xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE		(1 << 2)
50 
51 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
54 
55 static u32 lpi_id_bits;
56 
57 /*
58  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59  * deal with (one configuration byte per interrupt). PENDBASE has to
60  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61  */
62 #define LPI_NRBITS		lpi_id_bits
63 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65 
66 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
67 
68 /*
69  * Collection structure - just an ID, and a redistributor address to
70  * ping. We use one per CPU as a bag of interrupts assigned to this
71  * CPU.
72  */
73 struct its_collection {
74 	u64			target_address;
75 	u16			col_id;
76 };
77 
78 /*
79  * The ITS_BASER structure - contains memory information, cached
80  * value of BASER register configuration and ITS page size.
81  */
82 struct its_baser {
83 	void		*base;
84 	u64		val;
85 	u32		order;
86 	u32		psz;
87 };
88 
89 struct its_device;
90 
91 /*
92  * The ITS structure - contains most of the infrastructure, with the
93  * top-level MSI domain, the command queue, the collections, and the
94  * list of devices writing to it.
95  *
96  * dev_alloc_lock has to be taken for device allocations, while the
97  * spinlock must be taken to parse data structures such as the device
98  * list.
99  */
100 struct its_node {
101 	raw_spinlock_t		lock;
102 	struct mutex		dev_alloc_lock;
103 	struct list_head	entry;
104 	void __iomem		*base;
105 	void __iomem		*sgir_base;
106 	phys_addr_t		phys_base;
107 	struct its_cmd_block	*cmd_base;
108 	struct its_cmd_block	*cmd_write;
109 	struct its_baser	tables[GITS_BASER_NR_REGS];
110 	struct its_collection	*collections;
111 	struct fwnode_handle	*fwnode_handle;
112 	u64			(*get_msi_base)(struct its_device *its_dev);
113 	u64			typer;
114 	u64			cbaser_save;
115 	u32			ctlr_save;
116 	u32			mpidr;
117 	struct list_head	its_device_list;
118 	u64			flags;
119 	unsigned long		list_nr;
120 	int			numa_node;
121 	unsigned int		msi_domain_flags;
122 	u32			pre_its_base; /* for Socionext Synquacer */
123 	int			vlpi_redist_offset;
124 };
125 
126 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
129 
130 #define ITS_ITT_ALIGN		SZ_256
131 
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS						\
134 	({								\
135 		int nvpeid = 16;					\
136 		if (gic_rdists->has_rvpeid &&				\
137 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
138 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
139 				      GICD_TYPER2_VID);			\
140 									\
141 		nvpeid;							\
142 	})
143 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
144 
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
147 
148 struct event_lpi_map {
149 	unsigned long		*lpi_map;
150 	u16			*col_map;
151 	irq_hw_number_t		lpi_base;
152 	int			nr_lpis;
153 	raw_spinlock_t		vlpi_lock;
154 	struct its_vm		*vm;
155 	struct its_vlpi_map	*vlpi_maps;
156 	int			nr_vlpis;
157 };
158 
159 /*
160  * The ITS view of a device - belongs to an ITS, owns an interrupt
161  * translation table, and a list of interrupts.  If it some of its
162  * LPIs are injected into a guest (GICv4), the event_map.vm field
163  * indicates which one.
164  */
165 struct its_device {
166 	struct list_head	entry;
167 	struct its_node		*its;
168 	struct event_lpi_map	event_map;
169 	void			*itt;
170 	u32			nr_ites;
171 	u32			device_id;
172 	bool			shared;
173 };
174 
175 static struct {
176 	raw_spinlock_t		lock;
177 	struct its_device	*dev;
178 	struct its_vpe		**vpes;
179 	int			next_victim;
180 } vpe_proxy;
181 
182 struct cpu_lpi_count {
183 	atomic_t	managed;
184 	atomic_t	unmanaged;
185 };
186 
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188 
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
193 
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
197 
198 static DEFINE_IDA(its_vpeid_ida);
199 
200 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
204 
205 /*
206  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207  * always have vSGIs mapped.
208  */
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210 {
211 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212 }
213 
214 static u16 get_its_list(struct its_vm *vm)
215 {
216 	struct its_node *its;
217 	unsigned long its_list = 0;
218 
219 	list_for_each_entry(its, &its_nodes, entry) {
220 		if (!is_v4(its))
221 			continue;
222 
223 		if (require_its_list_vmovp(vm, its))
224 			__set_bit(its->list_nr, &its_list);
225 	}
226 
227 	return (u16)its_list;
228 }
229 
230 static inline u32 its_get_event_id(struct irq_data *d)
231 {
232 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233 	return d->hwirq - its_dev->event_map.lpi_base;
234 }
235 
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237 					       u32 event)
238 {
239 	struct its_node *its = its_dev->its;
240 
241 	return its->collections + its_dev->event_map.col_map[event];
242 }
243 
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245 					       u32 event)
246 {
247 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248 		return NULL;
249 
250 	return &its_dev->event_map.vlpi_maps[event];
251 }
252 
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254 {
255 	if (irqd_is_forwarded_to_vcpu(d)) {
256 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257 		u32 event = its_get_event_id(d);
258 
259 		return dev_event_to_vlpi_map(its_dev, event);
260 	}
261 
262 	return NULL;
263 }
264 
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266 {
267 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268 	return vpe->col_idx;
269 }
270 
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272 {
273 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274 }
275 
276 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
277 {
278 	struct its_vlpi_map *map = get_vlpi_map(d);
279 	int cpu;
280 
281 	if (map) {
282 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
283 	} else {
284 		/* Physical LPIs are already locked via the irq_desc lock */
285 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
286 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
287 		/* Keep GCC quiet... */
288 		*flags = 0;
289 	}
290 
291 	return cpu;
292 }
293 
294 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
295 {
296 	struct its_vlpi_map *map = get_vlpi_map(d);
297 
298 	if (map)
299 		vpe_to_cpuid_unlock(map->vpe, flags);
300 }
301 
302 static struct its_collection *valid_col(struct its_collection *col)
303 {
304 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
305 		return NULL;
306 
307 	return col;
308 }
309 
310 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
311 {
312 	if (valid_col(its->collections + vpe->col_idx))
313 		return vpe;
314 
315 	return NULL;
316 }
317 
318 /*
319  * ITS command descriptors - parameters to be encoded in a command
320  * block.
321  */
322 struct its_cmd_desc {
323 	union {
324 		struct {
325 			struct its_device *dev;
326 			u32 event_id;
327 		} its_inv_cmd;
328 
329 		struct {
330 			struct its_device *dev;
331 			u32 event_id;
332 		} its_clear_cmd;
333 
334 		struct {
335 			struct its_device *dev;
336 			u32 event_id;
337 		} its_int_cmd;
338 
339 		struct {
340 			struct its_device *dev;
341 			int valid;
342 		} its_mapd_cmd;
343 
344 		struct {
345 			struct its_collection *col;
346 			int valid;
347 		} its_mapc_cmd;
348 
349 		struct {
350 			struct its_device *dev;
351 			u32 phys_id;
352 			u32 event_id;
353 		} its_mapti_cmd;
354 
355 		struct {
356 			struct its_device *dev;
357 			struct its_collection *col;
358 			u32 event_id;
359 		} its_movi_cmd;
360 
361 		struct {
362 			struct its_device *dev;
363 			u32 event_id;
364 		} its_discard_cmd;
365 
366 		struct {
367 			struct its_collection *col;
368 		} its_invall_cmd;
369 
370 		struct {
371 			struct its_vpe *vpe;
372 		} its_vinvall_cmd;
373 
374 		struct {
375 			struct its_vpe *vpe;
376 			struct its_collection *col;
377 			bool valid;
378 		} its_vmapp_cmd;
379 
380 		struct {
381 			struct its_vpe *vpe;
382 			struct its_device *dev;
383 			u32 virt_id;
384 			u32 event_id;
385 			bool db_enabled;
386 		} its_vmapti_cmd;
387 
388 		struct {
389 			struct its_vpe *vpe;
390 			struct its_device *dev;
391 			u32 event_id;
392 			bool db_enabled;
393 		} its_vmovi_cmd;
394 
395 		struct {
396 			struct its_vpe *vpe;
397 			struct its_collection *col;
398 			u16 seq_num;
399 			u16 its_list;
400 		} its_vmovp_cmd;
401 
402 		struct {
403 			struct its_vpe *vpe;
404 		} its_invdb_cmd;
405 
406 		struct {
407 			struct its_vpe *vpe;
408 			u8 sgi;
409 			u8 priority;
410 			bool enable;
411 			bool group;
412 			bool clear;
413 		} its_vsgi_cmd;
414 	};
415 };
416 
417 /*
418  * The ITS command block, which is what the ITS actually parses.
419  */
420 struct its_cmd_block {
421 	union {
422 		u64	raw_cmd[4];
423 		__le64	raw_cmd_le[4];
424 	};
425 };
426 
427 #define ITS_CMD_QUEUE_SZ		SZ_64K
428 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
429 
430 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
431 						    struct its_cmd_block *,
432 						    struct its_cmd_desc *);
433 
434 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
435 					      struct its_cmd_block *,
436 					      struct its_cmd_desc *);
437 
438 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
439 {
440 	u64 mask = GENMASK_ULL(h, l);
441 	*raw_cmd &= ~mask;
442 	*raw_cmd |= (val << l) & mask;
443 }
444 
445 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
446 {
447 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
448 }
449 
450 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
451 {
452 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
453 }
454 
455 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
456 {
457 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
458 }
459 
460 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
461 {
462 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
463 }
464 
465 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
466 {
467 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
468 }
469 
470 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
471 {
472 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
473 }
474 
475 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
476 {
477 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
478 }
479 
480 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
481 {
482 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
483 }
484 
485 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
486 {
487 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
488 }
489 
490 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
491 {
492 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
493 }
494 
495 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
496 {
497 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
498 }
499 
500 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
501 {
502 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
503 }
504 
505 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
506 {
507 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
508 }
509 
510 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
511 {
512 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
513 }
514 
515 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
516 {
517 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
518 }
519 
520 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
521 {
522 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
523 }
524 
525 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
526 {
527 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
528 }
529 
530 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
531 {
532 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
533 }
534 
535 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
536 {
537 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
538 }
539 
540 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
541 {
542 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
543 }
544 
545 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
546 					u32 vpe_db_lpi)
547 {
548 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
549 }
550 
551 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
552 					u32 vpe_db_lpi)
553 {
554 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
555 }
556 
557 static void its_encode_db(struct its_cmd_block *cmd, bool db)
558 {
559 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
560 }
561 
562 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
563 {
564 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
565 }
566 
567 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
568 {
569 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
570 }
571 
572 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
573 {
574 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
575 }
576 
577 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
578 {
579 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
580 }
581 
582 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
583 {
584 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
585 }
586 
587 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
588 {
589 	/* Let's fixup BE commands */
590 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
591 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
592 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
593 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
594 }
595 
596 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
597 						 struct its_cmd_block *cmd,
598 						 struct its_cmd_desc *desc)
599 {
600 	unsigned long itt_addr;
601 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
602 
603 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
604 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
605 
606 	its_encode_cmd(cmd, GITS_CMD_MAPD);
607 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
608 	its_encode_size(cmd, size - 1);
609 	its_encode_itt(cmd, itt_addr);
610 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
611 
612 	its_fixup_cmd(cmd);
613 
614 	return NULL;
615 }
616 
617 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
618 						 struct its_cmd_block *cmd,
619 						 struct its_cmd_desc *desc)
620 {
621 	its_encode_cmd(cmd, GITS_CMD_MAPC);
622 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
623 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
624 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
625 
626 	its_fixup_cmd(cmd);
627 
628 	return desc->its_mapc_cmd.col;
629 }
630 
631 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
632 						  struct its_cmd_block *cmd,
633 						  struct its_cmd_desc *desc)
634 {
635 	struct its_collection *col;
636 
637 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
638 			       desc->its_mapti_cmd.event_id);
639 
640 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
641 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
642 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
643 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
644 	its_encode_collection(cmd, col->col_id);
645 
646 	its_fixup_cmd(cmd);
647 
648 	return valid_col(col);
649 }
650 
651 static struct its_collection *its_build_movi_cmd(struct its_node *its,
652 						 struct its_cmd_block *cmd,
653 						 struct its_cmd_desc *desc)
654 {
655 	struct its_collection *col;
656 
657 	col = dev_event_to_col(desc->its_movi_cmd.dev,
658 			       desc->its_movi_cmd.event_id);
659 
660 	its_encode_cmd(cmd, GITS_CMD_MOVI);
661 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
662 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
663 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
664 
665 	its_fixup_cmd(cmd);
666 
667 	return valid_col(col);
668 }
669 
670 static struct its_collection *its_build_discard_cmd(struct its_node *its,
671 						    struct its_cmd_block *cmd,
672 						    struct its_cmd_desc *desc)
673 {
674 	struct its_collection *col;
675 
676 	col = dev_event_to_col(desc->its_discard_cmd.dev,
677 			       desc->its_discard_cmd.event_id);
678 
679 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
680 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
681 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
682 
683 	its_fixup_cmd(cmd);
684 
685 	return valid_col(col);
686 }
687 
688 static struct its_collection *its_build_inv_cmd(struct its_node *its,
689 						struct its_cmd_block *cmd,
690 						struct its_cmd_desc *desc)
691 {
692 	struct its_collection *col;
693 
694 	col = dev_event_to_col(desc->its_inv_cmd.dev,
695 			       desc->its_inv_cmd.event_id);
696 
697 	its_encode_cmd(cmd, GITS_CMD_INV);
698 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
699 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
700 
701 	its_fixup_cmd(cmd);
702 
703 	return valid_col(col);
704 }
705 
706 static struct its_collection *its_build_int_cmd(struct its_node *its,
707 						struct its_cmd_block *cmd,
708 						struct its_cmd_desc *desc)
709 {
710 	struct its_collection *col;
711 
712 	col = dev_event_to_col(desc->its_int_cmd.dev,
713 			       desc->its_int_cmd.event_id);
714 
715 	its_encode_cmd(cmd, GITS_CMD_INT);
716 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
717 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
718 
719 	its_fixup_cmd(cmd);
720 
721 	return valid_col(col);
722 }
723 
724 static struct its_collection *its_build_clear_cmd(struct its_node *its,
725 						  struct its_cmd_block *cmd,
726 						  struct its_cmd_desc *desc)
727 {
728 	struct its_collection *col;
729 
730 	col = dev_event_to_col(desc->its_clear_cmd.dev,
731 			       desc->its_clear_cmd.event_id);
732 
733 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
734 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
735 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
736 
737 	its_fixup_cmd(cmd);
738 
739 	return valid_col(col);
740 }
741 
742 static struct its_collection *its_build_invall_cmd(struct its_node *its,
743 						   struct its_cmd_block *cmd,
744 						   struct its_cmd_desc *desc)
745 {
746 	its_encode_cmd(cmd, GITS_CMD_INVALL);
747 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
748 
749 	its_fixup_cmd(cmd);
750 
751 	return desc->its_invall_cmd.col;
752 }
753 
754 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
755 					     struct its_cmd_block *cmd,
756 					     struct its_cmd_desc *desc)
757 {
758 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
759 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
760 
761 	its_fixup_cmd(cmd);
762 
763 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
764 }
765 
766 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
767 					   struct its_cmd_block *cmd,
768 					   struct its_cmd_desc *desc)
769 {
770 	unsigned long vpt_addr, vconf_addr;
771 	u64 target;
772 	bool alloc;
773 
774 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
775 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
776 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
777 
778 	if (!desc->its_vmapp_cmd.valid) {
779 		if (is_v4_1(its)) {
780 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
781 			its_encode_alloc(cmd, alloc);
782 		}
783 
784 		goto out;
785 	}
786 
787 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
788 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
789 
790 	its_encode_target(cmd, target);
791 	its_encode_vpt_addr(cmd, vpt_addr);
792 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
793 
794 	if (!is_v4_1(its))
795 		goto out;
796 
797 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
798 
799 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
800 
801 	its_encode_alloc(cmd, alloc);
802 
803 	/*
804 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
805 	 * to be unmapped first, and in this case, we may remap the vPE
806 	 * back while the VPT is not empty. So we can't assume that the
807 	 * VPT is empty on map. This is why we never advertise PTZ.
