1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitmap.h> 10 #include <linux/cpu.h> 11 #include <linux/crash_dump.h> 12 #include <linux/delay.h> 13 #include <linux/dma-iommu.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/list.h> 18 #include <linux/log2.h> 19 #include <linux/memblock.h> 20 #include <linux/mm.h> 21 #include <linux/msi.h> 22 #include <linux/of.h> 23 #include <linux/of_address.h> 24 #include <linux/of_irq.h> 25 #include <linux/of_pci.h> 26 #include <linux/of_platform.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 31 #include <linux/irqchip.h> 32 #include <linux/irqchip/arm-gic-v3.h> 33 #include <linux/irqchip/arm-gic-v4.h> 34 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 38 #include "irq-gic-common.h" 39 40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 43 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 44 45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 47 48 static u32 lpi_id_bits; 49 50 /* 51 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 52 * deal with (one configuration byte per interrupt). PENDBASE has to 53 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 54 */ 55 #define LPI_NRBITS lpi_id_bits 56 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 57 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 58 59 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 60 61 /* 62 * Collection structure - just an ID, and a redistributor address to 63 * ping. We use one per CPU as a bag of interrupts assigned to this 64 * CPU. 65 */ 66 struct its_collection { 67 u64 target_address; 68 u16 col_id; 69 }; 70 71 /* 72 * The ITS_BASER structure - contains memory information, cached 73 * value of BASER register configuration and ITS page size. 74 */ 75 struct its_baser { 76 void *base; 77 u64 val; 78 u32 order; 79 u32 psz; 80 }; 81 82 struct its_device; 83 84 /* 85 * The ITS structure - contains most of the infrastructure, with the 86 * top-level MSI domain, the command queue, the collections, and the 87 * list of devices writing to it. 88 * 89 * dev_alloc_lock has to be taken for device allocations, while the 90 * spinlock must be taken to parse data structures such as the device 91 * list. 92 */ 93 struct its_node { 94 raw_spinlock_t lock; 95 struct mutex dev_alloc_lock; 96 struct list_head entry; 97 void __iomem *base; 98 phys_addr_t phys_base; 99 struct its_cmd_block *cmd_base; 100 struct its_cmd_block *cmd_write; 101 struct its_baser tables[GITS_BASER_NR_REGS]; 102 struct its_collection *collections; 103 struct fwnode_handle *fwnode_handle; 104 u64 (*get_msi_base)(struct its_device *its_dev); 105 u64 cbaser_save; 106 u32 ctlr_save; 107 struct list_head its_device_list; 108 u64 flags; 109 unsigned long list_nr; 110 u32 ite_size; 111 u32 device_ids; 112 int numa_node; 113 unsigned int msi_domain_flags; 114 u32 pre_its_base; /* for Socionext Synquacer */ 115 bool is_v4; 116 int vlpi_redist_offset; 117 }; 118 119 #define ITS_ITT_ALIGN SZ_256 120 121 /* The maximum number of VPEID bits supported by VLPI commands */ 122 #define ITS_MAX_VPEID_BITS (16) 123 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 124 125 /* Convert page order to size in bytes */ 126 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 127 128 struct event_lpi_map { 129 unsigned long *lpi_map; 130 u16 *col_map; 131 irq_hw_number_t lpi_base; 132 int nr_lpis; 133 struct mutex vlpi_lock; 134 struct its_vm *vm; 135 struct its_vlpi_map *vlpi_maps; 136 int nr_vlpis; 137 }; 138 139 /* 140 * The ITS view of a device - belongs to an ITS, owns an interrupt 141 * translation table, and a list of interrupts. If it some of its 142 * LPIs are injected into a guest (GICv4), the event_map.vm field 143 * indicates which one. 144 */ 145 struct its_device { 146 struct list_head entry; 147 struct its_node *its; 148 struct event_lpi_map event_map; 149 void *itt; 150 u32 nr_ites; 151 u32 device_id; 152 bool shared; 153 }; 154 155 static struct { 156 raw_spinlock_t lock; 157 struct its_device *dev; 158 struct its_vpe **vpes; 159 int next_victim; 160 } vpe_proxy; 161 162 static LIST_HEAD(its_nodes); 163 static DEFINE_RAW_SPINLOCK(its_lock); 164 static struct rdists *gic_rdists; 165 static struct irq_domain *its_parent; 166 167 static unsigned long its_list_map; 168 static u16 vmovp_seq_num; 169 static DEFINE_RAW_SPINLOCK(vmovp_lock); 170 171 static DEFINE_IDA(its_vpeid_ida); 172 173 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 174 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 175 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 176 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 177 178 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 179 u32 event) 180 { 181 struct its_node *its = its_dev->its; 182 183 return its->collections + its_dev->event_map.col_map[event]; 184 } 185 186 static struct its_collection *valid_col(struct its_collection *col) 187 { 188 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 189 return NULL; 190 191 return col; 192 } 193 194 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 195 { 196 if (valid_col(its->collections + vpe->col_idx)) 197 return vpe; 198 199 return NULL; 200 } 201 202 /* 203 * ITS command descriptors - parameters to be encoded in a command 204 * block. 205 */ 206 struct its_cmd_desc { 207 union { 208 struct { 209 struct its_device *dev; 210 u32 event_id; 211 } its_inv_cmd; 212 213 struct { 214 struct its_device *dev; 215 u32 event_id; 216 } its_clear_cmd; 217 218 struct { 219 struct its_device *dev; 220 u32 event_id; 221 } its_int_cmd; 222 223 struct { 224 struct its_device *dev; 225 int valid; 226 } its_mapd_cmd; 227 228 struct { 229 struct its_collection *col; 230 int valid; 231 } its_mapc_cmd; 232 233 struct { 234 struct its_device *dev; 235 u32 phys_id; 236 u32 event_id; 237 } its_mapti_cmd; 238 239 struct { 240 struct its_device *dev; 241 struct its_collection *col; 242 u32 event_id; 243 } its_movi_cmd; 244 245 struct { 246 struct its_device *dev; 247 u32 event_id; 248 } its_discard_cmd; 249 250 struct { 251 struct its_collection *col; 252 } its_invall_cmd; 253 254 struct { 255 struct its_vpe *vpe; 256 } its_vinvall_cmd; 257 258 struct { 259 struct its_vpe *vpe; 260 struct its_collection *col; 261 bool valid; 262 } its_vmapp_cmd; 263 264 struct { 265 struct its_vpe *vpe; 266 struct its_device *dev; 267 u32 virt_id; 268 u32 event_id; 269 bool db_enabled; 270 } its_vmapti_cmd; 271 272 struct { 273 struct its_vpe *vpe; 274 struct its_device *dev; 275 u32 event_id; 276 bool db_enabled; 277 } its_vmovi_cmd; 278 279 struct { 280 struct its_vpe *vpe; 281 struct its_collection *col; 282 u16 seq_num; 283 u16 its_list; 284 } its_vmovp_cmd; 285 }; 286 }; 287 288 /* 289 * The ITS command block, which is what the ITS actually parses. 290 */ 291 struct its_cmd_block { 292 u64 raw_cmd[4]; 293 }; 294 295 #define ITS_CMD_QUEUE_SZ SZ_64K 296 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 297 298 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 299 struct its_cmd_block *, 300 struct its_cmd_desc *); 301 302 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 303 struct its_cmd_block *, 304 struct its_cmd_desc *); 305 306 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 307 { 308 u64 mask = GENMASK_ULL(h, l); 309 *raw_cmd &= ~mask; 310 *raw_cmd |= (val << l) & mask; 311 } 312 313 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 314 { 315 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 316 } 317 318 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 319 { 320 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 321 } 322 323 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 324 { 325 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 326 } 327 328 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 329 { 330 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 331 } 332 333 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 334 { 335 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 336 } 337 338 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 339 { 340 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 341 } 342 343 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 344 { 345 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 346 } 347 348 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 349 { 350 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 351 } 352 353 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 354 { 355 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 356 } 357 358 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 359 { 360 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 361 } 362 363 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 364 { 365 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 366 } 367 368 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 369 { 370 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 371 } 372 373 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 374 { 375 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 376 } 377 378 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 379 { 380 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 381 } 382 383 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 384 { 385 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 386 } 387 388 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 389 { 390 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 391 } 392 393 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 394 { 395 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 396 } 397 398 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 399 { 400 /* Let's fixup BE commands */ 401 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 402 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 403 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 404 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 405 } 406 407 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 408 struct its_cmd_block *cmd, 409 struct its_cmd_desc *desc) 410 { 411 unsigned long itt_addr; 412 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 413 414 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 415 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 416 417 its_encode_cmd(cmd, GITS_CMD_MAPD); 418 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 419 its_encode_size(cmd, size - 1); 420 its_encode_itt(cmd, itt_addr); 421 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 422 423 its_fixup_cmd(cmd); 424 425 return NULL; 426 } 427 428 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 429 struct its_cmd_block *cmd, 430 struct its_cmd_desc *desc) 431 { 432 its_encode_cmd(cmd, GITS_CMD_MAPC); 433 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 434 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 435 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 436 437 its_fixup_cmd(cmd); 438 439 return desc->its_mapc_cmd.col; 440 } 441 442 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 443 struct its_cmd_block *cmd, 444 struct its_cmd_desc *desc) 445 { 446 struct its_collection *col; 447 448 col = dev_event_to_col(desc->its_mapti_cmd.dev, 449 desc->its_mapti_cmd.event_id); 450 451 its_encode_cmd(cmd, GITS_CMD_MAPTI); 452 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 453 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 454 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 455 its_encode_collection(cmd, col->col_id); 456 457 its_fixup_cmd(cmd); 458 459 return valid_col(col); 460 } 461 462 static struct its_collection *its_build_movi_cmd(struct its_node *its, 463 struct its_cmd_block *cmd, 464 struct its_cmd_desc *desc) 465 { 466 struct its_collection *col; 467 468 col = dev_event_to_col(desc->its_movi_cmd.dev, 469 desc->its_movi_cmd.event_id); 470 471 its_encode_cmd(cmd, GITS_CMD_MOVI); 472 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 473 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 474 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 475 476 its_fixup_cmd(cmd); 477 478 return valid_col(col); 479 } 480 481 static struct its_collection *its_build_discard_cmd(struct its_node *its, 482 struct its_cmd_block *cmd, 483 struct its_cmd_desc *desc) 484 { 485 struct its_collection *col; 486 487 col = dev_event_to_col(desc->its_discard_cmd.dev, 488 desc->its_discard_cmd.event_id); 489 490 its_encode_cmd(cmd, GITS_CMD_DISCARD); 491 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 492 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 493 494 its_fixup_cmd(cmd); 495 496 return valid_col(col); 497 } 498 499 static struct its_collection *its_build_inv_cmd(struct its_node *its, 500 struct its_cmd_block *cmd, 501 struct its_cmd_desc *desc) 502 { 503 struct its_collection *col; 504 505 col = dev_event_to_col(desc->its_inv_cmd.dev, 506 desc->its_inv_cmd.event_id); 507 508 its_encode_cmd(cmd, GITS_CMD_INV); 509 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 510 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 511 512 its_fixup_cmd(cmd); 513 514 return valid_col(col); 515 } 516 517 static struct its_collection *its_build_int_cmd(struct its_node *its, 518 struct its_cmd_block *cmd, 519 struct its_cmd_desc *desc) 520 { 521 struct its_collection *col; 522 523 col = dev_event_to_col(desc->its_int_cmd.dev, 524 desc->its_int_cmd.event_id); 525 526 its_encode_cmd(cmd, GITS_CMD_INT); 527 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 528 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 529 530 its_fixup_cmd(cmd); 531 532 return valid_col(col); 533 } 534 535 static struct its_collection *its_build_clear_cmd(struct its_node *its, 536 struct its_cmd_block *cmd, 537 struct its_cmd_desc *desc) 538 { 539 struct its_collection *col; 540 541 col = dev_event_to_col(desc->its_clear_cmd.dev, 