1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/crash_dump.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/efi.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/list.h>
29 #include <linux/log2.h>
30 #include <linux/memblock.h>
31 #include <linux/mm.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_pci.h>
37 #include <linux/of_platform.h>
38 #include <linux/percpu.h>
39 #include <linux/slab.h>
40 #include <linux/syscore_ops.h>
41 
42 #include <linux/irqchip.h>
43 #include <linux/irqchip/arm-gic-v3.h>
44 #include <linux/irqchip/arm-gic-v4.h>
45 
46 #include <asm/cputype.h>
47 #include <asm/exception.h>
48 
49 #include "irq-gic-common.h"
50 
51 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
52 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
53 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
54 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
55 
56 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
57 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
58 
59 static u32 lpi_id_bits;
60 
61 /*
62  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
63  * deal with (one configuration byte per interrupt). PENDBASE has to
64  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
65  */
66 #define LPI_NRBITS		lpi_id_bits
67 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
68 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
69 
70 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
71 
72 /*
73  * Collection structure - just an ID, and a redistributor address to
74  * ping. We use one per CPU as a bag of interrupts assigned to this
75  * CPU.
76  */
77 struct its_collection {
78 	u64			target_address;
79 	u16			col_id;
80 };
81 
82 /*
83  * The ITS_BASER structure - contains memory information, cached
84  * value of BASER register configuration and ITS page size.
85  */
86 struct its_baser {
87 	void		*base;
88 	u64		val;
89 	u32		order;
90 	u32		psz;
91 };
92 
93 struct its_device;
94 
95 /*
96  * The ITS structure - contains most of the infrastructure, with the
97  * top-level MSI domain, the command queue, the collections, and the
98  * list of devices writing to it.
99  *
100  * dev_alloc_lock has to be taken for device allocations, while the
101  * spinlock must be taken to parse data structures such as the device
102  * list.
103  */
104 struct its_node {
105 	raw_spinlock_t		lock;
106 	struct mutex		dev_alloc_lock;
107 	struct list_head	entry;
108 	void __iomem		*base;
109 	phys_addr_t		phys_base;
110 	struct its_cmd_block	*cmd_base;
111 	struct its_cmd_block	*cmd_write;
112 	struct its_baser	tables[GITS_BASER_NR_REGS];
113 	struct its_collection	*collections;
114 	struct fwnode_handle	*fwnode_handle;
115 	u64			(*get_msi_base)(struct its_device *its_dev);
116 	u64			cbaser_save;
117 	u32			ctlr_save;
118 	struct list_head	its_device_list;
119 	u64			flags;
120 	unsigned long		list_nr;
121 	u32			ite_size;
122 	u32			device_ids;
123 	int			numa_node;
124 	unsigned int		msi_domain_flags;
125 	u32			pre_its_base; /* for Socionext Synquacer */
126 	bool			is_v4;
127 	int			vlpi_redist_offset;
128 };
129 
130 #define ITS_ITT_ALIGN		SZ_256
131 
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS	(16)
134 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
135 
136 /* Convert page order to size in bytes */
137 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
138 
139 struct event_lpi_map {
140 	unsigned long		*lpi_map;
141 	u16			*col_map;
142 	irq_hw_number_t		lpi_base;
143 	int			nr_lpis;
144 	struct mutex		vlpi_lock;
145 	struct its_vm		*vm;
146 	struct its_vlpi_map	*vlpi_maps;
147 	int			nr_vlpis;
148 };
149 
150 /*
151  * The ITS view of a device - belongs to an ITS, owns an interrupt
152  * translation table, and a list of interrupts.  If it some of its
153  * LPIs are injected into a guest (GICv4), the event_map.vm field
154  * indicates which one.
155  */
156 struct its_device {
157 	struct list_head	entry;
158 	struct its_node		*its;
159 	struct event_lpi_map	event_map;
160 	void			*itt;
161 	u32			nr_ites;
162 	u32			device_id;
163 	bool			shared;
164 };
165 
166 static struct {
167 	raw_spinlock_t		lock;
168 	struct its_device	*dev;
169 	struct its_vpe		**vpes;
170 	int			next_victim;
171 } vpe_proxy;
172 
173 static LIST_HEAD(its_nodes);
174 static DEFINE_RAW_SPINLOCK(its_lock);
175 static struct rdists *gic_rdists;
176 static struct irq_domain *its_parent;
177 
178 static unsigned long its_list_map;
179 static u16 vmovp_seq_num;
180 static DEFINE_RAW_SPINLOCK(vmovp_lock);
181 
182 static DEFINE_IDA(its_vpeid_ida);
183 
184 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
185 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
186 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
187 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
188 
189 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
190 					       u32 event)
191 {
192 	struct its_node *its = its_dev->its;
193 
194 	return its->collections + its_dev->event_map.col_map[event];
195 }
196 
197 static struct its_collection *valid_col(struct its_collection *col)
198 {
199 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
200 		return NULL;
201 
202 	return col;
203 }
204 
205 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
206 {
207 	if (valid_col(its->collections + vpe->col_idx))
208 		return vpe;
209 
210 	return NULL;
211 }
212 
213 /*
214  * ITS command descriptors - parameters to be encoded in a command
215  * block.
216  */
217 struct its_cmd_desc {
218 	union {
219 		struct {
220 			struct its_device *dev;
221 			u32 event_id;
222 		} its_inv_cmd;
223 
224 		struct {
225 			struct its_device *dev;
226 			u32 event_id;
227 		} its_clear_cmd;
228 
229 		struct {
230 			struct its_device *dev;
231 			u32 event_id;
232 		} its_int_cmd;
233 
234 		struct {
235 			struct its_device *dev;
236 			int valid;
237 		} its_mapd_cmd;
238 
239 		struct {
240 			struct its_collection *col;
241 			int valid;
242 		} its_mapc_cmd;
243 
244 		struct {
245 			struct its_device *dev;
246 			u32 phys_id;
247 			u32 event_id;
248 		} its_mapti_cmd;
249 
250 		struct {
251 			struct its_device *dev;
252 			struct its_collection *col;
253 			u32 event_id;
254 		} its_movi_cmd;
255 
256 		struct {
257 			struct its_device *dev;
258 			u32 event_id;
259 		} its_discard_cmd;
260 
261 		struct {
262 			struct its_collection *col;
263 		} its_invall_cmd;
264 
265 		struct {
266 			struct its_vpe *vpe;
267 		} its_vinvall_cmd;
268 
269 		struct {
270 			struct its_vpe *vpe;
271 			struct its_collection *col;
272 			bool valid;
273 		} its_vmapp_cmd;
274 
275 		struct {
276 			struct its_vpe *vpe;
277 			struct its_device *dev;
278 			u32 virt_id;
279 			u32 event_id;
280 			bool db_enabled;
281 		} its_vmapti_cmd;
282 
283 		struct {
284 			struct its_vpe *vpe;
285 			struct its_device *dev;
286 			u32 event_id;
287 			bool db_enabled;
288 		} its_vmovi_cmd;
289 
290 		struct {
291 			struct its_vpe *vpe;
292 			struct its_collection *col;
293 			u16 seq_num;
294 			u16 its_list;
295 		} its_vmovp_cmd;
296 	};
297 };
298 
299 /*
300  * The ITS command block, which is what the ITS actually parses.
301  */
302 struct its_cmd_block {
303 	u64	raw_cmd[4];
304 };
305 
306 #define ITS_CMD_QUEUE_SZ		SZ_64K
307 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
308 
309 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
310 						    struct its_cmd_block *,
311 						    struct its_cmd_desc *);
312 
313 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
314 					      struct its_cmd_block *,
315 					      struct its_cmd_desc *);
316 
317 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
318 {
319 	u64 mask = GENMASK_ULL(h, l);
320 	*raw_cmd &= ~mask;
321 	*raw_cmd |= (val << l) & mask;
322 }
323 
324 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
325 {
326 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
327 }
328 
329 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
330 {
331 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
332 }
333 
334 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
335 {
336 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
337 }
338 
339 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
340 {
341 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
342 }
343 
344 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
345 {
346 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
347 }
348 
349 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
350 {
351 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
352 }
353 
354 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
355 {
356 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
357 }
358 
359 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
360 {
361 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
362 }
363 
364 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
365 {
366 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
367 }
368 
369 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
370 {
371 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
372 }
373 
374 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
375 {
376 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
377 }
378 
379 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
380 {
381 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
382 }
383 
384 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
385 {
386 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
387 }
388 
389 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
390 {
391 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
392 }
393 
394 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
395 {
396 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
397 }
398 
399 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
400 {
401 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
402 }
403 
404 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
405 {
406 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
407 }
408 
409 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
410 {
411 	/* Let's fixup BE commands */
412 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
413 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
414 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
415 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
416 }
417 
418 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
419 						 struct its_cmd_block *cmd,
420 						 struct its_cmd_desc *desc)
421 {
422 	unsigned long itt_addr;
423 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
424 
425 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
426 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
427 
428 	its_encode_cmd(cmd, GITS_CMD_MAPD);
429 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
430 	its_encode_size(cmd, size - 1);
431 	its_encode_itt(cmd, itt_addr);
432 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
433 
434 	its_fixup_cmd(cmd);
435 
436 	return NULL;
437 }
438 
439 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
440 						 struct its_cmd_block *cmd,
441 						 struct its_cmd_desc *desc)
442 {
443 	its_encode_cmd(cmd, GITS_CMD_MAPC);
444 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
445 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
446 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
447 
448 	its_fixup_cmd(cmd);
449 
450 	return desc->its_mapc_cmd.col;
451 }
452 
453 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
454 						  struct its_cmd_block *cmd,
455 						  struct its_cmd_desc *desc)
456 {
457 	struct its_collection *col;
458 
459 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
460 			       desc->its_mapti_cmd.event_id);
461 
462 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
463 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
464 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
465 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
466 	its_encode_collection(cmd, col->col_id);
467 
468 	its_fixup_cmd(cmd);
469 
470 	return valid_col(col);
471 }
472 
473 static struct its_collection *its_build_movi_cmd(struct its_node *its,
474 						 struct its_cmd_block *cmd,
475 						 struct its_cmd_desc *desc)
476 {
477 	struct its_collection *col;
478 
479 	col = dev_event_to_col(desc->its_movi_cmd.dev,
480 			       desc->its_movi_cmd.event_id);
481 
482 	its_encode_cmd(cmd, GITS_CMD_MOVI);
483 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
484 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
485 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
486 
487 	its_fixup_cmd(cmd);
488 
489 	return valid_col(col);
490 }
491 
492 static struct its_collection *its_build_discard_cmd(struct its_node *its,
493 						    struct its_cmd_block *cmd,
494 						    struct its_cmd_desc *desc)
495 {
496 	struct its_collection *col;
497 
498 	col = dev_event_to_col(desc->its_discard_cmd.dev,
499 			       desc->its_discard_cmd.event_id);
500 
501 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
502 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
503 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
504 
505 	its_fixup_cmd(cmd);
506 
507 	return valid_col(col);
508 }
509 
510 static struct its_collection *its_build_inv_cmd(struct its_node *its,
511 						struct its_cmd_block *cmd,
512 						struct its_cmd_desc *desc)
513 {
514 	struct its_collection *col;
515 
516 	col = dev_event_to_col(desc->its_inv_cmd.dev,
517 			       desc->its_inv_cmd.event_id);
518 
519 	its_encode_cmd(cmd, GITS_CMD_INV);
520 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
521 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
522 
523 	its_fixup_cmd(cmd);
524 
525 	return valid_col(col);
526 }
527 
528 static struct its_collection *its_build_int_cmd(struct its_node *its,
529 						struct its_cmd_block *cmd,
530 						struct its_cmd_desc *desc)
531 {
532 	struct its_collection *col;
533 
534 	col = dev_event_to_col(desc->its_int_cmd.dev,
535 			       desc->its_int_cmd.event_id);
536 
537 	its_encode_cmd(cmd, GITS_CMD_INT);
538 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
539 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
540 
541 	its_fixup_cmd(cmd);
542 
543 	return valid_col(col);
544 }
545 
546 static struct its_collection *its_build_clear_cmd(struct its_node *its,
547 						  struct its_cmd_block *cmd,
548 						  struct its_cmd_desc *desc)
549 {
550 	struct its_collection *col;
551 
552 	col = dev_event_to_col(desc->its_clear_cmd.dev,
553 			       desc->its_clear_cmd.event_id);
554 
555 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
556 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
557 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
558 
559 	its_fixup_cmd(cmd);
560 
561 	return valid_col(col);
562 }
563 
564 static struct its_collection *its_build_invall_cmd(struct its_node *its,
565 						   struct its_cmd_block *cmd,
566 						   struct its_cmd_desc *desc)
567 {
568 	its_encode_cmd(cmd, GITS_CMD_INVALL);
569 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
570 
571 	its_fixup_cmd(cmd);
572 
573 	return NULL;
574 }
575 
576 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
577 					     struct its_cmd_block *cmd,
578 					     struct its_cmd_desc *desc)
579 {
580 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
581 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
582 
583 	its_fixup_cmd(cmd);
584 
585 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
586 }
587 
588 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
589 					   struct its_cmd_block *cmd,
590 					   struct its_cmd_desc *desc)
591 {
592 	unsigned long vpt_addr;
593 	u64 target;
594 
595 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
596 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
597 
598 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
599 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
600 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
601 	its_encode_target(cmd, target);
602 	its_encode_vpt_addr(cmd, vpt_addr);
603 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
604 
605 	its_fixup_cmd(cmd);
606 
607 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
608 }
609 
610 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
611 					    struct its_cmd_block *cmd,
612 					    struct its_cmd_desc *desc)
613 {
614 	u32 db;
615 
616 	if (desc->its_vmapti_cmd.db_enabled)
617 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
618 	else
619 		db = 1023;
620 
621 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
622 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
623 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
624 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
625 	its_encode_db_phys_id(cmd, db);
626 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
627 
628 	its_fixup_cmd(cmd);
629 
630 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
631 }
632 
633 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
634 					   struct its_cmd_block *cmd,
635 					   struct its_cmd_desc *desc)
636 {
637 	u32 db;
638 
639 	if (desc->its_vmovi_cmd.db_enabled)
640 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
641 	else
642 		db = 1023;
643 
644 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
645 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
646 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
647 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
648 	its_encode_db_phys_id(cmd, db);
649 	its_encode_db_valid(cmd, true);
650 
651 	its_fixup_cmd(cmd);
652 
653 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
654 }
655 
656 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
657 					   struct its_cmd_block *cmd,
658 					   struct its_cmd_desc *desc)
659 {
660 	u64 target;
661 
662 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
663 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
664 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
665 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
666 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
667 	its_encode_target(cmd, target);
668 
669 	its_fixup_cmd(cmd);
670 
671 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
672 }
673 
674 static u64 its_cmd_ptr_to_offset(struct its_node *its,
675 				 struct its_cmd_block *ptr)
676 {
677 	return (ptr - its->cmd_base) * sizeof(*ptr);
678 }
679 
680 static int its_queue_full(struct its_node *its)
681 {
682 	int widx;
683 	int ridx;
684 
685 	widx = its->cmd_write - its->cmd_base;
686 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
687 
688 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
689 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
690 		return 1;
691 
692 	return 0;
693 }
694 
695 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
696 {
697 	struct its_cmd_block *cmd;
698 	u32 count = 1000000;	/* 1s! */
699 
700 	while (its_queue_full(its)) {
701 		count--;
702 		if (!count) {
703 			pr_err_ratelimited("ITS queue not draining\n");
704 			return NULL;
705 		}
706 		cpu_relax();
707 		udelay(1);
708 	}
709 
710 	cmd = its->cmd_write++;
711 
712 	/* Handle queue wrapping */
713 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
714 		its->cmd_write = its->cmd_base;
715 
716 	/* Clear command  */
717 	cmd->raw_cmd[0] = 0;
718 	cmd->raw_cmd[1] = 0;
719 	cmd->raw_cmd[2] = 0;
720 	cmd->raw_cmd[3] = 0;
721 
722 	return cmd;
723 }
724 
725 static struct its_cmd_block *its_post_commands(struct its_node *its)
726 {
727 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
728 
729 	writel_relaxed(wr, its->base + GITS_CWRITER);
730 
731 	return its->cmd_write;
732 }
733 
734 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
735 {
736 	/*
737 	 * Make sure the commands written to memory are observable by
738 	 * the ITS.