808 	 */
809 	its_encode_ptz(cmd, false);
810 	its_encode_vconf_addr(cmd, vconf_addr);
811 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
812 
813 out:
814 	its_fixup_cmd(cmd);
815 
816 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
817 }
818 
819 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
820 					    struct its_cmd_block *cmd,
821 					    struct its_cmd_desc *desc)
822 {
823 	u32 db;
824 
825 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
826 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
827 	else
828 		db = 1023;
829 
830 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
831 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
832 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
833 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
834 	its_encode_db_phys_id(cmd, db);
835 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
836 
837 	its_fixup_cmd(cmd);
838 
839 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
840 }
841 
842 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
843 					   struct its_cmd_block *cmd,
844 					   struct its_cmd_desc *desc)
845 {
846 	u32 db;
847 
848 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
849 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
850 	else
851 		db = 1023;
852 
853 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
854 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
855 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
856 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
857 	its_encode_db_phys_id(cmd, db);
858 	its_encode_db_valid(cmd, true);
859 
860 	its_fixup_cmd(cmd);
861 
862 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
863 }
864 
865 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
866 					   struct its_cmd_block *cmd,
867 					   struct its_cmd_desc *desc)
868 {
869 	u64 target;
870 
871 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
872 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
873 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
874 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
875 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
876 	its_encode_target(cmd, target);
877 
878 	if (is_v4_1(its)) {
879 		its_encode_db(cmd, true);
880 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
881 	}
882 
883 	its_fixup_cmd(cmd);
884 
885 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
886 }
887 
888 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
889 					  struct its_cmd_block *cmd,
890 					  struct its_cmd_desc *desc)
891 {
892 	struct its_vlpi_map *map;
893 
894 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
895 				    desc->its_inv_cmd.event_id);
896 
897 	its_encode_cmd(cmd, GITS_CMD_INV);
898 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
899 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
900 
901 	its_fixup_cmd(cmd);
902 
903 	return valid_vpe(its, map->vpe);
904 }
905 
906 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
907 					  struct its_cmd_block *cmd,
908 					  struct its_cmd_desc *desc)
909 {
910 	struct its_vlpi_map *map;
911 
912 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
913 				    desc->its_int_cmd.event_id);
914 
915 	its_encode_cmd(cmd, GITS_CMD_INT);
916 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
917 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
918 
919 	its_fixup_cmd(cmd);
920 
921 	return valid_vpe(its, map->vpe);
922 }
923 
924 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
925 					    struct its_cmd_block *cmd,
926 					    struct its_cmd_desc *desc)
927 {
928 	struct its_vlpi_map *map;
929 
930 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
931 				    desc->its_clear_cmd.event_id);
932 
933 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
934 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
935 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
936 
937 	its_fixup_cmd(cmd);
938 
939 	return valid_vpe(its, map->vpe);
940 }
941 
942 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
943 					   struct its_cmd_block *cmd,
944 					   struct its_cmd_desc *desc)
945 {
946 	if (WARN_ON(!is_v4_1(its)))
947 		return NULL;
948 
949 	its_encode_cmd(cmd, GITS_CMD_INVDB);
950 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
951 
952 	its_fixup_cmd(cmd);
953 
954 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
955 }
956 
957 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
958 					  struct its_cmd_block *cmd,
959 					  struct its_cmd_desc *desc)
960 {
961 	if (WARN_ON(!is_v4_1(its)))
962 		return NULL;
963 
964 	its_encode_cmd(cmd, GITS_CMD_VSGI);
965 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
966 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
967 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
968 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
969 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
970 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
971 
972 	its_fixup_cmd(cmd);
973 
974 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
975 }
976 
977 static u64 its_cmd_ptr_to_offset(struct its_node *its,
978 				 struct its_cmd_block *ptr)
979 {
980 	return (ptr - its->cmd_base) * sizeof(*ptr);
981 }
982 
983 static int its_queue_full(struct its_node *its)
984 {
985 	int widx;
986 	int ridx;
987 
988 	widx = its->cmd_write - its->cmd_base;
989 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
990 
991 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
992 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
993 		return 1;
994 
995 	return 0;
996 }
997 
998 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
999 {
1000 	struct its_cmd_block *cmd;
1001 	u32 count = 1000000;	/* 1s! */
1002 
1003 	while (its_queue_full(its)) {
1004 		count--;
1005 		if (!count) {
1006 			pr_err_ratelimited("ITS queue not draining\n");
1007 			return NULL;
1008 		}
1009 		cpu_relax();
1010 		udelay(1);
1011 	}
1012 
1013 	cmd = its->cmd_write++;
1014 
1015 	/* Handle queue wrapping */
1016 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1017 		its->cmd_write = its->cmd_base;
1018 
1019 	/* Clear command  */
1020 	cmd->raw_cmd[0] = 0;
1021 	cmd->raw_cmd[1] = 0;
1022 	cmd->raw_cmd[2] = 0;
1023 	cmd->raw_cmd[3] = 0;
1024 
1025 	return cmd;
1026 }
1027 
1028 static struct its_cmd_block *its_post_commands(struct its_node *its)
1029 {
1030 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1031 
1032 	writel_relaxed(wr, its->base + GITS_CWRITER);
1033 
1034 	return its->cmd_write;
1035 }
1036 
1037 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1038 {
1039 	/*
1040 	 * Make sure the commands written to memory are observable by
1041 	 * the ITS.
1042 	 */
1043 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1044 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1045 	else
1046 		dsb(ishst);
1047 }
1048 
1049 static int its_wait_for_range_completion(struct its_node *its,
1050 					 u64	prev_idx,
1051 					 struct its_cmd_block *to)
1052 {
1053 	u64 rd_idx, to_idx, linear_idx;
1054 	u32 count = 1000000;	/* 1s! */
1055 
1056 	/* Linearize to_idx if the command set has wrapped around */
1057 	to_idx = its_cmd_ptr_to_offset(its, to);
1058 	if (to_idx < prev_idx)
1059 		to_idx += ITS_CMD_QUEUE_SZ;
1060 
1061 	linear_idx = prev_idx;
1062 
1063 	while (1) {
1064 		s64 delta;
1065 
1066 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1067 
1068 		/*
1069 		 * Compute the read pointer progress, taking the
1070 		 * potential wrap-around into account.
1071 		 */
1072 		delta = rd_idx - prev_idx;
1073 		if (rd_idx < prev_idx)
1074 			delta += ITS_CMD_QUEUE_SZ;
1075 
1076 		linear_idx += delta;
1077 		if (linear_idx >= to_idx)
1078 			break;
1079 
1080 		count--;
1081 		if (!count) {
1082 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1083 					   to_idx, linear_idx);
1084 			return -1;
1085 		}
1086 		prev_idx = rd_idx;
1087 		cpu_relax();
1088 		udelay(1);
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /* Warning, macro hell follows */
1095 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1096 void name(struct its_node *its,						\
1097 	  buildtype builder,						\
1098 	  struct its_cmd_desc *desc)					\
1099 {									\
1100 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1101 	synctype *sync_obj;						\
1102 	unsigned long flags;						\
1103 	u64 rd_idx;							\
1104 									\
1105 	raw_spin_lock_irqsave(&its->lock, flags);			\
1106 									\
1107 	cmd = its_allocate_entry(its);					\
1108 	if (!cmd) {		/* We're soooooo screewed... */		\
1109 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1110 		return;							\
1111 	}								\
1112 	sync_obj = builder(its, cmd, desc);				\
1113 	its_flush_cmd(its, cmd);					\
1114 									\
1115 	if (sync_obj) {							\
1116 		sync_cmd = its_allocate_entry(its);			\
1117 		if (!sync_cmd)						\
1118 			goto post;					\
1119 									\
1120 		buildfn(its, sync_cmd, sync_obj);			\
1121 		its_flush_cmd(its, sync_cmd);				\
1122 	}								\
1123 									\
1124 post:									\
1125 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1126 	next_cmd = its_post_commands(its);				\
1127 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1128 									\
1129 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1130 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1131 }
1132 
1133 static void its_build_sync_cmd(struct its_node *its,
1134 			       struct its_cmd_block *sync_cmd,
1135 			       struct its_collection *sync_col)
1136 {
1137 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1138 	its_encode_target(sync_cmd, sync_col->target_address);
1139 
1140 	its_fixup_cmd(sync_cmd);
1141 }
1142 
1143 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1144 			     struct its_collection, its_build_sync_cmd)
1145 
1146 static void its_build_vsync_cmd(struct its_node *its,
1147 				struct its_cmd_block *sync_cmd,
1148 				struct its_vpe *sync_vpe)
1149 {
1150 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1151 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1152 
1153 	its_fixup_cmd(sync_cmd);
1154 }
1155 
1156 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1157 			     struct its_vpe, its_build_vsync_cmd)
1158 
1159 static void its_send_int(struct its_device *dev, u32 event_id)
1160 {
1161 	struct its_cmd_desc desc;
1162 
1163 	desc.its_int_cmd.dev = dev;
1164 	desc.its_int_cmd.event_id = event_id;
1165 
1166 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1167 }
1168 
1169 static void its_send_clear(struct its_device *dev, u32 event_id)
1170 {
1171 	struct its_cmd_desc desc;
1172 
1173 	desc.its_clear_cmd.dev = dev;
1174 	desc.its_clear_cmd.event_id = event_id;
1175 
1176 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1177 }
1178 
1179 static void its_send_inv(struct its_device *dev, u32 event_id)
1180 {
1181 	struct its_cmd_desc desc;
1182 
1183 	desc.its_inv_cmd.dev = dev;
1184 	desc.its_inv_cmd.event_id = event_id;
1185 
1186 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1187 }
1188 
1189 static void its_send_mapd(struct its_device *dev, int valid)
1190 {
1191 	struct its_cmd_desc desc;
1192 
1193 	desc.its_mapd_cmd.dev = dev;
1194 	desc.its_mapd_cmd.valid = !!valid;
1195 
1196 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1197 }
1198 
1199 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1200 			  int valid)
1201 {
1202 	struct its_cmd_desc desc;
1203 
1204 	desc.its_mapc_cmd.col = col;
1205 	desc.its_mapc_cmd.valid = !!valid;
1206 
1207 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1208 }
1209 
1210 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1211 {
1212 	struct its_cmd_desc desc;
1213 
1214 	desc.its_mapti_cmd.dev = dev;
1215 	desc.its_mapti_cmd.phys_id = irq_id;
1216 	desc.its_mapti_cmd.event_id = id;
1217 
1218 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1219 }
1220 
1221 static void its_send_movi(struct its_device *dev,
1222 			  struct its_collection *col, u32 id)
1223 {
1224 	struct its_cmd_desc desc;
1225 
1226 	desc.its_movi_cmd.dev = dev;
1227 	desc.its_movi_cmd.col = col;
1228 	desc.its_movi_cmd.event_id = id;
1229 
1230 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1231 }
1232 
1233 static void its_send_discard(struct its_device *dev, u32 id)
1234 {
1235 	struct its_cmd_desc desc;
1236 
1237 	desc.its_discard_cmd.dev = dev;
1238 	desc.its_discard_cmd.event_id = id;
1239 
1240 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1241 }
1242 
1243 static void its_send_invall(struct its_node *its, struct its_collection *col)
1244 {
1245 	struct its_cmd_desc desc;
1246 
1247 	desc.its_invall_cmd.col = col;
1248 
1249 	its_send_single_command(its, its_build_invall_cmd, &desc);
1250 }
1251 
1252 static void its_send_vmapti(struct its_device *dev, u32 id)
1253 {
1254 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1255 	struct its_cmd_desc desc;
1256 
1257 	desc.its_vmapti_cmd.vpe = map->vpe;
1258 	desc.its_vmapti_cmd.dev = dev;
1259 	desc.its_vmapti_cmd.virt_id = map->vintid;
1260 	desc.its_vmapti_cmd.event_id = id;
1261 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1262 
1263 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1264 }
1265 
1266 static void its_send_vmovi(struct its_device *dev, u32 id)
1267 {
1268 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 	struct its_cmd_desc desc;
1270 
1271 	desc.its_vmovi_cmd.vpe = map->vpe;
1272 	desc.its_vmovi_cmd.dev = dev;
1273 	desc.its_vmovi_cmd.event_id = id;
1274 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1275 
1276 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1277 }
1278 
1279 static void its_send_vmapp(struct its_node *its,
1280 			   struct its_vpe *vpe, bool valid)
1281 {
1282 	struct its_cmd_desc desc;
1283 
1284 	desc.its_vmapp_cmd.vpe = vpe;
1285 	desc.its_vmapp_cmd.valid = valid;
1286 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1287 
1288 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1289 }
1290 
1291 static void its_send_vmovp(struct its_vpe *vpe)
1292 {
1293 	struct its_cmd_desc desc = {};
1294 	struct its_node *its;
1295 	unsigned long flags;
1296 	int col_id = vpe->col_idx;
1297 
1298 	desc.its_vmovp_cmd.vpe = vpe;
1299 
1300 	if (!its_list_map) {
1301 		its = list_first_entry(&its_nodes, struct its_node, entry);
1302 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1303 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1304 		return;
1305 	}
1306 
1307 	/*
1308 	 * Yet another marvel of the architecture. If using the
1309 	 * its_list "feature", we need to make sure that all ITSs
1310 	 * receive all VMOVP commands in the same order. The only way
1311 	 * to guarantee this is to make vmovp a serialization point.
1312 	 *
1313 	 * Wall <-- Head.
1314 	 */
1315 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1316 
1317 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1318 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1319 
1320 	/* Emit VMOVPs */
1321 	list_for_each_entry(its, &its_nodes, entry) {
1322 		if (!is_v4(its))
1323 			continue;
1324 
1325 		if (!require_its_list_vmovp(vpe->its_vm, its))
1326 			continue;
1327 
1328 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1329 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1330 	}
1331 
1332 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1333 }
1334 
1335 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1336 {
1337 	struct its_cmd_desc desc;
1338 
1339 	desc.its_vinvall_cmd.vpe = vpe;
1340 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1341 }
1342 
1343 static void its_send_vinv(struct its_device *dev, u32 event_id)
1344 {
1345 	struct its_cmd_desc desc;
1346 
1347 	/*
1348 	 * There is no real VINV command. This is just a normal INV,
1349 	 * with a VSYNC instead of a SYNC.
1350 	 */
1351 	desc.its_inv_cmd.dev = dev;
1352 	desc.its_inv_cmd.event_id = event_id;
1353 
1354 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1355 }
1356 
1357 static void its_send_vint(struct its_device *dev, u32 event_id)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	/*
1362 	 * There is no real VINT command. This is just a normal INT,
1363 	 * with a VSYNC instead of a SYNC.
1364 	 */
1365 	desc.its_int_cmd.dev = dev;
1366 	desc.its_int_cmd.event_id = event_id;
1367 
1368 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1369 }
1370 
1371 static void its_send_vclear(struct its_device *dev, u32 event_id)
1372 {
1373 	struct its_cmd_desc desc;
1374 
1375 	/*
1376 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1377 	 * with a VSYNC instead of a SYNC.
1378 	 */
1379 	desc.its_clear_cmd.dev = dev;
1380 	desc.its_clear_cmd.event_id = event_id;
1381 
1382 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1383 }
1384 
1385 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1386 {
1387 	struct its_cmd_desc desc;
1388 
1389 	desc.its_invdb_cmd.vpe = vpe;
1390 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1391 }
1392 
1393 /*
1394  * irqchip functions - assumes MSI, mostly.
1395  */
1396 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1397 {
1398 	struct its_vlpi_map *map = get_vlpi_map(d);
1399 	irq_hw_number_t hwirq;
1400 	void *va;
1401 	u8 *cfg;
1402 
1403 	if (map) {
1404 		va = page_address(map->vm->vprop_page);
1405 		hwirq = map->vintid;
1406 
1407 		/* Remember the updated property */
1408 		map->properties &= ~clr;
1409 		map->properties |= set | LPI_PROP_GROUP1;
1410 	} else {
1411 		va = gic_rdists->prop_table_va;
1412 		hwirq = d->hwirq;
1413 	}
1414 
1415 	cfg = va + hwirq - 8192;
1416 	*cfg &= ~clr;
1417 	*cfg |= set | LPI_PROP_GROUP1;
1418 
1419 	/*
1420 	 * Make the above write visible to the redistributors.
1421 	 * And yes, we're flushing exactly: One. Single. Byte.
1422 	 * Humpf...
1423 	 */
1424 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1425 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1426 	else
1427 		dsb(ishst);
1428 }
1429 
1430 static void wait_for_syncr(void __iomem *rdbase)
1431 {
1432 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1433 		cpu_relax();
1434 }
1435 
1436 static void direct_lpi_inv(struct irq_data *d)
1437 {
1438 	struct its_vlpi_map *map = get_vlpi_map(d);
1439 	void __iomem *rdbase;
1440 	unsigned long flags;
1441 	u64 val;
1442 	int cpu;
1443 
1444 	if (map) {
1445 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1446 
1447 		WARN_ON(!is_v4_1(its_dev->its));
1448 
1449 		val  = GICR_INVLPIR_V;
1450 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1451 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1452 	} else {
1453 		val = d->hwirq;
1454 	}
1455 
1456 	/* Target the redistributor this LPI is currently routed to */
1457 	cpu = irq_to_cpuid_lock(d, &flags);
1458 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1460 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1461 
1462 	wait_for_syncr(rdbase);
1463 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464 	irq_to_cpuid_unlock(d, flags);
1465 }
1466 
1467 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1468 {
1469 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1470 
1471 	lpi_write_config(d, clr, set);
1472 	if (gic_rdists->has_direct_lpi &&
1473 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1474 		direct_lpi_inv(d);
1475 	else if (!irqd_is_forwarded_to_vcpu(d))
1476 		its_send_inv(its_dev, its_get_event_id(d));
1477 	else
1478 		its_send_vinv(its_dev, its_get_event_id(d));
1479 }
1480 
1481 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1482 {
1483 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484 	u32 event = its_get_event_id(d);
1485 	struct its_vlpi_map *map;
1486 
1487 	/*
1488 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1489 	 * here.
1490 	 */
1491 	if (is_v4_1(its_dev->its))
1492 		return;
1493 
1494 	map = dev_event_to_vlpi_map(its_dev, event);
1495 
1496 	if (map->db_enabled == enable)
1497 		return;
1498 
1499 	map->db_enabled = enable;
1500 
1501 	/*
1502 	 * More fun with the architecture:
1503 	 *
1504 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1505 	 * value or to 1023, depending on the enable bit. But that
1506 	 * would be issuing a mapping for an /existing/ DevID+EventID
1507 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1508 	 * to the /same/ vPE, using this opportunity to adjust the
1509 	 * doorbell. Mouahahahaha. We loves it, Precious.
1510 	 */
1511 	its_send_vmovi(its_dev, event);
1512 }
1513 
1514 static void its_mask_irq(struct irq_data *d)
1515 {
1516 	if (irqd_is_forwarded_to_vcpu(d))
1517 		its_vlpi_set_doorbell(d, false);
1518 
1519 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1520 }
1521 
1522 static void its_unmask_irq(struct irq_data *d)
1523 {
1524 	if (irqd_is_forwarded_to_vcpu(d))
1525 		its_vlpi_set_doorbell(d, true);
1526 
1527 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1528 }
1529 
1530 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1531 {
1532 	if (irqd_affinity_is_managed(d))
1533 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1534 
1535 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1536 }
1537 
1538 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1539 {
1540 	if (irqd_affinity_is_managed(d))
1541 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1542 	else
1543 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1544 }
1545 
1546 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1547 {
1548 	if (irqd_affinity_is_managed(d))
1549 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1550 	else
1551 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1552 }
1553 
1554 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1555 					      const struct cpumask *cpu_mask)
1556 {
1557 	unsigned int cpu = nr_cpu_ids, tmp;
1558 	int count = S32_MAX;
1559 
1560 	for_each_cpu(tmp, cpu_mask) {
1561 		int this_count = its_read_lpi_count(d, tmp);
1562 		if (this_count < count) {
1563 			cpu = tmp;
1564 		        count = this_count;
1565 		}
1566 	}
1567 
1568 	return cpu;
1569 }
1570 
1571 /*
1572  * As suggested by Thomas Gleixner in:
1573  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1574  */
1575 static int its_select_cpu(struct irq_data *d,
1576 			  const struct cpumask *aff_mask)
1577 {
1578 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1579 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1580 	static struct cpumask __tmpmask;
1581 	struct cpumask *tmpmask;
1582 	unsigned long flags;
1583 	int cpu, node;
1584 	node = its_dev->its->numa_node;
1585 	tmpmask = &__tmpmask;
1586 
1587 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1588 
1589 	if (!irqd_affinity_is_managed(d)) {
1590 		/* First try the NUMA node */
1591 		if (node != NUMA_NO_NODE) {
1592 			/*
1593 			 * Try the intersection of the affinity mask and the
1594 			 * node mask (and the online mask, just to be safe).
1595 			 */
1596 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1597 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1598 
1599 			/*
1600 			 * Ideally, we would check if the mask is empty, and
1601 			 * try again on the full node here.
