1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/crash_dump.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/efi.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/list.h>
29 #include <linux/list_sort.h>
30 #include <linux/log2.h>
31 #include <linux/memblock.h>
32 #include <linux/mm.h>
33 #include <linux/msi.h>
34 #include <linux/of.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/of_pci.h>
38 #include <linux/of_platform.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/syscore_ops.h>
42 
43 #include <linux/irqchip.h>
44 #include <linux/irqchip/arm-gic-v3.h>
45 #include <linux/irqchip/arm-gic-v4.h>
46 
47 #include <asm/cputype.h>
48 #include <asm/exception.h>
49 
50 #include "irq-gic-common.h"
51 
52 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
53 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
54 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
55 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
56 
57 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
58 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
59 
60 static u32 lpi_id_bits;
61 
62 /*
63  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
64  * deal with (one configuration byte per interrupt). PENDBASE has to
65  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
66  */
67 #define LPI_NRBITS		lpi_id_bits
68 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
69 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
70 
71 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
72 
73 /*
74  * Collection structure - just an ID, and a redistributor address to
75  * ping. We use one per CPU as a bag of interrupts assigned to this
76  * CPU.
77  */
78 struct its_collection {
79 	u64			target_address;
80 	u16			col_id;
81 };
82 
83 /*
84  * The ITS_BASER structure - contains memory information, cached
85  * value of BASER register configuration and ITS page size.
86  */
87 struct its_baser {
88 	void		*base;
89 	u64		val;
90 	u32		order;
91 	u32		psz;
92 };
93 
94 struct its_device;
95 
96 /*
97  * The ITS structure - contains most of the infrastructure, with the
98  * top-level MSI domain, the command queue, the collections, and the
99  * list of devices writing to it.
100  *
101  * dev_alloc_lock has to be taken for device allocations, while the
102  * spinlock must be taken to parse data structures such as the device
103  * list.
104  */
105 struct its_node {
106 	raw_spinlock_t		lock;
107 	struct mutex		dev_alloc_lock;
108 	struct list_head	entry;
109 	void __iomem		*base;
110 	phys_addr_t		phys_base;
111 	struct its_cmd_block	*cmd_base;
112 	struct its_cmd_block	*cmd_write;
113 	struct its_baser	tables[GITS_BASER_NR_REGS];
114 	struct its_collection	*collections;
115 	struct fwnode_handle	*fwnode_handle;
116 	u64			(*get_msi_base)(struct its_device *its_dev);
117 	u64			cbaser_save;
118 	u32			ctlr_save;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	u32			ite_size;
123 	u32			device_ids;
124 	int			numa_node;
125 	unsigned int		msi_domain_flags;
126 	u32			pre_its_base; /* for Socionext Synquacer */
127 	bool			is_v4;
128 	int			vlpi_redist_offset;
129 };
130 
131 #define ITS_ITT_ALIGN		SZ_256
132 
133 /* The maximum number of VPEID bits supported by VLPI commands */
134 #define ITS_MAX_VPEID_BITS	(16)
135 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
136 
137 /* Convert page order to size in bytes */
138 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
139 
140 struct event_lpi_map {
141 	unsigned long		*lpi_map;
142 	u16			*col_map;
143 	irq_hw_number_t		lpi_base;
144 	int			nr_lpis;
145 	struct mutex		vlpi_lock;
146 	struct its_vm		*vm;
147 	struct its_vlpi_map	*vlpi_maps;
148 	int			nr_vlpis;
149 };
150 
151 /*
152  * The ITS view of a device - belongs to an ITS, owns an interrupt
153  * translation table, and a list of interrupts.  If it some of its
154  * LPIs are injected into a guest (GICv4), the event_map.vm field
155  * indicates which one.
156  */
157 struct its_device {
158 	struct list_head	entry;
159 	struct its_node		*its;
160 	struct event_lpi_map	event_map;
161 	void			*itt;
162 	u32			nr_ites;
163 	u32			device_id;
164 	bool			shared;
165 };
166 
167 static struct {
168 	raw_spinlock_t		lock;
169 	struct its_device	*dev;
170 	struct its_vpe		**vpes;
171 	int			next_victim;
172 } vpe_proxy;
173 
174 static LIST_HEAD(its_nodes);
175 static DEFINE_RAW_SPINLOCK(its_lock);
176 static struct rdists *gic_rdists;
177 static struct irq_domain *its_parent;
178 
179 static unsigned long its_list_map;
180 static u16 vmovp_seq_num;
181 static DEFINE_RAW_SPINLOCK(vmovp_lock);
182 
183 static DEFINE_IDA(its_vpeid_ida);
184 
185 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
186 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
187 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
188 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
189 
190 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
191 					       u32 event)
192 {
193 	struct its_node *its = its_dev->its;
194 
195 	return its->collections + its_dev->event_map.col_map[event];
196 }
197 
198 static struct its_collection *valid_col(struct its_collection *col)
199 {
200 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
201 		return NULL;
202 
203 	return col;
204 }
205 
206 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
207 {
208 	if (valid_col(its->collections + vpe->col_idx))
209 		return vpe;
210 
211 	return NULL;
212 }
213 
214 /*
215  * ITS command descriptors - parameters to be encoded in a command
216  * block.
217  */
218 struct its_cmd_desc {
219 	union {
220 		struct {
221 			struct its_device *dev;
222 			u32 event_id;
223 		} its_inv_cmd;
224 
225 		struct {
226 			struct its_device *dev;
227 			u32 event_id;
228 		} its_clear_cmd;
229 
230 		struct {
231 			struct its_device *dev;
232 			u32 event_id;
233 		} its_int_cmd;
234 
235 		struct {
236 			struct its_device *dev;
237 			int valid;
238 		} its_mapd_cmd;
239 
240 		struct {
241 			struct its_collection *col;
242 			int valid;
243 		} its_mapc_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			u32 phys_id;
248 			u32 event_id;
249 		} its_mapti_cmd;
250 
251 		struct {
252 			struct its_device *dev;
253 			struct its_collection *col;
254 			u32 event_id;
255 		} its_movi_cmd;
256 
257 		struct {
258 			struct its_device *dev;
259 			u32 event_id;
260 		} its_discard_cmd;
261 
262 		struct {
263 			struct its_collection *col;
264 		} its_invall_cmd;
265 
266 		struct {
267 			struct its_vpe *vpe;
268 		} its_vinvall_cmd;
269 
270 		struct {
271 			struct its_vpe *vpe;
272 			struct its_collection *col;
273 			bool valid;
274 		} its_vmapp_cmd;
275 
276 		struct {
277 			struct its_vpe *vpe;
278 			struct its_device *dev;
279 			u32 virt_id;
280 			u32 event_id;
281 			bool db_enabled;
282 		} its_vmapti_cmd;
283 
284 		struct {
285 			struct its_vpe *vpe;
286 			struct its_device *dev;
287 			u32 event_id;
288 			bool db_enabled;
289 		} its_vmovi_cmd;
290 
291 		struct {
292 			struct its_vpe *vpe;
293 			struct its_collection *col;
294 			u16 seq_num;
295 			u16 its_list;
296 		} its_vmovp_cmd;
297 	};
298 };
299 
300 /*
301  * The ITS command block, which is what the ITS actually parses.
302  */
303 struct its_cmd_block {
304 	u64	raw_cmd[4];
305 };
306 
307 #define ITS_CMD_QUEUE_SZ		SZ_64K
308 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
309 
310 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
311 						    struct its_cmd_block *,
312 						    struct its_cmd_desc *);
313 
314 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
315 					      struct its_cmd_block *,
316 					      struct its_cmd_desc *);
317 
318 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
319 {
320 	u64 mask = GENMASK_ULL(h, l);
321 	*raw_cmd &= ~mask;
322 	*raw_cmd |= (val << l) & mask;
323 }
324 
325 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
326 {
327 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
328 }
329 
330 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
331 {
332 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
333 }
334 
335 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
336 {
337 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
338 }
339 
340 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
341 {
342 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
343 }
344 
345 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
346 {
347 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
348 }
349 
350 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
351 {
352 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
353 }
354 
355 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
356 {
357 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
358 }
359 
360 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
361 {
362 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
363 }
364 
365 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
366 {
367 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
368 }
369 
370 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
371 {
372 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
373 }
374 
375 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
376 {
377 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
378 }
379 
380 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
381 {
382 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
383 }
384 
385 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
386 {
387 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
388 }
389 
390 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
391 {
392 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
393 }
394 
395 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
396 {
397 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
398 }
399 
400 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
401 {
402 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
403 }
404 
405 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
406 {
407 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
408 }
409 
410 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
411 {
412 	/* Let's fixup BE commands */
413 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
414 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
415 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
416 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
417 }
418 
419 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
420 						 struct its_cmd_block *cmd,
421 						 struct its_cmd_desc *desc)
422 {
423 	unsigned long itt_addr;
424 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
425 
426 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
427 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
428 
429 	its_encode_cmd(cmd, GITS_CMD_MAPD);
430 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
431 	its_encode_size(cmd, size - 1);
432 	its_encode_itt(cmd, itt_addr);
433 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
434 
435 	its_fixup_cmd(cmd);
436 
437 	return NULL;
438 }
439 
440 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
441 						 struct its_cmd_block *cmd,
442 						 struct its_cmd_desc *desc)
443 {
444 	its_encode_cmd(cmd, GITS_CMD_MAPC);
445 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
446 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
447 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
448 
449 	its_fixup_cmd(cmd);
450 
451 	return desc->its_mapc_cmd.col;
452 }
453 
454 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
455 						  struct its_cmd_block *cmd,
456 						  struct its_cmd_desc *desc)
457 {
458 	struct its_collection *col;
459 
460 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
461 			       desc->its_mapti_cmd.event_id);
462 
463 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
464 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
465 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
466 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
467 	its_encode_collection(cmd, col->col_id);
468 
469 	its_fixup_cmd(cmd);
470 
471 	return valid_col(col);
472 }
473 
474 static struct its_collection *its_build_movi_cmd(struct its_node *its,
475 						 struct its_cmd_block *cmd,
476 						 struct its_cmd_desc *desc)
477 {
478 	struct its_collection *col;
479 
480 	col = dev_event_to_col(desc->its_movi_cmd.dev,
481 			       desc->its_movi_cmd.event_id);
482 
483 	its_encode_cmd(cmd, GITS_CMD_MOVI);
484 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
485 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
486 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
487 
488 	its_fixup_cmd(cmd);
489 
490 	return valid_col(col);
491 }
492 
493 static struct its_collection *its_build_discard_cmd(struct its_node *its,
494 						    struct its_cmd_block *cmd,
495 						    struct its_cmd_desc *desc)
496 {
497 	struct its_collection *col;
498 
499 	col = dev_event_to_col(desc->its_discard_cmd.dev,
500 			       desc->its_discard_cmd.event_id);
501 
502 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
503 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
504 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
505 
506 	its_fixup_cmd(cmd);
507 
508 	return valid_col(col);
509 }
510 
511 static struct its_collection *its_build_inv_cmd(struct its_node *its,
512 						struct its_cmd_block *cmd,
513 						struct its_cmd_desc *desc)
514 {
515 	struct its_collection *col;
516 
517 	col = dev_event_to_col(desc->its_inv_cmd.dev,
518 			       desc->its_inv_cmd.event_id);
519 
520 	its_encode_cmd(cmd, GITS_CMD_INV);
521 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
522 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
523 
524 	its_fixup_cmd(cmd);
525 
526 	return valid_col(col);
527 }
528 
529 static struct its_collection *its_build_int_cmd(struct its_node *its,
530 						struct its_cmd_block *cmd,
531 						struct its_cmd_desc *desc)
532 {
533 	struct its_collection *col;
534 
535 	col = dev_event_to_col(desc->its_int_cmd.dev,
536 			       desc->its_int_cmd.event_id);
537 
538 	its_encode_cmd(cmd, GITS_CMD_INT);
539 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
540 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
541 
542 	its_fixup_cmd(cmd);
543 
544 	return valid_col(col);
545 }
546 
547 static struct its_collection *its_build_clear_cmd(struct its_node *its,
548 						  struct its_cmd_block *cmd,
549 						  struct its_cmd_desc *desc)
550 {
551 	struct its_collection *col;
552 
553 	col = dev_event_to_col(desc->its_clear_cmd.dev,
554 			       desc->its_clear_cmd.event_id);
555 
556 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
557 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
558 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
559 
560 	its_fixup_cmd(cmd);
561 
562 	return valid_col(col);
563 }
564 
565 static struct its_collection *its_build_invall_cmd(struct its_node *its,
566 						   struct its_cmd_block *cmd,
567 						   struct its_cmd_desc *desc)
568 {
569 	its_encode_cmd(cmd, GITS_CMD_INVALL);
570 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
571 
572 	its_fixup_cmd(cmd);
573 
574 	return NULL;
575 }
576 
577 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
578 					     struct its_cmd_block *cmd,
579 					     struct its_cmd_desc *desc)
580 {
581 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
582 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
583 
584 	its_fixup_cmd(cmd);
585 
586 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
587 }
588 
589 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
590 					   struct its_cmd_block *cmd,
591 					   struct its_cmd_desc *desc)
592 {
593 	unsigned long vpt_addr;
594 	u64 target;
595 
596 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
597 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
598 
599 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
600 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
601 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
602 	its_encode_target(cmd, target);
603 	its_encode_vpt_addr(cmd, vpt_addr);
604 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
605 
606 	its_fixup_cmd(cmd);
607 
608 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
609 }
610 
611 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
612 					    struct its_cmd_block *cmd,
613 					    struct its_cmd_desc *desc)
614 {
615 	u32 db;
616 
617 	if (desc->its_vmapti_cmd.db_enabled)
618 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
619 	else
620 		db = 1023;
621 
622 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
623 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
624 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
625 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
626 	its_encode_db_phys_id(cmd, db);
627 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
628 
629 	its_fixup_cmd(cmd);
630 
631 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
632 }
633 
634 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
635 					   struct its_cmd_block *cmd,
636 					   struct its_cmd_desc *desc)
637 {
638 	u32 db;
639 
640 	if (desc->its_vmovi_cmd.db_enabled)
641 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
642 	else
643 		db = 1023;
644 
645 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
646 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
647 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
648 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
649 	its_encode_db_phys_id(cmd, db);
650 	its_encode_db_valid(cmd, true);
651 
652 	its_fixup_cmd(cmd);
653 
654 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
655 }
656 
657 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
658 					   struct its_cmd_block *cmd,
659 					   struct its_cmd_desc *desc)
660 {
661 	u64 target;
662 
663 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
664 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
665 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
666 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
667 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
668 	its_encode_target(cmd, target);
669 
670 	its_fixup_cmd(cmd);
671 
672 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
673 }
674 
675 static u64 its_cmd_ptr_to_offset(struct its_node *its,
676 				 struct its_cmd_block *ptr)
677 {
678 	return (ptr - its->cmd_base) * sizeof(*ptr);
679 }
680 
681 static int its_queue_full(struct its_node *its)
682 {
683 	int widx;
684 	int ridx;
685 
686 	widx = its->cmd_write - its->cmd_base;
687 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
688 
689 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
690 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
691 		return 1;
692 
693 	return 0;
694 }
695 
696 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
697 {
698 	struct its_cmd_block *cmd;
699 	u32 count = 1000000;	/* 1s! */
700 
701 	while (its_queue_full(its)) {
702 		count--;
703 		if (!count) {
704 			pr_err_ratelimited("ITS queue not draining\n");
705 			return NULL;
706 		}
707 		cpu_relax();
708 		udelay(1);
709 	}
710 
711 	cmd = its->cmd_write++;
712 
713 	/* Handle queue wrapping */
714 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
715 		its->cmd_write = its->cmd_base;
716 
717 	/* Clear command  */
718 	cmd->raw_cmd[0] = 0;
719 	cmd->raw_cmd[1] = 0;
720 	cmd->raw_cmd[2] = 0;
721 	cmd->raw_cmd[3] = 0;
722 
723 	return cmd;
724 }
725 
726 static struct its_cmd_block *its_post_commands(struct its_node *its)
727 {
728 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
729 
730 	writel_relaxed(wr, its->base + GITS_CWRITER);
731 
732 	return its->cmd_write;
733 }
734 
735 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
736 {
737 	/*
738 	 * Make sure the commands written to memory are observable by
739 	 * the ITS.