739 	 */
740 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
741 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
742 	else
743 		dsb(ishst);
744 }
745 
746 static int its_wait_for_range_completion(struct its_node *its,
747 					 struct its_cmd_block *from,
748 					 struct its_cmd_block *to)
749 {
750 	u64 rd_idx, from_idx, to_idx;
751 	u32 count = 1000000;	/* 1s! */
752 
753 	from_idx = its_cmd_ptr_to_offset(its, from);
754 	to_idx = its_cmd_ptr_to_offset(its, to);
755 
756 	while (1) {
757 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
758 
759 		/* Direct case */
760 		if (from_idx < to_idx && rd_idx >= to_idx)
761 			break;
762 
763 		/* Wrapped case */
764 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
765 			break;
766 
767 		count--;
768 		if (!count) {
769 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
770 					   from_idx, to_idx, rd_idx);
771 			return -1;
772 		}
773 		cpu_relax();
774 		udelay(1);
775 	}
776 
777 	return 0;
778 }
779 
780 /* Warning, macro hell follows */
781 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
782 void name(struct its_node *its,						\
783 	  buildtype builder,						\
784 	  struct its_cmd_desc *desc)					\
785 {									\
786 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
787 	synctype *sync_obj;						\
788 	unsigned long flags;						\
789 									\
790 	raw_spin_lock_irqsave(&its->lock, flags);			\
791 									\
792 	cmd = its_allocate_entry(its);					\
793 	if (!cmd) {		/* We're soooooo screewed... */		\
794 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
795 		return;							\
796 	}								\
797 	sync_obj = builder(its, cmd, desc);				\
798 	its_flush_cmd(its, cmd);					\
799 									\
800 	if (sync_obj) {							\
801 		sync_cmd = its_allocate_entry(its);			\
802 		if (!sync_cmd)						\
803 			goto post;					\
804 									\
805 		buildfn(its, sync_cmd, sync_obj);			\
806 		its_flush_cmd(its, sync_cmd);				\
807 	}								\
808 									\
809 post:									\
810 	next_cmd = its_post_commands(its);				\
811 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
812 									\
813 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
814 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
815 }
816 
817 static void its_build_sync_cmd(struct its_node *its,
818 			       struct its_cmd_block *sync_cmd,
819 			       struct its_collection *sync_col)
820 {
821 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
822 	its_encode_target(sync_cmd, sync_col->target_address);
823 
824 	its_fixup_cmd(sync_cmd);
825 }
826 
827 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
828 			     struct its_collection, its_build_sync_cmd)
829 
830 static void its_build_vsync_cmd(struct its_node *its,
831 				struct its_cmd_block *sync_cmd,
832 				struct its_vpe *sync_vpe)
833 {
834 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
835 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
836 
837 	its_fixup_cmd(sync_cmd);
838 }
839 
840 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
841 			     struct its_vpe, its_build_vsync_cmd)
842 
843 static void its_send_int(struct its_device *dev, u32 event_id)
844 {
845 	struct its_cmd_desc desc;
846 
847 	desc.its_int_cmd.dev = dev;
848 	desc.its_int_cmd.event_id = event_id;
849 
850 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
851 }
852 
853 static void its_send_clear(struct its_device *dev, u32 event_id)
854 {
855 	struct its_cmd_desc desc;
856 
857 	desc.its_clear_cmd.dev = dev;
858 	desc.its_clear_cmd.event_id = event_id;
859 
860 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
861 }
862 
863 static void its_send_inv(struct its_device *dev, u32 event_id)
864 {
865 	struct its_cmd_desc desc;
866 
867 	desc.its_inv_cmd.dev = dev;
868 	desc.its_inv_cmd.event_id = event_id;
869 
870 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
871 }
872 
873 static void its_send_mapd(struct its_device *dev, int valid)
874 {
875 	struct its_cmd_desc desc;
876 
877 	desc.its_mapd_cmd.dev = dev;
878 	desc.its_mapd_cmd.valid = !!valid;
879 
880 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
881 }
882 
883 static void its_send_mapc(struct its_node *its, struct its_collection *col,
884 			  int valid)
885 {
886 	struct its_cmd_desc desc;
887 
888 	desc.its_mapc_cmd.col = col;
889 	desc.its_mapc_cmd.valid = !!valid;
890 
891 	its_send_single_command(its, its_build_mapc_cmd, &desc);
892 }
893 
894 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
895 {
896 	struct its_cmd_desc desc;
897 
898 	desc.its_mapti_cmd.dev = dev;
899 	desc.its_mapti_cmd.phys_id = irq_id;
900 	desc.its_mapti_cmd.event_id = id;
901 
902 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
903 }
904 
905 static void its_send_movi(struct its_device *dev,
906 			  struct its_collection *col, u32 id)
907 {
908 	struct its_cmd_desc desc;
909 
910 	desc.its_movi_cmd.dev = dev;
911 	desc.its_movi_cmd.col = col;
912 	desc.its_movi_cmd.event_id = id;
913 
914 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
915 }
916 
917 static void its_send_discard(struct its_device *dev, u32 id)
918 {
919 	struct its_cmd_desc desc;
920 
921 	desc.its_discard_cmd.dev = dev;
922 	desc.its_discard_cmd.event_id = id;
923 
924 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
925 }
926 
927 static void its_send_invall(struct its_node *its, struct its_collection *col)
928 {
929 	struct its_cmd_desc desc;
930 
931 	desc.its_invall_cmd.col = col;
932 
933 	its_send_single_command(its, its_build_invall_cmd, &desc);
934 }
935 
936 static void its_send_vmapti(struct its_device *dev, u32 id)
937 {
938 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
939 	struct its_cmd_desc desc;
940 
941 	desc.its_vmapti_cmd.vpe = map->vpe;
942 	desc.its_vmapti_cmd.dev = dev;
943 	desc.its_vmapti_cmd.virt_id = map->vintid;
944 	desc.its_vmapti_cmd.event_id = id;
945 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
946 
947 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
948 }
949 
950 static void its_send_vmovi(struct its_device *dev, u32 id)
951 {
952 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
953 	struct its_cmd_desc desc;
954 
955 	desc.its_vmovi_cmd.vpe = map->vpe;
956 	desc.its_vmovi_cmd.dev = dev;
957 	desc.its_vmovi_cmd.event_id = id;
958 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
959 
960 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
961 }
962 
963 static void its_send_vmapp(struct its_node *its,
964 			   struct its_vpe *vpe, bool valid)
965 {
966 	struct its_cmd_desc desc;
967 
968 	desc.its_vmapp_cmd.vpe = vpe;
969 	desc.its_vmapp_cmd.valid = valid;
970 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
971 
972 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
973 }
974 
975 static void its_send_vmovp(struct its_vpe *vpe)
976 {
977 	struct its_cmd_desc desc;
978 	struct its_node *its;
979 	unsigned long flags;
980 	int col_id = vpe->col_idx;
981 
982 	desc.its_vmovp_cmd.vpe = vpe;
983 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
984 
985 	if (!its_list_map) {
986 		its = list_first_entry(&its_nodes, struct its_node, entry);
987 		desc.its_vmovp_cmd.seq_num = 0;
988 		desc.its_vmovp_cmd.col = &its->collections[col_id];
989 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
990 		return;
991 	}
992 
993 	/*
994 	 * Yet another marvel of the architecture. If using the
995 	 * its_list "feature", we need to make sure that all ITSs
996 	 * receive all VMOVP commands in the same order. The only way
997 	 * to guarantee this is to make vmovp a serialization point.
998 	 *
999 	 * Wall <-- Head.
1000 	 */
1001 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1002 
1003 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1004 
1005 	/* Emit VMOVPs */
1006 	list_for_each_entry(its, &its_nodes, entry) {
1007 		if (!its->is_v4)
1008 			continue;
1009 
1010 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1011 			continue;
1012 
1013 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1014 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1015 	}
1016 
1017 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1018 }
1019 
1020 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1021 {
1022 	struct its_cmd_desc desc;
1023 
1024 	desc.its_vinvall_cmd.vpe = vpe;
1025 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1026 }
1027 
1028 /*
1029  * irqchip functions - assumes MSI, mostly.
1030  */
1031 
1032 static inline u32 its_get_event_id(struct irq_data *d)
1033 {
1034 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1035 	return d->hwirq - its_dev->event_map.lpi_base;
1036 }
1037 
1038 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1039 {
1040 	irq_hw_number_t hwirq;
1041 	void *va;
1042 	u8 *cfg;
1043 
1044 	if (irqd_is_forwarded_to_vcpu(d)) {
1045 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1046 		u32 event = its_get_event_id(d);
1047 		struct its_vlpi_map *map;
1048 
1049 		va = page_address(its_dev->event_map.vm->vprop_page);
1050 		map = &its_dev->event_map.vlpi_maps[event];
1051 		hwirq = map->vintid;
1052 
1053 		/* Remember the updated property */
1054 		map->properties &= ~clr;
1055 		map->properties |= set | LPI_PROP_GROUP1;
1056 	} else {
1057 		va = gic_rdists->prop_table_va;
1058 		hwirq = d->hwirq;
1059 	}
1060 
1061 	cfg = va + hwirq - 8192;
1062 	*cfg &= ~clr;
1063 	*cfg |= set | LPI_PROP_GROUP1;
1064 
1065 	/*
1066 	 * Make the above write visible to the redistributors.
1067 	 * And yes, we're flushing exactly: One. Single. Byte.
1068 	 * Humpf...
1069 	 */
1070 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1071 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1072 	else
1073 		dsb(ishst);
1074 }
1075 
1076 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1077 {
1078 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1079 
1080 	lpi_write_config(d, clr, set);
1081 	its_send_inv(its_dev, its_get_event_id(d));
1082 }
1083 
1084 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1085 {
1086 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1087 	u32 event = its_get_event_id(d);
1088 
1089 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1090 		return;
1091 
1092 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1093 
1094 	/*
1095 	 * More fun with the architecture:
1096 	 *
1097 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1098 	 * value or to 1023, depending on the enable bit. But that
1099 	 * would be issueing a mapping for an /existing/ DevID+EventID
1100 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1101 	 * to the /same/ vPE, using this opportunity to adjust the
1102 	 * doorbell. Mouahahahaha. We loves it, Precious.