1602 			 *
1603 			 * But it turns out that the way ACPI describes the
1604 			 * affinity for ITSs only deals about memory, and
1605 			 * not target CPUs, so it cannot describe a single
1606 			 * ITS placed next to two NUMA nodes.
1607 			 *
1608 			 * Instead, just fallback on the online mask. This
1609 			 * diverges from Thomas' suggestion above.
1610 			 */
1611 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1612 			if (cpu < nr_cpu_ids)
1613 				goto out;
1614 
1615 			/* If we can't cross sockets, give up */
1616 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1617 				goto out;
1618 
1619 			/* If the above failed, expand the search */
1620 		}
1621 
1622 		/* Try the intersection of the affinity and online masks */
1623 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1624 
1625 		/* If that doesn't fly, the online mask is the last resort */
1626 		if (cpumask_empty(tmpmask))
1627 			cpumask_copy(tmpmask, cpu_online_mask);
1628 
1629 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1630 	} else {
1631 		cpumask_copy(tmpmask, aff_mask);
1632 
1633 		/* If we cannot cross sockets, limit the search to that node */
1634 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1635 		    node != NUMA_NO_NODE)
1636 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1637 
1638 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1639 	}
1640 out:
1641 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1642 
1643 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1644 	return cpu;
1645 }
1646 
1647 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1648 			    bool force)
1649 {
1650 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1651 	struct its_collection *target_col;
1652 	u32 id = its_get_event_id(d);
1653 	int cpu, prev_cpu;
1654 
1655 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1656 	if (irqd_is_forwarded_to_vcpu(d))
1657 		return -EINVAL;
1658 
1659 	prev_cpu = its_dev->event_map.col_map[id];
1660 	its_dec_lpi_count(d, prev_cpu);
1661 
1662 	if (!force)
1663 		cpu = its_select_cpu(d, mask_val);
1664 	else
1665 		cpu = cpumask_pick_least_loaded(d, mask_val);
1666 
1667 	if (cpu < 0 || cpu >= nr_cpu_ids)
1668 		goto err;
1669 
1670 	/* don't set the affinity when the target cpu is same as current one */
1671 	if (cpu != prev_cpu) {
1672 		target_col = &its_dev->its->collections[cpu];
1673 		its_send_movi(its_dev, target_col, id);
1674 		its_dev->event_map.col_map[id] = cpu;
1675 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1676 	}
1677 
1678 	its_inc_lpi_count(d, cpu);
1679 
1680 	return IRQ_SET_MASK_OK_DONE;
1681 
1682 err:
1683 	its_inc_lpi_count(d, prev_cpu);
1684 	return -EINVAL;
1685 }
1686 
1687 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1688 {
1689 	struct its_node *its = its_dev->its;
1690 
1691 	return its->phys_base + GITS_TRANSLATER;
1692 }
1693 
1694 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1695 {
1696 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1697 	struct its_node *its;
1698 	u64 addr;
1699 
1700 	its = its_dev->its;
1701 	addr = its->get_msi_base(its_dev);
1702 
1703 	msg->address_lo		= lower_32_bits(addr);
1704 	msg->address_hi		= upper_32_bits(addr);
1705 	msg->data		= its_get_event_id(d);
1706 
1707 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1708 }
1709 
1710 static int its_irq_set_irqchip_state(struct irq_data *d,
1711 				     enum irqchip_irq_state which,
1712 				     bool state)
1713 {
1714 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1715 	u32 event = its_get_event_id(d);
1716 
1717 	if (which != IRQCHIP_STATE_PENDING)
1718 		return -EINVAL;
1719 
1720 	if (irqd_is_forwarded_to_vcpu(d)) {
1721 		if (state)
1722 			its_send_vint(its_dev, event);
1723 		else
1724 			its_send_vclear(its_dev, event);
1725 	} else {
1726 		if (state)
1727 			its_send_int(its_dev, event);
1728 		else
1729 			its_send_clear(its_dev, event);
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 static int its_irq_retrigger(struct irq_data *d)
1736 {
1737 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1738 }
1739 
1740 /*
1741  * Two favourable cases:
1742  *
1743  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1744  *     for vSGI delivery
1745  *
1746  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1747  *     and we're better off mapping all VPEs always
1748  *
1749  * If neither (a) nor (b) is true, then we map vPEs on demand.
1750  *
1751  */
1752 static bool gic_requires_eager_mapping(void)
1753 {
1754 	if (!its_list_map || gic_rdists->has_rvpeid)
1755 		return true;
1756 
1757 	return false;
1758 }
1759 
1760 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1761 {
1762 	unsigned long flags;
1763 
1764 	if (gic_requires_eager_mapping())
1765 		return;
1766 
1767 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1768 
1769 	/*
1770 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1771 	 * them mapped now.
1772 	 */
1773 	vm->vlpi_count[its->list_nr]++;
1774 
1775 	if (vm->vlpi_count[its->list_nr] == 1) {
1776 		int i;
1777 
1778 		for (i = 0; i < vm->nr_vpes; i++) {
1779 			struct its_vpe *vpe = vm->vpes[i];
1780 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1781 
1782 			/* Map the VPE to the first possible CPU */
1783 			vpe->col_idx = cpumask_first(cpu_online_mask);
1784 			its_send_vmapp(its, vpe, true);
1785 			its_send_vinvall(its, vpe);
1786 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1787 		}
1788 	}
1789 
1790 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1791 }
1792 
1793 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1794 {
1795 	unsigned long flags;
1796 
1797 	/* Not using the ITS list? Everything is always mapped. */
1798 	if (gic_requires_eager_mapping())
1799 		return;
1800 
1801 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1802 
1803 	if (!--vm->vlpi_count[its->list_nr]) {
1804 		int i;
1805 
1806 		for (i = 0; i < vm->nr_vpes; i++)
1807 			its_send_vmapp(its, vm->vpes[i], false);
1808 	}
1809 
1810 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1811 }
1812 
1813 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1814 {
1815 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816 	u32 event = its_get_event_id(d);
1817 	int ret = 0;
1818 
1819 	if (!info->map)
1820 		return -EINVAL;
1821 
1822 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1823 
1824 	if (!its_dev->event_map.vm) {
1825 		struct its_vlpi_map *maps;
1826 
1827 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1828 			       GFP_ATOMIC);
1829 		if (!maps) {
1830 			ret = -ENOMEM;
1831 			goto out;
1832 		}
1833 
1834 		its_dev->event_map.vm = info->map->vm;
1835 		its_dev->event_map.vlpi_maps = maps;
1836 	} else if (its_dev->event_map.vm != info->map->vm) {
1837 		ret = -EINVAL;
1838 		goto out;
1839 	}
1840 
1841 	/* Get our private copy of the mapping information */
1842 	its_dev->event_map.vlpi_maps[event] = *info->map;
1843 
1844 	if (irqd_is_forwarded_to_vcpu(d)) {
1845 		/* Already mapped, move it around */
1846 		its_send_vmovi(its_dev, event);
1847 	} else {
1848 		/* Ensure all the VPEs are mapped on this ITS */
1849 		its_map_vm(its_dev->its, info->map->vm);
1850 
1851 		/*
1852 		 * Flag the interrupt as forwarded so that we can
1853 		 * start poking the virtual property table.
1854 		 */
1855 		irqd_set_forwarded_to_vcpu(d);
1856 
1857 		/* Write out the property to the prop table */
1858 		lpi_write_config(d, 0xff, info->map->properties);
1859 
1860 		/* Drop the physical mapping */
1861 		its_send_discard(its_dev, event);
1862 
1863 		/* and install the virtual one */
1864 		its_send_vmapti(its_dev, event);
1865 
1866 		/* Increment the number of VLPIs */
1867 		its_dev->event_map.nr_vlpis++;
1868 	}
1869 
1870 out:
1871 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1872 	return ret;
1873 }
1874 
1875 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1876 {
1877 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1878 	struct its_vlpi_map *map;
1879 	int ret = 0;
1880 
1881 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1882 
1883 	map = get_vlpi_map(d);
1884 
1885 	if (!its_dev->event_map.vm || !map) {
1886 		ret = -EINVAL;
1887 		goto out;
1888 	}
1889 
1890 	/* Copy our mapping information to the incoming request */
1891 	*info->map = *map;
1892 
1893 out:
1894 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1895 	return ret;
1896 }
1897 
1898 static int its_vlpi_unmap(struct irq_data *d)
1899 {
1900 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1901 	u32 event = its_get_event_id(d);
1902 	int ret = 0;
1903 
1904 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1905 
1906 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1907 		ret = -EINVAL;
1908 		goto out;
1909 	}
1910 
1911 	/* Drop the virtual mapping */
1912 	its_send_discard(its_dev, event);
1913 
1914 	/* and restore the physical one */
1915 	irqd_clr_forwarded_to_vcpu(d);
1916 	its_send_mapti(its_dev, d->hwirq, event);
1917 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1918 				    LPI_PROP_ENABLED |
1919 				    LPI_PROP_GROUP1));
1920 
1921 	/* Potentially unmap the VM from this ITS */
1922 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1923 
1924 	/*
1925 	 * Drop the refcount and make the device available again if
1926 	 * this was the last VLPI.
1927 	 */
1928 	if (!--its_dev->event_map.nr_vlpis) {
1929 		its_dev->event_map.vm = NULL;
1930 		kfree(its_dev->event_map.vlpi_maps);
1931 	}
1932 
1933 out:
1934 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1935 	return ret;
1936 }
1937 
1938 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1939 {
1940 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1941 
1942 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1943 		return -EINVAL;
1944 
1945 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1946 		lpi_update_config(d, 0xff, info->config);
1947 	else
1948 		lpi_write_config(d, 0xff, info->config);
1949 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1950 
1951 	return 0;
1952 }
1953 
1954 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1955 {
1956 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1957 	struct its_cmd_info *info = vcpu_info;
1958 
1959 	/* Need a v4 ITS */
1960 	if (!is_v4(its_dev->its))
1961 		return -EINVAL;
1962 
1963 	/* Unmap request? */
1964 	if (!info)
1965 		return its_vlpi_unmap(d);
1966 
1967 	switch (info->cmd_type) {
1968 	case MAP_VLPI:
1969 		return its_vlpi_map(d, info);
1970 
1971 	case GET_VLPI:
1972 		return its_vlpi_get(d, info);
1973 
1974 	case PROP_UPDATE_VLPI:
1975 	case PROP_UPDATE_AND_INV_VLPI:
1976 		return its_vlpi_prop_update(d, info);
1977 
1978 	default:
1979 		return -EINVAL;
1980 	}
1981 }
1982 
1983 static struct irq_chip its_irq_chip = {
1984 	.name			= "ITS",
1985 	.irq_mask		= its_mask_irq,
1986 	.irq_unmask		= its_unmask_irq,
1987 	.irq_eoi		= irq_chip_eoi_parent,
1988 	.irq_set_affinity	= its_set_affinity,
1989 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1990 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1991 	.irq_retrigger		= its_irq_retrigger,
1992 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1993 };
1994 
1995 
1996 /*
1997  * How we allocate LPIs:
1998  *
1999  * lpi_range_list contains ranges of LPIs that are to available to
2000  * allocate from. To allocate LPIs, just pick the first range that
2001  * fits the required allocation, and reduce it by the required
2002  * amount. Once empty, remove the range from the list.
2003  *
2004  * To free a range of LPIs, add a free range to the list, sort it and
2005  * merge the result if the new range happens to be adjacent to an
2006  * already free block.
2007  *
2008  * The consequence of the above is that allocation is cost is low, but
2009  * freeing is expensive. We assumes that freeing rarely occurs.
2010  */
2011 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2012 
2013 static DEFINE_MUTEX(lpi_range_lock);
2014 static LIST_HEAD(lpi_range_list);
2015 
2016 struct lpi_range {
2017 	struct list_head	entry;
2018 	u32			base_id;
2019 	u32			span;
2020 };
2021 
2022 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2023 {
2024 	struct lpi_range *range;
2025 
2026 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2027 	if (range) {
2028 		range->base_id = base;
2029 		range->span = span;
2030 	}
2031 
2032 	return range;
2033 }
2034 
2035 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2036 {
2037 	struct lpi_range *range, *tmp;
2038 	int err = -ENOSPC;
2039 
2040 	mutex_lock(&lpi_range_lock);
2041 
2042 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2043 		if (range->span >= nr_lpis) {
2044 			*base = range->base_id;
2045 			range->base_id += nr_lpis;
2046 			range->span -= nr_lpis;
2047 
2048 			if (range->span == 0) {
2049 				list_del(&range->entry);
2050 				kfree(range);
2051 			}
2052 
2053 			err = 0;
2054 			break;
2055 		}
2056 	}
2057 
2058 	mutex_unlock(&lpi_range_lock);
2059 
2060 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2061 	return err;
2062 }
2063 
2064 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2065 {
2066 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2067 		return;
2068 	if (a->base_id + a->span != b->base_id)
2069 		return;
2070 	b->base_id = a->base_id;
2071 	b->span += a->span;
2072 	list_del(&a->entry);
2073 	kfree(a);
2074 }
2075 
2076 static int free_lpi_range(u32 base, u32 nr_lpis)
2077 {
2078 	struct lpi_range *new, *old;
2079 
2080 	new = mk_lpi_range(base, nr_lpis);
2081 	if (!new)
2082 		return -ENOMEM;
2083 
2084 	mutex_lock(&lpi_range_lock);
2085 
2086 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2087 		if (old->base_id < base)
2088 			break;
2089 	}
2090 	/*
2091 	 * old is the last element with ->base_id smaller than base,
2092 	 * so new goes right after it. If there are no elements with
2093 	 * ->base_id smaller than base, &old->entry ends up pointing
2094 	 * at the head of the list, and inserting new it the start of
2095 	 * the list is the right thing to do in that case as well.
2096 	 */
2097 	list_add(&new->entry, &old->entry);
2098 	/*
2099 	 * Now check if we can merge with the preceding and/or
2100 	 * following ranges.
2101 	 */
2102 	merge_lpi_ranges(old, new);
2103 	merge_lpi_ranges(new, list_next_entry(new, entry));
2104 
2105 	mutex_unlock(&lpi_range_lock);
2106 	return 0;
2107 }
2108 
2109 static int __init its_lpi_init(u32 id_bits)
2110 {
2111 	u32 lpis = (1UL << id_bits) - 8192;
2112 	u32 numlpis;
2113 	int err;
2114 
2115 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2116 
2117 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2118 		lpis = numlpis;
2119 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2120 			lpis);
2121 	}
2122 
2123 	/*
2124 	 * Initializing the allocator is just the same as freeing the
2125 	 * full range of LPIs.
2126 	 */
2127 	err = free_lpi_range(8192, lpis);
2128 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2129 	return err;
2130 }
2131 
2132 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2133 {
2134 	unsigned long *bitmap = NULL;
2135 	int err = 0;
2136 
2137 	do {
2138 		err = alloc_lpi_range(nr_irqs, base);
2139 		if (!err)
2140 			break;
2141 
2142 		nr_irqs /= 2;
2143 	} while (nr_irqs > 0);
2144 
2145 	if (!nr_irqs)
2146 		err = -ENOSPC;
2147 
2148 	if (err)
2149 		goto out;
2150 
2151 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2152 	if (!bitmap)
2153 		goto out;
2154 
2155 	*nr_ids = nr_irqs;
2156 
2157 out:
2158 	if (!bitmap)
2159 		*base = *nr_ids = 0;
2160 
2161 	return bitmap;
2162 }
2163 
2164 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2165 {
2166 	WARN_ON(free_lpi_range(base, nr_ids));
2167 	bitmap_free(bitmap);
2168 }
2169 
2170 static void gic_reset_prop_table(void *va)
2171 {
2172 	/* Priority 0xa0, Group-1, disabled */
2173 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2174 
2175 	/* Make sure the GIC will observe the written configuration */
2176 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2177 }
2178 
2179 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2180 {
2181 	struct page *prop_page;
2182 
2183 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2184 	if (!prop_page)
2185 		return NULL;
2186 
2187 	gic_reset_prop_table(page_address(prop_page));
2188 
2189 	return prop_page;
2190 }
2191 
2192 static void its_free_prop_table(struct page *prop_page)
2193 {
2194 	free_pages((unsigned long)page_address(prop_page),
2195 		   get_order(LPI_PROPBASE_SZ));
2196 }
2197 
2198 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2199 {
2200 	phys_addr_t start, end, addr_end;
2201 	u64 i;
2202 
2203 	/*
2204 	 * We don't bother checking for a kdump kernel as by
2205 	 * construction, the LPI tables are out of this kernel's
2206 	 * memory map.