740 	 */
741 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
742 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
743 	else
744 		dsb(ishst);
745 }
746 
747 static int its_wait_for_range_completion(struct its_node *its,
748 					 struct its_cmd_block *from,
749 					 struct its_cmd_block *to)
750 {
751 	u64 rd_idx, from_idx, to_idx;
752 	u32 count = 1000000;	/* 1s! */
753 
754 	from_idx = its_cmd_ptr_to_offset(its, from);
755 	to_idx = its_cmd_ptr_to_offset(its, to);
756 
757 	while (1) {
758 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
759 
760 		/* Direct case */
761 		if (from_idx < to_idx && rd_idx >= to_idx)
762 			break;
763 
764 		/* Wrapped case */
765 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
766 			break;
767 
768 		count--;
769 		if (!count) {
770 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
771 					   from_idx, to_idx, rd_idx);
772 			return -1;
773 		}
774 		cpu_relax();
775 		udelay(1);
776 	}
777 
778 	return 0;
779 }
780 
781 /* Warning, macro hell follows */
782 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
783 void name(struct its_node *its,						\
784 	  buildtype builder,						\
785 	  struct its_cmd_desc *desc)					\
786 {									\
787 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
788 	synctype *sync_obj;						\
789 	unsigned long flags;						\
790 									\
791 	raw_spin_lock_irqsave(&its->lock, flags);			\
792 									\
793 	cmd = its_allocate_entry(its);					\
794 	if (!cmd) {		/* We're soooooo screewed... */		\
795 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
796 		return;							\
797 	}								\
798 	sync_obj = builder(its, cmd, desc);				\
799 	its_flush_cmd(its, cmd);					\
800 									\
801 	if (sync_obj) {							\
802 		sync_cmd = its_allocate_entry(its);			\
803 		if (!sync_cmd)						\
804 			goto post;					\
805 									\
806 		buildfn(its, sync_cmd, sync_obj);			\
807 		its_flush_cmd(its, sync_cmd);				\
808 	}								\
809 									\
810 post:									\
811 	next_cmd = its_post_commands(its);				\
812 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
813 									\
814 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
815 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
816 }
817 
818 static void its_build_sync_cmd(struct its_node *its,
819 			       struct its_cmd_block *sync_cmd,
820 			       struct its_collection *sync_col)
821 {
822 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
823 	its_encode_target(sync_cmd, sync_col->target_address);
824 
825 	its_fixup_cmd(sync_cmd);
826 }
827 
828 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
829 			     struct its_collection, its_build_sync_cmd)
830 
831 static void its_build_vsync_cmd(struct its_node *its,
832 				struct its_cmd_block *sync_cmd,
833 				struct its_vpe *sync_vpe)
834 {
835 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
836 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
837 
838 	its_fixup_cmd(sync_cmd);
839 }
840 
841 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
842 			     struct its_vpe, its_build_vsync_cmd)
843 
844 static void its_send_int(struct its_device *dev, u32 event_id)
845 {
846 	struct its_cmd_desc desc;
847 
848 	desc.its_int_cmd.dev = dev;
849 	desc.its_int_cmd.event_id = event_id;
850 
851 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
852 }
853 
854 static void its_send_clear(struct its_device *dev, u32 event_id)
855 {
856 	struct its_cmd_desc desc;
857 
858 	desc.its_clear_cmd.dev = dev;
859 	desc.its_clear_cmd.event_id = event_id;
860 
861 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
862 }
863 
864 static void its_send_inv(struct its_device *dev, u32 event_id)
865 {
866 	struct its_cmd_desc desc;
867 
868 	desc.its_inv_cmd.dev = dev;
869 	desc.its_inv_cmd.event_id = event_id;
870 
871 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
872 }
873 
874 static void its_send_mapd(struct its_device *dev, int valid)
875 {
876 	struct its_cmd_desc desc;
877 
878 	desc.its_mapd_cmd.dev = dev;
879 	desc.its_mapd_cmd.valid = !!valid;
880 
881 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
882 }
883 
884 static void its_send_mapc(struct its_node *its, struct its_collection *col,
885 			  int valid)
886 {
887 	struct its_cmd_desc desc;
888 
889 	desc.its_mapc_cmd.col = col;
890 	desc.its_mapc_cmd.valid = !!valid;
891 
892 	its_send_single_command(its, its_build_mapc_cmd, &desc);
893 }
894 
895 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
896 {
897 	struct its_cmd_desc desc;
898 
899 	desc.its_mapti_cmd.dev = dev;
900 	desc.its_mapti_cmd.phys_id = irq_id;
901 	desc.its_mapti_cmd.event_id = id;
902 
903 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
904 }
905 
906 static void its_send_movi(struct its_device *dev,
907 			  struct its_collection *col, u32 id)
908 {
909 	struct its_cmd_desc desc;
910 
911 	desc.its_movi_cmd.dev = dev;
912 	desc.its_movi_cmd.col = col;
913 	desc.its_movi_cmd.event_id = id;
914 
915 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
916 }
917 
918 static void its_send_discard(struct its_device *dev, u32 id)
919 {
920 	struct its_cmd_desc desc;
921 
922 	desc.its_discard_cmd.dev = dev;
923 	desc.its_discard_cmd.event_id = id;
924 
925 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
926 }
927 
928 static void its_send_invall(struct its_node *its, struct its_collection *col)
929 {
930 	struct its_cmd_desc desc;
931 
932 	desc.its_invall_cmd.col = col;
933 
934 	its_send_single_command(its, its_build_invall_cmd, &desc);
935 }
936 
937 static void its_send_vmapti(struct its_device *dev, u32 id)
938 {
939 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
940 	struct its_cmd_desc desc;
941 
942 	desc.its_vmapti_cmd.vpe = map->vpe;
943 	desc.its_vmapti_cmd.dev = dev;
944 	desc.its_vmapti_cmd.virt_id = map->vintid;
945 	desc.its_vmapti_cmd.event_id = id;
946 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
947 
948 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
949 }
950 
951 static void its_send_vmovi(struct its_device *dev, u32 id)
952 {
953 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
954 	struct its_cmd_desc desc;
955 
956 	desc.its_vmovi_cmd.vpe = map->vpe;
957 	desc.its_vmovi_cmd.dev = dev;
958 	desc.its_vmovi_cmd.event_id = id;
959 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
960 
961 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
962 }
963 
964 static void its_send_vmapp(struct its_node *its,
965 			   struct its_vpe *vpe, bool valid)
966 {
967 	struct its_cmd_desc desc;
968 
969 	desc.its_vmapp_cmd.vpe = vpe;
970 	desc.its_vmapp_cmd.valid = valid;
971 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
972 
973 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
974 }
975 
976 static void its_send_vmovp(struct its_vpe *vpe)
977 {
978 	struct its_cmd_desc desc;
979 	struct its_node *its;
980 	unsigned long flags;
981 	int col_id = vpe->col_idx;
982 
983 	desc.its_vmovp_cmd.vpe = vpe;
984 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
985 
986 	if (!its_list_map) {
987 		its = list_first_entry(&its_nodes, struct its_node, entry);
988 		desc.its_vmovp_cmd.seq_num = 0;
989 		desc.its_vmovp_cmd.col = &its->collections[col_id];
990 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
991 		return;
992 	}
993 
994 	/*
995 	 * Yet another marvel of the architecture. If using the
996 	 * its_list "feature", we need to make sure that all ITSs
997 	 * receive all VMOVP commands in the same order. The only way
998 	 * to guarantee this is to make vmovp a serialization point.
999 	 *
1000 	 * Wall <-- Head.
1001 	 */
1002 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1003 
1004 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1005 
1006 	/* Emit VMOVPs */
1007 	list_for_each_entry(its, &its_nodes, entry) {
1008 		if (!its->is_v4)
1009 			continue;
1010 
1011 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1012 			continue;
1013 
1014 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1015 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1016 	}
1017 
1018 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1019 }
1020 
1021 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1022 {
1023 	struct its_cmd_desc desc;
1024 
1025 	desc.its_vinvall_cmd.vpe = vpe;
1026 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1027 }
1028 
1029 /*
1030  * irqchip functions - assumes MSI, mostly.
1031  */
1032 
1033 static inline u32 its_get_event_id(struct irq_data *d)
1034 {
1035 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1036 	return d->hwirq - its_dev->event_map.lpi_base;
1037 }
1038 
1039 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1040 {
1041 	irq_hw_number_t hwirq;
1042 	void *va;
1043 	u8 *cfg;
1044 
1045 	if (irqd_is_forwarded_to_vcpu(d)) {
1046 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047 		u32 event = its_get_event_id(d);
1048 		struct its_vlpi_map *map;
1049 
1050 		va = page_address(its_dev->event_map.vm->vprop_page);
1051 		map = &its_dev->event_map.vlpi_maps[event];
1052 		hwirq = map->vintid;
1053 
1054 		/* Remember the updated property */
1055 		map->properties &= ~clr;
1056 		map->properties |= set | LPI_PROP_GROUP1;
1057 	} else {
1058 		va = gic_rdists->prop_table_va;
1059 		hwirq = d->hwirq;
1060 	}
1061 
1062 	cfg = va + hwirq - 8192;
1063 	*cfg &= ~clr;
1064 	*cfg |= set | LPI_PROP_GROUP1;
1065 
1066 	/*
1067 	 * Make the above write visible to the redistributors.
1068 	 * And yes, we're flushing exactly: One. Single. Byte.
1069 	 * Humpf...
1070 	 */
1071 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1072 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1073 	else
1074 		dsb(ishst);
1075 }
1076 
1077 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1078 {
1079 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1080 
1081 	lpi_write_config(d, clr, set);
1082 	its_send_inv(its_dev, its_get_event_id(d));
1083 }
1084 
1085 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1086 {
1087 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1088 	u32 event = its_get_event_id(d);
1089 
1090 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1091 		return;
1092 
1093 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1094 
1095 	/*
1096 	 * More fun with the architecture:
1097 	 *
1098 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1099 	 * value or to 1023, depending on the enable bit. But that
1100 	 * would be issueing a mapping for an /existing/ DevID+EventID
1101 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1102 	 * to the /same/ vPE, using this opportunity to adjust the
1103 	 * doorbell. Mouahahahaha. We loves it, Precious.