1103 	 */
1104 	its_send_vmovi(its_dev, event);
1105 }
1106 
1107 static void its_mask_irq(struct irq_data *d)
1108 {
1109 	if (irqd_is_forwarded_to_vcpu(d))
1110 		its_vlpi_set_doorbell(d, false);
1111 
1112 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1113 }
1114 
1115 static void its_unmask_irq(struct irq_data *d)
1116 {
1117 	if (irqd_is_forwarded_to_vcpu(d))
1118 		its_vlpi_set_doorbell(d, true);
1119 
1120 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1121 }
1122 
1123 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1124 			    bool force)
1125 {
1126 	unsigned int cpu;
1127 	const struct cpumask *cpu_mask = cpu_online_mask;
1128 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1129 	struct its_collection *target_col;
1130 	u32 id = its_get_event_id(d);
1131 
1132 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1133 	if (irqd_is_forwarded_to_vcpu(d))
1134 		return -EINVAL;
1135 
1136        /* lpi cannot be routed to a redistributor that is on a foreign node */
1137 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1138 		if (its_dev->its->numa_node >= 0) {
1139 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1140 			if (!cpumask_intersects(mask_val, cpu_mask))
1141 				return -EINVAL;
1142 		}
1143 	}
1144 
1145 	cpu = cpumask_any_and(mask_val, cpu_mask);
1146 
1147 	if (cpu >= nr_cpu_ids)
1148 		return -EINVAL;
1149 
1150 	/* don't set the affinity when the target cpu is same as current one */
1151 	if (cpu != its_dev->event_map.col_map[id]) {
1152 		target_col = &its_dev->its->collections[cpu];
1153 		its_send_movi(its_dev, target_col, id);
1154 		its_dev->event_map.col_map[id] = cpu;
1155 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1156 	}
1157 
1158 	return IRQ_SET_MASK_OK_DONE;
1159 }
1160 
1161 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1162 {
1163 	struct its_node *its = its_dev->its;
1164 
1165 	return its->phys_base + GITS_TRANSLATER;
1166 }
1167 
1168 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1169 {
1170 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1171 	struct its_node *its;
1172 	u64 addr;
1173 
1174 	its = its_dev->its;
1175 	addr = its->get_msi_base(its_dev);
1176 
1177 	msg->address_lo		= lower_32_bits(addr);
1178 	msg->address_hi		= upper_32_bits(addr);
1179 	msg->data		= its_get_event_id(d);
1180 
1181 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1182 }
1183 
1184 static int its_irq_set_irqchip_state(struct irq_data *d,
1185 				     enum irqchip_irq_state which,
1186 				     bool state)
1187 {
1188 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1189 	u32 event = its_get_event_id(d);
1190 
1191 	if (which != IRQCHIP_STATE_PENDING)
1192 		return -EINVAL;
1193 
1194 	if (state)
1195 		its_send_int(its_dev, event);
1196 	else
1197 		its_send_clear(its_dev, event);
1198 
1199 	return 0;
1200 }
1201 
1202 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1203 {
1204 	unsigned long flags;
1205 
1206 	/* Not using the ITS list? Everything is always mapped. */
1207 	if (!its_list_map)
1208 		return;
1209 
1210 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1211 
1212 	/*
1213 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1214 	 * them mapped now.
1215 	 */
1216 	vm->vlpi_count[its->list_nr]++;
1217 
1218 	if (vm->vlpi_count[its->list_nr] == 1) {
1219 		int i;
1220 
1221 		for (i = 0; i < vm->nr_vpes; i++) {
1222 			struct its_vpe *vpe = vm->vpes[i];
1223 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1224 
1225 			/* Map the VPE to the first possible CPU */
1226 			vpe->col_idx = cpumask_first(cpu_online_mask);
1227 			its_send_vmapp(its, vpe, true);
1228 			its_send_vinvall(its, vpe);
1229 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1230 		}
1231 	}
1232 
1233 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1234 }
1235 
1236 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1237 {
1238 	unsigned long flags;
1239 
1240 	/* Not using the ITS list? Everything is always mapped. */
1241 	if (!its_list_map)
1242 		return;
1243 
1244 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1245 
1246 	if (!--vm->vlpi_count[its->list_nr]) {
1247 		int i;
1248 
1249 		for (i = 0; i < vm->nr_vpes; i++)
1250 			its_send_vmapp(its, vm->vpes[i], false);
1251 	}
1252 
1253 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1254 }
1255 
1256 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1257 {
1258 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1259 	u32 event = its_get_event_id(d);
1260 	int ret = 0;
1261 
1262 	if (!info->map)
1263 		return -EINVAL;
1264 
1265 	mutex_lock(&its_dev->event_map.vlpi_lock);
1266 
1267 	if (!its_dev->event_map.vm) {
1268 		struct its_vlpi_map *maps;
1269 
1270 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1271 			       GFP_KERNEL);
1272 		if (!maps) {
1273 			ret = -ENOMEM;
1274 			goto out;
1275 		}
1276 
1277 		its_dev->event_map.vm = info->map->vm;
1278 		its_dev->event_map.vlpi_maps = maps;
1279 	} else if (its_dev->event_map.vm != info->map->vm) {
1280 		ret = -EINVAL;
1281 		goto out;
1282 	}
1283 
1284 	/* Get our private copy of the mapping information */
1285 	its_dev->event_map.vlpi_maps[event] = *info->map;
1286 
1287 	if (irqd_is_forwarded_to_vcpu(d)) {
1288 		/* Already mapped, move it around */
1289 		its_send_vmovi(its_dev, event);
1290 	} else {
1291 		/* Ensure all the VPEs are mapped on this ITS */
1292 		its_map_vm(its_dev->its, info->map->vm);
1293 
1294 		/*
1295 		 * Flag the interrupt as forwarded so that we can
1296 		 * start poking the virtual property table.
1297 		 */
1298 		irqd_set_forwarded_to_vcpu(d);
1299 
1300 		/* Write out the property to the prop table */
1301 		lpi_write_config(d, 0xff, info->map->properties);
1302 
1303 		/* Drop the physical mapping */
1304 		its_send_discard(its_dev, event);
1305 
1306 		/* and install the virtual one */
1307 		its_send_vmapti(its_dev, event);
1308 
1309 		/* Increment the number of VLPIs */
1310 		its_dev->event_map.nr_vlpis++;
1311 	}
1312 
1313 out:
1314 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1315 	return ret;
1316 }
1317 
1318 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1319 {
1320 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1321 	u32 event = its_get_event_id(d);
1322 	int ret = 0;
1323 
1324 	mutex_lock(&its_dev->event_map.vlpi_lock);
1325 
1326 	if (!its_dev->event_map.vm ||
1327 	    !its_dev->event_map.vlpi_maps[event].vm) {
1328 		ret = -EINVAL;
1329 		goto out;
1330 	}
1331 
1332 	/* Copy our mapping information to the incoming request */
1333 	*info->map = its_dev->event_map.vlpi_maps[event];
1334 
1335 out:
1336 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1337 	return ret;
1338 }
1339 
1340 static int its_vlpi_unmap(struct irq_data *d)
1341 {
1342 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1343 	u32 event = its_get_event_id(d);
1344 	int ret = 0;
1345 
1346 	mutex_lock(&its_dev->event_map.vlpi_lock);
1347 
1348 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1349 		ret = -EINVAL;
1350 		goto out;
1351 	}
1352 
1353 	/* Drop the virtual mapping */
1354 	its_send_discard(its_dev, event);
1355 
1356 	/* and restore the physical one */
1357 	irqd_clr_forwarded_to_vcpu(d);
1358 	its_send_mapti(its_dev, d->hwirq, event);
1359 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1360 				    LPI_PROP_ENABLED |
1361 				    LPI_PROP_GROUP1));
1362 
1363 	/* Potentially unmap the VM from this ITS */
1364 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1365 
1366 	/*
1367 	 * Drop the refcount and make the device available again if
1368 	 * this was the last VLPI.
1369 	 */
1370 	if (!--its_dev->event_map.nr_vlpis) {
1371 		its_dev->event_map.vm = NULL;
1372 		kfree(its_dev->event_map.vlpi_maps);
1373 	}
1374 
1375 out:
1376 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1377 	return ret;
1378 }
1379 
1380 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1381 {
1382 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1383 
1384 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1385 		return -EINVAL;
1386 
1387 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1388 		lpi_update_config(d, 0xff, info->config);
1389 	else
1390 		lpi_write_config(d, 0xff, info->config);
1391 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1392 
1393 	return 0;
1394 }
1395 
1396 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1397 {
1398 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1399 	struct its_cmd_info *info = vcpu_info;
1400 
1401 	/* Need a v4 ITS */
1402 	if (!its_dev->its->is_v4)
1403 		return -EINVAL;
1404 
1405 	/* Unmap request? */
1406 	if (!info)
1407 		return its_vlpi_unmap(d);
1408 
1409 	switch (info->cmd_type) {
1410 	case MAP_VLPI:
1411 		return its_vlpi_map(d, info);
1412 
1413 	case GET_VLPI:
1414 		return its_vlpi_get(d, info);
1415 
1416 	case PROP_UPDATE_VLPI:
1417 	case PROP_UPDATE_AND_INV_VLPI:
1418 		return its_vlpi_prop_update(d, info);
1419 
1420 	default:
1421 		return -EINVAL;
1422 	}
1423 }
1424 
1425 static struct irq_chip its_irq_chip = {
1426 	.name			= "ITS",
1427 	.irq_mask		= its_mask_irq,
1428 	.irq_unmask		= its_unmask_irq,
1429 	.irq_eoi		= irq_chip_eoi_parent,
1430 	.irq_set_affinity	= its_set_affinity,
1431 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1432 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1433 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1434 };
1435 
1436 
1437 /*
1438  * How we allocate LPIs:
1439  *
1440  * lpi_range_list contains ranges of LPIs that are to available to
1441  * allocate from. To allocate LPIs, just pick the first range that
1442  * fits the required allocation, and reduce it by the required
1443  * amount. Once empty, remove the range from the list.
1444  *
1445  * To free a range of LPIs, add a free range to the list, sort it and
1446  * merge the result if the new range happens to be adjacent to an
1447  * already free block.
1448  *
1449  * The consequence of the above is that allocation is cost is low, but
1450  * freeing is expensive. We assumes that freeing rarely occurs.
1451  */
1452 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1453 
1454 static DEFINE_MUTEX(lpi_range_lock);
1455 static LIST_HEAD(lpi_range_list);
1456 
1457 struct lpi_range {
1458 	struct list_head	entry;
1459 	u32			base_id;
1460 	u32			span;
1461 };
1462 
1463 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1464 {
1465 	struct lpi_range *range;
1466 
1467 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1468 	if (range) {
1469 		range->base_id = base;
1470 		range->span = span;
1471 	}
1472 
1473 	return range;
1474 }
1475 
1476 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1477 {
1478 	struct lpi_range *range, *tmp;
1479 	int err = -ENOSPC;
1480 
1481 	mutex_lock(&lpi_range_lock);
1482 
1483 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1484 		if (range->span >= nr_lpis) {
1485 			*base = range->base_id;
1486 			range->base_id += nr_lpis;
1487 			range->span -= nr_lpis;
1488 
1489 			if (range->span == 0) {
1490 				list_del(&range->entry);
1491 				kfree(range);
1492 			}
1493 
1494 			err = 0;
1495 			break;
1496 		}
1497 	}
1498 
1499 	mutex_unlock(&lpi_range_lock);
1500 
1501 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1502 	return err;
1503 }
1504 
1505 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1506 {
1507 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1508 		return;
1509 	if (a->base_id + a->span != b->base_id)
1510 		return;
1511 	b->base_id = a->base_id;
1512 	b->span += a->span;
1513 	list_del(&a->entry);
1514 	kfree(a);
1515 }
1516 
1517 static int free_lpi_range(u32 base, u32 nr_lpis)
1518 {
1519 	struct lpi_range *new, *old;
1520 
1521 	new = mk_lpi_range(base, nr_lpis);
1522 	if (!new)
1523 		return -ENOMEM;
1524 
1525 	mutex_lock(&lpi_range_lock);
1526 
1527 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1528 		if (old->base_id < base)
1529 			break;
1530 	}
1531 	/*
1532 	 * old is the last element with ->base_id smaller than base,
1533 	 * so new goes right after it. If there are no elements with
1534 	 * ->base_id smaller than base, &old->entry ends up pointing
1535 	 * at the head of the list, and inserting new it the start of
1536 	 * the list is the right thing to do in that case as well.
1537 	 */
1538 	list_add(&new->entry, &old->entry);
1539 	/*
1540 	 * Now check if we can merge with the preceding and/or
1541 	 * following ranges.
1542 	 */
1543 	merge_lpi_ranges(old, new);
1544 	merge_lpi_ranges(new, list_next_entry(new, entry));
1545 
1546 	mutex_unlock(&lpi_range_lock);
1547 	return 0;
1548 }
1549 
1550 static int __init its_lpi_init(u32 id_bits)
1551 {
1552 	u32 lpis = (1UL << id_bits) - 8192;
1553 	u32 numlpis;
1554 	int err;
1555 
1556 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1557 
1558 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1559 		lpis = numlpis;
1560 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1561 			lpis);
1562 	}
1563 
1564 	/*
1565 	 * Initializing the allocator is just the same as freeing the
1566 	 * full range of LPIs.