2207 	 */
2208 	if (is_kdump_kernel())
2209 		return true;
2210 
2211 	addr_end = addr + size - 1;
2212 
2213 	for_each_reserved_mem_range(i, &start, &end) {
2214 		if (addr >= start && addr_end <= end)
2215 			return true;
2216 	}
2217 
2218 	/* Not found, not a good sign... */
2219 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2220 		&addr, &addr_end);
2221 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2222 	return false;
2223 }
2224 
2225 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2226 {
2227 	if (efi_enabled(EFI_CONFIG_TABLES))
2228 		return efi_mem_reserve_persistent(addr, size);
2229 
2230 	return 0;
2231 }
2232 
2233 static int __init its_setup_lpi_prop_table(void)
2234 {
2235 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2236 		u64 val;
2237 
2238 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2239 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2240 
2241 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2242 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2243 						     LPI_PROPBASE_SZ,
2244 						     MEMREMAP_WB);
2245 		gic_reset_prop_table(gic_rdists->prop_table_va);
2246 	} else {
2247 		struct page *page;
2248 
2249 		lpi_id_bits = min_t(u32,
2250 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2251 				    ITS_MAX_LPI_NRBITS);
2252 		page = its_allocate_prop_table(GFP_NOWAIT);
2253 		if (!page) {
2254 			pr_err("Failed to allocate PROPBASE\n");
2255 			return -ENOMEM;
2256 		}
2257 
2258 		gic_rdists->prop_table_pa = page_to_phys(page);
2259 		gic_rdists->prop_table_va = page_address(page);
2260 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2261 					  LPI_PROPBASE_SZ));
2262 	}
2263 
2264 	pr_info("GICv3: using LPI property table @%pa\n",
2265 		&gic_rdists->prop_table_pa);
2266 
2267 	return its_lpi_init(lpi_id_bits);
2268 }
2269 
2270 static const char *its_base_type_string[] = {
2271 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2272 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2273 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2274 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2275 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2276 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2277 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2278 };
2279 
2280 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2281 {
2282 	u32 idx = baser - its->tables;
2283 
2284 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2285 }
2286 
2287 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2288 			    u64 val)
2289 {
2290 	u32 idx = baser - its->tables;
2291 
2292 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2293 	baser->val = its_read_baser(its, baser);
2294 }
2295 
2296 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2297 			   u64 cache, u64 shr, u32 order, bool indirect)
2298 {
2299 	u64 val = its_read_baser(its, baser);
2300 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2301 	u64 type = GITS_BASER_TYPE(val);
2302 	u64 baser_phys, tmp;
2303 	u32 alloc_pages, psz;
2304 	struct page *page;
2305 	void *base;
2306 
2307 	psz = baser->psz;
2308 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2309 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2310 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2311 			&its->phys_base, its_base_type_string[type],
2312 			alloc_pages, GITS_BASER_PAGES_MAX);
2313 		alloc_pages = GITS_BASER_PAGES_MAX;
2314 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2315 	}
2316 
2317 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2318 	if (!page)
2319 		return -ENOMEM;
2320 
2321 	base = (void *)page_address(page);
2322 	baser_phys = virt_to_phys(base);
2323 
2324 	/* Check if the physical address of the memory is above 48bits */
2325 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2326 
2327 		/* 52bit PA is supported only when PageSize=64K */
2328 		if (psz != SZ_64K) {
2329 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2330 			free_pages((unsigned long)base, order);
2331 			return -ENXIO;
2332 		}
2333 
2334 		/* Convert 52bit PA to 48bit field */
2335 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2336 	}
2337 
2338 retry_baser:
2339 	val = (baser_phys					 |
2340 		(type << GITS_BASER_TYPE_SHIFT)			 |
2341 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2342 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2343 		cache						 |
2344 		shr						 |
2345 		GITS_BASER_VALID);
2346 
2347 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2348 
2349 	switch (psz) {
2350 	case SZ_4K:
2351 		val |= GITS_BASER_PAGE_SIZE_4K;
2352 		break;
2353 	case SZ_16K:
2354 		val |= GITS_BASER_PAGE_SIZE_16K;
2355 		break;
2356 	case SZ_64K:
2357 		val |= GITS_BASER_PAGE_SIZE_64K;
2358 		break;
2359 	}
2360 
2361 	its_write_baser(its, baser, val);
2362 	tmp = baser->val;
2363 
2364 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2365 		tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2366 
2367 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2368 		/*
2369 		 * Shareability didn't stick. Just use
2370 		 * whatever the read reported, which is likely
2371 		 * to be the only thing this redistributor
2372 		 * supports. If that's zero, make it
2373 		 * non-cacheable as well.
2374 		 */
2375 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2376 		if (!shr) {
2377 			cache = GITS_BASER_nC;
2378 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2379 		}
2380 		goto retry_baser;
2381 	}
2382 
2383 	if (val != tmp) {
2384 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385 		       &its->phys_base, its_base_type_string[type],
2386 		       val, tmp);
2387 		free_pages((unsigned long)base, order);
2388 		return -ENXIO;
2389 	}
2390 
2391 	baser->order = order;
2392 	baser->base = base;
2393 	baser->psz = psz;
2394 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395 
2396 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398 		its_base_type_string[type],
2399 		(unsigned long)virt_to_phys(base),
2400 		indirect ? "indirect" : "flat", (int)esz,
2401 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402 
2403 	return 0;
2404 }
2405 
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407 				     struct its_baser *baser,
2408 				     u32 *order, u32 ids)
2409 {
2410 	u64 tmp = its_read_baser(its, baser);
2411 	u64 type = GITS_BASER_TYPE(tmp);
2412 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414 	u32 new_order = *order;
2415 	u32 psz = baser->psz;
2416 	bool indirect = false;
2417 
2418 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419 	if ((esz << ids) > (psz * 2)) {
2420 		/*
2421 		 * Find out whether hw supports a single or two-level table by
2422 		 * table by reading bit at offset '62' after writing '1' to it.
2423 		 */
2424 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426 
2427 		if (indirect) {
2428 			/*
2429 			 * The size of the lvl2 table is equal to ITS page size
2430 			 * which is 'psz'. For computing lvl1 table size,
2431 			 * subtract ID bits that sparse lvl2 table from 'ids'
2432 			 * which is reported by ITS hardware times lvl1 table
2433 			 * entry size.
2434 			 */
2435 			ids -= ilog2(psz / (int)esz);
2436 			esz = GITS_LVL1_ENTRY_SIZE;
2437 		}
2438 	}
2439 
2440 	/*
2441 	 * Allocate as many entries as required to fit the
2442 	 * range of device IDs that the ITS can grok... The ID
2443 	 * space being incredibly sparse, this results in a
2444 	 * massive waste of memory if two-level device table
2445 	 * feature is not supported by hardware.
2446 	 */
2447 	new_order = max_t(u32, get_order(esz << ids), new_order);
2448 	if (new_order > MAX_ORDER) {
2449 		new_order = MAX_ORDER;
2450 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452 			&its->phys_base, its_base_type_string[type],
2453 			device_ids(its), ids);
2454 	}
2455 
2456 	*order = new_order;
2457 
2458 	return indirect;
2459 }
2460 
2461 static u32 compute_common_aff(u64 val)
2462 {
2463 	u32 aff, clpiaff;
2464 
2465 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467 
2468 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470 
2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473 	u64 val;
2474 	u32 svpet;
2475 
2476 	/*
2477 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478 	 * the resulting affinity. We then use that to see if this match
2479 	 * our own affinity.
2480 	 */
2481 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484 	return compute_common_aff(val);
2485 }
2486 
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489 	struct its_node *its;
2490 	u32 aff;
2491 
2492 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493 		return NULL;
2494 
2495 	aff = compute_its_aff(cur_its);
2496 
2497 	list_for_each_entry(its, &its_nodes, entry) {
2498 		u64 baser;
2499 
2500 		if (!is_v4_1(its) || its == cur_its)
2501 			continue;
2502 
2503 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504 			continue;
2505 
2506 		if (aff != compute_its_aff(its))
2507 			continue;
2508 
2509 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510 		baser = its->tables[2].val;
2511 		if (!(baser & GITS_BASER_VALID))
2512 			continue;
2513 
2514 		return its;
2515 	}
2516 
2517 	return NULL;
2518 }
2519 
2520 static void its_free_tables(struct its_node *its)
2521 {
2522 	int i;
2523 
2524 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525 		if (its->tables[i].base) {
2526 			free_pages((unsigned long)its->tables[i].base,
2527 				   its->tables[i].order);
2528 			its->tables[i].base = NULL;
2529 		}
2530 	}
2531 }
2532 
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535 	u64 psz = SZ_64K;
2536 
2537 	while (psz) {
2538 		u64 val, gpsz;
2539 
2540 		val = its_read_baser(its, baser);
2541 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542 
2543 		switch (psz) {
2544 		case SZ_64K:
2545 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2546 			break;
2547 		case SZ_16K:
2548 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2549 			break;
2550 		case SZ_4K:
2551 		default:
2552 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2553 			break;
2554 		}
2555 
2556 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557 
2558 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559 		its_write_baser(its, baser, val);
2560 
2561 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562 			break;
2563 
2564 		switch (psz) {
2565 		case SZ_64K:
2566 			psz = SZ_16K;
2567 			break;
2568 		case SZ_16K:
2569 			psz = SZ_4K;
2570 			break;
2571 		case SZ_4K:
2572 		default:
2573 			return -1;
2574 		}
2575 	}
2576 
2577 	baser->psz = psz;
2578 	return 0;
2579 }
2580 
2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583 	u64 shr = GITS_BASER_InnerShareable;
2584 	u64 cache = GITS_BASER_RaWaWb;
2585 	int err, i;
2586 
2587 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588 		/* erratum 24313: ignore memory access type */
2589 		cache = GITS_BASER_nCnB;
2590 
2591 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2592 		struct its_baser *baser = its->tables + i;
2593 		u64 val = its_read_baser(its, baser);
2594 		u64 type = GITS_BASER_TYPE(val);
2595 		bool indirect = false;
2596 		u32 order;
2597 
2598 		if (type == GITS_BASER_TYPE_NONE)
2599 			continue;
2600 
2601 		if (its_probe_baser_psz(its, baser)) {
2602 			its_free_tables(its);
2603 			return -ENXIO;
2604 		}
2605 
2606 		order = get_order(baser->psz);
2607 
2608 		switch (type) {
2609 		case GITS_BASER_TYPE_DEVICE:
2610 			indirect = its_parse_indirect_baser(its, baser, &order,
2611 							    device_ids(its));
2612 			break;
2613 
2614 		case GITS_BASER_TYPE_VCPU:
2615 			if (is_v4_1(its)) {
2616 				struct its_node *sibling;
2617 
2618 				WARN_ON(i != 2);
2619 				if ((sibling = find_sibling_its(its))) {
2620 					*baser = sibling->tables[2];
2621 					its_write_baser(its, baser, baser->val);
2622 					continue;
2623 				}
2624 			}
2625 
2626 			indirect = its_parse_indirect_baser(its, baser, &order,
2627 							    ITS_MAX_VPEID_BITS);
2628 			break;
2629 		}
2630 
2631 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2632 		if (err < 0) {
2633 			its_free_tables(its);
2634 			return err;
2635 		}
2636 
2637 		/* Update settings which will be used for next BASERn */
2638 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2639 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static u64 inherit_vpe_l1_table_from_its(void)
2646 {
2647 	struct its_node *its;
2648 	u64 val;
2649 	u32 aff;
2650 
2651 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2652 	aff = compute_common_aff(val);
2653 
2654 	list_for_each_entry(its, &its_nodes, entry) {
2655 		u64 baser, addr;
2656 
2657 		if (!is_v4_1(its))
2658 			continue;
2659 
2660 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2661 			continue;
2662 
2663 		if (aff != compute_its_aff(its))
2664 			continue;
2665 
2666 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2667 		baser = its->tables[2].val;
2668 		if (!(baser & GITS_BASER_VALID))
2669 			continue;
2670 
2671 		/* We have a winner! */
2672 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2673 
2674 		val  = GICR_VPROPBASER_4_1_VALID;
2675 		if (baser & GITS_BASER_INDIRECT)
2676 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2677 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2678 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2679 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2680 		case GIC_PAGE_SIZE_64K:
2681 			addr = GITS_BASER_ADDR_48_to_52(baser);
2682 			break;
2683 		default:
2684 			addr = baser & GENMASK_ULL(47, 12);
2685 			break;
2686 		}
2687 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2688 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2689 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2690 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2691 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2692 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2693 
2694 		return val;
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2701 {
2702 	u32 aff;
2703 	u64 val;
2704 	int cpu;
2705 
2706 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2707 	aff = compute_common_aff(val);
2708 
2709 	for_each_possible_cpu(cpu) {
2710 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2711 
2712 		if (!base || cpu == smp_processor_id())
2713 			continue;
2714 
2715 		val = gic_read_typer(base + GICR_TYPER);
2716 		if (aff != compute_common_aff(val))
2717 			continue;
2718 
2719 		/*
2720 		 * At this point, we have a victim. This particular CPU
2721 		 * has already booted, and has an affinity that matches
2722 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2723 		 * Make sure we don't write the Z bit in that case.
2724 		 */
2725 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2726 		val &= ~GICR_VPROPBASER_4_1_Z;
2727 
2728 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2729 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2730 
2731 		return val;
2732 	}
2733 
2734 	return 0;
2735 }
2736 
2737 static bool allocate_vpe_l2_table(int cpu, u32 id)
2738 {
2739 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2740 	unsigned int psz, esz, idx, npg, gpsz;
2741 	u64 val;
2742 	struct page *page;
2743 	__le64 *table;
2744 
2745 	if (!gic_rdists->has_rvpeid)
2746 		return true;
2747 
2748 	/* Skip non-present CPUs */
2749 	if (!base)
2750 		return true;
2751 
2752 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2753 
2754 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2755 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2756 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2757 
2758 	switch (gpsz) {
2759 	default:
2760 		WARN_ON(1);
2761 		fallthrough;
2762 	case GIC_PAGE_SIZE_4K:
2763 		psz = SZ_4K;
2764 		break;
2765 	case GIC_PAGE_SIZE_16K:
2766 		psz = SZ_16K;
2767 		break;
2768 	case GIC_PAGE_SIZE_64K:
2769 		psz = SZ_64K;
2770 		break;
2771 	}
2772 
2773 	/* Don't allow vpe_id that exceeds single, flat table limit */
2774 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2775 		return (id < (npg * psz / (esz * SZ_8)));
2776 
2777 	/* Compute 1st level table index & check if that exceeds table limit */
2778 	idx = id >> ilog2(psz / (esz * SZ_8));
2779 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2780 		return false;
2781 
2782 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2783 
2784 	/* Allocate memory for 2nd level table */
2785 	if (!table[idx]) {
2786 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2787 		if (!page)
2788 			return false;
2789 
2790 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2791 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2792 			gic_flush_dcache_to_poc(page_address(page), psz);
2793 
2794 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2795 
2796 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2797 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2798 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2799 
2800 		/* Ensure updated table contents are visible to RD hardware */
2801 		dsb(sy);
2802 	}
2803 
2804 	return true;
2805 }
2806 
2807 static int allocate_vpe_l1_table(void)
2808 {
2809 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2810 	u64 val, gpsz, npg, pa;
2811 	unsigned int psz = SZ_64K;
2812 	unsigned int np, epp, esz;
2813 	struct page *page;
2814 
2815 	if (!gic_rdists->has_rvpeid)
2816 		return 0;
2817 
2818 	/*
2819 	 * if VPENDBASER.Valid is set, disable any previously programmed
2820 	 * VPE by setting PendingLast while clearing Valid. This has the
2821 	 * effect of making sure no doorbell will be generated and we can
2822 	 * then safely clear VPROPBASER.Valid.
2823 	 */
2824 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2825 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2826 				      vlpi_base + GICR_VPENDBASER);
2827 
2828 	/*
2829 	 * If we can inherit the configuration from another RD, let's do
2830 	 * so. Otherwise, we have to go through the allocation process. We
2831 	 * assume that all RDs have the exact same requirements, as
2832 	 * nothing will work otherwise.
2833 	 */
2834 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2835 	if (val & GICR_VPROPBASER_4_1_VALID)
2836 		goto out;
2837 
2838 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2839 	if (!gic_data_rdist()->vpe_table_mask)
2840 		return -ENOMEM;
2841 
2842 	val = inherit_vpe_l1_table_from_its();
2843 	if (val & GICR_VPROPBASER_4_1_VALID)
2844 		goto out;
2845 
2846 	/* First probe the page size */
2847 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2848 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2849 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2850 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2851 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2852 
2853 	switch (gpsz) {
2854 	default:
2855 		gpsz = GIC_PAGE_SIZE_4K;
2856 		fallthrough;
2857 	case GIC_PAGE_SIZE_4K:
2858 		psz = SZ_4K;
2859 		break;
2860 	case GIC_PAGE_SIZE_16K:
2861 		psz = SZ_16K;
2862 		break;
2863 	case GIC_PAGE_SIZE_64K:
2864 		psz = SZ_64K;
2865 		break;
2866 	}
2867 
2868 	/*
2869 	 * Start populating the register from scratch, including RO fields
2870 	 * (which we want to print in debug cases...)
2871 	 */
2872 	val = 0;
2873 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2874 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2875 
2876 	/* How many entries per GIC page? */
2877 	esz++;
2878 	epp = psz / (esz * SZ_8);
2879 
2880 	/*
2881 	 * If we need more than just a single L1 page, flag the table
2882 	 * as indirect and compute the number of required L1 pages.
2883 	 */
2884 	if (epp < ITS_MAX_VPEID) {
2885 		int nl2;
2886 
2887 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2888 
2889 		/* Number of L2 pages required to cover the VPEID space */
2890 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2891 
2892 		/* Number of L1 pages to point to the L2 pages */
2893 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2894 	} else {
2895 		npg = 1;
2896 	}
2897 
2898 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2899 
2900 	/* Right, that's the number of CPU pages we need for L1 */
2901 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2902 
2903 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2904 		 np, npg, psz, epp, esz);
2905 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2906 	if (!page)
2907 		return -ENOMEM;
2908 
2909 	gic_data_rdist()->vpe_l1_base = page_address(page);
2910 	pa = virt_to_phys(page_address(page));
2911 	WARN_ON(!IS_ALIGNED(pa, psz));
2912 
2913 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2914 	val |= GICR_VPROPBASER_RaWb;
2915 	val |= GICR_VPROPBASER_InnerShareable;
2916 	val |= GICR_VPROPBASER_4_1_Z;
2917 	val |= GICR_VPROPBASER_4_1_VALID;
2918 
2919 out:
2920 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2921 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2922 
2923 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2924 		 smp_processor_id(), val,
2925 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2926 
2927 	return 0;
2928 }
2929 
2930 static int its_alloc_collections(struct its_node *its)
2931 {
2932 	int i;
2933 
2934 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2935 				   GFP_KERNEL);
2936 	if (!its->collections)
2937 		return -ENOMEM;
2938 
2939 	for (i = 0; i < nr_cpu_ids; i++)
2940 		its->collections[i].target_address = ~0ULL;
2941 
2942 	return 0;
2943 }
2944 
2945 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2946 {
2947 	struct page *pend_page;
2948 
2949 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2950 				get_order(LPI_PENDBASE_SZ));
2951 	if (!pend_page)
2952 		return NULL;
2953 
2954 	/* Make sure the GIC will observe the zero-ed page */
2955 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2956 
2957 	return pend_page;
2958 }
2959 
2960 static void its_free_pending_table(struct page *pt)
2961 {
2962 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2963 }
2964 
2965 /*
2966  * Booting with kdump and LPIs enabled is generally fine. Any other
2967  * case is wrong in the absence of firmware/EFI support.
2968  */
2969 static bool enabled_lpis_allowed(void)
2970 {
2971 	phys_addr_t addr;
2972 	u64 val;
2973 
2974 	/* Check whether the property table is in a reserved region */
2975 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2976 	addr = val & GENMASK_ULL(51, 12);
2977 
2978 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2979 }
2980 
2981 static int __init allocate_lpi_tables(void)
2982 {
2983 	u64 val;
2984 	int err, cpu;
2985 
2986 	/*
2987 	 * If LPIs are enabled while we run this from the boot CPU,
2988 	 * flag the RD tables as pre-allocated if the stars do align.
2989 	 */
2990 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2991 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2992 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2993 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2994 		pr_info("GICv3: Using preallocated redistributor tables\n");
2995 	}
2996 
2997 	err = its_setup_lpi_prop_table();
2998 	if (err)
2999 		return err;
3000 
3001 	/*
3002 	 * We allocate all the pending tables anyway, as we may have a
3003 	 * mix of RDs that have had LPIs enabled, and some that
3004 	 * don't. We'll free the unused ones as each CPU comes online.
