xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision 9235756885e865070c4be2facda75262dbd85967)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4   * Author: Marc Zyngier <marc.zyngier@arm.com>
5   */
6  
7  #include <linux/acpi.h>
8  #include <linux/acpi_iort.h>
9  #include <linux/bitfield.h>
10  #include <linux/bitmap.h>
11  #include <linux/cpu.h>
12  #include <linux/crash_dump.h>
13  #include <linux/delay.h>
14  #include <linux/efi.h>
15  #include <linux/interrupt.h>
16  #include <linux/iommu.h>
17  #include <linux/iopoll.h>
18  #include <linux/irqdomain.h>
19  #include <linux/list.h>
20  #include <linux/log2.h>
21  #include <linux/memblock.h>
22  #include <linux/mm.h>
23  #include <linux/msi.h>
24  #include <linux/of.h>
25  #include <linux/of_address.h>
26  #include <linux/of_irq.h>
27  #include <linux/of_pci.h>
28  #include <linux/of_platform.h>
29  #include <linux/percpu.h>
30  #include <linux/slab.h>
31  #include <linux/syscore_ops.h>
32  
33  #include <linux/irqchip.h>
34  #include <linux/irqchip/arm-gic-v3.h>
35  #include <linux/irqchip/arm-gic-v4.h>
36  
37  #include <asm/cputype.h>
38  #include <asm/exception.h>
39  
40  #include "irq-gic-common.h"
41  
42  #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43  #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44  #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45  
46  #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47  #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48  
49  #define RD_LOCAL_LPI_ENABLED                    BIT(0)
50  #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
51  #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
52  
53  static u32 lpi_id_bits;
54  
55  /*
56   * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
57   * deal with (one configuration byte per interrupt). PENDBASE has to
58   * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59   */
60  #define LPI_NRBITS		lpi_id_bits
61  #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
62  #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63  
64  #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
65  
66  /*
67   * Collection structure - just an ID, and a redistributor address to
68   * ping. We use one per CPU as a bag of interrupts assigned to this
69   * CPU.
70   */
71  struct its_collection {
72  	u64			target_address;
73  	u16			col_id;
74  };
75  
76  /*
77   * The ITS_BASER structure - contains memory information, cached
78   * value of BASER register configuration and ITS page size.
79   */
80  struct its_baser {
81  	void		*base;
82  	u64		val;
83  	u32		order;
84  	u32		psz;
85  };
86  
87  struct its_device;
88  
89  /*
90   * The ITS structure - contains most of the infrastructure, with the
91   * top-level MSI domain, the command queue, the collections, and the
92   * list of devices writing to it.
93   *
94   * dev_alloc_lock has to be taken for device allocations, while the
95   * spinlock must be taken to parse data structures such as the device
96   * list.
97   */
98  struct its_node {
99  	raw_spinlock_t		lock;
100  	struct mutex		dev_alloc_lock;
101  	struct list_head	entry;
102  	void __iomem		*base;
103  	void __iomem		*sgir_base;
104  	phys_addr_t		phys_base;
105  	struct its_cmd_block	*cmd_base;
106  	struct its_cmd_block	*cmd_write;
107  	struct its_baser	tables[GITS_BASER_NR_REGS];
108  	struct its_collection	*collections;
109  	struct fwnode_handle	*fwnode_handle;
110  	u64			(*get_msi_base)(struct its_device *its_dev);
111  	u64			typer;
112  	u64			cbaser_save;
113  	u32			ctlr_save;
114  	u32			mpidr;
115  	struct list_head	its_device_list;
116  	u64			flags;
117  	unsigned long		list_nr;
118  	int			numa_node;
119  	unsigned int		msi_domain_flags;
120  	u32			pre_its_base; /* for Socionext Synquacer */
121  	int			vlpi_redist_offset;
122  };
123  
124  #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
125  #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
126  #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127  
128  #define ITS_ITT_ALIGN		SZ_256
129  
130  /* The maximum number of VPEID bits supported by VLPI commands */
131  #define ITS_MAX_VPEID_BITS						\
132  	({								\
133  		int nvpeid = 16;					\
134  		if (gic_rdists->has_rvpeid &&				\
135  		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
136  			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
137  				      GICD_TYPER2_VID);			\
138  									\
139  		nvpeid;							\
140  	})
141  #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
142  
143  /* Convert page order to size in bytes */
144  #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
145  
146  struct event_lpi_map {
147  	unsigned long		*lpi_map;
148  	u16			*col_map;
149  	irq_hw_number_t		lpi_base;
150  	int			nr_lpis;
151  	raw_spinlock_t		vlpi_lock;
152  	struct its_vm		*vm;
153  	struct its_vlpi_map	*vlpi_maps;
154  	int			nr_vlpis;
155  };
156  
157  /*
158   * The ITS view of a device - belongs to an ITS, owns an interrupt
159   * translation table, and a list of interrupts.  If it some of its
160   * LPIs are injected into a guest (GICv4), the event_map.vm field
161   * indicates which one.
162   */
163  struct its_device {
164  	struct list_head	entry;
165  	struct its_node		*its;
166  	struct event_lpi_map	event_map;
167  	void			*itt;
168  	u32			nr_ites;
169  	u32			device_id;
170  	bool			shared;
171  };
172  
173  static struct {
174  	raw_spinlock_t		lock;
175  	struct its_device	*dev;
176  	struct its_vpe		**vpes;
177  	int			next_victim;
178  } vpe_proxy;
179  
180  struct cpu_lpi_count {
181  	atomic_t	managed;
182  	atomic_t	unmanaged;
183  };
184  
185  static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186  
187  static LIST_HEAD(its_nodes);
188  static DEFINE_RAW_SPINLOCK(its_lock);
189  static struct rdists *gic_rdists;
190  static struct irq_domain *its_parent;
191  
192  static unsigned long its_list_map;
193  static u16 vmovp_seq_num;
194  static DEFINE_RAW_SPINLOCK(vmovp_lock);
195  
196  static DEFINE_IDA(its_vpeid_ida);
197  
198  #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
199  #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
200  #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
201  #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
202  
203  /*
204   * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
205   * always have vSGIs mapped.
206   */
207  static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208  {
209  	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
210  }
211  
212  static u16 get_its_list(struct its_vm *vm)
213  {
214  	struct its_node *its;
215  	unsigned long its_list = 0;
216  
217  	list_for_each_entry(its, &its_nodes, entry) {
218  		if (!is_v4(its))
219  			continue;
220  
221  		if (require_its_list_vmovp(vm, its))
222  			__set_bit(its->list_nr, &its_list);
223  	}
224  
225  	return (u16)its_list;
226  }
227  
228  static inline u32 its_get_event_id(struct irq_data *d)
229  {
230  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
231  	return d->hwirq - its_dev->event_map.lpi_base;
232  }
233  
234  static struct its_collection *dev_event_to_col(struct its_device *its_dev,
235  					       u32 event)
236  {
237  	struct its_node *its = its_dev->its;
238  
239  	return its->collections + its_dev->event_map.col_map[event];
240  }
241  
242  static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
243  					       u32 event)
244  {
245  	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
246  		return NULL;
247  
248  	return &its_dev->event_map.vlpi_maps[event];
249  }
250  
251  static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
252  {
253  	if (irqd_is_forwarded_to_vcpu(d)) {
254  		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
255  		u32 event = its_get_event_id(d);
256  
257  		return dev_event_to_vlpi_map(its_dev, event);
258  	}
259  
260  	return NULL;
261  }
262  
263  static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
264  {
265  	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
266  	return vpe->col_idx;
267  }
268  
269  static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
270  {
271  	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
272  }
273  
274  static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275  {
276  	struct its_vlpi_map *map = get_vlpi_map(d);
277  	int cpu;
278  
279  	if (map) {
280  		cpu = vpe_to_cpuid_lock(map->vpe, flags);
281  	} else {
282  		/* Physical LPIs are already locked via the irq_desc lock */
283  		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
284  		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
285  		/* Keep GCC quiet... */
286  		*flags = 0;
287  	}
288  
289  	return cpu;
290  }
291  
292  static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
293  {
294  	struct its_vlpi_map *map = get_vlpi_map(d);
295  
296  	if (map)
297  		vpe_to_cpuid_unlock(map->vpe, flags);
298  }
299  
300  static struct its_collection *valid_col(struct its_collection *col)
301  {
302  	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
303  		return NULL;
304  
305  	return col;
306  }
307  
308  static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
309  {
310  	if (valid_col(its->collections + vpe->col_idx))
311  		return vpe;
312  
313  	return NULL;
314  }
315  
316  /*
317   * ITS command descriptors - parameters to be encoded in a command
318   * block.
319   */
320  struct its_cmd_desc {
321  	union {
322  		struct {
323  			struct its_device *dev;
324  			u32 event_id;
325  		} its_inv_cmd;
326  
327  		struct {
328  			struct its_device *dev;
329  			u32 event_id;
330  		} its_clear_cmd;
331  
332  		struct {
333  			struct its_device *dev;
334  			u32 event_id;
335  		} its_int_cmd;
336  
337  		struct {
338  			struct its_device *dev;
339  			int valid;
340  		} its_mapd_cmd;
341  
342  		struct {
343  			struct its_collection *col;
344  			int valid;
345  		} its_mapc_cmd;
346  
347  		struct {
348  			struct its_device *dev;
349  			u32 phys_id;
350  			u32 event_id;
351  		} its_mapti_cmd;
352  
353  		struct {
354  			struct its_device *dev;
355  			struct its_collection *col;
356  			u32 event_id;
357  		} its_movi_cmd;
358  
359  		struct {
360  			struct its_device *dev;
361  			u32 event_id;
362  		} its_discard_cmd;
363  
364  		struct {
365  			struct its_collection *col;
366  		} its_invall_cmd;
367  
368  		struct {
369  			struct its_vpe *vpe;
370  		} its_vinvall_cmd;
371  
372  		struct {
373  			struct its_vpe *vpe;
374  			struct its_collection *col;
375  			bool valid;
376  		} its_vmapp_cmd;
377  
378  		struct {
379  			struct its_vpe *vpe;
380  			struct its_device *dev;
381  			u32 virt_id;
382  			u32 event_id;
383  			bool db_enabled;
384  		} its_vmapti_cmd;
385  
386  		struct {
387  			struct its_vpe *vpe;
388  			struct its_device *dev;
389  			u32 event_id;
390  			bool db_enabled;
391  		} its_vmovi_cmd;
392  
393  		struct {
394  			struct its_vpe *vpe;
395  			struct its_collection *col;
396  			u16 seq_num;
397  			u16 its_list;
398  		} its_vmovp_cmd;
399  
400  		struct {
401  			struct its_vpe *vpe;
402  		} its_invdb_cmd;
403  
404  		struct {
405  			struct its_vpe *vpe;
406  			u8 sgi;
407  			u8 priority;
408  			bool enable;
409  			bool group;
410  			bool clear;
411  		} its_vsgi_cmd;
412  	};
413  };
414  
415  /*
416   * The ITS command block, which is what the ITS actually parses.
417   */
418  struct its_cmd_block {
419  	union {
420  		u64	raw_cmd[4];
421  		__le64	raw_cmd_le[4];
422  	};
423  };
424  
425  #define ITS_CMD_QUEUE_SZ		SZ_64K
426  #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
427  
428  typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
429  						    struct its_cmd_block *,
430  						    struct its_cmd_desc *);
431  
432  typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
433  					      struct its_cmd_block *,
434  					      struct its_cmd_desc *);
435  
436  static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
437  {
438  	u64 mask = GENMASK_ULL(h, l);
439  	*raw_cmd &= ~mask;
440  	*raw_cmd |= (val << l) & mask;
441  }
442  
443  static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
444  {
445  	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
446  }
447  
448  static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
449  {
450  	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
451  }
452  
453  static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
454  {
455  	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
456  }
457  
458  static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
459  {
460  	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
461  }
462  
463  static void its_encode_size(struct its_cmd_block *cmd, u8 size)
464  {
465  	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
466  }
467  
468  static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
469  {
470  	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
471  }
472  
473  static void its_encode_valid(struct its_cmd_block *cmd, int valid)
474  {
475  	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
476  }
477  
478  static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
479  {
480  	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
481  }
482  
483  static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
484  {
485  	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
486  }
487  
488  static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
489  {
490  	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
491  }
492  
493  static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
494  {
495  	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
496  }
497  
498  static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
499  {
500  	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
501  }
502  
503  static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
504  {
505  	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
506  }
507  
508  static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
509  {
510  	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
511  }
512  
513  static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
514  {
515  	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
516  }
517  
518  static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
519  {
520  	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
521  }
522  
523  static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
524  {
525  	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
526  }
527  
528  static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
529  {
530  	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
531  }
532  
533  static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
534  {
535  	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
536  }
537  
538  static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
539  {
540  	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
541  }
542  
543  static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
544  					u32 vpe_db_lpi)
545  {
546  	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
547  }
548  
549  static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
550  					u32 vpe_db_lpi)
551  {
552  	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
553  }
554  
555  static void its_encode_db(struct its_cmd_block *cmd, bool db)
556  {
557  	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
558  }
559  
560  static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
561  {
562  	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
563  }
564  
565  static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
566  {
567  	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
568  }
569  
570  static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
571  {
572  	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
573  }
574  
575  static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
576  {
577  	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
578  }
579  
580  static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
581  {
582  	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
583  }
584  
585  static inline void its_fixup_cmd(struct its_cmd_block *cmd)
586  {
587  	/* Let's fixup BE commands */
588  	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
589  	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
590  	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
591  	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
592  }
593  
594  static struct its_collection *its_build_mapd_cmd(struct its_node *its,
595  						 struct its_cmd_block *cmd,
596  						 struct its_cmd_desc *desc)
597  {
598  	unsigned long itt_addr;
599  	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
600  
601  	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
602  	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
603  
604  	its_encode_cmd(cmd, GITS_CMD_MAPD);
605  	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
606  	its_encode_size(cmd, size - 1);
607  	its_encode_itt(cmd, itt_addr);
608  	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
609  
610  	its_fixup_cmd(cmd);
611  
612  	return NULL;
613  }
614  
615  static struct its_collection *its_build_mapc_cmd(struct its_node *its,
616  						 struct its_cmd_block *cmd,
617  						 struct its_cmd_desc *desc)
618  {
619  	its_encode_cmd(cmd, GITS_CMD_MAPC);
620  	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
621  	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
622  	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
623  
624  	its_fixup_cmd(cmd);
625  
626  	return desc->its_mapc_cmd.col;
627  }
628  
629  static struct its_collection *its_build_mapti_cmd(struct its_node *its,
630  						  struct its_cmd_block *cmd,
631  						  struct its_cmd_desc *desc)
632  {
633  	struct its_collection *col;
634  
635  	col = dev_event_to_col(desc->its_mapti_cmd.dev,
636  			       desc->its_mapti_cmd.event_id);
637  
638  	its_encode_cmd(cmd, GITS_CMD_MAPTI);
639  	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
640  	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
641  	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
642  	its_encode_collection(cmd, col->col_id);
643  
644  	its_fixup_cmd(cmd);
645  
646  	return valid_col(col);
647  }
648  
649  static struct its_collection *its_build_movi_cmd(struct its_node *its,
650  						 struct its_cmd_block *cmd,
651  						 struct its_cmd_desc *desc)
652  {
653  	struct its_collection *col;
654  
655  	col = dev_event_to_col(desc->its_movi_cmd.dev,
656  			       desc->its_movi_cmd.event_id);
657  
658  	its_encode_cmd(cmd, GITS_CMD_MOVI);
659  	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
660  	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
661  	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
662  
663  	its_fixup_cmd(cmd);
664  
665  	return valid_col(col);
666  }
667  
668  static struct its_collection *its_build_discard_cmd(struct its_node *its,
669  						    struct its_cmd_block *cmd,
670  						    struct its_cmd_desc *desc)
671  {
672  	struct its_collection *col;
673  
674  	col = dev_event_to_col(desc->its_discard_cmd.dev,
675  			       desc->its_discard_cmd.event_id);
676  
677  	its_encode_cmd(cmd, GITS_CMD_DISCARD);
678  	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
679  	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
680  
681  	its_fixup_cmd(cmd);
682  
683  	return valid_col(col);
684  }
685  
686  static struct its_collection *its_build_inv_cmd(struct its_node *its,
687  						struct its_cmd_block *cmd,
688  						struct its_cmd_desc *desc)
689  {
690  	struct its_collection *col;
691  
692  	col = dev_event_to_col(desc->its_inv_cmd.dev,
693  			       desc->its_inv_cmd.event_id);
694  
695  	its_encode_cmd(cmd, GITS_CMD_INV);
696  	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
697  	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
698  
699  	its_fixup_cmd(cmd);
700  
701  	return valid_col(col);
702  }
703  
704  static struct its_collection *its_build_int_cmd(struct its_node *its,
705  						struct its_cmd_block *cmd,
706  						struct its_cmd_desc *desc)
707  {
708  	struct its_collection *col;
709  
710  	col = dev_event_to_col(desc->its_int_cmd.dev,
711  			       desc->its_int_cmd.event_id);
712  
713  	its_encode_cmd(cmd, GITS_CMD_INT);
714  	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
715  	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
716  
717  	its_fixup_cmd(cmd);
718  
719  	return valid_col(col);
720  }
721  
722  static struct its_collection *its_build_clear_cmd(struct its_node *its,
723  						  struct its_cmd_block *cmd,
724  						  struct its_cmd_desc *desc)
725  {
726  	struct its_collection *col;
727  
728  	col = dev_event_to_col(desc->its_clear_cmd.dev,
729  			       desc->its_clear_cmd.event_id);
730  
731  	its_encode_cmd(cmd, GITS_CMD_CLEAR);
732  	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
733  	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
734  
735  	its_fixup_cmd(cmd);
736  
737  	return valid_col(col);
738  }
739  
740  static struct its_collection *its_build_invall_cmd(struct its_node *its,
741  						   struct its_cmd_block *cmd,
742  						   struct its_cmd_desc *desc)
743  {
744  	its_encode_cmd(cmd, GITS_CMD_INVALL);
745  	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
746  
747  	its_fixup_cmd(cmd);
748  
749  	return desc->its_invall_cmd.col;
750  }
751  
752  static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
753  					     struct its_cmd_block *cmd,
754  					     struct its_cmd_desc *desc)
755  {
756  	its_encode_cmd(cmd, GITS_CMD_VINVALL);
757  	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
758  
759  	its_fixup_cmd(cmd);
760  
761  	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
762  }
763  
764  static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
765  					   struct its_cmd_block *cmd,
766  					   struct its_cmd_desc *desc)
767  {
768  	unsigned long vpt_addr, vconf_addr;
769  	u64 target;
770  	bool alloc;
771  
772  	its_encode_cmd(cmd, GITS_CMD_VMAPP);
773  	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
774  	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
775  
776  	if (!desc->its_vmapp_cmd.valid) {
777  		if (is_v4_1(its)) {
778  			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
779  			its_encode_alloc(cmd, alloc);
780  		}
781  
782  		goto out;
783  	}
784  
785  	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
786  	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
787  
788  	its_encode_target(cmd, target);
789  	its_encode_vpt_addr(cmd, vpt_addr);
790  	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
791  
792  	if (!is_v4_1(its))
793  		goto out;
794  
795  	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
796  
797  	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
798  
799  	its_encode_alloc(cmd, alloc);
800  
801  	/*
802  	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
803  	 * to be unmapped first, and in this case, we may remap the vPE
804  	 * back while the VPT is not empty. So we can't assume that the
805  	 * VPT is empty on map. This is why we never advertise PTZ.
