1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 48 49 static u32 lpi_id_bits; 50 51 /* 52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 53 * deal with (one configuration byte per interrupt). PENDBASE has to 54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 55 */ 56 #define LPI_NRBITS lpi_id_bits 57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 59 60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 61 62 /* 63 * Collection structure - just an ID, and a redistributor address to 64 * ping. We use one per CPU as a bag of interrupts assigned to this 65 * CPU. 66 */ 67 struct its_collection { 68 u64 target_address; 69 u16 col_id; 70 }; 71 72 /* 73 * The ITS_BASER structure - contains memory information, cached 74 * value of BASER register configuration and ITS page size. 75 */ 76 struct its_baser { 77 void *base; 78 u64 val; 79 u32 order; 80 u32 psz; 81 }; 82 83 struct its_device; 84 85 /* 86 * The ITS structure - contains most of the infrastructure, with the 87 * top-level MSI domain, the command queue, the collections, and the 88 * list of devices writing to it. 89 * 90 * dev_alloc_lock has to be taken for device allocations, while the 91 * spinlock must be taken to parse data structures such as the device 92 * list. 93 */ 94 struct its_node { 95 raw_spinlock_t lock; 96 struct mutex dev_alloc_lock; 97 struct list_head entry; 98 void __iomem *base; 99 void __iomem *sgir_base; 100 phys_addr_t phys_base; 101 struct its_cmd_block *cmd_base; 102 struct its_cmd_block *cmd_write; 103 struct its_baser tables[GITS_BASER_NR_REGS]; 104 struct its_collection *collections; 105 struct fwnode_handle *fwnode_handle; 106 u64 (*get_msi_base)(struct its_device *its_dev); 107 u64 typer; 108 u64 cbaser_save; 109 u32 ctlr_save; 110 u32 mpidr; 111 struct list_head its_device_list; 112 u64 flags; 113 unsigned long list_nr; 114 int numa_node; 115 unsigned int msi_domain_flags; 116 u32 pre_its_base; /* for Socionext Synquacer */ 117 int vlpi_redist_offset; 118 }; 119 120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 123 124 #define ITS_ITT_ALIGN SZ_256 125 126 /* The maximum number of VPEID bits supported by VLPI commands */ 127 #define ITS_MAX_VPEID_BITS \ 128 ({ \ 129 int nvpeid = 16; \ 130 if (gic_rdists->has_rvpeid && \ 131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 133 GICD_TYPER2_VID); \ 134 \ 135 nvpeid; \ 136 }) 137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 138 139 /* Convert page order to size in bytes */ 140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 141 142 struct event_lpi_map { 143 unsigned long *lpi_map; 144 u16 *col_map; 145 irq_hw_number_t lpi_base; 146 int nr_lpis; 147 raw_spinlock_t vlpi_lock; 148 struct its_vm *vm; 149 struct its_vlpi_map *vlpi_maps; 150 int nr_vlpis; 151 }; 152 153 /* 154 * The ITS view of a device - belongs to an ITS, owns an interrupt 155 * translation table, and a list of interrupts. If it some of its 156 * LPIs are injected into a guest (GICv4), the event_map.vm field 157 * indicates which one. 158 */ 159 struct its_device { 160 struct list_head entry; 161 struct its_node *its; 162 struct event_lpi_map event_map; 163 void *itt; 164 u32 nr_ites; 165 u32 device_id; 166 bool shared; 167 }; 168 169 static struct { 170 raw_spinlock_t lock; 171 struct its_device *dev; 172 struct its_vpe **vpes; 173 int next_victim; 174 } vpe_proxy; 175 176 struct cpu_lpi_count { 177 atomic_t managed; 178 atomic_t unmanaged; 179 }; 180 181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 182 183 static LIST_HEAD(its_nodes); 184 static DEFINE_RAW_SPINLOCK(its_lock); 185 static struct rdists *gic_rdists; 186 static struct irq_domain *its_parent; 187 188 static unsigned long its_list_map; 189 static u16 vmovp_seq_num; 190 static DEFINE_RAW_SPINLOCK(vmovp_lock); 191 192 static DEFINE_IDA(its_vpeid_ida); 193 194 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 195 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 196 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 197 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 198 199 /* 200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 201 * always have vSGIs mapped. 202 */ 203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 204 { 205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 206 } 207 208 static u16 get_its_list(struct its_vm *vm) 209 { 210 struct its_node *its; 211 unsigned long its_list = 0; 212 213 list_for_each_entry(its, &its_nodes, entry) { 214 if (!is_v4(its)) 215 continue; 216 217 if (require_its_list_vmovp(vm, its)) 218 __set_bit(its->list_nr, &its_list); 219 } 220 221 return (u16)its_list; 222 } 223 224 static inline u32 its_get_event_id(struct irq_data *d) 225 { 226 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 227 return d->hwirq - its_dev->event_map.lpi_base; 228 } 229 230 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 231 u32 event) 232 { 233 struct its_node *its = its_dev->its; 234 235 return its->collections + its_dev->event_map.col_map[event]; 236 } 237 238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 239 u32 event) 240 { 241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 242 return NULL; 243 244 return &its_dev->event_map.vlpi_maps[event]; 245 } 246 247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 248 { 249 if (irqd_is_forwarded_to_vcpu(d)) { 250 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 251 u32 event = its_get_event_id(d); 252 253 return dev_event_to_vlpi_map(its_dev, event); 254 } 255 256 return NULL; 257 } 258 259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 260 { 261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 262 return vpe->col_idx; 263 } 264 265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 266 { 267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 268 } 269 270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 271 { 272 struct its_vlpi_map *map = get_vlpi_map(d); 273 int cpu; 274 275 if (map) { 276 cpu = vpe_to_cpuid_lock(map->vpe, flags); 277 } else { 278 /* Physical LPIs are already locked via the irq_desc lock */ 279 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 280 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 281 /* Keep GCC quiet... */ 282 *flags = 0; 283 } 284 285 return cpu; 286 } 287 288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 289 { 290 struct its_vlpi_map *map = get_vlpi_map(d); 291 292 if (map) 293 vpe_to_cpuid_unlock(map->vpe, flags); 294 } 295 296 static struct its_collection *valid_col(struct its_collection *col) 297 { 298 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 299 return NULL; 300 301 return col; 302 } 303 304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 305 { 306 if (valid_col(its->collections + vpe->col_idx)) 307 return vpe; 308 309 return NULL; 310 } 311 312 /* 313 * ITS command descriptors - parameters to be encoded in a command 314 * block. 315 */ 316 struct its_cmd_desc { 317 union { 318 struct { 319 struct its_device *dev; 320 u32 event_id; 321 } its_inv_cmd; 322 323 struct { 324 struct its_device *dev; 325 u32 event_id; 326 } its_clear_cmd; 327 328 struct { 329 struct its_device *dev; 330 u32 event_id; 331 } its_int_cmd; 332 333 struct { 334 struct its_device *dev; 335 int valid; 336 } its_mapd_cmd; 337 338 struct { 339 struct its_collection *col; 340 int valid; 341 } its_mapc_cmd; 342 343 struct { 344 struct its_device *dev; 345 u32 phys_id; 346 u32 event_id; 347 } its_mapti_cmd; 348 349 struct { 350 struct its_device *dev; 351 struct its_collection *col; 352 u32 event_id; 353 } its_movi_cmd; 354 355 struct { 356 struct its_device *dev; 357 u32 event_id; 358 } its_discard_cmd; 359 360 struct { 361 struct its_collection *col; 362 } its_invall_cmd; 363 364 struct { 365 struct its_vpe *vpe; 366 } its_vinvall_cmd; 367 368 struct { 369 struct its_vpe *vpe; 370 struct its_collection *col; 371 bool valid; 372 } its_vmapp_cmd; 373 374 struct { 375 struct its_vpe *vpe; 376 struct its_device *dev; 377 u32 virt_id; 378 u32 event_id; 379 bool db_enabled; 380 } its_vmapti_cmd; 381 382 struct { 383 struct its_vpe *vpe; 384 struct its_device *dev; 385 u32 event_id; 386 bool db_enabled; 387 } its_vmovi_cmd; 388 389 struct { 390 struct its_vpe *vpe; 391 struct its_collection *col; 392 u16 seq_num; 393 u16 its_list; 394 } its_vmovp_cmd; 395 396 struct { 397 struct its_vpe *vpe; 398 } its_invdb_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 u8 sgi; 403 u8 priority; 404 bool enable; 405 bool group; 406 bool clear; 407 } its_vsgi_cmd; 408 }; 409 }; 410 411 /* 412 * The ITS command block, which is what the ITS actually parses. 413 */ 414 struct its_cmd_block { 415 union { 416 u64 raw_cmd[4]; 417 __le64 raw_cmd_le[4]; 418 }; 419 }; 420 421 #define ITS_CMD_QUEUE_SZ SZ_64K 422 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 423 424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 425 struct its_cmd_block *, 426 struct its_cmd_desc *); 427 428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 429 struct its_cmd_block *, 430 struct its_cmd_desc *); 431 432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 433 { 434 u64 mask = GENMASK_ULL(h, l); 435 *raw_cmd &= ~mask; 436 *raw_cmd |= (val << l) & mask; 437 } 438 439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 440 { 441 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 442 } 443 444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 445 { 446 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 447 } 448 449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 450 { 451 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 452 } 453 454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 455 { 456 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 457 } 458 459 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 460 { 461 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 462 } 463 464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 465 { 466 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 467 } 468 469 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 470 { 471 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 472 } 473 474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 475 { 476 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 477 } 478 479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 480 { 481 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 482 } 483 484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 485 { 486 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 487 } 488 489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 492 } 493 494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 497 } 498 499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 502 } 503 504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 505 { 506 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 507 } 508 509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 510 { 511 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 512 } 513 514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 515 { 516 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 517 } 518 519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 520 { 521 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 522 } 523 524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 525 { 526 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 527 } 528 529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 530 { 531 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 532 } 533 534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 535 { 536 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 537 } 538 539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 540 u32 vpe_db_lpi) 541 { 542 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 543 } 544 545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 546 u32 vpe_db_lpi) 547 { 548 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 549 } 550 551 static void its_encode_db(struct its_cmd_block *cmd, bool db) 552 { 553 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 554 } 555 556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 557 { 558 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 559 } 560 561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 562 { 563 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 564 } 565 566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 567 { 568 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 569 } 570 571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 572 { 573 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 574 } 575 576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 577 { 578 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 579 } 580 581 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 582 { 583 /* Let's fixup BE commands */ 584 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 585 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 586 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 587 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 588 } 589 590 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 591 struct its_cmd_block *cmd, 592 struct its_cmd_desc *desc) 593 { 594 unsigned long itt_addr; 595 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 596 597 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 598 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 599 600 its_encode_cmd(cmd, GITS_CMD_MAPD); 601 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 602 its_encode_size(cmd, size - 1); 603 its_encode_itt(cmd, itt_addr); 604 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 605 606 its_fixup_cmd(cmd); 607 608 return NULL; 609 } 610 611 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 612 struct its_cmd_block *cmd, 613 struct its_cmd_desc *desc) 614 { 615 its_encode_cmd(cmd, GITS_CMD_MAPC); 616 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 617 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 618 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 619 620 its_fixup_cmd(cmd); 621 622 return desc->its_mapc_cmd.col; 623 } 624 625 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 626 struct its_cmd_block *cmd, 627 struct its_cmd_desc *desc) 628 { 629 struct its_collection *col; 630 631 col = dev_event_to_col(desc->its_mapti_cmd.dev, 632 desc->its_mapti_cmd.event_id); 633 634 its_encode_cmd(cmd, GITS_CMD_MAPTI); 635 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 636 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 637 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 638 its_encode_collection(cmd, col->col_id); 639 640 its_fixup_cmd(cmd); 641 642 return valid_col(col); 643 } 644 645 static struct its_collection *its_build_movi_cmd(struct its_node *its, 646 struct its_cmd_block *cmd, 647 struct its_cmd_desc *desc) 648 { 649 struct its_collection *col; 650 651 col = dev_event_to_col(desc->its_movi_cmd.dev, 652 desc->its_movi_cmd.event_id); 653 654 its_encode_cmd(cmd, GITS_CMD_MOVI); 655 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 656 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 657 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 658 659 its_fixup_cmd(cmd); 660 661 return valid_col(col); 662 } 663 664 static struct its_collection *its_build_discard_cmd(struct its_node *its, 665 struct its_cmd_block *cmd, 666 struct its_cmd_desc *desc) 667 { 668 struct its_collection *col; 669 670 col = dev_event_to_col(desc->its_discard_cmd.dev, 671 desc->its_discard_cmd.event_id); 672 673 its_encode_cmd(cmd, GITS_CMD_DISCARD); 674 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 675 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 676 677 its_fixup_cmd(cmd); 678 679 return valid_col(col); 680 } 681 682 static struct its_collection *its_build_inv_cmd(struct its_node *its, 683 struct its_cmd_block *cmd, 684 struct its_cmd_desc *desc) 685 { 686 struct its_collection *col; 687 688 col = dev_event_to_col(desc->its_inv_cmd.dev, 689 desc->its_inv_cmd.event_id); 690 691 its_encode_cmd(cmd, GITS_CMD_INV); 692 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 693 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 694 695 its_fixup_cmd(cmd); 696 697 return valid_col(col); 698 } 699 700 static struct its_collection *its_build_int_cmd(struct its_node *its, 701 struct its_cmd_block *cmd, 702 struct its_cmd_desc *desc) 703 { 704 struct its_collection *col; 705 706 col = dev_event_to_col(desc->its_int_cmd.dev, 707 desc->its_int_cmd.event_id); 708 709 its_encode_cmd(cmd, GITS_CMD_INT); 710 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 711 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 712 713 its_fixup_cmd(cmd); 714 715 return valid_col(col); 716 } 717 718 static struct its_collection *its_build_clear_cmd(struct its_node *its, 719 struct its_cmd_block *cmd, 720 struct its_cmd_desc *desc) 721 { 722 struct its_collection *col; 723 724 col = dev_event_to_col(desc->its_clear_cmd.dev, 725 desc->its_clear_cmd.event_id); 726 727 its_encode_cmd(cmd, GITS_CMD_CLEAR); 728 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 729 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 730 731 its_fixup_cmd(cmd); 732 733 return valid_col(col); 734 } 735 736 static struct its_collection *its_build_invall_cmd(struct its_node *its, 737 struct its_cmd_block *cmd, 738 struct its_cmd_desc *desc) 739 { 740 its_encode_cmd(cmd, GITS_CMD_INVALL); 741 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 742 743 its_fixup_cmd(cmd); 744 745 return desc->its_invall_cmd.col; 746 } 747 748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 749 struct its_cmd_block *cmd, 750 struct its_cmd_desc *desc) 751 { 752 its_encode_cmd(cmd, GITS_CMD_VINVALL); 753 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 754 755 its_fixup_cmd(cmd); 756 757 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 758 } 759 760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 761 struct its_cmd_block *cmd, 762 struct its_cmd_desc *desc) 763 { 764 unsigned long vpt_addr, vconf_addr; 765 u64 target; 766 bool alloc; 767 768 its_encode_cmd(cmd, GITS_CMD_VMAPP); 769 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 770 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 771 772 if (!desc->its_vmapp_cmd.valid) { 773 if (is_v4_1(its)) { 774 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 775 its_encode_alloc(cmd, alloc); 776 } 777 778 goto out; 779 } 780 781 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 782 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 783 784 its_encode_target(cmd, target); 785 its_encode_vpt_addr(cmd, vpt_addr); 786 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 787 