542 desc->its_clear_cmd.event_id); 543 544 its_encode_cmd(cmd, GITS_CMD_CLEAR); 545 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 546 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 547 548 its_fixup_cmd(cmd); 549 550 return valid_col(col); 551 } 552 553 static struct its_collection *its_build_invall_cmd(struct its_node *its, 554 struct its_cmd_block *cmd, 555 struct its_cmd_desc *desc) 556 { 557 its_encode_cmd(cmd, GITS_CMD_INVALL); 558 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 559 560 its_fixup_cmd(cmd); 561 562 return NULL; 563 } 564 565 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 566 struct its_cmd_block *cmd, 567 struct its_cmd_desc *desc) 568 { 569 its_encode_cmd(cmd, GITS_CMD_VINVALL); 570 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 571 572 its_fixup_cmd(cmd); 573 574 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 575 } 576 577 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 578 struct its_cmd_block *cmd, 579 struct its_cmd_desc *desc) 580 { 581 unsigned long vpt_addr; 582 u64 target; 583 584 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 585 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 586 587 its_encode_cmd(cmd, GITS_CMD_VMAPP); 588 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 589 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 590 its_encode_target(cmd, target); 591 its_encode_vpt_addr(cmd, vpt_addr); 592 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 593 594 its_fixup_cmd(cmd); 595 596 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 597 } 598 599 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 600 struct its_cmd_block *cmd, 601 struct its_cmd_desc *desc) 602 { 603 u32 db; 604 605 if (desc->its_vmapti_cmd.db_enabled) 606 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 607 else 608 db = 1023; 609 610 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 611 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 612 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 613 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 614 its_encode_db_phys_id(cmd, db); 615 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 616 617 its_fixup_cmd(cmd); 618 619 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 620 } 621 622 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 623 struct its_cmd_block *cmd, 624 struct its_cmd_desc *desc) 625 { 626 u32 db; 627 628 if (desc->its_vmovi_cmd.db_enabled) 629 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 630 else 631 db = 1023; 632 633 its_encode_cmd(cmd, GITS_CMD_VMOVI); 634 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 635 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 636 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 637 its_encode_db_phys_id(cmd, db); 638 its_encode_db_valid(cmd, true); 639 640 its_fixup_cmd(cmd); 641 642 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 643 } 644 645 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 646 struct its_cmd_block *cmd, 647 struct its_cmd_desc *desc) 648 { 649 u64 target; 650 651 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 652 its_encode_cmd(cmd, GITS_CMD_VMOVP); 653 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 654 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 655 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 656 its_encode_target(cmd, target); 657 658 its_fixup_cmd(cmd); 659 660 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 661 } 662 663 static u64 its_cmd_ptr_to_offset(struct its_node *its, 664 struct its_cmd_block *ptr) 665 { 666 return (ptr - its->cmd_base) * sizeof(*ptr); 667 } 668 669 static int its_queue_full(struct its_node *its) 670 { 671 int widx; 672 int ridx; 673 674 widx = its->cmd_write - its->cmd_base; 675 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 676 677 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 678 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 679 return 1; 680 681 return 0; 682 } 683 684 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 685 { 686 struct its_cmd_block *cmd; 687 u32 count = 1000000; /* 1s! */ 688 689 while (its_queue_full(its)) { 690 count--; 691 if (!count) { 692 pr_err_ratelimited("ITS queue not draining\n"); 693 return NULL; 694 } 695 cpu_relax(); 696 udelay(1); 697 } 698 699 cmd = its->cmd_write++; 700 701 /* Handle queue wrapping */ 702 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 703 its->cmd_write = its->cmd_base; 704 705 /* Clear command */ 706 cmd->raw_cmd[0] = 0; 707 cmd->raw_cmd[1] = 0; 708 cmd->raw_cmd[2] = 0; 709 cmd->raw_cmd[3] = 0; 710 711 return cmd; 712 } 713 714 static struct its_cmd_block *its_post_commands(struct its_node *its) 715 { 716 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 717 718 writel_relaxed(wr, its->base + GITS_CWRITER); 719 720 return its->cmd_write; 721 } 722 723 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 724 { 725 /* 726 * Make sure the commands written to memory are observable by 727 * the ITS. 728 */ 729 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 730 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 731 else 732 dsb(ishst); 733 } 734 735 static int its_wait_for_range_completion(struct its_node *its, 736 u64 prev_idx, 737 struct its_cmd_block *to) 738 { 739 u64 rd_idx, to_idx, linear_idx; 740 u32 count = 1000000; /* 1s! */ 741 742 /* Linearize to_idx if the command set has wrapped around */ 743 to_idx = its_cmd_ptr_to_offset(its, to); 744 if (to_idx < prev_idx) 745 to_idx += ITS_CMD_QUEUE_SZ; 746 747 linear_idx = prev_idx; 748 749 while (1) { 750 s64 delta; 751 752 rd_idx = readl_relaxed(its->base + GITS_CREADR); 753 754 /* 755 * Compute the read pointer progress, taking the 756 * potential wrap-around into account. 757 */ 758 delta = rd_idx - prev_idx; 759 if (rd_idx < prev_idx) 760 delta += ITS_CMD_QUEUE_SZ; 761 762 linear_idx += delta; 763 if (linear_idx >= to_idx) 764 break; 765 766 count--; 767 if (!count) { 768 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 769 to_idx, linear_idx); 770 return -1; 771 } 772 prev_idx = rd_idx; 773 cpu_relax(); 774 udelay(1); 775 } 776 777 return 0; 778 } 779 780 /* Warning, macro hell follows */ 781 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 782 void name(struct its_node *its, \ 783 buildtype builder, \ 784 struct its_cmd_desc *desc) \ 785 { \ 786 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 787 synctype *sync_obj; \ 788 unsigned long flags; \ 789 u64 rd_idx; \ 790 \ 791 raw_spin_lock_irqsave(&its->lock, flags); \ 792 \ 793 cmd = its_allocate_entry(its); \ 794 if (!cmd) { /* We're soooooo screewed... */ \ 795 raw_spin_unlock_irqrestore(&its->lock, flags); \ 796 return; \ 797 } \ 798 sync_obj = builder(its, cmd, desc); \ 799 its_flush_cmd(its, cmd); \ 800 \ 801 if (sync_obj) { \ 802 sync_cmd = its_allocate_entry(its); \ 803 if (!sync_cmd) \ 804 goto post; \ 805 \ 806 buildfn(its, sync_cmd, sync_obj); \ 807 its_flush_cmd(its, sync_cmd); \ 808 } \ 809 \ 810 post: \ 811 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 812 next_cmd = its_post_commands(its); \ 813 raw_spin_unlock_irqrestore(&its->lock, flags); \ 814 \ 815 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 816 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 817 } 818 819 static void its_build_sync_cmd(struct its_node *its, 820 struct its_cmd_block *sync_cmd, 821 struct its_collection *sync_col) 822 { 823 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 824 its_encode_target(sync_cmd, sync_col->target_address); 825 826 its_fixup_cmd(sync_cmd); 827 } 828 829 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 830 struct its_collection, its_build_sync_cmd) 831 832 static void its_build_vsync_cmd(struct its_node *its, 833 struct its_cmd_block *sync_cmd, 834 struct its_vpe *sync_vpe) 835 { 836 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 837 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 838 839 its_fixup_cmd(sync_cmd); 840 } 841 842 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 843 struct its_vpe, its_build_vsync_cmd) 844 845 static void its_send_int(struct its_device *dev, u32 event_id) 846 { 847 struct its_cmd_desc desc; 848 849 desc.its_int_cmd.dev = dev; 850 desc.its_int_cmd.event_id = event_id; 851 852 its_send_single_command(dev->its, its_build_int_cmd, &desc); 853 } 854 855 static void its_send_clear(struct its_device *dev, u32 event_id) 856 { 857 struct its_cmd_desc desc; 858 859 desc.its_clear_cmd.dev = dev; 860 desc.its_clear_cmd.event_id = event_id; 861 862 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 863 } 864 865 static void its_send_inv(struct its_device *dev, u32 event_id) 866 { 867 struct its_cmd_desc desc; 868 869 desc.its_inv_cmd.dev = dev; 870 desc.its_inv_cmd.event_id = event_id; 871 872 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 873 } 874 875 static void its_send_mapd(struct its_device *dev, int valid) 876 { 877 struct its_cmd_desc desc; 878 879 desc.its_mapd_cmd.dev = dev; 880 desc.its_mapd_cmd.valid = !!valid; 881 882 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 883 } 884 885 static void its_send_mapc(struct its_node *its, struct its_collection *col, 886 int valid) 887 { 888 struct its_cmd_desc desc; 889 890 desc.its_mapc_cmd.col = col; 891 desc.its_mapc_cmd.valid = !!valid; 892 893 its_send_single_command(its, its_build_mapc_cmd, &desc); 894 } 895 896 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 897 { 898 struct its_cmd_desc desc; 899 900 desc.its_mapti_cmd.dev = dev; 901 desc.its_mapti_cmd.phys_id = irq_id; 902 desc.its_mapti_cmd.event_id = id; 903 904 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 905 } 906 907 static void its_send_movi(struct its_device *dev, 908 struct its_collection *col, u32 id) 909 { 910 struct its_cmd_desc desc; 911 912 desc.its_movi_cmd.dev = dev; 913 desc.its_movi_cmd.col = col; 914 desc.its_movi_cmd.event_id = id; 915 916 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 917 } 918 919 static void its_send_discard(struct its_device *dev, u32 id) 920 { 921 struct its_cmd_desc desc; 922 923 desc.its_discard_cmd.dev = dev; 924 desc.its_discard_cmd.event_id = id; 925 926 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 927 } 928 929 static void its_send_invall(struct its_node *its, struct its_collection *col) 930 { 931 struct its_cmd_desc desc; 932 933 desc.its_invall_cmd.col = col; 934 935 its_send_single_command(its, its_build_invall_cmd, &desc); 936 } 937 938 static void its_send_vmapti(struct its_device *dev, u32 id) 939 { 940 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 941 struct its_cmd_desc desc; 942 943 desc.its_vmapti_cmd.vpe = map->vpe; 944 desc.its_vmapti_cmd.dev = dev; 945 desc.its_vmapti_cmd.virt_id = map->vintid; 946 desc.its_vmapti_cmd.event_id = id; 947 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 948 949 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 950 } 951 952 static void its_send_vmovi(struct its_device *dev, u32 id) 953 { 954 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 955 struct its_cmd_desc desc; 956 957 desc.its_vmovi_cmd.vpe = map->vpe; 958 desc.its_vmovi_cmd.dev = dev; 959 desc.its_vmovi_cmd.event_id = id; 960 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 961 962 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 963 } 964 965 static void its_send_vmapp(struct its_node *its, 966 struct its_vpe *vpe, bool valid) 967 { 968 struct its_cmd_desc desc; 969 970 desc.its_vmapp_cmd.vpe = vpe; 971 desc.its_vmapp_cmd.valid = valid; 972 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 973 974 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 975 } 976 977 static void its_send_vmovp(struct its_vpe *vpe) 978 { 979 struct its_cmd_desc desc; 980 struct its_node *its; 981 unsigned long flags; 982 int col_id = vpe->col_idx; 983 984 desc.its_vmovp_cmd.vpe = vpe; 985 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 986 987 if (!its_list_map) { 988 its = list_first_entry(&its_nodes, struct its_node, entry); 989 desc.its_vmovp_cmd.seq_num = 0; 990 desc.its_vmovp_cmd.col = &its->collections[col_id]; 991 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 992 return; 993 } 994 995 /* 996 * Yet another marvel of the architecture. If using the 997 * its_list "feature", we need to make sure that all ITSs 998 * receive all VMOVP commands in the same order. The only way 999 * to guarantee this is to make vmovp a serialization point. 1000 * 1001 * Wall <-- Head. 1002 */ 1003 raw_spin_lock_irqsave(&vmovp_lock, flags); 1004 1005 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1006 1007 /* Emit VMOVPs */ 1008 list_for_each_entry(its, &its_nodes, entry) { 1009 if (!its->is_v4) 1010 continue; 1011 1012 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1013 continue; 1014 1015 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1016 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1017 } 1018 1019 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1020 } 1021 1022 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1023 { 1024 struct its_cmd_desc desc; 1025 1026 desc.its_vinvall_cmd.vpe = vpe; 1027 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1028 } 1029 1030 /* 1031 * irqchip functions - assumes MSI, mostly. 1032 */ 1033 1034 static inline u32 its_get_event_id(struct irq_data *d) 1035 { 1036 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1037 return d->hwirq - its_dev->event_map.lpi_base; 1038 } 1039 1040 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1041 { 1042 irq_hw_number_t hwirq; 1043 void *va; 1044 u8 *cfg; 1045 1046 if (irqd_is_forwarded_to_vcpu(d)) { 1047 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1048 u32 event = its_get_event_id(d); 1049 struct its_vlpi_map *map; 1050 1051 va = page_address(its_dev->event_map.vm->vprop_page); 1052 map = &its_dev->event_map.vlpi_maps[event]; 1053 hwirq = map->vintid; 1054 1055 /* Remember the updated property */ 1056 map->properties &= ~clr; 1057 map->properties |= set | LPI_PROP_GROUP1; 1058 } else { 1059 va = gic_rdists->prop_table_va; 1060 hwirq = d->hwirq; 1061 } 1062 1063 cfg = va + hwirq - 8192; 1064 *cfg &= ~clr; 1065 *cfg |= set | LPI_PROP_GROUP1; 1066 1067 /* 1068 * Make the above write visible to the redistributors. 