806  	 */
807  	its_encode_ptz(cmd, false);
808  	its_encode_vconf_addr(cmd, vconf_addr);
809  	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
810  
811  out:
812  	its_fixup_cmd(cmd);
813  
814  	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
815  }
816  
817  static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
818  					    struct its_cmd_block *cmd,
819  					    struct its_cmd_desc *desc)
820  {
821  	u32 db;
822  
823  	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
824  		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
825  	else
826  		db = 1023;
827  
828  	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
829  	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
830  	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
831  	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
832  	its_encode_db_phys_id(cmd, db);
833  	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
834  
835  	its_fixup_cmd(cmd);
836  
837  	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
838  }
839  
840  static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
841  					   struct its_cmd_block *cmd,
842  					   struct its_cmd_desc *desc)
843  {
844  	u32 db;
845  
846  	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
847  		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
848  	else
849  		db = 1023;
850  
851  	its_encode_cmd(cmd, GITS_CMD_VMOVI);
852  	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
853  	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
854  	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
855  	its_encode_db_phys_id(cmd, db);
856  	its_encode_db_valid(cmd, true);
857  
858  	its_fixup_cmd(cmd);
859  
860  	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
861  }
862  
863  static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
864  					   struct its_cmd_block *cmd,
865  					   struct its_cmd_desc *desc)
866  {
867  	u64 target;
868  
869  	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
870  	its_encode_cmd(cmd, GITS_CMD_VMOVP);
871  	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
872  	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
873  	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
874  	its_encode_target(cmd, target);
875  
876  	if (is_v4_1(its)) {
877  		its_encode_db(cmd, true);
878  		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
879  	}
880  
881  	its_fixup_cmd(cmd);
882  
883  	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
884  }
885  
886  static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
887  					  struct its_cmd_block *cmd,
888  					  struct its_cmd_desc *desc)
889  {
890  	struct its_vlpi_map *map;
891  
892  	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
893  				    desc->its_inv_cmd.event_id);
894  
895  	its_encode_cmd(cmd, GITS_CMD_INV);
896  	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
897  	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
898  
899  	its_fixup_cmd(cmd);
900  
901  	return valid_vpe(its, map->vpe);
902  }
903  
904  static struct its_vpe *its_build_vint_cmd(struct its_node *its,
905  					  struct its_cmd_block *cmd,
906  					  struct its_cmd_desc *desc)
907  {
908  	struct its_vlpi_map *map;
909  
910  	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
911  				    desc->its_int_cmd.event_id);
912  
913  	its_encode_cmd(cmd, GITS_CMD_INT);
914  	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
915  	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
916  
917  	its_fixup_cmd(cmd);
918  
919  	return valid_vpe(its, map->vpe);
920  }
921  
922  static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
923  					    struct its_cmd_block *cmd,
924  					    struct its_cmd_desc *desc)
925  {
926  	struct its_vlpi_map *map;
927  
928  	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
929  				    desc->its_clear_cmd.event_id);
930  
931  	its_encode_cmd(cmd, GITS_CMD_CLEAR);
932  	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
933  	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
934  
935  	its_fixup_cmd(cmd);
936  
937  	return valid_vpe(its, map->vpe);
938  }
939  
940  static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
941  					   struct its_cmd_block *cmd,
942  					   struct its_cmd_desc *desc)
943  {
944  	if (WARN_ON(!is_v4_1(its)))
945  		return NULL;
946  
947  	its_encode_cmd(cmd, GITS_CMD_INVDB);
948  	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
949  
950  	its_fixup_cmd(cmd);
951  
952  	return valid_vpe(its, desc->its_invdb_cmd.vpe);
953  }
954  
955  static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
956  					  struct its_cmd_block *cmd,
957  					  struct its_cmd_desc *desc)
958  {
959  	if (WARN_ON(!is_v4_1(its)))
960  		return NULL;
961  
962  	its_encode_cmd(cmd, GITS_CMD_VSGI);
963  	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
964  	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
965  	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
966  	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
967  	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
968  	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
969  
970  	its_fixup_cmd(cmd);
971  
972  	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
973  }
974  
975  static u64 its_cmd_ptr_to_offset(struct its_node *its,
976  				 struct its_cmd_block *ptr)
977  {
978  	return (ptr - its->cmd_base) * sizeof(*ptr);
979  }
980  
981  static int its_queue_full(struct its_node *its)
982  {
983  	int widx;
984  	int ridx;
985  
986  	widx = its->cmd_write - its->cmd_base;
987  	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
988  
989  	/* This is incredibly unlikely to happen, unless the ITS locks up. */
990  	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
991  		return 1;
992  
993  	return 0;
994  }
995  
996  static struct its_cmd_block *its_allocate_entry(struct its_node *its)
997  {
998  	struct its_cmd_block *cmd;
999  	u32 count = 1000000;	/* 1s! */
1000  
1001  	while (its_queue_full(its)) {
1002  		count--;
1003  		if (!count) {
1004  			pr_err_ratelimited("ITS queue not draining\n");
1005  			return NULL;
1006  		}
1007  		cpu_relax();
1008  		udelay(1);
1009  	}
1010  
1011  	cmd = its->cmd_write++;
1012  
1013  	/* Handle queue wrapping */
1014  	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015  		its->cmd_write = its->cmd_base;
1016  
1017  	/* Clear command  */
1018  	cmd->raw_cmd[0] = 0;
1019  	cmd->raw_cmd[1] = 0;
1020  	cmd->raw_cmd[2] = 0;
1021  	cmd->raw_cmd[3] = 0;
1022  
1023  	return cmd;
1024  }
1025  
1026  static struct its_cmd_block *its_post_commands(struct its_node *its)
1027  {
1028  	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029  
1030  	writel_relaxed(wr, its->base + GITS_CWRITER);
1031  
1032  	return its->cmd_write;
1033  }
1034  
1035  static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036  {
1037  	/*
1038  	 * Make sure the commands written to memory are observable by
1039  	 * the ITS.
1040  	 */
1041  	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042  		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043  	else
1044  		dsb(ishst);
1045  }
1046  
1047  static int its_wait_for_range_completion(struct its_node *its,
1048  					 u64	prev_idx,
1049  					 struct its_cmd_block *to)
1050  {
1051  	u64 rd_idx, to_idx, linear_idx;
1052  	u32 count = 1000000;	/* 1s! */
1053  
1054  	/* Linearize to_idx if the command set has wrapped around */
1055  	to_idx = its_cmd_ptr_to_offset(its, to);
1056  	if (to_idx < prev_idx)
1057  		to_idx += ITS_CMD_QUEUE_SZ;
1058  
1059  	linear_idx = prev_idx;
1060  
1061  	while (1) {
1062  		s64 delta;
1063  
1064  		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065  
1066  		/*
1067  		 * Compute the read pointer progress, taking the
1068  		 * potential wrap-around into account.
1069  		 */
1070  		delta = rd_idx - prev_idx;
1071  		if (rd_idx < prev_idx)
1072  			delta += ITS_CMD_QUEUE_SZ;
1073  
1074  		linear_idx += delta;
1075  		if (linear_idx >= to_idx)
1076  			break;
1077  
1078  		count--;
1079  		if (!count) {
1080  			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081  					   to_idx, linear_idx);
1082  			return -1;
1083  		}
1084  		prev_idx = rd_idx;
1085  		cpu_relax();
1086  		udelay(1);
1087  	}
1088  
1089  	return 0;
1090  }
1091  
1092  /* Warning, macro hell follows */
1093  #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1094  void name(struct its_node *its,						\
1095  	  buildtype builder,						\
1096  	  struct its_cmd_desc *desc)					\
1097  {									\
1098  	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1099  	synctype *sync_obj;						\
1100  	unsigned long flags;						\
1101  	u64 rd_idx;							\
1102  									\
1103  	raw_spin_lock_irqsave(&its->lock, flags);			\
1104  									\
1105  	cmd = its_allocate_entry(its);					\
1106  	if (!cmd) {		/* We're soooooo screewed... */		\
1107  		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1108  		return;							\
1109  	}								\
1110  	sync_obj = builder(its, cmd, desc);				\
1111  	its_flush_cmd(its, cmd);					\
1112  									\
1113  	if (sync_obj) {							\
1114  		sync_cmd = its_allocate_entry(its);			\
1115  		if (!sync_cmd)						\
1116  			goto post;					\
1117  									\
1118  		buildfn(its, sync_cmd, sync_obj);			\
1119  		its_flush_cmd(its, sync_cmd);				\
1120  	}								\
1121  									\
1122  post:									\
1123  	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1124  	next_cmd = its_post_commands(its);				\
1125  	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1126  									\
1127  	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1128  		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1129  }
1130  
1131  static void its_build_sync_cmd(struct its_node *its,
1132  			       struct its_cmd_block *sync_cmd,
1133  			       struct its_collection *sync_col)
1134  {
1135  	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136  	its_encode_target(sync_cmd, sync_col->target_address);
1137  
1138  	its_fixup_cmd(sync_cmd);
1139  }
1140  
1141  static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142  			     struct its_collection, its_build_sync_cmd)
1143  
1144  static void its_build_vsync_cmd(struct its_node *its,
1145  				struct its_cmd_block *sync_cmd,
1146  				struct its_vpe *sync_vpe)
1147  {
1148  	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149  	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150  
1151  	its_fixup_cmd(sync_cmd);
1152  }
1153  
1154  static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155  			     struct its_vpe, its_build_vsync_cmd)
1156  
1157  static void its_send_int(struct its_device *dev, u32 event_id)
1158  {
1159  	struct its_cmd_desc desc;
1160  
1161  	desc.its_int_cmd.dev = dev;
1162  	desc.its_int_cmd.event_id = event_id;
1163  
1164  	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165  }
1166  
1167  static void its_send_clear(struct its_device *dev, u32 event_id)
1168  {
1169  	struct its_cmd_desc desc;
1170  
1171  	desc.its_clear_cmd.dev = dev;
1172  	desc.its_clear_cmd.event_id = event_id;
1173  
1174  	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175  }
1176  
1177  static void its_send_inv(struct its_device *dev, u32 event_id)
1178  {
1179  	struct its_cmd_desc desc;
1180  
1181  	desc.its_inv_cmd.dev = dev;
1182  	desc.its_inv_cmd.event_id = event_id;
1183  
1184  	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185  }
1186  
1187  static void its_send_mapd(struct its_device *dev, int valid)
1188  {
1189  	struct its_cmd_desc desc;
1190  
1191  	desc.its_mapd_cmd.dev = dev;
1192  	desc.its_mapd_cmd.valid = !!valid;
1193  
1194  	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195  }
1196  
1197  static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198  			  int valid)
1199  {
1200  	struct its_cmd_desc desc;
1201  
1202  	desc.its_mapc_cmd.col = col;
1203  	desc.its_mapc_cmd.valid = !!valid;
1204  
1205  	its_send_single_command(its, its_build_mapc_cmd, &desc);
1206  }
1207  
1208  static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209  {
1210  	struct its_cmd_desc desc;
1211  
1212  	desc.its_mapti_cmd.dev = dev;
1213  	desc.its_mapti_cmd.phys_id = irq_id;
1214  	desc.its_mapti_cmd.event_id = id;
1215  
1216  	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217  }
1218  
1219  static void its_send_movi(struct its_device *dev,
1220  			  struct its_collection *col, u32 id)
1221  {
1222  	struct its_cmd_desc desc;
1223  
1224  	desc.its_movi_cmd.dev = dev;
1225  	desc.its_movi_cmd.col = col;
1226  	desc.its_movi_cmd.event_id = id;
1227  
1228  	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229  }
1230  
1231  static void its_send_discard(struct its_device *dev, u32 id)
1232  {
1233  	struct its_cmd_desc desc;
1234  
1235  	desc.its_discard_cmd.dev = dev;
1236  	desc.its_discard_cmd.event_id = id;
1237  
1238  	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239  }
1240  
1241  static void its_send_invall(struct its_node *its, struct its_collection *col)
1242  {
1243  	struct its_cmd_desc desc;
1244  
1245  	desc.its_invall_cmd.col = col;
1246  
1247  	its_send_single_command(its, its_build_invall_cmd, &desc);
1248  }
1249  
1250  static void its_send_vmapti(struct its_device *dev, u32 id)
1251  {
1252  	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253  	struct its_cmd_desc desc;
1254  
1255  	desc.its_vmapti_cmd.vpe = map->vpe;
1256  	desc.its_vmapti_cmd.dev = dev;
1257  	desc.its_vmapti_cmd.virt_id = map->vintid;
1258  	desc.its_vmapti_cmd.event_id = id;
1259  	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260  
1261  	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262  }
1263  
1264  static void its_send_vmovi(struct its_device *dev, u32 id)
1265  {
1266  	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267  	struct its_cmd_desc desc;
1268  
1269  	desc.its_vmovi_cmd.vpe = map->vpe;
1270  	desc.its_vmovi_cmd.dev = dev;
1271  	desc.its_vmovi_cmd.event_id = id;
1272  	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273  
1274  	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275  }
1276  
1277  static void its_send_vmapp(struct its_node *its,
1278  			   struct its_vpe *vpe, bool valid)
1279  {
1280  	struct its_cmd_desc desc;
1281  
1282  	desc.its_vmapp_cmd.vpe = vpe;
1283  	desc.its_vmapp_cmd.valid = valid;
1284  	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285  
1286  	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287  }
1288  
1289  static void its_send_vmovp(struct its_vpe *vpe)
1290  {
1291  	struct its_cmd_desc desc = {};
1292  	struct its_node *its;
1293  	unsigned long flags;
1294  	int col_id = vpe->col_idx;
1295  
1296  	desc.its_vmovp_cmd.vpe = vpe;
1297  
1298  	if (!its_list_map) {
1299  		its = list_first_entry(&its_nodes, struct its_node, entry);
1300  		desc.its_vmovp_cmd.col = &its->collections[col_id];
1301  		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302  		return;
1303  	}
1304  
1305  	/*
1306  	 * Yet another marvel of the architecture. If using the
1307  	 * its_list "feature", we need to make sure that all ITSs
1308  	 * receive all VMOVP commands in the same order. The only way
1309  	 * to guarantee this is to make vmovp a serialization point.
1310  	 *
1311  	 * Wall <-- Head.
1312  	 */
1313  	raw_spin_lock_irqsave(&vmovp_lock, flags);
1314  
1315  	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316  	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317  
1318  	/* Emit VMOVPs */
1319  	list_for_each_entry(its, &its_nodes, entry) {
1320  		if (!is_v4(its))
1321  			continue;
1322  
1323  		if (!require_its_list_vmovp(vpe->its_vm, its))
1324  			continue;
1325  
1326  		desc.its_vmovp_cmd.col = &its->collections[col_id];
1327  		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328  	}
1329  
1330  	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331  }
1332  
1333  static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334  {
1335  	struct its_cmd_desc desc;
1336  
1337  	desc.its_vinvall_cmd.vpe = vpe;
1338  	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339  }
1340  
1341  static void its_send_vinv(struct its_device *dev, u32 event_id)
1342  {
1343  	struct its_cmd_desc desc;
1344  
1345  	/*
1346  	 * There is no real VINV command. This is just a normal INV,
1347  	 * with a VSYNC instead of a SYNC.
1348  	 */
1349  	desc.its_inv_cmd.dev = dev;
1350  	desc.its_inv_cmd.event_id = event_id;
1351  
1352  	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353  }
1354  
1355  static void its_send_vint(struct its_device *dev, u32 event_id)
1356  {
1357  	struct its_cmd_desc desc;
1358  
1359  	/*
1360  	 * There is no real VINT command. This is just a normal INT,
1361  	 * with a VSYNC instead of a SYNC.
1362  	 */
1363  	desc.its_int_cmd.dev = dev;
1364  	desc.its_int_cmd.event_id = event_id;
1365  
1366  	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367  }
1368  
1369  static void its_send_vclear(struct its_device *dev, u32 event_id)
1370  {
1371  	struct its_cmd_desc desc;
1372  
1373  	/*
1374  	 * There is no real VCLEAR command. This is just a normal CLEAR,
1375  	 * with a VSYNC instead of a SYNC.
1376  	 */
1377  	desc.its_clear_cmd.dev = dev;
1378  	desc.its_clear_cmd.event_id = event_id;
1379  
1380  	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381  }
1382  
1383  static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384  {
1385  	struct its_cmd_desc desc;
1386  
1387  	desc.its_invdb_cmd.vpe = vpe;
1388  	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389  }
1390  
1391  /*
1392   * irqchip functions - assumes MSI, mostly.
1393   */
1394  static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395  {
1396  	struct its_vlpi_map *map = get_vlpi_map(d);
1397  	irq_hw_number_t hwirq;
1398  	void *va;
1399  	u8 *cfg;
1400  
1401  	if (map) {
1402  		va = page_address(map->vm->vprop_page);
1403  		hwirq = map->vintid;
1404  
1405  		/* Remember the updated property */
1406  		map->properties &= ~clr;
1407  		map->properties |= set | LPI_PROP_GROUP1;
1408  	} else {
1409  		va = gic_rdists->prop_table_va;
1410  		hwirq = d->hwirq;
1411  	}
1412  
1413  	cfg = va + hwirq - 8192;
1414  	*cfg &= ~clr;
1415  	*cfg |= set | LPI_PROP_GROUP1;
1416  
1417  	/*
1418  	 * Make the above write visible to the redistributors.
1419  	 * And yes, we're flushing exactly: One. Single. Byte.
1420  	 * Humpf...
1421  	 */
1422  	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423  		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424  	else
1425  		dsb(ishst);
1426  }
1427  
1428  static void wait_for_syncr(void __iomem *rdbase)
1429  {
1430  	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431  		cpu_relax();
1432  }
1433  
1434  static void direct_lpi_inv(struct irq_data *d)
1435  {
1436  	struct its_vlpi_map *map = get_vlpi_map(d);
1437  	void __iomem *rdbase;
1438  	unsigned long flags;
1439  	u64 val;
1440  	int cpu;
1441  
1442  	if (map) {
1443  		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444  
1445  		WARN_ON(!is_v4_1(its_dev->its));
1446  
1447  		val  = GICR_INVLPIR_V;
1448  		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449  		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450  	} else {
1451  		val = d->hwirq;
1452  	}
1453  
1454  	/* Target the redistributor this LPI is currently routed to */
1455  	cpu = irq_to_cpuid_lock(d, &flags);
1456  	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457  	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458  	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459  
1460  	wait_for_syncr(rdbase);
1461  	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462  	irq_to_cpuid_unlock(d, flags);
1463  }
1464  
1465  static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466  {
1467  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468  
1469  	lpi_write_config(d, clr, set);
1470  	if (gic_rdists->has_direct_lpi &&
1471  	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472  		direct_lpi_inv(d);
1473  	else if (!irqd_is_forwarded_to_vcpu(d))
1474  		its_send_inv(its_dev, its_get_event_id(d));
1475  	else
1476  		its_send_vinv(its_dev, its_get_event_id(d));
1477  }
1478  
1479  static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480  {
1481  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482  	u32 event = its_get_event_id(d);
1483  	struct its_vlpi_map *map;
1484  
1485  	/*
1486  	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487  	 * here.
1488  	 */
1489  	if (is_v4_1(its_dev->its))
1490  		return;
1491  
1492  	map = dev_event_to_vlpi_map(its_dev, event);
1493  
1494  	if (map->db_enabled == enable)
1495  		return;
1496  
1497  	map->db_enabled = enable;
1498  
1499  	/*
1500  	 * More fun with the architecture:
1501  	 *
1502  	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503  	 * value or to 1023, depending on the enable bit. But that
1504  	 * would be issuing a mapping for an /existing/ DevID+EventID
1505  	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506  	 * to the /same/ vPE, using this opportunity to adjust the
1507  	 * doorbell. Mouahahahaha. We loves it, Precious.