788 if (!is_v4_1(its)) 789 goto out; 790 791 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 792 793 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 794 795 its_encode_alloc(cmd, alloc); 796 797 /* 798 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 799 * to be unmapped first, and in this case, we may remap the vPE 800 * back while the VPT is not empty. So we can't assume that the 801 * VPT is empty on map. This is why we never advertise PTZ. 802 */ 803 its_encode_ptz(cmd, false); 804 its_encode_vconf_addr(cmd, vconf_addr); 805 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 806 807 out: 808 its_fixup_cmd(cmd); 809 810 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 811 } 812 813 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 814 struct its_cmd_block *cmd, 815 struct its_cmd_desc *desc) 816 { 817 u32 db; 818 819 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 820 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 821 else 822 db = 1023; 823 824 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 825 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 826 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 827 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 828 its_encode_db_phys_id(cmd, db); 829 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 830 831 its_fixup_cmd(cmd); 832 833 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 834 } 835 836 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 837 struct its_cmd_block *cmd, 838 struct its_cmd_desc *desc) 839 { 840 u32 db; 841 842 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 843 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 844 else 845 db = 1023; 846 847 its_encode_cmd(cmd, GITS_CMD_VMOVI); 848 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 849 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 850 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 851 its_encode_db_phys_id(cmd, db); 852 its_encode_db_valid(cmd, true); 853 854 its_fixup_cmd(cmd); 855 856 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 857 } 858 859 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 860 struct its_cmd_block *cmd, 861 struct its_cmd_desc *desc) 862 { 863 u64 target; 864 865 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 866 its_encode_cmd(cmd, GITS_CMD_VMOVP); 867 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 868 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 869 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 870 its_encode_target(cmd, target); 871 872 if (is_v4_1(its)) { 873 its_encode_db(cmd, true); 874 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 875 } 876 877 its_fixup_cmd(cmd); 878 879 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 880 } 881 882 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 883 struct its_cmd_block *cmd, 884 struct its_cmd_desc *desc) 885 { 886 struct its_vlpi_map *map; 887 888 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 889 desc->its_inv_cmd.event_id); 890 891 its_encode_cmd(cmd, GITS_CMD_INV); 892 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 893 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 894 895 its_fixup_cmd(cmd); 896 897 return valid_vpe(its, map->vpe); 898 } 899 900 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 901 struct its_cmd_block *cmd, 902 struct its_cmd_desc *desc) 903 { 904 struct its_vlpi_map *map; 905 906 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 907 desc->its_int_cmd.event_id); 908 909 its_encode_cmd(cmd, GITS_CMD_INT); 910 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 911 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 912 913 its_fixup_cmd(cmd); 914 915 return valid_vpe(its, map->vpe); 916 } 917 918 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 919 struct its_cmd_block *cmd, 920 struct its_cmd_desc *desc) 921 { 922 struct its_vlpi_map *map; 923 924 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 925 desc->its_clear_cmd.event_id); 926 927 its_encode_cmd(cmd, GITS_CMD_CLEAR); 928 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 929 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 930 931 its_fixup_cmd(cmd); 932 933 return valid_vpe(its, map->vpe); 934 } 935 936 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 937 struct its_cmd_block *cmd, 938 struct its_cmd_desc *desc) 939 { 940 if (WARN_ON(!is_v4_1(its))) 941 return NULL; 942 943 its_encode_cmd(cmd, GITS_CMD_INVDB); 944 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 945 946 its_fixup_cmd(cmd); 947 948 return valid_vpe(its, desc->its_invdb_cmd.vpe); 949 } 950 951 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 952 struct its_cmd_block *cmd, 953 struct its_cmd_desc *desc) 954 { 955 if (WARN_ON(!is_v4_1(its))) 956 return NULL; 957 958 its_encode_cmd(cmd, GITS_CMD_VSGI); 959 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 960 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 961 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 962 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 963 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 964 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 965 966 its_fixup_cmd(cmd); 967 968 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 969 } 970 971 static u64 its_cmd_ptr_to_offset(struct its_node *its, 972 struct its_cmd_block *ptr) 973 { 974 return (ptr - its->cmd_base) * sizeof(*ptr); 975 } 976 977 static int its_queue_full(struct its_node *its) 978 { 979 int widx; 980 int ridx; 981 982 widx = its->cmd_write - its->cmd_base; 983 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 984 985 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 986 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 987 return 1; 988 989 return 0; 990 } 991 992 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 993 { 994 struct its_cmd_block *cmd; 995 u32 count = 1000000; /* 1s! */ 996 997 while (its_queue_full(its)) { 998 count--; 999 if (!count) { 1000 pr_err_ratelimited("ITS queue not draining\n"); 1001 return NULL; 1002 } 1003 cpu_relax(); 1004 udelay(1); 1005 } 1006 1007 cmd = its->cmd_write++; 1008 1009 /* Handle queue wrapping */ 1010 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1011 its->cmd_write = its->cmd_base; 1012 1013 /* Clear command */ 1014 cmd->raw_cmd[0] = 0; 1015 cmd->raw_cmd[1] = 0; 1016 cmd->raw_cmd[2] = 0; 1017 cmd->raw_cmd[3] = 0; 1018 1019 return cmd; 1020 } 1021 1022 static struct its_cmd_block *its_post_commands(struct its_node *its) 1023 { 1024 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1025 1026 writel_relaxed(wr, its->base + GITS_CWRITER); 1027 1028 return its->cmd_write; 1029 } 1030 1031 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1032 { 1033 /* 1034 * Make sure the commands written to memory are observable by 1035 * the ITS. 1036 */ 1037 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1038 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1039 else 1040 dsb(ishst); 1041 } 1042 1043 static int its_wait_for_range_completion(struct its_node *its, 1044 u64 prev_idx, 1045 struct its_cmd_block *to) 1046 { 1047 u64 rd_idx, to_idx, linear_idx; 1048 u32 count = 1000000; /* 1s! */ 1049 1050 /* Linearize to_idx if the command set has wrapped around */ 1051 to_idx = its_cmd_ptr_to_offset(its, to); 1052 if (to_idx < prev_idx) 1053 to_idx += ITS_CMD_QUEUE_SZ; 1054 1055 linear_idx = prev_idx; 1056 1057 while (1) { 1058 s64 delta; 1059 1060 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1061 1062 /* 1063 * Compute the read pointer progress, taking the 1064 * potential wrap-around into account. 1065 */ 1066 delta = rd_idx - prev_idx; 1067 if (rd_idx < prev_idx) 1068 delta += ITS_CMD_QUEUE_SZ; 1069 1070 linear_idx += delta; 1071 if (linear_idx >= to_idx) 1072 break; 1073 1074 count--; 1075 if (!count) { 1076 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1077 to_idx, linear_idx); 1078 return -1; 1079 } 1080 prev_idx = rd_idx; 1081 cpu_relax(); 1082 udelay(1); 1083 } 1084 1085 return 0; 1086 } 1087 1088 /* Warning, macro hell follows */ 1089 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1090 void name(struct its_node *its, \ 1091 buildtype builder, \ 1092 struct its_cmd_desc *desc) \ 1093 { \ 1094 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1095 synctype *sync_obj; \ 1096 unsigned long flags; \ 1097 u64 rd_idx; \ 1098 \ 1099 raw_spin_lock_irqsave(&its->lock, flags); \ 1100 \ 1101 cmd = its_allocate_entry(its); \ 1102 if (!cmd) { /* We're soooooo screewed... */ \ 1103 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1104 return; \ 1105 } \ 1106 sync_obj = builder(its, cmd, desc); \ 1107 its_flush_cmd(its, cmd); \ 1108 \ 1109 if (sync_obj) { \ 1110 sync_cmd = its_allocate_entry(its); \ 1111 if (!sync_cmd) \ 1112 goto post; \ 1113 \ 1114 buildfn(its, sync_cmd, sync_obj); \ 1115 its_flush_cmd(its, sync_cmd); \ 1116 } \ 1117 \ 1118 post: \ 1119 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1120 next_cmd = its_post_commands(its); \ 1121 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1122 \ 1123 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1124 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1125 } 1126 1127 static void its_build_sync_cmd(struct its_node *its, 1128 struct its_cmd_block *sync_cmd, 1129 struct its_collection *sync_col) 1130 { 1131 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1132 its_encode_target(sync_cmd, sync_col->target_address); 1133 1134 its_fixup_cmd(sync_cmd); 1135 } 1136 1137 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1138 struct its_collection, its_build_sync_cmd) 1139 1140 static void its_build_vsync_cmd(struct its_node *its, 1141 struct its_cmd_block *sync_cmd, 1142 struct its_vpe *sync_vpe) 1143 { 1144 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1145 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1146 1147 its_fixup_cmd(sync_cmd); 1148 } 1149 1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1151 struct its_vpe, its_build_vsync_cmd) 1152 1153 static void its_send_int(struct its_device *dev, u32 event_id) 1154 { 1155 struct its_cmd_desc desc; 1156 1157 desc.its_int_cmd.dev = dev; 1158 desc.its_int_cmd.event_id = event_id; 1159 1160 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1161 } 1162 1163 static void its_send_clear(struct its_device *dev, u32 event_id) 1164 { 1165 struct its_cmd_desc desc; 1166 1167 desc.its_clear_cmd.dev = dev; 1168 desc.its_clear_cmd.event_id = event_id; 1169 1170 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1171 } 1172 1173 static void its_send_inv(struct its_device *dev, u32 event_id) 1174 { 1175 struct its_cmd_desc desc; 1176 1177 desc.its_inv_cmd.dev = dev; 1178 desc.its_inv_cmd.event_id = event_id; 1179 1180 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1181 } 1182 1183 static void its_send_mapd(struct its_device *dev, int valid) 1184 { 1185 struct its_cmd_desc desc; 1186 1187 desc.its_mapd_cmd.dev = dev; 1188 desc.its_mapd_cmd.valid = !!valid; 1189 1190 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1191 } 1192 1193 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1194 int valid) 1195 { 1196 struct its_cmd_desc desc; 1197 1198 desc.its_mapc_cmd.col = col; 1199 desc.its_mapc_cmd.valid = !!valid; 1200 1201 its_send_single_command(its, its_build_mapc_cmd, &desc); 1202 } 1203 1204 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1205 { 1206 struct its_cmd_desc desc; 1207 1208 desc.its_mapti_cmd.dev = dev; 1209 desc.its_mapti_cmd.phys_id = irq_id; 1210 desc.its_mapti_cmd.event_id = id; 1211 1212 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1213 } 1214 1215 static void its_send_movi(struct its_device *dev, 1216 struct its_collection *col, u32 id) 1217 { 1218 struct its_cmd_desc desc; 1219 1220 desc.its_movi_cmd.dev = dev; 1221 desc.its_movi_cmd.col = col; 1222 desc.its_movi_cmd.event_id = id; 1223 1224 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1225 } 1226 1227 static void its_send_discard(struct its_device *dev, u32 id) 1228 { 1229 struct its_cmd_desc desc; 1230 1231 desc.its_discard_cmd.dev = dev; 1232 desc.its_discard_cmd.event_id = id; 1233 1234 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1235 } 1236 1237 static void its_send_invall(struct its_node *its, struct its_collection *col) 1238 { 1239 struct its_cmd_desc desc; 1240 1241 desc.its_invall_cmd.col = col; 1242 1243 its_send_single_command(its, its_build_invall_cmd, &desc); 1244 } 1245 1246 static void its_send_vmapti(struct its_device *dev, u32 id) 1247 { 1248 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1249 struct its_cmd_desc desc; 1250 1251 desc.its_vmapti_cmd.vpe = map->vpe; 1252 desc.its_vmapti_cmd.dev = dev; 1253 desc.its_vmapti_cmd.virt_id = map->vintid; 1254 desc.its_vmapti_cmd.event_id = id; 1255 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1256 1257 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1258 } 1259 1260 static void its_send_vmovi(struct its_device *dev, u32 id) 1261 { 1262 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1263 struct its_cmd_desc desc; 1264 1265 desc.its_vmovi_cmd.vpe = map->vpe; 1266 desc.its_vmovi_cmd.dev = dev; 1267 desc.its_vmovi_cmd.event_id = id; 1268 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1269 1270 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1271 } 1272 1273 static void its_send_vmapp(struct its_node *its, 1274 struct its_vpe *vpe, bool valid) 1275 { 1276 struct its_cmd_desc desc; 1277 1278 desc.its_vmapp_cmd.vpe = vpe; 1279 desc.its_vmapp_cmd.valid = valid; 1280 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1281 1282 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1283 } 1284 1285 static void its_send_vmovp(struct its_vpe *vpe) 1286 { 1287 struct its_cmd_desc desc = {}; 1288 struct its_node *its; 1289 unsigned long flags; 1290 int col_id = vpe->col_idx; 1291 1292 desc.its_vmovp_cmd.vpe = vpe; 1293 1294 if (!its_list_map) { 1295 its = list_first_entry(&its_nodes, struct its_node, entry); 1296 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1297 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1298 return; 1299 } 1300 1301 /* 1302 * Yet another marvel of the architecture. If using the 1303 * its_list "feature", we need to make sure that all ITSs 1304 * receive all VMOVP commands in the same order. The only way 1305 * to guarantee this is to make vmovp a serialization point. 1306 * 1307 * Wall <-- Head. 1308 */ 1309 raw_spin_lock_irqsave(&vmovp_lock, flags); 1310 1311 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1312 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1313 1314 /* Emit VMOVPs */ 1315 list_for_each_entry(its, &its_nodes, entry) { 1316 if (!is_v4(its)) 1317 continue; 1318 1319 if (!require_its_list_vmovp(vpe->its_vm, its)) 1320 continue; 1321 1322 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1323 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1324 } 1325 1326 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1327 } 1328 1329 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1330 { 1331 struct its_cmd_desc desc; 1332 1333 desc.its_vinvall_cmd.vpe = vpe; 1334 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1335 } 1336 1337 static void its_send_vinv(struct its_device *dev, u32 event_id) 1338 { 1339 struct its_cmd_desc desc; 1340 1341 /* 1342 * There is no real VINV command. This is just a normal INV, 1343 * with a VSYNC instead of a SYNC. 1344 */ 1345 desc.its_inv_cmd.dev = dev; 1346 desc.its_inv_cmd.event_id = event_id; 1347 1348 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1349 } 1350 1351 static void its_send_vint(struct its_device *dev, u32 event_id) 1352 { 1353 struct its_cmd_desc desc; 1354 1355 /* 1356 * There is no real VINT command. This is just a normal INT, 1357 * with a VSYNC instead of a SYNC. 1358 */ 1359 desc.its_int_cmd.dev = dev; 1360 desc.its_int_cmd.event_id = event_id; 1361 1362 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1363 } 1364 1365 static void its_send_vclear(struct its_device *dev, u32 event_id) 1366 { 1367 struct its_cmd_desc desc; 1368 1369 /* 1370 * There is no real VCLEAR command. This is just a normal CLEAR, 1371 * with a VSYNC instead of a SYNC. 1372 */ 1373 desc.its_clear_cmd.dev = dev; 1374 desc.its_clear_cmd.event_id = event_id; 1375 1376 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1377 } 1378 1379 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1380 { 1381 struct its_cmd_desc desc; 1382 1383 desc.its_invdb_cmd.vpe = vpe; 1384 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1385 } 1386 1387 /* 1388 * irqchip functions - assumes MSI, mostly. 1389 */ 1390 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1391 { 1392 struct its_vlpi_map *map = get_vlpi_map(d); 1393 irq_hw_number_t hwirq; 1394 void *va; 1395 u8 *cfg; 1396 1397 if (map) { 1398 va = page_address(map->vm->vprop_page); 1399 hwirq = map->vintid; 1400 1401 /* Remember the updated property */ 1402 map->properties &= ~clr; 1403 map->properties |= set | LPI_PROP_GROUP1; 1404 } else { 1405 va = gic_rdists->prop_table_va; 1406 hwirq = d->hwirq; 1407 } 1408 1409 cfg = va + hwirq - 8192; 1410 *cfg &= ~clr; 1411 *cfg |= set | LPI_PROP_GROUP1; 1412 1413 /* 1414 * Make the above write visible to the redistributors. 1415 * And yes, we're flushing exactly: One. Single. Byte. 1416 * Humpf... 1417 */ 1418 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1419 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1420 else 1421 dsb(ishst); 1422 } 1423 1424 static void wait_for_syncr(void __iomem *rdbase) 1425 { 1426 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1427 cpu_relax(); 1428 } 1429 1430 static void direct_lpi_inv(struct irq_data *d) 1431 { 1432 struct its_vlpi_map *map = get_vlpi_map(d); 1433 void __iomem *rdbase; 1434 unsigned long flags; 1435 u64 val; 1436 int cpu; 1437 1438 if (map) { 1439 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1440 1441 WARN_ON(!is_v4_1(its_dev->its)); 1442 1443 val = GICR_INVLPIR_V; 1444 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1445 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1446 } else { 1447 val = d->hwirq; 1448 } 1449 1450 /* Target the redistributor this LPI is currently routed to */ 1451 cpu = irq_to_cpuid_lock(d, &flags); 1452 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1453 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1454 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1455 1456 wait_for_syncr(rdbase); 1457 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1458 irq_to_cpuid_unlock(d, flags); 1459 } 1460 1461 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1462 { 1463 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1464 1465 lpi_write_config(d, clr, set); 1466 if (gic_rdists->has_direct_lpi && 1467 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1468 direct_lpi_inv(d); 1469 else if (!irqd_is_forwarded_to_vcpu(d)) 1470 its_send_inv(its_dev, its_get_event_id(d)); 1471 else 1472 its_send_vinv(its_dev, its_get_event_id(d)); 1473 } 1474 1475 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1476 { 1477 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1478 u32 event = its_get_event_id(d); 1479 struct its_vlpi_map *map; 1480 1481 /* 1482 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1483 * here. 1484 */ 1485 if (is_v4_1(its_dev->its)) 1486 return; 1487 1488 map = dev_event_to_vlpi_map(its_dev, event); 1489 1490 if (map->db_enabled == enable) 1491 return; 1492 1493 map->db_enabled = enable; 1494 1495 /* 1496 * More fun with the architecture: 1497 * 1498 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1499 * value or to 1023, depending on the enable bit. But that 1500 * would be issuing a mapping for an /existing/ DevID+EventID 1501 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1502 * to the /same/ vPE, using this opportunity to adjust the 1503 * doorbell. Mouahahahaha. We loves it, Precious. 