1567 	 */
1568 	err = free_lpi_range(8192, lpis);
1569 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1570 	return err;
1571 }
1572 
1573 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1574 {
1575 	unsigned long *bitmap = NULL;
1576 	int err = 0;
1577 
1578 	do {
1579 		err = alloc_lpi_range(nr_irqs, base);
1580 		if (!err)
1581 			break;
1582 
1583 		nr_irqs /= 2;
1584 	} while (nr_irqs > 0);
1585 
1586 	if (!nr_irqs)
1587 		err = -ENOSPC;
1588 
1589 	if (err)
1590 		goto out;
1591 
1592 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1593 	if (!bitmap)
1594 		goto out;
1595 
1596 	*nr_ids = nr_irqs;
1597 
1598 out:
1599 	if (!bitmap)
1600 		*base = *nr_ids = 0;
1601 
1602 	return bitmap;
1603 }
1604 
1605 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1606 {
1607 	WARN_ON(free_lpi_range(base, nr_ids));
1608 	kfree(bitmap);
1609 }
1610 
1611 static void gic_reset_prop_table(void *va)
1612 {
1613 	/* Priority 0xa0, Group-1, disabled */
1614 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1615 
1616 	/* Make sure the GIC will observe the written configuration */
1617 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1618 }
1619 
1620 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1621 {
1622 	struct page *prop_page;
1623 
1624 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1625 	if (!prop_page)
1626 		return NULL;
1627 
1628 	gic_reset_prop_table(page_address(prop_page));
1629 
1630 	return prop_page;
1631 }
1632 
1633 static void its_free_prop_table(struct page *prop_page)
1634 {
1635 	free_pages((unsigned long)page_address(prop_page),
1636 		   get_order(LPI_PROPBASE_SZ));
1637 }
1638 
1639 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1640 {
1641 	phys_addr_t start, end, addr_end;
1642 	u64 i;
1643 
1644 	/*
1645 	 * We don't bother checking for a kdump kernel as by
1646 	 * construction, the LPI tables are out of this kernel's
1647 	 * memory map.
1648 	 */
1649 	if (is_kdump_kernel())
1650 		return true;
1651 
1652 	addr_end = addr + size - 1;
1653 
1654 	for_each_reserved_mem_region(i, &start, &end) {
1655 		if (addr >= start && addr_end <= end)
1656 			return true;
1657 	}
1658 
1659 	/* Not found, not a good sign... */
1660 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1661 		&addr, &addr_end);
1662 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1663 	return false;
1664 }
1665 
1666 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1667 {
1668 	if (efi_enabled(EFI_CONFIG_TABLES))
1669 		return efi_mem_reserve_persistent(addr, size);
1670 
1671 	return 0;
1672 }
1673 
1674 static int __init its_setup_lpi_prop_table(void)
1675 {
1676 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1677 		u64 val;
1678 
1679 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1680 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1681 
1682 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1683 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1684 						     LPI_PROPBASE_SZ,
1685 						     MEMREMAP_WB);
1686 		gic_reset_prop_table(gic_rdists->prop_table_va);
1687 	} else {
1688 		struct page *page;
1689 
1690 		lpi_id_bits = min_t(u32,
1691 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1692 				    ITS_MAX_LPI_NRBITS);
1693 		page = its_allocate_prop_table(GFP_NOWAIT);
1694 		if (!page) {
1695 			pr_err("Failed to allocate PROPBASE\n");
1696 			return -ENOMEM;
1697 		}
1698 
1699 		gic_rdists->prop_table_pa = page_to_phys(page);
1700 		gic_rdists->prop_table_va = page_address(page);
1701 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1702 					  LPI_PROPBASE_SZ));
1703 	}
1704 
1705 	pr_info("GICv3: using LPI property table @%pa\n",
1706 		&gic_rdists->prop_table_pa);
1707 
1708 	return its_lpi_init(lpi_id_bits);
1709 }
1710 
1711 static const char *its_base_type_string[] = {
1712 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1713 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1714 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1715 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1716 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1717 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1718 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1719 };
1720 
1721 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1722 {
1723 	u32 idx = baser - its->tables;
1724 
1725 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1726 }
1727 
1728 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1729 			    u64 val)
1730 {
1731 	u32 idx = baser - its->tables;
1732 
1733 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1734 	baser->val = its_read_baser(its, baser);
1735 }
1736 
1737 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1738 			   u64 cache, u64 shr, u32 psz, u32 order,
1739 			   bool indirect)
1740 {
1741 	u64 val = its_read_baser(its, baser);
1742 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1743 	u64 type = GITS_BASER_TYPE(val);
1744 	u64 baser_phys, tmp;
1745 	u32 alloc_pages;
1746 	struct page *page;
1747 	void *base;
1748 
1749 retry_alloc_baser:
1750 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1751 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1752 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1753 			&its->phys_base, its_base_type_string[type],
1754 			alloc_pages, GITS_BASER_PAGES_MAX);
1755 		alloc_pages = GITS_BASER_PAGES_MAX;
1756 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1757 	}
1758 
1759 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1760 	if (!page)
1761 		return -ENOMEM;
1762 
1763 	base = (void *)page_address(page);
1764 	baser_phys = virt_to_phys(base);
1765 
1766 	/* Check if the physical address of the memory is above 48bits */
1767 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1768 
1769 		/* 52bit PA is supported only when PageSize=64K */
1770 		if (psz != SZ_64K) {
1771 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1772 			free_pages((unsigned long)base, order);
1773 			return -ENXIO;
1774 		}
1775 
1776 		/* Convert 52bit PA to 48bit field */
1777 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1778 	}
1779 
1780 retry_baser:
1781 	val = (baser_phys					 |
1782 		(type << GITS_BASER_TYPE_SHIFT)			 |
1783 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1784 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1785 		cache						 |
1786 		shr						 |
1787 		GITS_BASER_VALID);
1788 
1789 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1790 
1791 	switch (psz) {
1792 	case SZ_4K:
1793 		val |= GITS_BASER_PAGE_SIZE_4K;
1794 		break;
1795 	case SZ_16K:
1796 		val |= GITS_BASER_PAGE_SIZE_16K;
1797 		break;
1798 	case SZ_64K:
1799 		val |= GITS_BASER_PAGE_SIZE_64K;
1800 		break;
1801 	}
1802 
1803 	its_write_baser(its, baser, val);
1804 	tmp = baser->val;
1805 
1806 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1807 		/*
1808 		 * Shareability didn't stick. Just use
1809 		 * whatever the read reported, which is likely
1810 		 * to be the only thing this redistributor
1811 		 * supports. If that's zero, make it
1812 		 * non-cacheable as well.
1813 		 */
1814 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1815 		if (!shr) {
1816 			cache = GITS_BASER_nC;
1817 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1818 		}
1819 		goto retry_baser;
1820 	}
1821 
1822 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1823 		/*
1824 		 * Page size didn't stick. Let's try a smaller
1825 		 * size and retry. If we reach 4K, then
1826 		 * something is horribly wrong...
1827 		 */
1828 		free_pages((unsigned long)base, order);
1829 		baser->base = NULL;
1830 
1831 		switch (psz) {
1832 		case SZ_16K:
1833 			psz = SZ_4K;
1834 			goto retry_alloc_baser;
1835 		case SZ_64K:
1836 			psz = SZ_16K;
1837 			goto retry_alloc_baser;
1838 		}
1839 	}
1840 
1841 	if (val != tmp) {
1842 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1843 		       &its->phys_base, its_base_type_string[type],
1844 		       val, tmp);
1845 		free_pages((unsigned long)base, order);
1846 		return -ENXIO;
1847 	}
1848 
1849 	baser->order = order;
1850 	baser->base = base;
1851 	baser->psz = psz;
1852 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1853 
1854 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1855 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1856 		its_base_type_string[type],
1857 		(unsigned long)virt_to_phys(base),
1858 		indirect ? "indirect" : "flat", (int)esz,
1859 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1860 
1861 	return 0;
1862 }
1863 
1864 static bool its_parse_indirect_baser(struct its_node *its,
1865 				     struct its_baser *baser,
1866 				     u32 psz, u32 *order, u32 ids)
1867 {
1868 	u64 tmp = its_read_baser(its, baser);
1869 	u64 type = GITS_BASER_TYPE(tmp);
1870 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1871 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1872 	u32 new_order = *order;
1873 	bool indirect = false;
1874 
1875 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1876 	if ((esz << ids) > (psz * 2)) {
1877 		/*
1878 		 * Find out whether hw supports a single or two-level table by
1879 		 * table by reading bit at offset '62' after writing '1' to it.
1880 		 */
1881 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1882 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1883 
1884 		if (indirect) {
1885 			/*
1886 			 * The size of the lvl2 table is equal to ITS page size
1887 			 * which is 'psz'. For computing lvl1 table size,
1888 			 * subtract ID bits that sparse lvl2 table from 'ids'
1889 			 * which is reported by ITS hardware times lvl1 table
1890 			 * entry size.
1891 			 */
1892 			ids -= ilog2(psz / (int)esz);
1893 			esz = GITS_LVL1_ENTRY_SIZE;
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Allocate as many entries as required to fit the
1899 	 * range of device IDs that the ITS can grok... The ID
1900 	 * space being incredibly sparse, this results in a
1901 	 * massive waste of memory if two-level device table
1902 	 * feature is not supported by hardware.
1903 	 */
1904 	new_order = max_t(u32, get_order(esz << ids), new_order);
1905 	if (new_order >= MAX_ORDER) {
1906 		new_order = MAX_ORDER - 1;
1907 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1908 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1909 			&its->phys_base, its_base_type_string[type],
1910 			its->device_ids, ids);
1911 	}
1912 
1913 	*order = new_order;
1914 
1915 	return indirect;
1916 }
1917 
1918 static void its_free_tables(struct its_node *its)
1919 {
1920 	int i;
1921 
1922 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1923 		if (its->tables[i].base) {
1924 			free_pages((unsigned long)its->tables[i].base,
1925 				   its->tables[i].order);
1926 			its->tables[i].base = NULL;
1927 		}
1928 	}
1929 }
1930 
1931 static int its_alloc_tables(struct its_node *its)
1932 {
1933 	u64 shr = GITS_BASER_InnerShareable;
1934 	u64 cache = GITS_BASER_RaWaWb;
1935 	u32 psz = SZ_64K;
1936 	int err, i;
1937 
1938 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1939 		/* erratum 24313: ignore memory access type */
1940 		cache = GITS_BASER_nCnB;
1941 
1942 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1943 		struct its_baser *baser = its->tables + i;
1944 		u64 val = its_read_baser(its, baser);
1945 		u64 type = GITS_BASER_TYPE(val);
1946 		u32 order = get_order(psz);
1947 		bool indirect = false;
1948 
1949 		switch (type) {
1950 		case GITS_BASER_TYPE_NONE:
1951 			continue;
1952 
1953 		case GITS_BASER_TYPE_DEVICE:
1954 			indirect = its_parse_indirect_baser(its, baser,
1955 							    psz, &order,
1956 							    its->device_ids);
1957 			break;
1958 
1959 		case GITS_BASER_TYPE_VCPU:
1960 			indirect = its_parse_indirect_baser(its, baser,
1961 							    psz, &order,
1962 							    ITS_MAX_VPEID_BITS);
1963 			break;
1964 		}
1965 
1966 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1967 		if (err < 0) {
1968 			its_free_tables(its);
1969 			return err;
1970 		}
1971 
1972 		/* Update settings which will be used for next BASERn */
1973 		psz = baser->psz;
1974 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1975 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static int its_alloc_collections(struct its_node *its)
1982 {
1983 	int i;
1984 
1985 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1986 				   GFP_KERNEL);
1987 	if (!its->collections)
1988 		return -ENOMEM;
1989 
1990 	for (i = 0; i < nr_cpu_ids; i++)
1991 		its->collections[i].target_address = ~0ULL;
1992 
1993 	return 0;
1994 }
1995 
1996 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1997 {
1998 	struct page *pend_page;
1999 
2000 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2001 				get_order(LPI_PENDBASE_SZ));
2002 	if (!pend_page)
2003 		return NULL;
2004 
2005 	/* Make sure the GIC will observe the zero-ed page */
2006 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2007 
2008 	return pend_page;
2009 }
2010 
2011 static void its_free_pending_table(struct page *pt)
2012 {
2013 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2014 }
2015 
2016 /*
2017  * Booting with kdump and LPIs enabled is generally fine. Any other
2018  * case is wrong in the absence of firmware/EFI support.
2019  */
2020 static bool enabled_lpis_allowed(void)
2021 {
2022 	phys_addr_t addr;
2023 	u64 val;
2024 
2025 	/* Check whether the property table is in a reserved region */
2026 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2027 	addr = val & GENMASK_ULL(51, 12);
2028 
2029 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2030 }
2031 
2032 static int __init allocate_lpi_tables(void)
2033 {
2034 	u64 val;
2035 	int err, cpu;
2036 
2037 	/*
2038 	 * If LPIs are enabled while we run this from the boot CPU,
2039 	 * flag the RD tables as pre-allocated if the stars do align.
2040 	 */
2041 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2042 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2043 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2044 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2045 		pr_info("GICv3: Using preallocated redistributor tables\n");
2046 	}
2047 
2048 	err = its_setup_lpi_prop_table();
2049 	if (err)
2050 		return err;
2051 
2052 	/*
2053 	 * We allocate all the pending tables anyway, as we may have a
2054 	 * mix of RDs that have had LPIs enabled, and some that
2055 	 * don't. We'll free the unused ones as each CPU comes online.