1508  	 */
1509  	its_send_vmovi(its_dev, event);
1510  }
1511  
1512  static void its_mask_irq(struct irq_data *d)
1513  {
1514  	if (irqd_is_forwarded_to_vcpu(d))
1515  		its_vlpi_set_doorbell(d, false);
1516  
1517  	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518  }
1519  
1520  static void its_unmask_irq(struct irq_data *d)
1521  {
1522  	if (irqd_is_forwarded_to_vcpu(d))
1523  		its_vlpi_set_doorbell(d, true);
1524  
1525  	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526  }
1527  
1528  static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529  {
1530  	if (irqd_affinity_is_managed(d))
1531  		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532  
1533  	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534  }
1535  
1536  static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537  {
1538  	if (irqd_affinity_is_managed(d))
1539  		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540  	else
1541  		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542  }
1543  
1544  static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545  {
1546  	if (irqd_affinity_is_managed(d))
1547  		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548  	else
1549  		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550  }
1551  
1552  static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553  					      const struct cpumask *cpu_mask)
1554  {
1555  	unsigned int cpu = nr_cpu_ids, tmp;
1556  	int count = S32_MAX;
1557  
1558  	for_each_cpu(tmp, cpu_mask) {
1559  		int this_count = its_read_lpi_count(d, tmp);
1560  		if (this_count < count) {
1561  			cpu = tmp;
1562  		        count = this_count;
1563  		}
1564  	}
1565  
1566  	return cpu;
1567  }
1568  
1569  /*
1570   * As suggested by Thomas Gleixner in:
1571   * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572   */
1573  static int its_select_cpu(struct irq_data *d,
1574  			  const struct cpumask *aff_mask)
1575  {
1576  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577  	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1578  	static struct cpumask __tmpmask;
1579  	struct cpumask *tmpmask;
1580  	unsigned long flags;
1581  	int cpu, node;
1582  	node = its_dev->its->numa_node;
1583  	tmpmask = &__tmpmask;
1584  
1585  	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1586  
1587  	if (!irqd_affinity_is_managed(d)) {
1588  		/* First try the NUMA node */
1589  		if (node != NUMA_NO_NODE) {
1590  			/*
1591  			 * Try the intersection of the affinity mask and the
1592  			 * node mask (and the online mask, just to be safe).
1593  			 */
1594  			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1595  			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1596  
1597  			/*
1598  			 * Ideally, we would check if the mask is empty, and
1599  			 * try again on the full node here.
1600  			 *
1601  			 * But it turns out that the way ACPI describes the
1602  			 * affinity for ITSs only deals about memory, and
1603  			 * not target CPUs, so it cannot describe a single
1604  			 * ITS placed next to two NUMA nodes.
1605  			 *
1606  			 * Instead, just fallback on the online mask. This
1607  			 * diverges from Thomas' suggestion above.
1608  			 */
1609  			cpu = cpumask_pick_least_loaded(d, tmpmask);
1610  			if (cpu < nr_cpu_ids)
1611  				goto out;
1612  
1613  			/* If we can't cross sockets, give up */
1614  			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1615  				goto out;
1616  
1617  			/* If the above failed, expand the search */
1618  		}
1619  
1620  		/* Try the intersection of the affinity and online masks */
1621  		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1622  
1623  		/* If that doesn't fly, the online mask is the last resort */
1624  		if (cpumask_empty(tmpmask))
1625  			cpumask_copy(tmpmask, cpu_online_mask);
1626  
1627  		cpu = cpumask_pick_least_loaded(d, tmpmask);
1628  	} else {
1629  		cpumask_copy(tmpmask, aff_mask);
1630  
1631  		/* If we cannot cross sockets, limit the search to that node */
1632  		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1633  		    node != NUMA_NO_NODE)
1634  			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1635  
1636  		cpu = cpumask_pick_least_loaded(d, tmpmask);
1637  	}
1638  out:
1639  	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1640  
1641  	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1642  	return cpu;
1643  }
1644  
1645  static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1646  			    bool force)
1647  {
1648  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1649  	struct its_collection *target_col;
1650  	u32 id = its_get_event_id(d);
1651  	int cpu, prev_cpu;
1652  
1653  	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1654  	if (irqd_is_forwarded_to_vcpu(d))
1655  		return -EINVAL;
1656  
1657  	prev_cpu = its_dev->event_map.col_map[id];
1658  	its_dec_lpi_count(d, prev_cpu);
1659  
1660  	if (!force)
1661  		cpu = its_select_cpu(d, mask_val);
1662  	else
1663  		cpu = cpumask_pick_least_loaded(d, mask_val);
1664  
1665  	if (cpu < 0 || cpu >= nr_cpu_ids)
1666  		goto err;
1667  
1668  	/* don't set the affinity when the target cpu is same as current one */
1669  	if (cpu != prev_cpu) {
1670  		target_col = &its_dev->its->collections[cpu];
1671  		its_send_movi(its_dev, target_col, id);
1672  		its_dev->event_map.col_map[id] = cpu;
1673  		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1674  	}
1675  
1676  	its_inc_lpi_count(d, cpu);
1677  
1678  	return IRQ_SET_MASK_OK_DONE;
1679  
1680  err:
1681  	its_inc_lpi_count(d, prev_cpu);
1682  	return -EINVAL;
1683  }
1684  
1685  static u64 its_irq_get_msi_base(struct its_device *its_dev)
1686  {
1687  	struct its_node *its = its_dev->its;
1688  
1689  	return its->phys_base + GITS_TRANSLATER;
1690  }
1691  
1692  static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1693  {
1694  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1695  	struct its_node *its;
1696  	u64 addr;
1697  
1698  	its = its_dev->its;
1699  	addr = its->get_msi_base(its_dev);
1700  
1701  	msg->address_lo		= lower_32_bits(addr);
1702  	msg->address_hi		= upper_32_bits(addr);
1703  	msg->data		= its_get_event_id(d);
1704  
1705  	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1706  }
1707  
1708  static int its_irq_set_irqchip_state(struct irq_data *d,
1709  				     enum irqchip_irq_state which,
1710  				     bool state)
1711  {
1712  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1713  	u32 event = its_get_event_id(d);
1714  
1715  	if (which != IRQCHIP_STATE_PENDING)
1716  		return -EINVAL;
1717  
1718  	if (irqd_is_forwarded_to_vcpu(d)) {
1719  		if (state)
1720  			its_send_vint(its_dev, event);
1721  		else
1722  			its_send_vclear(its_dev, event);
1723  	} else {
1724  		if (state)
1725  			its_send_int(its_dev, event);
1726  		else
1727  			its_send_clear(its_dev, event);
1728  	}
1729  
1730  	return 0;
1731  }
1732  
1733  static int its_irq_retrigger(struct irq_data *d)
1734  {
1735  	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1736  }
1737  
1738  /*
1739   * Two favourable cases:
1740   *
1741   * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1742   *     for vSGI delivery
1743   *
1744   * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1745   *     and we're better off mapping all VPEs always
1746   *
1747   * If neither (a) nor (b) is true, then we map vPEs on demand.
1748   *
1749   */
1750  static bool gic_requires_eager_mapping(void)
1751  {
1752  	if (!its_list_map || gic_rdists->has_rvpeid)
1753  		return true;
1754  
1755  	return false;
1756  }
1757  
1758  static void its_map_vm(struct its_node *its, struct its_vm *vm)
1759  {
1760  	unsigned long flags;
1761  
1762  	if (gic_requires_eager_mapping())
1763  		return;
1764  
1765  	raw_spin_lock_irqsave(&vmovp_lock, flags);
1766  
1767  	/*
1768  	 * If the VM wasn't mapped yet, iterate over the vpes and get
1769  	 * them mapped now.
1770  	 */
1771  	vm->vlpi_count[its->list_nr]++;
1772  
1773  	if (vm->vlpi_count[its->list_nr] == 1) {
1774  		int i;
1775  
1776  		for (i = 0; i < vm->nr_vpes; i++) {
1777  			struct its_vpe *vpe = vm->vpes[i];
1778  			struct irq_data *d = irq_get_irq_data(vpe->irq);
1779  
1780  			/* Map the VPE to the first possible CPU */
1781  			vpe->col_idx = cpumask_first(cpu_online_mask);
1782  			its_send_vmapp(its, vpe, true);
1783  			its_send_vinvall(its, vpe);
1784  			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1785  		}
1786  	}
1787  
1788  	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1789  }
1790  
1791  static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1792  {
1793  	unsigned long flags;
1794  
1795  	/* Not using the ITS list? Everything is always mapped. */
1796  	if (gic_requires_eager_mapping())
1797  		return;
1798  
1799  	raw_spin_lock_irqsave(&vmovp_lock, flags);
1800  
1801  	if (!--vm->vlpi_count[its->list_nr]) {
1802  		int i;
1803  
1804  		for (i = 0; i < vm->nr_vpes; i++)
1805  			its_send_vmapp(its, vm->vpes[i], false);
1806  	}
1807  
1808  	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1809  }
1810  
1811  static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1812  {
1813  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814  	u32 event = its_get_event_id(d);
1815  	int ret = 0;
1816  
1817  	if (!info->map)
1818  		return -EINVAL;
1819  
1820  	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1821  
1822  	if (!its_dev->event_map.vm) {
1823  		struct its_vlpi_map *maps;
1824  
1825  		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1826  			       GFP_ATOMIC);
1827  		if (!maps) {
1828  			ret = -ENOMEM;
1829  			goto out;
1830  		}
1831  
1832  		its_dev->event_map.vm = info->map->vm;
1833  		its_dev->event_map.vlpi_maps = maps;
1834  	} else if (its_dev->event_map.vm != info->map->vm) {
1835  		ret = -EINVAL;
1836  		goto out;
1837  	}
1838  
1839  	/* Get our private copy of the mapping information */
1840  	its_dev->event_map.vlpi_maps[event] = *info->map;
1841  
1842  	if (irqd_is_forwarded_to_vcpu(d)) {
1843  		/* Already mapped, move it around */
1844  		its_send_vmovi(its_dev, event);
1845  	} else {
1846  		/* Ensure all the VPEs are mapped on this ITS */
1847  		its_map_vm(its_dev->its, info->map->vm);
1848  
1849  		/*
1850  		 * Flag the interrupt as forwarded so that we can
1851  		 * start poking the virtual property table.
1852  		 */
1853  		irqd_set_forwarded_to_vcpu(d);
1854  
1855  		/* Write out the property to the prop table */
1856  		lpi_write_config(d, 0xff, info->map->properties);
1857  
1858  		/* Drop the physical mapping */
1859  		its_send_discard(its_dev, event);
1860  
1861  		/* and install the virtual one */
1862  		its_send_vmapti(its_dev, event);
1863  
1864  		/* Increment the number of VLPIs */
1865  		its_dev->event_map.nr_vlpis++;
1866  	}
1867  
1868  out:
1869  	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1870  	return ret;
1871  }
1872  
1873  static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1874  {
1875  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1876  	struct its_vlpi_map *map;
1877  	int ret = 0;
1878  
1879  	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1880  
1881  	map = get_vlpi_map(d);
1882  
1883  	if (!its_dev->event_map.vm || !map) {
1884  		ret = -EINVAL;
1885  		goto out;
1886  	}
1887  
1888  	/* Copy our mapping information to the incoming request */
1889  	*info->map = *map;
1890  
1891  out:
1892  	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893  	return ret;
1894  }
1895  
1896  static int its_vlpi_unmap(struct irq_data *d)
1897  {
1898  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899  	u32 event = its_get_event_id(d);
1900  	int ret = 0;
1901  
1902  	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903  
1904  	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1905  		ret = -EINVAL;
1906  		goto out;
1907  	}
1908  
1909  	/* Drop the virtual mapping */
1910  	its_send_discard(its_dev, event);
1911  
1912  	/* and restore the physical one */
1913  	irqd_clr_forwarded_to_vcpu(d);
1914  	its_send_mapti(its_dev, d->hwirq, event);
1915  	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1916  				    LPI_PROP_ENABLED |
1917  				    LPI_PROP_GROUP1));
1918  
1919  	/* Potentially unmap the VM from this ITS */
1920  	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1921  
1922  	/*
1923  	 * Drop the refcount and make the device available again if
1924  	 * this was the last VLPI.
1925  	 */
1926  	if (!--its_dev->event_map.nr_vlpis) {
1927  		its_dev->event_map.vm = NULL;
1928  		kfree(its_dev->event_map.vlpi_maps);
1929  	}
1930  
1931  out:
1932  	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1933  	return ret;
1934  }
1935  
1936  static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1937  {
1938  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1939  
1940  	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1941  		return -EINVAL;
1942  
1943  	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1944  		lpi_update_config(d, 0xff, info->config);
1945  	else
1946  		lpi_write_config(d, 0xff, info->config);
1947  	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1948  
1949  	return 0;
1950  }
1951  
1952  static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1953  {
1954  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1955  	struct its_cmd_info *info = vcpu_info;
1956  
1957  	/* Need a v4 ITS */
1958  	if (!is_v4(its_dev->its))
1959  		return -EINVAL;
1960  
1961  	/* Unmap request? */
1962  	if (!info)
1963  		return its_vlpi_unmap(d);
1964  
1965  	switch (info->cmd_type) {
1966  	case MAP_VLPI:
1967  		return its_vlpi_map(d, info);
1968  
1969  	case GET_VLPI:
1970  		return its_vlpi_get(d, info);
1971  
1972  	case PROP_UPDATE_VLPI:
1973  	case PROP_UPDATE_AND_INV_VLPI:
1974  		return its_vlpi_prop_update(d, info);
1975  
1976  	default:
1977  		return -EINVAL;
1978  	}
1979  }
1980  
1981  static struct irq_chip its_irq_chip = {
1982  	.name			= "ITS",
1983  	.irq_mask		= its_mask_irq,
1984  	.irq_unmask		= its_unmask_irq,
1985  	.irq_eoi		= irq_chip_eoi_parent,
1986  	.irq_set_affinity	= its_set_affinity,
1987  	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1988  	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1989  	.irq_retrigger		= its_irq_retrigger,
1990  	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1991  };
1992  
1993  
1994  /*
1995   * How we allocate LPIs:
1996   *
1997   * lpi_range_list contains ranges of LPIs that are to available to
1998   * allocate from. To allocate LPIs, just pick the first range that
1999   * fits the required allocation, and reduce it by the required
2000   * amount. Once empty, remove the range from the list.
2001   *
2002   * To free a range of LPIs, add a free range to the list, sort it and
2003   * merge the result if the new range happens to be adjacent to an
2004   * already free block.
2005   *
2006   * The consequence of the above is that allocation is cost is low, but
2007   * freeing is expensive. We assumes that freeing rarely occurs.
2008   */
2009  #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2010  
2011  static DEFINE_MUTEX(lpi_range_lock);
2012  static LIST_HEAD(lpi_range_list);
2013  
2014  struct lpi_range {
2015  	struct list_head	entry;
2016  	u32			base_id;
2017  	u32			span;
2018  };
2019  
2020  static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2021  {
2022  	struct lpi_range *range;
2023  
2024  	range = kmalloc(sizeof(*range), GFP_KERNEL);
2025  	if (range) {
2026  		range->base_id = base;
2027  		range->span = span;
2028  	}
2029  
2030  	return range;
2031  }
2032  
2033  static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2034  {
2035  	struct lpi_range *range, *tmp;
2036  	int err = -ENOSPC;
2037  
2038  	mutex_lock(&lpi_range_lock);
2039  
2040  	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2041  		if (range->span >= nr_lpis) {
2042  			*base = range->base_id;
2043  			range->base_id += nr_lpis;
2044  			range->span -= nr_lpis;
2045  
2046  			if (range->span == 0) {
2047  				list_del(&range->entry);
2048  				kfree(range);
2049  			}
2050  
2051  			err = 0;
2052  			break;
2053  		}
2054  	}
2055  
2056  	mutex_unlock(&lpi_range_lock);
2057  
2058  	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2059  	return err;
2060  }
2061  
2062  static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2063  {
2064  	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2065  		return;
2066  	if (a->base_id + a->span != b->base_id)
2067  		return;
2068  	b->base_id = a->base_id;
2069  	b->span += a->span;
2070  	list_del(&a->entry);
2071  	kfree(a);
2072  }
2073  
2074  static int free_lpi_range(u32 base, u32 nr_lpis)
2075  {
2076  	struct lpi_range *new, *old;
2077  
2078  	new = mk_lpi_range(base, nr_lpis);
2079  	if (!new)
2080  		return -ENOMEM;
2081  
2082  	mutex_lock(&lpi_range_lock);
2083  
2084  	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2085  		if (old->base_id < base)
2086  			break;
2087  	}
2088  	/*
2089  	 * old is the last element with ->base_id smaller than base,
2090  	 * so new goes right after it. If there are no elements with
2091  	 * ->base_id smaller than base, &old->entry ends up pointing
2092  	 * at the head of the list, and inserting new it the start of
2093  	 * the list is the right thing to do in that case as well.
2094  	 */
2095  	list_add(&new->entry, &old->entry);
2096  	/*
2097  	 * Now check if we can merge with the preceding and/or
2098  	 * following ranges.
2099  	 */
2100  	merge_lpi_ranges(old, new);
2101  	merge_lpi_ranges(new, list_next_entry(new, entry));
2102  
2103  	mutex_unlock(&lpi_range_lock);
2104  	return 0;
2105  }
2106  
2107  static int __init its_lpi_init(u32 id_bits)
2108  {
2109  	u32 lpis = (1UL << id_bits) - 8192;
2110  	u32 numlpis;
2111  	int err;
2112  
2113  	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2114  
2115  	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2116  		lpis = numlpis;
2117  		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2118  			lpis);
2119  	}
2120  
2121  	/*
2122  	 * Initializing the allocator is just the same as freeing the
2123  	 * full range of LPIs.
2124  	 */
2125  	err = free_lpi_range(8192, lpis);
2126  	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2127  	return err;
2128  }
2129  
2130  static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2131  {
2132  	unsigned long *bitmap = NULL;
2133  	int err = 0;
2134  
2135  	do {
2136  		err = alloc_lpi_range(nr_irqs, base);
2137  		if (!err)
2138  			break;
2139  
2140  		nr_irqs /= 2;
2141  	} while (nr_irqs > 0);
2142  
2143  	if (!nr_irqs)
2144  		err = -ENOSPC;
2145  
2146  	if (err)
2147  		goto out;
2148  
2149  	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2150  	if (!bitmap)
2151  		goto out;
2152  
2153  	*nr_ids = nr_irqs;
2154  
2155  out:
2156  	if (!bitmap)
2157  		*base = *nr_ids = 0;
2158  
2159  	return bitmap;
2160  }
2161  
2162  static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2163  {
2164  	WARN_ON(free_lpi_range(base, nr_ids));
2165  	bitmap_free(bitmap);
2166  }
2167  
2168  static void gic_reset_prop_table(void *va)
2169  {
2170  	/* Priority 0xa0, Group-1, disabled */
2171  	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2172  
2173  	/* Make sure the GIC will observe the written configuration */
2174  	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2175  }
2176  
2177  static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2178  {
2179  	struct page *prop_page;
2180  
2181  	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2182  	if (!prop_page)
2183  		return NULL;
2184  
2185  	gic_reset_prop_table(page_address(prop_page));
2186  
2187  	return prop_page;
2188  }
2189  
2190  static void its_free_prop_table(struct page *prop_page)
2191  {
2192  	free_pages((unsigned long)page_address(prop_page),
2193  		   get_order(LPI_PROPBASE_SZ));
2194  }
2195  
2196  static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2197  {
2198  	phys_addr_t start, end, addr_end;
2199  	u64 i;
2200  
2201  	/*
2202  	 * We don't bother checking for a kdump kernel as by
2203  	 * construction, the LPI tables are out of this kernel's
2204  	 * memory map.