1504 */ 1505 its_send_vmovi(its_dev, event); 1506 } 1507 1508 static void its_mask_irq(struct irq_data *d) 1509 { 1510 if (irqd_is_forwarded_to_vcpu(d)) 1511 its_vlpi_set_doorbell(d, false); 1512 1513 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1514 } 1515 1516 static void its_unmask_irq(struct irq_data *d) 1517 { 1518 if (irqd_is_forwarded_to_vcpu(d)) 1519 its_vlpi_set_doorbell(d, true); 1520 1521 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1522 } 1523 1524 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1525 { 1526 if (irqd_affinity_is_managed(d)) 1527 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1528 1529 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1530 } 1531 1532 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1533 { 1534 if (irqd_affinity_is_managed(d)) 1535 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1536 else 1537 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1538 } 1539 1540 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1541 { 1542 if (irqd_affinity_is_managed(d)) 1543 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1544 else 1545 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1546 } 1547 1548 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1549 const struct cpumask *cpu_mask) 1550 { 1551 unsigned int cpu = nr_cpu_ids, tmp; 1552 int count = S32_MAX; 1553 1554 for_each_cpu(tmp, cpu_mask) { 1555 int this_count = its_read_lpi_count(d, tmp); 1556 if (this_count < count) { 1557 cpu = tmp; 1558 count = this_count; 1559 } 1560 } 1561 1562 return cpu; 1563 } 1564 1565 /* 1566 * As suggested by Thomas Gleixner in: 1567 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1568 */ 1569 static int its_select_cpu(struct irq_data *d, 1570 const struct cpumask *aff_mask) 1571 { 1572 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1573 cpumask_var_t tmpmask; 1574 int cpu, node; 1575 1576 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) 1577 return -ENOMEM; 1578 1579 node = its_dev->its->numa_node; 1580 1581 if (!irqd_affinity_is_managed(d)) { 1582 /* First try the NUMA node */ 1583 if (node != NUMA_NO_NODE) { 1584 /* 1585 * Try the intersection of the affinity mask and the 1586 * node mask (and the online mask, just to be safe). 1587 */ 1588 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1589 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1590 1591 /* 1592 * Ideally, we would check if the mask is empty, and 1593 * try again on the full node here. 1594 * 1595 * But it turns out that the way ACPI describes the 1596 * affinity for ITSs only deals about memory, and 1597 * not target CPUs, so it cannot describe a single 1598 * ITS placed next to two NUMA nodes. 1599 * 1600 * Instead, just fallback on the online mask. This 1601 * diverges from Thomas' suggestion above. 1602 */ 1603 cpu = cpumask_pick_least_loaded(d, tmpmask); 1604 if (cpu < nr_cpu_ids) 1605 goto out; 1606 1607 /* If we can't cross sockets, give up */ 1608 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1609 goto out; 1610 1611 /* If the above failed, expand the search */ 1612 } 1613 1614 /* Try the intersection of the affinity and online masks */ 1615 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1616 1617 /* If that doesn't fly, the online mask is the last resort */ 1618 if (cpumask_empty(tmpmask)) 1619 cpumask_copy(tmpmask, cpu_online_mask); 1620 1621 cpu = cpumask_pick_least_loaded(d, tmpmask); 1622 } else { 1623 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask); 1624 1625 /* If we cannot cross sockets, limit the search to that node */ 1626 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1627 node != NUMA_NO_NODE) 1628 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1629 1630 cpu = cpumask_pick_least_loaded(d, tmpmask); 1631 } 1632 out: 1633 free_cpumask_var(tmpmask); 1634 1635 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1636 return cpu; 1637 } 1638 1639 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1640 bool force) 1641 { 1642 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1643 struct its_collection *target_col; 1644 u32 id = its_get_event_id(d); 1645 int cpu, prev_cpu; 1646 1647 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1648 if (irqd_is_forwarded_to_vcpu(d)) 1649 return -EINVAL; 1650 1651 prev_cpu = its_dev->event_map.col_map[id]; 1652 its_dec_lpi_count(d, prev_cpu); 1653 1654 if (!force) 1655 cpu = its_select_cpu(d, mask_val); 1656 else 1657 cpu = cpumask_pick_least_loaded(d, mask_val); 1658 1659 if (cpu < 0 || cpu >= nr_cpu_ids) 1660 goto err; 1661 1662 /* don't set the affinity when the target cpu is same as current one */ 1663 if (cpu != prev_cpu) { 1664 target_col = &its_dev->its->collections[cpu]; 1665 its_send_movi(its_dev, target_col, id); 1666 its_dev->event_map.col_map[id] = cpu; 1667 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1668 } 1669 1670 its_inc_lpi_count(d, cpu); 1671 1672 return IRQ_SET_MASK_OK_DONE; 1673 1674 err: 1675 its_inc_lpi_count(d, prev_cpu); 1676 return -EINVAL; 1677 } 1678 1679 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1680 { 1681 struct its_node *its = its_dev->its; 1682 1683 return its->phys_base + GITS_TRANSLATER; 1684 } 1685 1686 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1687 { 1688 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1689 struct its_node *its; 1690 u64 addr; 1691 1692 its = its_dev->its; 1693 addr = its->get_msi_base(its_dev); 1694 1695 msg->address_lo = lower_32_bits(addr); 1696 msg->address_hi = upper_32_bits(addr); 1697 msg->data = its_get_event_id(d); 1698 1699 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1700 } 1701 1702 static int its_irq_set_irqchip_state(struct irq_data *d, 1703 enum irqchip_irq_state which, 1704 bool state) 1705 { 1706 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1707 u32 event = its_get_event_id(d); 1708 1709 if (which != IRQCHIP_STATE_PENDING) 1710 return -EINVAL; 1711 1712 if (irqd_is_forwarded_to_vcpu(d)) { 1713 if (state) 1714 its_send_vint(its_dev, event); 1715 else 1716 its_send_vclear(its_dev, event); 1717 } else { 1718 if (state) 1719 its_send_int(its_dev, event); 1720 else 1721 its_send_clear(its_dev, event); 1722 } 1723 1724 return 0; 1725 } 1726 1727 static int its_irq_retrigger(struct irq_data *d) 1728 { 1729 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1730 } 1731 1732 /* 1733 * Two favourable cases: 1734 * 1735 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1736 * for vSGI delivery 1737 * 1738 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1739 * and we're better off mapping all VPEs always 1740 * 1741 * If neither (a) nor (b) is true, then we map vPEs on demand. 1742 * 1743 */ 1744 static bool gic_requires_eager_mapping(void) 1745 { 1746 if (!its_list_map || gic_rdists->has_rvpeid) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1753 { 1754 unsigned long flags; 1755 1756 if (gic_requires_eager_mapping()) 1757 return; 1758 1759 raw_spin_lock_irqsave(&vmovp_lock, flags); 1760 1761 /* 1762 * If the VM wasn't mapped yet, iterate over the vpes and get 1763 * them mapped now. 1764 */ 1765 vm->vlpi_count[its->list_nr]++; 1766 1767 if (vm->vlpi_count[its->list_nr] == 1) { 1768 int i; 1769 1770 for (i = 0; i < vm->nr_vpes; i++) { 1771 struct its_vpe *vpe = vm->vpes[i]; 1772 struct irq_data *d = irq_get_irq_data(vpe->irq); 1773 1774 /* Map the VPE to the first possible CPU */ 1775 vpe->col_idx = cpumask_first(cpu_online_mask); 1776 its_send_vmapp(its, vpe, true); 1777 its_send_vinvall(its, vpe); 1778 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1779 } 1780 } 1781 1782 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1783 } 1784 1785 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1786 { 1787 unsigned long flags; 1788 1789 /* Not using the ITS list? Everything is always mapped. */ 1790 if (gic_requires_eager_mapping()) 1791 return; 1792 1793 raw_spin_lock_irqsave(&vmovp_lock, flags); 1794 1795 if (!--vm->vlpi_count[its->list_nr]) { 1796 int i; 1797 1798 for (i = 0; i < vm->nr_vpes; i++) 1799 its_send_vmapp(its, vm->vpes[i], false); 1800 } 1801 1802 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1803 } 1804 1805 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1806 { 1807 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1808 u32 event = its_get_event_id(d); 1809 int ret = 0; 1810 1811 if (!info->map) 1812 return -EINVAL; 1813 1814 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1815 1816 if (!its_dev->event_map.vm) { 1817 struct its_vlpi_map *maps; 1818 1819 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1820 GFP_ATOMIC); 1821 if (!maps) { 1822 ret = -ENOMEM; 1823 goto out; 1824 } 1825 1826 its_dev->event_map.vm = info->map->vm; 1827 its_dev->event_map.vlpi_maps = maps; 1828 } else if (its_dev->event_map.vm != info->map->vm) { 1829 ret = -EINVAL; 1830 goto out; 1831 } 1832 1833 /* Get our private copy of the mapping information */ 1834 its_dev->event_map.vlpi_maps[event] = *info->map; 1835 1836 if (irqd_is_forwarded_to_vcpu(d)) { 1837 /* Already mapped, move it around */ 1838 its_send_vmovi(its_dev, event); 1839 } else { 1840 /* Ensure all the VPEs are mapped on this ITS */ 1841 its_map_vm(its_dev->its, info->map->vm); 1842 1843 /* 1844 * Flag the interrupt as forwarded so that we can 1845 * start poking the virtual property table. 1846 */ 1847 irqd_set_forwarded_to_vcpu(d); 1848 1849 /* Write out the property to the prop table */ 1850 lpi_write_config(d, 0xff, info->map->properties); 1851 1852 /* Drop the physical mapping */ 1853 its_send_discard(its_dev, event); 1854 1855 /* and install the virtual one */ 1856 its_send_vmapti(its_dev, event); 1857 1858 /* Increment the number of VLPIs */ 1859 its_dev->event_map.nr_vlpis++; 1860 } 1861 1862 out: 1863 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1864 return ret; 1865 } 1866 1867 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1868 { 1869 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1870 struct its_vlpi_map *map; 1871 int ret = 0; 1872 1873 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1874 1875 map = get_vlpi_map(d); 1876 1877 if (!its_dev->event_map.vm || !map) { 1878 ret = -EINVAL; 1879 goto out; 1880 } 1881 1882 /* Copy our mapping information to the incoming request */ 1883 *info->map = *map; 1884 1885 out: 1886 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1887 return ret; 1888 } 1889 1890 static int its_vlpi_unmap(struct irq_data *d) 1891 { 1892 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1893 u32 event = its_get_event_id(d); 1894 int ret = 0; 1895 1896 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1897 1898 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1899 ret = -EINVAL; 1900 goto out; 1901 } 1902 1903 /* Drop the virtual mapping */ 1904 its_send_discard(its_dev, event); 1905 1906 /* and restore the physical one */ 1907 irqd_clr_forwarded_to_vcpu(d); 1908 its_send_mapti(its_dev, d->hwirq, event); 1909 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1910 LPI_PROP_ENABLED | 1911 LPI_PROP_GROUP1)); 1912 1913 /* Potentially unmap the VM from this ITS */ 1914 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1915 1916 /* 1917 * Drop the refcount and make the device available again if 1918 * this was the last VLPI. 1919 */ 1920 if (!--its_dev->event_map.nr_vlpis) { 1921 its_dev->event_map.vm = NULL; 1922 kfree(its_dev->event_map.vlpi_maps); 1923 } 1924 1925 out: 1926 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1927 return ret; 1928 } 1929 1930 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1931 { 1932 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1933 1934 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1935 return -EINVAL; 1936 1937 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1938 lpi_update_config(d, 0xff, info->config); 1939 else 1940 lpi_write_config(d, 0xff, info->config); 1941 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1942 1943 return 0; 1944 } 1945 1946 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1947 { 1948 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1949 struct its_cmd_info *info = vcpu_info; 1950 1951 /* Need a v4 ITS */ 1952 if (!is_v4(its_dev->its)) 1953 return -EINVAL; 1954 1955 /* Unmap request? */ 1956 if (!info) 1957 return its_vlpi_unmap(d); 1958 1959 switch (info->cmd_type) { 1960 case MAP_VLPI: 1961 return its_vlpi_map(d, info); 1962 1963 case GET_VLPI: 1964 return its_vlpi_get(d, info); 1965 1966 case PROP_UPDATE_VLPI: 1967 case PROP_UPDATE_AND_INV_VLPI: 1968 return its_vlpi_prop_update(d, info); 1969 1970 default: 1971 return -EINVAL; 1972 } 1973 } 1974 1975 static struct irq_chip its_irq_chip = { 1976 .name = "ITS", 1977 .irq_mask = its_mask_irq, 1978 .irq_unmask = its_unmask_irq, 1979 .irq_eoi = irq_chip_eoi_parent, 1980 .irq_set_affinity = its_set_affinity, 1981 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1982 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1983 .irq_retrigger = its_irq_retrigger, 1984 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1985 }; 1986 1987 1988 /* 1989 * How we allocate LPIs: 1990 * 1991 * lpi_range_list contains ranges of LPIs that are to available to 1992 * allocate from. To allocate LPIs, just pick the first range that 1993 * fits the required allocation, and reduce it by the required 1994 * amount. Once empty, remove the range from the list. 1995 * 1996 * To free a range of LPIs, add a free range to the list, sort it and 1997 * merge the result if the new range happens to be adjacent to an 1998 * already free block. 1999 * 2000 * The consequence of the above is that allocation is cost is low, but 2001 * freeing is expensive. We assumes that freeing rarely occurs. 2002 */ 2003 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2004 2005 static DEFINE_MUTEX(lpi_range_lock); 2006 static LIST_HEAD(lpi_range_list); 2007 2008 struct lpi_range { 2009 struct list_head entry; 2010 u32 base_id; 2011 u32 span; 2012 }; 2013 2014 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2015 { 2016 struct lpi_range *range; 2017 2018 range = kmalloc(sizeof(*range), GFP_KERNEL); 2019 if (range) { 2020 range->base_id = base; 2021 range->span = span; 2022 } 2023 2024 return range; 2025 } 2026 2027 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2028 { 2029 struct lpi_range *range, *tmp; 2030 int err = -ENOSPC; 2031 2032 mutex_lock(&lpi_range_lock); 2033 2034 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2035 if (range->span >= nr_lpis) { 2036 *base = range->base_id; 2037 range->base_id += nr_lpis; 2038 range->span -= nr_lpis; 2039 2040 if (range->span == 0) { 2041 list_del(&range->entry); 2042 kfree(range); 2043 } 2044 2045 err = 0; 2046 break; 2047 } 2048 } 2049 2050 mutex_unlock(&lpi_range_lock); 2051 2052 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2053 return err; 2054 } 2055 2056 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2057 { 2058 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2059 return; 2060 if (a->base_id + a->span != b->base_id) 2061 return; 2062 b->base_id = a->base_id; 2063 b->span += a->span; 2064 list_del(&a->entry); 2065 kfree(a); 2066 } 2067 2068 static int free_lpi_range(u32 base, u32 nr_lpis) 2069 { 2070 struct lpi_range *new, *old; 2071 2072 new = mk_lpi_range(base, nr_lpis); 2073 if (!new) 2074 return -ENOMEM; 2075 2076 mutex_lock(&lpi_range_lock); 2077 2078 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2079 if (old->base_id < base) 2080 break; 2081 } 2082 /* 2083 * old is the last element with ->base_id smaller than base, 2084 * so new goes right after it. If there are no elements with 2085 * ->base_id smaller than base, &old->entry ends up pointing 2086 * at the head of the list, and inserting new it the start of 2087 * the list is the right thing to do in that case as well. 2088 */ 2089 list_add(&new->entry, &old->entry); 2090 /* 2091 * Now check if we can merge with the preceding and/or 2092 * following ranges. 