2056 	 */
2057 	for_each_possible_cpu(cpu) {
2058 		struct page *pend_page;
2059 
2060 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2061 		if (!pend_page) {
2062 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2063 			return -ENOMEM;
2064 		}
2065 
2066 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2073 {
2074 	u32 count = 1000000;	/* 1s! */
2075 	bool clean;
2076 	u64 val;
2077 
2078 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2079 	val &= ~GICR_VPENDBASER_Valid;
2080 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2081 
2082 	do {
2083 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2084 		clean = !(val & GICR_VPENDBASER_Dirty);
2085 		if (!clean) {
2086 			count--;
2087 			cpu_relax();
2088 			udelay(1);
2089 		}
2090 	} while (!clean && count);
2091 
2092 	return val;
2093 }
2094 
2095 static void its_cpu_init_lpis(void)
2096 {
2097 	void __iomem *rbase = gic_data_rdist_rd_base();
2098 	struct page *pend_page;
2099 	phys_addr_t paddr;
2100 	u64 val, tmp;
2101 
2102 	if (gic_data_rdist()->lpi_enabled)
2103 		return;
2104 
2105 	val = readl_relaxed(rbase + GICR_CTLR);
2106 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2107 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2108 		/*
2109 		 * Check that we get the same property table on all
2110 		 * RDs. If we don't, this is hopeless.
2111 		 */
2112 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2113 		paddr &= GENMASK_ULL(51, 12);
2114 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2115 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2116 
2117 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2118 		paddr &= GENMASK_ULL(51, 16);
2119 
2120 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2121 		its_free_pending_table(gic_data_rdist()->pend_page);
2122 		gic_data_rdist()->pend_page = NULL;
2123 
2124 		goto out;
2125 	}
2126 
2127 	pend_page = gic_data_rdist()->pend_page;
2128 	paddr = page_to_phys(pend_page);
2129 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2130 
2131 	/* set PROPBASE */
2132 	val = (gic_rdists->prop_table_pa |
2133 	       GICR_PROPBASER_InnerShareable |
2134 	       GICR_PROPBASER_RaWaWb |
2135 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2136 
2137 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2138 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2139 
2140 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2141 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2142 			/*
2143 			 * The HW reports non-shareable, we must
2144 			 * remove the cacheability attributes as
2145 			 * well.
2146 			 */
2147 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2148 				 GICR_PROPBASER_CACHEABILITY_MASK);
2149 			val |= GICR_PROPBASER_nC;
2150 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2151 		}
2152 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2153 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2154 	}
2155 
2156 	/* set PENDBASE */
2157 	val = (page_to_phys(pend_page) |
2158 	       GICR_PENDBASER_InnerShareable |
2159 	       GICR_PENDBASER_RaWaWb);
2160 
2161 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2162 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2163 
2164 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2165 		/*
2166 		 * The HW reports non-shareable, we must remove the
2167 		 * cacheability attributes as well.
2168 		 */
2169 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2170 			 GICR_PENDBASER_CACHEABILITY_MASK);
2171 		val |= GICR_PENDBASER_nC;
2172 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2173 	}
2174 
2175 	/* Enable LPIs */
2176 	val = readl_relaxed(rbase + GICR_CTLR);
2177 	val |= GICR_CTLR_ENABLE_LPIS;
2178 	writel_relaxed(val, rbase + GICR_CTLR);
2179 
2180 	if (gic_rdists->has_vlpis) {
2181 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2182 
2183 		/*
2184 		 * It's possible for CPU to receive VLPIs before it is
2185 		 * sheduled as a vPE, especially for the first CPU, and the
2186 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2187 		 * as out of range and dropped by GIC.
2188 		 * So we initialize IDbits to known value to avoid VLPI drop.
2189 		 */
2190 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2191 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2192 			smp_processor_id(), val);
2193 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2194 
2195 		/*
2196 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2197 		 * ancient programming gets left in and has possibility of
2198 		 * corrupting memory.
2199 		 */
2200 		val = its_clear_vpend_valid(vlpi_base);
2201 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2202 	}
2203 
2204 	/* Make sure the GIC has seen the above */
2205 	dsb(sy);
2206 out:
2207 	gic_data_rdist()->lpi_enabled = true;
2208 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2209 		smp_processor_id(),
2210 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2211 		&paddr);
2212 }
2213 
2214 static void its_cpu_init_collection(struct its_node *its)
2215 {
2216 	int cpu = smp_processor_id();
2217 	u64 target;
2218 
2219 	/* avoid cross node collections and its mapping */
2220 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2221 		struct device_node *cpu_node;
2222 
2223 		cpu_node = of_get_cpu_node(cpu, NULL);
2224 		if (its->numa_node != NUMA_NO_NODE &&
2225 			its->numa_node != of_node_to_nid(cpu_node))
2226 			return;
2227 	}
2228 
2229 	/*
2230 	 * We now have to bind each collection to its target
2231 	 * redistributor.
2232 	 */
2233 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2234 		/*
2235 		 * This ITS wants the physical address of the
2236 		 * redistributor.
2237 		 */
2238 		target = gic_data_rdist()->phys_base;
2239 	} else {
2240 		/* This ITS wants a linear CPU number. */
2241 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2242 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2243 	}
2244 
2245 	/* Perform collection mapping */
2246 	its->collections[cpu].target_address = target;
2247 	its->collections[cpu].col_id = cpu;
2248 
2249 	its_send_mapc(its, &its->collections[cpu], 1);
2250 	its_send_invall(its, &its->collections[cpu]);
2251 }
2252 
2253 static void its_cpu_init_collections(void)
2254 {
2255 	struct its_node *its;
2256 
2257 	raw_spin_lock(&its_lock);
2258 
2259 	list_for_each_entry(its, &its_nodes, entry)
2260 		its_cpu_init_collection(its);
2261 
2262 	raw_spin_unlock(&its_lock);
2263 }
2264 
2265 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2266 {
2267 	struct its_device *its_dev = NULL, *tmp;
2268 	unsigned long flags;
2269 
2270 	raw_spin_lock_irqsave(&its->lock, flags);
2271 
2272 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2273 		if (tmp->device_id == dev_id) {
2274 			its_dev = tmp;
2275 			break;
2276 		}
2277 	}
2278 
2279 	raw_spin_unlock_irqrestore(&its->lock, flags);
2280 
2281 	return its_dev;
2282 }
2283 
2284 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2285 {
2286 	int i;
2287 
2288 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2289 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2290 			return &its->tables[i];
2291 	}
2292 
2293 	return NULL;
2294 }
2295 
2296 static bool its_alloc_table_entry(struct its_node *its,
2297 				  struct its_baser *baser, u32 id)
2298 {
2299 	struct page *page;
2300 	u32 esz, idx;
2301 	__le64 *table;
2302 
2303 	/* Don't allow device id that exceeds single, flat table limit */
2304 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2305 	if (!(baser->val & GITS_BASER_INDIRECT))
2306 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2307 
2308 	/* Compute 1st level table index & check if that exceeds table limit */
2309 	idx = id >> ilog2(baser->psz / esz);
2310 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2311 		return false;
2312 
2313 	table = baser->base;
2314 
2315 	/* Allocate memory for 2nd level table */
2316 	if (!table[idx]) {
2317 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2318 					get_order(baser->psz));
2319 		if (!page)
2320 			return false;
2321 
2322 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2323 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2324 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2325 
2326 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2327 
2328 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2329 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2330 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2331 
2332 		/* Ensure updated table contents are visible to ITS hardware */
2333 		dsb(sy);
2334 	}
2335 
2336 	return true;
2337 }
2338 
2339 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2340 {
2341 	struct its_baser *baser;
2342 
2343 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2344 
2345 	/* Don't allow device id that exceeds ITS hardware limit */
2346 	if (!baser)
2347 		return (ilog2(dev_id) < its->device_ids);
2348 
2349 	return its_alloc_table_entry(its, baser, dev_id);
2350 }
2351 
2352 static bool its_alloc_vpe_table(u32 vpe_id)
2353 {
2354 	struct its_node *its;
2355 
2356 	/*
2357 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2358 	 * could try and only do it on ITSs corresponding to devices
2359 	 * that have interrupts targeted at this VPE, but the
2360 	 * complexity becomes crazy (and you have tons of memory
2361 	 * anyway, right?).
2362 	 */
2363 	list_for_each_entry(its, &its_nodes, entry) {
2364 		struct its_baser *baser;
2365 
2366 		if (!its->is_v4)
2367 			continue;
2368 
2369 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2370 		if (!baser)
2371 			return false;
2372 
2373 		if (!its_alloc_table_entry(its, baser, vpe_id))
2374 			return false;
2375 	}
2376 
2377 	return true;
2378 }
2379 
2380 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2381 					    int nvecs, bool alloc_lpis)
2382 {
2383 	struct its_device *dev;
2384 	unsigned long *lpi_map = NULL;
2385 	unsigned long flags;
2386 	u16 *col_map = NULL;
2387 	void *itt;
2388 	int lpi_base;
2389 	int nr_lpis;
2390 	int nr_ites;
2391 	int sz;
2392 
2393 	if (!its_alloc_device_table(its, dev_id))
2394 		return NULL;
2395 
2396 	if (WARN_ON(!is_power_of_2(nvecs)))
2397 		nvecs = roundup_pow_of_two(nvecs);
2398 
2399 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2400 	/*
2401 	 * Even if the device wants a single LPI, the ITT must be
2402 	 * sized as a power of two (and you need at least one bit...).
2403 	 */
2404 	nr_ites = max(2, nvecs);
2405 	sz = nr_ites * its->ite_size;
2406 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2407 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2408 	if (alloc_lpis) {
2409 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2410 		if (lpi_map)
2411 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2412 					  GFP_KERNEL);
2413 	} else {
2414 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2415 		nr_lpis = 0;
2416 		lpi_base = 0;
2417 	}
2418 
2419 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2420 		kfree(dev);
2421 		kfree(itt);
2422 		kfree(lpi_map);
2423 		kfree(col_map);
2424 		return NULL;
2425 	}
2426 
2427 	gic_flush_dcache_to_poc(itt, sz);
2428 
2429 	dev->its = its;
2430 	dev->itt = itt;
2431 	dev->nr_ites = nr_ites;
2432 	dev->event_map.lpi_map = lpi_map;
2433 	dev->event_map.col_map = col_map;
2434 	dev->event_map.lpi_base = lpi_base;
2435 	dev->event_map.nr_lpis = nr_lpis;
2436 	mutex_init(&dev->event_map.vlpi_lock);
2437 	dev->device_id = dev_id;
2438 	INIT_LIST_HEAD(&dev->entry);
2439 
2440 	raw_spin_lock_irqsave(&its->lock, flags);
2441 	list_add(&dev->entry, &its->its_device_list);
2442 	raw_spin_unlock_irqrestore(&its->lock, flags);
2443 
2444 	/* Map device to its ITT */
2445 	its_send_mapd(dev, 1);
2446 
2447 	return dev;
2448 }
2449 
2450 static void its_free_device(struct its_device *its_dev)
2451 {
2452 	unsigned long flags;
2453 
2454 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2455 	list_del(&its_dev->entry);
2456 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2457 	kfree(its_dev->itt);
2458 	kfree(its_dev);
2459 }
2460 
2461 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2462 {
2463 	int idx;
2464 
2465 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2466 				      dev->event_map.nr_lpis,
2467 				      get_count_order(nvecs));
2468 	if (idx < 0)
2469 		return -ENOSPC;
2470 
2471 	*hwirq = dev->event_map.lpi_base + idx;
2472 	set_bit(idx, dev->event_map.lpi_map);
2473 
2474 	return 0;
2475 }
2476 
2477 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2478 			   int nvec, msi_alloc_info_t *info)
2479 {
2480 	struct its_node *its;
2481 	struct its_device *its_dev;
2482 	struct msi_domain_info *msi_info;
2483 	u32 dev_id;
2484 	int err = 0;
2485 
2486 	/*
2487 	 * We ignore "dev" entirely, and rely on the dev_id that has
2488 	 * been passed via the scratchpad. This limits this domain's
2489 	 * usefulness to upper layers that definitely know that they
2490 	 * are built on top of the ITS.
2491 	 */
2492 	dev_id = info->scratchpad[0].ul;
2493 
2494 	msi_info = msi_get_domain_info(domain);
2495 	its = msi_info->data;
2496 
2497 	if (!gic_rdists->has_direct_lpi &&
2498 	    vpe_proxy.dev &&
2499 	    vpe_proxy.dev->its == its &&
2500 	    dev_id == vpe_proxy.dev->device_id) {
2501 		/* Bad luck. Get yourself a better implementation */
2502 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2503 			  dev_id);
2504 		return -EINVAL;
2505 	}
2506 
2507 	mutex_lock(&its->dev_alloc_lock);
2508 	its_dev = its_find_device(its, dev_id);
2509 	if (its_dev) {
2510 		/*
2511 		 * We already have seen this ID, probably through
2512 		 * another alias (PCI bridge of some sort). No need to
2513 		 * create the device.