1104 	 */
1105 	its_send_vmovi(its_dev, event);
1106 }
1107 
1108 static void its_mask_irq(struct irq_data *d)
1109 {
1110 	if (irqd_is_forwarded_to_vcpu(d))
1111 		its_vlpi_set_doorbell(d, false);
1112 
1113 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1114 }
1115 
1116 static void its_unmask_irq(struct irq_data *d)
1117 {
1118 	if (irqd_is_forwarded_to_vcpu(d))
1119 		its_vlpi_set_doorbell(d, true);
1120 
1121 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1122 }
1123 
1124 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1125 			    bool force)
1126 {
1127 	unsigned int cpu;
1128 	const struct cpumask *cpu_mask = cpu_online_mask;
1129 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1130 	struct its_collection *target_col;
1131 	u32 id = its_get_event_id(d);
1132 
1133 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1134 	if (irqd_is_forwarded_to_vcpu(d))
1135 		return -EINVAL;
1136 
1137        /* lpi cannot be routed to a redistributor that is on a foreign node */
1138 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1139 		if (its_dev->its->numa_node >= 0) {
1140 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1141 			if (!cpumask_intersects(mask_val, cpu_mask))
1142 				return -EINVAL;
1143 		}
1144 	}
1145 
1146 	cpu = cpumask_any_and(mask_val, cpu_mask);
1147 
1148 	if (cpu >= nr_cpu_ids)
1149 		return -EINVAL;
1150 
1151 	/* don't set the affinity when the target cpu is same as current one */
1152 	if (cpu != its_dev->event_map.col_map[id]) {
1153 		target_col = &its_dev->its->collections[cpu];
1154 		its_send_movi(its_dev, target_col, id);
1155 		its_dev->event_map.col_map[id] = cpu;
1156 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1157 	}
1158 
1159 	return IRQ_SET_MASK_OK_DONE;
1160 }
1161 
1162 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1163 {
1164 	struct its_node *its = its_dev->its;
1165 
1166 	return its->phys_base + GITS_TRANSLATER;
1167 }
1168 
1169 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1170 {
1171 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1172 	struct its_node *its;
1173 	u64 addr;
1174 
1175 	its = its_dev->its;
1176 	addr = its->get_msi_base(its_dev);
1177 
1178 	msg->address_lo		= lower_32_bits(addr);
1179 	msg->address_hi		= upper_32_bits(addr);
1180 	msg->data		= its_get_event_id(d);
1181 
1182 	iommu_dma_map_msi_msg(d->irq, msg);
1183 }
1184 
1185 static int its_irq_set_irqchip_state(struct irq_data *d,
1186 				     enum irqchip_irq_state which,
1187 				     bool state)
1188 {
1189 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1190 	u32 event = its_get_event_id(d);
1191 
1192 	if (which != IRQCHIP_STATE_PENDING)
1193 		return -EINVAL;
1194 
1195 	if (state)
1196 		its_send_int(its_dev, event);
1197 	else
1198 		its_send_clear(its_dev, event);
1199 
1200 	return 0;
1201 }
1202 
1203 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1204 {
1205 	unsigned long flags;
1206 
1207 	/* Not using the ITS list? Everything is always mapped. */
1208 	if (!its_list_map)
1209 		return;
1210 
1211 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1212 
1213 	/*
1214 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1215 	 * them mapped now.
1216 	 */
1217 	vm->vlpi_count[its->list_nr]++;
1218 
1219 	if (vm->vlpi_count[its->list_nr] == 1) {
1220 		int i;
1221 
1222 		for (i = 0; i < vm->nr_vpes; i++) {
1223 			struct its_vpe *vpe = vm->vpes[i];
1224 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1225 
1226 			/* Map the VPE to the first possible CPU */
1227 			vpe->col_idx = cpumask_first(cpu_online_mask);
1228 			its_send_vmapp(its, vpe, true);
1229 			its_send_vinvall(its, vpe);
1230 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1231 		}
1232 	}
1233 
1234 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1235 }
1236 
1237 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1238 {
1239 	unsigned long flags;
1240 
1241 	/* Not using the ITS list? Everything is always mapped. */
1242 	if (!its_list_map)
1243 		return;
1244 
1245 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1246 
1247 	if (!--vm->vlpi_count[its->list_nr]) {
1248 		int i;
1249 
1250 		for (i = 0; i < vm->nr_vpes; i++)
1251 			its_send_vmapp(its, vm->vpes[i], false);
1252 	}
1253 
1254 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1255 }
1256 
1257 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1258 {
1259 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1260 	u32 event = its_get_event_id(d);
1261 	int ret = 0;
1262 
1263 	if (!info->map)
1264 		return -EINVAL;
1265 
1266 	mutex_lock(&its_dev->event_map.vlpi_lock);
1267 
1268 	if (!its_dev->event_map.vm) {
1269 		struct its_vlpi_map *maps;
1270 
1271 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1272 			       GFP_KERNEL);
1273 		if (!maps) {
1274 			ret = -ENOMEM;
1275 			goto out;
1276 		}
1277 
1278 		its_dev->event_map.vm = info->map->vm;
1279 		its_dev->event_map.vlpi_maps = maps;
1280 	} else if (its_dev->event_map.vm != info->map->vm) {
1281 		ret = -EINVAL;
1282 		goto out;
1283 	}
1284 
1285 	/* Get our private copy of the mapping information */
1286 	its_dev->event_map.vlpi_maps[event] = *info->map;
1287 
1288 	if (irqd_is_forwarded_to_vcpu(d)) {
1289 		/* Already mapped, move it around */
1290 		its_send_vmovi(its_dev, event);
1291 	} else {
1292 		/* Ensure all the VPEs are mapped on this ITS */
1293 		its_map_vm(its_dev->its, info->map->vm);
1294 
1295 		/*
1296 		 * Flag the interrupt as forwarded so that we can
1297 		 * start poking the virtual property table.
1298 		 */
1299 		irqd_set_forwarded_to_vcpu(d);
1300 
1301 		/* Write out the property to the prop table */
1302 		lpi_write_config(d, 0xff, info->map->properties);
1303 
1304 		/* Drop the physical mapping */
1305 		its_send_discard(its_dev, event);
1306 
1307 		/* and install the virtual one */
1308 		its_send_vmapti(its_dev, event);
1309 
1310 		/* Increment the number of VLPIs */
1311 		its_dev->event_map.nr_vlpis++;
1312 	}
1313 
1314 out:
1315 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1316 	return ret;
1317 }
1318 
1319 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1320 {
1321 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1322 	u32 event = its_get_event_id(d);
1323 	int ret = 0;
1324 
1325 	mutex_lock(&its_dev->event_map.vlpi_lock);
1326 
1327 	if (!its_dev->event_map.vm ||
1328 	    !its_dev->event_map.vlpi_maps[event].vm) {
1329 		ret = -EINVAL;
1330 		goto out;
1331 	}
1332 
1333 	/* Copy our mapping information to the incoming request */
1334 	*info->map = its_dev->event_map.vlpi_maps[event];
1335 
1336 out:
1337 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1338 	return ret;
1339 }
1340 
1341 static int its_vlpi_unmap(struct irq_data *d)
1342 {
1343 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1344 	u32 event = its_get_event_id(d);
1345 	int ret = 0;
1346 
1347 	mutex_lock(&its_dev->event_map.vlpi_lock);
1348 
1349 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1350 		ret = -EINVAL;
1351 		goto out;
1352 	}
1353 
1354 	/* Drop the virtual mapping */
1355 	its_send_discard(its_dev, event);
1356 
1357 	/* and restore the physical one */
1358 	irqd_clr_forwarded_to_vcpu(d);
1359 	its_send_mapti(its_dev, d->hwirq, event);
1360 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1361 				    LPI_PROP_ENABLED |
1362 				    LPI_PROP_GROUP1));
1363 
1364 	/* Potentially unmap the VM from this ITS */
1365 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1366 
1367 	/*
1368 	 * Drop the refcount and make the device available again if
1369 	 * this was the last VLPI.
1370 	 */
1371 	if (!--its_dev->event_map.nr_vlpis) {
1372 		its_dev->event_map.vm = NULL;
1373 		kfree(its_dev->event_map.vlpi_maps);
1374 	}
1375 
1376 out:
1377 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1378 	return ret;
1379 }
1380 
1381 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1382 {
1383 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1384 
1385 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1386 		return -EINVAL;
1387 
1388 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1389 		lpi_update_config(d, 0xff, info->config);
1390 	else
1391 		lpi_write_config(d, 0xff, info->config);
1392 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1393 
1394 	return 0;
1395 }
1396 
1397 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1398 {
1399 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400 	struct its_cmd_info *info = vcpu_info;
1401 
1402 	/* Need a v4 ITS */
1403 	if (!its_dev->its->is_v4)
1404 		return -EINVAL;
1405 
1406 	/* Unmap request? */
1407 	if (!info)
1408 		return its_vlpi_unmap(d);
1409 
1410 	switch (info->cmd_type) {
1411 	case MAP_VLPI:
1412 		return its_vlpi_map(d, info);
1413 
1414 	case GET_VLPI:
1415 		return its_vlpi_get(d, info);
1416 
1417 	case PROP_UPDATE_VLPI:
1418 	case PROP_UPDATE_AND_INV_VLPI:
1419 		return its_vlpi_prop_update(d, info);
1420 
1421 	default:
1422 		return -EINVAL;
1423 	}
1424 }
1425 
1426 static struct irq_chip its_irq_chip = {
1427 	.name			= "ITS",
1428 	.irq_mask		= its_mask_irq,
1429 	.irq_unmask		= its_unmask_irq,
1430 	.irq_eoi		= irq_chip_eoi_parent,
1431 	.irq_set_affinity	= its_set_affinity,
1432 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1433 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1434 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1435 };
1436 
1437 
1438 /*
1439  * How we allocate LPIs:
1440  *
1441  * lpi_range_list contains ranges of LPIs that are to available to
1442  * allocate from. To allocate LPIs, just pick the first range that
1443  * fits the required allocation, and reduce it by the required
1444  * amount. Once empty, remove the range from the list.
1445  *
1446  * To free a range of LPIs, add a free range to the list, sort it and
1447  * merge the result if the new range happens to be adjacent to an
1448  * already free block.
1449  *
1450  * The consequence of the above is that allocation is cost is low, but
1451  * freeing is expensive. We assumes that freeing rarely occurs.
1452  */
1453 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1454 
1455 static DEFINE_MUTEX(lpi_range_lock);
1456 static LIST_HEAD(lpi_range_list);
1457 
1458 struct lpi_range {
1459 	struct list_head	entry;
1460 	u32			base_id;
1461 	u32			span;
1462 };
1463 
1464 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1465 {
1466 	struct lpi_range *range;
1467 
1468 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1469 	if (range) {
1470 		INIT_LIST_HEAD(&range->entry);
1471 		range->base_id = base;
1472 		range->span = span;
1473 	}
1474 
1475 	return range;
1476 }
1477 
1478 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1479 {
1480 	struct lpi_range *ra, *rb;
1481 
1482 	ra = container_of(a, struct lpi_range, entry);
1483 	rb = container_of(b, struct lpi_range, entry);
1484 
1485 	return rb->base_id - ra->base_id;
1486 }
1487 
1488 static void merge_lpi_ranges(void)
1489 {
1490 	struct lpi_range *range, *tmp;
1491 
1492 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1493 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1494 		    (tmp->base_id == (range->base_id + range->span))) {
1495 			tmp->base_id = range->base_id;
1496 			tmp->span += range->span;
1497 			list_del(&range->entry);
1498 			kfree(range);
1499 		}
1500 	}
1501 }
1502 
1503 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1504 {
1505 	struct lpi_range *range, *tmp;
1506 	int err = -ENOSPC;
1507 
1508 	mutex_lock(&lpi_range_lock);
1509 
1510 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1511 		if (range->span >= nr_lpis) {
1512 			*base = range->base_id;
1513 			range->base_id += nr_lpis;
1514 			range->span -= nr_lpis;
1515 
1516 			if (range->span == 0) {
1517 				list_del(&range->entry);
1518 				kfree(range);
1519 			}
1520 
1521 			err = 0;
1522 			break;
1523 		}
1524 	}
1525 
1526 	mutex_unlock(&lpi_range_lock);
1527 
1528 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1529 	return err;
1530 }
1531 
1532 static int free_lpi_range(u32 base, u32 nr_lpis)
1533 {
1534 	struct lpi_range *new;
1535 	int err = 0;
1536 
1537 	mutex_lock(&lpi_range_lock);
1538 
1539 	new = mk_lpi_range(base, nr_lpis);
1540 	if (!new) {
1541 		err = -ENOMEM;
1542 		goto out;
1543 	}
1544 
1545 	list_add(&new->entry, &lpi_range_list);
1546 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1547 	merge_lpi_ranges();
1548 out:
1549 	mutex_unlock(&lpi_range_lock);
1550 	return err;
1551 }
1552 
1553 static int __init its_lpi_init(u32 id_bits)
1554 {
1555 	u32 lpis = (1UL << id_bits) - 8192;
1556 	u32 numlpis;
1557 	int err;
1558 
1559 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1560 
1561 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1562 		lpis = numlpis;
1563 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1564 			lpis);
1565 	}
1566 
1567 	/*
1568 	 * Initializing the allocator is just the same as freeing the
1569 	 * full range of LPIs.