2093 */ 2094 merge_lpi_ranges(old, new); 2095 merge_lpi_ranges(new, list_next_entry(new, entry)); 2096 2097 mutex_unlock(&lpi_range_lock); 2098 return 0; 2099 } 2100 2101 static int __init its_lpi_init(u32 id_bits) 2102 { 2103 u32 lpis = (1UL << id_bits) - 8192; 2104 u32 numlpis; 2105 int err; 2106 2107 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2108 2109 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2110 lpis = numlpis; 2111 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2112 lpis); 2113 } 2114 2115 /* 2116 * Initializing the allocator is just the same as freeing the 2117 * full range of LPIs. 2118 */ 2119 err = free_lpi_range(8192, lpis); 2120 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2121 return err; 2122 } 2123 2124 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2125 { 2126 unsigned long *bitmap = NULL; 2127 int err = 0; 2128 2129 do { 2130 err = alloc_lpi_range(nr_irqs, base); 2131 if (!err) 2132 break; 2133 2134 nr_irqs /= 2; 2135 } while (nr_irqs > 0); 2136 2137 if (!nr_irqs) 2138 err = -ENOSPC; 2139 2140 if (err) 2141 goto out; 2142 2143 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2144 if (!bitmap) 2145 goto out; 2146 2147 *nr_ids = nr_irqs; 2148 2149 out: 2150 if (!bitmap) 2151 *base = *nr_ids = 0; 2152 2153 return bitmap; 2154 } 2155 2156 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2157 { 2158 WARN_ON(free_lpi_range(base, nr_ids)); 2159 bitmap_free(bitmap); 2160 } 2161 2162 static void gic_reset_prop_table(void *va) 2163 { 2164 /* Priority 0xa0, Group-1, disabled */ 2165 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2166 2167 /* Make sure the GIC will observe the written configuration */ 2168 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2169 } 2170 2171 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2172 { 2173 struct page *prop_page; 2174 2175 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2176 if (!prop_page) 2177 return NULL; 2178 2179 gic_reset_prop_table(page_address(prop_page)); 2180 2181 return prop_page; 2182 } 2183 2184 static void its_free_prop_table(struct page *prop_page) 2185 { 2186 free_pages((unsigned long)page_address(prop_page), 2187 get_order(LPI_PROPBASE_SZ)); 2188 } 2189 2190 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2191 { 2192 phys_addr_t start, end, addr_end; 2193 u64 i; 2194 2195 /* 2196 * We don't bother checking for a kdump kernel as by 2197 * construction, the LPI tables are out of this kernel's 2198 * memory map. 2199 */ 2200 if (is_kdump_kernel()) 2201 return true; 2202 2203 addr_end = addr + size - 1; 2204 2205 for_each_reserved_mem_range(i, &start, &end) { 2206 if (addr >= start && addr_end <= end) 2207 return true; 2208 } 2209 2210 /* Not found, not a good sign... */ 2211 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2212 &addr, &addr_end); 2213 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2214 return false; 2215 } 2216 2217 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2218 { 2219 if (efi_enabled(EFI_CONFIG_TABLES)) 2220 return efi_mem_reserve_persistent(addr, size); 2221 2222 return 0; 2223 } 2224 2225 static int __init its_setup_lpi_prop_table(void) 2226 { 2227 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2228 u64 val; 2229 2230 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2231 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2232 2233 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2234 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2235 LPI_PROPBASE_SZ, 2236 MEMREMAP_WB); 2237 gic_reset_prop_table(gic_rdists->prop_table_va); 2238 } else { 2239 struct page *page; 2240 2241 lpi_id_bits = min_t(u32, 2242 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2243 ITS_MAX_LPI_NRBITS); 2244 page = its_allocate_prop_table(GFP_NOWAIT); 2245 if (!page) { 2246 pr_err("Failed to allocate PROPBASE\n"); 2247 return -ENOMEM; 2248 } 2249 2250 gic_rdists->prop_table_pa = page_to_phys(page); 2251 gic_rdists->prop_table_va = page_address(page); 2252 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2253 LPI_PROPBASE_SZ)); 2254 } 2255 2256 pr_info("GICv3: using LPI property table @%pa\n", 2257 &gic_rdists->prop_table_pa); 2258 2259 return its_lpi_init(lpi_id_bits); 2260 } 2261 2262 static const char *its_base_type_string[] = { 2263 [GITS_BASER_TYPE_DEVICE] = "Devices", 2264 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2265 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2266 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2267 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2268 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2269 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2270 }; 2271 2272 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2273 { 2274 u32 idx = baser - its->tables; 2275 2276 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2277 } 2278 2279 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2280 u64 val) 2281 { 2282 u32 idx = baser - its->tables; 2283 2284 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2285 baser->val = its_read_baser(its, baser); 2286 } 2287 2288 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2289 u64 cache, u64 shr, u32 order, bool indirect) 2290 { 2291 u64 val = its_read_baser(its, baser); 2292 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2293 u64 type = GITS_BASER_TYPE(val); 2294 u64 baser_phys, tmp; 2295 u32 alloc_pages, psz; 2296 struct page *page; 2297 void *base; 2298 2299 psz = baser->psz; 2300 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2301 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2302 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2303 &its->phys_base, its_base_type_string[type], 2304 alloc_pages, GITS_BASER_PAGES_MAX); 2305 alloc_pages = GITS_BASER_PAGES_MAX; 2306 order = get_order(GITS_BASER_PAGES_MAX * psz); 2307 } 2308 2309 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2310 if (!page) 2311 return -ENOMEM; 2312 2313 base = (void *)page_address(page); 2314 baser_phys = virt_to_phys(base); 2315 2316 /* Check if the physical address of the memory is above 48bits */ 2317 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2318 2319 /* 52bit PA is supported only when PageSize=64K */ 2320 if (psz != SZ_64K) { 2321 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2322 free_pages((unsigned long)base, order); 2323 return -ENXIO; 2324 } 2325 2326 /* Convert 52bit PA to 48bit field */ 2327 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2328 } 2329 2330 retry_baser: 2331 val = (baser_phys | 2332 (type << GITS_BASER_TYPE_SHIFT) | 2333 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2334 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2335 cache | 2336 shr | 2337 GITS_BASER_VALID); 2338 2339 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2340 2341 switch (psz) { 2342 case SZ_4K: 2343 val |= GITS_BASER_PAGE_SIZE_4K; 2344 break; 2345 case SZ_16K: 2346 val |= GITS_BASER_PAGE_SIZE_16K; 2347 break; 2348 case SZ_64K: 2349 val |= GITS_BASER_PAGE_SIZE_64K; 2350 break; 2351 } 2352 2353 its_write_baser(its, baser, val); 2354 tmp = baser->val; 2355 2356 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2357 /* 2358 * Shareability didn't stick. Just use 2359 * whatever the read reported, which is likely 2360 * to be the only thing this redistributor 2361 * supports. If that's zero, make it 2362 * non-cacheable as well. 2363 */ 2364 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2365 if (!shr) { 2366 cache = GITS_BASER_nC; 2367 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2368 } 2369 goto retry_baser; 2370 } 2371 2372 if (val != tmp) { 2373 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2374 &its->phys_base, its_base_type_string[type], 2375 val, tmp); 2376 free_pages((unsigned long)base, order); 2377 return -ENXIO; 2378 } 2379 2380 baser->order = order; 2381 baser->base = base; 2382 baser->psz = psz; 2383 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2384 2385 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2386 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2387 its_base_type_string[type], 2388 (unsigned long)virt_to_phys(base), 2389 indirect ? "indirect" : "flat", (int)esz, 2390 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2391 2392 return 0; 2393 } 2394 2395 static bool its_parse_indirect_baser(struct its_node *its, 2396 struct its_baser *baser, 2397 u32 *order, u32 ids) 2398 { 2399 u64 tmp = its_read_baser(its, baser); 2400 u64 type = GITS_BASER_TYPE(tmp); 2401 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2402 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2403 u32 new_order = *order; 2404 u32 psz = baser->psz; 2405 bool indirect = false; 2406 2407 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2408 if ((esz << ids) > (psz * 2)) { 2409 /* 2410 * Find out whether hw supports a single or two-level table by 2411 * table by reading bit at offset '62' after writing '1' to it. 2412 */ 2413 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2414 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2415 2416 if (indirect) { 2417 /* 2418 * The size of the lvl2 table is equal to ITS page size 2419 * which is 'psz'. For computing lvl1 table size, 2420 * subtract ID bits that sparse lvl2 table from 'ids' 2421 * which is reported by ITS hardware times lvl1 table 2422 * entry size. 2423 */ 2424 ids -= ilog2(psz / (int)esz); 2425 esz = GITS_LVL1_ENTRY_SIZE; 2426 } 2427 } 2428 2429 /* 2430 * Allocate as many entries as required to fit the 2431 * range of device IDs that the ITS can grok... The ID 2432 * space being incredibly sparse, this results in a 2433 * massive waste of memory if two-level device table 2434 * feature is not supported by hardware. 2435 */ 2436 new_order = max_t(u32, get_order(esz << ids), new_order); 2437 if (new_order >= MAX_ORDER) { 2438 new_order = MAX_ORDER - 1; 2439 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2440 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2441 &its->phys_base, its_base_type_string[type], 2442 device_ids(its), ids); 2443 } 2444 2445 *order = new_order; 2446 2447 return indirect; 2448 } 2449 2450 static u32 compute_common_aff(u64 val) 2451 { 2452 u32 aff, clpiaff; 2453 2454 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2455 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2456 2457 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2458 } 2459 2460 static u32 compute_its_aff(struct its_node *its) 2461 { 2462 u64 val; 2463 u32 svpet; 2464 2465 /* 2466 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2467 * the resulting affinity. We then use that to see if this match 2468 * our own affinity. 2469 */ 2470 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2471 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2472 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2473 return compute_common_aff(val); 2474 } 2475 2476 static struct its_node *find_sibling_its(struct its_node *cur_its) 2477 { 2478 struct its_node *its; 2479 u32 aff; 2480 2481 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2482 return NULL; 2483 2484 aff = compute_its_aff(cur_its); 2485 2486 list_for_each_entry(its, &its_nodes, entry) { 2487 u64 baser; 2488 2489 if (!is_v4_1(its) || its == cur_its) 2490 continue; 2491 2492 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2493 continue; 2494 2495 if (aff != compute_its_aff(its)) 2496 continue; 2497 2498 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2499 baser = its->tables[2].val; 2500 if (!(baser & GITS_BASER_VALID)) 2501 continue; 2502 2503 return its; 2504 } 2505 2506 return NULL; 2507 } 2508 2509 static void its_free_tables(struct its_node *its) 2510 { 2511 int i; 2512 2513 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2514 if (its->tables[i].base) { 2515 free_pages((unsigned long)its->tables[i].base, 2516 its->tables[i].order); 2517 its->tables[i].base = NULL; 2518 } 2519 } 2520 } 2521 2522 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2523 { 2524 u64 psz = SZ_64K; 2525 2526 while (psz) { 2527 u64 val, gpsz; 2528 2529 val = its_read_baser(its, baser); 2530 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2531 2532 switch (psz) { 2533 case SZ_64K: 2534 gpsz = GITS_BASER_PAGE_SIZE_64K; 2535 break; 2536 case SZ_16K: 2537 gpsz = GITS_BASER_PAGE_SIZE_16K; 2538 break; 2539 case SZ_4K: 2540 default: 2541 gpsz = GITS_BASER_PAGE_SIZE_4K; 2542 break; 2543 } 2544 2545 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2546 2547 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2548 its_write_baser(its, baser, val); 2549 2550 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2551 break; 2552 2553 switch (psz) { 2554 case SZ_64K: 2555 psz = SZ_16K; 2556 break; 2557 case SZ_16K: 2558 psz = SZ_4K; 2559 break; 2560 case SZ_4K: 2561 default: 2562 return -1; 2563 } 2564 } 2565 2566 baser->psz = psz; 2567 return 0; 2568 } 2569 2570 static int its_alloc_tables(struct its_node *its) 2571 { 2572 u64 shr = GITS_BASER_InnerShareable; 2573 u64 cache = GITS_BASER_RaWaWb; 2574 int err, i; 2575 2576 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2577 /* erratum 24313: ignore memory access type */ 2578 cache = GITS_BASER_nCnB; 2579 2580 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2581 struct its_baser *baser = its->tables + i; 2582 u64 val = its_read_baser(its, baser); 2583 u64 type = GITS_BASER_TYPE(val); 2584 bool indirect = false; 2585 u32 order; 2586 2587 if (type == GITS_BASER_TYPE_NONE) 2588 continue; 2589 2590 if (its_probe_baser_psz(its, baser)) { 2591 its_free_tables(its); 2592 return -ENXIO; 2593 } 2594 2595 order = get_order(baser->psz); 2596 2597 switch (type) { 2598 case GITS_BASER_TYPE_DEVICE: 2599 indirect = its_parse_indirect_baser(its, baser, &order, 2600 device_ids(its)); 2601 break; 2602 2603 case GITS_BASER_TYPE_VCPU: 2604 if (is_v4_1(its)) { 2605 struct its_node *sibling; 2606 2607 WARN_ON(i != 2); 2608 if ((sibling = find_sibling_its(its))) { 2609 *baser = sibling->tables[2]; 2610 its_write_baser(its, baser, baser->val); 2611 continue; 2612 } 2613 } 2614 2615 indirect = its_parse_indirect_baser(its, baser, &order, 2616 ITS_MAX_VPEID_BITS); 2617 break; 2618 } 2619 2620 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2621 if (err < 0) { 2622 its_free_tables(its); 2623 return err; 2624 } 2625 2626 /* Update settings which will be used for next BASERn */ 2627 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2628 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2629 } 2630 2631 return 0; 2632 } 2633 2634 static u64 inherit_vpe_l1_table_from_its(void) 2635 { 2636 struct its_node *its; 2637 u64 val; 2638 u32 aff; 2639 2640 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2641 aff = compute_common_aff(val); 2642 2643 list_for_each_entry(its, &its_nodes, entry) { 2644 u64 baser, addr; 2645 2646 if (!is_v4_1(its)) 2647 continue; 2648 2649 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2650 continue; 2651 2652 if (aff != compute_its_aff(its)) 2653 continue; 2654 2655 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2656 baser = its->tables[2].val; 2657 if (!(baser & GITS_BASER_VALID)) 2658 continue; 2659 2660 /* We have a winner! */ 2661 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2662 2663 val = GICR_VPROPBASER_4_1_VALID; 2664 if (baser & GITS_BASER_INDIRECT) 2665 val |= GICR_VPROPBASER_4_1_INDIRECT; 2666 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2667 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2668 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2669 case GIC_PAGE_SIZE_64K: 2670 addr = GITS_BASER_ADDR_48_to_52(baser); 2671 break; 2672 default: 2673 addr = baser & GENMASK_ULL(47, 12); 2674 break; 2675 } 2676 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2677 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2678 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2679 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2680 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2681 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2682 2683 return val; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2690 { 2691 u32 aff; 2692 u64 val; 2693 int cpu; 2694 2695 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2696 aff = compute_common_aff(val); 2697 2698 for_each_possible_cpu(cpu) { 2699 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2700 2701 if (!base || cpu == smp_processor_id()) 2702 continue; 2703 2704 val = gic_read_typer(base + GICR_TYPER); 2705 if (aff != compute_common_aff(val)) 2706 continue; 2707 2708 /* 2709 * At this point, we have a victim. This particular CPU 2710 * has already booted, and has an affinity that matches 2711 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2712 * Make sure we don't write the Z bit in that case. 2713 */ 2714 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2715 val &= ~GICR_VPROPBASER_4_1_Z; 2716 2717 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2718 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2719 2720 return val; 2721 } 2722 2723 return 0; 2724 } 2725 2726 static bool allocate_vpe_l2_table(int cpu, u32 id) 2727 { 2728 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2729 unsigned int psz, esz, idx, npg, gpsz; 2730 u64 val; 2731 struct page *page; 2732 __le64 *table; 2733 2734 if (!gic_rdists->has_rvpeid) 2735 return true; 2736 2737 /* Skip non-present CPUs */ 2738 if (!base) 2739 return true; 2740 2741 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2742 2743 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2744 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2745 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2746 2747 switch (gpsz) { 2748 default: 2749 WARN_ON(1); 2750 fallthrough; 2751 case GIC_PAGE_SIZE_4K: 2752 psz = SZ_4K; 2753 break; 2754 case GIC_PAGE_SIZE_16K: 2755 psz = SZ_16K; 2756 break; 2757 case GIC_PAGE_SIZE_64K: 2758 psz = SZ_64K; 2759 break; 2760 } 2761 2762 /* Don't allow vpe_id that exceeds single, flat table limit */ 2763 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2764 return (id < (npg * psz / (esz * SZ_8))); 2765 2766 /* Compute 1st level table index & check if that exceeds table limit */ 2767 idx = id >> ilog2(psz / (esz * SZ_8)); 2768 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2769 return false; 2770 2771 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2772 2773 /* Allocate memory for 2nd level table */ 2774 if (!table[idx]) { 2775 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2776 if (!page) 2777 return false; 2778 2779 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2780 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2781 gic_flush_dcache_to_poc(page_address(page), psz); 2782 2783 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2784 2785 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2786 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2787 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2788 2789 /* Ensure updated table contents are visible to RD hardware */ 2790 dsb(sy); 2791 } 2792 2793 return true; 2794 } 2795 2796 static int allocate_vpe_l1_table(void) 2797 { 2798 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2799 u64 val, gpsz, npg, pa; 2800 unsigned int psz = SZ_64K; 2801 unsigned int np, epp, esz; 2802 struct page *page; 2803 2804 if (!gic_rdists->has_rvpeid) 2805 return 0; 2806 2807 /* 2808 * if VPENDBASER.Valid is set, disable any previously programmed 2809 * VPE by setting PendingLast while clearing Valid. This has the 2810 * effect of making sure no doorbell will be generated and we can 2811 * then safely clear VPROPBASER.Valid. 2812 */ 2813 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2814 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2815 vlpi_base + GICR_VPENDBASER); 2816 2817 /* 2818 * If we can inherit the configuration from another RD, let's do 2819 * so. Otherwise, we have to go through the allocation process. We 2820 * assume that all RDs have the exact same requirements, as 2821 * nothing will work otherwise. 