xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/crash_dump.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/efi.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/list.h>
29 #include <linux/list_sort.h>
30 #include <linux/log2.h>
31 #include <linux/memblock.h>
32 #include <linux/mm.h>
33 #include <linux/msi.h>
34 #include <linux/of.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/of_pci.h>
38 #include <linux/of_platform.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/syscore_ops.h>
42 
43 #include <linux/irqchip.h>
44 #include <linux/irqchip/arm-gic-v3.h>
45 #include <linux/irqchip/arm-gic-v4.h>
46 
47 #include <asm/cputype.h>
48 #include <asm/exception.h>
49 
50 #include "irq-gic-common.h"
51 
52 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
53 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
54 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
55 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
56 
57 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
58 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
59 
60 static u32 lpi_id_bits;
61 
62 /*
63  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
64  * deal with (one configuration byte per interrupt). PENDBASE has to
65  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
66  */
67 #define LPI_NRBITS		lpi_id_bits
68 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
69 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
70 
71 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
72 
73 /*
74  * Collection structure - just an ID, and a redistributor address to
75  * ping. We use one per CPU as a bag of interrupts assigned to this
76  * CPU.
77  */
78 struct its_collection {
79 	u64			target_address;
80 	u16			col_id;
81 };
82 
83 /*
84  * The ITS_BASER structure - contains memory information, cached
85  * value of BASER register configuration and ITS page size.
86  */
87 struct its_baser {
88 	void		*base;
89 	u64		val;
90 	u32		order;
91 	u32		psz;
92 };
93 
94 struct its_device;
95 
96 /*
97  * The ITS structure - contains most of the infrastructure, with the
98  * top-level MSI domain, the command queue, the collections, and the
99  * list of devices writing to it.
100  */
101 struct its_node {
102 	raw_spinlock_t		lock;
103 	struct list_head	entry;
104 	void __iomem		*base;
105 	phys_addr_t		phys_base;
106 	struct its_cmd_block	*cmd_base;
107 	struct its_cmd_block	*cmd_write;
108 	struct its_baser	tables[GITS_BASER_NR_REGS];
109 	struct its_collection	*collections;
110 	struct fwnode_handle	*fwnode_handle;
111 	u64			(*get_msi_base)(struct its_device *its_dev);
112 	u64			cbaser_save;
113 	u32			ctlr_save;
114 	struct list_head	its_device_list;
115 	u64			flags;
116 	unsigned long		list_nr;
117 	u32			ite_size;
118 	u32			device_ids;
119 	int			numa_node;
120 	unsigned int		msi_domain_flags;
121 	u32			pre_its_base; /* for Socionext Synquacer */
122 	bool			is_v4;
123 	int			vlpi_redist_offset;
124 };
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS	(16)
130 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
131 
132 /* Convert page order to size in bytes */
133 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
134 
135 struct event_lpi_map {
136 	unsigned long		*lpi_map;
137 	u16			*col_map;
138 	irq_hw_number_t		lpi_base;
139 	int			nr_lpis;
140 	struct mutex		vlpi_lock;
141 	struct its_vm		*vm;
142 	struct its_vlpi_map	*vlpi_maps;
143 	int			nr_vlpis;
144 };
145 
146 /*
147  * The ITS view of a device - belongs to an ITS, owns an interrupt
148  * translation table, and a list of interrupts.  If it some of its
149  * LPIs are injected into a guest (GICv4), the event_map.vm field
150  * indicates which one.
151  */
152 struct its_device {
153 	struct list_head	entry;
154 	struct its_node		*its;
155 	struct event_lpi_map	event_map;
156 	void			*itt;
157 	u32			nr_ites;
158 	u32			device_id;
159 };
160 
161 static struct {
162 	raw_spinlock_t		lock;
163 	struct its_device	*dev;
164 	struct its_vpe		**vpes;
165 	int			next_victim;
166 } vpe_proxy;
167 
168 static LIST_HEAD(its_nodes);
169 static DEFINE_RAW_SPINLOCK(its_lock);
170 static struct rdists *gic_rdists;
171 static struct irq_domain *its_parent;
172 
173 static unsigned long its_list_map;
174 static u16 vmovp_seq_num;
175 static DEFINE_RAW_SPINLOCK(vmovp_lock);
176 
177 static DEFINE_IDA(its_vpeid_ida);
178 
179 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
180 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
181 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
182 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
183 
184 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
185 					       u32 event)
186 {
187 	struct its_node *its = its_dev->its;
188 
189 	return its->collections + its_dev->event_map.col_map[event];
190 }
191 
192 static struct its_collection *valid_col(struct its_collection *col)
193 {
194 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
195 		return NULL;
196 
197 	return col;
198 }
199 
200 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
201 {
202 	if (valid_col(its->collections + vpe->col_idx))
203 		return vpe;
204 
205 	return NULL;
206 }
207 
208 /*
209  * ITS command descriptors - parameters to be encoded in a command
210  * block.
211  */
212 struct its_cmd_desc {
213 	union {
214 		struct {
215 			struct its_device *dev;
216 			u32 event_id;
217 		} its_inv_cmd;
218 
219 		struct {
220 			struct its_device *dev;
221 			u32 event_id;
222 		} its_clear_cmd;
223 
224 		struct {
225 			struct its_device *dev;
226 			u32 event_id;
227 		} its_int_cmd;
228 
229 		struct {
230 			struct its_device *dev;
231 			int valid;
232 		} its_mapd_cmd;
233 
234 		struct {
235 			struct its_collection *col;
236 			int valid;
237 		} its_mapc_cmd;
238 
239 		struct {
240 			struct its_device *dev;
241 			u32 phys_id;
242 			u32 event_id;
243 		} its_mapti_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			struct its_collection *col;
248 			u32 event_id;
249 		} its_movi_cmd;
250 
251 		struct {
252 			struct its_device *dev;
253 			u32 event_id;
254 		} its_discard_cmd;
255 
256 		struct {
257 			struct its_collection *col;
258 		} its_invall_cmd;
259 
260 		struct {
261 			struct its_vpe *vpe;
262 		} its_vinvall_cmd;
263 
264 		struct {
265 			struct its_vpe *vpe;
266 			struct its_collection *col;
267 			bool valid;
268 		} its_vmapp_cmd;
269 
270 		struct {
271 			struct its_vpe *vpe;
272 			struct its_device *dev;
273 			u32 virt_id;
274 			u32 event_id;
275 			bool db_enabled;
276 		} its_vmapti_cmd;
277 
278 		struct {
279 			struct its_vpe *vpe;
280 			struct its_device *dev;
281 			u32 event_id;
282 			bool db_enabled;
283 		} its_vmovi_cmd;
284 
285 		struct {
286 			struct its_vpe *vpe;
287 			struct its_collection *col;
288 			u16 seq_num;
289 			u16 its_list;
290 		} its_vmovp_cmd;
291 	};
292 };
293 
294 /*
295  * The ITS command block, which is what the ITS actually parses.