1069 * And yes, we're flushing exactly: One. Single. Byte. 1070 * Humpf... 1071 */ 1072 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1073 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1074 else 1075 dsb(ishst); 1076 } 1077 1078 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1079 { 1080 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1081 1082 lpi_write_config(d, clr, set); 1083 its_send_inv(its_dev, its_get_event_id(d)); 1084 } 1085 1086 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1087 { 1088 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1089 u32 event = its_get_event_id(d); 1090 1091 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1092 return; 1093 1094 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1095 1096 /* 1097 * More fun with the architecture: 1098 * 1099 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1100 * value or to 1023, depending on the enable bit. But that 1101 * would be issueing a mapping for an /existing/ DevID+EventID 1102 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1103 * to the /same/ vPE, using this opportunity to adjust the 1104 * doorbell. Mouahahahaha. We loves it, Precious. 1105 */ 1106 its_send_vmovi(its_dev, event); 1107 } 1108 1109 static void its_mask_irq(struct irq_data *d) 1110 { 1111 if (irqd_is_forwarded_to_vcpu(d)) 1112 its_vlpi_set_doorbell(d, false); 1113 1114 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1115 } 1116 1117 static void its_unmask_irq(struct irq_data *d) 1118 { 1119 if (irqd_is_forwarded_to_vcpu(d)) 1120 its_vlpi_set_doorbell(d, true); 1121 1122 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1123 } 1124 1125 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1126 bool force) 1127 { 1128 unsigned int cpu; 1129 const struct cpumask *cpu_mask = cpu_online_mask; 1130 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1131 struct its_collection *target_col; 1132 u32 id = its_get_event_id(d); 1133 1134 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1135 if (irqd_is_forwarded_to_vcpu(d)) 1136 return -EINVAL; 1137 1138 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1139 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1140 if (its_dev->its->numa_node >= 0) { 1141 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1142 if (!cpumask_intersects(mask_val, cpu_mask)) 1143 return -EINVAL; 1144 } 1145 } 1146 1147 cpu = cpumask_any_and(mask_val, cpu_mask); 1148 1149 if (cpu >= nr_cpu_ids) 1150 return -EINVAL; 1151 1152 /* don't set the affinity when the target cpu is same as current one */ 1153 if (cpu != its_dev->event_map.col_map[id]) { 1154 target_col = &its_dev->its->collections[cpu]; 1155 its_send_movi(its_dev, target_col, id); 1156 its_dev->event_map.col_map[id] = cpu; 1157 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1158 } 1159 1160 return IRQ_SET_MASK_OK_DONE; 1161 } 1162 1163 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1164 { 1165 struct its_node *its = its_dev->its; 1166 1167 return its->phys_base + GITS_TRANSLATER; 1168 } 1169 1170 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1171 { 1172 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1173 struct its_node *its; 1174 u64 addr; 1175 1176 its = its_dev->its; 1177 addr = its->get_msi_base(its_dev); 1178 1179 msg->address_lo = lower_32_bits(addr); 1180 msg->address_hi = upper_32_bits(addr); 1181 msg->data = its_get_event_id(d); 1182 1183 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1184 } 1185 1186 static int its_irq_set_irqchip_state(struct irq_data *d, 1187 enum irqchip_irq_state which, 1188 bool state) 1189 { 1190 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1191 u32 event = its_get_event_id(d); 1192 1193 if (which != IRQCHIP_STATE_PENDING) 1194 return -EINVAL; 1195 1196 if (state) 1197 its_send_int(its_dev, event); 1198 else 1199 its_send_clear(its_dev, event); 1200 1201 return 0; 1202 } 1203 1204 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1205 { 1206 unsigned long flags; 1207 1208 /* Not using the ITS list? Everything is always mapped. */ 1209 if (!its_list_map) 1210 return; 1211 1212 raw_spin_lock_irqsave(&vmovp_lock, flags); 1213 1214 /* 1215 * If the VM wasn't mapped yet, iterate over the vpes and get 1216 * them mapped now. 1217 */ 1218 vm->vlpi_count[its->list_nr]++; 1219 1220 if (vm->vlpi_count[its->list_nr] == 1) { 1221 int i; 1222 1223 for (i = 0; i < vm->nr_vpes; i++) { 1224 struct its_vpe *vpe = vm->vpes[i]; 1225 struct irq_data *d = irq_get_irq_data(vpe->irq); 1226 1227 /* Map the VPE to the first possible CPU */ 1228 vpe->col_idx = cpumask_first(cpu_online_mask); 1229 its_send_vmapp(its, vpe, true); 1230 its_send_vinvall(its, vpe); 1231 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1232 } 1233 } 1234 1235 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1236 } 1237 1238 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1239 { 1240 unsigned long flags; 1241 1242 /* Not using the ITS list? Everything is always mapped. */ 1243 if (!its_list_map) 1244 return; 1245 1246 raw_spin_lock_irqsave(&vmovp_lock, flags); 1247 1248 if (!--vm->vlpi_count[its->list_nr]) { 1249 int i; 1250 1251 for (i = 0; i < vm->nr_vpes; i++) 1252 its_send_vmapp(its, vm->vpes[i], false); 1253 } 1254 1255 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1256 } 1257 1258 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1259 { 1260 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1261 u32 event = its_get_event_id(d); 1262 int ret = 0; 1263 1264 if (!info->map) 1265 return -EINVAL; 1266 1267 mutex_lock(&its_dev->event_map.vlpi_lock); 1268 1269 if (!its_dev->event_map.vm) { 1270 struct its_vlpi_map *maps; 1271 1272 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1273 GFP_KERNEL); 1274 if (!maps) { 1275 ret = -ENOMEM; 1276 goto out; 1277 } 1278 1279 its_dev->event_map.vm = info->map->vm; 1280 its_dev->event_map.vlpi_maps = maps; 1281 } else if (its_dev->event_map.vm != info->map->vm) { 1282 ret = -EINVAL; 1283 goto out; 1284 } 1285 1286 /* Get our private copy of the mapping information */ 1287 its_dev->event_map.vlpi_maps[event] = *info->map; 1288 1289 if (irqd_is_forwarded_to_vcpu(d)) { 1290 /* Already mapped, move it around */ 1291 its_send_vmovi(its_dev, event); 1292 } else { 1293 /* Ensure all the VPEs are mapped on this ITS */ 1294 its_map_vm(its_dev->its, info->map->vm); 1295 1296 /* 1297 * Flag the interrupt as forwarded so that we can 1298 * start poking the virtual property table. 1299 */ 1300 irqd_set_forwarded_to_vcpu(d); 1301 1302 /* Write out the property to the prop table */ 1303 lpi_write_config(d, 0xff, info->map->properties); 1304 1305 /* Drop the physical mapping */ 1306 its_send_discard(its_dev, event); 1307 1308 /* and install the virtual one */ 1309 its_send_vmapti(its_dev, event); 1310 1311 /* Increment the number of VLPIs */ 1312 its_dev->event_map.nr_vlpis++; 1313 } 1314 1315 out: 1316 mutex_unlock(&its_dev->event_map.vlpi_lock); 1317 return ret; 1318 } 1319 1320 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1321 { 1322 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1323 u32 event = its_get_event_id(d); 1324 int ret = 0; 1325 1326 mutex_lock(&its_dev->event_map.vlpi_lock); 1327 1328 if (!its_dev->event_map.vm || 1329 !its_dev->event_map.vlpi_maps[event].vm) { 1330 ret = -EINVAL; 1331 goto out; 1332 } 1333 1334 /* Copy our mapping information to the incoming request */ 1335 *info->map = its_dev->event_map.vlpi_maps[event]; 1336 1337 out: 1338 mutex_unlock(&its_dev->event_map.vlpi_lock); 1339 return ret; 1340 } 1341 1342 static int its_vlpi_unmap(struct irq_data *d) 1343 { 1344 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1345 u32 event = its_get_event_id(d); 1346 int ret = 0; 1347 1348 mutex_lock(&its_dev->event_map.vlpi_lock); 1349 1350 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1351 ret = -EINVAL; 1352 goto out; 1353 } 1354 1355 /* Drop the virtual mapping */ 1356 its_send_discard(its_dev, event); 1357 1358 /* and restore the physical one */ 1359 irqd_clr_forwarded_to_vcpu(d); 1360 its_send_mapti(its_dev, d->hwirq, event); 1361 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1362 LPI_PROP_ENABLED | 1363 LPI_PROP_GROUP1)); 1364 1365 /* Potentially unmap the VM from this ITS */ 1366 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1367 1368 /* 1369 * Drop the refcount and make the device available again if 1370 * this was the last VLPI. 1371 */ 1372 if (!--its_dev->event_map.nr_vlpis) { 1373 its_dev->event_map.vm = NULL; 1374 kfree(its_dev->event_map.vlpi_maps); 1375 } 1376 1377 out: 1378 mutex_unlock(&its_dev->event_map.vlpi_lock); 1379 return ret; 1380 } 1381 1382 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1383 { 1384 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1385 1386 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1387 return -EINVAL; 1388 1389 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1390 lpi_update_config(d, 0xff, info->config); 1391 else 1392 lpi_write_config(d, 0xff, info->config); 1393 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1394 1395 return 0; 1396 } 1397 1398 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1399 { 1400 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1401 struct its_cmd_info *info = vcpu_info; 1402 1403 /* Need a v4 ITS */ 1404 if (!its_dev->its->is_v4) 1405 return -EINVAL; 1406 1407 /* Unmap request? */ 1408 if (!info) 1409 return its_vlpi_unmap(d); 1410 1411 switch (info->cmd_type) { 1412 case MAP_VLPI: 1413 return its_vlpi_map(d, info); 1414 1415 case GET_VLPI: 1416 return its_vlpi_get(d, info); 1417 1418 case PROP_UPDATE_VLPI: 1419 case PROP_UPDATE_AND_INV_VLPI: 1420 return its_vlpi_prop_update(d, info); 1421 1422 default: 1423 return -EINVAL; 1424 } 1425 } 1426 1427 static struct irq_chip its_irq_chip = { 1428 .name = "ITS", 1429 .irq_mask = its_mask_irq, 1430 .irq_unmask = its_unmask_irq, 1431 .irq_eoi = irq_chip_eoi_parent, 1432 .irq_set_affinity = its_set_affinity, 1433 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1434 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1435 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1436 }; 1437 1438 1439 /* 1440 * How we allocate LPIs: 1441 * 1442 * lpi_range_list contains ranges of LPIs that are to available to 1443 * allocate from. To allocate LPIs, just pick the first range that 1444 * fits the required allocation, and reduce it by the required 1445 * amount. Once empty, remove the range from the list. 1446 * 1447 * To free a range of LPIs, add a free range to the list, sort it and 1448 * merge the result if the new range happens to be adjacent to an 1449 * already free block. 1450 * 1451 * The consequence of the above is that allocation is cost is low, but 1452 * freeing is expensive. We assumes that freeing rarely occurs. 1453 */ 1454 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1455 1456 static DEFINE_MUTEX(lpi_range_lock); 1457 static LIST_HEAD(lpi_range_list); 1458 1459 struct lpi_range { 1460 struct list_head entry; 1461 u32 base_id; 1462 u32 span; 1463 }; 1464 1465 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1466 { 1467 struct lpi_range *range; 1468 1469 range = kmalloc(sizeof(*range), GFP_KERNEL); 1470 if (range) { 1471 range->base_id = base; 1472 range->span = span; 1473 } 1474 1475 return range; 1476 } 1477 1478 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1479 { 1480 struct lpi_range *range, *tmp; 1481 int err = -ENOSPC; 1482 1483 mutex_lock(&lpi_range_lock); 1484 1485 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1486 if (range->span >= nr_lpis) { 1487 *base = range->base_id; 1488 range->base_id += nr_lpis; 1489 range->span -= nr_lpis; 1490 1491 if (range->span == 0) { 1492 list_del(&range->entry); 1493 kfree(range); 1494 } 1495 1496 err = 0; 1497 break; 1498 } 1499 } 1500 1501 mutex_unlock(&lpi_range_lock); 1502 1503 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1504 return err; 1505 } 1506 1507 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 1508 { 1509 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 1510 return; 1511 if (a->base_id + a->span != b->base_id) 1512 return; 1513 b->base_id = a->base_id; 1514 b->span += a->span; 1515 list_del(&a->entry); 1516 kfree(a); 1517 } 1518 1519 static int free_lpi_range(u32 base, u32 nr_lpis) 1520 { 1521 struct lpi_range *new, *old; 1522 1523 new = mk_lpi_range(base, nr_lpis); 1524 if (!new) 1525 return -ENOMEM; 1526 1527 mutex_lock(&lpi_range_lock); 1528 1529 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 1530 if (old->base_id < base) 1531 break; 1532 } 1533 /* 1534 * old is the last element with ->base_id smaller than base, 1535 * so new goes right after it. If there are no elements with 1536 * ->base_id smaller than base, &old->entry ends up pointing 1537 * at the head of the list, and inserting new it the start of 1538 * the list is the right thing to do in that case as well. 1539 */ 1540 list_add(&new->entry, &old->entry); 1541 /* 1542 * Now check if we can merge with the preceding and/or 1543 * following ranges. 