2822 */ 2823 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2824 if (val & GICR_VPROPBASER_4_1_VALID) 2825 goto out; 2826 2827 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2828 if (!gic_data_rdist()->vpe_table_mask) 2829 return -ENOMEM; 2830 2831 val = inherit_vpe_l1_table_from_its(); 2832 if (val & GICR_VPROPBASER_4_1_VALID) 2833 goto out; 2834 2835 /* First probe the page size */ 2836 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2837 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2838 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2839 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2840 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2841 2842 switch (gpsz) { 2843 default: 2844 gpsz = GIC_PAGE_SIZE_4K; 2845 fallthrough; 2846 case GIC_PAGE_SIZE_4K: 2847 psz = SZ_4K; 2848 break; 2849 case GIC_PAGE_SIZE_16K: 2850 psz = SZ_16K; 2851 break; 2852 case GIC_PAGE_SIZE_64K: 2853 psz = SZ_64K; 2854 break; 2855 } 2856 2857 /* 2858 * Start populating the register from scratch, including RO fields 2859 * (which we want to print in debug cases...) 2860 */ 2861 val = 0; 2862 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2863 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2864 2865 /* How many entries per GIC page? */ 2866 esz++; 2867 epp = psz / (esz * SZ_8); 2868 2869 /* 2870 * If we need more than just a single L1 page, flag the table 2871 * as indirect and compute the number of required L1 pages. 2872 */ 2873 if (epp < ITS_MAX_VPEID) { 2874 int nl2; 2875 2876 val |= GICR_VPROPBASER_4_1_INDIRECT; 2877 2878 /* Number of L2 pages required to cover the VPEID space */ 2879 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2880 2881 /* Number of L1 pages to point to the L2 pages */ 2882 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2883 } else { 2884 npg = 1; 2885 } 2886 2887 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2888 2889 /* Right, that's the number of CPU pages we need for L1 */ 2890 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2891 2892 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2893 np, npg, psz, epp, esz); 2894 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2895 if (!page) 2896 return -ENOMEM; 2897 2898 gic_data_rdist()->vpe_l1_base = page_address(page); 2899 pa = virt_to_phys(page_address(page)); 2900 WARN_ON(!IS_ALIGNED(pa, psz)); 2901 2902 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2903 val |= GICR_VPROPBASER_RaWb; 2904 val |= GICR_VPROPBASER_InnerShareable; 2905 val |= GICR_VPROPBASER_4_1_Z; 2906 val |= GICR_VPROPBASER_4_1_VALID; 2907 2908 out: 2909 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2910 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2911 2912 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2913 smp_processor_id(), val, 2914 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2915 2916 return 0; 2917 } 2918 2919 static int its_alloc_collections(struct its_node *its) 2920 { 2921 int i; 2922 2923 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2924 GFP_KERNEL); 2925 if (!its->collections) 2926 return -ENOMEM; 2927 2928 for (i = 0; i < nr_cpu_ids; i++) 2929 its->collections[i].target_address = ~0ULL; 2930 2931 return 0; 2932 } 2933 2934 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2935 { 2936 struct page *pend_page; 2937 2938 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2939 get_order(LPI_PENDBASE_SZ)); 2940 if (!pend_page) 2941 return NULL; 2942 2943 /* Make sure the GIC will observe the zero-ed page */ 2944 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2945 2946 return pend_page; 2947 } 2948 2949 static void its_free_pending_table(struct page *pt) 2950 { 2951 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2952 } 2953 2954 /* 2955 * Booting with kdump and LPIs enabled is generally fine. Any other 2956 * case is wrong in the absence of firmware/EFI support. 2957 */ 2958 static bool enabled_lpis_allowed(void) 2959 { 2960 phys_addr_t addr; 2961 u64 val; 2962 2963 /* Check whether the property table is in a reserved region */ 2964 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2965 addr = val & GENMASK_ULL(51, 12); 2966 2967 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2968 } 2969 2970 static int __init allocate_lpi_tables(void) 2971 { 2972 u64 val; 2973 int err, cpu; 2974 2975 /* 2976 * If LPIs are enabled while we run this from the boot CPU, 2977 * flag the RD tables as pre-allocated if the stars do align. 2978 */ 2979 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2980 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2981 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2982 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2983 pr_info("GICv3: Using preallocated redistributor tables\n"); 2984 } 2985 2986 err = its_setup_lpi_prop_table(); 2987 if (err) 2988 return err; 2989 2990 /* 2991 * We allocate all the pending tables anyway, as we may have a 2992 * mix of RDs that have had LPIs enabled, and some that 2993 * don't. We'll free the unused ones as each CPU comes online. 2994 */ 2995 for_each_possible_cpu(cpu) { 2996 struct page *pend_page; 2997 2998 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2999 if (!pend_page) { 3000 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3001 return -ENOMEM; 3002 } 3003 3004 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3005 } 3006 3007 return 0; 3008 } 3009 3010 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3011 { 3012 u32 count = 1000000; /* 1s! */ 3013 bool clean; 3014 u64 val; 3015 3016 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3017 val &= ~GICR_VPENDBASER_Valid; 3018 val &= ~clr; 3019 val |= set; 3020 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3021 3022 do { 3023 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3024 clean = !(val & GICR_VPENDBASER_Dirty); 3025 if (!clean) { 3026 count--; 3027 cpu_relax(); 3028 udelay(1); 3029 } 3030 } while (!clean && count); 3031 3032 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 3033 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3034 val |= GICR_VPENDBASER_PendingLast; 3035 } 3036 3037 return val; 3038 } 3039 3040 static void its_cpu_init_lpis(void) 3041 { 3042 void __iomem *rbase = gic_data_rdist_rd_base(); 3043 struct page *pend_page; 3044 phys_addr_t paddr; 3045 u64 val, tmp; 3046 3047 if (gic_data_rdist()->lpi_enabled) 3048 return; 3049 3050 val = readl_relaxed(rbase + GICR_CTLR); 3051 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3052 (val & GICR_CTLR_ENABLE_LPIS)) { 3053 /* 3054 * Check that we get the same property table on all 3055 * RDs. If we don't, this is hopeless. 3056 */ 3057 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3058 paddr &= GENMASK_ULL(51, 12); 3059 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3060 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3061 3062 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3063 paddr &= GENMASK_ULL(51, 16); 3064 3065 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3066 its_free_pending_table(gic_data_rdist()->pend_page); 3067 gic_data_rdist()->pend_page = NULL; 3068 3069 goto out; 3070 } 3071 3072 pend_page = gic_data_rdist()->pend_page; 3073 paddr = page_to_phys(pend_page); 3074 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 3075 3076 /* set PROPBASE */ 3077 val = (gic_rdists->prop_table_pa | 3078 GICR_PROPBASER_InnerShareable | 3079 GICR_PROPBASER_RaWaWb | 3080 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3081 3082 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3083 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3084 3085 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3086 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3087 /* 3088 * The HW reports non-shareable, we must 3089 * remove the cacheability attributes as 3090 * well. 3091 */ 3092 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3093 GICR_PROPBASER_CACHEABILITY_MASK); 3094 val |= GICR_PROPBASER_nC; 3095 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3096 } 3097 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3098 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3099 } 3100 3101 /* set PENDBASE */ 3102 val = (page_to_phys(pend_page) | 3103 GICR_PENDBASER_InnerShareable | 3104 GICR_PENDBASER_RaWaWb); 3105 3106 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3107 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3108 3109 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3110 /* 3111 * The HW reports non-shareable, we must remove the 3112 * cacheability attributes as well. 3113 */ 3114 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3115 GICR_PENDBASER_CACHEABILITY_MASK); 3116 val |= GICR_PENDBASER_nC; 3117 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3118 } 3119 3120 /* Enable LPIs */ 3121 val = readl_relaxed(rbase + GICR_CTLR); 3122 val |= GICR_CTLR_ENABLE_LPIS; 3123 writel_relaxed(val, rbase + GICR_CTLR); 3124 3125 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3126 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3127 3128 /* 3129 * It's possible for CPU to receive VLPIs before it is 3130 * scheduled as a vPE, especially for the first CPU, and the 3131 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3132 * as out of range and dropped by GIC. 3133 * So we initialize IDbits to known value to avoid VLPI drop. 3134 */ 3135 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3136 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3137 smp_processor_id(), val); 3138 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3139 3140 /* 3141 * Also clear Valid bit of GICR_VPENDBASER, in case some 3142 * ancient programming gets left in and has possibility of 3143 * corrupting memory. 3144 */ 3145 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3146 } 3147 3148 if (allocate_vpe_l1_table()) { 3149 /* 3150 * If the allocation has failed, we're in massive trouble. 3151 * Disable direct injection, and pray that no VM was 3152 * already running... 3153 */ 3154 gic_rdists->has_rvpeid = false; 3155 gic_rdists->has_vlpis = false; 3156 } 3157 3158 /* Make sure the GIC has seen the above */ 3159 dsb(sy); 3160 out: 3161 gic_data_rdist()->lpi_enabled = true; 3162 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3163 smp_processor_id(), 3164 gic_data_rdist()->pend_page ? "allocated" : "reserved", 3165 &paddr); 3166 } 3167 3168 static void its_cpu_init_collection(struct its_node *its) 3169 { 3170 int cpu = smp_processor_id(); 3171 u64 target; 3172 3173 /* avoid cross node collections and its mapping */ 3174 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3175 struct device_node *cpu_node; 3176 3177 cpu_node = of_get_cpu_node(cpu, NULL); 3178 if (its->numa_node != NUMA_NO_NODE && 3179 its->numa_node != of_node_to_nid(cpu_node)) 3180 return; 3181 } 3182 3183 /* 3184 * We now have to bind each collection to its target 3185 * redistributor. 3186 */ 3187 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3188 /* 3189 * This ITS wants the physical address of the 3190 * redistributor. 3191 */ 3192 target = gic_data_rdist()->phys_base; 3193 } else { 3194 /* This ITS wants a linear CPU number. */ 3195 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3196 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3197 } 3198 3199 /* Perform collection mapping */ 3200 its->collections[cpu].target_address = target; 3201 its->collections[cpu].col_id = cpu; 3202 3203 its_send_mapc(its, &its->collections[cpu], 1); 3204 its_send_invall(its, &its->collections[cpu]); 3205 } 3206 3207 static void its_cpu_init_collections(void) 3208 { 3209 struct its_node *its; 3210 3211 raw_spin_lock(&its_lock); 3212 3213 list_for_each_entry(its, &its_nodes, entry) 3214 its_cpu_init_collection(its); 3215 3216 raw_spin_unlock(&its_lock); 3217 } 3218 3219 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3220 { 3221 struct its_device *its_dev = NULL, *tmp; 3222 unsigned long flags; 3223 3224 raw_spin_lock_irqsave(&its->lock, flags); 3225 3226 list_for_each_entry(tmp, &its->its_device_list, entry) { 3227 if (tmp->device_id == dev_id) { 3228 its_dev = tmp; 3229 break; 3230 } 3231 } 3232 3233 raw_spin_unlock_irqrestore(&its->lock, flags); 3234 3235 return its_dev; 3236 } 3237 3238 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3239 { 3240 int i; 3241 3242 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3243 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3244 return &its->tables[i]; 3245 } 3246 3247 return NULL; 3248 } 3249 3250 static bool its_alloc_table_entry(struct its_node *its, 3251 struct its_baser *baser, u32 id) 3252 { 3253 struct page *page; 3254 u32 esz, idx; 3255 __le64 *table; 3256 3257 /* Don't allow device id that exceeds single, flat table limit */ 3258 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3259 if (!(baser->val & GITS_BASER_INDIRECT)) 3260 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3261 3262 /* Compute 1st level table index & check if that exceeds table limit */ 3263 idx = id >> ilog2(baser->psz / esz); 3264 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3265 return false; 3266 3267 table = baser->base; 3268 3269 /* Allocate memory for 2nd level table */ 3270 if (!table[idx]) { 3271 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3272 get_order(baser->psz)); 3273 if (!page) 3274 return false; 3275 3276 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3277 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3278 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3279 3280 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3281 3282 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3283 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3284 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3285 3286 /* Ensure updated table contents are visible to ITS hardware */ 3287 dsb(sy); 3288 } 3289 3290 return true; 3291 } 3292 3293 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3294 { 3295 struct its_baser *baser; 3296 3297 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3298 3299 /* Don't allow device id that exceeds ITS hardware limit */ 3300 if (!baser) 3301 return (ilog2(dev_id) < device_ids(its)); 3302 3303 return its_alloc_table_entry(its, baser, dev_id); 3304 } 3305 3306 static bool its_alloc_vpe_table(u32 vpe_id) 3307 { 3308 struct its_node *its; 3309 int cpu; 3310 3311 /* 3312 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3313 * could try and only do it on ITSs corresponding to devices 3314 * that have interrupts targeted at this VPE, but the 3315 * complexity becomes crazy (and you have tons of memory 3316 * anyway, right?). 3317 */ 3318 list_for_each_entry(its, &its_nodes, entry) { 3319 struct its_baser *baser; 3320 3321 if (!is_v4(its)) 3322 continue; 3323 3324 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3325 if (!baser) 3326 return false; 3327 3328 if (!its_alloc_table_entry(its, baser, vpe_id)) 3329 return false; 3330 } 3331 3332 /* Non v4.1? No need to iterate RDs and go back early. */ 3333 if (!gic_rdists->has_rvpeid) 3334 return true; 3335 3336 /* 3337 * Make sure the L2 tables are allocated for all copies of 3338 * the L1 table on *all* v4.1 RDs. 3339 */ 3340 for_each_possible_cpu(cpu) { 3341 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3342 return false; 3343 } 3344 3345 return true; 3346 } 3347 3348 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3349 int nvecs, bool alloc_lpis) 3350 { 3351 struct its_device *dev; 3352 unsigned long *lpi_map = NULL; 3353 unsigned long flags; 3354 u16 *col_map = NULL; 3355 void *itt; 3356 int lpi_base; 3357 int nr_lpis; 3358 int nr_ites; 3359 int sz; 3360 3361 if (!its_alloc_device_table(its, dev_id)) 3362 return NULL; 3363 3364 if (WARN_ON(!is_power_of_2(nvecs))) 3365 nvecs = roundup_pow_of_two(nvecs); 3366 3367 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3368 /* 3369 * Even if the device wants a single LPI, the ITT must be 3370 * sized as a power of two (and you need at least one bit...). 3371 */ 3372 nr_ites = max(2, nvecs); 3373 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3374 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3375 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3376 if (alloc_lpis) { 3377 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3378 if (lpi_map) 3379 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3380 GFP_KERNEL); 3381 } else { 3382 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3383 nr_lpis = 0; 3384 lpi_base = 0; 3385 } 3386 3387 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3388 kfree(dev); 3389 kfree(itt); 3390 bitmap_free(lpi_map); 3391 kfree(col_map); 3392 return NULL; 3393 } 3394 3395 gic_flush_dcache_to_poc(itt, sz); 3396 3397 dev->its = its; 3398 dev->itt = itt; 3399 dev->nr_ites = nr_ites; 3400 dev->event_map.lpi_map = lpi_map; 3401 dev->event_map.col_map = col_map; 3402 dev->event_map.lpi_base = lpi_base; 3403 dev->event_map.nr_lpis = nr_lpis; 3404 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3405 dev->device_id = dev_id; 3406 INIT_LIST_HEAD(&dev->entry); 3407 3408 raw_spin_lock_irqsave(&its->lock, flags); 3409 list_add(&dev->entry, &its->its_device_list); 3410 raw_spin_unlock_irqrestore(&its->lock, flags); 3411 3412 /* Map device to its ITT */ 3413 its_send_mapd(dev, 1); 3414 3415 return dev; 3416 } 3417 3418 static void its_free_device(struct its_device *its_dev) 3419 { 3420 unsigned long flags; 3421 3422 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3423 list_del(&its_dev->entry); 3424 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3425 kfree(its_dev->event_map.col_map); 3426 kfree(its_dev->itt); 3427 kfree(its_dev); 3428 } 3429 3430 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3431 { 3432 int idx; 3433 3434 /* Find a free LPI region in lpi_map and allocate them. */ 3435 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3436 dev->event_map.nr_lpis, 3437 get_count_order(nvecs)); 3438 if (idx < 0) 3439 return -ENOSPC; 3440 3441 *hwirq = dev->event_map.lpi_base + idx; 3442 3443 return 0; 3444 } 3445 3446 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3447 int nvec, msi_alloc_info_t *info) 3448 { 3449 struct its_node *its; 3450 struct its_device *its_dev; 3451 struct msi_domain_info *msi_info; 3452 u32 dev_id; 3453 int err = 0; 3454 3455 /* 3456 * We ignore "dev" entirely, and rely on the dev_id that has 3457 * been passed via the scratchpad. This limits this domain's 3458 * usefulness to upper layers that definitely know that they 3459 * are built on top of the ITS. 3460 */ 3461 dev_id = info->scratchpad[0].ul; 3462 3463 msi_info = msi_get_domain_info(domain); 3464 its = msi_info->data; 3465 3466 if (!gic_rdists->has_direct_lpi && 3467 vpe_proxy.dev && 3468 vpe_proxy.dev->its == its && 3469 dev_id == vpe_proxy.dev->device_id) { 3470 /* Bad luck. Get yourself a better implementation */ 3471 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3472 dev_id); 3473 return -EINVAL; 3474 } 3475 3476 mutex_lock(&its->dev_alloc_lock); 3477 its_dev = its_find_device(its, dev_id); 3478 if (its_dev) { 3479 /* 3480 * We already have seen this ID, probably through 3481 * another alias (PCI bridge of some sort). No need to 3482 * create the device. 