296  */
297 struct its_cmd_block {
298 	u64	raw_cmd[4];
299 };
300 
301 #define ITS_CMD_QUEUE_SZ		SZ_64K
302 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
303 
304 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
305 						    struct its_cmd_block *,
306 						    struct its_cmd_desc *);
307 
308 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
309 					      struct its_cmd_block *,
310 					      struct its_cmd_desc *);
311 
312 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
313 {
314 	u64 mask = GENMASK_ULL(h, l);
315 	*raw_cmd &= ~mask;
316 	*raw_cmd |= (val << l) & mask;
317 }
318 
319 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
320 {
321 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
322 }
323 
324 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
325 {
326 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
327 }
328 
329 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
330 {
331 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
332 }
333 
334 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
335 {
336 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
337 }
338 
339 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
340 {
341 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
342 }
343 
344 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
345 {
346 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
347 }
348 
349 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
350 {
351 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
352 }
353 
354 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
355 {
356 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
357 }
358 
359 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
360 {
361 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
362 }
363 
364 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
365 {
366 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
367 }
368 
369 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
370 {
371 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
372 }
373 
374 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
375 {
376 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
377 }
378 
379 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
380 {
381 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
382 }
383 
384 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
385 {
386 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
387 }
388 
389 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
390 {
391 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
392 }
393 
394 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
395 {
396 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
397 }
398 
399 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
400 {
401 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
402 }
403 
404 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
405 {
406 	/* Let's fixup BE commands */
407 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
408 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
409 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
410 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
411 }
412 
413 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
414 						 struct its_cmd_block *cmd,
415 						 struct its_cmd_desc *desc)
416 {
417 	unsigned long itt_addr;
418 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
419 
420 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
421 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
422 
423 	its_encode_cmd(cmd, GITS_CMD_MAPD);
424 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
425 	its_encode_size(cmd, size - 1);
426 	its_encode_itt(cmd, itt_addr);
427 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
428 
429 	its_fixup_cmd(cmd);
430 
431 	return NULL;
432 }
433 
434 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
435 						 struct its_cmd_block *cmd,
436 						 struct its_cmd_desc *desc)
437 {
438 	its_encode_cmd(cmd, GITS_CMD_MAPC);
439 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
440 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
441 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
442 
443 	its_fixup_cmd(cmd);
444 
445 	return desc->its_mapc_cmd.col;
446 }
447 
448 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
449 						  struct its_cmd_block *cmd,
450 						  struct its_cmd_desc *desc)
451 {
452 	struct its_collection *col;
453 
454 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
455 			       desc->its_mapti_cmd.event_id);
456 
457 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
458 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
459 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
460 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
461 	its_encode_collection(cmd, col->col_id);
462 
463 	its_fixup_cmd(cmd);
464 
465 	return valid_col(col);
466 }
467 
468 static struct its_collection *its_build_movi_cmd(struct its_node *its,
469 						 struct its_cmd_block *cmd,
470 						 struct its_cmd_desc *desc)
471 {
472 	struct its_collection *col;
473 
474 	col = dev_event_to_col(desc->its_movi_cmd.dev,
475 			       desc->its_movi_cmd.event_id);
476 
477 	its_encode_cmd(cmd, GITS_CMD_MOVI);
478 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
479 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
480 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
481 
482 	its_fixup_cmd(cmd);
483 
484 	return valid_col(col);
485 }
486 
487 static struct its_collection *its_build_discard_cmd(struct its_node *its,
488 						    struct its_cmd_block *cmd,
489 						    struct its_cmd_desc *desc)
490 {
491 	struct its_collection *col;
492 
493 	col = dev_event_to_col(desc->its_discard_cmd.dev,
494 			       desc->its_discard_cmd.event_id);
495 
496 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
497 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
498 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
499 
500 	its_fixup_cmd(cmd);
501 
502 	return valid_col(col);
503 }
504 
505 static struct its_collection *its_build_inv_cmd(struct its_node *its,
506 						struct its_cmd_block *cmd,
507 						struct its_cmd_desc *desc)
508 {
509 	struct its_collection *col;
510 
511 	col = dev_event_to_col(desc->its_inv_cmd.dev,
512 			       desc->its_inv_cmd.event_id);
513 
514 	its_encode_cmd(cmd, GITS_CMD_INV);
515 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
516 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
517 
518 	its_fixup_cmd(cmd);
519 
520 	return valid_col(col);
521 }
522 
523 static struct its_collection *its_build_int_cmd(struct its_node *its,
524 						struct its_cmd_block *cmd,
525 						struct its_cmd_desc *desc)
526 {
527 	struct its_collection *col;
528 
529 	col = dev_event_to_col(desc->its_int_cmd.dev,
530 			       desc->its_int_cmd.event_id);
531 
532 	its_encode_cmd(cmd, GITS_CMD_INT);
533 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
534 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
535 
536 	its_fixup_cmd(cmd);
537 
538 	return valid_col(col);
539 }
540 
541 static struct its_collection *its_build_clear_cmd(struct its_node *its,
542 						  struct its_cmd_block *cmd,
543 						  struct its_cmd_desc *desc)
544 {
545 	struct its_collection *col;
546 
547 	col = dev_event_to_col(desc->its_clear_cmd.dev,
548 			       desc->its_clear_cmd.event_id);
549 
550 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
551 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
552 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
553 
554 	its_fixup_cmd(cmd);
555 
556 	return valid_col(col);
557 }
558 
559 static struct its_collection *its_build_invall_cmd(struct its_node *its,
560 						   struct its_cmd_block *cmd,
561 						   struct its_cmd_desc *desc)
562 {
563 	its_encode_cmd(cmd, GITS_CMD_INVALL);
564 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
565 
566 	its_fixup_cmd(cmd);
567 
568 	return NULL;
569 }
570 
571 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
572 					     struct its_cmd_block *cmd,
573 					     struct its_cmd_desc *desc)
574 {
575 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
576 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
577 
578 	its_fixup_cmd(cmd);
579 
580 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
581 }
582 
583 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
584 					   struct its_cmd_block *cmd,
585 					   struct its_cmd_desc *desc)
586 {
587 	unsigned long vpt_addr;
588 	u64 target;
589 
590 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
591 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
592 
593 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
594 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
595 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
596 	its_encode_target(cmd, target);
597 	its_encode_vpt_addr(cmd, vpt_addr);
598 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
599 
600 	its_fixup_cmd(cmd);
601 
602 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
603 }
604 
605 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
606 					    struct its_cmd_block *cmd,
607 					    struct its_cmd_desc *desc)
608 {
609 	u32 db;
610 
611 	if (desc->its_vmapti_cmd.db_enabled)
612 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
613 	else
614 		db = 1023;
615 
616 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
617 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
618 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
619 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
620 	its_encode_db_phys_id(cmd, db);
621 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
622 
623 	its_fixup_cmd(cmd);
624 
625 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
626 }
627 
628 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
629 					   struct its_cmd_block *cmd,
630 					   struct its_cmd_desc *desc)
631 {
632 	u32 db;
633 
634 	if (desc->its_vmovi_cmd.db_enabled)
635 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
636 	else
637 		db = 1023;
638 
639 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
640 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
641 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
642 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
643 	its_encode_db_phys_id(cmd, db);
644 	its_encode_db_valid(cmd, true);
645 
646 	its_fixup_cmd(cmd);
647 
648 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
649 }
650 
651 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
652 					   struct its_cmd_block *cmd,
653 					   struct its_cmd_desc *desc)
654 {
655 	u64 target;
656 
657 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
658 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
659 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
660 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
661 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
662 	its_encode_target(cmd, target);
663 
664 	its_fixup_cmd(cmd);
665 
666 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
667 }
668 
669 static u64 its_cmd_ptr_to_offset(struct its_node *its,
670 				 struct its_cmd_block *ptr)
671 {
672 	return (ptr - its->cmd_base) * sizeof(*ptr);
673 }
674 
675 static int its_queue_full(struct its_node *its)
676 {
677 	int widx;
678 	int ridx;
679 
680 	widx = its->cmd_write - its->cmd_base;
681 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
682 
683 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
684 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
685 		return 1;
686 
687 	return 0;
688 }
689 
690 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
691 {
692 	struct its_cmd_block *cmd;
693 	u32 count = 1000000;	/* 1s! */
694 
695 	while (its_queue_full(its)) {
696 		count--;
697 		if (!count) {
698 			pr_err_ratelimited("ITS queue not draining\n");
699 			return NULL;
700 		}
701 		cpu_relax();
702 		udelay(1);
703 	}
704 
705 	cmd = its->cmd_write++;
706 
707 	/* Handle queue wrapping */
708 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
709 		its->cmd_write = its->cmd_base;
710 
711 	/* Clear command  */
712 	cmd->raw_cmd[0] = 0;
713 	cmd->raw_cmd[1] = 0;
714 	cmd->raw_cmd[2] = 0;
715 	cmd->raw_cmd[3] = 0;
716 
717 	return cmd;
718 }
719 
720 static struct its_cmd_block *its_post_commands(struct its_node *its)
721 {
722 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
723 
724 	writel_relaxed(wr, its->base + GITS_CWRITER);
725 
726 	return its->cmd_write;
727 }
728 
729 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
730 {
731 	/*
732 	 * Make sure the commands written to memory are observable by
733 	 * the ITS.