2514 		 */
2515 		its_dev->shared = true;
2516 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2517 		goto out;
2518 	}
2519 
2520 	its_dev = its_create_device(its, dev_id, nvec, true);
2521 	if (!its_dev) {
2522 		err = -ENOMEM;
2523 		goto out;
2524 	}
2525 
2526 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2527 out:
2528 	mutex_unlock(&its->dev_alloc_lock);
2529 	info->scratchpad[0].ptr = its_dev;
2530 	return err;
2531 }
2532 
2533 static struct msi_domain_ops its_msi_domain_ops = {
2534 	.msi_prepare	= its_msi_prepare,
2535 };
2536 
2537 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2538 				    unsigned int virq,
2539 				    irq_hw_number_t hwirq)
2540 {
2541 	struct irq_fwspec fwspec;
2542 
2543 	if (irq_domain_get_of_node(domain->parent)) {
2544 		fwspec.fwnode = domain->parent->fwnode;
2545 		fwspec.param_count = 3;
2546 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2547 		fwspec.param[1] = hwirq;
2548 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2549 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2550 		fwspec.fwnode = domain->parent->fwnode;
2551 		fwspec.param_count = 2;
2552 		fwspec.param[0] = hwirq;
2553 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2554 	} else {
2555 		return -EINVAL;
2556 	}
2557 
2558 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2559 }
2560 
2561 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2562 				unsigned int nr_irqs, void *args)
2563 {
2564 	msi_alloc_info_t *info = args;
2565 	struct its_device *its_dev = info->scratchpad[0].ptr;
2566 	struct its_node *its = its_dev->its;
2567 	irq_hw_number_t hwirq;
2568 	int err;
2569 	int i;
2570 
2571 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2572 	if (err)
2573 		return err;
2574 
2575 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2576 	if (err)
2577 		return err;
2578 
2579 	for (i = 0; i < nr_irqs; i++) {
2580 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2581 		if (err)
2582 			return err;
2583 
2584 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2585 					      hwirq + i, &its_irq_chip, its_dev);
2586 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2587 		pr_debug("ID:%d pID:%d vID:%d\n",
2588 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2589 			 (int)(hwirq + i), virq + i);
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 static int its_irq_domain_activate(struct irq_domain *domain,
2596 				   struct irq_data *d, bool reserve)
2597 {
2598 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2599 	u32 event = its_get_event_id(d);
2600 	const struct cpumask *cpu_mask = cpu_online_mask;
2601 	int cpu;
2602 
2603 	/* get the cpu_mask of local node */
2604 	if (its_dev->its->numa_node >= 0)
2605 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2606 
2607 	/* Bind the LPI to the first possible CPU */
2608 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2609 	if (cpu >= nr_cpu_ids) {
2610 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2611 			return -EINVAL;
2612 
2613 		cpu = cpumask_first(cpu_online_mask);
2614 	}
2615 
2616 	its_dev->event_map.col_map[event] = cpu;
2617 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2618 
2619 	/* Map the GIC IRQ and event to the device */
2620 	its_send_mapti(its_dev, d->hwirq, event);
2621 	return 0;
2622 }
2623 
2624 static void its_irq_domain_deactivate(struct irq_domain *domain,
2625 				      struct irq_data *d)
2626 {
2627 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2628 	u32 event = its_get_event_id(d);
2629 
2630 	/* Stop the delivery of interrupts */
2631 	its_send_discard(its_dev, event);
2632 }
2633 
2634 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2635 				unsigned int nr_irqs)
2636 {
2637 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2638 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2639 	struct its_node *its = its_dev->its;
2640 	int i;
2641 
2642 	for (i = 0; i < nr_irqs; i++) {
2643 		struct irq_data *data = irq_domain_get_irq_data(domain,
2644 								virq + i);
2645 		u32 event = its_get_event_id(data);
2646 
2647 		/* Mark interrupt index as unused */
2648 		clear_bit(event, its_dev->event_map.lpi_map);
2649 
2650 		/* Nuke the entry in the domain */
2651 		irq_domain_reset_irq_data(data);
2652 	}
2653 
2654 	mutex_lock(&its->dev_alloc_lock);
2655 
2656 	/*
2657 	 * If all interrupts have been freed, start mopping the
2658 	 * floor. This is conditionned on the device not being shared.
2659 	 */
2660 	if (!its_dev->shared &&
2661 	    bitmap_empty(its_dev->event_map.lpi_map,
2662 			 its_dev->event_map.nr_lpis)) {
2663 		its_lpi_free(its_dev->event_map.lpi_map,
2664 			     its_dev->event_map.lpi_base,
2665 			     its_dev->event_map.nr_lpis);
2666 		kfree(its_dev->event_map.col_map);
2667 
2668 		/* Unmap device/itt */
2669 		its_send_mapd(its_dev, 0);
2670 		its_free_device(its_dev);
2671 	}
2672 
2673 	mutex_unlock(&its->dev_alloc_lock);
2674 
2675 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2676 }
2677 
2678 static const struct irq_domain_ops its_domain_ops = {
2679 	.alloc			= its_irq_domain_alloc,
2680 	.free			= its_irq_domain_free,
2681 	.activate		= its_irq_domain_activate,
2682 	.deactivate		= its_irq_domain_deactivate,
2683 };
2684 
2685 /*
2686  * This is insane.
2687  *
2688  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2689  * likely), the only way to perform an invalidate is to use a fake
2690  * device to issue an INV command, implying that the LPI has first
2691  * been mapped to some event on that device. Since this is not exactly
2692  * cheap, we try to keep that mapping around as long as possible, and
2693  * only issue an UNMAP if we're short on available slots.
2694  *
2695  * Broken by design(tm).
2696  */
2697 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2698 {
2699 	/* Already unmapped? */
2700 	if (vpe->vpe_proxy_event == -1)
2701 		return;
2702 
2703 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2704 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2705 
2706 	/*
2707 	 * We don't track empty slots at all, so let's move the
2708 	 * next_victim pointer if we can quickly reuse that slot
2709 	 * instead of nuking an existing entry. Not clear that this is
2710 	 * always a win though, and this might just generate a ripple
2711 	 * effect... Let's just hope VPEs don't migrate too often.
2712 	 */
2713 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2714 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2715 
2716 	vpe->vpe_proxy_event = -1;
2717 }
2718 
2719 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2720 {
2721 	if (!gic_rdists->has_direct_lpi) {
2722 		unsigned long flags;
2723 
2724 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2725 		its_vpe_db_proxy_unmap_locked(vpe);
2726 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2727 	}
2728 }
2729 
2730 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2731 {
2732 	/* Already mapped? */
2733 	if (vpe->vpe_proxy_event != -1)
2734 		return;
2735 
2736 	/* This slot was already allocated. Kick the other VPE out. */
2737 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2738 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2739 
2740 	/* Map the new VPE instead */
2741 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2742 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2743 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2744 
2745 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2746 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2747 }
2748 
2749 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2750 {
2751 	unsigned long flags;
2752 	struct its_collection *target_col;
2753 
2754 	if (gic_rdists->has_direct_lpi) {
2755 		void __iomem *rdbase;
2756 
2757 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2758 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2759 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2760 			cpu_relax();
2761 
2762 		return;
2763 	}
2764 
2765 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2766 
2767 	its_vpe_db_proxy_map_locked(vpe);
2768 
2769 	target_col = &vpe_proxy.dev->its->collections[to];
2770 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2771 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2772 
2773 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2774 }
2775 
2776 static int its_vpe_set_affinity(struct irq_data *d,
2777 				const struct cpumask *mask_val,
2778 				bool force)
2779 {
2780 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2781 	int cpu = cpumask_first(mask_val);
2782 
2783 	/*
2784 	 * Changing affinity is mega expensive, so let's be as lazy as
2785 	 * we can and only do it if we really have to. Also, if mapped
2786 	 * into the proxy device, we need to move the doorbell
2787 	 * interrupt to its new location.
2788 	 */
2789 	if (vpe->col_idx != cpu) {
2790 		int from = vpe->col_idx;
2791 
2792 		vpe->col_idx = cpu;
2793 		its_send_vmovp(vpe);
2794 		its_vpe_db_proxy_move(vpe, from, cpu);
2795 	}
2796 
2797 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2798 
2799 	return IRQ_SET_MASK_OK_DONE;
2800 }
2801 
2802 static void its_vpe_schedule(struct its_vpe *vpe)
2803 {
2804 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805 	u64 val;
2806 
2807 	/* Schedule the VPE */
2808 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2809 		GENMASK_ULL(51, 12);
2810 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2811 	val |= GICR_VPROPBASER_RaWb;
2812 	val |= GICR_VPROPBASER_InnerShareable;
2813 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2814 
2815 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2816 		GENMASK_ULL(51, 16);
2817 	val |= GICR_VPENDBASER_RaWaWb;
2818 	val |= GICR_VPENDBASER_NonShareable;
2819 	/*
2820 	 * There is no good way of finding out if the pending table is
2821 	 * empty as we can race against the doorbell interrupt very
2822 	 * easily. So in the end, vpe->pending_last is only an
2823 	 * indication that the vcpu has something pending, not one
2824 	 * that the pending table is empty. A good implementation
2825 	 * would be able to read its coarse map pretty quickly anyway,
2826 	 * making this a tolerable issue.
2827 	 */
2828 	val |= GICR_VPENDBASER_PendingLast;
2829 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2830 	val |= GICR_VPENDBASER_Valid;
2831 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2832 }
2833 
2834 static void its_vpe_deschedule(struct its_vpe *vpe)
2835 {
2836 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2837 	u64 val;
2838 
2839 	val = its_clear_vpend_valid(vlpi_base);
2840 
2841 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2842 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2843 		vpe->idai = false;
2844 		vpe->pending_last = true;
2845 	} else {
2846 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2847 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2848 	}
2849 }
2850 
2851 static void its_vpe_invall(struct its_vpe *vpe)
2852 {
2853 	struct its_node *its;
2854 
2855 	list_for_each_entry(its, &its_nodes, entry) {
2856 		if (!its->is_v4)
2857 			continue;
2858 
2859 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2860 			continue;
2861 
2862 		/*
2863 		 * Sending a VINVALL to a single ITS is enough, as all
2864 		 * we need is to reach the redistributors.
2865 		 */
2866 		its_send_vinvall(its, vpe);
2867 		return;
2868 	}
2869 }
2870 
2871 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2872 {
2873 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2874 	struct its_cmd_info *info = vcpu_info;
2875 
2876 	switch (info->cmd_type) {
2877 	case SCHEDULE_VPE:
2878 		its_vpe_schedule(vpe);
2879 		return 0;
2880 
2881 	case DESCHEDULE_VPE:
2882 		its_vpe_deschedule(vpe);
2883 		return 0;
2884 
2885 	case INVALL_VPE:
2886 		its_vpe_invall(vpe);
2887 		return 0;
2888 
2889 	default:
2890 		return -EINVAL;
2891 	}
2892 }
2893 
2894 static void its_vpe_send_cmd(struct its_vpe *vpe,
2895 			     void (*cmd)(struct its_device *, u32))
2896 {
2897 	unsigned long flags;
2898 
2899 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2900 
2901 	its_vpe_db_proxy_map_locked(vpe);
2902 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2903 
2904 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2905 }
2906 
2907 static void its_vpe_send_inv(struct irq_data *d)
2908 {
2909 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2910 
2911 	if (gic_rdists->has_direct_lpi) {
2912 		void __iomem *rdbase;
2913 
2914 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2915 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2916 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2917 			cpu_relax();
2918 	} else {
2919 		its_vpe_send_cmd(vpe, its_send_inv);
2920 	}
2921 }
2922 
2923 static void its_vpe_mask_irq(struct irq_data *d)
2924 {
2925 	/*
2926 	 * We need to unmask the LPI, which is described by the parent
2927 	 * irq_data. Instead of calling into the parent (which won't
2928 	 * exactly do the right thing, let's simply use the
2929 	 * parent_data pointer. Yes, I'm naughty.