1544 */ 1545 merge_lpi_ranges(old, new); 1546 merge_lpi_ranges(new, list_next_entry(new, entry)); 1547 1548 mutex_unlock(&lpi_range_lock); 1549 return 0; 1550 } 1551 1552 static int __init its_lpi_init(u32 id_bits) 1553 { 1554 u32 lpis = (1UL << id_bits) - 8192; 1555 u32 numlpis; 1556 int err; 1557 1558 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1559 1560 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1561 lpis = numlpis; 1562 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1563 lpis); 1564 } 1565 1566 /* 1567 * Initializing the allocator is just the same as freeing the 1568 * full range of LPIs. 1569 */ 1570 err = free_lpi_range(8192, lpis); 1571 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1572 return err; 1573 } 1574 1575 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1576 { 1577 unsigned long *bitmap = NULL; 1578 int err = 0; 1579 1580 do { 1581 err = alloc_lpi_range(nr_irqs, base); 1582 if (!err) 1583 break; 1584 1585 nr_irqs /= 2; 1586 } while (nr_irqs > 0); 1587 1588 if (!nr_irqs) 1589 err = -ENOSPC; 1590 1591 if (err) 1592 goto out; 1593 1594 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1595 if (!bitmap) 1596 goto out; 1597 1598 *nr_ids = nr_irqs; 1599 1600 out: 1601 if (!bitmap) 1602 *base = *nr_ids = 0; 1603 1604 return bitmap; 1605 } 1606 1607 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1608 { 1609 WARN_ON(free_lpi_range(base, nr_ids)); 1610 kfree(bitmap); 1611 } 1612 1613 static void gic_reset_prop_table(void *va) 1614 { 1615 /* Priority 0xa0, Group-1, disabled */ 1616 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 1617 1618 /* Make sure the GIC will observe the written configuration */ 1619 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 1620 } 1621 1622 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1623 { 1624 struct page *prop_page; 1625 1626 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1627 if (!prop_page) 1628 return NULL; 1629 1630 gic_reset_prop_table(page_address(prop_page)); 1631 1632 return prop_page; 1633 } 1634 1635 static void its_free_prop_table(struct page *prop_page) 1636 { 1637 free_pages((unsigned long)page_address(prop_page), 1638 get_order(LPI_PROPBASE_SZ)); 1639 } 1640 1641 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 1642 { 1643 phys_addr_t start, end, addr_end; 1644 u64 i; 1645 1646 /* 1647 * We don't bother checking for a kdump kernel as by 1648 * construction, the LPI tables are out of this kernel's 1649 * memory map. 1650 */ 1651 if (is_kdump_kernel()) 1652 return true; 1653 1654 addr_end = addr + size - 1; 1655 1656 for_each_reserved_mem_region(i, &start, &end) { 1657 if (addr >= start && addr_end <= end) 1658 return true; 1659 } 1660 1661 /* Not found, not a good sign... */ 1662 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 1663 &addr, &addr_end); 1664 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 1665 return false; 1666 } 1667 1668 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 1669 { 1670 if (efi_enabled(EFI_CONFIG_TABLES)) 1671 return efi_mem_reserve_persistent(addr, size); 1672 1673 return 0; 1674 } 1675 1676 static int __init its_setup_lpi_prop_table(void) 1677 { 1678 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 1679 u64 val; 1680 1681 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 1682 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 1683 1684 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 1685 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 1686 LPI_PROPBASE_SZ, 1687 MEMREMAP_WB); 1688 gic_reset_prop_table(gic_rdists->prop_table_va); 1689 } else { 1690 struct page *page; 1691 1692 lpi_id_bits = min_t(u32, 1693 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 1694 ITS_MAX_LPI_NRBITS); 1695 page = its_allocate_prop_table(GFP_NOWAIT); 1696 if (!page) { 1697 pr_err("Failed to allocate PROPBASE\n"); 1698 return -ENOMEM; 1699 } 1700 1701 gic_rdists->prop_table_pa = page_to_phys(page); 1702 gic_rdists->prop_table_va = page_address(page); 1703 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 1704 LPI_PROPBASE_SZ)); 1705 } 1706 1707 pr_info("GICv3: using LPI property table @%pa\n", 1708 &gic_rdists->prop_table_pa); 1709 1710 return its_lpi_init(lpi_id_bits); 1711 } 1712 1713 static const char *its_base_type_string[] = { 1714 [GITS_BASER_TYPE_DEVICE] = "Devices", 1715 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1716 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1717 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1718 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1719 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1720 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1721 }; 1722 1723 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1724 { 1725 u32 idx = baser - its->tables; 1726 1727 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1728 } 1729 1730 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1731 u64 val) 1732 { 1733 u32 idx = baser - its->tables; 1734 1735 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1736 baser->val = its_read_baser(its, baser); 1737 } 1738 1739 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1740 u64 cache, u64 shr, u32 psz, u32 order, 1741 bool indirect) 1742 { 1743 u64 val = its_read_baser(its, baser); 1744 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1745 u64 type = GITS_BASER_TYPE(val); 1746 u64 baser_phys, tmp; 1747 u32 alloc_pages; 1748 struct page *page; 1749 void *base; 1750 1751 retry_alloc_baser: 1752 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1753 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1754 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1755 &its->phys_base, its_base_type_string[type], 1756 alloc_pages, GITS_BASER_PAGES_MAX); 1757 alloc_pages = GITS_BASER_PAGES_MAX; 1758 order = get_order(GITS_BASER_PAGES_MAX * psz); 1759 } 1760 1761 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 1762 if (!page) 1763 return -ENOMEM; 1764 1765 base = (void *)page_address(page); 1766 baser_phys = virt_to_phys(base); 1767 1768 /* Check if the physical address of the memory is above 48bits */ 1769 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1770 1771 /* 52bit PA is supported only when PageSize=64K */ 1772 if (psz != SZ_64K) { 1773 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1774 free_pages((unsigned long)base, order); 1775 return -ENXIO; 1776 } 1777 1778 /* Convert 52bit PA to 48bit field */ 1779 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1780 } 1781 1782 retry_baser: 1783 val = (baser_phys | 1784 (type << GITS_BASER_TYPE_SHIFT) | 1785 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1786 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1787 cache | 1788 shr | 1789 GITS_BASER_VALID); 1790 1791 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1792 1793 switch (psz) { 1794 case SZ_4K: 1795 val |= GITS_BASER_PAGE_SIZE_4K; 1796 break; 1797 case SZ_16K: 1798 val |= GITS_BASER_PAGE_SIZE_16K; 1799 break; 1800 case SZ_64K: 1801 val |= GITS_BASER_PAGE_SIZE_64K; 1802 break; 1803 } 1804 1805 its_write_baser(its, baser, val); 1806 tmp = baser->val; 1807 1808 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1809 /* 1810 * Shareability didn't stick. Just use 1811 * whatever the read reported, which is likely 1812 * to be the only thing this redistributor 1813 * supports. If that's zero, make it 1814 * non-cacheable as well. 1815 */ 1816 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1817 if (!shr) { 1818 cache = GITS_BASER_nC; 1819 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1820 } 1821 goto retry_baser; 1822 } 1823 1824 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1825 /* 1826 * Page size didn't stick. Let's try a smaller 1827 * size and retry. If we reach 4K, then 1828 * something is horribly wrong... 1829 */ 1830 free_pages((unsigned long)base, order); 1831 baser->base = NULL; 1832 1833 switch (psz) { 1834 case SZ_16K: 1835 psz = SZ_4K; 1836 goto retry_alloc_baser; 1837 case SZ_64K: 1838 psz = SZ_16K; 1839 goto retry_alloc_baser; 1840 } 1841 } 1842 1843 if (val != tmp) { 1844 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1845 &its->phys_base, its_base_type_string[type], 1846 val, tmp); 1847 free_pages((unsigned long)base, order); 1848 return -ENXIO; 1849 } 1850 1851 baser->order = order; 1852 baser->base = base; 1853 baser->psz = psz; 1854 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1855 1856 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1857 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1858 its_base_type_string[type], 1859 (unsigned long)virt_to_phys(base), 1860 indirect ? "indirect" : "flat", (int)esz, 1861 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1862 1863 return 0; 1864 } 1865 1866 static bool its_parse_indirect_baser(struct its_node *its, 1867 struct its_baser *baser, 1868 u32 psz, u32 *order, u32 ids) 1869 { 1870 u64 tmp = its_read_baser(its, baser); 1871 u64 type = GITS_BASER_TYPE(tmp); 1872 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1873 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1874 u32 new_order = *order; 1875 bool indirect = false; 1876 1877 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1878 if ((esz << ids) > (psz * 2)) { 1879 /* 1880 * Find out whether hw supports a single or two-level table by 1881 * table by reading bit at offset '62' after writing '1' to it. 1882 */ 1883 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1884 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1885 1886 if (indirect) { 1887 /* 1888 * The size of the lvl2 table is equal to ITS page size 1889 * which is 'psz'. For computing lvl1 table size, 1890 * subtract ID bits that sparse lvl2 table from 'ids' 1891 * which is reported by ITS hardware times lvl1 table 1892 * entry size. 1893 */ 1894 ids -= ilog2(psz / (int)esz); 1895 esz = GITS_LVL1_ENTRY_SIZE; 1896 } 1897 } 1898 1899 /* 1900 * Allocate as many entries as required to fit the 1901 * range of device IDs that the ITS can grok... The ID 1902 * space being incredibly sparse, this results in a 1903 * massive waste of memory if two-level device table 1904 * feature is not supported by hardware. 1905 */ 1906 new_order = max_t(u32, get_order(esz << ids), new_order); 1907 if (new_order >= MAX_ORDER) { 1908 new_order = MAX_ORDER - 1; 1909 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1910 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1911 &its->phys_base, its_base_type_string[type], 1912 its->device_ids, ids); 1913 } 1914 1915 *order = new_order; 1916 1917 return indirect; 1918 } 1919 1920 static void its_free_tables(struct its_node *its) 1921 { 1922 int i; 1923 1924 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1925 if (its->tables[i].base) { 1926 free_pages((unsigned long)its->tables[i].base, 1927 its->tables[i].order); 1928 its->tables[i].base = NULL; 1929 } 1930 } 1931 } 1932 1933 static int its_alloc_tables(struct its_node *its) 1934 { 1935 u64 shr = GITS_BASER_InnerShareable; 1936 u64 cache = GITS_BASER_RaWaWb; 1937 u32 psz = SZ_64K; 1938 int err, i; 1939 1940 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1941 /* erratum 24313: ignore memory access type */ 1942 cache = GITS_BASER_nCnB; 1943 1944 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1945 struct its_baser *baser = its->tables + i; 1946 u64 val = its_read_baser(its, baser); 1947 u64 type = GITS_BASER_TYPE(val); 1948 u32 order = get_order(psz); 1949 bool indirect = false; 1950 1951 switch (type) { 1952 case GITS_BASER_TYPE_NONE: 1953 continue; 1954 1955 case GITS_BASER_TYPE_DEVICE: 1956 indirect = its_parse_indirect_baser(its, baser, 1957 psz, &order, 1958 its->device_ids); 1959 break; 1960 1961 case GITS_BASER_TYPE_VCPU: 1962 indirect = its_parse_indirect_baser(its, baser, 1963 psz, &order, 1964 ITS_MAX_VPEID_BITS); 1965 break; 1966 } 1967 1968 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1969 if (err < 0) { 1970 its_free_tables(its); 1971 return err; 1972 } 1973 1974 /* Update settings which will be used for next BASERn */ 1975 psz = baser->psz; 1976 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1977 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1978 } 1979 1980 return 0; 1981 } 1982 1983 static int its_alloc_collections(struct its_node *its) 1984 { 1985 int i; 1986 1987 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 1988 GFP_KERNEL); 1989 if (!its->collections) 1990 return -ENOMEM; 1991 1992 for (i = 0; i < nr_cpu_ids; i++) 1993 its->collections[i].target_address = ~0ULL; 1994 1995 return 0; 1996 } 1997 1998 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1999 { 2000 struct page *pend_page; 2001 2002 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2003 get_order(LPI_PENDBASE_SZ)); 2004 if (!pend_page) 2005 return NULL; 2006 2007 /* Make sure the GIC will observe the zero-ed page */ 2008 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2009 2010 return pend_page; 2011 } 2012 2013 static void its_free_pending_table(struct page *pt) 2014 { 2015 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2016 } 2017 2018 /* 2019 * Booting with kdump and LPIs enabled is generally fine. Any other 2020 * case is wrong in the absence of firmware/EFI support. 2021 */ 2022 static bool enabled_lpis_allowed(void) 2023 { 2024 phys_addr_t addr; 2025 u64 val; 2026 2027 /* Check whether the property table is in a reserved region */ 2028 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2029 addr = val & GENMASK_ULL(51, 12); 2030 2031 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2032 } 2033 2034 static int __init allocate_lpi_tables(void) 2035 { 2036 u64 val; 2037 int err, cpu; 2038 2039 /* 2040 * If LPIs are enabled while we run this from the boot CPU, 2041 * flag the RD tables as pre-allocated if the stars do align. 