734 	 */
735 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
736 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
737 	else
738 		dsb(ishst);
739 }
740 
741 static int its_wait_for_range_completion(struct its_node *its,
742 					 struct its_cmd_block *from,
743 					 struct its_cmd_block *to)
744 {
745 	u64 rd_idx, from_idx, to_idx;
746 	u32 count = 1000000;	/* 1s! */
747 
748 	from_idx = its_cmd_ptr_to_offset(its, from);
749 	to_idx = its_cmd_ptr_to_offset(its, to);
750 
751 	while (1) {
752 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
753 
754 		/* Direct case */
755 		if (from_idx < to_idx && rd_idx >= to_idx)
756 			break;
757 
758 		/* Wrapped case */
759 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
760 			break;
761 
762 		count--;
763 		if (!count) {
764 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
765 					   from_idx, to_idx, rd_idx);
766 			return -1;
767 		}
768 		cpu_relax();
769 		udelay(1);
770 	}
771 
772 	return 0;
773 }
774 
775 /* Warning, macro hell follows */
776 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
777 void name(struct its_node *its,						\
778 	  buildtype builder,						\
779 	  struct its_cmd_desc *desc)					\
780 {									\
781 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
782 	synctype *sync_obj;						\
783 	unsigned long flags;						\
784 									\
785 	raw_spin_lock_irqsave(&its->lock, flags);			\
786 									\
787 	cmd = its_allocate_entry(its);					\
788 	if (!cmd) {		/* We're soooooo screewed... */		\
789 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
790 		return;							\
791 	}								\
792 	sync_obj = builder(its, cmd, desc);				\
793 	its_flush_cmd(its, cmd);					\
794 									\
795 	if (sync_obj) {							\
796 		sync_cmd = its_allocate_entry(its);			\
797 		if (!sync_cmd)						\
798 			goto post;					\
799 									\
800 		buildfn(its, sync_cmd, sync_obj);			\
801 		its_flush_cmd(its, sync_cmd);				\
802 	}								\
803 									\
804 post:									\
805 	next_cmd = its_post_commands(its);				\
806 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
807 									\
808 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
809 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
810 }
811 
812 static void its_build_sync_cmd(struct its_node *its,
813 			       struct its_cmd_block *sync_cmd,
814 			       struct its_collection *sync_col)
815 {
816 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
817 	its_encode_target(sync_cmd, sync_col->target_address);
818 
819 	its_fixup_cmd(sync_cmd);
820 }
821 
822 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
823 			     struct its_collection, its_build_sync_cmd)
824 
825 static void its_build_vsync_cmd(struct its_node *its,
826 				struct its_cmd_block *sync_cmd,
827 				struct its_vpe *sync_vpe)
828 {
829 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
830 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
831 
832 	its_fixup_cmd(sync_cmd);
833 }
834 
835 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
836 			     struct its_vpe, its_build_vsync_cmd)
837 
838 static void its_send_int(struct its_device *dev, u32 event_id)
839 {
840 	struct its_cmd_desc desc;
841 
842 	desc.its_int_cmd.dev = dev;
843 	desc.its_int_cmd.event_id = event_id;
844 
845 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
846 }
847 
848 static void its_send_clear(struct its_device *dev, u32 event_id)
849 {
850 	struct its_cmd_desc desc;
851 
852 	desc.its_clear_cmd.dev = dev;
853 	desc.its_clear_cmd.event_id = event_id;
854 
855 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
856 }
857 
858 static void its_send_inv(struct its_device *dev, u32 event_id)
859 {
860 	struct its_cmd_desc desc;
861 
862 	desc.its_inv_cmd.dev = dev;
863 	desc.its_inv_cmd.event_id = event_id;
864 
865 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
866 }
867 
868 static void its_send_mapd(struct its_device *dev, int valid)
869 {
870 	struct its_cmd_desc desc;
871 
872 	desc.its_mapd_cmd.dev = dev;
873 	desc.its_mapd_cmd.valid = !!valid;
874 
875 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
876 }
877 
878 static void its_send_mapc(struct its_node *its, struct its_collection *col,
879 			  int valid)
880 {
881 	struct its_cmd_desc desc;
882 
883 	desc.its_mapc_cmd.col = col;
884 	desc.its_mapc_cmd.valid = !!valid;
885 
886 	its_send_single_command(its, its_build_mapc_cmd, &desc);
887 }
888 
889 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
890 {
891 	struct its_cmd_desc desc;
892 
893 	desc.its_mapti_cmd.dev = dev;
894 	desc.its_mapti_cmd.phys_id = irq_id;
895 	desc.its_mapti_cmd.event_id = id;
896 
897 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
898 }
899 
900 static void its_send_movi(struct its_device *dev,
901 			  struct its_collection *col, u32 id)
902 {
903 	struct its_cmd_desc desc;
904 
905 	desc.its_movi_cmd.dev = dev;
906 	desc.its_movi_cmd.col = col;
907 	desc.its_movi_cmd.event_id = id;
908 
909 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
910 }
911 
912 static void its_send_discard(struct its_device *dev, u32 id)
913 {
914 	struct its_cmd_desc desc;
915 
916 	desc.its_discard_cmd.dev = dev;
917 	desc.its_discard_cmd.event_id = id;
918 
919 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
920 }
921 
922 static void its_send_invall(struct its_node *its, struct its_collection *col)
923 {
924 	struct its_cmd_desc desc;
925 
926 	desc.its_invall_cmd.col = col;
927 
928 	its_send_single_command(its, its_build_invall_cmd, &desc);
929 }
930 
931 static void its_send_vmapti(struct its_device *dev, u32 id)
932 {
933 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
934 	struct its_cmd_desc desc;
935 
936 	desc.its_vmapti_cmd.vpe = map->vpe;
937 	desc.its_vmapti_cmd.dev = dev;
938 	desc.its_vmapti_cmd.virt_id = map->vintid;
939 	desc.its_vmapti_cmd.event_id = id;
940 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
941 
942 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
943 }
944 
945 static void its_send_vmovi(struct its_device *dev, u32 id)
946 {
947 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
948 	struct its_cmd_desc desc;
949 
950 	desc.its_vmovi_cmd.vpe = map->vpe;
951 	desc.its_vmovi_cmd.dev = dev;
952 	desc.its_vmovi_cmd.event_id = id;
953 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
954 
955 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
956 }
957 
958 static void its_send_vmapp(struct its_node *its,
959 			   struct its_vpe *vpe, bool valid)
960 {
961 	struct its_cmd_desc desc;
962 
963 	desc.its_vmapp_cmd.vpe = vpe;
964 	desc.its_vmapp_cmd.valid = valid;
965 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
966 
967 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
968 }
969 
970 static void its_send_vmovp(struct its_vpe *vpe)
971 {
972 	struct its_cmd_desc desc;
973 	struct its_node *its;
974 	unsigned long flags;
975 	int col_id = vpe->col_idx;
976 
977 	desc.its_vmovp_cmd.vpe = vpe;
978 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
979 
980 	if (!its_list_map) {
981 		its = list_first_entry(&its_nodes, struct its_node, entry);
982 		desc.its_vmovp_cmd.seq_num = 0;
983 		desc.its_vmovp_cmd.col = &its->collections[col_id];
984 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
985 		return;
986 	}
987 
988 	/*
989 	 * Yet another marvel of the architecture. If using the
990 	 * its_list "feature", we need to make sure that all ITSs
991 	 * receive all VMOVP commands in the same order. The only way
992 	 * to guarantee this is to make vmovp a serialization point.