3483 */ 3484 its_dev->shared = true; 3485 pr_debug("Reusing ITT for devID %x\n", dev_id); 3486 goto out; 3487 } 3488 3489 its_dev = its_create_device(its, dev_id, nvec, true); 3490 if (!its_dev) { 3491 err = -ENOMEM; 3492 goto out; 3493 } 3494 3495 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3496 its_dev->shared = true; 3497 3498 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3499 out: 3500 mutex_unlock(&its->dev_alloc_lock); 3501 info->scratchpad[0].ptr = its_dev; 3502 return err; 3503 } 3504 3505 static struct msi_domain_ops its_msi_domain_ops = { 3506 .msi_prepare = its_msi_prepare, 3507 }; 3508 3509 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3510 unsigned int virq, 3511 irq_hw_number_t hwirq) 3512 { 3513 struct irq_fwspec fwspec; 3514 3515 if (irq_domain_get_of_node(domain->parent)) { 3516 fwspec.fwnode = domain->parent->fwnode; 3517 fwspec.param_count = 3; 3518 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3519 fwspec.param[1] = hwirq; 3520 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3521 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3522 fwspec.fwnode = domain->parent->fwnode; 3523 fwspec.param_count = 2; 3524 fwspec.param[0] = hwirq; 3525 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3526 } else { 3527 return -EINVAL; 3528 } 3529 3530 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3531 } 3532 3533 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3534 unsigned int nr_irqs, void *args) 3535 { 3536 msi_alloc_info_t *info = args; 3537 struct its_device *its_dev = info->scratchpad[0].ptr; 3538 struct its_node *its = its_dev->its; 3539 struct irq_data *irqd; 3540 irq_hw_number_t hwirq; 3541 int err; 3542 int i; 3543 3544 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3545 if (err) 3546 return err; 3547 3548 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3549 if (err) 3550 return err; 3551 3552 for (i = 0; i < nr_irqs; i++) { 3553 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3554 if (err) 3555 return err; 3556 3557 irq_domain_set_hwirq_and_chip(domain, virq + i, 3558 hwirq + i, &its_irq_chip, its_dev); 3559 irqd = irq_get_irq_data(virq + i); 3560 irqd_set_single_target(irqd); 3561 irqd_set_affinity_on_activate(irqd); 3562 pr_debug("ID:%d pID:%d vID:%d\n", 3563 (int)(hwirq + i - its_dev->event_map.lpi_base), 3564 (int)(hwirq + i), virq + i); 3565 } 3566 3567 return 0; 3568 } 3569 3570 static int its_irq_domain_activate(struct irq_domain *domain, 3571 struct irq_data *d, bool reserve) 3572 { 3573 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3574 u32 event = its_get_event_id(d); 3575 int cpu; 3576 3577 cpu = its_select_cpu(d, cpu_online_mask); 3578 if (cpu < 0 || cpu >= nr_cpu_ids) 3579 return -EINVAL; 3580 3581 its_inc_lpi_count(d, cpu); 3582 its_dev->event_map.col_map[event] = cpu; 3583 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3584 3585 /* Map the GIC IRQ and event to the device */ 3586 its_send_mapti(its_dev, d->hwirq, event); 3587 return 0; 3588 } 3589 3590 static void its_irq_domain_deactivate(struct irq_domain *domain, 3591 struct irq_data *d) 3592 { 3593 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3594 u32 event = its_get_event_id(d); 3595 3596 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3597 /* Stop the delivery of interrupts */ 3598 its_send_discard(its_dev, event); 3599 } 3600 3601 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3602 unsigned int nr_irqs) 3603 { 3604 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3605 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3606 struct its_node *its = its_dev->its; 3607 int i; 3608 3609 bitmap_release_region(its_dev->event_map.lpi_map, 3610 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3611 get_count_order(nr_irqs)); 3612 3613 for (i = 0; i < nr_irqs; i++) { 3614 struct irq_data *data = irq_domain_get_irq_data(domain, 3615 virq + i); 3616 /* Nuke the entry in the domain */ 3617 irq_domain_reset_irq_data(data); 3618 } 3619 3620 mutex_lock(&its->dev_alloc_lock); 3621 3622 /* 3623 * If all interrupts have been freed, start mopping the 3624 * floor. This is conditioned on the device not being shared. 3625 */ 3626 if (!its_dev->shared && 3627 bitmap_empty(its_dev->event_map.lpi_map, 3628 its_dev->event_map.nr_lpis)) { 3629 its_lpi_free(its_dev->event_map.lpi_map, 3630 its_dev->event_map.lpi_base, 3631 its_dev->event_map.nr_lpis); 3632 3633 /* Unmap device/itt */ 3634 its_send_mapd(its_dev, 0); 3635 its_free_device(its_dev); 3636 } 3637 3638 mutex_unlock(&its->dev_alloc_lock); 3639 3640 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3641 } 3642 3643 static const struct irq_domain_ops its_domain_ops = { 3644 .alloc = its_irq_domain_alloc, 3645 .free = its_irq_domain_free, 3646 .activate = its_irq_domain_activate, 3647 .deactivate = its_irq_domain_deactivate, 3648 }; 3649 3650 /* 3651 * This is insane. 3652 * 3653 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3654 * likely), the only way to perform an invalidate is to use a fake 3655 * device to issue an INV command, implying that the LPI has first 3656 * been mapped to some event on that device. Since this is not exactly 3657 * cheap, we try to keep that mapping around as long as possible, and 3658 * only issue an UNMAP if we're short on available slots. 3659 * 3660 * Broken by design(tm). 3661 * 3662 * GICv4.1, on the other hand, mandates that we're able to invalidate 3663 * by writing to a MMIO register. It doesn't implement the whole of 3664 * DirectLPI, but that's good enough. And most of the time, we don't 3665 * even have to invalidate anything, as the redistributor can be told 3666 * whether to generate a doorbell or not (we thus leave it enabled, 3667 * always). 3668 */ 3669 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3670 { 3671 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3672 if (gic_rdists->has_rvpeid) 3673 return; 3674 3675 /* Already unmapped? */ 3676 if (vpe->vpe_proxy_event == -1) 3677 return; 3678 3679 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3680 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3681 3682 /* 3683 * We don't track empty slots at all, so let's move the 3684 * next_victim pointer if we can quickly reuse that slot 3685 * instead of nuking an existing entry. Not clear that this is 3686 * always a win though, and this might just generate a ripple 3687 * effect... Let's just hope VPEs don't migrate too often. 3688 */ 3689 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3690 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3691 3692 vpe->vpe_proxy_event = -1; 3693 } 3694 3695 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3696 { 3697 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3698 if (gic_rdists->has_rvpeid) 3699 return; 3700 3701 if (!gic_rdists->has_direct_lpi) { 3702 unsigned long flags; 3703 3704 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3705 its_vpe_db_proxy_unmap_locked(vpe); 3706 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3707 } 3708 } 3709 3710 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3711 { 3712 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3713 if (gic_rdists->has_rvpeid) 3714 return; 3715 3716 /* Already mapped? */ 3717 if (vpe->vpe_proxy_event != -1) 3718 return; 3719 3720 /* This slot was already allocated. Kick the other VPE out. */ 3721 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3722 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3723 3724 /* Map the new VPE instead */ 3725 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3726 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3727 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3728 3729 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3730 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3731 } 3732 3733 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3734 { 3735 unsigned long flags; 3736 struct its_collection *target_col; 3737 3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3739 if (gic_rdists->has_rvpeid) 3740 return; 3741 3742 if (gic_rdists->has_direct_lpi) { 3743 void __iomem *rdbase; 3744 3745 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3746 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3747 wait_for_syncr(rdbase); 3748 3749 return; 3750 } 3751 3752 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3753 3754 its_vpe_db_proxy_map_locked(vpe); 3755 3756 target_col = &vpe_proxy.dev->its->collections[to]; 3757 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3758 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3759 3760 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3761 } 3762 3763 static int its_vpe_set_affinity(struct irq_data *d, 3764 const struct cpumask *mask_val, 3765 bool force) 3766 { 3767 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3768 int from, cpu = cpumask_first(mask_val); 3769 unsigned long flags; 3770 3771 /* 3772 * Changing affinity is mega expensive, so let's be as lazy as 3773 * we can and only do it if we really have to. Also, if mapped 3774 * into the proxy device, we need to move the doorbell 3775 * interrupt to its new location. 3776 * 3777 * Another thing is that changing the affinity of a vPE affects 3778 * *other interrupts* such as all the vLPIs that are routed to 3779 * this vPE. This means that the irq_desc lock is not enough to 3780 * protect us, and that we must ensure nobody samples vpe->col_idx 3781 * during the update, hence the lock below which must also be 3782 * taken on any vLPI handling path that evaluates vpe->col_idx. 3783 */ 3784 from = vpe_to_cpuid_lock(vpe, &flags); 3785 if (from == cpu) 3786 goto out; 3787 3788 vpe->col_idx = cpu; 3789 3790 /* 3791 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3792 * is sharing its VPE table with the current one. 3793 */ 3794 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3795 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3796 goto out; 3797 3798 its_send_vmovp(vpe); 3799 its_vpe_db_proxy_move(vpe, from, cpu); 3800 3801 out: 3802 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3803 vpe_to_cpuid_unlock(vpe, flags); 3804 3805 return IRQ_SET_MASK_OK_DONE; 3806 } 3807 3808 static void its_wait_vpt_parse_complete(void) 3809 { 3810 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3811 u64 val; 3812 3813 if (!gic_rdists->has_vpend_valid_dirty) 3814 return; 3815 3816 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3817 val, 3818 !(val & GICR_VPENDBASER_Dirty), 3819 1, 500)); 3820 } 3821 3822 static void its_vpe_schedule(struct its_vpe *vpe) 3823 { 3824 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3825 u64 val; 3826 3827 /* Schedule the VPE */ 3828 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3829 GENMASK_ULL(51, 12); 3830 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3831 val |= GICR_VPROPBASER_RaWb; 3832 val |= GICR_VPROPBASER_InnerShareable; 3833 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3834 3835 val = virt_to_phys(page_address(vpe->vpt_page)) & 3836 GENMASK_ULL(51, 16); 3837 val |= GICR_VPENDBASER_RaWaWb; 3838 val |= GICR_VPENDBASER_InnerShareable; 3839 /* 3840 * There is no good way of finding out if the pending table is 3841 * empty as we can race against the doorbell interrupt very 3842 * easily. So in the end, vpe->pending_last is only an 3843 * indication that the vcpu has something pending, not one 3844 * that the pending table is empty. A good implementation 3845 * would be able to read its coarse map pretty quickly anyway, 3846 * making this a tolerable issue. 3847 */ 3848 val |= GICR_VPENDBASER_PendingLast; 3849 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3850 val |= GICR_VPENDBASER_Valid; 3851 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3852 } 3853 3854 static void its_vpe_deschedule(struct its_vpe *vpe) 3855 { 3856 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3857 u64 val; 3858 3859 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3860 3861 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3862 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3863 } 3864 3865 static void its_vpe_invall(struct its_vpe *vpe) 3866 { 3867 struct its_node *its; 3868 3869 list_for_each_entry(its, &its_nodes, entry) { 3870 if (!is_v4(its)) 3871 continue; 3872 3873 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3874 continue; 3875 3876 /* 3877 * Sending a VINVALL to a single ITS is enough, as all 3878 * we need is to reach the redistributors. 3879 */ 3880 its_send_vinvall(its, vpe); 3881 return; 3882 } 3883 } 3884 3885 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3886 { 3887 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3888 struct its_cmd_info *info = vcpu_info; 3889 3890 switch (info->cmd_type) { 3891 case SCHEDULE_VPE: 3892 its_vpe_schedule(vpe); 3893 return 0; 3894 3895 case DESCHEDULE_VPE: 3896 its_vpe_deschedule(vpe); 3897 return 0; 3898 3899 case COMMIT_VPE: 3900 its_wait_vpt_parse_complete(); 3901 return 0; 3902 3903 case INVALL_VPE: 3904 its_vpe_invall(vpe); 3905 return 0; 3906 3907 default: 3908 return -EINVAL; 3909 } 3910 } 3911 3912 static void its_vpe_send_cmd(struct its_vpe *vpe, 3913 void (*cmd)(struct its_device *, u32)) 3914 { 3915 unsigned long flags; 3916 3917 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3918 3919 its_vpe_db_proxy_map_locked(vpe); 3920 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3921 3922 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3923 } 3924 3925 static void its_vpe_send_inv(struct irq_data *d) 3926 { 3927 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3928 3929 if (gic_rdists->has_direct_lpi) { 3930 void __iomem *rdbase; 3931 3932 /* Target the redistributor this VPE is currently known on */ 3933 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3934 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3935 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3936 wait_for_syncr(rdbase); 3937 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3938 } else { 3939 its_vpe_send_cmd(vpe, its_send_inv); 3940 } 3941 } 3942 3943 static void its_vpe_mask_irq(struct irq_data *d) 3944 { 3945 /* 3946 * We need to unmask the LPI, which is described by the parent 3947 * irq_data. Instead of calling into the parent (which won't 3948 * exactly do the right thing, let's simply use the 3949 * parent_data pointer. Yes, I'm naughty. 3950 */ 3951 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3952 its_vpe_send_inv(d); 3953 } 3954 3955 static void its_vpe_unmask_irq(struct irq_data *d) 3956 { 3957 /* Same hack as above... */ 3958 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3959 its_vpe_send_inv(d); 3960 } 3961 3962 static int its_vpe_set_irqchip_state(struct irq_data *d, 3963 enum irqchip_irq_state which, 3964 bool state) 3965 { 3966 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3967 3968 if (which != IRQCHIP_STATE_PENDING) 3969 return -EINVAL; 3970 3971 if (gic_rdists->has_direct_lpi) { 3972 void __iomem *rdbase; 3973 3974 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3975 if (state) { 3976 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3977 } else { 3978 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3979 wait_for_syncr(rdbase); 3980 } 3981 } else { 3982 if (state) 3983 its_vpe_send_cmd(vpe, its_send_int); 3984 else 3985 its_vpe_send_cmd(vpe, its_send_clear); 3986 } 3987 3988 return 0; 3989 } 3990 3991 static int its_vpe_retrigger(struct irq_data *d) 3992 { 3993 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 3994 } 3995 3996 static struct irq_chip its_vpe_irq_chip = { 3997 .name = "GICv4-vpe", 3998 .irq_mask = its_vpe_mask_irq, 3999 .irq_unmask = its_vpe_unmask_irq, 4000 .irq_eoi = irq_chip_eoi_parent, 4001 .irq_set_affinity = its_vpe_set_affinity, 4002 .irq_retrigger = its_vpe_retrigger, 4003 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4004 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4005 }; 4006 4007 static struct its_node *find_4_1_its(void) 4008 { 4009 static struct its_node *its = NULL; 4010 4011 if (!its) { 4012 list_for_each_entry(its, &its_nodes, entry) { 4013 if (is_v4_1(its)) 4014 return its; 4015 } 4016 4017 /* Oops? */ 4018 its = NULL; 4019 } 4020 4021 return its; 4022 } 4023 4024 static void its_vpe_4_1_send_inv(struct irq_data *d) 4025 { 4026 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4027 struct its_node *its; 4028 4029 /* 4030 * GICv4.1 wants doorbells to be invalidated using the 4031 * INVDB command in order to be broadcast to all RDs. Send 4032 * it to the first valid ITS, and let the HW do its magic. 4033 */ 4034 its = find_4_1_its(); 4035 if (its) 4036 its_send_invdb(its, vpe); 4037 } 4038 4039 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4040 { 4041 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4042 its_vpe_4_1_send_inv(d); 4043 } 4044 4045 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4046 { 4047 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4048 its_vpe_4_1_send_inv(d); 4049 } 4050 4051 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4052 struct its_cmd_info *info) 4053 { 4054 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4055 u64 val = 0; 4056 4057 /* Schedule the VPE */ 4058 val |= GICR_VPENDBASER_Valid; 4059 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4060 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4061 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4062 4063 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4064 } 4065 4066 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4067 struct its_cmd_info *info) 4068 { 4069 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4070 u64 val; 4071 4072 if (info->req_db) { 4073 unsigned long flags; 4074 4075 /* 4076 * vPE is going to block: make the vPE non-resident with 4077 * PendingLast clear and DB set. The GIC guarantees that if 4078 * we read-back PendingLast clear, then a doorbell will be 4079 * delivered when an interrupt comes. 4080 * 4081 * Note the locking to deal with the concurrent update of 4082 * pending_last from the doorbell interrupt handler that can 4083 * run concurrently. 