1570 	 */
1571 	err = free_lpi_range(8192, lpis);
1572 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1573 	return err;
1574 }
1575 
1576 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1577 {
1578 	unsigned long *bitmap = NULL;
1579 	int err = 0;
1580 
1581 	do {
1582 		err = alloc_lpi_range(nr_irqs, base);
1583 		if (!err)
1584 			break;
1585 
1586 		nr_irqs /= 2;
1587 	} while (nr_irqs > 0);
1588 
1589 	if (!nr_irqs)
1590 		err = -ENOSPC;
1591 
1592 	if (err)
1593 		goto out;
1594 
1595 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1596 	if (!bitmap)
1597 		goto out;
1598 
1599 	*nr_ids = nr_irqs;
1600 
1601 out:
1602 	if (!bitmap)
1603 		*base = *nr_ids = 0;
1604 
1605 	return bitmap;
1606 }
1607 
1608 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1609 {
1610 	WARN_ON(free_lpi_range(base, nr_ids));
1611 	kfree(bitmap);
1612 }
1613 
1614 static void gic_reset_prop_table(void *va)
1615 {
1616 	/* Priority 0xa0, Group-1, disabled */
1617 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1618 
1619 	/* Make sure the GIC will observe the written configuration */
1620 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1621 }
1622 
1623 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1624 {
1625 	struct page *prop_page;
1626 
1627 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1628 	if (!prop_page)
1629 		return NULL;
1630 
1631 	gic_reset_prop_table(page_address(prop_page));
1632 
1633 	return prop_page;
1634 }
1635 
1636 static void its_free_prop_table(struct page *prop_page)
1637 {
1638 	free_pages((unsigned long)page_address(prop_page),
1639 		   get_order(LPI_PROPBASE_SZ));
1640 }
1641 
1642 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1643 {
1644 	phys_addr_t start, end, addr_end;
1645 	u64 i;
1646 
1647 	/*
1648 	 * We don't bother checking for a kdump kernel as by
1649 	 * construction, the LPI tables are out of this kernel's
1650 	 * memory map.
1651 	 */
1652 	if (is_kdump_kernel())
1653 		return true;
1654 
1655 	addr_end = addr + size - 1;
1656 
1657 	for_each_reserved_mem_region(i, &start, &end) {
1658 		if (addr >= start && addr_end <= end)
1659 			return true;
1660 	}
1661 
1662 	/* Not found, not a good sign... */
1663 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1664 		&addr, &addr_end);
1665 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1666 	return false;
1667 }
1668 
1669 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1670 {
1671 	if (efi_enabled(EFI_CONFIG_TABLES))
1672 		return efi_mem_reserve_persistent(addr, size);
1673 
1674 	return 0;
1675 }
1676 
1677 static int __init its_setup_lpi_prop_table(void)
1678 {
1679 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1680 		u64 val;
1681 
1682 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1683 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1684 
1685 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1686 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1687 						     LPI_PROPBASE_SZ,
1688 						     MEMREMAP_WB);
1689 		gic_reset_prop_table(gic_rdists->prop_table_va);
1690 	} else {
1691 		struct page *page;
1692 
1693 		lpi_id_bits = min_t(u32,
1694 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1695 				    ITS_MAX_LPI_NRBITS);
1696 		page = its_allocate_prop_table(GFP_NOWAIT);
1697 		if (!page) {
1698 			pr_err("Failed to allocate PROPBASE\n");
1699 			return -ENOMEM;
1700 		}
1701 
1702 		gic_rdists->prop_table_pa = page_to_phys(page);
1703 		gic_rdists->prop_table_va = page_address(page);
1704 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1705 					  LPI_PROPBASE_SZ));
1706 	}
1707 
1708 	pr_info("GICv3: using LPI property table @%pa\n",
1709 		&gic_rdists->prop_table_pa);
1710 
1711 	return its_lpi_init(lpi_id_bits);
1712 }
1713 
1714 static const char *its_base_type_string[] = {
1715 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1716 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1717 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1718 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1719 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1720 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1721 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1722 };
1723 
1724 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1725 {
1726 	u32 idx = baser - its->tables;
1727 
1728 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1729 }
1730 
1731 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1732 			    u64 val)
1733 {
1734 	u32 idx = baser - its->tables;
1735 
1736 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1737 	baser->val = its_read_baser(its, baser);
1738 }
1739 
1740 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1741 			   u64 cache, u64 shr, u32 psz, u32 order,
1742 			   bool indirect)
1743 {
1744 	u64 val = its_read_baser(its, baser);
1745 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1746 	u64 type = GITS_BASER_TYPE(val);
1747 	u64 baser_phys, tmp;
1748 	u32 alloc_pages;
1749 	void *base;
1750 
1751 retry_alloc_baser:
1752 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1753 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1754 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1755 			&its->phys_base, its_base_type_string[type],
1756 			alloc_pages, GITS_BASER_PAGES_MAX);
1757 		alloc_pages = GITS_BASER_PAGES_MAX;
1758 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1759 	}
1760 
1761 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1762 	if (!base)
1763 		return -ENOMEM;
1764 
1765 	baser_phys = virt_to_phys(base);
1766 
1767 	/* Check if the physical address of the memory is above 48bits */
1768 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1769 
1770 		/* 52bit PA is supported only when PageSize=64K */
1771 		if (psz != SZ_64K) {
1772 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1773 			free_pages((unsigned long)base, order);
1774 			return -ENXIO;
1775 		}
1776 
1777 		/* Convert 52bit PA to 48bit field */
1778 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1779 	}
1780 
1781 retry_baser:
1782 	val = (baser_phys					 |
1783 		(type << GITS_BASER_TYPE_SHIFT)			 |
1784 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1785 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1786 		cache						 |
1787 		shr						 |
1788 		GITS_BASER_VALID);
1789 
1790 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1791 
1792 	switch (psz) {
1793 	case SZ_4K:
1794 		val |= GITS_BASER_PAGE_SIZE_4K;
1795 		break;
1796 	case SZ_16K:
1797 		val |= GITS_BASER_PAGE_SIZE_16K;
1798 		break;
1799 	case SZ_64K:
1800 		val |= GITS_BASER_PAGE_SIZE_64K;
1801 		break;
1802 	}
1803 
1804 	its_write_baser(its, baser, val);
1805 	tmp = baser->val;
1806 
1807 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1808 		/*
1809 		 * Shareability didn't stick. Just use
1810 		 * whatever the read reported, which is likely
1811 		 * to be the only thing this redistributor
1812 		 * supports. If that's zero, make it
1813 		 * non-cacheable as well.
1814 		 */
1815 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1816 		if (!shr) {
1817 			cache = GITS_BASER_nC;
1818 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1819 		}
1820 		goto retry_baser;
1821 	}
1822 
1823 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1824 		/*
1825 		 * Page size didn't stick. Let's try a smaller
1826 		 * size and retry. If we reach 4K, then
1827 		 * something is horribly wrong...
1828 		 */
1829 		free_pages((unsigned long)base, order);
1830 		baser->base = NULL;
1831 
1832 		switch (psz) {
1833 		case SZ_16K:
1834 			psz = SZ_4K;
1835 			goto retry_alloc_baser;
1836 		case SZ_64K:
1837 			psz = SZ_16K;
1838 			goto retry_alloc_baser;
1839 		}
1840 	}
1841 
1842 	if (val != tmp) {
1843 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1844 		       &its->phys_base, its_base_type_string[type],
1845 		       val, tmp);
1846 		free_pages((unsigned long)base, order);
1847 		return -ENXIO;
1848 	}
1849 
1850 	baser->order = order;
1851 	baser->base = base;
1852 	baser->psz = psz;
1853 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1854 
1855 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1856 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1857 		its_base_type_string[type],
1858 		(unsigned long)virt_to_phys(base),
1859 		indirect ? "indirect" : "flat", (int)esz,
1860 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1861 
1862 	return 0;
1863 }
1864 
1865 static bool its_parse_indirect_baser(struct its_node *its,
1866 				     struct its_baser *baser,
1867 				     u32 psz, u32 *order, u32 ids)
1868 {
1869 	u64 tmp = its_read_baser(its, baser);
1870 	u64 type = GITS_BASER_TYPE(tmp);
1871 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1872 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1873 	u32 new_order = *order;
1874 	bool indirect = false;
1875 
1876 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1877 	if ((esz << ids) > (psz * 2)) {
1878 		/*
1879 		 * Find out whether hw supports a single or two-level table by
1880 		 * table by reading bit at offset '62' after writing '1' to it.
1881 		 */
1882 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1883 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1884 
1885 		if (indirect) {
1886 			/*
1887 			 * The size of the lvl2 table is equal to ITS page size
1888 			 * which is 'psz'. For computing lvl1 table size,
1889 			 * subtract ID bits that sparse lvl2 table from 'ids'
1890 			 * which is reported by ITS hardware times lvl1 table
1891 			 * entry size.
1892 			 */
1893 			ids -= ilog2(psz / (int)esz);
1894 			esz = GITS_LVL1_ENTRY_SIZE;
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * Allocate as many entries as required to fit the
1900 	 * range of device IDs that the ITS can grok... The ID
1901 	 * space being incredibly sparse, this results in a
1902 	 * massive waste of memory if two-level device table
1903 	 * feature is not supported by hardware.
1904 	 */
1905 	new_order = max_t(u32, get_order(esz << ids), new_order);
1906 	if (new_order >= MAX_ORDER) {
1907 		new_order = MAX_ORDER - 1;
1908 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1909 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1910 			&its->phys_base, its_base_type_string[type],
1911 			its->device_ids, ids);
1912 	}
1913 
1914 	*order = new_order;
1915 
1916 	return indirect;
1917 }
1918 
1919 static void its_free_tables(struct its_node *its)
1920 {
1921 	int i;
1922 
1923 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1924 		if (its->tables[i].base) {
1925 			free_pages((unsigned long)its->tables[i].base,
1926 				   its->tables[i].order);
1927 			its->tables[i].base = NULL;
1928 		}
1929 	}
1930 }
1931 
1932 static int its_alloc_tables(struct its_node *its)
1933 {
1934 	u64 shr = GITS_BASER_InnerShareable;
1935 	u64 cache = GITS_BASER_RaWaWb;
1936 	u32 psz = SZ_64K;
1937 	int err, i;
1938 
1939 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1940 		/* erratum 24313: ignore memory access type */
1941 		cache = GITS_BASER_nCnB;
1942 
1943 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1944 		struct its_baser *baser = its->tables + i;
1945 		u64 val = its_read_baser(its, baser);
1946 		u64 type = GITS_BASER_TYPE(val);
1947 		u32 order = get_order(psz);
1948 		bool indirect = false;
1949 
1950 		switch (type) {
1951 		case GITS_BASER_TYPE_NONE:
1952 			continue;
1953 
1954 		case GITS_BASER_TYPE_DEVICE:
1955 			indirect = its_parse_indirect_baser(its, baser,
1956 							    psz, &order,
1957 							    its->device_ids);
1958 		case GITS_BASER_TYPE_VCPU:
1959 			indirect = its_parse_indirect_baser(its, baser,
1960 							    psz, &order,
1961 							    ITS_MAX_VPEID_BITS);
1962 			break;
1963 		}
1964 
1965 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1966 		if (err < 0) {
1967 			its_free_tables(its);
1968 			return err;
1969 		}
1970 
1971 		/* Update settings which will be used for next BASERn */
1972 		psz = baser->psz;
1973 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1974 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static int its_alloc_collections(struct its_node *its)
1981 {
1982 	int i;
1983 
1984 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1985 				   GFP_KERNEL);
1986 	if (!its->collections)
1987 		return -ENOMEM;
1988 
1989 	for (i = 0; i < nr_cpu_ids; i++)
1990 		its->collections[i].target_address = ~0ULL;
1991 
1992 	return 0;
1993 }
1994 
1995 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1996 {
1997 	struct page *pend_page;
1998 
1999 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2000 				get_order(LPI_PENDBASE_SZ));
2001 	if (!pend_page)
2002 		return NULL;
2003 
2004 	/* Make sure the GIC will observe the zero-ed page */
2005 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2006 
2007 	return pend_page;
2008 }
2009 
2010 static void its_free_pending_table(struct page *pt)
2011 {
2012 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2013 }
2014 
2015 /*
2016  * Booting with kdump and LPIs enabled is generally fine. Any other
2017  * case is wrong in the absence of firmware/EFI support.
2018  */
2019 static bool enabled_lpis_allowed(void)
2020 {
2021 	phys_addr_t addr;
2022 	u64 val;
2023 
2024 	/* Check whether the property table is in a reserved region */
2025 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2026 	addr = val & GENMASK_ULL(51, 12);
2027 
2028 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2029 }
2030 
2031 static int __init allocate_lpi_tables(void)
2032 {
2033 	u64 val;
2034 	int err, cpu;
2035 
2036 	/*
2037 	 * If LPIs are enabled while we run this from the boot CPU,
2038 	 * flag the RD tables as pre-allocated if the stars do align.
2039 	 */
2040 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2041 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2042 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2043 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2044 		pr_info("GICv3: Using preallocated redistributor tables\n");
2045 	}
2046 
2047 	err = its_setup_lpi_prop_table();
2048 	if (err)
2049 		return err;
2050 
2051 	/*
2052 	 * We allocate all the pending tables anyway, as we may have a
2053 	 * mix of RDs that have had LPIs enabled, and some that
2054 	 * don't. We'll free the unused ones as each CPU comes online.