993 	 *
994 	 * Wall <-- Head.
995 	 */
996 	raw_spin_lock_irqsave(&vmovp_lock, flags);
997 
998 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
999 
1000 	/* Emit VMOVPs */
1001 	list_for_each_entry(its, &its_nodes, entry) {
1002 		if (!its->is_v4)
1003 			continue;
1004 
1005 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1006 			continue;
1007 
1008 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1009 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1010 	}
1011 
1012 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1013 }
1014 
1015 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1016 {
1017 	struct its_cmd_desc desc;
1018 
1019 	desc.its_vinvall_cmd.vpe = vpe;
1020 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1021 }
1022 
1023 /*
1024  * irqchip functions - assumes MSI, mostly.
1025  */
1026 
1027 static inline u32 its_get_event_id(struct irq_data *d)
1028 {
1029 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1030 	return d->hwirq - its_dev->event_map.lpi_base;
1031 }
1032 
1033 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1034 {
1035 	irq_hw_number_t hwirq;
1036 	void *va;
1037 	u8 *cfg;
1038 
1039 	if (irqd_is_forwarded_to_vcpu(d)) {
1040 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1041 		u32 event = its_get_event_id(d);
1042 		struct its_vlpi_map *map;
1043 
1044 		va = page_address(its_dev->event_map.vm->vprop_page);
1045 		map = &its_dev->event_map.vlpi_maps[event];
1046 		hwirq = map->vintid;
1047 
1048 		/* Remember the updated property */
1049 		map->properties &= ~clr;
1050 		map->properties |= set | LPI_PROP_GROUP1;
1051 	} else {
1052 		va = gic_rdists->prop_table_va;
1053 		hwirq = d->hwirq;
1054 	}
1055 
1056 	cfg = va + hwirq - 8192;
1057 	*cfg &= ~clr;
1058 	*cfg |= set | LPI_PROP_GROUP1;
1059 
1060 	/*
1061 	 * Make the above write visible to the redistributors.
1062 	 * And yes, we're flushing exactly: One. Single. Byte.
1063 	 * Humpf...
1064 	 */
1065 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1066 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1067 	else
1068 		dsb(ishst);
1069 }
1070 
1071 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1072 {
1073 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1074 
1075 	lpi_write_config(d, clr, set);
1076 	its_send_inv(its_dev, its_get_event_id(d));
1077 }
1078 
1079 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1080 {
1081 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1082 	u32 event = its_get_event_id(d);
1083 
1084 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1085 		return;
1086 
1087 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1088 
1089 	/*
1090 	 * More fun with the architecture:
1091 	 *
1092 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1093 	 * value or to 1023, depending on the enable bit. But that
1094 	 * would be issueing a mapping for an /existing/ DevID+EventID
1095 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1096 	 * to the /same/ vPE, using this opportunity to adjust the
1097 	 * doorbell. Mouahahahaha. We loves it, Precious.
1098 	 */
1099 	its_send_vmovi(its_dev, event);
1100 }
1101 
1102 static void its_mask_irq(struct irq_data *d)
1103 {
1104 	if (irqd_is_forwarded_to_vcpu(d))
1105 		its_vlpi_set_doorbell(d, false);
1106 
1107 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1108 }
1109 
1110 static void its_unmask_irq(struct irq_data *d)
1111 {
1112 	if (irqd_is_forwarded_to_vcpu(d))
1113 		its_vlpi_set_doorbell(d, true);
1114 
1115 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1116 }
1117 
1118 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1119 			    bool force)
1120 {
1121 	unsigned int cpu;
1122 	const struct cpumask *cpu_mask = cpu_online_mask;
1123 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1124 	struct its_collection *target_col;
1125 	u32 id = its_get_event_id(d);
1126 
1127 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1128 	if (irqd_is_forwarded_to_vcpu(d))
1129 		return -EINVAL;
1130 
1131        /* lpi cannot be routed to a redistributor that is on a foreign node */
1132 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1133 		if (its_dev->its->numa_node >= 0) {
1134 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1135 			if (!cpumask_intersects(mask_val, cpu_mask))
1136 				return -EINVAL;
1137 		}
1138 	}
1139 
1140 	cpu = cpumask_any_and(mask_val, cpu_mask);
1141 
1142 	if (cpu >= nr_cpu_ids)
1143 		return -EINVAL;
1144 
1145 	/* don't set the affinity when the target cpu is same as current one */
1146 	if (cpu != its_dev->event_map.col_map[id]) {
1147 		target_col = &its_dev->its->collections[cpu];
1148 		its_send_movi(its_dev, target_col, id);
1149 		its_dev->event_map.col_map[id] = cpu;
1150 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1151 	}
1152 
1153 	return IRQ_SET_MASK_OK_DONE;
1154 }
1155 
1156 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1157 {
1158 	struct its_node *its = its_dev->its;
1159 
1160 	return its->phys_base + GITS_TRANSLATER;
1161 }
1162 
1163 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1164 {
1165 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1166 	struct its_node *its;
1167 	u64 addr;
1168 
1169 	its = its_dev->its;
1170 	addr = its->get_msi_base(its_dev);
1171 
1172 	msg->address_lo		= lower_32_bits(addr);
1173 	msg->address_hi		= upper_32_bits(addr);
1174 	msg->data		= its_get_event_id(d);
1175 
1176 	iommu_dma_map_msi_msg(d->irq, msg);
1177 }
1178 
1179 static int its_irq_set_irqchip_state(struct irq_data *d,
1180 				     enum irqchip_irq_state which,
1181 				     bool state)
1182 {
1183 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1184 	u32 event = its_get_event_id(d);
1185 
1186 	if (which != IRQCHIP_STATE_PENDING)
1187 		return -EINVAL;
1188 
1189 	if (state)
1190 		its_send_int(its_dev, event);
1191 	else
1192 		its_send_clear(its_dev, event);
1193 
1194 	return 0;
1195 }
1196 
1197 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1198 {
1199 	unsigned long flags;
1200 
1201 	/* Not using the ITS list? Everything is always mapped. */
1202 	if (!its_list_map)
1203 		return;
1204 
1205 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1206 
1207 	/*
1208 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1209 	 * them mapped now.
1210 	 */
1211 	vm->vlpi_count[its->list_nr]++;
1212 
1213 	if (vm->vlpi_count[its->list_nr] == 1) {
1214 		int i;
1215 
1216 		for (i = 0; i < vm->nr_vpes; i++) {
1217 			struct its_vpe *vpe = vm->vpes[i];
1218 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1219 
1220 			/* Map the VPE to the first possible CPU */
1221 			vpe->col_idx = cpumask_first(cpu_online_mask);
1222 			its_send_vmapp(its, vpe, true);
1223 			its_send_vinvall(its, vpe);
1224 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1225 		}
1226 	}
1227 
1228 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1229 }
1230 
1231 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1232 {
1233 	unsigned long flags;
1234 
1235 	/* Not using the ITS list? Everything is always mapped. */
1236 	if (!its_list_map)
1237 		return;
1238 
1239 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1240 
1241 	if (!--vm->vlpi_count[its->list_nr]) {
1242 		int i;
1243 
1244 		for (i = 0; i < vm->nr_vpes; i++)
1245 			its_send_vmapp(its, vm->vpes[i], false);
1246 	}
1247 
1248 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1249 }
1250 
1251 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1252 {
1253 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1254 	u32 event = its_get_event_id(d);
1255 	int ret = 0;
1256 
1257 	if (!info->map)
1258 		return -EINVAL;
1259 
1260 	mutex_lock(&its_dev->event_map.vlpi_lock);
1261 
1262 	if (!its_dev->event_map.vm) {
1263 		struct its_vlpi_map *maps;
1264 
1265 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1266 			       GFP_KERNEL);
1267 		if (!maps) {
1268 			ret = -ENOMEM;
1269 			goto out;
1270 		}
1271 
1272 		its_dev->event_map.vm = info->map->vm;
1273 		its_dev->event_map.vlpi_maps = maps;
1274 	} else if (its_dev->event_map.vm != info->map->vm) {
1275 		ret = -EINVAL;
1276 		goto out;
1277 	}
1278 
1279 	/* Get our private copy of the mapping information */
1280 	its_dev->event_map.vlpi_maps[event] = *info->map;
1281 
1282 	if (irqd_is_forwarded_to_vcpu(d)) {
1283 		/* Already mapped, move it around */
1284 		its_send_vmovi(its_dev, event);
1285 	} else {
1286 		/* Ensure all the VPEs are mapped on this ITS */
1287 		its_map_vm(its_dev->its, info->map->vm);
1288 
1289 		/*
1290 		 * Flag the interrupt as forwarded so that we can
1291 		 * start poking the virtual property table.