4084 */ 4085 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4086 val = its_clear_vpend_valid(vlpi_base, 4087 GICR_VPENDBASER_PendingLast, 4088 GICR_VPENDBASER_4_1_DB); 4089 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4090 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4091 } else { 4092 /* 4093 * We're not blocking, so just make the vPE non-resident 4094 * with PendingLast set, indicating that we'll be back. 4095 */ 4096 val = its_clear_vpend_valid(vlpi_base, 4097 0, 4098 GICR_VPENDBASER_PendingLast); 4099 vpe->pending_last = true; 4100 } 4101 } 4102 4103 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4104 { 4105 void __iomem *rdbase; 4106 unsigned long flags; 4107 u64 val; 4108 int cpu; 4109 4110 val = GICR_INVALLR_V; 4111 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4112 4113 /* Target the redistributor this vPE is currently known on */ 4114 cpu = vpe_to_cpuid_lock(vpe, &flags); 4115 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4116 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4117 gic_write_lpir(val, rdbase + GICR_INVALLR); 4118 4119 wait_for_syncr(rdbase); 4120 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4121 vpe_to_cpuid_unlock(vpe, flags); 4122 } 4123 4124 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4125 { 4126 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4127 struct its_cmd_info *info = vcpu_info; 4128 4129 switch (info->cmd_type) { 4130 case SCHEDULE_VPE: 4131 its_vpe_4_1_schedule(vpe, info); 4132 return 0; 4133 4134 case DESCHEDULE_VPE: 4135 its_vpe_4_1_deschedule(vpe, info); 4136 return 0; 4137 4138 case COMMIT_VPE: 4139 its_wait_vpt_parse_complete(); 4140 return 0; 4141 4142 case INVALL_VPE: 4143 its_vpe_4_1_invall(vpe); 4144 return 0; 4145 4146 default: 4147 return -EINVAL; 4148 } 4149 } 4150 4151 static struct irq_chip its_vpe_4_1_irq_chip = { 4152 .name = "GICv4.1-vpe", 4153 .irq_mask = its_vpe_4_1_mask_irq, 4154 .irq_unmask = its_vpe_4_1_unmask_irq, 4155 .irq_eoi = irq_chip_eoi_parent, 4156 .irq_set_affinity = its_vpe_set_affinity, 4157 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4158 }; 4159 4160 static void its_configure_sgi(struct irq_data *d, bool clear) 4161 { 4162 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4163 struct its_cmd_desc desc; 4164 4165 desc.its_vsgi_cmd.vpe = vpe; 4166 desc.its_vsgi_cmd.sgi = d->hwirq; 4167 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4168 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4169 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4170 desc.its_vsgi_cmd.clear = clear; 4171 4172 /* 4173 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4174 * destination VPE is mapped there. Since we map them eagerly at 4175 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4176 */ 4177 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4178 } 4179 4180 static void its_sgi_mask_irq(struct irq_data *d) 4181 { 4182 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4183 4184 vpe->sgi_config[d->hwirq].enabled = false; 4185 its_configure_sgi(d, false); 4186 } 4187 4188 static void its_sgi_unmask_irq(struct irq_data *d) 4189 { 4190 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4191 4192 vpe->sgi_config[d->hwirq].enabled = true; 4193 its_configure_sgi(d, false); 4194 } 4195 4196 static int its_sgi_set_affinity(struct irq_data *d, 4197 const struct cpumask *mask_val, 4198 bool force) 4199 { 4200 /* 4201 * There is no notion of affinity for virtual SGIs, at least 4202 * not on the host (since they can only be targeting a vPE). 4203 * Tell the kernel we've done whatever it asked for. 4204 */ 4205 irq_data_update_effective_affinity(d, mask_val); 4206 return IRQ_SET_MASK_OK; 4207 } 4208 4209 static int its_sgi_set_irqchip_state(struct irq_data *d, 4210 enum irqchip_irq_state which, 4211 bool state) 4212 { 4213 if (which != IRQCHIP_STATE_PENDING) 4214 return -EINVAL; 4215 4216 if (state) { 4217 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4218 struct its_node *its = find_4_1_its(); 4219 u64 val; 4220 4221 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4222 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4223 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4224 } else { 4225 its_configure_sgi(d, true); 4226 } 4227 4228 return 0; 4229 } 4230 4231 static int its_sgi_get_irqchip_state(struct irq_data *d, 4232 enum irqchip_irq_state which, bool *val) 4233 { 4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4235 void __iomem *base; 4236 unsigned long flags; 4237 u32 count = 1000000; /* 1s! */ 4238 u32 status; 4239 int cpu; 4240 4241 if (which != IRQCHIP_STATE_PENDING) 4242 return -EINVAL; 4243 4244 /* 4245 * Locking galore! We can race against two different events: 4246 * 4247 * - Concurrent vPE affinity change: we must make sure it cannot 4248 * happen, or we'll talk to the wrong redistributor. This is 4249 * identical to what happens with vLPIs. 4250 * 4251 * - Concurrent VSGIPENDR access: As it involves accessing two 4252 * MMIO registers, this must be made atomic one way or another. 4253 */ 4254 cpu = vpe_to_cpuid_lock(vpe, &flags); 4255 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4256 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4257 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4258 do { 4259 status = readl_relaxed(base + GICR_VSGIPENDR); 4260 if (!(status & GICR_VSGIPENDR_BUSY)) 4261 goto out; 4262 4263 count--; 4264 if (!count) { 4265 pr_err_ratelimited("Unable to get SGI status\n"); 4266 goto out; 4267 } 4268 cpu_relax(); 4269 udelay(1); 4270 } while (count); 4271 4272 out: 4273 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4274 vpe_to_cpuid_unlock(vpe, flags); 4275 4276 if (!count) 4277 return -ENXIO; 4278 4279 *val = !!(status & (1 << d->hwirq)); 4280 4281 return 0; 4282 } 4283 4284 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4285 { 4286 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4287 struct its_cmd_info *info = vcpu_info; 4288 4289 switch (info->cmd_type) { 4290 case PROP_UPDATE_VSGI: 4291 vpe->sgi_config[d->hwirq].priority = info->priority; 4292 vpe->sgi_config[d->hwirq].group = info->group; 4293 its_configure_sgi(d, false); 4294 return 0; 4295 4296 default: 4297 return -EINVAL; 4298 } 4299 } 4300 4301 static struct irq_chip its_sgi_irq_chip = { 4302 .name = "GICv4.1-sgi", 4303 .irq_mask = its_sgi_mask_irq, 4304 .irq_unmask = its_sgi_unmask_irq, 4305 .irq_set_affinity = its_sgi_set_affinity, 4306 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4307 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4308 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4309 }; 4310 4311 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4312 unsigned int virq, unsigned int nr_irqs, 4313 void *args) 4314 { 4315 struct its_vpe *vpe = args; 4316 int i; 4317 4318 /* Yes, we do want 16 SGIs */ 4319 WARN_ON(nr_irqs != 16); 4320 4321 for (i = 0; i < 16; i++) { 4322 vpe->sgi_config[i].priority = 0; 4323 vpe->sgi_config[i].enabled = false; 4324 vpe->sgi_config[i].group = false; 4325 4326 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4327 &its_sgi_irq_chip, vpe); 4328 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4329 } 4330 4331 return 0; 4332 } 4333 4334 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4335 unsigned int virq, 4336 unsigned int nr_irqs) 4337 { 4338 /* Nothing to do */ 4339 } 4340 4341 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4342 struct irq_data *d, bool reserve) 4343 { 4344 /* Write out the initial SGI configuration */ 4345 its_configure_sgi(d, false); 4346 return 0; 4347 } 4348 4349 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4350 struct irq_data *d) 4351 { 4352 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4353 4354 /* 4355 * The VSGI command is awkward: 4356 * 4357 * - To change the configuration, CLEAR must be set to false, 4358 * leaving the pending bit unchanged. 4359 * - To clear the pending bit, CLEAR must be set to true, leaving 4360 * the configuration unchanged. 4361 * 4362 * You just can't do both at once, hence the two commands below. 4363 */ 4364 vpe->sgi_config[d->hwirq].enabled = false; 4365 its_configure_sgi(d, false); 4366 its_configure_sgi(d, true); 4367 } 4368 4369 static const struct irq_domain_ops its_sgi_domain_ops = { 4370 .alloc = its_sgi_irq_domain_alloc, 4371 .free = its_sgi_irq_domain_free, 4372 .activate = its_sgi_irq_domain_activate, 4373 .deactivate = its_sgi_irq_domain_deactivate, 4374 }; 4375 4376 static int its_vpe_id_alloc(void) 4377 { 4378 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4379 } 4380 4381 static void its_vpe_id_free(u16 id) 4382 { 4383 ida_simple_remove(&its_vpeid_ida, id); 4384 } 4385 4386 static int its_vpe_init(struct its_vpe *vpe) 4387 { 4388 struct page *vpt_page; 4389 int vpe_id; 4390 4391 /* Allocate vpe_id */ 4392 vpe_id = its_vpe_id_alloc(); 4393 if (vpe_id < 0) 4394 return vpe_id; 4395 4396 /* Allocate VPT */ 4397 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4398 if (!vpt_page) { 4399 its_vpe_id_free(vpe_id); 4400 return -ENOMEM; 4401 } 4402 4403 if (!its_alloc_vpe_table(vpe_id)) { 4404 its_vpe_id_free(vpe_id); 4405 its_free_pending_table(vpt_page); 4406 return -ENOMEM; 4407 } 4408 4409 raw_spin_lock_init(&vpe->vpe_lock); 4410 vpe->vpe_id = vpe_id; 4411 vpe->vpt_page = vpt_page; 4412 if (gic_rdists->has_rvpeid) 4413 atomic_set(&vpe->vmapp_count, 0); 4414 else 4415 vpe->vpe_proxy_event = -1; 4416 4417 return 0; 4418 } 4419 4420 static void its_vpe_teardown(struct its_vpe *vpe) 4421 { 4422 its_vpe_db_proxy_unmap(vpe); 4423 its_vpe_id_free(vpe->vpe_id); 4424 its_free_pending_table(vpe->vpt_page); 4425 } 4426 4427 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4428 unsigned int virq, 4429 unsigned int nr_irqs) 4430 { 4431 struct its_vm *vm = domain->host_data; 4432 int i; 4433 4434 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4435 4436 for (i = 0; i < nr_irqs; i++) { 4437 struct irq_data *data = irq_domain_get_irq_data(domain, 4438 virq + i); 4439 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4440 4441 BUG_ON(vm != vpe->its_vm); 4442 4443 clear_bit(data->hwirq, vm->db_bitmap); 4444 its_vpe_teardown(vpe); 4445 irq_domain_reset_irq_data(data); 4446 } 4447 4448 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4449 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4450 its_free_prop_table(vm->vprop_page); 4451 } 4452 } 4453 4454 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4455 unsigned int nr_irqs, void *args) 4456 { 4457 struct irq_chip *irqchip = &its_vpe_irq_chip; 4458 struct its_vm *vm = args; 4459 unsigned long *bitmap; 4460 struct page *vprop_page; 4461 int base, nr_ids, i, err = 0; 4462 4463 BUG_ON(!vm); 4464 4465 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4466 if (!bitmap) 4467 return -ENOMEM; 4468 4469 if (nr_ids < nr_irqs) { 4470 its_lpi_free(bitmap, base, nr_ids); 4471 return -ENOMEM; 4472 } 4473 4474 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4475 if (!vprop_page) { 4476 its_lpi_free(bitmap, base, nr_ids); 4477 return -ENOMEM; 4478 } 4479 4480 vm->db_bitmap = bitmap; 4481 vm->db_lpi_base = base; 4482 vm->nr_db_lpis = nr_ids; 4483 vm->vprop_page = vprop_page; 4484 4485 if (gic_rdists->has_rvpeid) 4486 irqchip = &its_vpe_4_1_irq_chip; 4487 4488 for (i = 0; i < nr_irqs; i++) { 4489 vm->vpes[i]->vpe_db_lpi = base + i; 4490 err = its_vpe_init(vm->vpes[i]); 4491 if (err) 4492 break; 4493 err = its_irq_gic_domain_alloc(domain, virq + i, 4494 vm->vpes[i]->vpe_db_lpi); 4495 if (err) 4496 break; 4497 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4498 irqchip, vm->vpes[i]); 4499 set_bit(i, bitmap); 4500 } 4501 4502 if (err) { 4503 if (i > 0) 4504 its_vpe_irq_domain_free(domain, virq, i); 4505 4506 its_lpi_free(bitmap, base, nr_ids); 4507 its_free_prop_table(vprop_page); 4508 } 4509 4510 return err; 4511 } 4512 4513 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4514 struct irq_data *d, bool reserve) 4515 { 4516 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4517 struct its_node *its; 4518 4519 /* 4520 * If we use the list map, we issue VMAPP on demand... Unless 4521 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4522 * so that VSGIs can work. 4523 */ 4524 if (!gic_requires_eager_mapping()) 4525 return 0; 4526 4527 /* Map the VPE to the first possible CPU */ 4528 vpe->col_idx = cpumask_first(cpu_online_mask); 4529 4530 list_for_each_entry(its, &its_nodes, entry) { 4531 if (!is_v4(its)) 4532 continue; 4533 4534 its_send_vmapp(its, vpe, true); 4535 its_send_vinvall(its, vpe); 4536 } 4537 4538 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4539 4540 return 0; 4541 } 4542 4543 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4544 struct irq_data *d) 4545 { 4546 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4547 struct its_node *its; 4548 4549 /* 4550 * If we use the list map on GICv4.0, we unmap the VPE once no 4551 * VLPIs are associated with the VM. 4552 */ 4553 if (!gic_requires_eager_mapping()) 4554 return; 4555 4556 list_for_each_entry(its, &its_nodes, entry) { 4557 if (!is_v4(its)) 4558 continue; 4559 4560 its_send_vmapp(its, vpe, false); 4561 } 4562 4563 /* 4564 * There may be a direct read to the VPT after unmapping the 4565 * vPE, to guarantee the validity of this, we make the VPT 4566 * memory coherent with the CPU caches here. 4567 */ 4568 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4569 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4570 LPI_PENDBASE_SZ); 4571 } 4572 4573 static const struct irq_domain_ops its_vpe_domain_ops = { 4574 .alloc = its_vpe_irq_domain_alloc, 4575 .free = its_vpe_irq_domain_free, 4576 .activate = its_vpe_irq_domain_activate, 4577 .deactivate = its_vpe_irq_domain_deactivate, 4578 }; 4579 4580 static int its_force_quiescent(void __iomem *base) 4581 { 4582 u32 count = 1000000; /* 1s */ 4583 u32 val; 4584 4585 val = readl_relaxed(base + GITS_CTLR); 4586 /* 4587 * GIC architecture specification requires the ITS to be both 4588 * disabled and quiescent for writes to GITS_BASER<n> or 4589 * GITS_CBASER to not have UNPREDICTABLE results. 4590 */ 4591 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4592 return 0; 4593 4594 /* Disable the generation of all interrupts to this ITS */ 4595 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4596 writel_relaxed(val, base + GITS_CTLR); 4597 4598 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4599 while (1) { 4600 val = readl_relaxed(base + GITS_CTLR); 4601 if (val & GITS_CTLR_QUIESCENT) 4602 return 0; 4603 4604 count--; 4605 if (!count) 4606 return -EBUSY; 4607 4608 cpu_relax(); 4609 udelay(1); 4610 } 4611 } 4612 4613 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4614 { 4615 struct its_node *its = data; 4616 4617 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4618 its->typer &= ~GITS_TYPER_DEVBITS; 4619 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4620 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4621 4622 return true; 4623 } 4624 4625 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4626 { 4627 struct its_node *its = data; 4628 4629 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4630 4631 return true; 4632 } 4633 4634 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4635 { 4636 struct its_node *its = data; 4637 4638 /* On QDF2400, the size of the ITE is 16Bytes */ 4639 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4640 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4641 4642 return true; 4643 } 4644 4645 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4646 { 4647 struct its_node *its = its_dev->its; 4648 4649 /* 4650 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4651 * which maps 32-bit writes targeted at a separate window of 4652 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4653 * with device ID taken from bits [device_id_bits + 1:2] of 4654 * the window offset. 4655 */ 4656 return its->pre_its_base + (its_dev->device_id << 2); 4657 } 4658 4659 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4660 { 4661 struct its_node *its = data; 4662 u32 pre_its_window[2]; 4663 u32 ids; 4664 4665 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4666 "socionext,synquacer-pre-its", 4667 pre_its_window, 4668 ARRAY_SIZE(pre_its_window))) { 4669 4670 its->pre_its_base = pre_its_window[0]; 4671 its->get_msi_base = its_irq_get_msi_base_pre_its; 4672 4673 ids = ilog2(pre_its_window[1]) - 2; 4674 if (device_ids(its) > ids) { 4675 its->typer &= ~GITS_TYPER_DEVBITS; 4676 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4677 } 4678 4679 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4680 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4681 return true; 4682 } 4683 return false; 4684 } 4685 4686 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4687 { 4688 struct its_node *its = data; 4689 4690 /* 4691 * Hip07 insists on using the wrong address for the VLPI 4692 * page. Trick it into doing the right thing... 4693 */ 4694 its->vlpi_redist_offset = SZ_128K; 4695 return true; 4696 } 4697 4698 static const struct gic_quirk its_quirks[] = { 4699 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4700 { 4701 .desc = "ITS: Cavium errata 22375, 24313", 4702 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4703 .mask = 0xffff0fff, 4704 .init = its_enable_quirk_cavium_22375, 4705 }, 4706 #endif 4707 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4708 { 4709 .desc = "ITS: Cavium erratum 23144", 4710 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4711 .mask = 0xffff0fff, 4712 .init = its_enable_quirk_cavium_23144, 4713 }, 4714 #endif 4715 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4716 { 4717 .desc = "ITS: QDF2400 erratum 0065", 4718 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4719 .mask = 0xffffffff, 4720 .init = its_enable_quirk_qdf2400_e0065, 4721 }, 4722 #endif 4723 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4724 { 4725 /* 4726 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4727 * implementation, but with a 'pre-ITS' added that requires 4728 * special handling in software. 