3005 	 */
3006 	for_each_possible_cpu(cpu) {
3007 		struct page *pend_page;
3008 
3009 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3010 		if (!pend_page) {
3011 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3012 			return -ENOMEM;
3013 		}
3014 
3015 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3022 {
3023 	u32 count = 1000000;	/* 1s! */
3024 	bool clean;
3025 	u64 val;
3026 
3027 	do {
3028 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3029 		clean = !(val & GICR_VPENDBASER_Dirty);
3030 		if (!clean) {
3031 			count--;
3032 			cpu_relax();
3033 			udelay(1);
3034 		}
3035 	} while (!clean && count);
3036 
3037 	if (unlikely(!clean))
3038 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3039 
3040 	return val;
3041 }
3042 
3043 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3044 {
3045 	u64 val;
3046 
3047 	/* Make sure we wait until the RD is done with the initial scan */
3048 	val = read_vpend_dirty_clear(vlpi_base);
3049 	val &= ~GICR_VPENDBASER_Valid;
3050 	val &= ~clr;
3051 	val |= set;
3052 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3053 
3054 	val = read_vpend_dirty_clear(vlpi_base);
3055 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3056 		val |= GICR_VPENDBASER_PendingLast;
3057 
3058 	return val;
3059 }
3060 
3061 static void its_cpu_init_lpis(void)
3062 {
3063 	void __iomem *rbase = gic_data_rdist_rd_base();
3064 	struct page *pend_page;
3065 	phys_addr_t paddr;
3066 	u64 val, tmp;
3067 
3068 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3069 		return;
3070 
3071 	val = readl_relaxed(rbase + GICR_CTLR);
3072 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3073 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3074 		/*
3075 		 * Check that we get the same property table on all
3076 		 * RDs. If we don't, this is hopeless.
3077 		 */
3078 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3079 		paddr &= GENMASK_ULL(51, 12);
3080 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3081 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3082 
3083 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3084 		paddr &= GENMASK_ULL(51, 16);
3085 
3086 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3087 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3088 
3089 		goto out;
3090 	}
3091 
3092 	pend_page = gic_data_rdist()->pend_page;
3093 	paddr = page_to_phys(pend_page);
3094 
3095 	/* set PROPBASE */
3096 	val = (gic_rdists->prop_table_pa |
3097 	       GICR_PROPBASER_InnerShareable |
3098 	       GICR_PROPBASER_RaWaWb |
3099 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3100 
3101 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3102 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3103 
3104 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3105 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3106 
3107 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3108 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3109 			/*
3110 			 * The HW reports non-shareable, we must
3111 			 * remove the cacheability attributes as
3112 			 * well.
3113 			 */
3114 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3115 				 GICR_PROPBASER_CACHEABILITY_MASK);
3116 			val |= GICR_PROPBASER_nC;
3117 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3118 		}
3119 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3120 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3121 	}
3122 
3123 	/* set PENDBASE */
3124 	val = (page_to_phys(pend_page) |
3125 	       GICR_PENDBASER_InnerShareable |
3126 	       GICR_PENDBASER_RaWaWb);
3127 
3128 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3129 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3130 
3131 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3132 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3133 
3134 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3135 		/*
3136 		 * The HW reports non-shareable, we must remove the
3137 		 * cacheability attributes as well.
3138 		 */
3139 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3140 			 GICR_PENDBASER_CACHEABILITY_MASK);
3141 		val |= GICR_PENDBASER_nC;
3142 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3143 	}
3144 
3145 	/* Enable LPIs */
3146 	val = readl_relaxed(rbase + GICR_CTLR);
3147 	val |= GICR_CTLR_ENABLE_LPIS;
3148 	writel_relaxed(val, rbase + GICR_CTLR);
3149 
3150 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3151 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3152 
3153 		/*
3154 		 * It's possible for CPU to receive VLPIs before it is
3155 		 * scheduled as a vPE, especially for the first CPU, and the
3156 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3157 		 * as out of range and dropped by GIC.
3158 		 * So we initialize IDbits to known value to avoid VLPI drop.
3159 		 */
3160 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3161 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3162 			smp_processor_id(), val);
3163 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3164 
3165 		/*
3166 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3167 		 * ancient programming gets left in and has possibility of
3168 		 * corrupting memory.
3169 		 */
3170 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3171 	}
3172 
3173 	if (allocate_vpe_l1_table()) {
3174 		/*
3175 		 * If the allocation has failed, we're in massive trouble.
3176 		 * Disable direct injection, and pray that no VM was
3177 		 * already running...
3178 		 */
3179 		gic_rdists->has_rvpeid = false;
3180 		gic_rdists->has_vlpis = false;
3181 	}
3182 
3183 	/* Make sure the GIC has seen the above */
3184 	dsb(sy);
3185 out:
3186 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3187 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3188 		smp_processor_id(),
3189 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3190 		"reserved" : "allocated",
3191 		&paddr);
3192 }
3193 
3194 static void its_cpu_init_collection(struct its_node *its)
3195 {
3196 	int cpu = smp_processor_id();
3197 	u64 target;
3198 
3199 	/* avoid cross node collections and its mapping */
3200 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3201 		struct device_node *cpu_node;
3202 
3203 		cpu_node = of_get_cpu_node(cpu, NULL);
3204 		if (its->numa_node != NUMA_NO_NODE &&
3205 			its->numa_node != of_node_to_nid(cpu_node))
3206 			return;
3207 	}
3208 
3209 	/*
3210 	 * We now have to bind each collection to its target
3211 	 * redistributor.
3212 	 */
3213 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3214 		/*
3215 		 * This ITS wants the physical address of the
3216 		 * redistributor.
3217 		 */
3218 		target = gic_data_rdist()->phys_base;
3219 	} else {
3220 		/* This ITS wants a linear CPU number. */
3221 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3222 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3223 	}
3224 
3225 	/* Perform collection mapping */
3226 	its->collections[cpu].target_address = target;
3227 	its->collections[cpu].col_id = cpu;
3228 
3229 	its_send_mapc(its, &its->collections[cpu], 1);
3230 	its_send_invall(its, &its->collections[cpu]);
3231 }
3232 
3233 static void its_cpu_init_collections(void)
3234 {
3235 	struct its_node *its;
3236 
3237 	raw_spin_lock(&its_lock);
3238 
3239 	list_for_each_entry(its, &its_nodes, entry)
3240 		its_cpu_init_collection(its);
3241 
3242 	raw_spin_unlock(&its_lock);
3243 }
3244 
3245 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3246 {
3247 	struct its_device *its_dev = NULL, *tmp;
3248 	unsigned long flags;
3249 
3250 	raw_spin_lock_irqsave(&its->lock, flags);
3251 
3252 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3253 		if (tmp->device_id == dev_id) {
3254 			its_dev = tmp;
3255 			break;
3256 		}
3257 	}
3258 
3259 	raw_spin_unlock_irqrestore(&its->lock, flags);
3260 
3261 	return its_dev;
3262 }
3263 
3264 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3269 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3270 			return &its->tables[i];
3271 	}
3272 
3273 	return NULL;
3274 }
3275 
3276 static bool its_alloc_table_entry(struct its_node *its,
3277 				  struct its_baser *baser, u32 id)
3278 {
3279 	struct page *page;
3280 	u32 esz, idx;
3281 	__le64 *table;
3282 
3283 	/* Don't allow device id that exceeds single, flat table limit */
3284 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3285 	if (!(baser->val & GITS_BASER_INDIRECT))
3286 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3287 
3288 	/* Compute 1st level table index & check if that exceeds table limit */
3289 	idx = id >> ilog2(baser->psz / esz);
3290 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3291 		return false;
3292 
3293 	table = baser->base;
3294 
3295 	/* Allocate memory for 2nd level table */
3296 	if (!table[idx]) {
3297 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3298 					get_order(baser->psz));
3299 		if (!page)
3300 			return false;
3301 
3302 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3303 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3304 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3305 
3306 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3307 
3308 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3309 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3310 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3311 
3312 		/* Ensure updated table contents are visible to ITS hardware */
3313 		dsb(sy);
3314 	}
3315 
3316 	return true;
3317 }
3318 
3319 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3320 {
3321 	struct its_baser *baser;
3322 
3323 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3324 
3325 	/* Don't allow device id that exceeds ITS hardware limit */
3326 	if (!baser)
3327 		return (ilog2(dev_id) < device_ids(its));
3328 
3329 	return its_alloc_table_entry(its, baser, dev_id);
3330 }
3331 
3332 static bool its_alloc_vpe_table(u32 vpe_id)
3333 {
3334 	struct its_node *its;
3335 	int cpu;
3336 
3337 	/*
3338 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3339 	 * could try and only do it on ITSs corresponding to devices
3340 	 * that have interrupts targeted at this VPE, but the
3341 	 * complexity becomes crazy (and you have tons of memory
3342 	 * anyway, right?).
3343 	 */
3344 	list_for_each_entry(its, &its_nodes, entry) {
3345 		struct its_baser *baser;
3346 
3347 		if (!is_v4(its))
3348 			continue;
3349 
3350 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3351 		if (!baser)
3352 			return false;
3353 
3354 		if (!its_alloc_table_entry(its, baser, vpe_id))
3355 			return false;
3356 	}
3357 
3358 	/* Non v4.1? No need to iterate RDs and go back early. */
3359 	if (!gic_rdists->has_rvpeid)
3360 		return true;
3361 
3362 	/*
3363 	 * Make sure the L2 tables are allocated for all copies of
3364 	 * the L1 table on *all* v4.1 RDs.
3365 	 */
3366 	for_each_possible_cpu(cpu) {
3367 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3368 			return false;
3369 	}
3370 
3371 	return true;
3372 }
3373 
3374 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3375 					    int nvecs, bool alloc_lpis)
3376 {
3377 	struct its_device *dev;
3378 	unsigned long *lpi_map = NULL;
3379 	unsigned long flags;
3380 	u16 *col_map = NULL;
3381 	void *itt;
3382 	int lpi_base;
3383 	int nr_lpis;
3384 	int nr_ites;
3385 	int sz;
3386 
3387 	if (!its_alloc_device_table(its, dev_id))
3388 		return NULL;
3389 
3390 	if (WARN_ON(!is_power_of_2(nvecs)))
3391 		nvecs = roundup_pow_of_two(nvecs);
3392 
3393 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3394 	/*
3395 	 * Even if the device wants a single LPI, the ITT must be
3396 	 * sized as a power of two (and you need at least one bit...).
3397 	 */
3398 	nr_ites = max(2, nvecs);
3399 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3400 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3401 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3402 	if (alloc_lpis) {
3403 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3404 		if (lpi_map)
3405 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3406 					  GFP_KERNEL);
3407 	} else {
3408 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3409 		nr_lpis = 0;
3410 		lpi_base = 0;
3411 	}
3412 
3413 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3414 		kfree(dev);
3415 		kfree(itt);
3416 		bitmap_free(lpi_map);
3417 		kfree(col_map);
3418 		return NULL;
3419 	}
3420 
3421 	gic_flush_dcache_to_poc(itt, sz);
3422 
3423 	dev->its = its;
3424 	dev->itt = itt;
3425 	dev->nr_ites = nr_ites;
3426 	dev->event_map.lpi_map = lpi_map;
3427 	dev->event_map.col_map = col_map;
3428 	dev->event_map.lpi_base = lpi_base;
3429 	dev->event_map.nr_lpis = nr_lpis;
3430 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3431 	dev->device_id = dev_id;
3432 	INIT_LIST_HEAD(&dev->entry);
3433 
3434 	raw_spin_lock_irqsave(&its->lock, flags);
3435 	list_add(&dev->entry, &its->its_device_list);
3436 	raw_spin_unlock_irqrestore(&its->lock, flags);
3437 
3438 	/* Map device to its ITT */
3439 	its_send_mapd(dev, 1);
3440 
3441 	return dev;
3442 }
3443 
3444 static void its_free_device(struct its_device *its_dev)
3445 {
3446 	unsigned long flags;
3447 
3448 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3449 	list_del(&its_dev->entry);
3450 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3451 	kfree(its_dev->event_map.col_map);
3452 	kfree(its_dev->itt);
3453 	kfree(its_dev);
3454 }
3455 
3456 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3457 {
3458 	int idx;
3459 
3460 	/* Find a free LPI region in lpi_map and allocate them. */
3461 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3462 				      dev->event_map.nr_lpis,
3463 				      get_count_order(nvecs));
3464 	if (idx < 0)
3465 		return -ENOSPC;
3466 
3467 	*hwirq = dev->event_map.lpi_base + idx;
3468 
3469 	return 0;
3470 }
3471 
3472 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3473 			   int nvec, msi_alloc_info_t *info)
3474 {
3475 	struct its_node *its;
3476 	struct its_device *its_dev;
3477 	struct msi_domain_info *msi_info;
3478 	u32 dev_id;
3479 	int err = 0;
3480 
3481 	/*
3482 	 * We ignore "dev" entirely, and rely on the dev_id that has
3483 	 * been passed via the scratchpad. This limits this domain's
3484 	 * usefulness to upper layers that definitely know that they
3485 	 * are built on top of the ITS.
3486 	 */
3487 	dev_id = info->scratchpad[0].ul;
3488 
3489 	msi_info = msi_get_domain_info(domain);
3490 	its = msi_info->data;
3491 
3492 	if (!gic_rdists->has_direct_lpi &&
3493 	    vpe_proxy.dev &&
3494 	    vpe_proxy.dev->its == its &&
3495 	    dev_id == vpe_proxy.dev->device_id) {
3496 		/* Bad luck. Get yourself a better implementation */
3497 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3498 			  dev_id);
3499 		return -EINVAL;
3500 	}
3501 
3502 	mutex_lock(&its->dev_alloc_lock);
3503 	its_dev = its_find_device(its, dev_id);
3504 	if (its_dev) {
3505 		/*
3506 		 * We already have seen this ID, probably through
3507 		 * another alias (PCI bridge of some sort). No need to
3508 		 * create the device.
3509 		 */
3510 		its_dev->shared = true;
3511 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3512 		goto out;
3513 	}
3514 
3515 	its_dev = its_create_device(its, dev_id, nvec, true);
3516 	if (!its_dev) {
3517 		err = -ENOMEM;
3518 		goto out;
3519 	}
3520 
3521 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3522 		its_dev->shared = true;
3523 
3524 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3525 out:
3526 	mutex_unlock(&its->dev_alloc_lock);
3527 	info->scratchpad[0].ptr = its_dev;
3528 	return err;
3529 }
3530 
3531 static struct msi_domain_ops its_msi_domain_ops = {
3532 	.msi_prepare	= its_msi_prepare,
3533 };
3534 
3535 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3536 				    unsigned int virq,
3537 				    irq_hw_number_t hwirq)
3538 {
3539 	struct irq_fwspec fwspec;
3540 
3541 	if (irq_domain_get_of_node(domain->parent)) {
3542 		fwspec.fwnode = domain->parent->fwnode;
3543 		fwspec.param_count = 3;
3544 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3545 		fwspec.param[1] = hwirq;
3546 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3547 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3548 		fwspec.fwnode = domain->parent->fwnode;
3549 		fwspec.param_count = 2;
3550 		fwspec.param[0] = hwirq;
3551 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3552 	} else {
3553 		return -EINVAL;
3554 	}
3555 
3556 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3557 }
3558 
3559 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3560 				unsigned int nr_irqs, void *args)
3561 {
3562 	msi_alloc_info_t *info = args;
3563 	struct its_device *its_dev = info->scratchpad[0].ptr;
3564 	struct its_node *its = its_dev->its;
3565 	struct irq_data *irqd;
3566 	irq_hw_number_t hwirq;
3567 	int err;
3568 	int i;
3569 
3570 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3571 	if (err)
3572 		return err;
3573 
3574 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3575 	if (err)
3576 		return err;
3577 
3578 	for (i = 0; i < nr_irqs; i++) {
3579 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3580 		if (err)
3581 			return err;
3582 
3583 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3584 					      hwirq + i, &its_irq_chip, its_dev);
3585 		irqd = irq_get_irq_data(virq + i);
3586 		irqd_set_single_target(irqd);
3587 		irqd_set_affinity_on_activate(irqd);
3588 		pr_debug("ID:%d pID:%d vID:%d\n",
3589 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3590 			 (int)(hwirq + i), virq + i);
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 static int its_irq_domain_activate(struct irq_domain *domain,
3597 				   struct irq_data *d, bool reserve)
3598 {
3599 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3600 	u32 event = its_get_event_id(d);
3601 	int cpu;
3602 
3603 	cpu = its_select_cpu(d, cpu_online_mask);
3604 	if (cpu < 0 || cpu >= nr_cpu_ids)
3605 		return -EINVAL;
3606 
3607 	its_inc_lpi_count(d, cpu);
3608 	its_dev->event_map.col_map[event] = cpu;
3609 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3610 
3611 	/* Map the GIC IRQ and event to the device */
3612 	its_send_mapti(its_dev, d->hwirq, event);
3613 	return 0;
3614 }
3615 
3616 static void its_irq_domain_deactivate(struct irq_domain *domain,
3617 				      struct irq_data *d)
3618 {
3619 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3620 	u32 event = its_get_event_id(d);
3621 
3622 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3623 	/* Stop the delivery of interrupts */
3624 	its_send_discard(its_dev, event);
3625 }
3626 
3627 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3628 				unsigned int nr_irqs)
3629 {
3630 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3631 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 	struct its_node *its = its_dev->its;
3633 	int i;
3634 
3635 	bitmap_release_region(its_dev->event_map.lpi_map,
3636 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3637 			      get_count_order(nr_irqs));
3638 
3639 	for (i = 0; i < nr_irqs; i++) {
3640 		struct irq_data *data = irq_domain_get_irq_data(domain,
3641 								virq + i);
3642 		/* Nuke the entry in the domain */
3643 		irq_domain_reset_irq_data(data);
3644 	}
3645 
3646 	mutex_lock(&its->dev_alloc_lock);
3647 
3648 	/*
3649 	 * If all interrupts have been freed, start mopping the
3650 	 * floor. This is conditioned on the device not being shared.
3651 	 */
3652 	if (!its_dev->shared &&
3653 	    bitmap_empty(its_dev->event_map.lpi_map,
3654 			 its_dev->event_map.nr_lpis)) {
3655 		its_lpi_free(its_dev->event_map.lpi_map,
3656 			     its_dev->event_map.lpi_base,
3657 			     its_dev->event_map.nr_lpis);
3658 
3659 		/* Unmap device/itt */
3660 		its_send_mapd(its_dev, 0);
3661 		its_free_device(its_dev);
3662 	}
3663 
3664 	mutex_unlock(&its->dev_alloc_lock);
3665 
3666 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3667 }
3668 
3669 static const struct irq_domain_ops its_domain_ops = {
3670 	.alloc			= its_irq_domain_alloc,
3671 	.free			= its_irq_domain_free,
3672 	.activate		= its_irq_domain_activate,
3673 	.deactivate		= its_irq_domain_deactivate,
3674 };
3675 
3676 /*
3677  * This is insane.
