long end)
3367 {
3368 	int node;
3369 	struct acpi_srat_gic_its_affinity *its_affinity;
3370 
3371 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3372 	if (!its_affinity)
3373 		return -EINVAL;
3374 
3375 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3376 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3377 			its_affinity->header.length);
3378 		return -EINVAL;
3379 	}
3380 
3381 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3382 
3383 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3384 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3385 		return 0;
3386 	}
3387 
3388 	its_srat_maps[its_in_srat].numa_node = node;
3389 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3390 	its_in_srat++;
3391 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3392 		its_affinity->proximity_domain, its_affinity->its_id, node);
3393 
3394 	return 0;
3395 }
3396 
3397 static void __init acpi_table_parse_srat_its(void)
3398 {
3399 	int count;
3400 
3401 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3402 			sizeof(struct acpi_table_srat),
3403 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3404 			gic_acpi_match_srat_its, 0);
3405 	if (count <= 0)
3406 		return;
3407 
3408 	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3409 				GFP_KERNEL);
3410 	if (!its_srat_maps) {
3411 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3412 		return;
3413 	}
3414 
3415 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3416 			sizeof(struct acpi_table_srat),
3417 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3418 			gic_acpi_parse_srat_its, 0);
3419 }
3420 
3421 /* free the its_srat_maps after ITS probing */
3422 static void __init acpi_its_srat_maps_free(void)
3423 {
3424 	kfree(its_srat_maps);
3425 }
3426 #else
3427 static void __init acpi_table_parse_srat_its(void)	{ }
3428 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3429 static void __init acpi_its_srat_maps_free(void) { }
3430 #endif
3431 
3432 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3433 					  const unsigned long end)
3434 {
3435 	struct acpi_madt_generic_translator *its_entry;
3436 	struct fwnode_handle *dom_handle;
3437 	struct resource res;
3438 	int err;
3439 
3440 	its_entry = (struct acpi_madt_generic_translator *)header;
3441 	memset(&res, 0, sizeof(res));
3442 	res.start = its_entry->base_address;
3443 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3444 	res.flags = IORESOURCE_MEM;
3445 
3446 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3447 	if (!dom_handle) {
3448 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3449 		       &res.start);
3450 		return -ENOMEM;
3451 	}
3452 
3453 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3454 	if (err) {
3455 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3456 		       &res.start, its_entry->translation_id);
3457 		goto dom_err;
3458 	}
3459 
3460 	err = its_probe_one(&res, dom_handle,
3461 			acpi_get_its_numa_node(its_entry->translation_id));
3462 	if (!err)
3463 		return 0;
3464 
3465 	iort_deregister_domain_token(its_entry->translation_id);
3466 dom_err:
3467 	irq_domain_free_fwnode(dom_handle);
3468 	return err;
3469 }
3470 
3471 static void __init its_acpi_probe(void)
3472 {
3473 	acpi_table_parse_srat_its();
3474 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3475 			      gic_acpi_parse_madt_its, 0);
3476 	acpi_its_srat_maps_free();
3477 }
3478 #else
3479 static void __init its_acpi_probe(void) { }
3480 #endif
3481 
3482 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3483 		    struct irq_domain *parent_domain)
3484 {
3485 	struct device_node *of_node;
3486 	struct its_node *its;
3487 	bool has_v4 = false;
3488 	int err;
3489 
3490 	its_parent = parent_domain;
3491 	of_node = to_of_node(handle);
3492 	if (of_node)
3493 		its_of_probe(of_node);
3494 	else
3495 		its_acpi_probe();
3496 
3497 	if (list_empty(&its_nodes)) {
3498 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3499 		return -ENXIO;
3500 	}
3501 
3502 	gic_rdists = rdists;
3503 	err = its_alloc_lpi_tables();
3504 	if (err)
3505 		return err;
3506 
3507 	list_for_each_entry(its, &its_nodes, entry)
3508 		has_v4 |= its->is_v4;
3509 
3510 	if (has_v4 & rdists->has_vlpis) {
3511 		if (its_init_vpe_domain() ||
3512 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3513 			rdists->has_vlpis = false;
3514 			pr_err("ITS: Disabling GICv4 support\n");
3515 		}
3516 	}
3517 
3518 	return 0;
3519 }
3520