2205  	 */
2206  	if (is_kdump_kernel())
2207  		return true;
2208  
2209  	addr_end = addr + size - 1;
2210  
2211  	for_each_reserved_mem_range(i, &start, &end) {
2212  		if (addr >= start && addr_end <= end)
2213  			return true;
2214  	}
2215  
2216  	/* Not found, not a good sign... */
2217  	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2218  		&addr, &addr_end);
2219  	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2220  	return false;
2221  }
2222  
2223  static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2224  {
2225  	if (efi_enabled(EFI_CONFIG_TABLES))
2226  		return efi_mem_reserve_persistent(addr, size);
2227  
2228  	return 0;
2229  }
2230  
2231  static int __init its_setup_lpi_prop_table(void)
2232  {
2233  	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2234  		u64 val;
2235  
2236  		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2237  		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2238  
2239  		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2240  		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2241  						     LPI_PROPBASE_SZ,
2242  						     MEMREMAP_WB);
2243  		gic_reset_prop_table(gic_rdists->prop_table_va);
2244  	} else {
2245  		struct page *page;
2246  
2247  		lpi_id_bits = min_t(u32,
2248  				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2249  				    ITS_MAX_LPI_NRBITS);
2250  		page = its_allocate_prop_table(GFP_NOWAIT);
2251  		if (!page) {
2252  			pr_err("Failed to allocate PROPBASE\n");
2253  			return -ENOMEM;
2254  		}
2255  
2256  		gic_rdists->prop_table_pa = page_to_phys(page);
2257  		gic_rdists->prop_table_va = page_address(page);
2258  		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2259  					  LPI_PROPBASE_SZ));
2260  	}
2261  
2262  	pr_info("GICv3: using LPI property table @%pa\n",
2263  		&gic_rdists->prop_table_pa);
2264  
2265  	return its_lpi_init(lpi_id_bits);
2266  }
2267  
2268  static const char *its_base_type_string[] = {
2269  	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2270  	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2271  	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2272  	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2273  	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2274  	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2275  	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2276  };
2277  
2278  static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2279  {
2280  	u32 idx = baser - its->tables;
2281  
2282  	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2283  }
2284  
2285  static void its_write_baser(struct its_node *its, struct its_baser *baser,
2286  			    u64 val)
2287  {
2288  	u32 idx = baser - its->tables;
2289  
2290  	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2291  	baser->val = its_read_baser(its, baser);
2292  }
2293  
2294  static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2295  			   u64 cache, u64 shr, u32 order, bool indirect)
2296  {
2297  	u64 val = its_read_baser(its, baser);
2298  	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2299  	u64 type = GITS_BASER_TYPE(val);
2300  	u64 baser_phys, tmp;
2301  	u32 alloc_pages, psz;
2302  	struct page *page;
2303  	void *base;
2304  
2305  	psz = baser->psz;
2306  	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2307  	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2308  		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2309  			&its->phys_base, its_base_type_string[type],
2310  			alloc_pages, GITS_BASER_PAGES_MAX);
2311  		alloc_pages = GITS_BASER_PAGES_MAX;
2312  		order = get_order(GITS_BASER_PAGES_MAX * psz);
2313  	}
2314  
2315  	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2316  	if (!page)
2317  		return -ENOMEM;
2318  
2319  	base = (void *)page_address(page);
2320  	baser_phys = virt_to_phys(base);
2321  
2322  	/* Check if the physical address of the memory is above 48bits */
2323  	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2324  
2325  		/* 52bit PA is supported only when PageSize=64K */
2326  		if (psz != SZ_64K) {
2327  			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2328  			free_pages((unsigned long)base, order);
2329  			return -ENXIO;
2330  		}
2331  
2332  		/* Convert 52bit PA to 48bit field */
2333  		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2334  	}
2335  
2336  retry_baser:
2337  	val = (baser_phys					 |
2338  		(type << GITS_BASER_TYPE_SHIFT)			 |
2339  		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2340  		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2341  		cache						 |
2342  		shr						 |
2343  		GITS_BASER_VALID);
2344  
2345  	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2346  
2347  	switch (psz) {
2348  	case SZ_4K:
2349  		val |= GITS_BASER_PAGE_SIZE_4K;
2350  		break;
2351  	case SZ_16K:
2352  		val |= GITS_BASER_PAGE_SIZE_16K;
2353  		break;
2354  	case SZ_64K:
2355  		val |= GITS_BASER_PAGE_SIZE_64K;
2356  		break;
2357  	}
2358  
2359  	its_write_baser(its, baser, val);
2360  	tmp = baser->val;
2361  
2362  	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2363  		/*
2364  		 * Shareability didn't stick. Just use
2365  		 * whatever the read reported, which is likely
2366  		 * to be the only thing this redistributor
2367  		 * supports. If that's zero, make it
2368  		 * non-cacheable as well.
2369  		 */
2370  		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2371  		if (!shr) {
2372  			cache = GITS_BASER_nC;
2373  			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2374  		}
2375  		goto retry_baser;
2376  	}
2377  
2378  	if (val != tmp) {
2379  		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2380  		       &its->phys_base, its_base_type_string[type],
2381  		       val, tmp);
2382  		free_pages((unsigned long)base, order);
2383  		return -ENXIO;
2384  	}
2385  
2386  	baser->order = order;
2387  	baser->base = base;
2388  	baser->psz = psz;
2389  	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2390  
2391  	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2392  		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2393  		its_base_type_string[type],
2394  		(unsigned long)virt_to_phys(base),
2395  		indirect ? "indirect" : "flat", (int)esz,
2396  		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2397  
2398  	return 0;
2399  }
2400  
2401  static bool its_parse_indirect_baser(struct its_node *its,
2402  				     struct its_baser *baser,
2403  				     u32 *order, u32 ids)
2404  {
2405  	u64 tmp = its_read_baser(its, baser);
2406  	u64 type = GITS_BASER_TYPE(tmp);
2407  	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2408  	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2409  	u32 new_order = *order;
2410  	u32 psz = baser->psz;
2411  	bool indirect = false;
2412  
2413  	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2414  	if ((esz << ids) > (psz * 2)) {
2415  		/*
2416  		 * Find out whether hw supports a single or two-level table by
2417  		 * table by reading bit at offset '62' after writing '1' to it.
2418  		 */
2419  		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2420  		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2421  
2422  		if (indirect) {
2423  			/*
2424  			 * The size of the lvl2 table is equal to ITS page size
2425  			 * which is 'psz'. For computing lvl1 table size,
2426  			 * subtract ID bits that sparse lvl2 table from 'ids'
2427  			 * which is reported by ITS hardware times lvl1 table
2428  			 * entry size.
2429  			 */
2430  			ids -= ilog2(psz / (int)esz);
2431  			esz = GITS_LVL1_ENTRY_SIZE;
2432  		}
2433  	}
2434  
2435  	/*
2436  	 * Allocate as many entries as required to fit the
2437  	 * range of device IDs that the ITS can grok... The ID
2438  	 * space being incredibly sparse, this results in a
2439  	 * massive waste of memory if two-level device table
2440  	 * feature is not supported by hardware.
2441  	 */
2442  	new_order = max_t(u32, get_order(esz << ids), new_order);
2443  	if (new_order >= MAX_ORDER) {
2444  		new_order = MAX_ORDER - 1;
2445  		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2446  		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2447  			&its->phys_base, its_base_type_string[type],
2448  			device_ids(its), ids);
2449  	}
2450  
2451  	*order = new_order;
2452  
2453  	return indirect;
2454  }
2455  
2456  static u32 compute_common_aff(u64 val)
2457  {
2458  	u32 aff, clpiaff;
2459  
2460  	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2461  	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2462  
2463  	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2464  }
2465  
2466  static u32 compute_its_aff(struct its_node *its)
2467  {
2468  	u64 val;
2469  	u32 svpet;
2470  
2471  	/*
2472  	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2473  	 * the resulting affinity. We then use that to see if this match
2474  	 * our own affinity.
2475  	 */
2476  	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2477  	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2478  	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2479  	return compute_common_aff(val);
2480  }
2481  
2482  static struct its_node *find_sibling_its(struct its_node *cur_its)
2483  {
2484  	struct its_node *its;
2485  	u32 aff;
2486  
2487  	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2488  		return NULL;
2489  
2490  	aff = compute_its_aff(cur_its);
2491  
2492  	list_for_each_entry(its, &its_nodes, entry) {
2493  		u64 baser;
2494  
2495  		if (!is_v4_1(its) || its == cur_its)
2496  			continue;
2497  
2498  		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2499  			continue;
2500  
2501  		if (aff != compute_its_aff(its))
2502  			continue;
2503  
2504  		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2505  		baser = its->tables[2].val;
2506  		if (!(baser & GITS_BASER_VALID))
2507  			continue;
2508  
2509  		return its;
2510  	}
2511  
2512  	return NULL;
2513  }
2514  
2515  static void its_free_tables(struct its_node *its)
2516  {
2517  	int i;
2518  
2519  	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2520  		if (its->tables[i].base) {
2521  			free_pages((unsigned long)its->tables[i].base,
2522  				   its->tables[i].order);
2523  			its->tables[i].base = NULL;
2524  		}
2525  	}
2526  }
2527  
2528  static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2529  {
2530  	u64 psz = SZ_64K;
2531  
2532  	while (psz) {
2533  		u64 val, gpsz;
2534  
2535  		val = its_read_baser(its, baser);
2536  		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2537  
2538  		switch (psz) {
2539  		case SZ_64K:
2540  			gpsz = GITS_BASER_PAGE_SIZE_64K;
2541  			break;
2542  		case SZ_16K:
2543  			gpsz = GITS_BASER_PAGE_SIZE_16K;
2544  			break;
2545  		case SZ_4K:
2546  		default:
2547  			gpsz = GITS_BASER_PAGE_SIZE_4K;
2548  			break;
2549  		}
2550  
2551  		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2552  
2553  		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2554  		its_write_baser(its, baser, val);
2555  
2556  		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2557  			break;
2558  
2559  		switch (psz) {
2560  		case SZ_64K:
2561  			psz = SZ_16K;
2562  			break;
2563  		case SZ_16K:
2564  			psz = SZ_4K;
2565  			break;
2566  		case SZ_4K:
2567  		default:
2568  			return -1;
2569  		}
2570  	}
2571  
2572  	baser->psz = psz;
2573  	return 0;
2574  }
2575  
2576  static int its_alloc_tables(struct its_node *its)
2577  {
2578  	u64 shr = GITS_BASER_InnerShareable;
2579  	u64 cache = GITS_BASER_RaWaWb;
2580  	int err, i;
2581  
2582  	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2583  		/* erratum 24313: ignore memory access type */
2584  		cache = GITS_BASER_nCnB;
2585  
2586  	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2587  		struct its_baser *baser = its->tables + i;
2588  		u64 val = its_read_baser(its, baser);
2589  		u64 type = GITS_BASER_TYPE(val);
2590  		bool indirect = false;
2591  		u32 order;
2592  
2593  		if (type == GITS_BASER_TYPE_NONE)
2594  			continue;
2595  
2596  		if (its_probe_baser_psz(its, baser)) {
2597  			its_free_tables(its);
2598  			return -ENXIO;
2599  		}
2600  
2601  		order = get_order(baser->psz);
2602  
2603  		switch (type) {
2604  		case GITS_BASER_TYPE_DEVICE:
2605  			indirect = its_parse_indirect_baser(its, baser, &order,
2606  							    device_ids(its));
2607  			break;
2608  
2609  		case GITS_BASER_TYPE_VCPU:
2610  			if (is_v4_1(its)) {
2611  				struct its_node *sibling;
2612  
2613  				WARN_ON(i != 2);
2614  				if ((sibling = find_sibling_its(its))) {
2615  					*baser = sibling->tables[2];
2616  					its_write_baser(its, baser, baser->val);
2617  					continue;
2618  				}
2619  			}
2620  
2621  			indirect = its_parse_indirect_baser(its, baser, &order,
2622  							    ITS_MAX_VPEID_BITS);
2623  			break;
2624  		}
2625  
2626  		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2627  		if (err < 0) {
2628  			its_free_tables(its);
2629  			return err;
2630  		}
2631  
2632  		/* Update settings which will be used for next BASERn */
2633  		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2634  		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2635  	}
2636  
2637  	return 0;
2638  }
2639  
2640  static u64 inherit_vpe_l1_table_from_its(void)
2641  {
2642  	struct its_node *its;
2643  	u64 val;
2644  	u32 aff;
2645  
2646  	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2647  	aff = compute_common_aff(val);
2648  
2649  	list_for_each_entry(its, &its_nodes, entry) {
2650  		u64 baser, addr;
2651  
2652  		if (!is_v4_1(its))
2653  			continue;
2654  
2655  		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2656  			continue;
2657  
2658  		if (aff != compute_its_aff(its))
2659  			continue;
2660  
2661  		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2662  		baser = its->tables[2].val;
2663  		if (!(baser & GITS_BASER_VALID))
2664  			continue;
2665  
2666  		/* We have a winner! */
2667  		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2668  
2669  		val  = GICR_VPROPBASER_4_1_VALID;
2670  		if (baser & GITS_BASER_INDIRECT)
2671  			val |= GICR_VPROPBASER_4_1_INDIRECT;
2672  		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2673  				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2674  		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2675  		case GIC_PAGE_SIZE_64K:
2676  			addr = GITS_BASER_ADDR_48_to_52(baser);
2677  			break;
2678  		default:
2679  			addr = baser & GENMASK_ULL(47, 12);
2680  			break;
2681  		}
2682  		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2683  		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2684  				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2685  		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2686  				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2687  		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2688  
2689  		return val;
2690  	}
2691  
2692  	return 0;
2693  }
2694  
2695  static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2696  {
2697  	u32 aff;
2698  	u64 val;
2699  	int cpu;
2700  
2701  	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2702  	aff = compute_common_aff(val);
2703  
2704  	for_each_possible_cpu(cpu) {
2705  		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2706  
2707  		if (!base || cpu == smp_processor_id())
2708  			continue;
2709  
2710  		val = gic_read_typer(base + GICR_TYPER);
2711  		if (aff != compute_common_aff(val))
2712  			continue;
2713  
2714  		/*
2715  		 * At this point, we have a victim. This particular CPU
2716  		 * has already booted, and has an affinity that matches
2717  		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2718  		 * Make sure we don't write the Z bit in that case.
2719  		 */
2720  		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2721  		val &= ~GICR_VPROPBASER_4_1_Z;
2722  
2723  		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2724  		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2725  
2726  		return val;
2727  	}
2728  
2729  	return 0;
2730  }
2731  
2732  static bool allocate_vpe_l2_table(int cpu, u32 id)
2733  {
2734  	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2735  	unsigned int psz, esz, idx, npg, gpsz;
2736  	u64 val;
2737  	struct page *page;
2738  	__le64 *table;
2739  
2740  	if (!gic_rdists->has_rvpeid)
2741  		return true;
2742  
2743  	/* Skip non-present CPUs */
2744  	if (!base)
2745  		return true;
2746  
2747  	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2748  
2749  	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2750  	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2751  	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2752  
2753  	switch (gpsz) {
2754  	default:
2755  		WARN_ON(1);
2756  		fallthrough;
2757  	case GIC_PAGE_SIZE_4K:
2758  		psz = SZ_4K;
2759  		break;
2760  	case GIC_PAGE_SIZE_16K:
2761  		psz = SZ_16K;
2762  		break;
2763  	case GIC_PAGE_SIZE_64K:
2764  		psz = SZ_64K;
2765  		break;
2766  	}
2767  
2768  	/* Don't allow vpe_id that exceeds single, flat table limit */
2769  	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2770  		return (id < (npg * psz / (esz * SZ_8)));
2771  
2772  	/* Compute 1st level table index & check if that exceeds table limit */
2773  	idx = id >> ilog2(psz / (esz * SZ_8));
2774  	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2775  		return false;
2776  
2777  	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2778  
2779  	/* Allocate memory for 2nd level table */
2780  	if (!table[idx]) {
2781  		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2782  		if (!page)
2783  			return false;
2784  
2785  		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2786  		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787  			gic_flush_dcache_to_poc(page_address(page), psz);
2788  
2789  		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2790  
2791  		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2792  		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793  			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2794  
2795  		/* Ensure updated table contents are visible to RD hardware */
2796  		dsb(sy);
2797  	}
2798  
2799  	return true;
2800  }
2801  
2802  static int allocate_vpe_l1_table(void)
2803  {
2804  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805  	u64 val, gpsz, npg, pa;
2806  	unsigned int psz = SZ_64K;
2807  	unsigned int np, epp, esz;
2808  	struct page *page;
2809  
2810  	if (!gic_rdists->has_rvpeid)
2811  		return 0;
2812  
2813  	/*
2814  	 * if VPENDBASER.Valid is set, disable any previously programmed
2815  	 * VPE by setting PendingLast while clearing Valid. This has the
2816  	 * effect of making sure no doorbell will be generated and we can
2817  	 * then safely clear VPROPBASER.Valid.
2818  	 */
2819  	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2820  		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2821  				      vlpi_base + GICR_VPENDBASER);
2822  
2823  	/*
2824  	 * If we can inherit the configuration from another RD, let's do
2825  	 * so. Otherwise, we have to go through the allocation process. We
2826  	 * assume that all RDs have the exact same requirements, as
2827  	 * nothing will work otherwise.
2828  	 */
2829  	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2830  	if (val & GICR_VPROPBASER_4_1_VALID)
2831  		goto out;
2832  
2833  	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2834  	if (!gic_data_rdist()->vpe_table_mask)
2835  		return -ENOMEM;
2836  
2837  	val = inherit_vpe_l1_table_from_its();
2838  	if (val & GICR_VPROPBASER_4_1_VALID)
2839  		goto out;
2840  
2841  	/* First probe the page size */
2842  	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2843  	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2844  	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2845  	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2846  	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2847  
2848  	switch (gpsz) {
2849  	default:
2850  		gpsz = GIC_PAGE_SIZE_4K;
2851  		fallthrough;
2852  	case GIC_PAGE_SIZE_4K:
2853  		psz = SZ_4K;
2854  		break;
2855  	case GIC_PAGE_SIZE_16K:
2856  		psz = SZ_16K;
2857  		break;
2858  	case GIC_PAGE_SIZE_64K:
2859  		psz = SZ_64K;
2860  		break;
2861  	}
2862  
2863  	/*
2864  	 * Start populating the register from scratch, including RO fields
2865  	 * (which we want to print in debug cases...)
2866  	 */
2867  	val = 0;
2868  	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2869  	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2870  
2871  	/* How many entries per GIC page? */
2872  	esz++;
2873  	epp = psz / (esz * SZ_8);
2874  
2875  	/*
2876  	 * If we need more than just a single L1 page, flag the table
2877  	 * as indirect and compute the number of required L1 pages.
2878  	 */
2879  	if (epp < ITS_MAX_VPEID) {
2880  		int nl2;
2881  
2882  		val |= GICR_VPROPBASER_4_1_INDIRECT;
2883  
2884  		/* Number of L2 pages required to cover the VPEID space */
2885  		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2886  
2887  		/* Number of L1 pages to point to the L2 pages */
2888  		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2889  	} else {
2890  		npg = 1;
2891  	}
2892  
2893  	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2894  
2895  	/* Right, that's the number of CPU pages we need for L1 */
2896  	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2897  
2898  	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2899  		 np, npg, psz, epp, esz);
2900  	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2901  	if (!page)
2902  		return -ENOMEM;
2903  
2904  	gic_data_rdist()->vpe_l1_base = page_address(page);
2905  	pa = virt_to_phys(page_address(page));
2906  	WARN_ON(!IS_ALIGNED(pa, psz));
2907  
2908  	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2909  	val |= GICR_VPROPBASER_RaWb;
2910  	val |= GICR_VPROPBASER_InnerShareable;
2911  	val |= GICR_VPROPBASER_4_1_Z;
2912  	val |= GICR_VPROPBASER_4_1_VALID;
2913  
2914  out:
2915  	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2916  	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2917  
2918  	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2919  		 smp_processor_id(), val,
2920  		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2921  
2922  	return 0;
2923  }
2924  
2925  static int its_alloc_collections(struct its_node *its)
2926  {
2927  	int i;
2928  
2929  	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2930  				   GFP_KERNEL);
2931  	if (!its->collections)
2932  		return -ENOMEM;
2933  
2934  	for (i = 0; i < nr_cpu_ids; i++)
2935  		its->collections[i].target_address = ~0ULL;
2936  
2937  	return 0;
2938  }
2939  
2940  static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2941  {
2942  	struct page *pend_page;
2943  
2944  	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2945  				get_order(LPI_PENDBASE_SZ));
2946  	if (!pend_page)
2947  		return NULL;
2948  
2949  	/* Make sure the GIC will observe the zero-ed page */
2950  	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2951  
2952  	return pend_page;
2953  }
2954  
2955  static void its_free_pending_table(struct page *pt)
2956  {
2957  	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2958  }
2959  
2960  /*
2961   * Booting with kdump and LPIs enabled is generally fine. Any other
2962   * case is wrong in the absence of firmware/EFI support.