1292 		 */
1293 		irqd_set_forwarded_to_vcpu(d);
1294 
1295 		/* Write out the property to the prop table */
1296 		lpi_write_config(d, 0xff, info->map->properties);
1297 
1298 		/* Drop the physical mapping */
1299 		its_send_discard(its_dev, event);
1300 
1301 		/* and install the virtual one */
1302 		its_send_vmapti(its_dev, event);
1303 
1304 		/* Increment the number of VLPIs */
1305 		its_dev->event_map.nr_vlpis++;
1306 	}
1307 
1308 out:
1309 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1310 	return ret;
1311 }
1312 
1313 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1314 {
1315 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1316 	u32 event = its_get_event_id(d);
1317 	int ret = 0;
1318 
1319 	mutex_lock(&its_dev->event_map.vlpi_lock);
1320 
1321 	if (!its_dev->event_map.vm ||
1322 	    !its_dev->event_map.vlpi_maps[event].vm) {
1323 		ret = -EINVAL;
1324 		goto out;
1325 	}
1326 
1327 	/* Copy our mapping information to the incoming request */
1328 	*info->map = its_dev->event_map.vlpi_maps[event];
1329 
1330 out:
1331 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1332 	return ret;
1333 }
1334 
1335 static int its_vlpi_unmap(struct irq_data *d)
1336 {
1337 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338 	u32 event = its_get_event_id(d);
1339 	int ret = 0;
1340 
1341 	mutex_lock(&its_dev->event_map.vlpi_lock);
1342 
1343 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1344 		ret = -EINVAL;
1345 		goto out;
1346 	}
1347 
1348 	/* Drop the virtual mapping */
1349 	its_send_discard(its_dev, event);
1350 
1351 	/* and restore the physical one */
1352 	irqd_clr_forwarded_to_vcpu(d);
1353 	its_send_mapti(its_dev, d->hwirq, event);
1354 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1355 				    LPI_PROP_ENABLED |
1356 				    LPI_PROP_GROUP1));
1357 
1358 	/* Potentially unmap the VM from this ITS */
1359 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1360 
1361 	/*
1362 	 * Drop the refcount and make the device available again if
1363 	 * this was the last VLPI.
1364 	 */
1365 	if (!--its_dev->event_map.nr_vlpis) {
1366 		its_dev->event_map.vm = NULL;
1367 		kfree(its_dev->event_map.vlpi_maps);
1368 	}
1369 
1370 out:
1371 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1372 	return ret;
1373 }
1374 
1375 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1376 {
1377 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1378 
1379 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1380 		return -EINVAL;
1381 
1382 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1383 		lpi_update_config(d, 0xff, info->config);
1384 	else
1385 		lpi_write_config(d, 0xff, info->config);
1386 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1387 
1388 	return 0;
1389 }
1390 
1391 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1392 {
1393 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1394 	struct its_cmd_info *info = vcpu_info;
1395 
1396 	/* Need a v4 ITS */
1397 	if (!its_dev->its->is_v4)
1398 		return -EINVAL;
1399 
1400 	/* Unmap request? */
1401 	if (!info)
1402 		return its_vlpi_unmap(d);
1403 
1404 	switch (info->cmd_type) {
1405 	case MAP_VLPI:
1406 		return its_vlpi_map(d, info);
1407 
1408 	case GET_VLPI:
1409 		return its_vlpi_get(d, info);
1410 
1411 	case PROP_UPDATE_VLPI:
1412 	case PROP_UPDATE_AND_INV_VLPI:
1413 		return its_vlpi_prop_update(d, info);
1414 
1415 	default:
1416 		return -EINVAL;
1417 	}
1418 }
1419 
1420 static struct irq_chip its_irq_chip = {
1421 	.name			= "ITS",
1422 	.irq_mask		= its_mask_irq,
1423 	.irq_unmask		= its_unmask_irq,
1424 	.irq_eoi		= irq_chip_eoi_parent,
1425 	.irq_set_affinity	= its_set_affinity,
1426 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1427 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1428 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1429 };
1430 
1431 
1432 /*
1433  * How we allocate LPIs:
1434  *
1435  * lpi_range_list contains ranges of LPIs that are to available to
1436  * allocate from. To allocate LPIs, just pick the first range that
1437  * fits the required allocation, and reduce it by the required
1438  * amount. Once empty, remove the range from the list.
1439  *
1440  * To free a range of LPIs, add a free range to the list, sort it and
1441  * merge the result if the new range happens to be adjacent to an
1442  * already free block.
1443  *
1444  * The consequence of the above is that allocation is cost is low, but
1445  * freeing is expensive. We assumes that freeing rarely occurs.
1446  */
1447 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1448 
1449 static DEFINE_MUTEX(lpi_range_lock);
1450 static LIST_HEAD(lpi_range_list);
1451 
1452 struct lpi_range {
1453 	struct list_head	entry;
1454 	u32			base_id;
1455 	u32			span;
1456 };
1457 
1458 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1459 {
1460 	struct lpi_range *range;
1461 
1462 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1463 	if (range) {
1464 		INIT_LIST_HEAD(&range->entry);
1465 		range->base_id = base;
1466 		range->span = span;
1467 	}
1468 
1469 	return range;
1470 }
1471 
1472 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1473 {
1474 	struct lpi_range *ra, *rb;
1475 
1476 	ra = container_of(a, struct lpi_range, entry);
1477 	rb = container_of(b, struct lpi_range, entry);
1478 
1479 	return rb->base_id - ra->base_id;
1480 }
1481 
1482 static void merge_lpi_ranges(void)
1483 {
1484 	struct lpi_range *range, *tmp;
1485 
1486 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1487 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1488 		    (tmp->base_id == (range->base_id + range->span))) {
1489 			tmp->base_id = range->base_id;
1490 			tmp->span += range->span;
1491 			list_del(&range->entry);
1492 			kfree(range);
1493 		}
1494 	}
1495 }
1496 
1497 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1498 {
1499 	struct lpi_range *range, *tmp;
1500 	int err = -ENOSPC;
1501 
1502 	mutex_lock(&lpi_range_lock);
1503 
1504 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1505 		if (range->span >= nr_lpis) {
1506 			*base = range->base_id;
1507 			range->base_id += nr_lpis;
1508 			range->span -= nr_lpis;
1509 
1510 			if (range->span == 0) {
1511 				list_del(&range->entry);
1512 				kfree(range);
1513 			}
1514 
1515 			err = 0;
1516 			break;
1517 		}
1518 	}
1519 
1520 	mutex_unlock(&lpi_range_lock);
1521 
1522 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1523 	return err;
1524 }
1525 
1526 static int free_lpi_range(u32 base, u32 nr_lpis)
1527 {
1528 	struct lpi_range *new;
1529 	int err = 0;
1530 
1531 	mutex_lock(&lpi_range_lock);
1532 
1533 	new = mk_lpi_range(base, nr_lpis);
1534 	if (!new) {
1535 		err = -ENOMEM;
1536 		goto out;
1537 	}
1538 
1539 	list_add(&new->entry, &lpi_range_list);
1540 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1541 	merge_lpi_ranges();
1542 out:
1543 	mutex_unlock(&lpi_range_lock);
1544 	return err;
1545 }
1546 
1547 static int __init its_lpi_init(u32 id_bits)
1548 {
1549 	u32 lpis = (1UL << id_bits) - 8192;
1550 	u32 numlpis;
1551 	int err;
1552 
1553 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1554 
1555 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1556 		lpis = numlpis;
1557 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1558 			lpis);
1559 	}
1560 
1561 	/*
1562 	 * Initializing the allocator is just the same as freeing the
1563 	 * full range of LPIs.