2055 	 */
2056 	for_each_possible_cpu(cpu) {
2057 		struct page *pend_page;
2058 
2059 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2060 		if (!pend_page) {
2061 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2062 			return -ENOMEM;
2063 		}
2064 
2065 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2072 {
2073 	u32 count = 1000000;	/* 1s! */
2074 	bool clean;
2075 	u64 val;
2076 
2077 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2078 	val &= ~GICR_VPENDBASER_Valid;
2079 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2080 
2081 	do {
2082 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2083 		clean = !(val & GICR_VPENDBASER_Dirty);
2084 		if (!clean) {
2085 			count--;
2086 			cpu_relax();
2087 			udelay(1);
2088 		}
2089 	} while (!clean && count);
2090 
2091 	return val;
2092 }
2093 
2094 static void its_cpu_init_lpis(void)
2095 {
2096 	void __iomem *rbase = gic_data_rdist_rd_base();
2097 	struct page *pend_page;
2098 	phys_addr_t paddr;
2099 	u64 val, tmp;
2100 
2101 	if (gic_data_rdist()->lpi_enabled)
2102 		return;
2103 
2104 	val = readl_relaxed(rbase + GICR_CTLR);
2105 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2106 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2107 		/*
2108 		 * Check that we get the same property table on all
2109 		 * RDs. If we don't, this is hopeless.
2110 		 */
2111 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2112 		paddr &= GENMASK_ULL(51, 12);
2113 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2114 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2115 
2116 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2117 		paddr &= GENMASK_ULL(51, 16);
2118 
2119 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2120 		its_free_pending_table(gic_data_rdist()->pend_page);
2121 		gic_data_rdist()->pend_page = NULL;
2122 
2123 		goto out;
2124 	}
2125 
2126 	pend_page = gic_data_rdist()->pend_page;
2127 	paddr = page_to_phys(pend_page);
2128 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2129 
2130 	/* set PROPBASE */
2131 	val = (gic_rdists->prop_table_pa |
2132 	       GICR_PROPBASER_InnerShareable |
2133 	       GICR_PROPBASER_RaWaWb |
2134 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2135 
2136 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2137 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2138 
2139 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2140 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2141 			/*
2142 			 * The HW reports non-shareable, we must
2143 			 * remove the cacheability attributes as
2144 			 * well.
2145 			 */
2146 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2147 				 GICR_PROPBASER_CACHEABILITY_MASK);
2148 			val |= GICR_PROPBASER_nC;
2149 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2150 		}
2151 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2152 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2153 	}
2154 
2155 	/* set PENDBASE */
2156 	val = (page_to_phys(pend_page) |
2157 	       GICR_PENDBASER_InnerShareable |
2158 	       GICR_PENDBASER_RaWaWb);
2159 
2160 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2161 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2162 
2163 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2164 		/*
2165 		 * The HW reports non-shareable, we must remove the
2166 		 * cacheability attributes as well.
2167 		 */
2168 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2169 			 GICR_PENDBASER_CACHEABILITY_MASK);
2170 		val |= GICR_PENDBASER_nC;
2171 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2172 	}
2173 
2174 	/* Enable LPIs */
2175 	val = readl_relaxed(rbase + GICR_CTLR);
2176 	val |= GICR_CTLR_ENABLE_LPIS;
2177 	writel_relaxed(val, rbase + GICR_CTLR);
2178 
2179 	if (gic_rdists->has_vlpis) {
2180 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2181 
2182 		/*
2183 		 * It's possible for CPU to receive VLPIs before it is
2184 		 * sheduled as a vPE, especially for the first CPU, and the
2185 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2186 		 * as out of range and dropped by GIC.
2187 		 * So we initialize IDbits to known value to avoid VLPI drop.
2188 		 */
2189 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2190 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2191 			smp_processor_id(), val);
2192 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2193 
2194 		/*
2195 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2196 		 * ancient programming gets left in and has possibility of
2197 		 * corrupting memory.
2198 		 */
2199 		val = its_clear_vpend_valid(vlpi_base);
2200 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2201 	}
2202 
2203 	/* Make sure the GIC has seen the above */
2204 	dsb(sy);
2205 out:
2206 	gic_data_rdist()->lpi_enabled = true;
2207 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2208 		smp_processor_id(),
2209 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2210 		&paddr);
2211 }
2212 
2213 static void its_cpu_init_collection(struct its_node *its)
2214 {
2215 	int cpu = smp_processor_id();
2216 	u64 target;
2217 
2218 	/* avoid cross node collections and its mapping */
2219 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2220 		struct device_node *cpu_node;
2221 
2222 		cpu_node = of_get_cpu_node(cpu, NULL);
2223 		if (its->numa_node != NUMA_NO_NODE &&
2224 			its->numa_node != of_node_to_nid(cpu_node))
2225 			return;
2226 	}
2227 
2228 	/*
2229 	 * We now have to bind each collection to its target
2230 	 * redistributor.
2231 	 */
2232 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2233 		/*
2234 		 * This ITS wants the physical address of the
2235 		 * redistributor.
2236 		 */
2237 		target = gic_data_rdist()->phys_base;
2238 	} else {
2239 		/* This ITS wants a linear CPU number. */
2240 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2241 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2242 	}
2243 
2244 	/* Perform collection mapping */
2245 	its->collections[cpu].target_address = target;
2246 	its->collections[cpu].col_id = cpu;
2247 
2248 	its_send_mapc(its, &its->collections[cpu], 1);
2249 	its_send_invall(its, &its->collections[cpu]);
2250 }
2251 
2252 static void its_cpu_init_collections(void)
2253 {
2254 	struct its_node *its;
2255 
2256 	raw_spin_lock(&its_lock);
2257 
2258 	list_for_each_entry(its, &its_nodes, entry)
2259 		its_cpu_init_collection(its);
2260 
2261 	raw_spin_unlock(&its_lock);
2262 }
2263 
2264 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2265 {
2266 	struct its_device *its_dev = NULL, *tmp;
2267 	unsigned long flags;
2268 
2269 	raw_spin_lock_irqsave(&its->lock, flags);
2270 
2271 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2272 		if (tmp->device_id == dev_id) {
2273 			its_dev = tmp;
2274 			break;
2275 		}
2276 	}
2277 
2278 	raw_spin_unlock_irqrestore(&its->lock, flags);
2279 
2280 	return its_dev;
2281 }
2282 
2283 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2284 {
2285 	int i;
2286 
2287 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2288 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2289 			return &its->tables[i];
2290 	}
2291 
2292 	return NULL;
2293 }
2294 
2295 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2296 {
2297 	struct page *page;
2298 	u32 esz, idx;
2299 	__le64 *table;
2300 
2301 	/* Don't allow device id that exceeds single, flat table limit */
2302 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2303 	if (!(baser->val & GITS_BASER_INDIRECT))
2304 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2305 
2306 	/* Compute 1st level table index & check if that exceeds table limit */
2307 	idx = id >> ilog2(baser->psz / esz);
2308 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2309 		return false;
2310 
2311 	table = baser->base;
2312 
2313 	/* Allocate memory for 2nd level table */
2314 	if (!table[idx]) {
2315 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2316 		if (!page)
2317 			return false;
2318 
2319 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2320 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2321 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2322 
2323 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2324 
2325 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2326 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2327 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2328 
2329 		/* Ensure updated table contents are visible to ITS hardware */
2330 		dsb(sy);
2331 	}
2332 
2333 	return true;
2334 }
2335 
2336 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2337 {
2338 	struct its_baser *baser;
2339 
2340 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2341 
2342 	/* Don't allow device id that exceeds ITS hardware limit */
2343 	if (!baser)
2344 		return (ilog2(dev_id) < its->device_ids);
2345 
2346 	return its_alloc_table_entry(baser, dev_id);
2347 }
2348 
2349 static bool its_alloc_vpe_table(u32 vpe_id)
2350 {
2351 	struct its_node *its;
2352 
2353 	/*
2354 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2355 	 * could try and only do it on ITSs corresponding to devices
2356 	 * that have interrupts targeted at this VPE, but the
2357 	 * complexity becomes crazy (and you have tons of memory
2358 	 * anyway, right?).
2359 	 */
2360 	list_for_each_entry(its, &its_nodes, entry) {
2361 		struct its_baser *baser;
2362 
2363 		if (!its->is_v4)
2364 			continue;
2365 
2366 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2367 		if (!baser)
2368 			return false;
2369 
2370 		if (!its_alloc_table_entry(baser, vpe_id))
2371 			return false;
2372 	}
2373 
2374 	return true;
2375 }
2376 
2377 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2378 					    int nvecs, bool alloc_lpis)
2379 {
2380 	struct its_device *dev;
2381 	unsigned long *lpi_map = NULL;
2382 	unsigned long flags;
2383 	u16 *col_map = NULL;
2384 	void *itt;
2385 	int lpi_base;
2386 	int nr_lpis;
2387 	int nr_ites;
2388 	int sz;
2389 
2390 	if (!its_alloc_device_table(its, dev_id))
2391 		return NULL;
2392 
2393 	if (WARN_ON(!is_power_of_2(nvecs)))
2394 		nvecs = roundup_pow_of_two(nvecs);
2395 
2396 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2397 	/*
2398 	 * Even if the device wants a single LPI, the ITT must be
2399 	 * sized as a power of two (and you need at least one bit...).
2400 	 */
2401 	nr_ites = max(2, nvecs);
2402 	sz = nr_ites * its->ite_size;
2403 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2404 	itt = kzalloc(sz, GFP_KERNEL);
2405 	if (alloc_lpis) {
2406 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2407 		if (lpi_map)
2408 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2409 					  GFP_KERNEL);
2410 	} else {
2411 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2412 		nr_lpis = 0;
2413 		lpi_base = 0;
2414 	}
2415 
2416 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2417 		kfree(dev);
2418 		kfree(itt);
2419 		kfree(lpi_map);
2420 		kfree(col_map);
2421 		return NULL;
2422 	}
2423 
2424 	gic_flush_dcache_to_poc(itt, sz);
2425 
2426 	dev->its = its;
2427 	dev->itt = itt;
2428 	dev->nr_ites = nr_ites;
2429 	dev->event_map.lpi_map = lpi_map;
2430 	dev->event_map.col_map = col_map;
2431 	dev->event_map.lpi_base = lpi_base;
2432 	dev->event_map.nr_lpis = nr_lpis;
2433 	mutex_init(&dev->event_map.vlpi_lock);
2434 	dev->device_id = dev_id;
2435 	INIT_LIST_HEAD(&dev->entry);
2436 
2437 	raw_spin_lock_irqsave(&its->lock, flags);
2438 	list_add(&dev->entry, &its->its_device_list);
2439 	raw_spin_unlock_irqrestore(&its->lock, flags);
2440 
2441 	/* Map device to its ITT */
2442 	its_send_mapd(dev, 1);
2443 
2444 	return dev;
2445 }
2446 
2447 static void its_free_device(struct its_device *its_dev)
2448 {
2449 	unsigned long flags;
2450 
2451 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2452 	list_del(&its_dev->entry);
2453 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2454 	kfree(its_dev->itt);
2455 	kfree(its_dev);
2456 }
2457 
2458 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2459 {
2460 	int idx;
2461 
2462 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2463 				      dev->event_map.nr_lpis,
2464 				      get_count_order(nvecs));
2465 	if (idx < 0)
2466 		return -ENOSPC;
2467 
2468 	*hwirq = dev->event_map.lpi_base + idx;
2469 	set_bit(idx, dev->event_map.lpi_map);
2470 
2471 	return 0;
2472 }
2473 
2474 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2475 			   int nvec, msi_alloc_info_t *info)
2476 {
2477 	struct its_node *its;
2478 	struct its_device *its_dev;
2479 	struct msi_domain_info *msi_info;
2480 	u32 dev_id;
2481 	int err = 0;
2482 
2483 	/*
2484 	 * We ignore "dev" entierely, and rely on the dev_id that has
2485 	 * been passed via the scratchpad. This limits this domain's
2486 	 * usefulness to upper layers that definitely know that they
2487 	 * are built on top of the ITS.
2488 	 */
2489 	dev_id = info->scratchpad[0].ul;
2490 
2491 	msi_info = msi_get_domain_info(domain);
2492 	its = msi_info->data;
2493 
2494 	if (!gic_rdists->has_direct_lpi &&
2495 	    vpe_proxy.dev &&
2496 	    vpe_proxy.dev->its == its &&
2497 	    dev_id == vpe_proxy.dev->device_id) {
2498 		/* Bad luck. Get yourself a better implementation */
2499 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2500 			  dev_id);
2501 		return -EINVAL;
2502 	}
2503 
2504 	mutex_lock(&its->dev_alloc_lock);
2505 	its_dev = its_find_device(its, dev_id);
2506 	if (its_dev) {
2507 		/*
2508 		 * We already have seen this ID, probably through
2509 		 * another alias (PCI bridge of some sort). No need to
2510 		 * create the device.