2042 */ 2043 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2044 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2045 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2046 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2047 pr_info("GICv3: Using preallocated redistributor tables\n"); 2048 } 2049 2050 err = its_setup_lpi_prop_table(); 2051 if (err) 2052 return err; 2053 2054 /* 2055 * We allocate all the pending tables anyway, as we may have a 2056 * mix of RDs that have had LPIs enabled, and some that 2057 * don't. We'll free the unused ones as each CPU comes online. 2058 */ 2059 for_each_possible_cpu(cpu) { 2060 struct page *pend_page; 2061 2062 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2063 if (!pend_page) { 2064 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2065 return -ENOMEM; 2066 } 2067 2068 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2069 } 2070 2071 return 0; 2072 } 2073 2074 static u64 its_clear_vpend_valid(void __iomem *vlpi_base) 2075 { 2076 u32 count = 1000000; /* 1s! */ 2077 bool clean; 2078 u64 val; 2079 2080 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2081 val &= ~GICR_VPENDBASER_Valid; 2082 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2083 2084 do { 2085 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2086 clean = !(val & GICR_VPENDBASER_Dirty); 2087 if (!clean) { 2088 count--; 2089 cpu_relax(); 2090 udelay(1); 2091 } 2092 } while (!clean && count); 2093 2094 return val; 2095 } 2096 2097 static void its_cpu_init_lpis(void) 2098 { 2099 void __iomem *rbase = gic_data_rdist_rd_base(); 2100 struct page *pend_page; 2101 phys_addr_t paddr; 2102 u64 val, tmp; 2103 2104 if (gic_data_rdist()->lpi_enabled) 2105 return; 2106 2107 val = readl_relaxed(rbase + GICR_CTLR); 2108 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 2109 (val & GICR_CTLR_ENABLE_LPIS)) { 2110 /* 2111 * Check that we get the same property table on all 2112 * RDs. If we don't, this is hopeless. 2113 */ 2114 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 2115 paddr &= GENMASK_ULL(51, 12); 2116 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 2117 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2118 2119 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2120 paddr &= GENMASK_ULL(51, 16); 2121 2122 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 2123 its_free_pending_table(gic_data_rdist()->pend_page); 2124 gic_data_rdist()->pend_page = NULL; 2125 2126 goto out; 2127 } 2128 2129 pend_page = gic_data_rdist()->pend_page; 2130 paddr = page_to_phys(pend_page); 2131 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 2132 2133 /* set PROPBASE */ 2134 val = (gic_rdists->prop_table_pa | 2135 GICR_PROPBASER_InnerShareable | 2136 GICR_PROPBASER_RaWaWb | 2137 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 2138 2139 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2140 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 2141 2142 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 2143 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 2144 /* 2145 * The HW reports non-shareable, we must 2146 * remove the cacheability attributes as 2147 * well. 2148 */ 2149 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 2150 GICR_PROPBASER_CACHEABILITY_MASK); 2151 val |= GICR_PROPBASER_nC; 2152 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2153 } 2154 pr_info_once("GIC: using cache flushing for LPI property table\n"); 2155 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 2156 } 2157 2158 /* set PENDBASE */ 2159 val = (page_to_phys(pend_page) | 2160 GICR_PENDBASER_InnerShareable | 2161 GICR_PENDBASER_RaWaWb); 2162 2163 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2164 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2165 2166 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2167 /* 2168 * The HW reports non-shareable, we must remove the 2169 * cacheability attributes as well. 2170 */ 2171 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2172 GICR_PENDBASER_CACHEABILITY_MASK); 2173 val |= GICR_PENDBASER_nC; 2174 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2175 } 2176 2177 /* Enable LPIs */ 2178 val = readl_relaxed(rbase + GICR_CTLR); 2179 val |= GICR_CTLR_ENABLE_LPIS; 2180 writel_relaxed(val, rbase + GICR_CTLR); 2181 2182 if (gic_rdists->has_vlpis) { 2183 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2184 2185 /* 2186 * It's possible for CPU to receive VLPIs before it is 2187 * sheduled as a vPE, especially for the first CPU, and the 2188 * VLPI with INTID larger than 2^(IDbits+1) will be considered 2189 * as out of range and dropped by GIC. 2190 * So we initialize IDbits to known value to avoid VLPI drop. 2191 */ 2192 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2193 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 2194 smp_processor_id(), val); 2195 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2196 2197 /* 2198 * Also clear Valid bit of GICR_VPENDBASER, in case some 2199 * ancient programming gets left in and has possibility of 2200 * corrupting memory. 2201 */ 2202 val = its_clear_vpend_valid(vlpi_base); 2203 WARN_ON(val & GICR_VPENDBASER_Dirty); 2204 } 2205 2206 /* Make sure the GIC has seen the above */ 2207 dsb(sy); 2208 out: 2209 gic_data_rdist()->lpi_enabled = true; 2210 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 2211 smp_processor_id(), 2212 gic_data_rdist()->pend_page ? "allocated" : "reserved", 2213 &paddr); 2214 } 2215 2216 static void its_cpu_init_collection(struct its_node *its) 2217 { 2218 int cpu = smp_processor_id(); 2219 u64 target; 2220 2221 /* avoid cross node collections and its mapping */ 2222 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2223 struct device_node *cpu_node; 2224 2225 cpu_node = of_get_cpu_node(cpu, NULL); 2226 if (its->numa_node != NUMA_NO_NODE && 2227 its->numa_node != of_node_to_nid(cpu_node)) 2228 return; 2229 } 2230 2231 /* 2232 * We now have to bind each collection to its target 2233 * redistributor. 2234 */ 2235 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2236 /* 2237 * This ITS wants the physical address of the 2238 * redistributor. 2239 */ 2240 target = gic_data_rdist()->phys_base; 2241 } else { 2242 /* This ITS wants a linear CPU number. */ 2243 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2244 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2245 } 2246 2247 /* Perform collection mapping */ 2248 its->collections[cpu].target_address = target; 2249 its->collections[cpu].col_id = cpu; 2250 2251 its_send_mapc(its, &its->collections[cpu], 1); 2252 its_send_invall(its, &its->collections[cpu]); 2253 } 2254 2255 static void its_cpu_init_collections(void) 2256 { 2257 struct its_node *its; 2258 2259 raw_spin_lock(&its_lock); 2260 2261 list_for_each_entry(its, &its_nodes, entry) 2262 its_cpu_init_collection(its); 2263 2264 raw_spin_unlock(&its_lock); 2265 } 2266 2267 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2268 { 2269 struct its_device *its_dev = NULL, *tmp; 2270 unsigned long flags; 2271 2272 raw_spin_lock_irqsave(&its->lock, flags); 2273 2274 list_for_each_entry(tmp, &its->its_device_list, entry) { 2275 if (tmp->device_id == dev_id) { 2276 its_dev = tmp; 2277 break; 2278 } 2279 } 2280 2281 raw_spin_unlock_irqrestore(&its->lock, flags); 2282 2283 return its_dev; 2284 } 2285 2286 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2287 { 2288 int i; 2289 2290 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2291 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2292 return &its->tables[i]; 2293 } 2294 2295 return NULL; 2296 } 2297 2298 static bool its_alloc_table_entry(struct its_node *its, 2299 struct its_baser *baser, u32 id) 2300 { 2301 struct page *page; 2302 u32 esz, idx; 2303 __le64 *table; 2304 2305 /* Don't allow device id that exceeds single, flat table limit */ 2306 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2307 if (!(baser->val & GITS_BASER_INDIRECT)) 2308 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2309 2310 /* Compute 1st level table index & check if that exceeds table limit */ 2311 idx = id >> ilog2(baser->psz / esz); 2312 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2313 return false; 2314 2315 table = baser->base; 2316 2317 /* Allocate memory for 2nd level table */ 2318 if (!table[idx]) { 2319 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 2320 get_order(baser->psz)); 2321 if (!page) 2322 return false; 2323 2324 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2325 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2326 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2327 2328 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2329 2330 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2331 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2332 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2333 2334 /* Ensure updated table contents are visible to ITS hardware */ 2335 dsb(sy); 2336 } 2337 2338 return true; 2339 } 2340 2341 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2342 { 2343 struct its_baser *baser; 2344 2345 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2346 2347 /* Don't allow device id that exceeds ITS hardware limit */ 2348 if (!baser) 2349 return (ilog2(dev_id) < its->device_ids); 2350 2351 return its_alloc_table_entry(its, baser, dev_id); 2352 } 2353 2354 static bool its_alloc_vpe_table(u32 vpe_id) 2355 { 2356 struct its_node *its; 2357 2358 /* 2359 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2360 * could try and only do it on ITSs corresponding to devices 2361 * that have interrupts targeted at this VPE, but the 2362 * complexity becomes crazy (and you have tons of memory 2363 * anyway, right?). 2364 */ 2365 list_for_each_entry(its, &its_nodes, entry) { 2366 struct its_baser *baser; 2367 2368 if (!its->is_v4) 2369 continue; 2370 2371 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2372 if (!baser) 2373 return false; 2374 2375 if (!its_alloc_table_entry(its, baser, vpe_id)) 2376 return false; 2377 } 2378 2379 return true; 2380 } 2381 2382 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2383 int nvecs, bool alloc_lpis) 2384 { 2385 struct its_device *dev; 2386 unsigned long *lpi_map = NULL; 2387 unsigned long flags; 2388 u16 *col_map = NULL; 2389 void *itt; 2390 int lpi_base; 2391 int nr_lpis; 2392 int nr_ites; 2393 int sz; 2394 2395 if (!its_alloc_device_table(its, dev_id)) 2396 return NULL; 2397 2398 if (WARN_ON(!is_power_of_2(nvecs))) 2399 nvecs = roundup_pow_of_two(nvecs); 2400 2401 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2402 /* 2403 * Even if the device wants a single LPI, the ITT must be 2404 * sized as a power of two (and you need at least one bit...). 2405 */ 2406 nr_ites = max(2, nvecs); 2407 sz = nr_ites * its->ite_size; 2408 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2409 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 2410 if (alloc_lpis) { 2411 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2412 if (lpi_map) 2413 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2414 GFP_KERNEL); 2415 } else { 2416 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2417 nr_lpis = 0; 2418 lpi_base = 0; 2419 } 2420 2421 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2422 kfree(dev); 2423 kfree(itt); 2424 kfree(lpi_map); 2425 kfree(col_map); 2426 return NULL; 2427 } 2428 2429 gic_flush_dcache_to_poc(itt, sz); 2430 2431 dev->its = its; 2432 dev->itt = itt; 2433 dev->nr_ites = nr_ites; 2434 dev->event_map.lpi_map = lpi_map; 2435 dev->event_map.col_map = col_map; 2436 dev->event_map.lpi_base = lpi_base; 2437 dev->event_map.nr_lpis = nr_lpis; 2438 mutex_init(&dev->event_map.vlpi_lock); 2439 dev->device_id = dev_id; 2440 INIT_LIST_HEAD(&dev->entry); 2441 2442 raw_spin_lock_irqsave(&its->lock, flags); 2443 list_add(&dev->entry, &its->its_device_list); 2444 raw_spin_unlock_irqrestore(&its->lock, flags); 2445 2446 /* Map device to its ITT */ 2447 its_send_mapd(dev, 1); 2448 2449 return dev; 2450 } 2451 2452 static void its_free_device(struct its_device *its_dev) 2453 { 2454 unsigned long flags; 2455 2456 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2457 list_del(&its_dev->entry); 2458 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2459 kfree(its_dev->itt); 2460 kfree(its_dev); 2461 } 2462 2463 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 2464 { 2465 int idx; 2466 2467 /* Find a free LPI region in lpi_map and allocate them. */ 2468 idx = bitmap_find_free_region(dev->event_map.lpi_map, 2469 dev->event_map.nr_lpis, 2470 get_count_order(nvecs)); 2471 if (idx < 0) 2472 return -ENOSPC; 2473 2474 *hwirq = dev->event_map.lpi_base + idx; 2475 2476 return 0; 2477 } 2478 2479 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2480 int nvec, msi_alloc_info_t *info) 2481 { 2482 struct its_node *its; 2483 struct its_device *its_dev; 2484 struct msi_domain_info *msi_info; 2485 u32 dev_id; 2486 int err = 0; 2487 2488 /* 2489 * We ignore "dev" entirely, and rely on the dev_id that has 2490 * been passed via the scratchpad. This limits this domain's 2491 * usefulness to upper layers that definitely know that they 2492 * are built on top of the ITS. 2493 */ 2494 dev_id = info->scratchpad[0].ul; 2495 2496 msi_info = msi_get_domain_info(domain); 2497 its = msi_info->data; 2498 2499 if (!gic_rdists->has_direct_lpi && 2500 vpe_proxy.dev && 2501 vpe_proxy.dev->its == its && 2502 dev_id == vpe_proxy.dev->device_id) { 2503 /* Bad luck. Get yourself a better implementation */ 2504 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2505 dev_id); 2506 return -EINVAL; 2507 } 2508 2509 mutex_lock(&its->dev_alloc_lock); 2510 its_dev = its_find_device(its, dev_id); 2511 if (its_dev) { 2512 /* 2513 * We already have seen this ID, probably through 2514 * another alias (PCI bridge of some sort). No need to 2515 * create the device. 