2963   */
2964  static bool enabled_lpis_allowed(void)
2965  {
2966  	phys_addr_t addr;
2967  	u64 val;
2968  
2969  	/* Check whether the property table is in a reserved region */
2970  	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2971  	addr = val & GENMASK_ULL(51, 12);
2972  
2973  	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2974  }
2975  
2976  static int __init allocate_lpi_tables(void)
2977  {
2978  	u64 val;
2979  	int err, cpu;
2980  
2981  	/*
2982  	 * If LPIs are enabled while we run this from the boot CPU,
2983  	 * flag the RD tables as pre-allocated if the stars do align.
2984  	 */
2985  	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2986  	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2987  		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2988  				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2989  		pr_info("GICv3: Using preallocated redistributor tables\n");
2990  	}
2991  
2992  	err = its_setup_lpi_prop_table();
2993  	if (err)
2994  		return err;
2995  
2996  	/*
2997  	 * We allocate all the pending tables anyway, as we may have a
2998  	 * mix of RDs that have had LPIs enabled, and some that
2999  	 * don't. We'll free the unused ones as each CPU comes online.
3000  	 */
3001  	for_each_possible_cpu(cpu) {
3002  		struct page *pend_page;
3003  
3004  		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3005  		if (!pend_page) {
3006  			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3007  			return -ENOMEM;
3008  		}
3009  
3010  		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3011  	}
3012  
3013  	return 0;
3014  }
3015  
3016  static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3017  {
3018  	u32 count = 1000000;	/* 1s! */
3019  	bool clean;
3020  	u64 val;
3021  
3022  	do {
3023  		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024  		clean = !(val & GICR_VPENDBASER_Dirty);
3025  		if (!clean) {
3026  			count--;
3027  			cpu_relax();
3028  			udelay(1);
3029  		}
3030  	} while (!clean && count);
3031  
3032  	if (unlikely(!clean))
3033  		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034  
3035  	return val;
3036  }
3037  
3038  static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3039  {
3040  	u64 val;
3041  
3042  	/* Make sure we wait until the RD is done with the initial scan */
3043  	val = read_vpend_dirty_clear(vlpi_base);
3044  	val &= ~GICR_VPENDBASER_Valid;
3045  	val &= ~clr;
3046  	val |= set;
3047  	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3048  
3049  	val = read_vpend_dirty_clear(vlpi_base);
3050  	if (unlikely(val & GICR_VPENDBASER_Dirty))
3051  		val |= GICR_VPENDBASER_PendingLast;
3052  
3053  	return val;
3054  }
3055  
3056  static void its_cpu_init_lpis(void)
3057  {
3058  	void __iomem *rbase = gic_data_rdist_rd_base();
3059  	struct page *pend_page;
3060  	phys_addr_t paddr;
3061  	u64 val, tmp;
3062  
3063  	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3064  		return;
3065  
3066  	val = readl_relaxed(rbase + GICR_CTLR);
3067  	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3068  	    (val & GICR_CTLR_ENABLE_LPIS)) {
3069  		/*
3070  		 * Check that we get the same property table on all
3071  		 * RDs. If we don't, this is hopeless.
3072  		 */
3073  		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074  		paddr &= GENMASK_ULL(51, 12);
3075  		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3076  			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3077  
3078  		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3079  		paddr &= GENMASK_ULL(51, 16);
3080  
3081  		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3082  		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3083  
3084  		goto out;
3085  	}
3086  
3087  	pend_page = gic_data_rdist()->pend_page;
3088  	paddr = page_to_phys(pend_page);
3089  
3090  	/* set PROPBASE */
3091  	val = (gic_rdists->prop_table_pa |
3092  	       GICR_PROPBASER_InnerShareable |
3093  	       GICR_PROPBASER_RaWaWb |
3094  	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3095  
3096  	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3097  	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3098  
3099  	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3100  		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3101  			/*
3102  			 * The HW reports non-shareable, we must
3103  			 * remove the cacheability attributes as
3104  			 * well.
3105  			 */
3106  			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3107  				 GICR_PROPBASER_CACHEABILITY_MASK);
3108  			val |= GICR_PROPBASER_nC;
3109  			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3110  		}
3111  		pr_info_once("GIC: using cache flushing for LPI property table\n");
3112  		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3113  	}
3114  
3115  	/* set PENDBASE */
3116  	val = (page_to_phys(pend_page) |
3117  	       GICR_PENDBASER_InnerShareable |
3118  	       GICR_PENDBASER_RaWaWb);
3119  
3120  	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3121  	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3122  
3123  	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3124  		/*
3125  		 * The HW reports non-shareable, we must remove the
3126  		 * cacheability attributes as well.
3127  		 */
3128  		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3129  			 GICR_PENDBASER_CACHEABILITY_MASK);
3130  		val |= GICR_PENDBASER_nC;
3131  		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3132  	}
3133  
3134  	/* Enable LPIs */
3135  	val = readl_relaxed(rbase + GICR_CTLR);
3136  	val |= GICR_CTLR_ENABLE_LPIS;
3137  	writel_relaxed(val, rbase + GICR_CTLR);
3138  
3139  	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3140  		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3141  
3142  		/*
3143  		 * It's possible for CPU to receive VLPIs before it is
3144  		 * scheduled as a vPE, especially for the first CPU, and the
3145  		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3146  		 * as out of range and dropped by GIC.
3147  		 * So we initialize IDbits to known value to avoid VLPI drop.
3148  		 */
3149  		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3150  		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3151  			smp_processor_id(), val);
3152  		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3153  
3154  		/*
3155  		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3156  		 * ancient programming gets left in and has possibility of
3157  		 * corrupting memory.
3158  		 */
3159  		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3160  	}
3161  
3162  	if (allocate_vpe_l1_table()) {
3163  		/*
3164  		 * If the allocation has failed, we're in massive trouble.
3165  		 * Disable direct injection, and pray that no VM was
3166  		 * already running...
3167  		 */
3168  		gic_rdists->has_rvpeid = false;
3169  		gic_rdists->has_vlpis = false;
3170  	}
3171  
3172  	/* Make sure the GIC has seen the above */
3173  	dsb(sy);
3174  out:
3175  	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3176  	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3177  		smp_processor_id(),
3178  		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3179  		"reserved" : "allocated",
3180  		&paddr);
3181  }
3182  
3183  static void its_cpu_init_collection(struct its_node *its)
3184  {
3185  	int cpu = smp_processor_id();
3186  	u64 target;
3187  
3188  	/* avoid cross node collections and its mapping */
3189  	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3190  		struct device_node *cpu_node;
3191  
3192  		cpu_node = of_get_cpu_node(cpu, NULL);
3193  		if (its->numa_node != NUMA_NO_NODE &&
3194  			its->numa_node != of_node_to_nid(cpu_node))
3195  			return;
3196  	}
3197  
3198  	/*
3199  	 * We now have to bind each collection to its target
3200  	 * redistributor.
3201  	 */
3202  	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3203  		/*
3204  		 * This ITS wants the physical address of the
3205  		 * redistributor.
3206  		 */
3207  		target = gic_data_rdist()->phys_base;
3208  	} else {
3209  		/* This ITS wants a linear CPU number. */
3210  		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3211  		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3212  	}
3213  
3214  	/* Perform collection mapping */
3215  	its->collections[cpu].target_address = target;
3216  	its->collections[cpu].col_id = cpu;
3217  
3218  	its_send_mapc(its, &its->collections[cpu], 1);
3219  	its_send_invall(its, &its->collections[cpu]);
3220  }
3221  
3222  static void its_cpu_init_collections(void)
3223  {
3224  	struct its_node *its;
3225  
3226  	raw_spin_lock(&its_lock);
3227  
3228  	list_for_each_entry(its, &its_nodes, entry)
3229  		its_cpu_init_collection(its);
3230  
3231  	raw_spin_unlock(&its_lock);
3232  }
3233  
3234  static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3235  {
3236  	struct its_device *its_dev = NULL, *tmp;
3237  	unsigned long flags;
3238  
3239  	raw_spin_lock_irqsave(&its->lock, flags);
3240  
3241  	list_for_each_entry(tmp, &its->its_device_list, entry) {
3242  		if (tmp->device_id == dev_id) {
3243  			its_dev = tmp;
3244  			break;
3245  		}
3246  	}
3247  
3248  	raw_spin_unlock_irqrestore(&its->lock, flags);
3249  
3250  	return its_dev;
3251  }
3252  
3253  static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3254  {
3255  	int i;
3256  
3257  	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3258  		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3259  			return &its->tables[i];
3260  	}
3261  
3262  	return NULL;
3263  }
3264  
3265  static bool its_alloc_table_entry(struct its_node *its,
3266  				  struct its_baser *baser, u32 id)
3267  {
3268  	struct page *page;
3269  	u32 esz, idx;
3270  	__le64 *table;
3271  
3272  	/* Don't allow device id that exceeds single, flat table limit */
3273  	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3274  	if (!(baser->val & GITS_BASER_INDIRECT))
3275  		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3276  
3277  	/* Compute 1st level table index & check if that exceeds table limit */
3278  	idx = id >> ilog2(baser->psz / esz);
3279  	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3280  		return false;
3281  
3282  	table = baser->base;
3283  
3284  	/* Allocate memory for 2nd level table */
3285  	if (!table[idx]) {
3286  		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3287  					get_order(baser->psz));
3288  		if (!page)
3289  			return false;
3290  
3291  		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3292  		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3293  			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3294  
3295  		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3296  
3297  		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3298  		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3299  			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3300  
3301  		/* Ensure updated table contents are visible to ITS hardware */
3302  		dsb(sy);
3303  	}
3304  
3305  	return true;
3306  }
3307  
3308  static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3309  {
3310  	struct its_baser *baser;
3311  
3312  	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3313  
3314  	/* Don't allow device id that exceeds ITS hardware limit */
3315  	if (!baser)
3316  		return (ilog2(dev_id) < device_ids(its));
3317  
3318  	return its_alloc_table_entry(its, baser, dev_id);
3319  }
3320  
3321  static bool its_alloc_vpe_table(u32 vpe_id)
3322  {
3323  	struct its_node *its;
3324  	int cpu;
3325  
3326  	/*
3327  	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3328  	 * could try and only do it on ITSs corresponding to devices
3329  	 * that have interrupts targeted at this VPE, but the
3330  	 * complexity becomes crazy (and you have tons of memory
3331  	 * anyway, right?).
3332  	 */
3333  	list_for_each_entry(its, &its_nodes, entry) {
3334  		struct its_baser *baser;
3335  
3336  		if (!is_v4(its))
3337  			continue;
3338  
3339  		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3340  		if (!baser)
3341  			return false;
3342  
3343  		if (!its_alloc_table_entry(its, baser, vpe_id))
3344  			return false;
3345  	}
3346  
3347  	/* Non v4.1? No need to iterate RDs and go back early. */
3348  	if (!gic_rdists->has_rvpeid)
3349  		return true;
3350  
3351  	/*
3352  	 * Make sure the L2 tables are allocated for all copies of
3353  	 * the L1 table on *all* v4.1 RDs.
3354  	 */
3355  	for_each_possible_cpu(cpu) {
3356  		if (!allocate_vpe_l2_table(cpu, vpe_id))
3357  			return false;
3358  	}
3359  
3360  	return true;
3361  }
3362  
3363  static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3364  					    int nvecs, bool alloc_lpis)
3365  {
3366  	struct its_device *dev;
3367  	unsigned long *lpi_map = NULL;
3368  	unsigned long flags;
3369  	u16 *col_map = NULL;
3370  	void *itt;
3371  	int lpi_base;
3372  	int nr_lpis;
3373  	int nr_ites;
3374  	int sz;
3375  
3376  	if (!its_alloc_device_table(its, dev_id))
3377  		return NULL;
3378  
3379  	if (WARN_ON(!is_power_of_2(nvecs)))
3380  		nvecs = roundup_pow_of_two(nvecs);
3381  
3382  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3383  	/*
3384  	 * Even if the device wants a single LPI, the ITT must be
3385  	 * sized as a power of two (and you need at least one bit...).
3386  	 */
3387  	nr_ites = max(2, nvecs);
3388  	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3389  	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3390  	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3391  	if (alloc_lpis) {
3392  		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3393  		if (lpi_map)
3394  			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3395  					  GFP_KERNEL);
3396  	} else {
3397  		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3398  		nr_lpis = 0;
3399  		lpi_base = 0;
3400  	}
3401  
3402  	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3403  		kfree(dev);
3404  		kfree(itt);
3405  		bitmap_free(lpi_map);
3406  		kfree(col_map);
3407  		return NULL;
3408  	}
3409  
3410  	gic_flush_dcache_to_poc(itt, sz);
3411  
3412  	dev->its = its;
3413  	dev->itt = itt;
3414  	dev->nr_ites = nr_ites;
3415  	dev->event_map.lpi_map = lpi_map;
3416  	dev->event_map.col_map = col_map;
3417  	dev->event_map.lpi_base = lpi_base;
3418  	dev->event_map.nr_lpis = nr_lpis;
3419  	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3420  	dev->device_id = dev_id;
3421  	INIT_LIST_HEAD(&dev->entry);
3422  
3423  	raw_spin_lock_irqsave(&its->lock, flags);
3424  	list_add(&dev->entry, &its->its_device_list);
3425  	raw_spin_unlock_irqrestore(&its->lock, flags);
3426  
3427  	/* Map device to its ITT */
3428  	its_send_mapd(dev, 1);
3429  
3430  	return dev;
3431  }
3432  
3433  static void its_free_device(struct its_device *its_dev)
3434  {
3435  	unsigned long flags;
3436  
3437  	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3438  	list_del(&its_dev->entry);
3439  	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3440  	kfree(its_dev->event_map.col_map);
3441  	kfree(its_dev->itt);
3442  	kfree(its_dev);
3443  }
3444  
3445  static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3446  {
3447  	int idx;
3448  
3449  	/* Find a free LPI region in lpi_map and allocate them. */
3450  	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3451  				      dev->event_map.nr_lpis,
3452  				      get_count_order(nvecs));
3453  	if (idx < 0)
3454  		return -ENOSPC;
3455  
3456  	*hwirq = dev->event_map.lpi_base + idx;
3457  
3458  	return 0;
3459  }
3460  
3461  static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3462  			   int nvec, msi_alloc_info_t *info)
3463  {
3464  	struct its_node *its;
3465  	struct its_device *its_dev;
3466  	struct msi_domain_info *msi_info;
3467  	u32 dev_id;
3468  	int err = 0;
3469  
3470  	/*
3471  	 * We ignore "dev" entirely, and rely on the dev_id that has
3472  	 * been passed via the scratchpad. This limits this domain's
3473  	 * usefulness to upper layers that definitely know that they
3474  	 * are built on top of the ITS.
3475  	 */
3476  	dev_id = info->scratchpad[0].ul;
3477  
3478  	msi_info = msi_get_domain_info(domain);
3479  	its = msi_info->data;
3480  
3481  	if (!gic_rdists->has_direct_lpi &&
3482  	    vpe_proxy.dev &&
3483  	    vpe_proxy.dev->its == its &&
3484  	    dev_id == vpe_proxy.dev->device_id) {
3485  		/* Bad luck. Get yourself a better implementation */
3486  		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3487  			  dev_id);
3488  		return -EINVAL;
3489  	}
3490  
3491  	mutex_lock(&its->dev_alloc_lock);
3492  	its_dev = its_find_device(its, dev_id);
3493  	if (its_dev) {
3494  		/*
3495  		 * We already have seen this ID, probably through
3496  		 * another alias (PCI bridge of some sort). No need to
3497  		 * create the device.
3498  		 */
3499  		its_dev->shared = true;
3500  		pr_debug("Reusing ITT for devID %x\n", dev_id);
3501  		goto out;
3502  	}
3503  
3504  	its_dev = its_create_device(its, dev_id, nvec, true);
3505  	if (!its_dev) {
3506  		err = -ENOMEM;
3507  		goto out;
3508  	}
3509  
3510  	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3511  		its_dev->shared = true;
3512  
3513  	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3514  out:
3515  	mutex_unlock(&its->dev_alloc_lock);
3516  	info->scratchpad[0].ptr = its_dev;
3517  	return err;
3518  }
3519  
3520  static struct msi_domain_ops its_msi_domain_ops = {
3521  	.msi_prepare	= its_msi_prepare,
3522  };
3523  
3524  static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3525  				    unsigned int virq,
3526  				    irq_hw_number_t hwirq)
3527  {
3528  	struct irq_fwspec fwspec;
3529  
3530  	if (irq_domain_get_of_node(domain->parent)) {
3531  		fwspec.fwnode = domain->parent->fwnode;
3532  		fwspec.param_count = 3;
3533  		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3534  		fwspec.param[1] = hwirq;
3535  		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3536  	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3537  		fwspec.fwnode = domain->parent->fwnode;
3538  		fwspec.param_count = 2;
3539  		fwspec.param[0] = hwirq;
3540  		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3541  	} else {
3542  		return -EINVAL;
3543  	}
3544  
3545  	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3546  }
3547  
3548  static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3549  				unsigned int nr_irqs, void *args)
3550  {
3551  	msi_alloc_info_t *info = args;
3552  	struct its_device *its_dev = info->scratchpad[0].ptr;
3553  	struct its_node *its = its_dev->its;
3554  	struct irq_data *irqd;
3555  	irq_hw_number_t hwirq;
3556  	int err;
3557  	int i;
3558  
3559  	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3560  	if (err)
3561  		return err;
3562  
3563  	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3564  	if (err)
3565  		return err;
3566  
3567  	for (i = 0; i < nr_irqs; i++) {
3568  		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3569  		if (err)
3570  			return err;
3571  
3572  		irq_domain_set_hwirq_and_chip(domain, virq + i,
3573  					      hwirq + i, &its_irq_chip, its_dev);
3574  		irqd = irq_get_irq_data(virq + i);
3575  		irqd_set_single_target(irqd);
3576  		irqd_set_affinity_on_activate(irqd);
3577  		pr_debug("ID:%d pID:%d vID:%d\n",
3578  			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3579  			 (int)(hwirq + i), virq + i);
3580  	}
3581  
3582  	return 0;
3583  }
3584  
3585  static int its_irq_domain_activate(struct irq_domain *domain,
3586  				   struct irq_data *d, bool reserve)
3587  {
3588  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589  	u32 event = its_get_event_id(d);
3590  	int cpu;
3591  
3592  	cpu = its_select_cpu(d, cpu_online_mask);
3593  	if (cpu < 0 || cpu >= nr_cpu_ids)
3594  		return -EINVAL;
3595  
3596  	its_inc_lpi_count(d, cpu);
3597  	its_dev->event_map.col_map[event] = cpu;
3598  	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3599  
3600  	/* Map the GIC IRQ and event to the device */
3601  	its_send_mapti(its_dev, d->hwirq, event);
3602  	return 0;
3603  }
3604  
3605  static void its_irq_domain_deactivate(struct irq_domain *domain,
3606  				      struct irq_data *d)
3607  {
3608  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609  	u32 event = its_get_event_id(d);
3610  
3611  	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3612  	/* Stop the delivery of interrupts */
3613  	its_send_discard(its_dev, event);
3614  }
3615  
3616  static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3617  				unsigned int nr_irqs)
3618  {
3619  	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3620  	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621  	struct its_node *its = its_dev->its;
3622  	int i;
3623  
3624  	bitmap_release_region(its_dev->event_map.lpi_map,
3625  			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3626  			      get_count_order(nr_irqs));
3627  
3628  	for (i = 0; i < nr_irqs; i++) {
3629  		struct irq_data *data = irq_domain_get_irq_data(domain,
3630  								virq + i);
3631  		/* Nuke the entry in the domain */
3632  		irq_domain_reset_irq_data(data);
3633  	}
3634  
3635  	mutex_lock(&its->dev_alloc_lock);
3636  
3637  	/*
3638  	 * If all interrupts have been freed, start mopping the
3639  	 * floor. This is conditioned on the device not being shared.