2511 		 */
2512 		its_dev->shared = true;
2513 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2514 		goto out;
2515 	}
2516 
2517 	its_dev = its_create_device(its, dev_id, nvec, true);
2518 	if (!its_dev) {
2519 		err = -ENOMEM;
2520 		goto out;
2521 	}
2522 
2523 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2524 out:
2525 	mutex_unlock(&its->dev_alloc_lock);
2526 	info->scratchpad[0].ptr = its_dev;
2527 	return err;
2528 }
2529 
2530 static struct msi_domain_ops its_msi_domain_ops = {
2531 	.msi_prepare	= its_msi_prepare,
2532 };
2533 
2534 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2535 				    unsigned int virq,
2536 				    irq_hw_number_t hwirq)
2537 {
2538 	struct irq_fwspec fwspec;
2539 
2540 	if (irq_domain_get_of_node(domain->parent)) {
2541 		fwspec.fwnode = domain->parent->fwnode;
2542 		fwspec.param_count = 3;
2543 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2544 		fwspec.param[1] = hwirq;
2545 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2546 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2547 		fwspec.fwnode = domain->parent->fwnode;
2548 		fwspec.param_count = 2;
2549 		fwspec.param[0] = hwirq;
2550 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2551 	} else {
2552 		return -EINVAL;
2553 	}
2554 
2555 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2556 }
2557 
2558 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2559 				unsigned int nr_irqs, void *args)
2560 {
2561 	msi_alloc_info_t *info = args;
2562 	struct its_device *its_dev = info->scratchpad[0].ptr;
2563 	irq_hw_number_t hwirq;
2564 	int err;
2565 	int i;
2566 
2567 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2568 	if (err)
2569 		return err;
2570 
2571 	for (i = 0; i < nr_irqs; i++) {
2572 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2573 		if (err)
2574 			return err;
2575 
2576 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2577 					      hwirq + i, &its_irq_chip, its_dev);
2578 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2579 		pr_debug("ID:%d pID:%d vID:%d\n",
2580 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2581 			 (int)(hwirq + i), virq + i);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static int its_irq_domain_activate(struct irq_domain *domain,
2588 				   struct irq_data *d, bool reserve)
2589 {
2590 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2591 	u32 event = its_get_event_id(d);
2592 	const struct cpumask *cpu_mask = cpu_online_mask;
2593 	int cpu;
2594 
2595 	/* get the cpu_mask of local node */
2596 	if (its_dev->its->numa_node >= 0)
2597 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2598 
2599 	/* Bind the LPI to the first possible CPU */
2600 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2601 	if (cpu >= nr_cpu_ids) {
2602 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2603 			return -EINVAL;
2604 
2605 		cpu = cpumask_first(cpu_online_mask);
2606 	}
2607 
2608 	its_dev->event_map.col_map[event] = cpu;
2609 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2610 
2611 	/* Map the GIC IRQ and event to the device */
2612 	its_send_mapti(its_dev, d->hwirq, event);
2613 	return 0;
2614 }
2615 
2616 static void its_irq_domain_deactivate(struct irq_domain *domain,
2617 				      struct irq_data *d)
2618 {
2619 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2620 	u32 event = its_get_event_id(d);
2621 
2622 	/* Stop the delivery of interrupts */
2623 	its_send_discard(its_dev, event);
2624 }
2625 
2626 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2627 				unsigned int nr_irqs)
2628 {
2629 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2630 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2631 	struct its_node *its = its_dev->its;
2632 	int i;
2633 
2634 	for (i = 0; i < nr_irqs; i++) {
2635 		struct irq_data *data = irq_domain_get_irq_data(domain,
2636 								virq + i);
2637 		u32 event = its_get_event_id(data);
2638 
2639 		/* Mark interrupt index as unused */
2640 		clear_bit(event, its_dev->event_map.lpi_map);
2641 
2642 		/* Nuke the entry in the domain */
2643 		irq_domain_reset_irq_data(data);
2644 	}
2645 
2646 	mutex_lock(&its->dev_alloc_lock);
2647 
2648 	/*
2649 	 * If all interrupts have been freed, start mopping the
2650 	 * floor. This is conditionned on the device not being shared.
2651 	 */
2652 	if (!its_dev->shared &&
2653 	    bitmap_empty(its_dev->event_map.lpi_map,
2654 			 its_dev->event_map.nr_lpis)) {
2655 		its_lpi_free(its_dev->event_map.lpi_map,
2656 			     its_dev->event_map.lpi_base,
2657 			     its_dev->event_map.nr_lpis);
2658 		kfree(its_dev->event_map.col_map);
2659 
2660 		/* Unmap device/itt */
2661 		its_send_mapd(its_dev, 0);
2662 		its_free_device(its_dev);
2663 	}
2664 
2665 	mutex_unlock(&its->dev_alloc_lock);
2666 
2667 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2668 }
2669 
2670 static const struct irq_domain_ops its_domain_ops = {
2671 	.alloc			= its_irq_domain_alloc,
2672 	.free			= its_irq_domain_free,
2673 	.activate		= its_irq_domain_activate,
2674 	.deactivate		= its_irq_domain_deactivate,
2675 };
2676 
2677 /*
2678  * This is insane.
2679  *
2680  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2681  * likely), the only way to perform an invalidate is to use a fake
2682  * device to issue an INV command, implying that the LPI has first
2683  * been mapped to some event on that device. Since this is not exactly
2684  * cheap, we try to keep that mapping around as long as possible, and
2685  * only issue an UNMAP if we're short on available slots.
2686  *
2687  * Broken by design(tm).
2688  */
2689 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2690 {
2691 	/* Already unmapped? */
2692 	if (vpe->vpe_proxy_event == -1)
2693 		return;
2694 
2695 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2696 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2697 
2698 	/*
2699 	 * We don't track empty slots at all, so let's move the
2700 	 * next_victim pointer if we can quickly reuse that slot
2701 	 * instead of nuking an existing entry. Not clear that this is
2702 	 * always a win though, and this might just generate a ripple
2703 	 * effect... Let's just hope VPEs don't migrate too often.
2704 	 */
2705 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2706 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2707 
2708 	vpe->vpe_proxy_event = -1;
2709 }
2710 
2711 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2712 {
2713 	if (!gic_rdists->has_direct_lpi) {
2714 		unsigned long flags;
2715 
2716 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2717 		its_vpe_db_proxy_unmap_locked(vpe);
2718 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2719 	}
2720 }
2721 
2722 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2723 {
2724 	/* Already mapped? */
2725 	if (vpe->vpe_proxy_event != -1)
2726 		return;
2727 
2728 	/* This slot was already allocated. Kick the other VPE out. */
2729 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2730 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2731 
2732 	/* Map the new VPE instead */
2733 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2734 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2735 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2736 
2737 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2738 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2739 }
2740 
2741 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2742 {
2743 	unsigned long flags;
2744 	struct its_collection *target_col;
2745 
2746 	if (gic_rdists->has_direct_lpi) {
2747 		void __iomem *rdbase;
2748 
2749 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2750 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2751 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2752 			cpu_relax();
2753 
2754 		return;
2755 	}
2756 
2757 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2758 
2759 	its_vpe_db_proxy_map_locked(vpe);
2760 
2761 	target_col = &vpe_proxy.dev->its->collections[to];
2762 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2763 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2764 
2765 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2766 }
2767 
2768 static int its_vpe_set_affinity(struct irq_data *d,
2769 				const struct cpumask *mask_val,
2770 				bool force)
2771 {
2772 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2773 	int cpu = cpumask_first(mask_val);
2774 
2775 	/*
2776 	 * Changing affinity is mega expensive, so let's be as lazy as
2777 	 * we can and only do it if we really have to. Also, if mapped
2778 	 * into the proxy device, we need to move the doorbell
2779 	 * interrupt to its new location.
2780 	 */
2781 	if (vpe->col_idx != cpu) {
2782 		int from = vpe->col_idx;
2783 
2784 		vpe->col_idx = cpu;
2785 		its_send_vmovp(vpe);
2786 		its_vpe_db_proxy_move(vpe, from, cpu);
2787 	}
2788 
2789 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2790 
2791 	return IRQ_SET_MASK_OK_DONE;
2792 }
2793 
2794 static void its_vpe_schedule(struct its_vpe *vpe)
2795 {
2796 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2797 	u64 val;
2798 
2799 	/* Schedule the VPE */
2800 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2801 		GENMASK_ULL(51, 12);
2802 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2803 	val |= GICR_VPROPBASER_RaWb;
2804 	val |= GICR_VPROPBASER_InnerShareable;
2805 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2806 
2807 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2808 		GENMASK_ULL(51, 16);
2809 	val |= GICR_VPENDBASER_RaWaWb;
2810 	val |= GICR_VPENDBASER_NonShareable;
2811 	/*
2812 	 * There is no good way of finding out if the pending table is
2813 	 * empty as we can race against the doorbell interrupt very
2814 	 * easily. So in the end, vpe->pending_last is only an
2815 	 * indication that the vcpu has something pending, not one
2816 	 * that the pending table is empty. A good implementation
2817 	 * would be able to read its coarse map pretty quickly anyway,
2818 	 * making this a tolerable issue.
2819 	 */
2820 	val |= GICR_VPENDBASER_PendingLast;
2821 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2822 	val |= GICR_VPENDBASER_Valid;
2823 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2824 }
2825 
2826 static void its_vpe_deschedule(struct its_vpe *vpe)
2827 {
2828 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2829 	u64 val;
2830 
2831 	val = its_clear_vpend_valid(vlpi_base);
2832 
2833 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2834 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2835 		vpe->idai = false;
2836 		vpe->pending_last = true;
2837 	} else {
2838 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2839 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2840 	}
2841 }
2842 
2843 static void its_vpe_invall(struct its_vpe *vpe)
2844 {
2845 	struct its_node *its;
2846 
2847 	list_for_each_entry(its, &its_nodes, entry) {
2848 		if (!its->is_v4)
2849 			continue;
2850 
2851 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2852 			continue;
2853 
2854 		/*
2855 		 * Sending a VINVALL to a single ITS is enough, as all
2856 		 * we need is to reach the redistributors.
2857 		 */
2858 		its_send_vinvall(its, vpe);
2859 		return;
2860 	}
2861 }
2862 
2863 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2864 {
2865 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2866 	struct its_cmd_info *info = vcpu_info;
2867 
2868 	switch (info->cmd_type) {
2869 	case SCHEDULE_VPE:
2870 		its_vpe_schedule(vpe);
2871 		return 0;
2872 
2873 	case DESCHEDULE_VPE:
2874 		its_vpe_deschedule(vpe);
2875 		return 0;
2876 
2877 	case INVALL_VPE:
2878 		its_vpe_invall(vpe);
2879 		return 0;
2880 
2881 	default:
2882 		return -EINVAL;
2883 	}
2884 }
2885 
2886 static void its_vpe_send_cmd(struct its_vpe *vpe,
2887 			     void (*cmd)(struct its_device *, u32))
2888 {
2889 	unsigned long flags;
2890 
2891 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2892 
2893 	its_vpe_db_proxy_map_locked(vpe);
2894 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2895 
2896 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2897 }
2898 
2899 static void its_vpe_send_inv(struct irq_data *d)
2900 {
2901 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2902 
2903 	if (gic_rdists->has_direct_lpi) {
2904 		void __iomem *rdbase;
2905 
2906 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2907 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2908 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2909 			cpu_relax();
2910 	} else {
2911 		its_vpe_send_cmd(vpe, its_send_inv);
2912 	}
2913 }
2914 
2915 static void its_vpe_mask_irq(struct irq_data *d)
2916 {
2917 	/*
2918 	 * We need to unmask the LPI, which is described by the parent
2919 	 * irq_data. Instead of calling into the parent (which won't
2920 	 * exactly do the right thing, let's simply use the
2921 	 * parent_data pointer. Yes, I'm naughty.