1564 	 */
1565 	err = free_lpi_range(8192, lpis);
1566 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1567 	return err;
1568 }
1569 
1570 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1571 {
1572 	unsigned long *bitmap = NULL;
1573 	int err = 0;
1574 
1575 	do {
1576 		err = alloc_lpi_range(nr_irqs, base);
1577 		if (!err)
1578 			break;
1579 
1580 		nr_irqs /= 2;
1581 	} while (nr_irqs > 0);
1582 
1583 	if (err)
1584 		goto out;
1585 
1586 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1587 	if (!bitmap)
1588 		goto out;
1589 
1590 	*nr_ids = nr_irqs;
1591 
1592 out:
1593 	if (!bitmap)
1594 		*base = *nr_ids = 0;
1595 
1596 	return bitmap;
1597 }
1598 
1599 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1600 {
1601 	WARN_ON(free_lpi_range(base, nr_ids));
1602 	kfree(bitmap);
1603 }
1604 
1605 static void gic_reset_prop_table(void *va)
1606 {
1607 	/* Priority 0xa0, Group-1, disabled */
1608 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1609 
1610 	/* Make sure the GIC will observe the written configuration */
1611 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1612 }
1613 
1614 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1615 {
1616 	struct page *prop_page;
1617 
1618 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1619 	if (!prop_page)
1620 		return NULL;
1621 
1622 	gic_reset_prop_table(page_address(prop_page));
1623 
1624 	return prop_page;
1625 }
1626 
1627 static void its_free_prop_table(struct page *prop_page)
1628 {
1629 	free_pages((unsigned long)page_address(prop_page),
1630 		   get_order(LPI_PROPBASE_SZ));
1631 }
1632 
1633 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1634 {
1635 	phys_addr_t start, end, addr_end;
1636 	u64 i;
1637 
1638 	/*
1639 	 * We don't bother checking for a kdump kernel as by
1640 	 * construction, the LPI tables are out of this kernel's
1641 	 * memory map.
1642 	 */
1643 	if (is_kdump_kernel())
1644 		return true;
1645 
1646 	addr_end = addr + size - 1;
1647 
1648 	for_each_reserved_mem_region(i, &start, &end) {
1649 		if (addr >= start && addr_end <= end)
1650 			return true;
1651 	}
1652 
1653 	/* Not found, not a good sign... */
1654 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1655 		&addr, &addr_end);
1656 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1657 	return false;
1658 }
1659 
1660 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1661 {
1662 	if (efi_enabled(EFI_CONFIG_TABLES))
1663 		return efi_mem_reserve_persistent(addr, size);
1664 
1665 	return 0;
1666 }
1667 
1668 static int __init its_setup_lpi_prop_table(void)
1669 {
1670 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1671 		u64 val;
1672 
1673 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1674 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1675 
1676 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1677 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1678 						     LPI_PROPBASE_SZ,
1679 						     MEMREMAP_WB);
1680 		gic_reset_prop_table(gic_rdists->prop_table_va);
1681 	} else {
1682 		struct page *page;
1683 
1684 		lpi_id_bits = min_t(u32,
1685 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1686 				    ITS_MAX_LPI_NRBITS);
1687 		page = its_allocate_prop_table(GFP_NOWAIT);
1688 		if (!page) {
1689 			pr_err("Failed to allocate PROPBASE\n");
1690 			return -ENOMEM;
1691 		}
1692 
1693 		gic_rdists->prop_table_pa = page_to_phys(page);
1694 		gic_rdists->prop_table_va = page_address(page);
1695 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1696 					  LPI_PROPBASE_SZ));
1697 	}
1698 
1699 	pr_info("GICv3: using LPI property table @%pa\n",
1700 		&gic_rdists->prop_table_pa);
1701 
1702 	return its_lpi_init(lpi_id_bits);
1703 }
1704 
1705 static const char *its_base_type_string[] = {
1706 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1707 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1708 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1709 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1710 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1711 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1712 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1713 };
1714 
1715 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1716 {
1717 	u32 idx = baser - its->tables;
1718 
1719 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1720 }
1721 
1722 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1723 			    u64 val)
1724 {
1725 	u32 idx = baser - its->tables;
1726 
1727 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1728 	baser->val = its_read_baser(its, baser);
1729 }
1730 
1731 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1732 			   u64 cache, u64 shr, u32 psz, u32 order,
1733 			   bool indirect)
1734 {
1735 	u64 val = its_read_baser(its, baser);
1736 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1737 	u64 type = GITS_BASER_TYPE(val);
1738 	u64 baser_phys, tmp;
1739 	u32 alloc_pages;
1740 	void *base;
1741 
1742 retry_alloc_baser:
1743 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1744 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1745 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1746 			&its->phys_base, its_base_type_string[type],
1747 			alloc_pages, GITS_BASER_PAGES_MAX);
1748 		alloc_pages = GITS_BASER_PAGES_MAX;
1749 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1750 	}
1751 
1752 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1753 	if (!base)
1754 		return -ENOMEM;
1755 
1756 	baser_phys = virt_to_phys(base);
1757 
1758 	/* Check if the physical address of the memory is above 48bits */
1759 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1760 
1761 		/* 52bit PA is supported only when PageSize=64K */
1762 		if (psz != SZ_64K) {
1763 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1764 			free_pages((unsigned long)base, order);
1765 			return -ENXIO;
1766 		}
1767 
1768 		/* Convert 52bit PA to 48bit field */
1769 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1770 	}
1771 
1772 retry_baser:
1773 	val = (baser_phys					 |
1774 		(type << GITS_BASER_TYPE_SHIFT)			 |
1775 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1776 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1777 		cache						 |
1778 		shr						 |
1779 		GITS_BASER_VALID);
1780 
1781 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1782 
1783 	switch (psz) {
1784 	case SZ_4K:
1785 		val |= GITS_BASER_PAGE_SIZE_4K;
1786 		break;
1787 	case SZ_16K:
1788 		val |= GITS_BASER_PAGE_SIZE_16K;
1789 		break;
1790 	case SZ_64K:
1791 		val |= GITS_BASER_PAGE_SIZE_64K;
1792 		break;
1793 	}
1794 
1795 	its_write_baser(its, baser, val);
1796 	tmp = baser->val;
1797 
1798 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1799 		/*
1800 		 * Shareability didn't stick. Just use
1801 		 * whatever the read reported, which is likely
1802 		 * to be the only thing this redistributor
1803 		 * supports. If that's zero, make it
1804 		 * non-cacheable as well.
1805 		 */
1806 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1807 		if (!shr) {
1808 			cache = GITS_BASER_nC;
1809 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1810 		}
1811 		goto retry_baser;
1812 	}
1813 
1814 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1815 		/*
1816 		 * Page size didn't stick. Let's try a smaller
1817 		 * size and retry. If we reach 4K, then
1818 		 * something is horribly wrong...