4729 */ 4730 .desc = "ITS: Socionext Synquacer pre-ITS", 4731 .iidr = 0x0001143b, 4732 .mask = 0xffffffff, 4733 .init = its_enable_quirk_socionext_synquacer, 4734 }, 4735 #endif 4736 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4737 { 4738 .desc = "ITS: Hip07 erratum 161600802", 4739 .iidr = 0x00000004, 4740 .mask = 0xffffffff, 4741 .init = its_enable_quirk_hip07_161600802, 4742 }, 4743 #endif 4744 { 4745 } 4746 }; 4747 4748 static void its_enable_quirks(struct its_node *its) 4749 { 4750 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4751 4752 gic_enable_quirks(iidr, its_quirks, its); 4753 } 4754 4755 static int its_save_disable(void) 4756 { 4757 struct its_node *its; 4758 int err = 0; 4759 4760 raw_spin_lock(&its_lock); 4761 list_for_each_entry(its, &its_nodes, entry) { 4762 void __iomem *base; 4763 4764 base = its->base; 4765 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4766 err = its_force_quiescent(base); 4767 if (err) { 4768 pr_err("ITS@%pa: failed to quiesce: %d\n", 4769 &its->phys_base, err); 4770 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4771 goto err; 4772 } 4773 4774 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4775 } 4776 4777 err: 4778 if (err) { 4779 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4780 void __iomem *base; 4781 4782 base = its->base; 4783 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4784 } 4785 } 4786 raw_spin_unlock(&its_lock); 4787 4788 return err; 4789 } 4790 4791 static void its_restore_enable(void) 4792 { 4793 struct its_node *its; 4794 int ret; 4795 4796 raw_spin_lock(&its_lock); 4797 list_for_each_entry(its, &its_nodes, entry) { 4798 void __iomem *base; 4799 int i; 4800 4801 base = its->base; 4802 4803 /* 4804 * Make sure that the ITS is disabled. If it fails to quiesce, 4805 * don't restore it since writing to CBASER or BASER<n> 4806 * registers is undefined according to the GIC v3 ITS 4807 * Specification. 4808 * 4809 * Firmware resuming with the ITS enabled is terminally broken. 4810 */ 4811 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4812 ret = its_force_quiescent(base); 4813 if (ret) { 4814 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4815 &its->phys_base, ret); 4816 continue; 4817 } 4818 4819 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4820 4821 /* 4822 * Writing CBASER resets CREADR to 0, so make CWRITER and 4823 * cmd_write line up with it. 4824 */ 4825 its->cmd_write = its->cmd_base; 4826 gits_write_cwriter(0, base + GITS_CWRITER); 4827 4828 /* Restore GITS_BASER from the value cache. */ 4829 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4830 struct its_baser *baser = &its->tables[i]; 4831 4832 if (!(baser->val & GITS_BASER_VALID)) 4833 continue; 4834 4835 its_write_baser(its, baser, baser->val); 4836 } 4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4838 4839 /* 4840 * Reinit the collection if it's stored in the ITS. This is 4841 * indicated by the col_id being less than the HCC field. 4842 * CID < HCC as specified in the GIC v3 Documentation. 4843 */ 4844 if (its->collections[smp_processor_id()].col_id < 4845 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4846 its_cpu_init_collection(its); 4847 } 4848 raw_spin_unlock(&its_lock); 4849 } 4850 4851 static struct syscore_ops its_syscore_ops = { 4852 .suspend = its_save_disable, 4853 .resume = its_restore_enable, 4854 }; 4855 4856 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4857 { 4858 struct irq_domain *inner_domain; 4859 struct msi_domain_info *info; 4860 4861 info = kzalloc(sizeof(*info), GFP_KERNEL); 4862 if (!info) 4863 return -ENOMEM; 4864 4865 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4866 if (!inner_domain) { 4867 kfree(info); 4868 return -ENOMEM; 4869 } 4870 4871 inner_domain->parent = its_parent; 4872 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4873 inner_domain->flags |= its->msi_domain_flags; 4874 info->ops = &its_msi_domain_ops; 4875 info->data = its; 4876 inner_domain->host_data = info; 4877 4878 return 0; 4879 } 4880 4881 static int its_init_vpe_domain(void) 4882 { 4883 struct its_node *its; 4884 u32 devid; 4885 int entries; 4886 4887 if (gic_rdists->has_direct_lpi) { 4888 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4889 return 0; 4890 } 4891 4892 /* Any ITS will do, even if not v4 */ 4893 its = list_first_entry(&its_nodes, struct its_node, entry); 4894 4895 entries = roundup_pow_of_two(nr_cpu_ids); 4896 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4897 GFP_KERNEL); 4898 if (!vpe_proxy.vpes) 4899 return -ENOMEM; 4900 4901 /* Use the last possible DevID */ 4902 devid = GENMASK(device_ids(its) - 1, 0); 4903 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4904 if (!vpe_proxy.dev) { 4905 kfree(vpe_proxy.vpes); 4906 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4907 return -ENOMEM; 4908 } 4909 4910 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4911 4912 raw_spin_lock_init(&vpe_proxy.lock); 4913 vpe_proxy.next_victim = 0; 4914 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4915 devid, vpe_proxy.dev->nr_ites); 4916 4917 return 0; 4918 } 4919 4920 static int __init its_compute_its_list_map(struct resource *res, 4921 void __iomem *its_base) 4922 { 4923 int its_number; 4924 u32 ctlr; 4925 4926 /* 4927 * This is assumed to be done early enough that we're 4928 * guaranteed to be single-threaded, hence no 4929 * locking. Should this change, we should address 4930 * this. 4931 */ 4932 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4933 if (its_number >= GICv4_ITS_LIST_MAX) { 4934 pr_err("ITS@%pa: No ITSList entry available!\n", 4935 &res->start); 4936 return -EINVAL; 4937 } 4938 4939 ctlr = readl_relaxed(its_base + GITS_CTLR); 4940 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4941 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4942 writel_relaxed(ctlr, its_base + GITS_CTLR); 4943 ctlr = readl_relaxed(its_base + GITS_CTLR); 4944 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4945 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4946 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4947 } 4948 4949 if (test_and_set_bit(its_number, &its_list_map)) { 4950 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4951 &res->start, its_number); 4952 return -EINVAL; 4953 } 4954 4955 return its_number; 4956 } 4957 4958 static int __init its_probe_one(struct resource *res, 4959 struct fwnode_handle *handle, int numa_node) 4960 { 4961 struct its_node *its; 4962 void __iomem *its_base; 4963 u32 val, ctlr; 4964 u64 baser, tmp, typer; 4965 struct page *page; 4966 int err; 4967 4968 its_base = ioremap(res->start, SZ_64K); 4969 if (!its_base) { 4970 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4971 return -ENOMEM; 4972 } 4973 4974 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4975 if (val != 0x30 && val != 0x40) { 4976 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4977 err = -ENODEV; 4978 goto out_unmap; 4979 } 4980 4981 err = its_force_quiescent(its_base); 4982 if (err) { 4983 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4984 goto out_unmap; 4985 } 4986 4987 pr_info("ITS %pR\n", res); 4988 4989 its = kzalloc(sizeof(*its), GFP_KERNEL); 4990 if (!its) { 4991 err = -ENOMEM; 4992 goto out_unmap; 4993 } 4994 4995 raw_spin_lock_init(&its->lock); 4996 mutex_init(&its->dev_alloc_lock); 4997 INIT_LIST_HEAD(&its->entry); 4998 INIT_LIST_HEAD(&its->its_device_list); 4999 typer = gic_read_typer(its_base + GITS_TYPER); 5000 its->typer = typer; 5001 its->base = its_base; 5002 its->phys_base = res->start; 5003 if (is_v4(its)) { 5004 if (!(typer & GITS_TYPER_VMOVP)) { 5005 err = its_compute_its_list_map(res, its_base); 5006 if (err < 0) 5007 goto out_free_its; 5008 5009 its->list_nr = err; 5010 5011 pr_info("ITS@%pa: Using ITS number %d\n", 5012 &res->start, err); 5013 } else { 5014 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5015 } 5016 5017 if (is_v4_1(its)) { 5018 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5019 5020 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5021 if (!its->sgir_base) { 5022 err = -ENOMEM; 5023 goto out_free_its; 5024 } 5025 5026 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5027 5028 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5029 &res->start, its->mpidr, svpet); 5030 } 5031 } 5032 5033 its->numa_node = numa_node; 5034 5035 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5036 get_order(ITS_CMD_QUEUE_SZ)); 5037 if (!page) { 5038 err = -ENOMEM; 5039 goto out_unmap_sgir; 5040 } 5041 its->cmd_base = (void *)page_address(page); 5042 its->cmd_write = its->cmd_base; 5043 its->fwnode_handle = handle; 5044 its->get_msi_base = its_irq_get_msi_base; 5045 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 5046 5047 its_enable_quirks(its); 5048 5049 err = its_alloc_tables(its); 5050 if (err) 5051 goto out_free_cmd; 5052 5053 err = its_alloc_collections(its); 5054 if (err) 5055 goto out_free_tables; 5056 5057 baser = (virt_to_phys(its->cmd_base) | 5058 GITS_CBASER_RaWaWb | 5059 GITS_CBASER_InnerShareable | 5060 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5061 GITS_CBASER_VALID); 5062 5063 gits_write_cbaser(baser, its->base + GITS_CBASER); 5064 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5065 5066 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5067 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5068 /* 5069 * The HW reports non-shareable, we must 5070 * remove the cacheability attributes as 5071 * well. 5072 */ 5073 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5074 GITS_CBASER_CACHEABILITY_MASK); 5075 baser |= GITS_CBASER_nC; 5076 gits_write_cbaser(baser, its->base + GITS_CBASER); 5077 } 5078 pr_info("ITS: using cache flushing for cmd queue\n"); 5079 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5080 } 5081 5082 gits_write_cwriter(0, its->base + GITS_CWRITER); 5083 ctlr = readl_relaxed(its->base + GITS_CTLR); 5084 ctlr |= GITS_CTLR_ENABLE; 5085 if (is_v4(its)) 5086 ctlr |= GITS_CTLR_ImDe; 5087 writel_relaxed(ctlr, its->base + GITS_CTLR); 5088 5089 err = its_init_domain(handle, its); 5090 if (err) 5091 goto out_free_tables; 5092 5093 raw_spin_lock(&its_lock); 5094 list_add(&its->entry, &its_nodes); 5095 raw_spin_unlock(&its_lock); 5096 5097 return 0; 5098 5099 out_free_tables: 5100 its_free_tables(its); 5101 out_free_cmd: 5102 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5103 out_unmap_sgir: 5104 if (its->sgir_base) 5105 iounmap(its->sgir_base); 5106 out_free_its: 5107 kfree(its); 5108 out_unmap: 5109 iounmap(its_base); 5110 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5111 return err; 5112 } 5113 5114 static bool gic_rdists_supports_plpis(void) 5115 { 5116 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5117 } 5118 5119 static int redist_disable_lpis(void) 5120 { 5121 void __iomem *rbase = gic_data_rdist_rd_base(); 5122 u64 timeout = USEC_PER_SEC; 5123 u64 val; 5124 5125 if (!gic_rdists_supports_plpis()) { 5126 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5127 return -ENXIO; 5128 } 5129 5130 val = readl_relaxed(rbase + GICR_CTLR); 5131 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5132 return 0; 5133 5134 /* 5135 * If coming via a CPU hotplug event, we don't need to disable 5136 * LPIs before trying to re-enable them. They are already 5137 * configured and all is well in the world. 5138 * 5139 * If running with preallocated tables, there is nothing to do. 5140 */ 5141 if (gic_data_rdist()->lpi_enabled || 5142 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5143 return 0; 5144 5145 /* 5146 * From that point on, we only try to do some damage control. 5147 */ 5148 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5149 smp_processor_id()); 5150 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5151 5152 /* Disable LPIs */ 5153 val &= ~GICR_CTLR_ENABLE_LPIS; 5154 writel_relaxed(val, rbase + GICR_CTLR); 5155 5156 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5157 dsb(sy); 5158 5159 /* 5160 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5161 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5162 * Error out if we time out waiting for RWP to clear. 5163 */ 5164 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5165 if (!timeout) { 5166 pr_err("CPU%d: Timeout while disabling LPIs\n", 5167 smp_processor_id()); 5168 return -ETIMEDOUT; 5169 } 5170 udelay(1); 5171 timeout--; 5172 } 5173 5174 /* 5175 * After it has been written to 1, it is IMPLEMENTATION 5176 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5177 * cleared to 0. Error out if clearing the bit failed. 5178 */ 5179 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5180 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5181 return -EBUSY; 5182 } 5183 5184 return 0; 5185 } 5186 5187 int its_cpu_init(void) 5188 { 5189 if (!list_empty(&its_nodes)) { 5190 int ret; 5191 5192 ret = redist_disable_lpis(); 5193 if (ret) 5194 return ret; 5195 5196 its_cpu_init_lpis(); 5197 its_cpu_init_collections(); 5198 } 5199 5200 return 0; 5201 } 5202 5203 static const struct of_device_id its_device_id[] = { 5204 { .compatible = "arm,gic-v3-its", }, 5205 {}, 5206 }; 5207 5208 static int __init its_of_probe(struct device_node *node) 5209 { 5210 struct device_node *np; 5211 struct resource res; 5212 5213 for (np = of_find_matching_node(node, its_device_id); np; 5214 np = of_find_matching_node(np, its_device_id)) { 5215 if (!of_device_is_available(np)) 5216 continue; 5217 if (!of_property_read_bool(np, "msi-controller")) { 5218 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5219 np); 5220 continue; 5221 } 5222 5223 if (of_address_to_resource(np, 0, &res)) { 5224 pr_warn("%pOF: no regs?\n", np); 5225 continue; 5226 } 5227 5228 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5229 } 5230 return 0; 5231 } 5232 5233 #ifdef CONFIG_ACPI 5234 5235 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5236 5237 #ifdef CONFIG_ACPI_NUMA 5238 struct its_srat_map { 5239 /* numa node id */ 5240 u32 numa_node; 5241 /* GIC ITS ID */ 5242 u32 its_id; 5243 }; 5244 5245 static struct its_srat_map *its_srat_maps __initdata; 5246 static int its_in_srat __initdata; 5247 5248 static int __init acpi_get_its_numa_node(u32 its_id) 5249 { 5250 int i; 5251 5252 for (i = 0; i < its_in_srat; i++) { 5253 if (its_id == its_srat_maps[i].its_id) 5254 return its_srat_maps[i].numa_node; 5255 } 5256 return NUMA_NO_NODE; 5257 } 5258 5259 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5260 const unsigned long end) 5261 { 5262 return 0; 5263 } 5264 5265 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5266 const unsigned long end) 5267 { 5268 int node; 5269 struct acpi_srat_gic_its_affinity *its_affinity; 5270 5271 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5272 if (!its_affinity) 5273 return -EINVAL; 5274 5275 if (its_affinity->header.length < sizeof(*its_affinity)) { 5276 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5277 its_affinity->header.length); 5278 return -EINVAL; 5279 } 5280 5281 /* 5282 * Note that in theory a new proximity node could be created by this 5283 * entry as it is an SRAT resource allocation structure. 5284 * We do not currently support doing so. 5285 */ 5286 node = pxm_to_node(its_affinity->proximity_domain); 5287 5288 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5289 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5290 return 0; 5291 } 5292 5293 its_srat_maps[its_in_srat].numa_node = node; 5294 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5295 its_in_srat++; 5296 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5297 its_affinity->proximity_domain, its_affinity->its_id, node); 5298 5299 return 0; 5300 } 5301 5302 static void __init acpi_table_parse_srat_its(void) 5303 { 5304 int count; 5305 5306 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5307 sizeof(struct acpi_table_srat), 5308 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5309 gic_acpi_match_srat_its, 0); 5310 if (count <= 0) 5311 return; 5312 5313 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5314 GFP_KERNEL); 5315 if (!its_srat_maps) 5316 return; 5317 5318 acpi_table_parse_entries(ACPI_SIG_SRAT, 5319 sizeof(struct acpi_table_srat), 5320 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5321 gic_acpi_parse_srat_its, 0); 5322 } 5323 5324 /* free the its_srat_maps after ITS probing */ 5325 static void __init acpi_its_srat_maps_free(void) 5326 { 5327 kfree(its_srat_maps); 5328 } 5329 #else 5330 static void __init acpi_table_parse_srat_its(void) { } 5331 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5332 static void __init acpi_its_srat_maps_free(void) { } 5333 #endif 5334 5335 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5336 const unsigned long end) 5337 { 5338 struct acpi_madt_generic_translator *its_entry; 5339 struct fwnode_handle *dom_handle; 5340 struct resource res; 5341 int err; 5342 5343 its_entry = (struct acpi_madt_generic_translator *)header; 5344 memset(&res, 0, sizeof(res)); 5345 res.start = its_entry->base_address; 5346 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5347 res.flags = IORESOURCE_MEM; 5348 5349 dom_handle = irq_domain_alloc_fwnode(&res.start); 5350 if (!dom_handle) { 5351 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5352 &res.start); 5353 return -ENOMEM; 5354 } 5355 5356 err = iort_register_domain_token(its_entry->translation_id, res.start, 5357 dom_handle); 5358 if (err) { 5359 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5360 &res.start, its_entry->translation_id); 5361 goto dom_err; 5362 } 5363 5364 err = its_probe_one(&res, dom_handle, 5365 acpi_get_its_numa_node(its_entry->translation_id)); 5366 if (!err) 5367 return 0; 5368 5369 iort_deregister_domain_token(its_entry->translation_id); 5370 dom_err: 5371 irq_domain_free_fwnode(dom_handle); 5372 return err; 5373 } 5374 5375 static void __init its_acpi_probe(void) 5376 { 5377 acpi_table_parse_srat_its(); 5378 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5379 gic_acpi_parse_madt_its, 0); 5380 acpi_its_srat_maps_free(); 5381 } 5382 #else 5383 static void __init its_acpi_probe(void) { } 5384 #endif 5385 5386 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5387 struct irq_domain *parent_domain) 5388 { 5389 struct device_node *of_node; 5390 struct its_node *its; 5391 bool has_v4 = false; 5392 bool has_v4_1 = false; 5393 int err; 5394 5395 gic_rdists = rdists; 5396 5397 its_parent = parent_domain; 5398 of_node = to_of_node(handle); 5399 if (of_node) 5400 its_of_probe(of_node); 5401 else 5402 its_acpi_probe(); 5403 5404 if (list_empty(&its_nodes)) { 5405 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5406 return -ENXIO; 5407 } 5408 5409 err = allocate_lpi_tables(); 5410 if (err) 5411 return err; 5412 5413 list_for_each_entry(its, &its_nodes, entry) { 5414 has_v4 |= is_v4(its); 5415 has_v4_1 |= is_v4_1(its); 5416 } 5417 5418 /* Don't bother with inconsistent systems */ 5419 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5420 rdists->has_rvpeid = false; 5421 5422 if (has_v4 & rdists->has_vlpis) { 5423 const struct irq_domain_ops *sgi_ops; 5424 5425 if (has_v4_1) 5426 sgi_ops = &its_sgi_domain_ops; 5427 else 5428 sgi_ops = NULL; 5429 5430 if (its_init_vpe_domain() || 5431 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5432 rdists->has_vlpis = false; 5433 pr_err("ITS: Disabling GICv4 support\n"); 5434 } 5435 } 5436 5437 register_syscore_ops(&its_syscore_ops); 5438 5439 return 0; 5440 } 5441