2922 	 */
2923 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2924 	its_vpe_send_inv(d);
2925 }
2926 
2927 static void its_vpe_unmask_irq(struct irq_data *d)
2928 {
2929 	/* Same hack as above... */
2930 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2931 	its_vpe_send_inv(d);
2932 }
2933 
2934 static int its_vpe_set_irqchip_state(struct irq_data *d,
2935 				     enum irqchip_irq_state which,
2936 				     bool state)
2937 {
2938 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2939 
2940 	if (which != IRQCHIP_STATE_PENDING)
2941 		return -EINVAL;
2942 
2943 	if (gic_rdists->has_direct_lpi) {
2944 		void __iomem *rdbase;
2945 
2946 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2947 		if (state) {
2948 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2949 		} else {
2950 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2951 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2952 				cpu_relax();
2953 		}
2954 	} else {
2955 		if (state)
2956 			its_vpe_send_cmd(vpe, its_send_int);
2957 		else
2958 			its_vpe_send_cmd(vpe, its_send_clear);
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static struct irq_chip its_vpe_irq_chip = {
2965 	.name			= "GICv4-vpe",
2966 	.irq_mask		= its_vpe_mask_irq,
2967 	.irq_unmask		= its_vpe_unmask_irq,
2968 	.irq_eoi		= irq_chip_eoi_parent,
2969 	.irq_set_affinity	= its_vpe_set_affinity,
2970 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2971 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2972 };
2973 
2974 static int its_vpe_id_alloc(void)
2975 {
2976 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2977 }
2978 
2979 static void its_vpe_id_free(u16 id)
2980 {
2981 	ida_simple_remove(&its_vpeid_ida, id);
2982 }
2983 
2984 static int its_vpe_init(struct its_vpe *vpe)
2985 {
2986 	struct page *vpt_page;
2987 	int vpe_id;
2988 
2989 	/* Allocate vpe_id */
2990 	vpe_id = its_vpe_id_alloc();
2991 	if (vpe_id < 0)
2992 		return vpe_id;
2993 
2994 	/* Allocate VPT */
2995 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2996 	if (!vpt_page) {
2997 		its_vpe_id_free(vpe_id);
2998 		return -ENOMEM;
2999 	}
3000 
3001 	if (!its_alloc_vpe_table(vpe_id)) {
3002 		its_vpe_id_free(vpe_id);
3003 		its_free_pending_table(vpe->vpt_page);
3004 		return -ENOMEM;
3005 	}
3006 
3007 	vpe->vpe_id = vpe_id;
3008 	vpe->vpt_page = vpt_page;
3009 	vpe->vpe_proxy_event = -1;
3010 
3011 	return 0;
3012 }
3013 
3014 static void its_vpe_teardown(struct its_vpe *vpe)
3015 {
3016 	its_vpe_db_proxy_unmap(vpe);
3017 	its_vpe_id_free(vpe->vpe_id);
3018 	its_free_pending_table(vpe->vpt_page);
3019 }
3020 
3021 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3022 				    unsigned int virq,
3023 				    unsigned int nr_irqs)
3024 {
3025 	struct its_vm *vm = domain->host_data;
3026 	int i;
3027 
3028 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3029 
3030 	for (i = 0; i < nr_irqs; i++) {
3031 		struct irq_data *data = irq_domain_get_irq_data(domain,
3032 								virq + i);
3033 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3034 
3035 		BUG_ON(vm != vpe->its_vm);
3036 
3037 		clear_bit(data->hwirq, vm->db_bitmap);
3038 		its_vpe_teardown(vpe);
3039 		irq_domain_reset_irq_data(data);
3040 	}
3041 
3042 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3043 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3044 		its_free_prop_table(vm->vprop_page);
3045 	}
3046 }
3047 
3048 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3049 				    unsigned int nr_irqs, void *args)
3050 {
3051 	struct its_vm *vm = args;
3052 	unsigned long *bitmap;
3053 	struct page *vprop_page;
3054 	int base, nr_ids, i, err = 0;
3055 
3056 	BUG_ON(!vm);
3057 
3058 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3059 	if (!bitmap)
3060 		return -ENOMEM;
3061 
3062 	if (nr_ids < nr_irqs) {
3063 		its_lpi_free(bitmap, base, nr_ids);
3064 		return -ENOMEM;
3065 	}
3066 
3067 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3068 	if (!vprop_page) {
3069 		its_lpi_free(bitmap, base, nr_ids);
3070 		return -ENOMEM;
3071 	}
3072 
3073 	vm->db_bitmap = bitmap;
3074 	vm->db_lpi_base = base;
3075 	vm->nr_db_lpis = nr_ids;
3076 	vm->vprop_page = vprop_page;
3077 
3078 	for (i = 0; i < nr_irqs; i++) {
3079 		vm->vpes[i]->vpe_db_lpi = base + i;
3080 		err = its_vpe_init(vm->vpes[i]);
3081 		if (err)
3082 			break;
3083 		err = its_irq_gic_domain_alloc(domain, virq + i,
3084 					       vm->vpes[i]->vpe_db_lpi);
3085 		if (err)
3086 			break;
3087 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3088 					      &its_vpe_irq_chip, vm->vpes[i]);
3089 		set_bit(i, bitmap);
3090 	}
3091 
3092 	if (err) {
3093 		if (i > 0)
3094 			its_vpe_irq_domain_free(domain, virq, i - 1);
3095 
3096 		its_lpi_free(bitmap, base, nr_ids);
3097 		its_free_prop_table(vprop_page);
3098 	}
3099 
3100 	return err;
3101 }
3102 
3103 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3104 				       struct irq_data *d, bool reserve)
3105 {
3106 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3107 	struct its_node *its;
3108 
3109 	/* If we use the list map, we issue VMAPP on demand... */
3110 	if (its_list_map)
3111 		return 0;
3112 
3113 	/* Map the VPE to the first possible CPU */
3114 	vpe->col_idx = cpumask_first(cpu_online_mask);
3115 
3116 	list_for_each_entry(its, &its_nodes, entry) {
3117 		if (!its->is_v4)
3118 			continue;
3119 
3120 		its_send_vmapp(its, vpe, true);
3121 		its_send_vinvall(its, vpe);
3122 	}
3123 
3124 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3125 
3126 	return 0;
3127 }
3128 
3129 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3130 					  struct irq_data *d)
3131 {
3132 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3133 	struct its_node *its;
3134 
3135 	/*
3136 	 * If we use the list map, we unmap the VPE once no VLPIs are
3137 	 * associated with the VM.
3138 	 */
3139 	if (its_list_map)
3140 		return;
3141 
3142 	list_for_each_entry(its, &its_nodes, entry) {
3143 		if (!its->is_v4)
3144 			continue;
3145 
3146 		its_send_vmapp(its, vpe, false);
3147 	}
3148 }
3149 
3150 static const struct irq_domain_ops its_vpe_domain_ops = {
3151 	.alloc			= its_vpe_irq_domain_alloc,
3152 	.free			= its_vpe_irq_domain_free,
3153 	.activate		= its_vpe_irq_domain_activate,
3154 	.deactivate		= its_vpe_irq_domain_deactivate,
3155 };
3156 
3157 static int its_force_quiescent(void __iomem *base)
3158 {
3159 	u32 count = 1000000;	/* 1s */
3160 	u32 val;
3161 
3162 	val = readl_relaxed(base + GITS_CTLR);
3163 	/*
3164 	 * GIC architecture specification requires the ITS to be both
3165 	 * disabled and quiescent for writes to GITS_BASER<n> or
3166 	 * GITS_CBASER to not have UNPREDICTABLE results.
3167 	 */
3168 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3169 		return 0;
3170 
3171 	/* Disable the generation of all interrupts to this ITS */
3172 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3173 	writel_relaxed(val, base + GITS_CTLR);
3174 
3175 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3176 	while (1) {
3177 		val = readl_relaxed(base + GITS_CTLR);
3178 		if (val & GITS_CTLR_QUIESCENT)
3179 			return 0;
3180 
3181 		count--;
3182 		if (!count)
3183 			return -EBUSY;
3184 
3185 		cpu_relax();
3186 		udelay(1);
3187 	}
3188 }
3189 
3190 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3191 {
3192 	struct its_node *its = data;
3193 
3194 	/* erratum 22375: only alloc 8MB table size */
3195 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3196 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3197 
3198 	return true;
3199 }
3200 
3201 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3202 {
3203 	struct its_node *its = data;
3204 
3205 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3206 
3207 	return true;
3208 }
3209 
3210 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3211 {
3212 	struct its_node *its = data;
3213 
3214 	/* On QDF2400, the size of the ITE is 16Bytes */
3215 	its->ite_size = 16;
3216 
3217 	return true;
3218 }
3219 
3220 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3221 {
3222 	struct its_node *its = its_dev->its;
3223 
3224 	/*
3225 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3226 	 * which maps 32-bit writes targeted at a separate window of
3227 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3228 	 * with device ID taken from bits [device_id_bits + 1:2] of
3229 	 * the window offset.
3230 	 */
3231 	return its->pre_its_base + (its_dev->device_id << 2);
3232 }
3233 
3234 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3235 {
3236 	struct its_node *its = data;
3237 	u32 pre_its_window[2];
3238 	u32 ids;
3239 
3240 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3241 					   "socionext,synquacer-pre-its",
3242 					   pre_its_window,
3243 					   ARRAY_SIZE(pre_its_window))) {
3244 
3245 		its->pre_its_base = pre_its_window[0];
3246 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3247 
3248 		ids = ilog2(pre_its_window[1]) - 2;
3249 		if (its->device_ids > ids)
3250 			its->device_ids = ids;
3251 
3252 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3253 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3254 		return true;
3255 	}
3256 	return false;
3257 }
3258 
3259 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3260 {
3261 	struct its_node *its = data;
3262 
3263 	/*
3264 	 * Hip07 insists on using the wrong address for the VLPI
3265 	 * page. Trick it into doing the right thing...
3266 	 */
3267 	its->vlpi_redist_offset = SZ_128K;
3268 	return true;
3269 }
3270 
3271 static const struct gic_quirk its_quirks[] = {
3272 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3273 	{
3274 		.desc	= "ITS: Cavium errata 22375, 24313",
3275 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3276 		.mask	= 0xffff0fff,
3277 		.init	= its_enable_quirk_cavium_22375,
3278 	},
3279 #endif
3280 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3281 	{
3282 		.desc	= "ITS: Cavium erratum 23144",
3283 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3284 		.mask	= 0xffff0fff,
3285 		.init	= its_enable_quirk_cavium_23144,
3286 	},
3287 #endif
3288 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3289 	{
3290 		.desc	= "ITS: QDF2400 erratum 0065",
3291 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3292 		.mask	= 0xffffffff,
3293 		.init	= its_enable_quirk_qdf2400_e0065,
3294 	},
3295 #endif
3296 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3297 	{
3298 		/*
3299 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3300 		 * implementation, but with a 'pre-ITS' added that requires
3301 		 * special handling in software.
3302 		 */
3303 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3304 		.iidr	= 0x0001143b,
3305 		.mask	= 0xffffffff,
3306 		.init	= its_enable_quirk_socionext_synquacer,
3307 	},
3308 #endif
3309 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3310 	{
3311 		.desc	= "ITS: Hip07 erratum 161600802",
3312 		.iidr	= 0x00000004,
3313 		.mask	= 0xffffffff,
3314 		.init	= its_enable_quirk_hip07_161600802,
3315 	},
3316 #endif
3317 	{
3318 	}
3319 };
3320 
3321 static void its_enable_quirks(struct its_node *its)
3322 {
3323 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3324 
3325 	gic_enable_quirks(iidr, its_quirks, its);
3326 }
3327 
3328 static int its_save_disable(void)
3329 {
3330 	struct its_node *its;
3331 	int err = 0;
3332 
3333 	raw_spin_lock(&its_lock);
3334 	list_for_each_entry(its, &its_nodes, entry) {
3335 		void __iomem *base;
3336 
3337 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3338 			continue;
3339 
3340 		base = its->base;
3341 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3342 		err = its_force_quiescent(base);
3343 		if (err) {
3344 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3345 			       &its->phys_base, err);
3346 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3347 			goto err;
3348 		}
3349 
3350 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3351 	}
3352 
3353 err:
3354 	if (err) {
3355 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3356 			void __iomem *base;
3357 
3358 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3359 				continue;
3360 
3361 			base = its->base;
3362 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3363 		}
3364 	}
3365 	raw_spin_unlock(&its_lock);
3366 
3367 	return err;
3368 }
3369 
3370 static void its_restore_enable(void)
3371 {
3372 	struct its_node *its;
3373 	int ret;
3374 
3375 	raw_spin_lock(&its_lock);
3376 	list_for_each_entry(its, &its_nodes, entry) {
3377 		void __iomem *base;
3378 		int i;
3379 
3380 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3381 			continue;
3382 
3383 		base = its->base;
3384 
3385 		/*
3386 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3387 		 * don't restore it since writing to CBASER or BASER<n>
3388 		 * registers is undefined according to the GIC v3 ITS
3389 		 * Specification.
3390 		 */
3391 		ret = its_force_quiescent(base);
3392 		if (ret) {
3393 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3394 			       &its->phys_base, ret);
3395 			continue;
3396 		}
3397 
3398 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3399 
3400 		/*
3401 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3402 		 * cmd_write line up with it.
3403 		 */
3404 		its->cmd_write = its->cmd_base;
3405 		gits_write_cwriter(0, base + GITS_CWRITER);
3406 
3407 		/* Restore GITS_BASER from the value cache. */
3408 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3409 			struct its_baser *baser = &its->tables[i];
3410 
3411 			if (!(baser->val & GITS_BASER_VALID))
3412 				continue;
3413 
3414 			its_write_baser(its, baser, baser->val);
3415 		}
3416 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3417 
3418 		/*
3419 		 * Reinit the collection if it's stored in the ITS. This is
3420 		 * indicated by the col_id being less than the HCC field.
3421 		 * CID < HCC as specified in the GIC v3 Documentation.
3422 		 */
3423 		if (its->collections[smp_processor_id()].col_id <
3424 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3425 			its_cpu_init_collection(its);
3426 	}
3427 	raw_spin_unlock(&its_lock);
3428 }
3429 
3430 static struct syscore_ops its_syscore_ops = {
3431 	.suspend = its_save_disable,
3432 	.resume = its_restore_enable,
3433 };
3434 
3435 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3436 {
3437 	struct irq_domain *inner_domain;
3438 	struct msi_domain_info *info;
3439 
3440 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3441 	if (!info)
3442 		return -ENOMEM;
3443 
3444 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3445 	if (!inner_domain) {
3446 		kfree(info);
3447 		return -ENOMEM;
3448 	}
3449 
3450 	inner_domain->parent = its_parent;
3451 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3452 	inner_domain->flags |= its->msi_domain_flags;
3453 	info->ops = &its_msi_domain_ops;
3454 	info->data = its;
3455 	inner_domain->host_data = info;
3456 
3457 	return 0;
3458 }
3459 
3460 static int its_init_vpe_domain(void)
3461 {
3462 	struct its_node *its;
3463 	u32 devid;
3464 	int entries;
3465 
3466 	if (gic_rdists->has_direct_lpi) {
3467 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3468 		return 0;
3469 	}
3470 
3471 	/* Any ITS will do, even if not v4 */
3472 	its = list_first_entry(&its_nodes, struct its_node, entry);
3473 
3474 	entries = roundup_pow_of_two(nr_cpu_ids);
3475 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3476 				 GFP_KERNEL);
3477 	if (!vpe_proxy.vpes) {
3478 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3479 		return -ENOMEM;
3480 	}
3481 
3482 	/* Use the last possible DevID */
3483 	devid = GENMASK(its->device_ids - 1, 0);
3484 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3485 	if (!vpe_proxy.dev) {
3486 		kfree(vpe_proxy.vpes);
3487 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3488 		return -ENOMEM;
3489 	}
3490 
3491 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3492 
3493 	raw_spin_lock_init(&vpe_proxy.lock);
3494 	vpe_proxy.next_victim = 0;
3495 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3496 		devid, vpe_proxy.dev->nr_ites);
3497 
3498 	return 0;
3499 }
3500 
3501 static int __init its_compute_its_list_map(struct resource *res,
3502 					   void __iomem *its_base)
3503 {
3504 	int its_number;
3505 	u32 ctlr;
3506 
3507 	/*
3508 	 * This is assumed to be done early enough that we're
3509 	 * guaranteed to be single-threaded, hence no
3510 	 * locking. Should this change, we should address
3511 	 * this.