3678  *
3679  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3680  * likely), the only way to perform an invalidate is to use a fake
3681  * device to issue an INV command, implying that the LPI has first
3682  * been mapped to some event on that device. Since this is not exactly
3683  * cheap, we try to keep that mapping around as long as possible, and
3684  * only issue an UNMAP if we're short on available slots.
3685  *
3686  * Broken by design(tm).
3687  *
3688  * GICv4.1, on the other hand, mandates that we're able to invalidate
3689  * by writing to a MMIO register. It doesn't implement the whole of
3690  * DirectLPI, but that's good enough. And most of the time, we don't
3691  * even have to invalidate anything, as the redistributor can be told
3692  * whether to generate a doorbell or not (we thus leave it enabled,
3693  * always).
3694  */
3695 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3696 {
3697 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3698 	if (gic_rdists->has_rvpeid)
3699 		return;
3700 
3701 	/* Already unmapped? */
3702 	if (vpe->vpe_proxy_event == -1)
3703 		return;
3704 
3705 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3706 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3707 
3708 	/*
3709 	 * We don't track empty slots at all, so let's move the
3710 	 * next_victim pointer if we can quickly reuse that slot
3711 	 * instead of nuking an existing entry. Not clear that this is
3712 	 * always a win though, and this might just generate a ripple
3713 	 * effect... Let's just hope VPEs don't migrate too often.
3714 	 */
3715 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3716 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3717 
3718 	vpe->vpe_proxy_event = -1;
3719 }
3720 
3721 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3722 {
3723 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 	if (gic_rdists->has_rvpeid)
3725 		return;
3726 
3727 	if (!gic_rdists->has_direct_lpi) {
3728 		unsigned long flags;
3729 
3730 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3731 		its_vpe_db_proxy_unmap_locked(vpe);
3732 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3733 	}
3734 }
3735 
3736 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3737 {
3738 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3739 	if (gic_rdists->has_rvpeid)
3740 		return;
3741 
3742 	/* Already mapped? */
3743 	if (vpe->vpe_proxy_event != -1)
3744 		return;
3745 
3746 	/* This slot was already allocated. Kick the other VPE out. */
3747 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3749 
3750 	/* Map the new VPE instead */
3751 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3752 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3753 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3754 
3755 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3756 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3757 }
3758 
3759 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3760 {
3761 	unsigned long flags;
3762 	struct its_collection *target_col;
3763 
3764 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 	if (gic_rdists->has_rvpeid)
3766 		return;
3767 
3768 	if (gic_rdists->has_direct_lpi) {
3769 		void __iomem *rdbase;
3770 
3771 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3772 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3773 		wait_for_syncr(rdbase);
3774 
3775 		return;
3776 	}
3777 
3778 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3779 
3780 	its_vpe_db_proxy_map_locked(vpe);
3781 
3782 	target_col = &vpe_proxy.dev->its->collections[to];
3783 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3784 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3785 
3786 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3787 }
3788 
3789 static int its_vpe_set_affinity(struct irq_data *d,
3790 				const struct cpumask *mask_val,
3791 				bool force)
3792 {
3793 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3794 	int from, cpu = cpumask_first(mask_val);
3795 	unsigned long flags;
3796 
3797 	/*
3798 	 * Changing affinity is mega expensive, so let's be as lazy as
3799 	 * we can and only do it if we really have to. Also, if mapped
3800 	 * into the proxy device, we need to move the doorbell
3801 	 * interrupt to its new location.
3802 	 *
3803 	 * Another thing is that changing the affinity of a vPE affects
3804 	 * *other interrupts* such as all the vLPIs that are routed to
3805 	 * this vPE. This means that the irq_desc lock is not enough to
3806 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3807 	 * during the update, hence the lock below which must also be
3808 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3809 	 */
3810 	from = vpe_to_cpuid_lock(vpe, &flags);
3811 	if (from == cpu)
3812 		goto out;
3813 
3814 	vpe->col_idx = cpu;
3815 
3816 	/*
3817 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3818 	 * is sharing its VPE table with the current one.
3819 	 */
3820 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3821 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3822 		goto out;
3823 
3824 	its_send_vmovp(vpe);
3825 	its_vpe_db_proxy_move(vpe, from, cpu);
3826 
3827 out:
3828 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3829 	vpe_to_cpuid_unlock(vpe, flags);
3830 
3831 	return IRQ_SET_MASK_OK_DONE;
3832 }
3833 
3834 static void its_wait_vpt_parse_complete(void)
3835 {
3836 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3837 	u64 val;
3838 
3839 	if (!gic_rdists->has_vpend_valid_dirty)
3840 		return;
3841 
3842 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3843 						       val,
3844 						       !(val & GICR_VPENDBASER_Dirty),
3845 						       1, 500));
3846 }
3847 
3848 static void its_vpe_schedule(struct its_vpe *vpe)
3849 {
3850 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3851 	u64 val;
3852 
3853 	/* Schedule the VPE */
3854 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3855 		GENMASK_ULL(51, 12);
3856 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3857 	val |= GICR_VPROPBASER_RaWb;
3858 	val |= GICR_VPROPBASER_InnerShareable;
3859 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3860 
3861 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3862 		GENMASK_ULL(51, 16);
3863 	val |= GICR_VPENDBASER_RaWaWb;
3864 	val |= GICR_VPENDBASER_InnerShareable;
3865 	/*
3866 	 * There is no good way of finding out if the pending table is
3867 	 * empty as we can race against the doorbell interrupt very
3868 	 * easily. So in the end, vpe->pending_last is only an
3869 	 * indication that the vcpu has something pending, not one
3870 	 * that the pending table is empty. A good implementation
3871 	 * would be able to read its coarse map pretty quickly anyway,
3872 	 * making this a tolerable issue.
3873 	 */
3874 	val |= GICR_VPENDBASER_PendingLast;
3875 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3876 	val |= GICR_VPENDBASER_Valid;
3877 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3878 }
3879 
3880 static void its_vpe_deschedule(struct its_vpe *vpe)
3881 {
3882 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3883 	u64 val;
3884 
3885 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3886 
3887 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3888 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3889 }
3890 
3891 static void its_vpe_invall(struct its_vpe *vpe)
3892 {
3893 	struct its_node *its;
3894 
3895 	list_for_each_entry(its, &its_nodes, entry) {
3896 		if (!is_v4(its))
3897 			continue;
3898 
3899 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3900 			continue;
3901 
3902 		/*
3903 		 * Sending a VINVALL to a single ITS is enough, as all
3904 		 * we need is to reach the redistributors.
3905 		 */
3906 		its_send_vinvall(its, vpe);
3907 		return;
3908 	}
3909 }
3910 
3911 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3912 {
3913 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3914 	struct its_cmd_info *info = vcpu_info;
3915 
3916 	switch (info->cmd_type) {
3917 	case SCHEDULE_VPE:
3918 		its_vpe_schedule(vpe);
3919 		return 0;
3920 
3921 	case DESCHEDULE_VPE:
3922 		its_vpe_deschedule(vpe);
3923 		return 0;
3924 
3925 	case COMMIT_VPE:
3926 		its_wait_vpt_parse_complete();
3927 		return 0;
3928 
3929 	case INVALL_VPE:
3930 		its_vpe_invall(vpe);
3931 		return 0;
3932 
3933 	default:
3934 		return -EINVAL;
3935 	}
3936 }
3937 
3938 static void its_vpe_send_cmd(struct its_vpe *vpe,
3939 			     void (*cmd)(struct its_device *, u32))
3940 {
3941 	unsigned long flags;
3942 
3943 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3944 
3945 	its_vpe_db_proxy_map_locked(vpe);
3946 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3947 
3948 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3949 }
3950 
3951 static void its_vpe_send_inv(struct irq_data *d)
3952 {
3953 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3954 
3955 	if (gic_rdists->has_direct_lpi) {
3956 		void __iomem *rdbase;
3957 
3958 		/* Target the redistributor this VPE is currently known on */
3959 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3960 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3961 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3962 		wait_for_syncr(rdbase);
3963 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3964 	} else {
3965 		its_vpe_send_cmd(vpe, its_send_inv);
3966 	}
3967 }
3968 
3969 static void its_vpe_mask_irq(struct irq_data *d)
3970 {
3971 	/*
3972 	 * We need to unmask the LPI, which is described by the parent
3973 	 * irq_data. Instead of calling into the parent (which won't
3974 	 * exactly do the right thing, let's simply use the
3975 	 * parent_data pointer. Yes, I'm naughty.
3976 	 */
3977 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3978 	its_vpe_send_inv(d);
3979 }
3980 
3981 static void its_vpe_unmask_irq(struct irq_data *d)
3982 {
3983 	/* Same hack as above... */
3984 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3985 	its_vpe_send_inv(d);
3986 }
3987 
3988 static int its_vpe_set_irqchip_state(struct irq_data *d,
3989 				     enum irqchip_irq_state which,
3990 				     bool state)
3991 {
3992 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3993 
3994 	if (which != IRQCHIP_STATE_PENDING)
3995 		return -EINVAL;
3996 
3997 	if (gic_rdists->has_direct_lpi) {
3998 		void __iomem *rdbase;
3999 
4000 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4001 		if (state) {
4002 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4003 		} else {
4004 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4005 			wait_for_syncr(rdbase);
4006 		}
4007 	} else {
4008 		if (state)
4009 			its_vpe_send_cmd(vpe, its_send_int);
4010 		else
4011 			its_vpe_send_cmd(vpe, its_send_clear);
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 static int its_vpe_retrigger(struct irq_data *d)
4018 {
4019 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4020 }
4021 
4022 static struct irq_chip its_vpe_irq_chip = {
4023 	.name			= "GICv4-vpe",
4024 	.irq_mask		= its_vpe_mask_irq,
4025 	.irq_unmask		= its_vpe_unmask_irq,
4026 	.irq_eoi		= irq_chip_eoi_parent,
4027 	.irq_set_affinity	= its_vpe_set_affinity,
4028 	.irq_retrigger		= its_vpe_retrigger,
4029 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4030 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4031 };
4032 
4033 static struct its_node *find_4_1_its(void)
4034 {
4035 	static struct its_node *its = NULL;
4036 
4037 	if (!its) {
4038 		list_for_each_entry(its, &its_nodes, entry) {
4039 			if (is_v4_1(its))
4040 				return its;
4041 		}
4042 
4043 		/* Oops? */
4044 		its = NULL;
4045 	}
4046 
4047 	return its;
4048 }
4049 
4050 static void its_vpe_4_1_send_inv(struct irq_data *d)
4051 {
4052 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4053 	struct its_node *its;
4054 
4055 	/*
4056 	 * GICv4.1 wants doorbells to be invalidated using the
4057 	 * INVDB command in order to be broadcast to all RDs. Send
4058 	 * it to the first valid ITS, and let the HW do its magic.
4059 	 */
4060 	its = find_4_1_its();
4061 	if (its)
4062 		its_send_invdb(its, vpe);
4063 }
4064 
4065 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4066 {
4067 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4068 	its_vpe_4_1_send_inv(d);
4069 }
4070 
4071 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4072 {
4073 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4074 	its_vpe_4_1_send_inv(d);
4075 }
4076 
4077 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4078 				 struct its_cmd_info *info)
4079 {
4080 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4081 	u64 val = 0;
4082 
4083 	/* Schedule the VPE */
4084 	val |= GICR_VPENDBASER_Valid;
4085 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4086 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4087 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4088 
4089 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4090 }
4091 
4092 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4093 				   struct its_cmd_info *info)
4094 {
4095 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4096 	u64 val;
4097 
4098 	if (info->req_db) {
4099 		unsigned long flags;
4100 
4101 		/*
4102 		 * vPE is going to block: make the vPE non-resident with
4103 		 * PendingLast clear and DB set. The GIC guarantees that if
4104 		 * we read-back PendingLast clear, then a doorbell will be
4105 		 * delivered when an interrupt comes.
4106 		 *
4107 		 * Note the locking to deal with the concurrent update of
4108 		 * pending_last from the doorbell interrupt handler that can
4109 		 * run concurrently.
4110 		 */
4111 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4112 		val = its_clear_vpend_valid(vlpi_base,
4113 					    GICR_VPENDBASER_PendingLast,
4114 					    GICR_VPENDBASER_4_1_DB);
4115 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4116 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4117 	} else {
4118 		/*
4119 		 * We're not blocking, so just make the vPE non-resident
4120 		 * with PendingLast set, indicating that we'll be back.
4121 		 */
4122 		val = its_clear_vpend_valid(vlpi_base,
4123 					    0,
4124 					    GICR_VPENDBASER_PendingLast);
4125 		vpe->pending_last = true;
4126 	}
4127 }
4128 
4129 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4130 {
4131 	void __iomem *rdbase;
4132 	unsigned long flags;
4133 	u64 val;
4134 	int cpu;
4135 
4136 	val  = GICR_INVALLR_V;
4137 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4138 
4139 	/* Target the redistributor this vPE is currently known on */
4140 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4141 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4142 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4143 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4144 
4145 	wait_for_syncr(rdbase);
4146 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4147 	vpe_to_cpuid_unlock(vpe, flags);
4148 }
4149 
4150 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4151 {
4152 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4153 	struct its_cmd_info *info = vcpu_info;
4154 
4155 	switch (info->cmd_type) {
4156 	case SCHEDULE_VPE:
4157 		its_vpe_4_1_schedule(vpe, info);
4158 		return 0;
4159 
4160 	case DESCHEDULE_VPE:
4161 		its_vpe_4_1_deschedule(vpe, info);
4162 		return 0;
4163 
4164 	case COMMIT_VPE:
4165 		its_wait_vpt_parse_complete();
4166 		return 0;
4167 
4168 	case INVALL_VPE:
4169 		its_vpe_4_1_invall(vpe);
4170 		return 0;
4171 
4172 	default:
4173 		return -EINVAL;
4174 	}
4175 }
4176 
4177 static struct irq_chip its_vpe_4_1_irq_chip = {
4178 	.name			= "GICv4.1-vpe",
4179 	.irq_mask		= its_vpe_4_1_mask_irq,
4180 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4181 	.irq_eoi		= irq_chip_eoi_parent,
4182 	.irq_set_affinity	= its_vpe_set_affinity,
4183 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4184 };
4185 
4186 static void its_configure_sgi(struct irq_data *d, bool clear)
4187 {
4188 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4189 	struct its_cmd_desc desc;
4190 
4191 	desc.its_vsgi_cmd.vpe = vpe;
4192 	desc.its_vsgi_cmd.sgi = d->hwirq;
4193 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4194 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4195 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4196 	desc.its_vsgi_cmd.clear = clear;
4197 
4198 	/*
4199 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4200 	 * destination VPE is mapped there. Since we map them eagerly at
4201 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4202 	 */
4203 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4204 }
4205 
4206 static void its_sgi_mask_irq(struct irq_data *d)
4207 {
4208 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209 
4210 	vpe->sgi_config[d->hwirq].enabled = false;
4211 	its_configure_sgi(d, false);
4212 }
4213 
4214 static void its_sgi_unmask_irq(struct irq_data *d)
4215 {
4216 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217 
4218 	vpe->sgi_config[d->hwirq].enabled = true;
4219 	its_configure_sgi(d, false);
4220 }
4221 
4222 static int its_sgi_set_affinity(struct irq_data *d,
4223 				const struct cpumask *mask_val,
4224 				bool force)
4225 {
4226 	/*
4227 	 * There is no notion of affinity for virtual SGIs, at least
4228 	 * not on the host (since they can only be targeting a vPE).
4229 	 * Tell the kernel we've done whatever it asked for.
4230 	 */
4231 	irq_data_update_effective_affinity(d, mask_val);
4232 	return IRQ_SET_MASK_OK;
4233 }
4234 
4235 static int its_sgi_set_irqchip_state(struct irq_data *d,
4236 				     enum irqchip_irq_state which,
4237 				     bool state)
4238 {
4239 	if (which != IRQCHIP_STATE_PENDING)
4240 		return -EINVAL;
4241 
4242 	if (state) {
4243 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 		struct its_node *its = find_4_1_its();
4245 		u64 val;
4246 
4247 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4248 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4249 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4250 	} else {
4251 		its_configure_sgi(d, true);
4252 	}
4253 
4254 	return 0;
4255 }
4256 
4257 static int its_sgi_get_irqchip_state(struct irq_data *d,
4258 				     enum irqchip_irq_state which, bool *val)
4259 {
4260 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4261 	void __iomem *base;
4262 	unsigned long flags;
4263 	u32 count = 1000000;	/* 1s! */
4264 	u32 status;
4265 	int cpu;
4266 
4267 	if (which != IRQCHIP_STATE_PENDING)
4268 		return -EINVAL;
4269 
4270 	/*
4271 	 * Locking galore! We can race against two different events:
4272 	 *
4273 	 * - Concurrent vPE affinity change: we must make sure it cannot
4274 	 *   happen, or we'll talk to the wrong redistributor. This is
4275 	 *   identical to what happens with vLPIs.
4276 	 *
4277 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4278 	 *   MMIO registers, this must be made atomic one way or another.