2930 	 */
2931 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2932 	its_vpe_send_inv(d);
2933 }
2934 
2935 static void its_vpe_unmask_irq(struct irq_data *d)
2936 {
2937 	/* Same hack as above... */
2938 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2939 	its_vpe_send_inv(d);
2940 }
2941 
2942 static int its_vpe_set_irqchip_state(struct irq_data *d,
2943 				     enum irqchip_irq_state which,
2944 				     bool state)
2945 {
2946 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2947 
2948 	if (which != IRQCHIP_STATE_PENDING)
2949 		return -EINVAL;
2950 
2951 	if (gic_rdists->has_direct_lpi) {
2952 		void __iomem *rdbase;
2953 
2954 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2955 		if (state) {
2956 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2957 		} else {
2958 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2959 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2960 				cpu_relax();
2961 		}
2962 	} else {
2963 		if (state)
2964 			its_vpe_send_cmd(vpe, its_send_int);
2965 		else
2966 			its_vpe_send_cmd(vpe, its_send_clear);
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 static struct irq_chip its_vpe_irq_chip = {
2973 	.name			= "GICv4-vpe",
2974 	.irq_mask		= its_vpe_mask_irq,
2975 	.irq_unmask		= its_vpe_unmask_irq,
2976 	.irq_eoi		= irq_chip_eoi_parent,
2977 	.irq_set_affinity	= its_vpe_set_affinity,
2978 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2979 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2980 };
2981 
2982 static int its_vpe_id_alloc(void)
2983 {
2984 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2985 }
2986 
2987 static void its_vpe_id_free(u16 id)
2988 {
2989 	ida_simple_remove(&its_vpeid_ida, id);
2990 }
2991 
2992 static int its_vpe_init(struct its_vpe *vpe)
2993 {
2994 	struct page *vpt_page;
2995 	int vpe_id;
2996 
2997 	/* Allocate vpe_id */
2998 	vpe_id = its_vpe_id_alloc();
2999 	if (vpe_id < 0)
3000 		return vpe_id;
3001 
3002 	/* Allocate VPT */
3003 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3004 	if (!vpt_page) {
3005 		its_vpe_id_free(vpe_id);
3006 		return -ENOMEM;
3007 	}
3008 
3009 	if (!its_alloc_vpe_table(vpe_id)) {
3010 		its_vpe_id_free(vpe_id);
3011 		its_free_pending_table(vpe->vpt_page);
3012 		return -ENOMEM;
3013 	}
3014 
3015 	vpe->vpe_id = vpe_id;
3016 	vpe->vpt_page = vpt_page;
3017 	vpe->vpe_proxy_event = -1;
3018 
3019 	return 0;
3020 }
3021 
3022 static void its_vpe_teardown(struct its_vpe *vpe)
3023 {
3024 	its_vpe_db_proxy_unmap(vpe);
3025 	its_vpe_id_free(vpe->vpe_id);
3026 	its_free_pending_table(vpe->vpt_page);
3027 }
3028 
3029 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3030 				    unsigned int virq,
3031 				    unsigned int nr_irqs)
3032 {
3033 	struct its_vm *vm = domain->host_data;
3034 	int i;
3035 
3036 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3037 
3038 	for (i = 0; i < nr_irqs; i++) {
3039 		struct irq_data *data = irq_domain_get_irq_data(domain,
3040 								virq + i);
3041 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3042 
3043 		BUG_ON(vm != vpe->its_vm);
3044 
3045 		clear_bit(data->hwirq, vm->db_bitmap);
3046 		its_vpe_teardown(vpe);
3047 		irq_domain_reset_irq_data(data);
3048 	}
3049 
3050 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3051 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3052 		its_free_prop_table(vm->vprop_page);
3053 	}
3054 }
3055 
3056 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3057 				    unsigned int nr_irqs, void *args)
3058 {
3059 	struct its_vm *vm = args;
3060 	unsigned long *bitmap;
3061 	struct page *vprop_page;
3062 	int base, nr_ids, i, err = 0;
3063 
3064 	BUG_ON(!vm);
3065 
3066 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3067 	if (!bitmap)
3068 		return -ENOMEM;
3069 
3070 	if (nr_ids < nr_irqs) {
3071 		its_lpi_free(bitmap, base, nr_ids);
3072 		return -ENOMEM;
3073 	}
3074 
3075 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3076 	if (!vprop_page) {
3077 		its_lpi_free(bitmap, base, nr_ids);
3078 		return -ENOMEM;
3079 	}
3080 
3081 	vm->db_bitmap = bitmap;
3082 	vm->db_lpi_base = base;
3083 	vm->nr_db_lpis = nr_ids;
3084 	vm->vprop_page = vprop_page;
3085 
3086 	for (i = 0; i < nr_irqs; i++) {
3087 		vm->vpes[i]->vpe_db_lpi = base + i;
3088 		err = its_vpe_init(vm->vpes[i]);
3089 		if (err)
3090 			break;
3091 		err = its_irq_gic_domain_alloc(domain, virq + i,
3092 					       vm->vpes[i]->vpe_db_lpi);
3093 		if (err)
3094 			break;
3095 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3096 					      &its_vpe_irq_chip, vm->vpes[i]);
3097 		set_bit(i, bitmap);
3098 	}
3099 
3100 	if (err) {
3101 		if (i > 0)
3102 			its_vpe_irq_domain_free(domain, virq, i - 1);
3103 
3104 		its_lpi_free(bitmap, base, nr_ids);
3105 		its_free_prop_table(vprop_page);
3106 	}
3107 
3108 	return err;
3109 }
3110 
3111 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3112 				       struct irq_data *d, bool reserve)
3113 {
3114 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3115 	struct its_node *its;
3116 
3117 	/* If we use the list map, we issue VMAPP on demand... */
3118 	if (its_list_map)
3119 		return 0;
3120 
3121 	/* Map the VPE to the first possible CPU */
3122 	vpe->col_idx = cpumask_first(cpu_online_mask);
3123 
3124 	list_for_each_entry(its, &its_nodes, entry) {
3125 		if (!its->is_v4)
3126 			continue;
3127 
3128 		its_send_vmapp(its, vpe, true);
3129 		its_send_vinvall(its, vpe);
3130 	}
3131 
3132 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3133 
3134 	return 0;
3135 }
3136 
3137 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3138 					  struct irq_data *d)
3139 {
3140 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3141 	struct its_node *its;
3142 
3143 	/*
3144 	 * If we use the list map, we unmap the VPE once no VLPIs are
3145 	 * associated with the VM.
3146 	 */
3147 	if (its_list_map)
3148 		return;
3149 
3150 	list_for_each_entry(its, &its_nodes, entry) {
3151 		if (!its->is_v4)
3152 			continue;
3153 
3154 		its_send_vmapp(its, vpe, false);
3155 	}
3156 }
3157 
3158 static const struct irq_domain_ops its_vpe_domain_ops = {
3159 	.alloc			= its_vpe_irq_domain_alloc,
3160 	.free			= its_vpe_irq_domain_free,
3161 	.activate		= its_vpe_irq_domain_activate,
3162 	.deactivate		= its_vpe_irq_domain_deactivate,
3163 };
3164 
3165 static int its_force_quiescent(void __iomem *base)
3166 {
3167 	u32 count = 1000000;	/* 1s */
3168 	u32 val;
3169 
3170 	val = readl_relaxed(base + GITS_CTLR);
3171 	/*
3172 	 * GIC architecture specification requires the ITS to be both
3173 	 * disabled and quiescent for writes to GITS_BASER<n> or
3174 	 * GITS_CBASER to not have UNPREDICTABLE results.
3175 	 */
3176 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3177 		return 0;
3178 
3179 	/* Disable the generation of all interrupts to this ITS */
3180 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3181 	writel_relaxed(val, base + GITS_CTLR);
3182 
3183 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3184 	while (1) {
3185 		val = readl_relaxed(base + GITS_CTLR);
3186 		if (val & GITS_CTLR_QUIESCENT)
3187 			return 0;
3188 
3189 		count--;
3190 		if (!count)
3191 			return -EBUSY;
3192 
3193 		cpu_relax();
3194 		udelay(1);
3195 	}
3196 }
3197 
3198 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3199 {
3200 	struct its_node *its = data;
3201 
3202 	/* erratum 22375: only alloc 8MB table size */
3203 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3204 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3205 
3206 	return true;
3207 }
3208 
3209 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3210 {
3211 	struct its_node *its = data;
3212 
3213 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3214 
3215 	return true;
3216 }
3217 
3218 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3219 {
3220 	struct its_node *its = data;
3221 
3222 	/* On QDF2400, the size of the ITE is 16Bytes */
3223 	its->ite_size = 16;
3224 
3225 	return true;
3226 }
3227 
3228 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3229 {
3230 	struct its_node *its = its_dev->its;
3231 
3232 	/*
3233 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3234 	 * which maps 32-bit writes targeted at a separate window of
3235 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3236 	 * with device ID taken from bits [device_id_bits + 1:2] of
3237 	 * the window offset.
3238 	 */
3239 	return its->pre_its_base + (its_dev->device_id << 2);
3240 }
3241 
3242 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3243 {
3244 	struct its_node *its = data;
3245 	u32 pre_its_window[2];
3246 	u32 ids;
3247 
3248 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3249 					   "socionext,synquacer-pre-its",
3250 					   pre_its_window,
3251 					   ARRAY_SIZE(pre_its_window))) {
3252 
3253 		its->pre_its_base = pre_its_window[0];
3254 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3255 
3256 		ids = ilog2(pre_its_window[1]) - 2;
3257 		if (its->device_ids > ids)
3258 			its->device_ids = ids;
3259 
3260 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3261 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3262 		return true;
3263 	}
3264 	return false;
3265 }
3266 
3267 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3268 {
3269 	struct its_node *its = data;
3270 
3271 	/*
3272 	 * Hip07 insists on using the wrong address for the VLPI
3273 	 * page. Trick it into doing the right thing...
3274 	 */
3275 	its->vlpi_redist_offset = SZ_128K;
3276 	return true;
3277 }
3278 
3279 static const struct gic_quirk its_quirks[] = {
3280 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3281 	{
3282 		.desc	= "ITS: Cavium errata 22375, 24313",
3283 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3284 		.mask	= 0xffff0fff,
3285 		.init	= its_enable_quirk_cavium_22375,
3286 	},
3287 #endif
3288 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3289 	{
3290 		.desc	= "ITS: Cavium erratum 23144",
3291 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3292 		.mask	= 0xffff0fff,
3293 		.init	= its_enable_quirk_cavium_23144,
3294 	},
3295 #endif
3296 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3297 	{
3298 		.desc	= "ITS: QDF2400 erratum 0065",
3299 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3300 		.mask	= 0xffffffff,
3301 		.init	= its_enable_quirk_qdf2400_e0065,
3302 	},
3303 #endif
3304 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3305 	{
3306 		/*
3307 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3308 		 * implementation, but with a 'pre-ITS' added that requires
3309 		 * special handling in software.
3310 		 */
3311 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3312 		.iidr	= 0x0001143b,
3313 		.mask	= 0xffffffff,
3314 		.init	= its_enable_quirk_socionext_synquacer,
3315 	},
3316 #endif
3317 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3318 	{
3319 		.desc	= "ITS: Hip07 erratum 161600802",
3320 		.iidr	= 0x00000004,
3321 		.mask	= 0xffffffff,
3322 		.init	= its_enable_quirk_hip07_161600802,
3323 	},
3324 #endif
3325 	{
3326 	}
3327 };
3328 
3329 static void its_enable_quirks(struct its_node *its)
3330 {
3331 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3332 
3333 	gic_enable_quirks(iidr, its_quirks, its);
3334 }
3335 
3336 static int its_save_disable(void)
3337 {
3338 	struct its_node *its;
3339 	int err = 0;
3340 
3341 	raw_spin_lock(&its_lock);
3342 	list_for_each_entry(its, &its_nodes, entry) {
3343 		void __iomem *base;
3344 
3345 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3346 			continue;
3347 
3348 		base = its->base;
3349 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3350 		err = its_force_quiescent(base);
3351 		if (err) {
3352 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3353 			       &its->phys_base, err);
3354 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3355 			goto err;
3356 		}
3357 
3358 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3359 	}
3360 
3361 err:
3362 	if (err) {
3363 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3364 			void __iomem *base;
3365 
3366 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3367 				continue;
3368 
3369 			base = its->base;
3370 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3371 		}
3372 	}
3373 	raw_spin_unlock(&its_lock);
3374 
3375 	return err;
3376 }
3377 
3378 static void its_restore_enable(void)
3379 {
3380 	struct its_node *its;
3381 	int ret;
3382 
3383 	raw_spin_lock(&its_lock);
3384 	list_for_each_entry(its, &its_nodes, entry) {
3385 		void __iomem *base;
3386 		int i;
3387 
3388 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3389 			continue;
3390 
3391 		base = its->base;
3392 
3393 		/*
3394 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3395 		 * don't restore it since writing to CBASER or BASER<n>
3396 		 * registers is undefined according to the GIC v3 ITS
3397 		 * Specification.
3398 		 */
3399 		ret = its_force_quiescent(base);
3400 		if (ret) {
3401 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3402 			       &its->phys_base, ret);
3403 			continue;
3404 		}
3405 
3406 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3407 
3408 		/*
3409 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3410 		 * cmd_write line up with it.
3411 		 */
3412 		its->cmd_write = its->cmd_base;
3413 		gits_write_cwriter(0, base + GITS_CWRITER);
3414 
3415 		/* Restore GITS_BASER from the value cache. */
3416 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3417 			struct its_baser *baser = &its->tables[i];
3418 
3419 			if (!(baser->val & GITS_BASER_VALID))
3420 				continue;
3421 
3422 			its_write_baser(its, baser, baser->val);
3423 		}
3424 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3425 
3426 		/*
3427 		 * Reinit the collection if it's stored in the ITS. This is
3428 		 * indicated by the col_id being less than the HCC field.
3429 		 * CID < HCC as specified in the GIC v3 Documentation.
3430 		 */
3431 		if (its->collections[smp_processor_id()].col_id <
3432 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3433 			its_cpu_init_collection(its);
3434 	}
3435 	raw_spin_unlock(&its_lock);
3436 }
3437 
3438 static struct syscore_ops its_syscore_ops = {
3439 	.suspend = its_save_disable,
3440 	.resume = its_restore_enable,
3441 };
3442 
3443 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3444 {
3445 	struct irq_domain *inner_domain;
3446 	struct msi_domain_info *info;
3447 
3448 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3449 	if (!info)
3450 		return -ENOMEM;
3451 
3452 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3453 	if (!inner_domain) {
3454 		kfree(info);
3455 		return -ENOMEM;
3456 	}
3457 
3458 	inner_domain->parent = its_parent;
3459 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3460 	inner_domain->flags |= its->msi_domain_flags;
3461 	info->ops = &its_msi_domain_ops;
3462 	info->data = its;
3463 	inner_domain->host_data = info;
3464 
3465 	return 0;
3466 }
3467 
3468 static int its_init_vpe_domain(void)
3469 {
3470 	struct its_node *its;
3471 	u32 devid;
3472 	int entries;
3473 
3474 	if (gic_rdists->has_direct_lpi) {
3475 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3476 		return 0;
3477 	}
3478 
3479 	/* Any ITS will do, even if not v4 */
3480 	its = list_first_entry(&its_nodes, struct its_node, entry);
3481 
3482 	entries = roundup_pow_of_two(nr_cpu_ids);
3483 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3484 				 GFP_KERNEL);
3485 	if (!vpe_proxy.vpes) {
3486 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3487 		return -ENOMEM;
3488 	}
3489 
3490 	/* Use the last possible DevID */
3491 	devid = GENMASK(its->device_ids - 1, 0);
3492 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3493 	if (!vpe_proxy.dev) {
3494 		kfree(vpe_proxy.vpes);
3495 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3496 		return -ENOMEM;
3497 	}
3498 
3499 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3500 
3501 	raw_spin_lock_init(&vpe_proxy.lock);
3502 	vpe_proxy.next_victim = 0;
3503 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3504 		devid, vpe_proxy.dev->nr_ites);
3505 
3506 	return 0;
3507 }
3508 
3509 static int __init its_compute_its_list_map(struct resource *res,
3510 					   void __iomem *its_base)
3511 {
3512 	int its_number;
3513 	u32 ctlr;
3514 
3515 	/*
3516 	 * This is assumed to be done early enough that we're
3517 	 * guaranteed to be single-threaded, hence no
3518 	 * locking. Should this change, we should address
3519 	 * this.