3512 	 */
3513 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3514 	if (its_number >= GICv4_ITS_LIST_MAX) {
3515 		pr_err("ITS@%pa: No ITSList entry available!\n",
3516 		       &res->start);
3517 		return -EINVAL;
3518 	}
3519 
3520 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3521 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3522 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3523 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3524 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3525 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3526 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3527 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3528 	}
3529 
3530 	if (test_and_set_bit(its_number, &its_list_map)) {
3531 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3532 		       &res->start, its_number);
3533 		return -EINVAL;
3534 	}
3535 
3536 	return its_number;
3537 }
3538 
3539 static int __init its_probe_one(struct resource *res,
3540 				struct fwnode_handle *handle, int numa_node)
3541 {
3542 	struct its_node *its;
3543 	void __iomem *its_base;
3544 	u32 val, ctlr;
3545 	u64 baser, tmp, typer;
3546 	int err;
3547 
3548 	its_base = ioremap(res->start, resource_size(res));
3549 	if (!its_base) {
3550 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3551 		return -ENOMEM;
3552 	}
3553 
3554 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3555 	if (val != 0x30 && val != 0x40) {
3556 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3557 		err = -ENODEV;
3558 		goto out_unmap;
3559 	}
3560 
3561 	err = its_force_quiescent(its_base);
3562 	if (err) {
3563 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3564 		goto out_unmap;
3565 	}
3566 
3567 	pr_info("ITS %pR\n", res);
3568 
3569 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3570 	if (!its) {
3571 		err = -ENOMEM;
3572 		goto out_unmap;
3573 	}
3574 
3575 	raw_spin_lock_init(&its->lock);
3576 	mutex_init(&its->dev_alloc_lock);
3577 	INIT_LIST_HEAD(&its->entry);
3578 	INIT_LIST_HEAD(&its->its_device_list);
3579 	typer = gic_read_typer(its_base + GITS_TYPER);
3580 	its->base = its_base;
3581 	its->phys_base = res->start;
3582 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3583 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3584 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3585 	if (its->is_v4) {
3586 		if (!(typer & GITS_TYPER_VMOVP)) {
3587 			err = its_compute_its_list_map(res, its_base);
3588 			if (err < 0)
3589 				goto out_free_its;
3590 
3591 			its->list_nr = err;
3592 
3593 			pr_info("ITS@%pa: Using ITS number %d\n",
3594 				&res->start, err);
3595 		} else {
3596 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3597 		}
3598 	}
3599 
3600 	its->numa_node = numa_node;
3601 
3602 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3603 						get_order(ITS_CMD_QUEUE_SZ));
3604 	if (!its->cmd_base) {
3605 		err = -ENOMEM;
3606 		goto out_free_its;
3607 	}
3608 	its->cmd_write = its->cmd_base;
3609 	its->fwnode_handle = handle;
3610 	its->get_msi_base = its_irq_get_msi_base;
3611 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3612 
3613 	its_enable_quirks(its);
3614 
3615 	err = its_alloc_tables(its);
3616 	if (err)
3617 		goto out_free_cmd;
3618 
3619 	err = its_alloc_collections(its);
3620 	if (err)
3621 		goto out_free_tables;
3622 
3623 	baser = (virt_to_phys(its->cmd_base)	|
3624 		 GITS_CBASER_RaWaWb		|
3625 		 GITS_CBASER_InnerShareable	|
3626 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3627 		 GITS_CBASER_VALID);
3628 
3629 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3630 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3631 
3632 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3633 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3634 			/*
3635 			 * The HW reports non-shareable, we must
3636 			 * remove the cacheability attributes as
3637 			 * well.
3638 			 */
3639 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3640 				   GITS_CBASER_CACHEABILITY_MASK);
3641 			baser |= GITS_CBASER_nC;
3642 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3643 		}
3644 		pr_info("ITS: using cache flushing for cmd queue\n");
3645 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3646 	}
3647 
3648 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3649 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3650 	ctlr |= GITS_CTLR_ENABLE;
3651 	if (its->is_v4)
3652 		ctlr |= GITS_CTLR_ImDe;
3653 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3654 
3655 	if (GITS_TYPER_HCC(typer))
3656 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3657 
3658 	err = its_init_domain(handle, its);
3659 	if (err)
3660 		goto out_free_tables;
3661 
3662 	raw_spin_lock(&its_lock);
3663 	list_add(&its->entry, &its_nodes);
3664 	raw_spin_unlock(&its_lock);
3665 
3666 	return 0;
3667 
3668 out_free_tables:
3669 	its_free_tables(its);
3670 out_free_cmd:
3671 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3672 out_free_its:
3673 	kfree(its);
3674 out_unmap:
3675 	iounmap(its_base);
3676 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3677 	return err;
3678 }
3679 
3680 static bool gic_rdists_supports_plpis(void)
3681 {
3682 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3683 }
3684 
3685 static int redist_disable_lpis(void)
3686 {
3687 	void __iomem *rbase = gic_data_rdist_rd_base();
3688 	u64 timeout = USEC_PER_SEC;
3689 	u64 val;
3690 
3691 	if (!gic_rdists_supports_plpis()) {
3692 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3693 		return -ENXIO;
3694 	}
3695 
3696 	val = readl_relaxed(rbase + GICR_CTLR);
3697 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3698 		return 0;
3699 
3700 	/*
3701 	 * If coming via a CPU hotplug event, we don't need to disable
3702 	 * LPIs before trying to re-enable them. They are already
3703 	 * configured and all is well in the world.
3704 	 *
3705 	 * If running with preallocated tables, there is nothing to do.
3706 	 */
3707 	if (gic_data_rdist()->lpi_enabled ||
3708 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3709 		return 0;
3710 
3711 	/*
3712 	 * From that point on, we only try to do some damage control.
3713 	 */
3714 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3715 		smp_processor_id());
3716 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3717 
3718 	/* Disable LPIs */
3719 	val &= ~GICR_CTLR_ENABLE_LPIS;
3720 	writel_relaxed(val, rbase + GICR_CTLR);
3721 
3722 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3723 	dsb(sy);
3724 
3725 	/*
3726 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3727 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3728 	 * Error out if we time out waiting for RWP to clear.
3729 	 */
3730 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3731 		if (!timeout) {
3732 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3733 			       smp_processor_id());
3734 			return -ETIMEDOUT;
3735 		}
3736 		udelay(1);
3737 		timeout--;
3738 	}
3739 
3740 	/*
3741 	 * After it has been written to 1, it is IMPLEMENTATION
3742 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3743 	 * cleared to 0. Error out if clearing the bit failed.
3744 	 */
3745 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3746 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3747 		return -EBUSY;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 int its_cpu_init(void)
3754 {
3755 	if (!list_empty(&its_nodes)) {
3756 		int ret;
3757 
3758 		ret = redist_disable_lpis();
3759 		if (ret)
3760 			return ret;
3761 
3762 		its_cpu_init_lpis();
3763 		its_cpu_init_collections();
3764 	}
3765 
3766 	return 0;
3767 }
3768 
3769 static const struct of_device_id its_device_id[] = {
3770 	{	.compatible	= "arm,gic-v3-its",	},
3771 	{},
3772 };
3773 
3774 static int __init its_of_probe(struct device_node *node)
3775 {
3776 	struct device_node *np;
3777 	struct resource res;
3778 
3779 	for (np = of_find_matching_node(node, its_device_id); np;
3780 	     np = of_find_matching_node(np, its_device_id)) {
3781 		if (!of_device_is_available(np))
3782 			continue;
3783 		if (!of_property_read_bool(np, "msi-controller")) {
3784 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3785 				np);
3786 			continue;
3787 		}
3788 
3789 		if (of_address_to_resource(np, 0, &res)) {
3790 			pr_warn("%pOF: no regs?\n", np);
3791 			continue;
3792 		}
3793 
3794 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3795 	}
3796 	return 0;
3797 }
3798 
3799 #ifdef CONFIG_ACPI
3800 
3801 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3802 
3803 #ifdef CONFIG_ACPI_NUMA
3804 struct its_srat_map {
3805 	/* numa node id */
3806 	u32	numa_node;
3807 	/* GIC ITS ID */
3808 	u32	its_id;
3809 };
3810 
3811 static struct its_srat_map *its_srat_maps __initdata;
3812 static int its_in_srat __initdata;
3813 
3814 static int __init acpi_get_its_numa_node(u32 its_id)
3815 {
3816 	int i;
3817 
3818 	for (i = 0; i < its_in_srat; i++) {
3819 		if (its_id == its_srat_maps[i].its_id)
3820 			return its_srat_maps[i].numa_node;
3821 	}
3822 	return NUMA_NO_NODE;
3823 }
3824 
3825 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3826 					  const unsigned long end)
3827 {
3828 	return 0;
3829 }
3830 
3831 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3832 			 const unsigned long end)
3833 {
3834 	int node;
3835 	struct acpi_srat_gic_its_affinity *its_affinity;
3836 
3837 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3838 	if (!its_affinity)
3839 		return -EINVAL;
3840 
3841 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3842 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3843 			its_affinity->header.length);
3844 		return -EINVAL;
3845 	}
3846 
3847 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3848 
3849 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3850 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3851 		return 0;
3852 	}
3853 
3854 	its_srat_maps[its_in_srat].numa_node = node;
3855 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3856 	its_in_srat++;
3857 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3858 		its_affinity->proximity_domain, its_affinity->its_id, node);
3859 
3860 	return 0;
3861 }
3862 
3863 static void __init acpi_table_parse_srat_its(void)
3864 {
3865 	int count;
3866 
3867 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3868 			sizeof(struct acpi_table_srat),
3869 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3870 			gic_acpi_match_srat_its, 0);
3871 	if (count <= 0)
3872 		return;
3873 
3874 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3875 				      GFP_KERNEL);
3876 	if (!its_srat_maps) {
3877 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3878 		return;
3879 	}
3880 
3881 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3882 			sizeof(struct acpi_table_srat),
3883 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3884 			gic_acpi_parse_srat_its, 0);
3885 }
3886 
3887 /* free the its_srat_maps after ITS probing */
3888 static void __init acpi_its_srat_maps_free(void)
3889 {
3890 	kfree(its_srat_maps);
3891 }
3892 #else
3893 static void __init acpi_table_parse_srat_its(void)	{ }
3894 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3895 static void __init acpi_its_srat_maps_free(void) { }
3896 #endif
3897 
3898 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3899 					  const unsigned long end)
3900 {
3901 	struct acpi_madt_generic_translator *its_entry;
3902 	struct fwnode_handle *dom_handle;
3903 	struct resource res;
3904 	int err;
3905 
3906 	its_entry = (struct acpi_madt_generic_translator *)header;
3907 	memset(&res, 0, sizeof(res));
3908 	res.start = its_entry->base_address;
3909 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3910 	res.flags = IORESOURCE_MEM;
3911 
3912 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3913 	if (!dom_handle) {
3914 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3915 		       &res.start);
3916 		return -ENOMEM;
3917 	}
3918 
3919 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3920 					 dom_handle);
3921 	if (err) {
3922 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3923 		       &res.start, its_entry->translation_id);
3924 		goto dom_err;
3925 	}
3926 
3927 	err = its_probe_one(&res, dom_handle,
3928 			acpi_get_its_numa_node(its_entry->translation_id));
3929 	if (!err)
3930 		return 0;
3931 
3932 	iort_deregister_domain_token(its_entry->translation_id);
3933 dom_err:
3934 	irq_domain_free_fwnode(dom_handle);
3935 	return err;
3936 }
3937 
3938 static void __init its_acpi_probe(void)
3939 {
3940 	acpi_table_parse_srat_its();
3941 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3942 			      gic_acpi_parse_madt_its, 0);
3943 	acpi_its_srat_maps_free();
3944 }
3945 #else
3946 static void __init its_acpi_probe(void) { }
3947 #endif
3948 
3949 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3950 		    struct irq_domain *parent_domain)
3951 {
3952 	struct device_node *of_node;
3953 	struct its_node *its;
3954 	bool has_v4 = false;
3955 	int err;
3956 
3957 	its_parent = parent_domain;
3958 	of_node = to_of_node(handle);
3959 	if (of_node)
3960 		its_of_probe(of_node);
3961 	else
3962 		its_acpi_probe();
3963 
3964 	if (list_empty(&its_nodes)) {
3965 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3966 		return -ENXIO;
3967 	}
3968 
3969 	gic_rdists = rdists;
3970 
3971 	err = allocate_lpi_tables();
3972 	if (err)
3973 		return err;
3974 
3975 	list_for_each_entry(its, &its_nodes, entry)
3976 		has_v4 |= its->is_v4;
3977 
3978 	if (has_v4 & rdists->has_vlpis) {
3979 		if (its_init_vpe_domain() ||
3980 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3981 			rdists->has_vlpis = false;
3982 			pr_err("ITS: Disabling GICv4 support\n");
3983 		}
3984 	}
3985 
3986 	register_syscore_ops(&its_syscore_ops);
3987 
3988 	return 0;
3989 }
3990