1819 		 */
1820 		free_pages((unsigned long)base, order);
1821 		baser->base = NULL;
1822 
1823 		switch (psz) {
1824 		case SZ_16K:
1825 			psz = SZ_4K;
1826 			goto retry_alloc_baser;
1827 		case SZ_64K:
1828 			psz = SZ_16K;
1829 			goto retry_alloc_baser;
1830 		}
1831 	}
1832 
1833 	if (val != tmp) {
1834 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1835 		       &its->phys_base, its_base_type_string[type],
1836 		       val, tmp);
1837 		free_pages((unsigned long)base, order);
1838 		return -ENXIO;
1839 	}
1840 
1841 	baser->order = order;
1842 	baser->base = base;
1843 	baser->psz = psz;
1844 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1845 
1846 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1847 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1848 		its_base_type_string[type],
1849 		(unsigned long)virt_to_phys(base),
1850 		indirect ? "indirect" : "flat", (int)esz,
1851 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1852 
1853 	return 0;
1854 }
1855 
1856 static bool its_parse_indirect_baser(struct its_node *its,
1857 				     struct its_baser *baser,
1858 				     u32 psz, u32 *order, u32 ids)
1859 {
1860 	u64 tmp = its_read_baser(its, baser);
1861 	u64 type = GITS_BASER_TYPE(tmp);
1862 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1863 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1864 	u32 new_order = *order;
1865 	bool indirect = false;
1866 
1867 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1868 	if ((esz << ids) > (psz * 2)) {
1869 		/*
1870 		 * Find out whether hw supports a single or two-level table by
1871 		 * table by reading bit at offset '62' after writing '1' to it.
1872 		 */
1873 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1874 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1875 
1876 		if (indirect) {
1877 			/*
1878 			 * The size of the lvl2 table is equal to ITS page size
1879 			 * which is 'psz'. For computing lvl1 table size,
1880 			 * subtract ID bits that sparse lvl2 table from 'ids'
1881 			 * which is reported by ITS hardware times lvl1 table
1882 			 * entry size.
1883 			 */
1884 			ids -= ilog2(psz / (int)esz);
1885 			esz = GITS_LVL1_ENTRY_SIZE;
1886 		}
1887 	}
1888 
1889 	/*
1890 	 * Allocate as many entries as required to fit the
1891 	 * range of device IDs that the ITS can grok... The ID
1892 	 * space being incredibly sparse, this results in a
1893 	 * massive waste of memory if two-level device table
1894 	 * feature is not supported by hardware.
1895 	 */
1896 	new_order = max_t(u32, get_order(esz << ids), new_order);
1897 	if (new_order >= MAX_ORDER) {
1898 		new_order = MAX_ORDER - 1;
1899 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1900 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1901 			&its->phys_base, its_base_type_string[type],
1902 			its->device_ids, ids);
1903 	}
1904 
1905 	*order = new_order;
1906 
1907 	return indirect;
1908 }
1909 
1910 static void its_free_tables(struct its_node *its)
1911 {
1912 	int i;
1913 
1914 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1915 		if (its->tables[i].base) {
1916 			free_pages((unsigned long)its->tables[i].base,
1917 				   its->tables[i].order);
1918 			its->tables[i].base = NULL;
1919 		}
1920 	}
1921 }
1922 
1923 static int its_alloc_tables(struct its_node *its)
1924 {
1925 	u64 shr = GITS_BASER_InnerShareable;
1926 	u64 cache = GITS_BASER_RaWaWb;
1927 	u32 psz = SZ_64K;
1928 	int err, i;
1929 
1930 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1931 		/* erratum 24313: ignore memory access type */
1932 		cache = GITS_BASER_nCnB;
1933 
1934 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1935 		struct its_baser *baser = its->tables + i;
1936 		u64 val = its_read_baser(its, baser);
1937 		u64 type = GITS_BASER_TYPE(val);
1938 		u32 order = get_order(psz);
1939 		bool indirect = false;
1940 
1941 		switch (type) {
1942 		case GITS_BASER_TYPE_NONE:
1943 			continue;
1944 
1945 		case GITS_BASER_TYPE_DEVICE:
1946 			indirect = its_parse_indirect_baser(its, baser,
1947 							    psz, &order,
1948 							    its->device_ids);
1949 		case GITS_BASER_TYPE_VCPU:
1950 			indirect = its_parse_indirect_baser(its, baser,
1951 							    psz, &order,
1952 							    ITS_MAX_VPEID_BITS);
1953 			break;
1954 		}
1955 
1956 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1957 		if (err < 0) {
1958 			its_free_tables(its);
1959 			return err;
1960 		}
1961 
1962 		/* Update settings which will be used for next BASERn */
1963 		psz = baser->psz;
1964 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1965 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static int its_alloc_collections(struct its_node *its)
1972 {
1973 	int i;
1974 
1975 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1976 				   GFP_KERNEL);
1977 	if (!its->collections)
1978 		return -ENOMEM;
1979 
1980 	for (i = 0; i < nr_cpu_ids; i++)
1981 		its->collections[i].target_address = ~0ULL;
1982 
1983 	return 0;
1984 }
1985 
1986 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1987 {
1988 	struct page *pend_page;
1989 
1990 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1991 				get_order(LPI_PENDBASE_SZ));
1992 	if (!pend_page)
1993 		return NULL;
1994 
1995 	/* Make sure the GIC will observe the zero-ed page */
1996 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1997 
1998 	return pend_page;
1999 }
2000 
2001 static void its_free_pending_table(struct page *pt)
2002 {
2003 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2004 }
2005 
2006 /*
2007  * Booting with kdump and LPIs enabled is generally fine. Any other
2008  * case is wrong in the absence of firmware/EFI support.
2009  */
2010 static bool enabled_lpis_allowed(void)
2011 {
2012 	phys_addr_t addr;
2013 	u64 val;
2014 
2015 	/* Check whether the property table is in a reserved region */
2016 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2017 	addr = val & GENMASK_ULL(51, 12);
2018 
2019 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2020 }
2021 
2022 static int __init allocate_lpi_tables(void)
2023 {
2024 	u64 val;
2025 	int err, cpu;
2026 
2027 	/*
2028 	 * If LPIs are enabled while we run this from the boot CPU,
2029 	 * flag the RD tables as pre-allocated if the stars do align.
2030 	 */
2031 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2032 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2033 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2034 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2035 		pr_info("GICv3: Using preallocated redistributor tables\n");
2036 	}
2037 
2038 	err = its_setup_lpi_prop_table();
2039 	if (err)
2040 		return err;
2041 
2042 	/*
2043 	 * We allocate all the pending tables anyway, as we may have a
2044 	 * mix of RDs that have had LPIs enabled, and some that
2045 	 * don't. We'll free the unused ones as each CPU comes online.
2046 	 */
2047 	for_each_possible_cpu(cpu) {
2048 		struct page *pend_page;
2049 
2050 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2051 		if (!pend_page) {
2052 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2053 			return -ENOMEM;
2054 		}
2055 
2056 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 static void its_cpu_init_lpis(void)
2063 {
2064 	void __iomem *rbase = gic_data_rdist_rd_base();
2065 	struct page *pend_page;
2066 	phys_addr_t paddr;
2067 	u64 val, tmp;
2068 
2069 	if (gic_data_rdist()->lpi_enabled)
2070 		return;
2071 
2072 	val = readl_relaxed(rbase + GICR_CTLR);
2073 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2074 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2075 		/*
2076 		 * Check that we get the same property table on all
2077 		 * RDs. If we don't, this is hopeless.
2078 		 */
2079 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2080 		paddr &= GENMASK_ULL(51, 12);
2081 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2082 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2083 
2084 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2085 		paddr &= GENMASK_ULL(51, 16);
2086 
2087 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2088 		its_free_pending_table(gic_data_rdist()->pend_page);
2089 		gic_data_rdist()->pend_page = NULL;
2090 
2091 		goto out;
2092 	}
2093 
2094 	pend_page = gic_data_rdist()->pend_page;
2095 	paddr = page_to_phys(pend_page);
2096 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2097 
2098 	/* set PROPBASE */
2099 	val = (gic_rdists->prop_table_pa |
2100 	       GICR_PROPBASER_InnerShareable |
2101 	       GICR_PROPBASER_RaWaWb |
2102 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2103 
2104 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2105 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2106 
2107 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2108 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2109 			/*
2110 			 * The HW reports non-shareable, we must
2111 			 * remove the cacheability attributes as
2112 			 * well.