3640  	 */
3641  	if (!its_dev->shared &&
3642  	    bitmap_empty(its_dev->event_map.lpi_map,
3643  			 its_dev->event_map.nr_lpis)) {
3644  		its_lpi_free(its_dev->event_map.lpi_map,
3645  			     its_dev->event_map.lpi_base,
3646  			     its_dev->event_map.nr_lpis);
3647  
3648  		/* Unmap device/itt */
3649  		its_send_mapd(its_dev, 0);
3650  		its_free_device(its_dev);
3651  	}
3652  
3653  	mutex_unlock(&its->dev_alloc_lock);
3654  
3655  	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3656  }
3657  
3658  static const struct irq_domain_ops its_domain_ops = {
3659  	.alloc			= its_irq_domain_alloc,
3660  	.free			= its_irq_domain_free,
3661  	.activate		= its_irq_domain_activate,
3662  	.deactivate		= its_irq_domain_deactivate,
3663  };
3664  
3665  /*
3666   * This is insane.
3667   *
3668   * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3669   * likely), the only way to perform an invalidate is to use a fake
3670   * device to issue an INV command, implying that the LPI has first
3671   * been mapped to some event on that device. Since this is not exactly
3672   * cheap, we try to keep that mapping around as long as possible, and
3673   * only issue an UNMAP if we're short on available slots.
3674   *
3675   * Broken by design(tm).
3676   *
3677   * GICv4.1, on the other hand, mandates that we're able to invalidate
3678   * by writing to a MMIO register. It doesn't implement the whole of
3679   * DirectLPI, but that's good enough. And most of the time, we don't
3680   * even have to invalidate anything, as the redistributor can be told
3681   * whether to generate a doorbell or not (we thus leave it enabled,
3682   * always).
3683   */
3684  static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3685  {
3686  	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3687  	if (gic_rdists->has_rvpeid)
3688  		return;
3689  
3690  	/* Already unmapped? */
3691  	if (vpe->vpe_proxy_event == -1)
3692  		return;
3693  
3694  	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3695  	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3696  
3697  	/*
3698  	 * We don't track empty slots at all, so let's move the
3699  	 * next_victim pointer if we can quickly reuse that slot
3700  	 * instead of nuking an existing entry. Not clear that this is
3701  	 * always a win though, and this might just generate a ripple
3702  	 * effect... Let's just hope VPEs don't migrate too often.
3703  	 */
3704  	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3705  		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3706  
3707  	vpe->vpe_proxy_event = -1;
3708  }
3709  
3710  static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3711  {
3712  	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3713  	if (gic_rdists->has_rvpeid)
3714  		return;
3715  
3716  	if (!gic_rdists->has_direct_lpi) {
3717  		unsigned long flags;
3718  
3719  		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3720  		its_vpe_db_proxy_unmap_locked(vpe);
3721  		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3722  	}
3723  }
3724  
3725  static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3726  {
3727  	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3728  	if (gic_rdists->has_rvpeid)
3729  		return;
3730  
3731  	/* Already mapped? */
3732  	if (vpe->vpe_proxy_event != -1)
3733  		return;
3734  
3735  	/* This slot was already allocated. Kick the other VPE out. */
3736  	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3737  		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3738  
3739  	/* Map the new VPE instead */
3740  	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3741  	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3742  	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3743  
3744  	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3745  	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3746  }
3747  
3748  static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3749  {
3750  	unsigned long flags;
3751  	struct its_collection *target_col;
3752  
3753  	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3754  	if (gic_rdists->has_rvpeid)
3755  		return;
3756  
3757  	if (gic_rdists->has_direct_lpi) {
3758  		void __iomem *rdbase;
3759  
3760  		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3761  		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3762  		wait_for_syncr(rdbase);
3763  
3764  		return;
3765  	}
3766  
3767  	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3768  
3769  	its_vpe_db_proxy_map_locked(vpe);
3770  
3771  	target_col = &vpe_proxy.dev->its->collections[to];
3772  	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3773  	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3774  
3775  	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3776  }
3777  
3778  static int its_vpe_set_affinity(struct irq_data *d,
3779  				const struct cpumask *mask_val,
3780  				bool force)
3781  {
3782  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3783  	int from, cpu = cpumask_first(mask_val);
3784  	unsigned long flags;
3785  
3786  	/*
3787  	 * Changing affinity is mega expensive, so let's be as lazy as
3788  	 * we can and only do it if we really have to. Also, if mapped
3789  	 * into the proxy device, we need to move the doorbell
3790  	 * interrupt to its new location.
3791  	 *
3792  	 * Another thing is that changing the affinity of a vPE affects
3793  	 * *other interrupts* such as all the vLPIs that are routed to
3794  	 * this vPE. This means that the irq_desc lock is not enough to
3795  	 * protect us, and that we must ensure nobody samples vpe->col_idx
3796  	 * during the update, hence the lock below which must also be
3797  	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3798  	 */
3799  	from = vpe_to_cpuid_lock(vpe, &flags);
3800  	if (from == cpu)
3801  		goto out;
3802  
3803  	vpe->col_idx = cpu;
3804  
3805  	/*
3806  	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3807  	 * is sharing its VPE table with the current one.
3808  	 */
3809  	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3810  	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3811  		goto out;
3812  
3813  	its_send_vmovp(vpe);
3814  	its_vpe_db_proxy_move(vpe, from, cpu);
3815  
3816  out:
3817  	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3818  	vpe_to_cpuid_unlock(vpe, flags);
3819  
3820  	return IRQ_SET_MASK_OK_DONE;
3821  }
3822  
3823  static void its_wait_vpt_parse_complete(void)
3824  {
3825  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3826  	u64 val;
3827  
3828  	if (!gic_rdists->has_vpend_valid_dirty)
3829  		return;
3830  
3831  	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3832  						       val,
3833  						       !(val & GICR_VPENDBASER_Dirty),
3834  						       1, 500));
3835  }
3836  
3837  static void its_vpe_schedule(struct its_vpe *vpe)
3838  {
3839  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3840  	u64 val;
3841  
3842  	/* Schedule the VPE */
3843  	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3844  		GENMASK_ULL(51, 12);
3845  	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3846  	val |= GICR_VPROPBASER_RaWb;
3847  	val |= GICR_VPROPBASER_InnerShareable;
3848  	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3849  
3850  	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3851  		GENMASK_ULL(51, 16);
3852  	val |= GICR_VPENDBASER_RaWaWb;
3853  	val |= GICR_VPENDBASER_InnerShareable;
3854  	/*
3855  	 * There is no good way of finding out if the pending table is
3856  	 * empty as we can race against the doorbell interrupt very
3857  	 * easily. So in the end, vpe->pending_last is only an
3858  	 * indication that the vcpu has something pending, not one
3859  	 * that the pending table is empty. A good implementation
3860  	 * would be able to read its coarse map pretty quickly anyway,
3861  	 * making this a tolerable issue.
3862  	 */
3863  	val |= GICR_VPENDBASER_PendingLast;
3864  	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3865  	val |= GICR_VPENDBASER_Valid;
3866  	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3867  }
3868  
3869  static void its_vpe_deschedule(struct its_vpe *vpe)
3870  {
3871  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3872  	u64 val;
3873  
3874  	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3875  
3876  	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3877  	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3878  }
3879  
3880  static void its_vpe_invall(struct its_vpe *vpe)
3881  {
3882  	struct its_node *its;
3883  
3884  	list_for_each_entry(its, &its_nodes, entry) {
3885  		if (!is_v4(its))
3886  			continue;
3887  
3888  		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3889  			continue;
3890  
3891  		/*
3892  		 * Sending a VINVALL to a single ITS is enough, as all
3893  		 * we need is to reach the redistributors.
3894  		 */
3895  		its_send_vinvall(its, vpe);
3896  		return;
3897  	}
3898  }
3899  
3900  static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3901  {
3902  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3903  	struct its_cmd_info *info = vcpu_info;
3904  
3905  	switch (info->cmd_type) {
3906  	case SCHEDULE_VPE:
3907  		its_vpe_schedule(vpe);
3908  		return 0;
3909  
3910  	case DESCHEDULE_VPE:
3911  		its_vpe_deschedule(vpe);
3912  		return 0;
3913  
3914  	case COMMIT_VPE:
3915  		its_wait_vpt_parse_complete();
3916  		return 0;
3917  
3918  	case INVALL_VPE:
3919  		its_vpe_invall(vpe);
3920  		return 0;
3921  
3922  	default:
3923  		return -EINVAL;
3924  	}
3925  }
3926  
3927  static void its_vpe_send_cmd(struct its_vpe *vpe,
3928  			     void (*cmd)(struct its_device *, u32))
3929  {
3930  	unsigned long flags;
3931  
3932  	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3933  
3934  	its_vpe_db_proxy_map_locked(vpe);
3935  	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3936  
3937  	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3938  }
3939  
3940  static void its_vpe_send_inv(struct irq_data *d)
3941  {
3942  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3943  
3944  	if (gic_rdists->has_direct_lpi) {
3945  		void __iomem *rdbase;
3946  
3947  		/* Target the redistributor this VPE is currently known on */
3948  		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3949  		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3950  		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3951  		wait_for_syncr(rdbase);
3952  		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3953  	} else {
3954  		its_vpe_send_cmd(vpe, its_send_inv);
3955  	}
3956  }
3957  
3958  static void its_vpe_mask_irq(struct irq_data *d)
3959  {
3960  	/*
3961  	 * We need to unmask the LPI, which is described by the parent
3962  	 * irq_data. Instead of calling into the parent (which won't
3963  	 * exactly do the right thing, let's simply use the
3964  	 * parent_data pointer. Yes, I'm naughty.
3965  	 */
3966  	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3967  	its_vpe_send_inv(d);
3968  }
3969  
3970  static void its_vpe_unmask_irq(struct irq_data *d)
3971  {
3972  	/* Same hack as above... */
3973  	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3974  	its_vpe_send_inv(d);
3975  }
3976  
3977  static int its_vpe_set_irqchip_state(struct irq_data *d,
3978  				     enum irqchip_irq_state which,
3979  				     bool state)
3980  {
3981  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3982  
3983  	if (which != IRQCHIP_STATE_PENDING)
3984  		return -EINVAL;
3985  
3986  	if (gic_rdists->has_direct_lpi) {
3987  		void __iomem *rdbase;
3988  
3989  		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3990  		if (state) {
3991  			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3992  		} else {
3993  			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3994  			wait_for_syncr(rdbase);
3995  		}
3996  	} else {
3997  		if (state)
3998  			its_vpe_send_cmd(vpe, its_send_int);
3999  		else
4000  			its_vpe_send_cmd(vpe, its_send_clear);
4001  	}
4002  
4003  	return 0;
4004  }
4005  
4006  static int its_vpe_retrigger(struct irq_data *d)
4007  {
4008  	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4009  }
4010  
4011  static struct irq_chip its_vpe_irq_chip = {
4012  	.name			= "GICv4-vpe",
4013  	.irq_mask		= its_vpe_mask_irq,
4014  	.irq_unmask		= its_vpe_unmask_irq,
4015  	.irq_eoi		= irq_chip_eoi_parent,
4016  	.irq_set_affinity	= its_vpe_set_affinity,
4017  	.irq_retrigger		= its_vpe_retrigger,
4018  	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4019  	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4020  };
4021  
4022  static struct its_node *find_4_1_its(void)
4023  {
4024  	static struct its_node *its = NULL;
4025  
4026  	if (!its) {
4027  		list_for_each_entry(its, &its_nodes, entry) {
4028  			if (is_v4_1(its))
4029  				return its;
4030  		}
4031  
4032  		/* Oops? */
4033  		its = NULL;
4034  	}
4035  
4036  	return its;
4037  }
4038  
4039  static void its_vpe_4_1_send_inv(struct irq_data *d)
4040  {
4041  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4042  	struct its_node *its;
4043  
4044  	/*
4045  	 * GICv4.1 wants doorbells to be invalidated using the
4046  	 * INVDB command in order to be broadcast to all RDs. Send
4047  	 * it to the first valid ITS, and let the HW do its magic.
4048  	 */
4049  	its = find_4_1_its();
4050  	if (its)
4051  		its_send_invdb(its, vpe);
4052  }
4053  
4054  static void its_vpe_4_1_mask_irq(struct irq_data *d)
4055  {
4056  	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4057  	its_vpe_4_1_send_inv(d);
4058  }
4059  
4060  static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4061  {
4062  	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4063  	its_vpe_4_1_send_inv(d);
4064  }
4065  
4066  static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4067  				 struct its_cmd_info *info)
4068  {
4069  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070  	u64 val = 0;
4071  
4072  	/* Schedule the VPE */
4073  	val |= GICR_VPENDBASER_Valid;
4074  	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4075  	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4076  	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4077  
4078  	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4079  }
4080  
4081  static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4082  				   struct its_cmd_info *info)
4083  {
4084  	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4085  	u64 val;
4086  
4087  	if (info->req_db) {
4088  		unsigned long flags;
4089  
4090  		/*
4091  		 * vPE is going to block: make the vPE non-resident with
4092  		 * PendingLast clear and DB set. The GIC guarantees that if
4093  		 * we read-back PendingLast clear, then a doorbell will be
4094  		 * delivered when an interrupt comes.
4095  		 *
4096  		 * Note the locking to deal with the concurrent update of
4097  		 * pending_last from the doorbell interrupt handler that can
4098  		 * run concurrently.
4099  		 */
4100  		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4101  		val = its_clear_vpend_valid(vlpi_base,
4102  					    GICR_VPENDBASER_PendingLast,
4103  					    GICR_VPENDBASER_4_1_DB);
4104  		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4105  		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4106  	} else {
4107  		/*
4108  		 * We're not blocking, so just make the vPE non-resident
4109  		 * with PendingLast set, indicating that we'll be back.
4110  		 */
4111  		val = its_clear_vpend_valid(vlpi_base,
4112  					    0,
4113  					    GICR_VPENDBASER_PendingLast);
4114  		vpe->pending_last = true;
4115  	}
4116  }
4117  
4118  static void its_vpe_4_1_invall(struct its_vpe *vpe)
4119  {
4120  	void __iomem *rdbase;
4121  	unsigned long flags;
4122  	u64 val;
4123  	int cpu;
4124  
4125  	val  = GICR_INVALLR_V;
4126  	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4127  
4128  	/* Target the redistributor this vPE is currently known on */
4129  	cpu = vpe_to_cpuid_lock(vpe, &flags);
4130  	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131  	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4132  	gic_write_lpir(val, rdbase + GICR_INVALLR);
4133  
4134  	wait_for_syncr(rdbase);
4135  	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4136  	vpe_to_cpuid_unlock(vpe, flags);
4137  }
4138  
4139  static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4140  {
4141  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4142  	struct its_cmd_info *info = vcpu_info;
4143  
4144  	switch (info->cmd_type) {
4145  	case SCHEDULE_VPE:
4146  		its_vpe_4_1_schedule(vpe, info);
4147  		return 0;
4148  
4149  	case DESCHEDULE_VPE:
4150  		its_vpe_4_1_deschedule(vpe, info);
4151  		return 0;
4152  
4153  	case COMMIT_VPE:
4154  		its_wait_vpt_parse_complete();
4155  		return 0;
4156  
4157  	case INVALL_VPE:
4158  		its_vpe_4_1_invall(vpe);
4159  		return 0;
4160  
4161  	default:
4162  		return -EINVAL;
4163  	}
4164  }
4165  
4166  static struct irq_chip its_vpe_4_1_irq_chip = {
4167  	.name			= "GICv4.1-vpe",
4168  	.irq_mask		= its_vpe_4_1_mask_irq,
4169  	.irq_unmask		= its_vpe_4_1_unmask_irq,
4170  	.irq_eoi		= irq_chip_eoi_parent,
4171  	.irq_set_affinity	= its_vpe_set_affinity,
4172  	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4173  };
4174  
4175  static void its_configure_sgi(struct irq_data *d, bool clear)
4176  {
4177  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178  	struct its_cmd_desc desc;
4179  
4180  	desc.its_vsgi_cmd.vpe = vpe;
4181  	desc.its_vsgi_cmd.sgi = d->hwirq;
4182  	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4183  	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4184  	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4185  	desc.its_vsgi_cmd.clear = clear;
4186  
4187  	/*
4188  	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4189  	 * destination VPE is mapped there. Since we map them eagerly at
4190  	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4191  	 */
4192  	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4193  }
4194  
4195  static void its_sgi_mask_irq(struct irq_data *d)
4196  {
4197  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198  
4199  	vpe->sgi_config[d->hwirq].enabled = false;
4200  	its_configure_sgi(d, false);
4201  }
4202  
4203  static void its_sgi_unmask_irq(struct irq_data *d)
4204  {
4205  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206  
4207  	vpe->sgi_config[d->hwirq].enabled = true;
4208  	its_configure_sgi(d, false);
4209  }
4210  
4211  static int its_sgi_set_affinity(struct irq_data *d,
4212  				const struct cpumask *mask_val,
4213  				bool force)
4214  {
4215  	/*
4216  	 * There is no notion of affinity for virtual SGIs, at least
4217  	 * not on the host (since they can only be targeting a vPE).
4218  	 * Tell the kernel we've done whatever it asked for.
4219  	 */
4220  	irq_data_update_effective_affinity(d, mask_val);
4221  	return IRQ_SET_MASK_OK;
4222  }
4223  
4224  static int its_sgi_set_irqchip_state(struct irq_data *d,
4225  				     enum irqchip_irq_state which,
4226  				     bool state)
4227  {
4228  	if (which != IRQCHIP_STATE_PENDING)
4229  		return -EINVAL;
4230  
4231  	if (state) {
4232  		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233  		struct its_node *its = find_4_1_its();
4234  		u64 val;
4235  
4236  		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4237  		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4238  		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4239  	} else {
4240  		its_configure_sgi(d, true);
4241  	}
4242  
4243  	return 0;
4244  }
4245  
4246  static int its_sgi_get_irqchip_state(struct irq_data *d,
4247  				     enum irqchip_irq_state which, bool *val)
4248  {
4249  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250  	void __iomem *base;
4251  	unsigned long flags;
4252  	u32 count = 1000000;	/* 1s! */
4253  	u32 status;
4254  	int cpu;
4255  
4256  	if (which != IRQCHIP_STATE_PENDING)
4257  		return -EINVAL;
4258  
4259  	/*
4260  	 * Locking galore! We can race against two different events:
4261  	 *
4262  	 * - Concurrent vPE affinity change: we must make sure it cannot
4263  	 *   happen, or we'll talk to the wrong redistributor. This is
4264  	 *   identical to what happens with vLPIs.
4265  	 *
4266  	 * - Concurrent VSGIPENDR access: As it involves accessing two
4267  	 *   MMIO registers, this must be made atomic one way or another.