2516 */ 2517 its_dev->shared = true; 2518 pr_debug("Reusing ITT for devID %x\n", dev_id); 2519 goto out; 2520 } 2521 2522 its_dev = its_create_device(its, dev_id, nvec, true); 2523 if (!its_dev) { 2524 err = -ENOMEM; 2525 goto out; 2526 } 2527 2528 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2529 out: 2530 mutex_unlock(&its->dev_alloc_lock); 2531 info->scratchpad[0].ptr = its_dev; 2532 return err; 2533 } 2534 2535 static struct msi_domain_ops its_msi_domain_ops = { 2536 .msi_prepare = its_msi_prepare, 2537 }; 2538 2539 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2540 unsigned int virq, 2541 irq_hw_number_t hwirq) 2542 { 2543 struct irq_fwspec fwspec; 2544 2545 if (irq_domain_get_of_node(domain->parent)) { 2546 fwspec.fwnode = domain->parent->fwnode; 2547 fwspec.param_count = 3; 2548 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2549 fwspec.param[1] = hwirq; 2550 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2551 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2552 fwspec.fwnode = domain->parent->fwnode; 2553 fwspec.param_count = 2; 2554 fwspec.param[0] = hwirq; 2555 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2556 } else { 2557 return -EINVAL; 2558 } 2559 2560 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2561 } 2562 2563 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2564 unsigned int nr_irqs, void *args) 2565 { 2566 msi_alloc_info_t *info = args; 2567 struct its_device *its_dev = info->scratchpad[0].ptr; 2568 struct its_node *its = its_dev->its; 2569 irq_hw_number_t hwirq; 2570 int err; 2571 int i; 2572 2573 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 2574 if (err) 2575 return err; 2576 2577 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 2578 if (err) 2579 return err; 2580 2581 for (i = 0; i < nr_irqs; i++) { 2582 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 2583 if (err) 2584 return err; 2585 2586 irq_domain_set_hwirq_and_chip(domain, virq + i, 2587 hwirq + i, &its_irq_chip, its_dev); 2588 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2589 pr_debug("ID:%d pID:%d vID:%d\n", 2590 (int)(hwirq + i - its_dev->event_map.lpi_base), 2591 (int)(hwirq + i), virq + i); 2592 } 2593 2594 return 0; 2595 } 2596 2597 static int its_irq_domain_activate(struct irq_domain *domain, 2598 struct irq_data *d, bool reserve) 2599 { 2600 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2601 u32 event = its_get_event_id(d); 2602 const struct cpumask *cpu_mask = cpu_online_mask; 2603 int cpu; 2604 2605 /* get the cpu_mask of local node */ 2606 if (its_dev->its->numa_node >= 0) 2607 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2608 2609 /* Bind the LPI to the first possible CPU */ 2610 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2611 if (cpu >= nr_cpu_ids) { 2612 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2613 return -EINVAL; 2614 2615 cpu = cpumask_first(cpu_online_mask); 2616 } 2617 2618 its_dev->event_map.col_map[event] = cpu; 2619 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2620 2621 /* Map the GIC IRQ and event to the device */ 2622 its_send_mapti(its_dev, d->hwirq, event); 2623 return 0; 2624 } 2625 2626 static void its_irq_domain_deactivate(struct irq_domain *domain, 2627 struct irq_data *d) 2628 { 2629 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2630 u32 event = its_get_event_id(d); 2631 2632 /* Stop the delivery of interrupts */ 2633 its_send_discard(its_dev, event); 2634 } 2635 2636 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2637 unsigned int nr_irqs) 2638 { 2639 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2640 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2641 struct its_node *its = its_dev->its; 2642 int i; 2643 2644 bitmap_release_region(its_dev->event_map.lpi_map, 2645 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 2646 get_count_order(nr_irqs)); 2647 2648 for (i = 0; i < nr_irqs; i++) { 2649 struct irq_data *data = irq_domain_get_irq_data(domain, 2650 virq + i); 2651 /* Nuke the entry in the domain */ 2652 irq_domain_reset_irq_data(data); 2653 } 2654 2655 mutex_lock(&its->dev_alloc_lock); 2656 2657 /* 2658 * If all interrupts have been freed, start mopping the 2659 * floor. This is conditionned on the device not being shared. 2660 */ 2661 if (!its_dev->shared && 2662 bitmap_empty(its_dev->event_map.lpi_map, 2663 its_dev->event_map.nr_lpis)) { 2664 its_lpi_free(its_dev->event_map.lpi_map, 2665 its_dev->event_map.lpi_base, 2666 its_dev->event_map.nr_lpis); 2667 kfree(its_dev->event_map.col_map); 2668 2669 /* Unmap device/itt */ 2670 its_send_mapd(its_dev, 0); 2671 its_free_device(its_dev); 2672 } 2673 2674 mutex_unlock(&its->dev_alloc_lock); 2675 2676 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2677 } 2678 2679 static const struct irq_domain_ops its_domain_ops = { 2680 .alloc = its_irq_domain_alloc, 2681 .free = its_irq_domain_free, 2682 .activate = its_irq_domain_activate, 2683 .deactivate = its_irq_domain_deactivate, 2684 }; 2685 2686 /* 2687 * This is insane. 2688 * 2689 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2690 * likely), the only way to perform an invalidate is to use a fake 2691 * device to issue an INV command, implying that the LPI has first 2692 * been mapped to some event on that device. Since this is not exactly 2693 * cheap, we try to keep that mapping around as long as possible, and 2694 * only issue an UNMAP if we're short on available slots. 2695 * 2696 * Broken by design(tm). 2697 */ 2698 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2699 { 2700 /* Already unmapped? */ 2701 if (vpe->vpe_proxy_event == -1) 2702 return; 2703 2704 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2705 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2706 2707 /* 2708 * We don't track empty slots at all, so let's move the 2709 * next_victim pointer if we can quickly reuse that slot 2710 * instead of nuking an existing entry. Not clear that this is 2711 * always a win though, and this might just generate a ripple 2712 * effect... Let's just hope VPEs don't migrate too often. 2713 */ 2714 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2715 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2716 2717 vpe->vpe_proxy_event = -1; 2718 } 2719 2720 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2721 { 2722 if (!gic_rdists->has_direct_lpi) { 2723 unsigned long flags; 2724 2725 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2726 its_vpe_db_proxy_unmap_locked(vpe); 2727 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2728 } 2729 } 2730 2731 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2732 { 2733 /* Already mapped? */ 2734 if (vpe->vpe_proxy_event != -1) 2735 return; 2736 2737 /* This slot was already allocated. Kick the other VPE out. */ 2738 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2739 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2740 2741 /* Map the new VPE instead */ 2742 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2743 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2744 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2745 2746 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2747 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2748 } 2749 2750 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2751 { 2752 unsigned long flags; 2753 struct its_collection *target_col; 2754 2755 if (gic_rdists->has_direct_lpi) { 2756 void __iomem *rdbase; 2757 2758 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2759 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2760 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2761 cpu_relax(); 2762 2763 return; 2764 } 2765 2766 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2767 2768 its_vpe_db_proxy_map_locked(vpe); 2769 2770 target_col = &vpe_proxy.dev->its->collections[to]; 2771 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2772 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2773 2774 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2775 } 2776 2777 static int its_vpe_set_affinity(struct irq_data *d, 2778 const struct cpumask *mask_val, 2779 bool force) 2780 { 2781 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2782 int cpu = cpumask_first(mask_val); 2783 2784 /* 2785 * Changing affinity is mega expensive, so let's be as lazy as 2786 * we can and only do it if we really have to. Also, if mapped 2787 * into the proxy device, we need to move the doorbell 2788 * interrupt to its new location. 2789 */ 2790 if (vpe->col_idx != cpu) { 2791 int from = vpe->col_idx; 2792 2793 vpe->col_idx = cpu; 2794 its_send_vmovp(vpe); 2795 its_vpe_db_proxy_move(vpe, from, cpu); 2796 } 2797 2798 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2799 2800 return IRQ_SET_MASK_OK_DONE; 2801 } 2802 2803 static void its_vpe_schedule(struct its_vpe *vpe) 2804 { 2805 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2806 u64 val; 2807 2808 /* Schedule the VPE */ 2809 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2810 GENMASK_ULL(51, 12); 2811 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2812 val |= GICR_VPROPBASER_RaWb; 2813 val |= GICR_VPROPBASER_InnerShareable; 2814 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2815 2816 val = virt_to_phys(page_address(vpe->vpt_page)) & 2817 GENMASK_ULL(51, 16); 2818 val |= GICR_VPENDBASER_RaWaWb; 2819 val |= GICR_VPENDBASER_NonShareable; 2820 /* 2821 * There is no good way of finding out if the pending table is 2822 * empty as we can race against the doorbell interrupt very 2823 * easily. So in the end, vpe->pending_last is only an 2824 * indication that the vcpu has something pending, not one 2825 * that the pending table is empty. A good implementation 2826 * would be able to read its coarse map pretty quickly anyway, 2827 * making this a tolerable issue. 2828 */ 2829 val |= GICR_VPENDBASER_PendingLast; 2830 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2831 val |= GICR_VPENDBASER_Valid; 2832 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2833 } 2834 2835 static void its_vpe_deschedule(struct its_vpe *vpe) 2836 { 2837 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2838 u64 val; 2839 2840 val = its_clear_vpend_valid(vlpi_base); 2841 2842 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 2843 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2844 vpe->idai = false; 2845 vpe->pending_last = true; 2846 } else { 2847 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2848 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2849 } 2850 } 2851 2852 static void its_vpe_invall(struct its_vpe *vpe) 2853 { 2854 struct its_node *its; 2855 2856 list_for_each_entry(its, &its_nodes, entry) { 2857 if (!its->is_v4) 2858 continue; 2859 2860 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2861 continue; 2862 2863 /* 2864 * Sending a VINVALL to a single ITS is enough, as all 2865 * we need is to reach the redistributors. 2866 */ 2867 its_send_vinvall(its, vpe); 2868 return; 2869 } 2870 } 2871 2872 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2873 { 2874 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2875 struct its_cmd_info *info = vcpu_info; 2876 2877 switch (info->cmd_type) { 2878 case SCHEDULE_VPE: 2879 its_vpe_schedule(vpe); 2880 return 0; 2881 2882 case DESCHEDULE_VPE: 2883 its_vpe_deschedule(vpe); 2884 return 0; 2885 2886 case INVALL_VPE: 2887 its_vpe_invall(vpe); 2888 return 0; 2889 2890 default: 2891 return -EINVAL; 2892 } 2893 } 2894 2895 static void its_vpe_send_cmd(struct its_vpe *vpe, 2896 void (*cmd)(struct its_device *, u32)) 2897 { 2898 unsigned long flags; 2899 2900 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2901 2902 its_vpe_db_proxy_map_locked(vpe); 2903 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2904 2905 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2906 } 2907 2908 static void its_vpe_send_inv(struct irq_data *d) 2909 { 2910 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2911 2912 if (gic_rdists->has_direct_lpi) { 2913 void __iomem *rdbase; 2914 2915 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2916 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2917 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2918 cpu_relax(); 2919 } else { 2920 its_vpe_send_cmd(vpe, its_send_inv); 2921 } 2922 } 2923 2924 static void its_vpe_mask_irq(struct irq_data *d) 2925 { 2926 /* 2927 * We need to unmask the LPI, which is described by the parent 2928 * irq_data. Instead of calling into the parent (which won't 2929 * exactly do the right thing, let's simply use the 2930 * parent_data pointer. Yes, I'm naughty. 