3520 	 */
3521 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3522 	if (its_number >= GICv4_ITS_LIST_MAX) {
3523 		pr_err("ITS@%pa: No ITSList entry available!\n",
3524 		       &res->start);
3525 		return -EINVAL;
3526 	}
3527 
3528 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3529 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3530 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3531 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3532 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3533 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3534 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3535 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3536 	}
3537 
3538 	if (test_and_set_bit(its_number, &its_list_map)) {
3539 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3540 		       &res->start, its_number);
3541 		return -EINVAL;
3542 	}
3543 
3544 	return its_number;
3545 }
3546 
3547 static int __init its_probe_one(struct resource *res,
3548 				struct fwnode_handle *handle, int numa_node)
3549 {
3550 	struct its_node *its;
3551 	void __iomem *its_base;
3552 	u32 val, ctlr;
3553 	u64 baser, tmp, typer;
3554 	struct page *page;
3555 	int err;
3556 
3557 	its_base = ioremap(res->start, resource_size(res));
3558 	if (!its_base) {
3559 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3560 		return -ENOMEM;
3561 	}
3562 
3563 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3564 	if (val != 0x30 && val != 0x40) {
3565 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3566 		err = -ENODEV;
3567 		goto out_unmap;
3568 	}
3569 
3570 	err = its_force_quiescent(its_base);
3571 	if (err) {
3572 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3573 		goto out_unmap;
3574 	}
3575 
3576 	pr_info("ITS %pR\n", res);
3577 
3578 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3579 	if (!its) {
3580 		err = -ENOMEM;
3581 		goto out_unmap;
3582 	}
3583 
3584 	raw_spin_lock_init(&its->lock);
3585 	mutex_init(&its->dev_alloc_lock);
3586 	INIT_LIST_HEAD(&its->entry);
3587 	INIT_LIST_HEAD(&its->its_device_list);
3588 	typer = gic_read_typer(its_base + GITS_TYPER);
3589 	its->base = its_base;
3590 	its->phys_base = res->start;
3591 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3592 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3593 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3594 	if (its->is_v4) {
3595 		if (!(typer & GITS_TYPER_VMOVP)) {
3596 			err = its_compute_its_list_map(res, its_base);
3597 			if (err < 0)
3598 				goto out_free_its;
3599 
3600 			its->list_nr = err;
3601 
3602 			pr_info("ITS@%pa: Using ITS number %d\n",
3603 				&res->start, err);
3604 		} else {
3605 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3606 		}
3607 	}
3608 
3609 	its->numa_node = numa_node;
3610 
3611 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3612 				get_order(ITS_CMD_QUEUE_SZ));
3613 	if (!page) {
3614 		err = -ENOMEM;
3615 		goto out_free_its;
3616 	}
3617 	its->cmd_base = (void *)page_address(page);
3618 	its->cmd_write = its->cmd_base;
3619 	its->fwnode_handle = handle;
3620 	its->get_msi_base = its_irq_get_msi_base;
3621 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3622 
3623 	its_enable_quirks(its);
3624 
3625 	err = its_alloc_tables(its);
3626 	if (err)
3627 		goto out_free_cmd;
3628 
3629 	err = its_alloc_collections(its);
3630 	if (err)
3631 		goto out_free_tables;
3632 
3633 	baser = (virt_to_phys(its->cmd_base)	|
3634 		 GITS_CBASER_RaWaWb		|
3635 		 GITS_CBASER_InnerShareable	|
3636 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3637 		 GITS_CBASER_VALID);
3638 
3639 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3640 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3641 
3642 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3643 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3644 			/*
3645 			 * The HW reports non-shareable, we must
3646 			 * remove the cacheability attributes as
3647 			 * well.
3648 			 */
3649 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3650 				   GITS_CBASER_CACHEABILITY_MASK);
3651 			baser |= GITS_CBASER_nC;
3652 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3653 		}
3654 		pr_info("ITS: using cache flushing for cmd queue\n");
3655 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3656 	}
3657 
3658 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3659 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3660 	ctlr |= GITS_CTLR_ENABLE;
3661 	if (its->is_v4)
3662 		ctlr |= GITS_CTLR_ImDe;
3663 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3664 
3665 	if (GITS_TYPER_HCC(typer))
3666 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3667 
3668 	err = its_init_domain(handle, its);
3669 	if (err)
3670 		goto out_free_tables;
3671 
3672 	raw_spin_lock(&its_lock);
3673 	list_add(&its->entry, &its_nodes);
3674 	raw_spin_unlock(&its_lock);
3675 
3676 	return 0;
3677 
3678 out_free_tables:
3679 	its_free_tables(its);
3680 out_free_cmd:
3681 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3682 out_free_its:
3683 	kfree(its);
3684 out_unmap:
3685 	iounmap(its_base);
3686 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3687 	return err;
3688 }
3689 
3690 static bool gic_rdists_supports_plpis(void)
3691 {
3692 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3693 }
3694 
3695 static int redist_disable_lpis(void)
3696 {
3697 	void __iomem *rbase = gic_data_rdist_rd_base();
3698 	u64 timeout = USEC_PER_SEC;
3699 	u64 val;
3700 
3701 	if (!gic_rdists_supports_plpis()) {
3702 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3703 		return -ENXIO;
3704 	}
3705 
3706 	val = readl_relaxed(rbase + GICR_CTLR);
3707 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3708 		return 0;
3709 
3710 	/*
3711 	 * If coming via a CPU hotplug event, we don't need to disable
3712 	 * LPIs before trying to re-enable them. They are already
3713 	 * configured and all is well in the world.
3714 	 *
3715 	 * If running with preallocated tables, there is nothing to do.
3716 	 */
3717 	if (gic_data_rdist()->lpi_enabled ||
3718 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3719 		return 0;
3720 
3721 	/*
3722 	 * From that point on, we only try to do some damage control.
3723 	 */
3724 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3725 		smp_processor_id());
3726 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3727 
3728 	/* Disable LPIs */
3729 	val &= ~GICR_CTLR_ENABLE_LPIS;
3730 	writel_relaxed(val, rbase + GICR_CTLR);
3731 
3732 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3733 	dsb(sy);
3734 
3735 	/*
3736 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3737 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3738 	 * Error out if we time out waiting for RWP to clear.
3739 	 */
3740 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3741 		if (!timeout) {
3742 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3743 			       smp_processor_id());
3744 			return -ETIMEDOUT;
3745 		}
3746 		udelay(1);
3747 		timeout--;
3748 	}
3749 
3750 	/*
3751 	 * After it has been written to 1, it is IMPLEMENTATION
3752 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3753 	 * cleared to 0. Error out if clearing the bit failed.
3754 	 */
3755 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3756 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3757 		return -EBUSY;
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 int its_cpu_init(void)
3764 {
3765 	if (!list_empty(&its_nodes)) {
3766 		int ret;
3767 
3768 		ret = redist_disable_lpis();
3769 		if (ret)
3770 			return ret;
3771 
3772 		its_cpu_init_lpis();
3773 		its_cpu_init_collections();
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 static const struct of_device_id its_device_id[] = {
3780 	{	.compatible	= "arm,gic-v3-its",	},
3781 	{},
3782 };
3783 
3784 static int __init its_of_probe(struct device_node *node)
3785 {
3786 	struct device_node *np;
3787 	struct resource res;
3788 
3789 	for (np = of_find_matching_node(node, its_device_id); np;
3790 	     np = of_find_matching_node(np, its_device_id)) {
3791 		if (!of_device_is_available(np))
3792 			continue;
3793 		if (!of_property_read_bool(np, "msi-controller")) {
3794 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3795 				np);
3796 			continue;
3797 		}
3798 
3799 		if (of_address_to_resource(np, 0, &res)) {
3800 			pr_warn("%pOF: no regs?\n", np);
3801 			continue;
3802 		}
3803 
3804 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3805 	}
3806 	return 0;
3807 }
3808 
3809 #ifdef CONFIG_ACPI
3810 
3811 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3812 
3813 #ifdef CONFIG_ACPI_NUMA
3814 struct its_srat_map {
3815 	/* numa node id */
3816 	u32	numa_node;
3817 	/* GIC ITS ID */
3818 	u32	its_id;
3819 };
3820 
3821 static struct its_srat_map *its_srat_maps __initdata;
3822 static int its_in_srat __initdata;
3823 
3824 static int __init acpi_get_its_numa_node(u32 its_id)
3825 {
3826 	int i;
3827 
3828 	for (i = 0; i < its_in_srat; i++) {
3829 		if (its_id == its_srat_maps[i].its_id)
3830 			return its_srat_maps[i].numa_node;
3831 	}
3832 	return NUMA_NO_NODE;
3833 }
3834 
3835 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3836 					  const unsigned long end)
3837 {
3838 	return 0;
3839 }
3840 
3841 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3842 			 const unsigned long end)
3843 {
3844 	int node;
3845 	struct acpi_srat_gic_its_affinity *its_affinity;
3846 
3847 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3848 	if (!its_affinity)
3849 		return -EINVAL;
3850 
3851 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3852 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3853 			its_affinity->header.length);
3854 		return -EINVAL;
3855 	}
3856 
3857 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3858 
3859 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3860 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3861 		return 0;
3862 	}
3863 
3864 	its_srat_maps[its_in_srat].numa_node = node;
3865 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3866 	its_in_srat++;
3867 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3868 		its_affinity->proximity_domain, its_affinity->its_id, node);
3869 
3870 	return 0;
3871 }
3872 
3873 static void __init acpi_table_parse_srat_its(void)
3874 {
3875 	int count;
3876 
3877 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3878 			sizeof(struct acpi_table_srat),
3879 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3880 			gic_acpi_match_srat_its, 0);
3881 	if (count <= 0)
3882 		return;
3883 
3884 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3885 				      GFP_KERNEL);
3886 	if (!its_srat_maps) {
3887 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3888 		return;
3889 	}
3890 
3891 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3892 			sizeof(struct acpi_table_srat),
3893 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3894 			gic_acpi_parse_srat_its, 0);
3895 }
3896 
3897 /* free the its_srat_maps after ITS probing */
3898 static void __init acpi_its_srat_maps_free(void)
3899 {
3900 	kfree(its_srat_maps);
3901 }
3902 #else
3903 static void __init acpi_table_parse_srat_its(void)	{ }
3904 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3905 static void __init acpi_its_srat_maps_free(void) { }
3906 #endif
3907 
3908 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3909 					  const unsigned long end)
3910 {
3911 	struct acpi_madt_generic_translator *its_entry;
3912 	struct fwnode_handle *dom_handle;
3913 	struct resource res;
3914 	int err;
3915 
3916 	its_entry = (struct acpi_madt_generic_translator *)header;
3917 	memset(&res, 0, sizeof(res));
3918 	res.start = its_entry->base_address;
3919 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3920 	res.flags = IORESOURCE_MEM;
3921 
3922 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3923 	if (!dom_handle) {
3924 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3925 		       &res.start);
3926 		return -ENOMEM;
3927 	}
3928 
3929 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3930 					 dom_handle);
3931 	if (err) {
3932 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3933 		       &res.start, its_entry->translation_id);
3934 		goto dom_err;
3935 	}
3936 
3937 	err = its_probe_one(&res, dom_handle,
3938 			acpi_get_its_numa_node(its_entry->translation_id));
3939 	if (!err)
3940 		return 0;
3941 
3942 	iort_deregister_domain_token(its_entry->translation_id);
3943 dom_err:
3944 	irq_domain_free_fwnode(dom_handle);
3945 	return err;
3946 }
3947 
3948 static void __init its_acpi_probe(void)
3949 {
3950 	acpi_table_parse_srat_its();
3951 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3952 			      gic_acpi_parse_madt_its, 0);
3953 	acpi_its_srat_maps_free();
3954 }
3955 #else
3956 static void __init its_acpi_probe(void) { }
3957 #endif
3958 
3959 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3960 		    struct irq_domain *parent_domain)
3961 {
3962 	struct device_node *of_node;
3963 	struct its_node *its;
3964 	bool has_v4 = false;
3965 	int err;
3966 
3967 	its_parent = parent_domain;
3968 	of_node = to_of_node(handle);
3969 	if (of_node)
3970 		its_of_probe(of_node);
3971 	else
3972 		its_acpi_probe();
3973 
3974 	if (list_empty(&its_nodes)) {
3975 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3976 		return -ENXIO;
3977 	}
3978 
3979 	gic_rdists = rdists;
3980 
3981 	err = allocate_lpi_tables();
3982 	if (err)
3983 		return err;
3984 
3985 	list_for_each_entry(its, &its_nodes, entry)
3986 		has_v4 |= its->is_v4;
3987 
3988 	if (has_v4 & rdists->has_vlpis) {
3989 		if (its_init_vpe_domain() ||
3990 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3991 			rdists->has_vlpis = false;
3992 			pr_err("ITS: Disabling GICv4 support\n");
3993 		}
3994 	}
3995 
3996 	register_syscore_ops(&its_syscore_ops);
3997 
3998 	return 0;
3999 }
4000