4268  	 */
4269  	cpu = vpe_to_cpuid_lock(vpe, &flags);
4270  	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4271  	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4272  	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4273  	do {
4274  		status = readl_relaxed(base + GICR_VSGIPENDR);
4275  		if (!(status & GICR_VSGIPENDR_BUSY))
4276  			goto out;
4277  
4278  		count--;
4279  		if (!count) {
4280  			pr_err_ratelimited("Unable to get SGI status\n");
4281  			goto out;
4282  		}
4283  		cpu_relax();
4284  		udelay(1);
4285  	} while (count);
4286  
4287  out:
4288  	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4289  	vpe_to_cpuid_unlock(vpe, flags);
4290  
4291  	if (!count)
4292  		return -ENXIO;
4293  
4294  	*val = !!(status & (1 << d->hwirq));
4295  
4296  	return 0;
4297  }
4298  
4299  static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4300  {
4301  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302  	struct its_cmd_info *info = vcpu_info;
4303  
4304  	switch (info->cmd_type) {
4305  	case PROP_UPDATE_VSGI:
4306  		vpe->sgi_config[d->hwirq].priority = info->priority;
4307  		vpe->sgi_config[d->hwirq].group = info->group;
4308  		its_configure_sgi(d, false);
4309  		return 0;
4310  
4311  	default:
4312  		return -EINVAL;
4313  	}
4314  }
4315  
4316  static struct irq_chip its_sgi_irq_chip = {
4317  	.name			= "GICv4.1-sgi",
4318  	.irq_mask		= its_sgi_mask_irq,
4319  	.irq_unmask		= its_sgi_unmask_irq,
4320  	.irq_set_affinity	= its_sgi_set_affinity,
4321  	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4322  	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4323  	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4324  };
4325  
4326  static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4327  				    unsigned int virq, unsigned int nr_irqs,
4328  				    void *args)
4329  {
4330  	struct its_vpe *vpe = args;
4331  	int i;
4332  
4333  	/* Yes, we do want 16 SGIs */
4334  	WARN_ON(nr_irqs != 16);
4335  
4336  	for (i = 0; i < 16; i++) {
4337  		vpe->sgi_config[i].priority = 0;
4338  		vpe->sgi_config[i].enabled = false;
4339  		vpe->sgi_config[i].group = false;
4340  
4341  		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4342  					      &its_sgi_irq_chip, vpe);
4343  		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4344  	}
4345  
4346  	return 0;
4347  }
4348  
4349  static void its_sgi_irq_domain_free(struct irq_domain *domain,
4350  				    unsigned int virq,
4351  				    unsigned int nr_irqs)
4352  {
4353  	/* Nothing to do */
4354  }
4355  
4356  static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4357  				       struct irq_data *d, bool reserve)
4358  {
4359  	/* Write out the initial SGI configuration */
4360  	its_configure_sgi(d, false);
4361  	return 0;
4362  }
4363  
4364  static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4365  					  struct irq_data *d)
4366  {
4367  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4368  
4369  	/*
4370  	 * The VSGI command is awkward:
4371  	 *
4372  	 * - To change the configuration, CLEAR must be set to false,
4373  	 *   leaving the pending bit unchanged.
4374  	 * - To clear the pending bit, CLEAR must be set to true, leaving
4375  	 *   the configuration unchanged.
4376  	 *
4377  	 * You just can't do both at once, hence the two commands below.
4378  	 */
4379  	vpe->sgi_config[d->hwirq].enabled = false;
4380  	its_configure_sgi(d, false);
4381  	its_configure_sgi(d, true);
4382  }
4383  
4384  static const struct irq_domain_ops its_sgi_domain_ops = {
4385  	.alloc		= its_sgi_irq_domain_alloc,
4386  	.free		= its_sgi_irq_domain_free,
4387  	.activate	= its_sgi_irq_domain_activate,
4388  	.deactivate	= its_sgi_irq_domain_deactivate,
4389  };
4390  
4391  static int its_vpe_id_alloc(void)
4392  {
4393  	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4394  }
4395  
4396  static void its_vpe_id_free(u16 id)
4397  {
4398  	ida_simple_remove(&its_vpeid_ida, id);
4399  }
4400  
4401  static int its_vpe_init(struct its_vpe *vpe)
4402  {
4403  	struct page *vpt_page;
4404  	int vpe_id;
4405  
4406  	/* Allocate vpe_id */
4407  	vpe_id = its_vpe_id_alloc();
4408  	if (vpe_id < 0)
4409  		return vpe_id;
4410  
4411  	/* Allocate VPT */
4412  	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4413  	if (!vpt_page) {
4414  		its_vpe_id_free(vpe_id);
4415  		return -ENOMEM;
4416  	}
4417  
4418  	if (!its_alloc_vpe_table(vpe_id)) {
4419  		its_vpe_id_free(vpe_id);
4420  		its_free_pending_table(vpt_page);
4421  		return -ENOMEM;
4422  	}
4423  
4424  	raw_spin_lock_init(&vpe->vpe_lock);
4425  	vpe->vpe_id = vpe_id;
4426  	vpe->vpt_page = vpt_page;
4427  	if (gic_rdists->has_rvpeid)
4428  		atomic_set(&vpe->vmapp_count, 0);
4429  	else
4430  		vpe->vpe_proxy_event = -1;
4431  
4432  	return 0;
4433  }
4434  
4435  static void its_vpe_teardown(struct its_vpe *vpe)
4436  {
4437  	its_vpe_db_proxy_unmap(vpe);
4438  	its_vpe_id_free(vpe->vpe_id);
4439  	its_free_pending_table(vpe->vpt_page);
4440  }
4441  
4442  static void its_vpe_irq_domain_free(struct irq_domain *domain,
4443  				    unsigned int virq,
4444  				    unsigned int nr_irqs)
4445  {
4446  	struct its_vm *vm = domain->host_data;
4447  	int i;
4448  
4449  	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4450  
4451  	for (i = 0; i < nr_irqs; i++) {
4452  		struct irq_data *data = irq_domain_get_irq_data(domain,
4453  								virq + i);
4454  		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4455  
4456  		BUG_ON(vm != vpe->its_vm);
4457  
4458  		clear_bit(data->hwirq, vm->db_bitmap);
4459  		its_vpe_teardown(vpe);
4460  		irq_domain_reset_irq_data(data);
4461  	}
4462  
4463  	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4464  		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4465  		its_free_prop_table(vm->vprop_page);
4466  	}
4467  }
4468  
4469  static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4470  				    unsigned int nr_irqs, void *args)
4471  {
4472  	struct irq_chip *irqchip = &its_vpe_irq_chip;
4473  	struct its_vm *vm = args;
4474  	unsigned long *bitmap;
4475  	struct page *vprop_page;
4476  	int base, nr_ids, i, err = 0;
4477  
4478  	BUG_ON(!vm);
4479  
4480  	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4481  	if (!bitmap)
4482  		return -ENOMEM;
4483  
4484  	if (nr_ids < nr_irqs) {
4485  		its_lpi_free(bitmap, base, nr_ids);
4486  		return -ENOMEM;
4487  	}
4488  
4489  	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4490  	if (!vprop_page) {
4491  		its_lpi_free(bitmap, base, nr_ids);
4492  		return -ENOMEM;
4493  	}
4494  
4495  	vm->db_bitmap = bitmap;
4496  	vm->db_lpi_base = base;
4497  	vm->nr_db_lpis = nr_ids;
4498  	vm->vprop_page = vprop_page;
4499  
4500  	if (gic_rdists->has_rvpeid)
4501  		irqchip = &its_vpe_4_1_irq_chip;
4502  
4503  	for (i = 0; i < nr_irqs; i++) {
4504  		vm->vpes[i]->vpe_db_lpi = base + i;
4505  		err = its_vpe_init(vm->vpes[i]);
4506  		if (err)
4507  			break;
4508  		err = its_irq_gic_domain_alloc(domain, virq + i,
4509  					       vm->vpes[i]->vpe_db_lpi);
4510  		if (err)
4511  			break;
4512  		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4513  					      irqchip, vm->vpes[i]);
4514  		set_bit(i, bitmap);
4515  	}
4516  
4517  	if (err) {
4518  		if (i > 0)
4519  			its_vpe_irq_domain_free(domain, virq, i);
4520  
4521  		its_lpi_free(bitmap, base, nr_ids);
4522  		its_free_prop_table(vprop_page);
4523  	}
4524  
4525  	return err;
4526  }
4527  
4528  static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4529  				       struct irq_data *d, bool reserve)
4530  {
4531  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4532  	struct its_node *its;
4533  
4534  	/*
4535  	 * If we use the list map, we issue VMAPP on demand... Unless
4536  	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4537  	 * so that VSGIs can work.
4538  	 */
4539  	if (!gic_requires_eager_mapping())
4540  		return 0;
4541  
4542  	/* Map the VPE to the first possible CPU */
4543  	vpe->col_idx = cpumask_first(cpu_online_mask);
4544  
4545  	list_for_each_entry(its, &its_nodes, entry) {
4546  		if (!is_v4(its))
4547  			continue;
4548  
4549  		its_send_vmapp(its, vpe, true);
4550  		its_send_vinvall(its, vpe);
4551  	}
4552  
4553  	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4554  
4555  	return 0;
4556  }
4557  
4558  static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4559  					  struct irq_data *d)
4560  {
4561  	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562  	struct its_node *its;
4563  
4564  	/*
4565  	 * If we use the list map on GICv4.0, we unmap the VPE once no
4566  	 * VLPIs are associated with the VM.
4567  	 */
4568  	if (!gic_requires_eager_mapping())
4569  		return;
4570  
4571  	list_for_each_entry(its, &its_nodes, entry) {
4572  		if (!is_v4(its))
4573  			continue;
4574  
4575  		its_send_vmapp(its, vpe, false);
4576  	}
4577  
4578  	/*
4579  	 * There may be a direct read to the VPT after unmapping the
4580  	 * vPE, to guarantee the validity of this, we make the VPT
4581  	 * memory coherent with the CPU caches here.
4582  	 */
4583  	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4584  		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4585  					LPI_PENDBASE_SZ);
4586  }
4587  
4588  static const struct irq_domain_ops its_vpe_domain_ops = {
4589  	.alloc			= its_vpe_irq_domain_alloc,
4590  	.free			= its_vpe_irq_domain_free,
4591  	.activate		= its_vpe_irq_domain_activate,
4592  	.deactivate		= its_vpe_irq_domain_deactivate,
4593  };
4594  
4595  static int its_force_quiescent(void __iomem *base)
4596  {
4597  	u32 count = 1000000;	/* 1s */
4598  	u32 val;
4599  
4600  	val = readl_relaxed(base + GITS_CTLR);
4601  	/*
4602  	 * GIC architecture specification requires the ITS to be both
4603  	 * disabled and quiescent for writes to GITS_BASER<n> or
4604  	 * GITS_CBASER to not have UNPREDICTABLE results.
4605  	 */
4606  	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4607  		return 0;
4608  
4609  	/* Disable the generation of all interrupts to this ITS */
4610  	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4611  	writel_relaxed(val, base + GITS_CTLR);
4612  
4613  	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4614  	while (1) {
4615  		val = readl_relaxed(base + GITS_CTLR);
4616  		if (val & GITS_CTLR_QUIESCENT)
4617  			return 0;
4618  
4619  		count--;
4620  		if (!count)
4621  			return -EBUSY;
4622  
4623  		cpu_relax();
4624  		udelay(1);
4625  	}
4626  }
4627  
4628  static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4629  {
4630  	struct its_node *its = data;
4631  
4632  	/* erratum 22375: only alloc 8MB table size (20 bits) */
4633  	its->typer &= ~GITS_TYPER_DEVBITS;
4634  	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4635  	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4636  
4637  	return true;
4638  }
4639  
4640  static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4641  {
4642  	struct its_node *its = data;
4643  
4644  	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4645  
4646  	return true;
4647  }
4648  
4649  static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4650  {
4651  	struct its_node *its = data;
4652  
4653  	/* On QDF2400, the size of the ITE is 16Bytes */
4654  	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4655  	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4656  
4657  	return true;
4658  }
4659  
4660  static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4661  {
4662  	struct its_node *its = its_dev->its;
4663  
4664  	/*
4665  	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4666  	 * which maps 32-bit writes targeted at a separate window of
4667  	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4668  	 * with device ID taken from bits [device_id_bits + 1:2] of
4669  	 * the window offset.
4670  	 */
4671  	return its->pre_its_base + (its_dev->device_id << 2);
4672  }
4673  
4674  static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4675  {
4676  	struct its_node *its = data;
4677  	u32 pre_its_window[2];
4678  	u32 ids;
4679  
4680  	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4681  					   "socionext,synquacer-pre-its",
4682  					   pre_its_window,
4683  					   ARRAY_SIZE(pre_its_window))) {
4684  
4685  		its->pre_its_base = pre_its_window[0];
4686  		its->get_msi_base = its_irq_get_msi_base_pre_its;
4687  
4688  		ids = ilog2(pre_its_window[1]) - 2;
4689  		if (device_ids(its) > ids) {
4690  			its->typer &= ~GITS_TYPER_DEVBITS;
4691  			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4692  		}
4693  
4694  		/* the pre-ITS breaks isolation, so disable MSI remapping */
4695  		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4696  		return true;
4697  	}
4698  	return false;
4699  }
4700  
4701  static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4702  {
4703  	struct its_node *its = data;
4704  
4705  	/*
4706  	 * Hip07 insists on using the wrong address for the VLPI
4707  	 * page. Trick it into doing the right thing...
4708  	 */
4709  	its->vlpi_redist_offset = SZ_128K;
4710  	return true;
4711  }
4712  
4713  static const struct gic_quirk its_quirks[] = {
4714  #ifdef CONFIG_CAVIUM_ERRATUM_22375
4715  	{
4716  		.desc	= "ITS: Cavium errata 22375, 24313",
4717  		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4718  		.mask	= 0xffff0fff,
4719  		.init	= its_enable_quirk_cavium_22375,
4720  	},
4721  #endif
4722  #ifdef CONFIG_CAVIUM_ERRATUM_23144
4723  	{
4724  		.desc	= "ITS: Cavium erratum 23144",
4725  		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4726  		.mask	= 0xffff0fff,
4727  		.init	= its_enable_quirk_cavium_23144,
4728  	},
4729  #endif
4730  #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4731  	{
4732  		.desc	= "ITS: QDF2400 erratum 0065",
4733  		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4734  		.mask	= 0xffffffff,
4735  		.init	= its_enable_quirk_qdf2400_e0065,
4736  	},
4737  #endif
4738  #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4739  	{
4740  		/*
4741  		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4742  		 * implementation, but with a 'pre-ITS' added that requires
4743  		 * special handling in software.
4744  		 */
4745  		.desc	= "ITS: Socionext Synquacer pre-ITS",
4746  		.iidr	= 0x0001143b,
4747  		.mask	= 0xffffffff,
4748  		.init	= its_enable_quirk_socionext_synquacer,
4749  	},
4750  #endif
4751  #ifdef CONFIG_HISILICON_ERRATUM_161600802
4752  	{
4753  		.desc	= "ITS: Hip07 erratum 161600802",
4754  		.iidr	= 0x00000004,
4755  		.mask	= 0xffffffff,
4756  		.init	= its_enable_quirk_hip07_161600802,
4757  	},
4758  #endif
4759  	{
4760  	}
4761  };
4762  
4763  static void its_enable_quirks(struct its_node *its)
4764  {
4765  	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4766  
4767  	gic_enable_quirks(iidr, its_quirks, its);
4768  }
4769  
4770  static int its_save_disable(void)
4771  {
4772  	struct its_node *its;
4773  	int err = 0;
4774  
4775  	raw_spin_lock(&its_lock);
4776  	list_for_each_entry(its, &its_nodes, entry) {
4777  		void __iomem *base;
4778  
4779  		base = its->base;
4780  		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4781  		err = its_force_quiescent(base);
4782  		if (err) {
4783  			pr_err("ITS@%pa: failed to quiesce: %d\n",
4784  			       &its->phys_base, err);
4785  			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786  			goto err;
4787  		}
4788  
4789  		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4790  	}
4791  
4792  err:
4793  	if (err) {
4794  		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4795  			void __iomem *base;
4796  
4797  			base = its->base;
4798  			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4799  		}
4800  	}
4801  	raw_spin_unlock(&its_lock);
4802  
4803  	return err;
4804  }
4805  
4806  static void its_restore_enable(void)
4807  {
4808  	struct its_node *its;
4809  	int ret;
4810  
4811  	raw_spin_lock(&its_lock);
4812  	list_for_each_entry(its, &its_nodes, entry) {
4813  		void __iomem *base;
4814  		int i;
4815  
4816  		base = its->base;
4817  
4818  		/*
4819  		 * Make sure that the ITS is disabled. If it fails to quiesce,
4820  		 * don't restore it since writing to CBASER or BASER<n>
4821  		 * registers is undefined according to the GIC v3 ITS
4822  		 * Specification.
4823  		 *
4824  		 * Firmware resuming with the ITS enabled is terminally broken.
4825  		 */
4826  		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4827  		ret = its_force_quiescent(base);
4828  		if (ret) {
4829  			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4830  			       &its->phys_base, ret);
4831  			continue;
4832  		}
4833  
4834  		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4835  
4836  		/*
4837  		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4838  		 * cmd_write line up with it.
4839  		 */
4840  		its->cmd_write = its->cmd_base;
4841  		gits_write_cwriter(0, base + GITS_CWRITER);
4842  
4843  		/* Restore GITS_BASER from the value cache. */
4844  		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4845  			struct its_baser *baser = &its->tables[i];
4846  
4847  			if (!(baser->val & GITS_BASER_VALID))
4848  				continue;
4849  
4850  			its_write_baser(its, baser, baser->val);
4851  		}
4852  		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853  
4854  		/*
4855  		 * Reinit the collection if it's stored in the ITS. This is
4856  		 * indicated by the col_id being less than the HCC field.
4857  		 * CID < HCC as specified in the GIC v3 Documentation.
4858  		 */
4859  		if (its->collections[smp_processor_id()].col_id <
4860  		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4861  			its_cpu_init_collection(its);
4862  	}
4863  	raw_spin_unlock(&its_lock);
4864  }
4865  
4866  static struct syscore_ops its_syscore_ops = {
4867  	.suspend = its_save_disable,
4868  	.resume = its_restore_enable,
4869  };
4870  
4871  static void __init __iomem *its_map_one(struct resource *res, int *err)
4872  {
4873  	void __iomem *its_base;
4874  	u32 val;
4875  
4876  	its_base = ioremap(res->start, SZ_64K);
4877  	if (!its_base) {
4878  		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4879  		*err = -ENOMEM;
4880  		return NULL;
4881  	}
4882  
4883  	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4884  	if (val != 0x30 && val != 0x40) {
4885  		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4886  		*err = -ENODEV;
4887  		goto out_unmap;
4888  	}
4889  
4890  	*err = its_force_quiescent(its_base);
4891  	if (*err) {
4892  		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4893  		goto out_unmap;
4894  	}
4895  
4896  	return its_base;
4897  
4898  out_unmap:
4899  	iounmap(its_base);
4900  	return NULL;
4901  }
4902  
4903  static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4904  {
4905  	struct irq_domain *inner_domain;
4906  	struct msi_domain_info *info;
4907  
4908  	info = kzalloc(sizeof(*info), GFP_KERNEL);
4909  	if (!info)
4910  		return -ENOMEM;
4911  
4912  	info->ops = &its_msi_domain_ops;
4913  	info->data = its;
4914  
4915  	inner_domain = irq_domain_create_hierarchy(its_parent,
4916  						   its->msi_domain_flags, 0,
4917  						   handle, &its_domain_ops,
4918  						   info);
4919  	if (!inner_domain) {
4920  		kfree(info);
4921  		return -ENOMEM;
4922  	}
4923  
4924  	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4925  
4926  	return 0;
4927  }
4928  
4929  static int its_init_vpe_domain(void)
4930  {
4931  	struct its_node *its;
4932  	u32 devid;
4933  	int entries;
4934  
4935  	if (gic_rdists->has_direct_lpi) {
4936  		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4937  		return 0;
4938  	}
4939  
4940  	/* Any ITS will do, even if not v4 */
4941  	its = list_first_entry(&its_nodes, struct its_node, entry);
4942  
4943  	entries = roundup_pow_of_two(nr_cpu_ids);
4944  	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4945  				 GFP_KERNEL);
4946  	if (!vpe_proxy.vpes)
4947  		return -ENOMEM;
4948  
4949  	/* Use the last possible DevID */
4950  	devid = GENMASK(device_ids(its) - 1, 0);
4951  	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4952  	if (!vpe_proxy.dev) {
4953  		kfree(vpe_proxy.vpes);
4954  		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4955  		return -ENOMEM;
4956  	}
4957  
4958  	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4959  
4960  	raw_spin_lock_init(&vpe_proxy.lock);
4961  	vpe_proxy.next_victim = 0;
4962  	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4963  		devid, vpe_proxy.dev->nr_ites);
4964  
4965  	return 0;
4966  }
4967  
4968  static int __init its_compute_its_list_map(struct resource *res,
4969  					   void __iomem *its_base)
4970  {
4971  	int its_number;
4972  	u32 ctlr;
4973  
4974  	/*
4975  	 * This is assumed to be done early enough that we're
4976  	 * guaranteed to be single-threaded, hence no
4977  	 * locking. Should this change, we should address
4978  	 * this.