2931 */ 2932 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2933 its_vpe_send_inv(d); 2934 } 2935 2936 static void its_vpe_unmask_irq(struct irq_data *d) 2937 { 2938 /* Same hack as above... */ 2939 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2940 its_vpe_send_inv(d); 2941 } 2942 2943 static int its_vpe_set_irqchip_state(struct irq_data *d, 2944 enum irqchip_irq_state which, 2945 bool state) 2946 { 2947 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2948 2949 if (which != IRQCHIP_STATE_PENDING) 2950 return -EINVAL; 2951 2952 if (gic_rdists->has_direct_lpi) { 2953 void __iomem *rdbase; 2954 2955 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2956 if (state) { 2957 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2958 } else { 2959 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2960 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2961 cpu_relax(); 2962 } 2963 } else { 2964 if (state) 2965 its_vpe_send_cmd(vpe, its_send_int); 2966 else 2967 its_vpe_send_cmd(vpe, its_send_clear); 2968 } 2969 2970 return 0; 2971 } 2972 2973 static struct irq_chip its_vpe_irq_chip = { 2974 .name = "GICv4-vpe", 2975 .irq_mask = its_vpe_mask_irq, 2976 .irq_unmask = its_vpe_unmask_irq, 2977 .irq_eoi = irq_chip_eoi_parent, 2978 .irq_set_affinity = its_vpe_set_affinity, 2979 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2980 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2981 }; 2982 2983 static int its_vpe_id_alloc(void) 2984 { 2985 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2986 } 2987 2988 static void its_vpe_id_free(u16 id) 2989 { 2990 ida_simple_remove(&its_vpeid_ida, id); 2991 } 2992 2993 static int its_vpe_init(struct its_vpe *vpe) 2994 { 2995 struct page *vpt_page; 2996 int vpe_id; 2997 2998 /* Allocate vpe_id */ 2999 vpe_id = its_vpe_id_alloc(); 3000 if (vpe_id < 0) 3001 return vpe_id; 3002 3003 /* Allocate VPT */ 3004 vpt_page = its_allocate_pending_table(GFP_KERNEL); 3005 if (!vpt_page) { 3006 its_vpe_id_free(vpe_id); 3007 return -ENOMEM; 3008 } 3009 3010 if (!its_alloc_vpe_table(vpe_id)) { 3011 its_vpe_id_free(vpe_id); 3012 its_free_pending_table(vpt_page); 3013 return -ENOMEM; 3014 } 3015 3016 vpe->vpe_id = vpe_id; 3017 vpe->vpt_page = vpt_page; 3018 vpe->vpe_proxy_event = -1; 3019 3020 return 0; 3021 } 3022 3023 static void its_vpe_teardown(struct its_vpe *vpe) 3024 { 3025 its_vpe_db_proxy_unmap(vpe); 3026 its_vpe_id_free(vpe->vpe_id); 3027 its_free_pending_table(vpe->vpt_page); 3028 } 3029 3030 static void its_vpe_irq_domain_free(struct irq_domain *domain, 3031 unsigned int virq, 3032 unsigned int nr_irqs) 3033 { 3034 struct its_vm *vm = domain->host_data; 3035 int i; 3036 3037 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3038 3039 for (i = 0; i < nr_irqs; i++) { 3040 struct irq_data *data = irq_domain_get_irq_data(domain, 3041 virq + i); 3042 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 3043 3044 BUG_ON(vm != vpe->its_vm); 3045 3046 clear_bit(data->hwirq, vm->db_bitmap); 3047 its_vpe_teardown(vpe); 3048 irq_domain_reset_irq_data(data); 3049 } 3050 3051 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 3052 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 3053 its_free_prop_table(vm->vprop_page); 3054 } 3055 } 3056 3057 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3058 unsigned int nr_irqs, void *args) 3059 { 3060 struct its_vm *vm = args; 3061 unsigned long *bitmap; 3062 struct page *vprop_page; 3063 int base, nr_ids, i, err = 0; 3064 3065 BUG_ON(!vm); 3066 3067 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 3068 if (!bitmap) 3069 return -ENOMEM; 3070 3071 if (nr_ids < nr_irqs) { 3072 its_lpi_free(bitmap, base, nr_ids); 3073 return -ENOMEM; 3074 } 3075 3076 vprop_page = its_allocate_prop_table(GFP_KERNEL); 3077 if (!vprop_page) { 3078 its_lpi_free(bitmap, base, nr_ids); 3079 return -ENOMEM; 3080 } 3081 3082 vm->db_bitmap = bitmap; 3083 vm->db_lpi_base = base; 3084 vm->nr_db_lpis = nr_ids; 3085 vm->vprop_page = vprop_page; 3086 3087 for (i = 0; i < nr_irqs; i++) { 3088 vm->vpes[i]->vpe_db_lpi = base + i; 3089 err = its_vpe_init(vm->vpes[i]); 3090 if (err) 3091 break; 3092 err = its_irq_gic_domain_alloc(domain, virq + i, 3093 vm->vpes[i]->vpe_db_lpi); 3094 if (err) 3095 break; 3096 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 3097 &its_vpe_irq_chip, vm->vpes[i]); 3098 set_bit(i, bitmap); 3099 } 3100 3101 if (err) { 3102 if (i > 0) 3103 its_vpe_irq_domain_free(domain, virq, i - 1); 3104 3105 its_lpi_free(bitmap, base, nr_ids); 3106 its_free_prop_table(vprop_page); 3107 } 3108 3109 return err; 3110 } 3111 3112 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 3113 struct irq_data *d, bool reserve) 3114 { 3115 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3116 struct its_node *its; 3117 3118 /* If we use the list map, we issue VMAPP on demand... */ 3119 if (its_list_map) 3120 return 0; 3121 3122 /* Map the VPE to the first possible CPU */ 3123 vpe->col_idx = cpumask_first(cpu_online_mask); 3124 3125 list_for_each_entry(its, &its_nodes, entry) { 3126 if (!its->is_v4) 3127 continue; 3128 3129 its_send_vmapp(its, vpe, true); 3130 its_send_vinvall(its, vpe); 3131 } 3132 3133 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 3134 3135 return 0; 3136 } 3137 3138 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 3139 struct irq_data *d) 3140 { 3141 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3142 struct its_node *its; 3143 3144 /* 3145 * If we use the list map, we unmap the VPE once no VLPIs are 3146 * associated with the VM. 3147 */ 3148 if (its_list_map) 3149 return; 3150 3151 list_for_each_entry(its, &its_nodes, entry) { 3152 if (!its->is_v4) 3153 continue; 3154 3155 its_send_vmapp(its, vpe, false); 3156 } 3157 } 3158 3159 static const struct irq_domain_ops its_vpe_domain_ops = { 3160 .alloc = its_vpe_irq_domain_alloc, 3161 .free = its_vpe_irq_domain_free, 3162 .activate = its_vpe_irq_domain_activate, 3163 .deactivate = its_vpe_irq_domain_deactivate, 3164 }; 3165 3166 static int its_force_quiescent(void __iomem *base) 3167 { 3168 u32 count = 1000000; /* 1s */ 3169 u32 val; 3170 3171 val = readl_relaxed(base + GITS_CTLR); 3172 /* 3173 * GIC architecture specification requires the ITS to be both 3174 * disabled and quiescent for writes to GITS_BASER<n> or 3175 * GITS_CBASER to not have UNPREDICTABLE results. 3176 */ 3177 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 3178 return 0; 3179 3180 /* Disable the generation of all interrupts to this ITS */ 3181 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 3182 writel_relaxed(val, base + GITS_CTLR); 3183 3184 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 3185 while (1) { 3186 val = readl_relaxed(base + GITS_CTLR); 3187 if (val & GITS_CTLR_QUIESCENT) 3188 return 0; 3189 3190 count--; 3191 if (!count) 3192 return -EBUSY; 3193 3194 cpu_relax(); 3195 udelay(1); 3196 } 3197 } 3198 3199 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3200 { 3201 struct its_node *its = data; 3202 3203 /* erratum 22375: only alloc 8MB table size */ 3204 its->device_ids = 0x14; /* 20 bits, 8MB */ 3205 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3206 3207 return true; 3208 } 3209 3210 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3211 { 3212 struct its_node *its = data; 3213 3214 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3215 3216 return true; 3217 } 3218 3219 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3220 { 3221 struct its_node *its = data; 3222 3223 /* On QDF2400, the size of the ITE is 16Bytes */ 3224 its->ite_size = 16; 3225 3226 return true; 3227 } 3228 3229 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3230 { 3231 struct its_node *its = its_dev->its; 3232 3233 /* 3234 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3235 * which maps 32-bit writes targeted at a separate window of 3236 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3237 * with device ID taken from bits [device_id_bits + 1:2] of 3238 * the window offset. 3239 */ 3240 return its->pre_its_base + (its_dev->device_id << 2); 3241 } 3242 3243 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3244 { 3245 struct its_node *its = data; 3246 u32 pre_its_window[2]; 3247 u32 ids; 3248 3249 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3250 "socionext,synquacer-pre-its", 3251 pre_its_window, 3252 ARRAY_SIZE(pre_its_window))) { 3253 3254 its->pre_its_base = pre_its_window[0]; 3255 its->get_msi_base = its_irq_get_msi_base_pre_its; 3256 3257 ids = ilog2(pre_its_window[1]) - 2; 3258 if (its->device_ids > ids) 3259 its->device_ids = ids; 3260 3261 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3262 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3263 return true; 3264 } 3265 return false; 3266 } 3267 3268 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3269 { 3270 struct its_node *its = data; 3271 3272 /* 3273 * Hip07 insists on using the wrong address for the VLPI 3274 * page. Trick it into doing the right thing... 3275 */ 3276 its->vlpi_redist_offset = SZ_128K; 3277 return true; 3278 } 3279 3280 static const struct gic_quirk its_quirks[] = { 3281 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3282 { 3283 .desc = "ITS: Cavium errata 22375, 24313", 3284 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3285 .mask = 0xffff0fff, 3286 .init = its_enable_quirk_cavium_22375, 3287 }, 3288 #endif 3289 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3290 { 3291 .desc = "ITS: Cavium erratum 23144", 3292 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3293 .mask = 0xffff0fff, 3294 .init = its_enable_quirk_cavium_23144, 3295 }, 3296 #endif 3297 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3298 { 3299 .desc = "ITS: QDF2400 erratum 0065", 3300 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3301 .mask = 0xffffffff, 3302 .init = its_enable_quirk_qdf2400_e0065, 3303 }, 3304 #endif 3305 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3306 { 3307 /* 3308 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3309 * implementation, but with a 'pre-ITS' added that requires 3310 * special handling in software. 3311 */ 3312 .desc = "ITS: Socionext Synquacer pre-ITS", 3313 .iidr = 0x0001143b, 3314 .mask = 0xffffffff, 3315 .init = its_enable_quirk_socionext_synquacer, 3316 }, 3317 #endif 3318 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3319 { 3320 .desc = "ITS: Hip07 erratum 161600802", 3321 .iidr = 0x00000004, 3322 .mask = 0xffffffff, 3323 .init = its_enable_quirk_hip07_161600802, 3324 }, 3325 #endif 3326 { 3327 } 3328 }; 3329 3330 static void its_enable_quirks(struct its_node *its) 3331 { 3332 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3333 3334 gic_enable_quirks(iidr, its_quirks, its); 3335 } 3336 3337 static int its_save_disable(void) 3338 { 3339 struct its_node *its; 3340 int err = 0; 3341 3342 raw_spin_lock(&its_lock); 3343 list_for_each_entry(its, &its_nodes, entry) { 3344 void __iomem *base; 3345 3346 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3347 continue; 3348 3349 base = its->base; 3350 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3351 err = its_force_quiescent(base); 3352 if (err) { 3353 pr_err("ITS@%pa: failed to quiesce: %d\n", 3354 &its->phys_base, err); 3355 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3356 goto err; 3357 } 3358 3359 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3360 } 3361 3362 err: 3363 if (err) { 3364 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3365 void __iomem *base; 3366 3367 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3368 continue; 3369 3370 base = its->base; 3371 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3372 } 3373 } 3374 raw_spin_unlock(&its_lock); 3375 3376 return err; 3377 } 3378 3379 static void its_restore_enable(void) 3380 { 3381 struct its_node *its; 3382 int ret; 3383 3384 raw_spin_lock(&its_lock); 3385 list_for_each_entry(its, &its_nodes, entry) { 3386 void __iomem *base; 3387 int i; 3388 3389 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3390 continue; 3391 3392 base = its->base; 3393 3394 /* 3395 * Make sure that the ITS is disabled. If it fails to quiesce, 3396 * don't restore it since writing to CBASER or BASER<n> 3397 * registers is undefined according to the GIC v3 ITS 3398 * Specification. 3399 */ 3400 ret = its_force_quiescent(base); 3401 if (ret) { 3402 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3403 &its->phys_base, ret); 3404 continue; 3405 } 3406 3407 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3408 3409 /* 3410 * Writing CBASER resets CREADR to 0, so make CWRITER and 3411 * cmd_write line up with it. 3412 */ 3413 its->cmd_write = its->cmd_base; 3414 gits_write_cwriter(0, base + GITS_CWRITER); 3415 3416 /* Restore GITS_BASER from the value cache. */ 3417 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3418 struct its_baser *baser = &its->tables[i]; 3419 3420 if (!(baser->val & GITS_BASER_VALID)) 3421 continue; 3422 3423 its_write_baser(its, baser, baser->val); 3424 } 3425 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3426 3427 /* 3428 * Reinit the collection if it's stored in the ITS. This is 3429 * indicated by the col_id being less than the HCC field. 3430 * CID < HCC as specified in the GIC v3 Documentation. 3431 */ 3432 if (its->collections[smp_processor_id()].col_id < 3433 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3434 its_cpu_init_collection(its); 3435 } 3436 raw_spin_unlock(&its_lock); 3437 } 3438 3439 static struct syscore_ops its_syscore_ops = { 3440 .suspend = its_save_disable, 3441 .resume = its_restore_enable, 3442 }; 3443 3444 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3445 { 3446 struct irq_domain *inner_domain; 3447 struct msi_domain_info *info; 3448 3449 info = kzalloc(sizeof(*info), GFP_KERNEL); 3450 if (!info) 3451 return -ENOMEM; 3452 3453 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3454 if (!inner_domain) { 3455 kfree(info); 3456 return -ENOMEM; 3457 } 3458 3459 inner_domain->parent = its_parent; 3460 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3461 inner_domain->flags |= its->msi_domain_flags; 3462 info->ops = &its_msi_domain_ops; 3463 info->data = its; 3464 inner_domain->host_data = info; 3465 3466 return 0; 3467 } 3468 3469 static int its_init_vpe_domain(void) 3470 { 3471 struct its_node *its; 3472 u32 devid; 3473 int entries; 3474 3475 if (gic_rdists->has_direct_lpi) { 3476 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3477 return 0; 3478 } 3479 3480 /* Any ITS will do, even if not v4 */ 3481 its = list_first_entry(&its_nodes, struct its_node, entry); 3482 3483 entries = roundup_pow_of_two(nr_cpu_ids); 3484 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3485 GFP_KERNEL); 3486 if (!vpe_proxy.vpes) { 3487 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3488 return -ENOMEM; 3489 } 3490 3491 /* Use the last possible DevID */ 3492 devid = GENMASK(its->device_ids - 1, 0); 3493 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3494 if (!vpe_proxy.dev) { 3495 kfree(vpe_proxy.vpes); 3496 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3497 return -ENOMEM; 3498 } 3499 3500 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3501 3502 raw_spin_lock_init(&vpe_proxy.lock); 3503 vpe_proxy.next_victim = 0; 3504 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3505 devid, vpe_proxy.dev->nr_ites); 3506 3507 return 0; 3508 } 3509 3510 static int __init its_compute_its_list_map(struct resource *res, 3511 void __iomem *its_base) 3512 { 3513 int its_number; 3514 u32 ctlr; 3515 3516 /* 3517 * This is assumed to be done early enough that we're 3518 * guaranteed to be single-threaded, hence no 3519 * locking. Should this change, we should address 3520 * this. 3521 */ 3522 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3523 if (its_number >= GICv4_ITS_LIST_MAX) { 3524 pr_err("ITS@%pa: No ITSList entry available!