4279 	 */
4280 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4281 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4282 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4283 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4284 	do {
4285 		status = readl_relaxed(base + GICR_VSGIPENDR);
4286 		if (!(status & GICR_VSGIPENDR_BUSY))
4287 			goto out;
4288 
4289 		count--;
4290 		if (!count) {
4291 			pr_err_ratelimited("Unable to get SGI status\n");
4292 			goto out;
4293 		}
4294 		cpu_relax();
4295 		udelay(1);
4296 	} while (count);
4297 
4298 out:
4299 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 	vpe_to_cpuid_unlock(vpe, flags);
4301 
4302 	if (!count)
4303 		return -ENXIO;
4304 
4305 	*val = !!(status & (1 << d->hwirq));
4306 
4307 	return 0;
4308 }
4309 
4310 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4311 {
4312 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4313 	struct its_cmd_info *info = vcpu_info;
4314 
4315 	switch (info->cmd_type) {
4316 	case PROP_UPDATE_VSGI:
4317 		vpe->sgi_config[d->hwirq].priority = info->priority;
4318 		vpe->sgi_config[d->hwirq].group = info->group;
4319 		its_configure_sgi(d, false);
4320 		return 0;
4321 
4322 	default:
4323 		return -EINVAL;
4324 	}
4325 }
4326 
4327 static struct irq_chip its_sgi_irq_chip = {
4328 	.name			= "GICv4.1-sgi",
4329 	.irq_mask		= its_sgi_mask_irq,
4330 	.irq_unmask		= its_sgi_unmask_irq,
4331 	.irq_set_affinity	= its_sgi_set_affinity,
4332 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4333 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4334 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4335 };
4336 
4337 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4338 				    unsigned int virq, unsigned int nr_irqs,
4339 				    void *args)
4340 {
4341 	struct its_vpe *vpe = args;
4342 	int i;
4343 
4344 	/* Yes, we do want 16 SGIs */
4345 	WARN_ON(nr_irqs != 16);
4346 
4347 	for (i = 0; i < 16; i++) {
4348 		vpe->sgi_config[i].priority = 0;
4349 		vpe->sgi_config[i].enabled = false;
4350 		vpe->sgi_config[i].group = false;
4351 
4352 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4353 					      &its_sgi_irq_chip, vpe);
4354 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4355 	}
4356 
4357 	return 0;
4358 }
4359 
4360 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4361 				    unsigned int virq,
4362 				    unsigned int nr_irqs)
4363 {
4364 	/* Nothing to do */
4365 }
4366 
4367 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4368 				       struct irq_data *d, bool reserve)
4369 {
4370 	/* Write out the initial SGI configuration */
4371 	its_configure_sgi(d, false);
4372 	return 0;
4373 }
4374 
4375 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4376 					  struct irq_data *d)
4377 {
4378 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4379 
4380 	/*
4381 	 * The VSGI command is awkward:
4382 	 *
4383 	 * - To change the configuration, CLEAR must be set to false,
4384 	 *   leaving the pending bit unchanged.
4385 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4386 	 *   the configuration unchanged.
4387 	 *
4388 	 * You just can't do both at once, hence the two commands below.
4389 	 */
4390 	vpe->sgi_config[d->hwirq].enabled = false;
4391 	its_configure_sgi(d, false);
4392 	its_configure_sgi(d, true);
4393 }
4394 
4395 static const struct irq_domain_ops its_sgi_domain_ops = {
4396 	.alloc		= its_sgi_irq_domain_alloc,
4397 	.free		= its_sgi_irq_domain_free,
4398 	.activate	= its_sgi_irq_domain_activate,
4399 	.deactivate	= its_sgi_irq_domain_deactivate,
4400 };
4401 
4402 static int its_vpe_id_alloc(void)
4403 {
4404 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4405 }
4406 
4407 static void its_vpe_id_free(u16 id)
4408 {
4409 	ida_simple_remove(&its_vpeid_ida, id);
4410 }
4411 
4412 static int its_vpe_init(struct its_vpe *vpe)
4413 {
4414 	struct page *vpt_page;
4415 	int vpe_id;
4416 
4417 	/* Allocate vpe_id */
4418 	vpe_id = its_vpe_id_alloc();
4419 	if (vpe_id < 0)
4420 		return vpe_id;
4421 
4422 	/* Allocate VPT */
4423 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4424 	if (!vpt_page) {
4425 		its_vpe_id_free(vpe_id);
4426 		return -ENOMEM;
4427 	}
4428 
4429 	if (!its_alloc_vpe_table(vpe_id)) {
4430 		its_vpe_id_free(vpe_id);
4431 		its_free_pending_table(vpt_page);
4432 		return -ENOMEM;
4433 	}
4434 
4435 	raw_spin_lock_init(&vpe->vpe_lock);
4436 	vpe->vpe_id = vpe_id;
4437 	vpe->vpt_page = vpt_page;
4438 	if (gic_rdists->has_rvpeid)
4439 		atomic_set(&vpe->vmapp_count, 0);
4440 	else
4441 		vpe->vpe_proxy_event = -1;
4442 
4443 	return 0;
4444 }
4445 
4446 static void its_vpe_teardown(struct its_vpe *vpe)
4447 {
4448 	its_vpe_db_proxy_unmap(vpe);
4449 	its_vpe_id_free(vpe->vpe_id);
4450 	its_free_pending_table(vpe->vpt_page);
4451 }
4452 
4453 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4454 				    unsigned int virq,
4455 				    unsigned int nr_irqs)
4456 {
4457 	struct its_vm *vm = domain->host_data;
4458 	int i;
4459 
4460 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4461 
4462 	for (i = 0; i < nr_irqs; i++) {
4463 		struct irq_data *data = irq_domain_get_irq_data(domain,
4464 								virq + i);
4465 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4466 
4467 		BUG_ON(vm != vpe->its_vm);
4468 
4469 		clear_bit(data->hwirq, vm->db_bitmap);
4470 		its_vpe_teardown(vpe);
4471 		irq_domain_reset_irq_data(data);
4472 	}
4473 
4474 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4475 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4476 		its_free_prop_table(vm->vprop_page);
4477 	}
4478 }
4479 
4480 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4481 				    unsigned int nr_irqs, void *args)
4482 {
4483 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4484 	struct its_vm *vm = args;
4485 	unsigned long *bitmap;
4486 	struct page *vprop_page;
4487 	int base, nr_ids, i, err = 0;
4488 
4489 	BUG_ON(!vm);
4490 
4491 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4492 	if (!bitmap)
4493 		return -ENOMEM;
4494 
4495 	if (nr_ids < nr_irqs) {
4496 		its_lpi_free(bitmap, base, nr_ids);
4497 		return -ENOMEM;
4498 	}
4499 
4500 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4501 	if (!vprop_page) {
4502 		its_lpi_free(bitmap, base, nr_ids);
4503 		return -ENOMEM;
4504 	}
4505 
4506 	vm->db_bitmap = bitmap;
4507 	vm->db_lpi_base = base;
4508 	vm->nr_db_lpis = nr_ids;
4509 	vm->vprop_page = vprop_page;
4510 
4511 	if (gic_rdists->has_rvpeid)
4512 		irqchip = &its_vpe_4_1_irq_chip;
4513 
4514 	for (i = 0; i < nr_irqs; i++) {
4515 		vm->vpes[i]->vpe_db_lpi = base + i;
4516 		err = its_vpe_init(vm->vpes[i]);
4517 		if (err)
4518 			break;
4519 		err = its_irq_gic_domain_alloc(domain, virq + i,
4520 					       vm->vpes[i]->vpe_db_lpi);
4521 		if (err)
4522 			break;
4523 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4524 					      irqchip, vm->vpes[i]);
4525 		set_bit(i, bitmap);
4526 	}
4527 
4528 	if (err) {
4529 		if (i > 0)
4530 			its_vpe_irq_domain_free(domain, virq, i);
4531 
4532 		its_lpi_free(bitmap, base, nr_ids);
4533 		its_free_prop_table(vprop_page);
4534 	}
4535 
4536 	return err;
4537 }
4538 
4539 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4540 				       struct irq_data *d, bool reserve)
4541 {
4542 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4543 	struct its_node *its;
4544 
4545 	/*
4546 	 * If we use the list map, we issue VMAPP on demand... Unless
4547 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4548 	 * so that VSGIs can work.
4549 	 */
4550 	if (!gic_requires_eager_mapping())
4551 		return 0;
4552 
4553 	/* Map the VPE to the first possible CPU */
4554 	vpe->col_idx = cpumask_first(cpu_online_mask);
4555 
4556 	list_for_each_entry(its, &its_nodes, entry) {
4557 		if (!is_v4(its))
4558 			continue;
4559 
4560 		its_send_vmapp(its, vpe, true);
4561 		its_send_vinvall(its, vpe);
4562 	}
4563 
4564 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4565 
4566 	return 0;
4567 }
4568 
4569 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4570 					  struct irq_data *d)
4571 {
4572 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4573 	struct its_node *its;
4574 
4575 	/*
4576 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4577 	 * VLPIs are associated with the VM.
4578 	 */
4579 	if (!gic_requires_eager_mapping())
4580 		return;
4581 
4582 	list_for_each_entry(its, &its_nodes, entry) {
4583 		if (!is_v4(its))
4584 			continue;
4585 
4586 		its_send_vmapp(its, vpe, false);
4587 	}
4588 
4589 	/*
4590 	 * There may be a direct read to the VPT after unmapping the
4591 	 * vPE, to guarantee the validity of this, we make the VPT
4592 	 * memory coherent with the CPU caches here.
4593 	 */
4594 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4595 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4596 					LPI_PENDBASE_SZ);
4597 }
4598 
4599 static const struct irq_domain_ops its_vpe_domain_ops = {
4600 	.alloc			= its_vpe_irq_domain_alloc,
4601 	.free			= its_vpe_irq_domain_free,
4602 	.activate		= its_vpe_irq_domain_activate,
4603 	.deactivate		= its_vpe_irq_domain_deactivate,
4604 };
4605 
4606 static int its_force_quiescent(void __iomem *base)
4607 {
4608 	u32 count = 1000000;	/* 1s */
4609 	u32 val;
4610 
4611 	val = readl_relaxed(base + GITS_CTLR);
4612 	/*
4613 	 * GIC architecture specification requires the ITS to be both
4614 	 * disabled and quiescent for writes to GITS_BASER<n> or
4615 	 * GITS_CBASER to not have UNPREDICTABLE results.
4616 	 */
4617 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4618 		return 0;
4619 
4620 	/* Disable the generation of all interrupts to this ITS */
4621 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4622 	writel_relaxed(val, base + GITS_CTLR);
4623 
4624 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4625 	while (1) {
4626 		val = readl_relaxed(base + GITS_CTLR);
4627 		if (val & GITS_CTLR_QUIESCENT)
4628 			return 0;
4629 
4630 		count--;
4631 		if (!count)
4632 			return -EBUSY;
4633 
4634 		cpu_relax();
4635 		udelay(1);
4636 	}
4637 }
4638 
4639 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4640 {
4641 	struct its_node *its = data;
4642 
4643 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4644 	its->typer &= ~GITS_TYPER_DEVBITS;
4645 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4646 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4647 
4648 	return true;
4649 }
4650 
4651 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4652 {
4653 	struct its_node *its = data;
4654 
4655 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4656 
4657 	return true;
4658 }
4659 
4660 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4661 {
4662 	struct its_node *its = data;
4663 
4664 	/* On QDF2400, the size of the ITE is 16Bytes */
4665 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4666 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4667 
4668 	return true;
4669 }
4670 
4671 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4672 {
4673 	struct its_node *its = its_dev->its;
4674 
4675 	/*
4676 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4677 	 * which maps 32-bit writes targeted at a separate window of
4678 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4679 	 * with device ID taken from bits [device_id_bits + 1:2] of
4680 	 * the window offset.
4681 	 */
4682 	return its->pre_its_base + (its_dev->device_id << 2);
4683 }
4684 
4685 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4686 {
4687 	struct its_node *its = data;
4688 	u32 pre_its_window[2];
4689 	u32 ids;
4690 
4691 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4692 					   "socionext,synquacer-pre-its",
4693 					   pre_its_window,
4694 					   ARRAY_SIZE(pre_its_window))) {
4695 
4696 		its->pre_its_base = pre_its_window[0];
4697 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4698 
4699 		ids = ilog2(pre_its_window[1]) - 2;
4700 		if (device_ids(its) > ids) {
4701 			its->typer &= ~GITS_TYPER_DEVBITS;
4702 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4703 		}
4704 
4705 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4706 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4707 		return true;
4708 	}
4709 	return false;
4710 }
4711 
4712 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4713 {
4714 	struct its_node *its = data;
4715 
4716 	/*
4717 	 * Hip07 insists on using the wrong address for the VLPI
4718 	 * page. Trick it into doing the right thing...
4719 	 */
4720 	its->vlpi_redist_offset = SZ_128K;
4721 	return true;
4722 }
4723 
4724 static bool __maybe_unused its_enable_rk3588001(void *data)
4725 {
4726 	struct its_node *its = data;
4727 
4728 	if (!of_machine_is_compatible("rockchip,rk3588"))
4729 		return false;
4730 
4731 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4732 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4733 
4734 	return true;
4735 }
4736 
4737 static const struct gic_quirk its_quirks[] = {
4738 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4739 	{
4740 		.desc	= "ITS: Cavium errata 22375, 24313",
4741 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4742 		.mask	= 0xffff0fff,
4743 		.init	= its_enable_quirk_cavium_22375,
4744 	},
4745 #endif
4746 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4747 	{
4748 		.desc	= "ITS: Cavium erratum 23144",
4749 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4750 		.mask	= 0xffff0fff,
4751 		.init	= its_enable_quirk_cavium_23144,
4752 	},
4753 #endif
4754 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4755 	{
4756 		.desc	= "ITS: QDF2400 erratum 0065",
4757 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4758 		.mask	= 0xffffffff,
4759 		.init	= its_enable_quirk_qdf2400_e0065,
4760 	},
4761 #endif
4762 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4763 	{
4764 		/*
4765 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4766 		 * implementation, but with a 'pre-ITS' added that requires
4767 		 * special handling in software.
4768 		 */
4769 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4770 		.iidr	= 0x0001143b,
4771 		.mask	= 0xffffffff,
4772 		.init	= its_enable_quirk_socionext_synquacer,
4773 	},
4774 #endif
4775 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4776 	{
4777 		.desc	= "ITS: Hip07 erratum 161600802",
4778 		.iidr	= 0x00000004,
4779 		.mask	= 0xffffffff,
4780 		.init	= its_enable_quirk_hip07_161600802,
4781 	},
4782 #endif
4783 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4784 	{
4785 		.desc   = "ITS: Rockchip erratum RK3588001",
4786 		.iidr   = 0x0201743b,
4787 		.mask   = 0xffffffff,
4788 		.init   = its_enable_rk3588001,
4789 	},
4790 #endif
4791 	{
4792 	}
4793 };
4794 
4795 static void its_enable_quirks(struct its_node *its)
4796 {
4797 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4798 
4799 	gic_enable_quirks(iidr, its_quirks, its);
4800 }
4801 
4802 static int its_save_disable(void)
4803 {
4804 	struct its_node *its;
4805 	int err = 0;
4806 
4807 	raw_spin_lock(&its_lock);
4808 	list_for_each_entry(its, &its_nodes, entry) {
4809 		void __iomem *base;
4810 
4811 		base = its->base;
4812 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4813 		err = its_force_quiescent(base);
4814 		if (err) {
4815 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4816 			       &its->phys_base, err);
4817 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4818 			goto err;
4819 		}
4820 
4821 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4822 	}
4823 
4824 err:
4825 	if (err) {
4826 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4827 			void __iomem *base;
4828 
4829 			base = its->base;
4830 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4831 		}
4832 	}
4833 	raw_spin_unlock(&its_lock);
4834 
4835 	return err;
4836 }
4837 
4838 static void its_restore_enable(void)
4839 {
4840 	struct its_node *its;
4841 	int ret;
4842 
4843 	raw_spin_lock(&its_lock);
4844 	list_for_each_entry(its, &its_nodes, entry) {
4845 		void __iomem *base;
4846 		int i;
4847 
4848 		base = its->base;
4849 
4850 		/*
4851 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4852 		 * don't restore it since writing to CBASER or BASER<n>
4853 		 * registers is undefined according to the GIC v3 ITS
4854 		 * Specification.
4855 		 *
4856 		 * Firmware resuming with the ITS enabled is terminally broken.
4857 		 */
4858 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4859 		ret = its_force_quiescent(base);
4860 		if (ret) {
4861 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4862 			       &its->phys_base, ret);
4863 			continue;
4864 		}
4865 
4866 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4867 
4868 		/*
4869 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4870 		 * cmd_write line up with it.
4871 		 */
4872 		its->cmd_write = its->cmd_base;
4873 		gits_write_cwriter(0, base + GITS_CWRITER);
4874 
4875 		/* Restore GITS_BASER from the value cache. */
4876 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4877 			struct its_baser *baser = &its->tables[i];
4878 
4879 			if (!(baser->val & GITS_BASER_VALID))
4880 				continue;
4881 
4882 			its_write_baser(its, baser, baser->val);
4883 		}
4884 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885 
4886 		/*
4887 		 * Reinit the collection if it's stored in the ITS. This is
4888 		 * indicated by the col_id being less than the HCC field.
4889 		 * CID < HCC as specified in the GIC v3 Documentation.
4890 		 */
4891 		if (its->collections[smp_processor_id()].col_id <
4892 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4893 			its_cpu_init_collection(its);
4894 	}
4895 	raw_spin_unlock(&its_lock);
4896 }
4897 
4898 static struct syscore_ops its_syscore_ops = {
4899 	.suspend = its_save_disable,
4900 	.resume = its_restore_enable,
4901 };
4902 
4903 static void __init __iomem *its_map_one(struct resource *res, int *err)
4904 {
4905 	void __iomem *its_base;
4906 	u32 val;
4907 
4908 	its_base = ioremap(res->start, SZ_64K);
4909 	if (!its_base) {
4910 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4911 		*err = -ENOMEM;
4912 		return NULL;
4913 	}
4914 
4915 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4916 	if (val != 0x30 && val != 0x40) {
4917 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4918 		*err = -ENODEV;
4919 		goto out_unmap;
4920 	}
4921 
4922 	*err = its_force_quiescent(its_base);
4923 	if (*err) {
4924 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4925 		goto out_unmap;
4926 	}
4927 
4928 	return its_base;
4929 
4930 out_unmap:
4931 	iounmap(its_base);
4932 	return NULL;
4933 }
4934 
4935 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4936 {
4937 	struct irq_domain *inner_domain;
4938 	struct msi_domain_info *info;
4939 
4940 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4941 	if (!info)
4942 		return -ENOMEM;
4943 
4944 	info->ops = &its_msi_domain_ops;
4945 	info->data = its;
4946 
4947 	inner_domain = irq_domain_create_hierarchy(its_parent,
4948 						   its->msi_domain_flags, 0,
4949 						   handle, &its_domain_ops,
4950 						   info);
4951 	if (!inner_domain) {
4952 		kfree(info);
4953 		return -ENOMEM;
4954 	}
4955 
4956 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4957 
4958 	return 0;
4959 }
4960 
4961 static int its_init_vpe_domain(void)
4962 {
4963 	struct its_node *its;
4964 	u32 devid;
4965 	int entries;
4966 
4967 	if (gic_rdists->has_direct_lpi) {
4968 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4969 		return 0;
4970 	}
4971 
4972 	/* Any ITS will do, even if not v4 */
4973 	its = list_first_entry(&its_nodes, struct its_node, entry);
4974 
4975 	entries = roundup_pow_of_two(nr_cpu_ids);
4976 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4977 				 GFP_KERNEL);
4978 	if (!vpe_proxy.vpes)
4979 		return -ENOMEM;
4980 
4981 	/* Use the last possible DevID */
4982 	devid = GENMASK(device_ids(its) - 1, 0);
4983 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4984 	if (!vpe_proxy.dev) {
4985 		kfree(vpe_proxy.vpes);
4986 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4987 		return -ENOMEM;
4988 	}
4989 
4990 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4991 
4992 	raw_spin_lock_init(&vpe_proxy.lock);
4993 	vpe_proxy.next_victim = 0;
4994 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4995 		devid, vpe_proxy.dev->nr_ites);
4996 
4997 	return 0;
4998 }
4999 
5000 static int __init its_compute_its_list_map(struct resource *res,
5001 					   void __iomem *its_base)
5002 {
5003 	int its_number;
5004 	u32 ctlr;
5005 
5006 	/*
5007 	 * This is assumed to be done early enough that we're
5008 	 * guaranteed to be single-threaded, hence no
5009 	 * locking. Should this change, we should address
5010 	 * this.