4979  	 */
4980  	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4981  	if (its_number >= GICv4_ITS_LIST_MAX) {
4982  		pr_err("ITS@%pa: No ITSList entry available!\n",
4983  		       &res->start);
4984  		return -EINVAL;
4985  	}
4986  
4987  	ctlr = readl_relaxed(its_base + GITS_CTLR);
4988  	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4989  	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4990  	writel_relaxed(ctlr, its_base + GITS_CTLR);
4991  	ctlr = readl_relaxed(its_base + GITS_CTLR);
4992  	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4993  		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4994  		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4995  	}
4996  
4997  	if (test_and_set_bit(its_number, &its_list_map)) {
4998  		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4999  		       &res->start, its_number);
5000  		return -EINVAL;
5001  	}
5002  
5003  	return its_number;
5004  }
5005  
5006  static int __init its_probe_one(struct resource *res,
5007  				struct fwnode_handle *handle, int numa_node)
5008  {
5009  	struct its_node *its;
5010  	void __iomem *its_base;
5011  	u64 baser, tmp, typer;
5012  	struct page *page;
5013  	u32 ctlr;
5014  	int err;
5015  
5016  	its_base = its_map_one(res, &err);
5017  	if (!its_base)
5018  		return err;
5019  
5020  	pr_info("ITS %pR\n", res);
5021  
5022  	its = kzalloc(sizeof(*its), GFP_KERNEL);
5023  	if (!its) {
5024  		err = -ENOMEM;
5025  		goto out_unmap;
5026  	}
5027  
5028  	raw_spin_lock_init(&its->lock);
5029  	mutex_init(&its->dev_alloc_lock);
5030  	INIT_LIST_HEAD(&its->entry);
5031  	INIT_LIST_HEAD(&its->its_device_list);
5032  	typer = gic_read_typer(its_base + GITS_TYPER);
5033  	its->typer = typer;
5034  	its->base = its_base;
5035  	its->phys_base = res->start;
5036  	if (is_v4(its)) {
5037  		if (!(typer & GITS_TYPER_VMOVP)) {
5038  			err = its_compute_its_list_map(res, its_base);
5039  			if (err < 0)
5040  				goto out_free_its;
5041  
5042  			its->list_nr = err;
5043  
5044  			pr_info("ITS@%pa: Using ITS number %d\n",
5045  				&res->start, err);
5046  		} else {
5047  			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5048  		}
5049  
5050  		if (is_v4_1(its)) {
5051  			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5052  
5053  			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5054  			if (!its->sgir_base) {
5055  				err = -ENOMEM;
5056  				goto out_free_its;
5057  			}
5058  
5059  			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5060  
5061  			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5062  				&res->start, its->mpidr, svpet);
5063  		}
5064  	}
5065  
5066  	its->numa_node = numa_node;
5067  
5068  	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5069  				get_order(ITS_CMD_QUEUE_SZ));
5070  	if (!page) {
5071  		err = -ENOMEM;
5072  		goto out_unmap_sgir;
5073  	}
5074  	its->cmd_base = (void *)page_address(page);
5075  	its->cmd_write = its->cmd_base;
5076  	its->fwnode_handle = handle;
5077  	its->get_msi_base = its_irq_get_msi_base;
5078  	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5079  
5080  	its_enable_quirks(its);
5081  
5082  	err = its_alloc_tables(its);
5083  	if (err)
5084  		goto out_free_cmd;
5085  
5086  	err = its_alloc_collections(its);
5087  	if (err)
5088  		goto out_free_tables;
5089  
5090  	baser = (virt_to_phys(its->cmd_base)	|
5091  		 GITS_CBASER_RaWaWb		|
5092  		 GITS_CBASER_InnerShareable	|
5093  		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5094  		 GITS_CBASER_VALID);
5095  
5096  	gits_write_cbaser(baser, its->base + GITS_CBASER);
5097  	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5098  
5099  	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5100  		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5101  			/*
5102  			 * The HW reports non-shareable, we must
5103  			 * remove the cacheability attributes as
5104  			 * well.
5105  			 */
5106  			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5107  				   GITS_CBASER_CACHEABILITY_MASK);
5108  			baser |= GITS_CBASER_nC;
5109  			gits_write_cbaser(baser, its->base + GITS_CBASER);
5110  		}
5111  		pr_info("ITS: using cache flushing for cmd queue\n");
5112  		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5113  	}
5114  
5115  	gits_write_cwriter(0, its->base + GITS_CWRITER);
5116  	ctlr = readl_relaxed(its->base + GITS_CTLR);
5117  	ctlr |= GITS_CTLR_ENABLE;
5118  	if (is_v4(its))
5119  		ctlr |= GITS_CTLR_ImDe;
5120  	writel_relaxed(ctlr, its->base + GITS_CTLR);
5121  
5122  	err = its_init_domain(handle, its);
5123  	if (err)
5124  		goto out_free_tables;
5125  
5126  	raw_spin_lock(&its_lock);
5127  	list_add(&its->entry, &its_nodes);
5128  	raw_spin_unlock(&its_lock);
5129  
5130  	return 0;
5131  
5132  out_free_tables:
5133  	its_free_tables(its);
5134  out_free_cmd:
5135  	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5136  out_unmap_sgir:
5137  	if (its->sgir_base)
5138  		iounmap(its->sgir_base);
5139  out_free_its:
5140  	kfree(its);
5141  out_unmap:
5142  	iounmap(its_base);
5143  	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5144  	return err;
5145  }
5146  
5147  static bool gic_rdists_supports_plpis(void)
5148  {
5149  	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5150  }
5151  
5152  static int redist_disable_lpis(void)
5153  {
5154  	void __iomem *rbase = gic_data_rdist_rd_base();
5155  	u64 timeout = USEC_PER_SEC;
5156  	u64 val;
5157  
5158  	if (!gic_rdists_supports_plpis()) {
5159  		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5160  		return -ENXIO;
5161  	}
5162  
5163  	val = readl_relaxed(rbase + GICR_CTLR);
5164  	if (!(val & GICR_CTLR_ENABLE_LPIS))
5165  		return 0;
5166  
5167  	/*
5168  	 * If coming via a CPU hotplug event, we don't need to disable
5169  	 * LPIs before trying to re-enable them. They are already
5170  	 * configured and all is well in the world.
5171  	 *
5172  	 * If running with preallocated tables, there is nothing to do.
5173  	 */
5174  	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5175  	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5176  		return 0;
5177  
5178  	/*
5179  	 * From that point on, we only try to do some damage control.
5180  	 */
5181  	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5182  		smp_processor_id());
5183  	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5184  
5185  	/* Disable LPIs */
5186  	val &= ~GICR_CTLR_ENABLE_LPIS;
5187  	writel_relaxed(val, rbase + GICR_CTLR);
5188  
5189  	/* Make sure any change to GICR_CTLR is observable by the GIC */
5190  	dsb(sy);
5191  
5192  	/*
5193  	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5194  	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5195  	 * Error out if we time out waiting for RWP to clear.
5196  	 */
5197  	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5198  		if (!timeout) {
5199  			pr_err("CPU%d: Timeout while disabling LPIs\n",
5200  			       smp_processor_id());
5201  			return -ETIMEDOUT;
5202  		}
5203  		udelay(1);
5204  		timeout--;
5205  	}
5206  
5207  	/*
5208  	 * After it has been written to 1, it is IMPLEMENTATION
5209  	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5210  	 * cleared to 0. Error out if clearing the bit failed.
5211  	 */
5212  	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5213  		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5214  		return -EBUSY;
5215  	}
5216  
5217  	return 0;
5218  }
5219  
5220  int its_cpu_init(void)
5221  {
5222  	if (!list_empty(&its_nodes)) {
5223  		int ret;
5224  
5225  		ret = redist_disable_lpis();
5226  		if (ret)
5227  			return ret;
5228  
5229  		its_cpu_init_lpis();
5230  		its_cpu_init_collections();
5231  	}
5232  
5233  	return 0;
5234  }
5235  
5236  static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5237  {
5238  	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5239  	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5240  }
5241  
5242  static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5243  		    rdist_memreserve_cpuhp_cleanup_workfn);
5244  
5245  static int its_cpu_memreserve_lpi(unsigned int cpu)
5246  {
5247  	struct page *pend_page;
5248  	int ret = 0;
5249  
5250  	/* This gets to run exactly once per CPU */
5251  	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5252  		return 0;
5253  
5254  	pend_page = gic_data_rdist()->pend_page;
5255  	if (WARN_ON(!pend_page)) {
5256  		ret = -ENOMEM;
5257  		goto out;
5258  	}
5259  	/*
5260  	 * If the pending table was pre-programmed, free the memory we
5261  	 * preemptively allocated. Otherwise, reserve that memory for
5262  	 * later kexecs.
5263  	 */
5264  	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5265  		its_free_pending_table(pend_page);
5266  		gic_data_rdist()->pend_page = NULL;
5267  	} else {
5268  		phys_addr_t paddr = page_to_phys(pend_page);
5269  		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5270  	}
5271  
5272  out:
5273  	/* Last CPU being brought up gets to issue the cleanup */
5274  	if (!IS_ENABLED(CONFIG_SMP) ||
5275  	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5276  		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5277  
5278  	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5279  	return ret;
5280  }
5281  
5282  /* Mark all the BASER registers as invalid before they get reprogrammed */
5283  static int __init its_reset_one(struct resource *res)
5284  {
5285  	void __iomem *its_base;
5286  	int err, i;
5287  
5288  	its_base = its_map_one(res, &err);
5289  	if (!its_base)
5290  		return err;
5291  
5292  	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5293  		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5294  
5295  	iounmap(its_base);
5296  	return 0;
5297  }
5298  
5299  static const struct of_device_id its_device_id[] = {
5300  	{	.compatible	= "arm,gic-v3-its",	},
5301  	{},
5302  };
5303  
5304  static int __init its_of_probe(struct device_node *node)
5305  {
5306  	struct device_node *np;
5307  	struct resource res;
5308  
5309  	/*
5310  	 * Make sure *all* the ITS are reset before we probe any, as
5311  	 * they may be sharing memory. If any of the ITS fails to
5312  	 * reset, don't even try to go any further, as this could
5313  	 * result in something even worse.
5314  	 */
5315  	for (np = of_find_matching_node(node, its_device_id); np;
5316  	     np = of_find_matching_node(np, its_device_id)) {
5317  		int err;
5318  
5319  		if (!of_device_is_available(np) ||
5320  		    !of_property_read_bool(np, "msi-controller") ||
5321  		    of_address_to_resource(np, 0, &res))
5322  			continue;
5323  
5324  		err = its_reset_one(&res);
5325  		if (err)
5326  			return err;
5327  	}
5328  
5329  	for (np = of_find_matching_node(node, its_device_id); np;
5330  	     np = of_find_matching_node(np, its_device_id)) {
5331  		if (!of_device_is_available(np))
5332  			continue;
5333  		if (!of_property_read_bool(np, "msi-controller")) {
5334  			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5335  				np);
5336  			continue;
5337  		}
5338  
5339  		if (of_address_to_resource(np, 0, &res)) {
5340  			pr_warn("%pOF: no regs?\n", np);
5341  			continue;
5342  		}
5343  
5344  		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5345  	}
5346  	return 0;
5347  }
5348  
5349  #ifdef CONFIG_ACPI
5350  
5351  #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5352  
5353  #ifdef CONFIG_ACPI_NUMA
5354  struct its_srat_map {
5355  	/* numa node id */
5356  	u32	numa_node;
5357  	/* GIC ITS ID */
5358  	u32	its_id;
5359  };
5360  
5361  static struct its_srat_map *its_srat_maps __initdata;
5362  static int its_in_srat __initdata;
5363  
5364  static int __init acpi_get_its_numa_node(u32 its_id)
5365  {
5366  	int i;
5367  
5368  	for (i = 0; i < its_in_srat; i++) {
5369  		if (its_id == its_srat_maps[i].its_id)
5370  			return its_srat_maps[i].numa_node;
5371  	}
5372  	return NUMA_NO_NODE;
5373  }
5374  
5375  static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5376  					  const unsigned long end)
5377  {
5378  	return 0;
5379  }
5380  
5381  static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5382  			 const unsigned long end)
5383  {
5384  	int node;
5385  	struct acpi_srat_gic_its_affinity *its_affinity;
5386  
5387  	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5388  	if (!its_affinity)
5389  		return -EINVAL;
5390  
5391  	if (its_affinity->header.length < sizeof(*its_affinity)) {
5392  		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5393  			its_affinity->header.length);
5394  		return -EINVAL;
5395  	}
5396  
5397  	/*
5398  	 * Note that in theory a new proximity node could be created by this
5399  	 * entry as it is an SRAT resource allocation structure.
5400  	 * We do not currently support doing so.
5401  	 */
5402  	node = pxm_to_node(its_affinity->proximity_domain);
5403  
5404  	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5405  		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5406  		return 0;
5407  	}
5408  
5409  	its_srat_maps[its_in_srat].numa_node = node;
5410  	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5411  	its_in_srat++;
5412  	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5413  		its_affinity->proximity_domain, its_affinity->its_id, node);
5414  
5415  	return 0;
5416  }
5417  
5418  static void __init acpi_table_parse_srat_its(void)
5419  {
5420  	int count;
5421  
5422  	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5423  			sizeof(struct acpi_table_srat),
5424  			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5425  			gic_acpi_match_srat_its, 0);
5426  	if (count <= 0)
5427  		return;
5428  
5429  	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5430  				      GFP_KERNEL);
5431  	if (!its_srat_maps)
5432  		return;
5433  
5434  	acpi_table_parse_entries(ACPI_SIG_SRAT,
5435  			sizeof(struct acpi_table_srat),
5436  			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5437  			gic_acpi_parse_srat_its, 0);
5438  }
5439  
5440  /* free the its_srat_maps after ITS probing */
5441  static void __init acpi_its_srat_maps_free(void)
5442  {
5443  	kfree(its_srat_maps);
5444  }
5445  #else
5446  static void __init acpi_table_parse_srat_its(void)	{ }
5447  static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5448  static void __init acpi_its_srat_maps_free(void) { }
5449  #endif
5450  
5451  static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5452  					  const unsigned long end)
5453  {
5454  	struct acpi_madt_generic_translator *its_entry;
5455  	struct fwnode_handle *dom_handle;
5456  	struct resource res;
5457  	int err;
5458  
5459  	its_entry = (struct acpi_madt_generic_translator *)header;
5460  	memset(&res, 0, sizeof(res));
5461  	res.start = its_entry->base_address;
5462  	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5463  	res.flags = IORESOURCE_MEM;
5464  
5465  	dom_handle = irq_domain_alloc_fwnode(&res.start);
5466  	if (!dom_handle) {
5467  		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5468  		       &res.start);
5469  		return -ENOMEM;
5470  	}
5471  
5472  	err = iort_register_domain_token(its_entry->translation_id, res.start,
5473  					 dom_handle);
5474  	if (err) {
5475  		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5476  		       &res.start, its_entry->translation_id);
5477  		goto dom_err;
5478  	}
5479  
5480  	err = its_probe_one(&res, dom_handle,
5481  			acpi_get_its_numa_node(its_entry->translation_id));
5482  	if (!err)
5483  		return 0;
5484  
5485  	iort_deregister_domain_token(its_entry->translation_id);
5486  dom_err:
5487  	irq_domain_free_fwnode(dom_handle);
5488  	return err;
5489  }
5490  
5491  static int __init its_acpi_reset(union acpi_subtable_headers *header,
5492  				 const unsigned long end)
5493  {
5494  	struct acpi_madt_generic_translator *its_entry;
5495  	struct resource res;
5496  
5497  	its_entry = (struct acpi_madt_generic_translator *)header;
5498  	res = (struct resource) {
5499  		.start	= its_entry->base_address,
5500  		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5501  		.flags	= IORESOURCE_MEM,
5502  	};
5503  
5504  	return its_reset_one(&res);
5505  }
5506  
5507  static void __init its_acpi_probe(void)
5508  {
5509  	acpi_table_parse_srat_its();
5510  	/*
5511  	 * Make sure *all* the ITS are reset before we probe any, as
5512  	 * they may be sharing memory. If any of the ITS fails to
5513  	 * reset, don't even try to go any further, as this could
5514  	 * result in something even worse.
5515  	 */
5516  	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5517  				  its_acpi_reset, 0) > 0)
5518  		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5519  				      gic_acpi_parse_madt_its, 0);
5520  	acpi_its_srat_maps_free();
5521  }
5522  #else
5523  static void __init its_acpi_probe(void) { }
5524  #endif
5525  
5526  int __init its_lpi_memreserve_init(void)
5527  {
5528  	int state;
5529  
5530  	if (!efi_enabled(EFI_CONFIG_TABLES))
5531  		return 0;
5532  
5533  	if (list_empty(&its_nodes))
5534  		return 0;
5535  
5536  	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5537  	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5538  				  "irqchip/arm/gicv3/memreserve:online",
5539  				  its_cpu_memreserve_lpi,
5540  				  NULL);
5541  	if (state < 0)
5542  		return state;
5543  
5544  	gic_rdists->cpuhp_memreserve_state = state;
5545  
5546  	return 0;
5547  }
5548  
5549  int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5550  		    struct irq_domain *parent_domain)
5551  {
5552  	struct device_node *of_node;
5553  	struct its_node *its;
5554  	bool has_v4 = false;
5555  	bool has_v4_1 = false;
5556  	int err;
5557  
5558  	gic_rdists = rdists;
5559  
5560  	its_parent = parent_domain;
5561  	of_node = to_of_node(handle);
5562  	if (of_node)
5563  		its_of_probe(of_node);
5564  	else
5565  		its_acpi_probe();
5566  
5567  	if (list_empty(&its_nodes)) {
5568  		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5569  		return -ENXIO;
5570  	}
5571  
5572  	err = allocate_lpi_tables();
5573  	if (err)
5574  		return err;
5575  
5576  	list_for_each_entry(its, &its_nodes, entry) {
5577  		has_v4 |= is_v4(its);
5578  		has_v4_1 |= is_v4_1(its);
5579  	}
5580  
5581  	/* Don't bother with inconsistent systems */
5582  	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5583  		rdists->has_rvpeid = false;
5584  
5585  	if (has_v4 & rdists->has_vlpis) {
5586  		const struct irq_domain_ops *sgi_ops;
5587  
5588  		if (has_v4_1)
5589  			sgi_ops = &its_sgi_domain_ops;
5590  		else
5591  			sgi_ops = NULL;
5592  
5593  		if (its_init_vpe_domain() ||
5594  		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5595  			rdists->has_vlpis = false;
5596  			pr_err("ITS: Disabling GICv4 support\n");
5597  		}
5598  	}
5599  
5600  	register_syscore_ops(&its_syscore_ops);
5601  
5602  	return 0;
5603  }
5604