\n", 3525 &res->start); 3526 return -EINVAL; 3527 } 3528 3529 ctlr = readl_relaxed(its_base + GITS_CTLR); 3530 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3531 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3532 writel_relaxed(ctlr, its_base + GITS_CTLR); 3533 ctlr = readl_relaxed(its_base + GITS_CTLR); 3534 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3535 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3536 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3537 } 3538 3539 if (test_and_set_bit(its_number, &its_list_map)) { 3540 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3541 &res->start, its_number); 3542 return -EINVAL; 3543 } 3544 3545 return its_number; 3546 } 3547 3548 static int __init its_probe_one(struct resource *res, 3549 struct fwnode_handle *handle, int numa_node) 3550 { 3551 struct its_node *its; 3552 void __iomem *its_base; 3553 u32 val, ctlr; 3554 u64 baser, tmp, typer; 3555 struct page *page; 3556 int err; 3557 3558 its_base = ioremap(res->start, resource_size(res)); 3559 if (!its_base) { 3560 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3561 return -ENOMEM; 3562 } 3563 3564 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3565 if (val != 0x30 && val != 0x40) { 3566 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3567 err = -ENODEV; 3568 goto out_unmap; 3569 } 3570 3571 err = its_force_quiescent(its_base); 3572 if (err) { 3573 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3574 goto out_unmap; 3575 } 3576 3577 pr_info("ITS %pR\n", res); 3578 3579 its = kzalloc(sizeof(*its), GFP_KERNEL); 3580 if (!its) { 3581 err = -ENOMEM; 3582 goto out_unmap; 3583 } 3584 3585 raw_spin_lock_init(&its->lock); 3586 mutex_init(&its->dev_alloc_lock); 3587 INIT_LIST_HEAD(&its->entry); 3588 INIT_LIST_HEAD(&its->its_device_list); 3589 typer = gic_read_typer(its_base + GITS_TYPER); 3590 its->base = its_base; 3591 its->phys_base = res->start; 3592 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3593 its->device_ids = GITS_TYPER_DEVBITS(typer); 3594 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3595 if (its->is_v4) { 3596 if (!(typer & GITS_TYPER_VMOVP)) { 3597 err = its_compute_its_list_map(res, its_base); 3598 if (err < 0) 3599 goto out_free_its; 3600 3601 its->list_nr = err; 3602 3603 pr_info("ITS@%pa: Using ITS number %d\n", 3604 &res->start, err); 3605 } else { 3606 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3607 } 3608 } 3609 3610 its->numa_node = numa_node; 3611 3612 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3613 get_order(ITS_CMD_QUEUE_SZ)); 3614 if (!page) { 3615 err = -ENOMEM; 3616 goto out_free_its; 3617 } 3618 its->cmd_base = (void *)page_address(page); 3619 its->cmd_write = its->cmd_base; 3620 its->fwnode_handle = handle; 3621 its->get_msi_base = its_irq_get_msi_base; 3622 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3623 3624 its_enable_quirks(its); 3625 3626 err = its_alloc_tables(its); 3627 if (err) 3628 goto out_free_cmd; 3629 3630 err = its_alloc_collections(its); 3631 if (err) 3632 goto out_free_tables; 3633 3634 baser = (virt_to_phys(its->cmd_base) | 3635 GITS_CBASER_RaWaWb | 3636 GITS_CBASER_InnerShareable | 3637 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3638 GITS_CBASER_VALID); 3639 3640 gits_write_cbaser(baser, its->base + GITS_CBASER); 3641 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3642 3643 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3644 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3645 /* 3646 * The HW reports non-shareable, we must 3647 * remove the cacheability attributes as 3648 * well. 3649 */ 3650 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3651 GITS_CBASER_CACHEABILITY_MASK); 3652 baser |= GITS_CBASER_nC; 3653 gits_write_cbaser(baser, its->base + GITS_CBASER); 3654 } 3655 pr_info("ITS: using cache flushing for cmd queue\n"); 3656 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3657 } 3658 3659 gits_write_cwriter(0, its->base + GITS_CWRITER); 3660 ctlr = readl_relaxed(its->base + GITS_CTLR); 3661 ctlr |= GITS_CTLR_ENABLE; 3662 if (its->is_v4) 3663 ctlr |= GITS_CTLR_ImDe; 3664 writel_relaxed(ctlr, its->base + GITS_CTLR); 3665 3666 if (GITS_TYPER_HCC(typer)) 3667 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3668 3669 err = its_init_domain(handle, its); 3670 if (err) 3671 goto out_free_tables; 3672 3673 raw_spin_lock(&its_lock); 3674 list_add(&its->entry, &its_nodes); 3675 raw_spin_unlock(&its_lock); 3676 3677 return 0; 3678 3679 out_free_tables: 3680 its_free_tables(its); 3681 out_free_cmd: 3682 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3683 out_free_its: 3684 kfree(its); 3685 out_unmap: 3686 iounmap(its_base); 3687 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3688 return err; 3689 } 3690 3691 static bool gic_rdists_supports_plpis(void) 3692 { 3693 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3694 } 3695 3696 static int redist_disable_lpis(void) 3697 { 3698 void __iomem *rbase = gic_data_rdist_rd_base(); 3699 u64 timeout = USEC_PER_SEC; 3700 u64 val; 3701 3702 if (!gic_rdists_supports_plpis()) { 3703 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3704 return -ENXIO; 3705 } 3706 3707 val = readl_relaxed(rbase + GICR_CTLR); 3708 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3709 return 0; 3710 3711 /* 3712 * If coming via a CPU hotplug event, we don't need to disable 3713 * LPIs before trying to re-enable them. They are already 3714 * configured and all is well in the world. 3715 * 3716 * If running with preallocated tables, there is nothing to do. 3717 */ 3718 if (gic_data_rdist()->lpi_enabled || 3719 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 3720 return 0; 3721 3722 /* 3723 * From that point on, we only try to do some damage control. 3724 */ 3725 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3726 smp_processor_id()); 3727 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3728 3729 /* Disable LPIs */ 3730 val &= ~GICR_CTLR_ENABLE_LPIS; 3731 writel_relaxed(val, rbase + GICR_CTLR); 3732 3733 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3734 dsb(sy); 3735 3736 /* 3737 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3738 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3739 * Error out if we time out waiting for RWP to clear. 3740 */ 3741 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3742 if (!timeout) { 3743 pr_err("CPU%d: Timeout while disabling LPIs\n", 3744 smp_processor_id()); 3745 return -ETIMEDOUT; 3746 } 3747 udelay(1); 3748 timeout--; 3749 } 3750 3751 /* 3752 * After it has been written to 1, it is IMPLEMENTATION 3753 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3754 * cleared to 0. Error out if clearing the bit failed. 3755 */ 3756 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3757 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3758 return -EBUSY; 3759 } 3760 3761 return 0; 3762 } 3763 3764 int its_cpu_init(void) 3765 { 3766 if (!list_empty(&its_nodes)) { 3767 int ret; 3768 3769 ret = redist_disable_lpis(); 3770 if (ret) 3771 return ret; 3772 3773 its_cpu_init_lpis(); 3774 its_cpu_init_collections(); 3775 } 3776 3777 return 0; 3778 } 3779 3780 static const struct of_device_id its_device_id[] = { 3781 { .compatible = "arm,gic-v3-its", }, 3782 {}, 3783 }; 3784 3785 static int __init its_of_probe(struct device_node *node) 3786 { 3787 struct device_node *np; 3788 struct resource res; 3789 3790 for (np = of_find_matching_node(node, its_device_id); np; 3791 np = of_find_matching_node(np, its_device_id)) { 3792 if (!of_device_is_available(np)) 3793 continue; 3794 if (!of_property_read_bool(np, "msi-controller")) { 3795 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3796 np); 3797 continue; 3798 } 3799 3800 if (of_address_to_resource(np, 0, &res)) { 3801 pr_warn("%pOF: no regs?\n", np); 3802 continue; 3803 } 3804 3805 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3806 } 3807 return 0; 3808 } 3809 3810 #ifdef CONFIG_ACPI 3811 3812 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3813 3814 #ifdef CONFIG_ACPI_NUMA 3815 struct its_srat_map { 3816 /* numa node id */ 3817 u32 numa_node; 3818 /* GIC ITS ID */ 3819 u32 its_id; 3820 }; 3821 3822 static struct its_srat_map *its_srat_maps __initdata; 3823 static int its_in_srat __initdata; 3824 3825 static int __init acpi_get_its_numa_node(u32 its_id) 3826 { 3827 int i; 3828 3829 for (i = 0; i < its_in_srat; i++) { 3830 if (its_id == its_srat_maps[i].its_id) 3831 return its_srat_maps[i].numa_node; 3832 } 3833 return NUMA_NO_NODE; 3834 } 3835 3836 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 3837 const unsigned long end) 3838 { 3839 return 0; 3840 } 3841 3842 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 3843 const unsigned long end) 3844 { 3845 int node; 3846 struct acpi_srat_gic_its_affinity *its_affinity; 3847 3848 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3849 if (!its_affinity) 3850 return -EINVAL; 3851 3852 if (its_affinity->header.length < sizeof(*its_affinity)) { 3853 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3854 its_affinity->header.length); 3855 return -EINVAL; 3856 } 3857 3858 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3859 3860 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3861 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3862 return 0; 3863 } 3864 3865 its_srat_maps[its_in_srat].numa_node = node; 3866 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3867 its_in_srat++; 3868 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3869 its_affinity->proximity_domain, its_affinity->its_id, node); 3870 3871 return 0; 3872 } 3873 3874 static void __init acpi_table_parse_srat_its(void) 3875 { 3876 int count; 3877 3878 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3879 sizeof(struct acpi_table_srat), 3880 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3881 gic_acpi_match_srat_its, 0); 3882 if (count <= 0) 3883 return; 3884 3885 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3886 GFP_KERNEL); 3887 if (!its_srat_maps) { 3888 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3889 return; 3890 } 3891 3892 acpi_table_parse_entries(ACPI_SIG_SRAT, 3893 sizeof(struct acpi_table_srat), 3894 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3895 gic_acpi_parse_srat_its, 0); 3896 } 3897 3898 /* free the its_srat_maps after ITS probing */ 3899 static void __init acpi_its_srat_maps_free(void) 3900 { 3901 kfree(its_srat_maps); 3902 } 3903 #else 3904 static void __init acpi_table_parse_srat_its(void) { } 3905 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3906 static void __init acpi_its_srat_maps_free(void) { } 3907 #endif 3908 3909 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 3910 const unsigned long end) 3911 { 3912 struct acpi_madt_generic_translator *its_entry; 3913 struct fwnode_handle *dom_handle; 3914 struct resource res; 3915 int err; 3916 3917 its_entry = (struct acpi_madt_generic_translator *)header; 3918 memset(&res, 0, sizeof(res)); 3919 res.start = its_entry->base_address; 3920 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3921 res.flags = IORESOURCE_MEM; 3922 3923 dom_handle = irq_domain_alloc_fwnode(&res.start); 3924 if (!dom_handle) { 3925 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3926 &res.start); 3927 return -ENOMEM; 3928 } 3929 3930 err = iort_register_domain_token(its_entry->translation_id, res.start, 3931 dom_handle); 3932 if (err) { 3933 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3934 &res.start, its_entry->translation_id); 3935 goto dom_err; 3936 } 3937 3938 err = its_probe_one(&res, dom_handle, 3939 acpi_get_its_numa_node(its_entry->translation_id)); 3940 if (!err) 3941 return 0; 3942 3943 iort_deregister_domain_token(its_entry->translation_id); 3944 dom_err: 3945 irq_domain_free_fwnode(dom_handle); 3946 return err; 3947 } 3948 3949 static void __init its_acpi_probe(void) 3950 { 3951 acpi_table_parse_srat_its(); 3952 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3953 gic_acpi_parse_madt_its, 0); 3954 acpi_its_srat_maps_free(); 3955 } 3956 #else 3957 static void __init its_acpi_probe(void) { } 3958 #endif 3959 3960 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3961 struct irq_domain *parent_domain) 3962 { 3963 struct device_node *of_node; 3964 struct its_node *its; 3965 bool has_v4 = false; 3966 int err; 3967 3968 its_parent = parent_domain; 3969 of_node = to_of_node(handle); 3970 if (of_node) 3971 its_of_probe(of_node); 3972 else 3973 its_acpi_probe(); 3974 3975 if (list_empty(&its_nodes)) { 3976 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3977 return -ENXIO; 3978 } 3979 3980 gic_rdists = rdists; 3981 3982 err = allocate_lpi_tables(); 3983 if (err) 3984 return err; 3985 3986 list_for_each_entry(its, &its_nodes, entry) 3987 has_v4 |= its->is_v4; 3988 3989 if (has_v4 & rdists->has_vlpis) { 3990 if (its_init_vpe_domain() || 3991 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3992 rdists->has_vlpis = false; 3993 pr_err("ITS: Disabling GICv4 support\n"); 3994 } 3995 } 3996 3997 register_syscore_ops(&its_syscore_ops); 3998 3999 return 0; 4000 } 4001