5011 	 */
5012 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5013 	if (its_number >= GICv4_ITS_LIST_MAX) {
5014 		pr_err("ITS@%pa: No ITSList entry available!\n",
5015 		       &res->start);
5016 		return -EINVAL;
5017 	}
5018 
5019 	ctlr = readl_relaxed(its_base + GITS_CTLR);
5020 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5021 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5022 	writel_relaxed(ctlr, its_base + GITS_CTLR);
5023 	ctlr = readl_relaxed(its_base + GITS_CTLR);
5024 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5025 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5026 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5027 	}
5028 
5029 	if (test_and_set_bit(its_number, &its_list_map)) {
5030 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5031 		       &res->start, its_number);
5032 		return -EINVAL;
5033 	}
5034 
5035 	return its_number;
5036 }
5037 
5038 static int __init its_probe_one(struct resource *res,
5039 				struct fwnode_handle *handle, int numa_node)
5040 {
5041 	struct its_node *its;
5042 	void __iomem *its_base;
5043 	u64 baser, tmp, typer;
5044 	struct page *page;
5045 	u32 ctlr;
5046 	int err;
5047 
5048 	its_base = its_map_one(res, &err);
5049 	if (!its_base)
5050 		return err;
5051 
5052 	pr_info("ITS %pR\n", res);
5053 
5054 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5055 	if (!its) {
5056 		err = -ENOMEM;
5057 		goto out_unmap;
5058 	}
5059 
5060 	raw_spin_lock_init(&its->lock);
5061 	mutex_init(&its->dev_alloc_lock);
5062 	INIT_LIST_HEAD(&its->entry);
5063 	INIT_LIST_HEAD(&its->its_device_list);
5064 	typer = gic_read_typer(its_base + GITS_TYPER);
5065 	its->typer = typer;
5066 	its->base = its_base;
5067 	its->phys_base = res->start;
5068 	if (is_v4(its)) {
5069 		if (!(typer & GITS_TYPER_VMOVP)) {
5070 			err = its_compute_its_list_map(res, its_base);
5071 			if (err < 0)
5072 				goto out_free_its;
5073 
5074 			its->list_nr = err;
5075 
5076 			pr_info("ITS@%pa: Using ITS number %d\n",
5077 				&res->start, err);
5078 		} else {
5079 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5080 		}
5081 
5082 		if (is_v4_1(its)) {
5083 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5084 
5085 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5086 			if (!its->sgir_base) {
5087 				err = -ENOMEM;
5088 				goto out_free_its;
5089 			}
5090 
5091 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5092 
5093 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5094 				&res->start, its->mpidr, svpet);
5095 		}
5096 	}
5097 
5098 	its->numa_node = numa_node;
5099 
5100 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5101 				get_order(ITS_CMD_QUEUE_SZ));
5102 	if (!page) {
5103 		err = -ENOMEM;
5104 		goto out_unmap_sgir;
5105 	}
5106 	its->cmd_base = (void *)page_address(page);
5107 	its->cmd_write = its->cmd_base;
5108 	its->fwnode_handle = handle;
5109 	its->get_msi_base = its_irq_get_msi_base;
5110 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5111 
5112 	its_enable_quirks(its);
5113 
5114 	err = its_alloc_tables(its);
5115 	if (err)
5116 		goto out_free_cmd;
5117 
5118 	err = its_alloc_collections(its);
5119 	if (err)
5120 		goto out_free_tables;
5121 
5122 	baser = (virt_to_phys(its->cmd_base)	|
5123 		 GITS_CBASER_RaWaWb		|
5124 		 GITS_CBASER_InnerShareable	|
5125 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5126 		 GITS_CBASER_VALID);
5127 
5128 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5129 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5130 
5131 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5132 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5133 
5134 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5135 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5136 			/*
5137 			 * The HW reports non-shareable, we must
5138 			 * remove the cacheability attributes as
5139 			 * well.
5140 			 */
5141 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5142 				   GITS_CBASER_CACHEABILITY_MASK);
5143 			baser |= GITS_CBASER_nC;
5144 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5145 		}
5146 		pr_info("ITS: using cache flushing for cmd queue\n");
5147 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5148 	}
5149 
5150 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5151 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5152 	ctlr |= GITS_CTLR_ENABLE;
5153 	if (is_v4(its))
5154 		ctlr |= GITS_CTLR_ImDe;
5155 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5156 
5157 	err = its_init_domain(handle, its);
5158 	if (err)
5159 		goto out_free_tables;
5160 
5161 	raw_spin_lock(&its_lock);
5162 	list_add(&its->entry, &its_nodes);
5163 	raw_spin_unlock(&its_lock);
5164 
5165 	return 0;
5166 
5167 out_free_tables:
5168 	its_free_tables(its);
5169 out_free_cmd:
5170 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5171 out_unmap_sgir:
5172 	if (its->sgir_base)
5173 		iounmap(its->sgir_base);
5174 out_free_its:
5175 	kfree(its);
5176 out_unmap:
5177 	iounmap(its_base);
5178 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5179 	return err;
5180 }
5181 
5182 static bool gic_rdists_supports_plpis(void)
5183 {
5184 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5185 }
5186 
5187 static int redist_disable_lpis(void)
5188 {
5189 	void __iomem *rbase = gic_data_rdist_rd_base();
5190 	u64 timeout = USEC_PER_SEC;
5191 	u64 val;
5192 
5193 	if (!gic_rdists_supports_plpis()) {
5194 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5195 		return -ENXIO;
5196 	}
5197 
5198 	val = readl_relaxed(rbase + GICR_CTLR);
5199 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5200 		return 0;
5201 
5202 	/*
5203 	 * If coming via a CPU hotplug event, we don't need to disable
5204 	 * LPIs before trying to re-enable them. They are already
5205 	 * configured and all is well in the world.
5206 	 *
5207 	 * If running with preallocated tables, there is nothing to do.
5208 	 */
5209 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5210 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5211 		return 0;
5212 
5213 	/*
5214 	 * From that point on, we only try to do some damage control.
5215 	 */
5216 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5217 		smp_processor_id());
5218 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5219 
5220 	/* Disable LPIs */
5221 	val &= ~GICR_CTLR_ENABLE_LPIS;
5222 	writel_relaxed(val, rbase + GICR_CTLR);
5223 
5224 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5225 	dsb(sy);
5226 
5227 	/*
5228 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5229 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5230 	 * Error out if we time out waiting for RWP to clear.
5231 	 */
5232 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5233 		if (!timeout) {
5234 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5235 			       smp_processor_id());
5236 			return -ETIMEDOUT;
5237 		}
5238 		udelay(1);
5239 		timeout--;
5240 	}
5241 
5242 	/*
5243 	 * After it has been written to 1, it is IMPLEMENTATION
5244 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5245 	 * cleared to 0. Error out if clearing the bit failed.
5246 	 */
5247 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5248 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5249 		return -EBUSY;
5250 	}
5251 
5252 	return 0;
5253 }
5254 
5255 int its_cpu_init(void)
5256 {
5257 	if (!list_empty(&its_nodes)) {
5258 		int ret;
5259 
5260 		ret = redist_disable_lpis();
5261 		if (ret)
5262 			return ret;
5263 
5264 		its_cpu_init_lpis();
5265 		its_cpu_init_collections();
5266 	}
5267 
5268 	return 0;
5269 }
5270 
5271 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5272 {
5273 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5274 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5275 }
5276 
5277 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5278 		    rdist_memreserve_cpuhp_cleanup_workfn);
5279 
5280 static int its_cpu_memreserve_lpi(unsigned int cpu)
5281 {
5282 	struct page *pend_page;
5283 	int ret = 0;
5284 
5285 	/* This gets to run exactly once per CPU */
5286 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5287 		return 0;
5288 
5289 	pend_page = gic_data_rdist()->pend_page;
5290 	if (WARN_ON(!pend_page)) {
5291 		ret = -ENOMEM;
5292 		goto out;
5293 	}
5294 	/*
5295 	 * If the pending table was pre-programmed, free the memory we
5296 	 * preemptively allocated. Otherwise, reserve that memory for
5297 	 * later kexecs.
5298 	 */
5299 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5300 		its_free_pending_table(pend_page);
5301 		gic_data_rdist()->pend_page = NULL;
5302 	} else {
5303 		phys_addr_t paddr = page_to_phys(pend_page);
5304 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5305 	}
5306 
5307 out:
5308 	/* Last CPU being brought up gets to issue the cleanup */
5309 	if (!IS_ENABLED(CONFIG_SMP) ||
5310 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5311 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5312 
5313 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5314 	return ret;
5315 }
5316 
5317 /* Mark all the BASER registers as invalid before they get reprogrammed */
5318 static int __init its_reset_one(struct resource *res)
5319 {
5320 	void __iomem *its_base;
5321 	int err, i;
5322 
5323 	its_base = its_map_one(res, &err);
5324 	if (!its_base)
5325 		return err;
5326 
5327 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5328 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5329 
5330 	iounmap(its_base);
5331 	return 0;
5332 }
5333 
5334 static const struct of_device_id its_device_id[] = {
5335 	{	.compatible	= "arm,gic-v3-its",	},
5336 	{},
5337 };
5338 
5339 static int __init its_of_probe(struct device_node *node)
5340 {
5341 	struct device_node *np;
5342 	struct resource res;
5343 
5344 	/*
5345 	 * Make sure *all* the ITS are reset before we probe any, as
5346 	 * they may be sharing memory. If any of the ITS fails to
5347 	 * reset, don't even try to go any further, as this could
5348 	 * result in something even worse.
5349 	 */
5350 	for (np = of_find_matching_node(node, its_device_id); np;
5351 	     np = of_find_matching_node(np, its_device_id)) {
5352 		int err;
5353 
5354 		if (!of_device_is_available(np) ||
5355 		    !of_property_read_bool(np, "msi-controller") ||
5356 		    of_address_to_resource(np, 0, &res))
5357 			continue;
5358 
5359 		err = its_reset_one(&res);
5360 		if (err)
5361 			return err;
5362 	}
5363 
5364 	for (np = of_find_matching_node(node, its_device_id); np;
5365 	     np = of_find_matching_node(np, its_device_id)) {
5366 		if (!of_device_is_available(np))
5367 			continue;
5368 		if (!of_property_read_bool(np, "msi-controller")) {
5369 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5370 				np);
5371 			continue;
5372 		}
5373 
5374 		if (of_address_to_resource(np, 0, &res)) {
5375 			pr_warn("%pOF: no regs?\n", np);
5376 			continue;
5377 		}
5378 
5379 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5380 	}
5381 	return 0;
5382 }
5383 
5384 #ifdef CONFIG_ACPI
5385 
5386 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5387 
5388 #ifdef CONFIG_ACPI_NUMA
5389 struct its_srat_map {
5390 	/* numa node id */
5391 	u32	numa_node;
5392 	/* GIC ITS ID */
5393 	u32	its_id;
5394 };
5395 
5396 static struct its_srat_map *its_srat_maps __initdata;
5397 static int its_in_srat __initdata;
5398 
5399 static int __init acpi_get_its_numa_node(u32 its_id)
5400 {
5401 	int i;
5402 
5403 	for (i = 0; i < its_in_srat; i++) {
5404 		if (its_id == its_srat_maps[i].its_id)
5405 			return its_srat_maps[i].numa_node;
5406 	}
5407 	return NUMA_NO_NODE;
5408 }
5409 
5410 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5411 					  const unsigned long end)
5412 {
5413 	return 0;
5414 }
5415 
5416 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5417 			 const unsigned long end)
5418 {
5419 	int node;
5420 	struct acpi_srat_gic_its_affinity *its_affinity;
5421 
5422 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5423 	if (!its_affinity)
5424 		return -EINVAL;
5425 
5426 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5427 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5428 			its_affinity->header.length);
5429 		return -EINVAL;
5430 	}
5431 
5432 	/*
5433 	 * Note that in theory a new proximity node could be created by this
5434 	 * entry as it is an SRAT resource allocation structure.
5435 	 * We do not currently support doing so.
5436 	 */
5437 	node = pxm_to_node(its_affinity->proximity_domain);
5438 
5439 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5440 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5441 		return 0;
5442 	}
5443 
5444 	its_srat_maps[its_in_srat].numa_node = node;
5445 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5446 	its_in_srat++;
5447 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5448 		its_affinity->proximity_domain, its_affinity->its_id, node);
5449 
5450 	return 0;
5451 }
5452 
5453 static void __init acpi_table_parse_srat_its(void)
5454 {
5455 	int count;
5456 
5457 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5458 			sizeof(struct acpi_table_srat),
5459 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5460 			gic_acpi_match_srat_its, 0);
5461 	if (count <= 0)
5462 		return;
5463 
5464 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5465 				      GFP_KERNEL);
5466 	if (!its_srat_maps)
5467 		return;
5468 
5469 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5470 			sizeof(struct acpi_table_srat),
5471 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5472 			gic_acpi_parse_srat_its, 0);
5473 }
5474 
5475 /* free the its_srat_maps after ITS probing */
5476 static void __init acpi_its_srat_maps_free(void)
5477 {
5478 	kfree(its_srat_maps);
5479 }
5480 #else
5481 static void __init acpi_table_parse_srat_its(void)	{ }
5482 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5483 static void __init acpi_its_srat_maps_free(void) { }
5484 #endif
5485 
5486 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5487 					  const unsigned long end)
5488 {
5489 	struct acpi_madt_generic_translator *its_entry;
5490 	struct fwnode_handle *dom_handle;
5491 	struct resource res;
5492 	int err;
5493 
5494 	its_entry = (struct acpi_madt_generic_translator *)header;
5495 	memset(&res, 0, sizeof(res));
5496 	res.start = its_entry->base_address;
5497 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5498 	res.flags = IORESOURCE_MEM;
5499 
5500 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5501 	if (!dom_handle) {
5502 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5503 		       &res.start);
5504 		return -ENOMEM;
5505 	}
5506 
5507 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5508 					 dom_handle);
5509 	if (err) {
5510 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5511 		       &res.start, its_entry->translation_id);
5512 		goto dom_err;
5513 	}
5514 
5515 	err = its_probe_one(&res, dom_handle,
5516 			acpi_get_its_numa_node(its_entry->translation_id));
5517 	if (!err)
5518 		return 0;
5519 
5520 	iort_deregister_domain_token(its_entry->translation_id);
5521 dom_err:
5522 	irq_domain_free_fwnode(dom_handle);
5523 	return err;
5524 }
5525 
5526 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5527 				 const unsigned long end)
5528 {
5529 	struct acpi_madt_generic_translator *its_entry;
5530 	struct resource res;
5531 
5532 	its_entry = (struct acpi_madt_generic_translator *)header;
5533 	res = (struct resource) {
5534 		.start	= its_entry->base_address,
5535 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5536 		.flags	= IORESOURCE_MEM,
5537 	};
5538 
5539 	return its_reset_one(&res);
5540 }
5541 
5542 static void __init its_acpi_probe(void)
5543 {
5544 	acpi_table_parse_srat_its();
5545 	/*
5546 	 * Make sure *all* the ITS are reset before we probe any, as
5547 	 * they may be sharing memory. If any of the ITS fails to
5548 	 * reset, don't even try to go any further, as this could
5549 	 * result in something even worse.
5550 	 */
5551 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5552 				  its_acpi_reset, 0) > 0)
5553 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5554 				      gic_acpi_parse_madt_its, 0);
5555 	acpi_its_srat_maps_free();
5556 }
5557 #else
5558 static void __init its_acpi_probe(void) { }
5559 #endif
5560 
5561 int __init its_lpi_memreserve_init(void)
5562 {
5563 	int state;
5564 
5565 	if (!efi_enabled(EFI_CONFIG_TABLES))
5566 		return 0;
5567 
5568 	if (list_empty(&its_nodes))
5569 		return 0;
5570 
5571 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5572 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5573 				  "irqchip/arm/gicv3/memreserve:online",
5574 				  its_cpu_memreserve_lpi,
5575 				  NULL);
5576 	if (state < 0)
5577 		return state;
5578 
5579 	gic_rdists->cpuhp_memreserve_state = state;
5580 
5581 	return 0;
5582 }
5583 
5584 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5585 		    struct irq_domain *parent_domain)
5586 {
5587 	struct device_node *of_node;
5588 	struct its_node *its;
5589 	bool has_v4 = false;
5590 	bool has_v4_1 = false;
5591 	int err;
5592 
5593 	gic_rdists = rdists;
5594 
5595 	its_parent = parent_domain;
5596 	of_node = to_of_node(handle);
5597 	if (of_node)
5598 		its_of_probe(of_node);
5599 	else
5600 		its_acpi_probe();
5601 
5602 	if (list_empty(&its_nodes)) {
5603 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5604 		return -ENXIO;
5605 	}
5606 
5607 	err = allocate_lpi_tables();
5608 	if (err)
5609 		return err;
5610 
5611 	list_for_each_entry(its, &its_nodes, entry) {
5612 		has_v4 |= is_v4(its);
5613 		has_v4_1 |= is_v4_1(its);
5614 	}
5615 
5616 	/* Don't bother with inconsistent systems */
5617 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5618 		rdists->has_rvpeid = false;
5619 
5620 	if (has_v4 & rdists->has_vlpis) {
5621 		const struct irq_domain_ops *sgi_ops;
5622 
5623 		if (has_v4_1)
5624 			sgi_ops = &its_sgi_domain_ops;
5625 		else
5626 			sgi_ops = NULL;
5627 
5628 		if (its_init_vpe_domain() ||
5629 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5630 			rdists->has_vlpis = false;
5631 			pr_err("ITS: Disabling GICv4 support\n");
5632 		}
5633 	}
5634 
5635 	register_syscore_ops(&its_syscore_ops);
5636 
5637 	return 0;
5638 }
5639