2113 			 */
2114 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2115 				 GICR_PROPBASER_CACHEABILITY_MASK);
2116 			val |= GICR_PROPBASER_nC;
2117 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2118 		}
2119 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2120 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2121 	}
2122 
2123 	/* set PENDBASE */
2124 	val = (page_to_phys(pend_page) |
2125 	       GICR_PENDBASER_InnerShareable |
2126 	       GICR_PENDBASER_RaWaWb);
2127 
2128 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2129 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2130 
2131 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2132 		/*
2133 		 * The HW reports non-shareable, we must remove the
2134 		 * cacheability attributes as well.
2135 		 */
2136 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2137 			 GICR_PENDBASER_CACHEABILITY_MASK);
2138 		val |= GICR_PENDBASER_nC;
2139 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2140 	}
2141 
2142 	/* Enable LPIs */
2143 	val = readl_relaxed(rbase + GICR_CTLR);
2144 	val |= GICR_CTLR_ENABLE_LPIS;
2145 	writel_relaxed(val, rbase + GICR_CTLR);
2146 
2147 	/* Make sure the GIC has seen the above */
2148 	dsb(sy);
2149 out:
2150 	gic_data_rdist()->lpi_enabled = true;
2151 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2152 		smp_processor_id(),
2153 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2154 		&paddr);
2155 }
2156 
2157 static void its_cpu_init_collection(struct its_node *its)
2158 {
2159 	int cpu = smp_processor_id();
2160 	u64 target;
2161 
2162 	/* avoid cross node collections and its mapping */
2163 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2164 		struct device_node *cpu_node;
2165 
2166 		cpu_node = of_get_cpu_node(cpu, NULL);
2167 		if (its->numa_node != NUMA_NO_NODE &&
2168 			its->numa_node != of_node_to_nid(cpu_node))
2169 			return;
2170 	}
2171 
2172 	/*
2173 	 * We now have to bind each collection to its target
2174 	 * redistributor.
2175 	 */
2176 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2177 		/*
2178 		 * This ITS wants the physical address of the
2179 		 * redistributor.
2180 		 */
2181 		target = gic_data_rdist()->phys_base;
2182 	} else {
2183 		/* This ITS wants a linear CPU number. */
2184 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2185 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2186 	}
2187 
2188 	/* Perform collection mapping */
2189 	its->collections[cpu].target_address = target;
2190 	its->collections[cpu].col_id = cpu;
2191 
2192 	its_send_mapc(its, &its->collections[cpu], 1);
2193 	its_send_invall(its, &its->collections[cpu]);
2194 }
2195 
2196 static void its_cpu_init_collections(void)
2197 {
2198 	struct its_node *its;
2199 
2200 	raw_spin_lock(&its_lock);
2201 
2202 	list_for_each_entry(its, &its_nodes, entry)
2203 		its_cpu_init_collection(its);
2204 
2205 	raw_spin_unlock(&its_lock);
2206 }
2207 
2208 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2209 {
2210 	struct its_device *its_dev = NULL, *tmp;
2211 	unsigned long flags;
2212 
2213 	raw_spin_lock_irqsave(&its->lock, flags);
2214 
2215 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2216 		if (tmp->device_id == dev_id) {
2217 			its_dev = tmp;
2218 			break;
2219 		}
2220 	}
2221 
2222 	raw_spin_unlock_irqrestore(&its->lock, flags);
2223 
2224 	return its_dev;
2225 }
2226 
2227 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2228 {
2229 	int i;
2230 
2231 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2232 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2233 			return &its->tables[i];
2234 	}
2235 
2236 	return NULL;
2237 }
2238 
2239 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2240 {
2241 	struct page *page;
2242 	u32 esz, idx;
2243 	__le64 *table;
2244 
2245 	/* Don't allow device id that exceeds single, flat table limit */
2246 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2247 	if (!(baser->val & GITS_BASER_INDIRECT))
2248 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2249 
2250 	/* Compute 1st level table index & check if that exceeds table limit */
2251 	idx = id >> ilog2(baser->psz / esz);
2252 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2253 		return false;
2254 
2255 	table = baser->base;
2256 
2257 	/* Allocate memory for 2nd level table */
2258 	if (!table[idx]) {
2259 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2260 		if (!page)
2261 			return false;
2262 
2263 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2264 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2265 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2266 
2267 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2268 
2269 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2270 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2271 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2272 
2273 		/* Ensure updated table contents are visible to ITS hardware */
2274 		dsb(sy);
2275 	}
2276 
2277 	return true;
2278 }
2279 
2280 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2281 {
2282 	struct its_baser *baser;
2283 
2284 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2285 
2286 	/* Don't allow device id that exceeds ITS hardware limit */
2287 	if (!baser)
2288 		return (ilog2(dev_id) < its->device_ids);
2289 
2290 	return its_alloc_table_entry(baser, dev_id);
2291 }
2292 
2293 static bool its_alloc_vpe_table(u32 vpe_id)
2294 {
2295 	struct its_node *its;
2296 
2297 	/*
2298 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2299 	 * could try and only do it on ITSs corresponding to devices
2300 	 * that have interrupts targeted at this VPE, but the
2301 	 * complexity becomes crazy (and you have tons of memory
2302 	 * anyway, right?).
2303 	 */
2304 	list_for_each_entry(its, &its_nodes, entry) {
2305 		struct its_baser *baser;
2306 
2307 		if (!its->is_v4)
2308 			continue;
2309 
2310 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2311 		if (!baser)
2312 			return false;
2313 
2314 		if (!its_alloc_table_entry(baser, vpe_id))
2315 			return false;
2316 	}
2317 
2318 	return true;
2319 }
2320 
2321 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2322 					    int nvecs, bool alloc_lpis)
2323 {
2324 	struct its_device *dev;
2325 	unsigned long *lpi_map = NULL;
2326 	unsigned long flags;
2327 	u16 *col_map = NULL;
2328 	void *itt;
2329 	int lpi_base;
2330 	int nr_lpis;
2331 	int nr_ites;
2332 	int sz;
2333 
2334 	if (!its_alloc_device_table(its, dev_id))
2335 		return NULL;
2336 
2337 	if (WARN_ON(!is_power_of_2(nvecs)))
2338 		nvecs = roundup_pow_of_two(nvecs);
2339 
2340 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2341 	/*
2342 	 * Even if the device wants a single LPI, the ITT must be
2343 	 * sized as a power of two (and you need at least one bit...).
2344 	 */
2345 	nr_ites = max(2, nvecs);
2346 	sz = nr_ites * its->ite_size;
2347 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2348 	itt = kzalloc(sz, GFP_KERNEL);
2349 	if (alloc_lpis) {
2350 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2351 		if (lpi_map)
2352 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2353 					  GFP_KERNEL);
2354 	} else {
2355 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2356 		nr_lpis = 0;
2357 		lpi_base = 0;
2358 	}
2359 
2360 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2361 		kfree(dev);
2362 		kfree(itt);
2363 		kfree(lpi_map);
2364 		kfree(col_map);
2365 		return NULL;
2366 	}
2367 
2368 	gic_flush_dcache_to_poc(itt, sz);
2369 
2370 	dev->its = its;
2371 	dev->itt = itt;
2372 	dev->nr_ites = nr_ites;
2373 	dev->event_map.lpi_map = lpi_map;
2374 	dev->event_map.col_map = col_map;
2375 	dev->event_map.lpi_base = lpi_base;
2376 	dev->event_map.nr_lpis = nr_lpis;
2377 	mutex_init(&dev->event_map.vlpi_lock);
2378 	dev->device_id = dev_id;
2379 	INIT_LIST_HEAD(&dev->entry);
2380 
2381 	raw_spin_lock_irqsave(&its->lock, flags);
2382 	list_add(&dev->entry, &its->its_device_list);
2383 	raw_spin_unlock_irqrestore(&its->lock, flags);
2384 
2385 	/* Map device to its ITT */
2386 	its_send_mapd(dev, 1);
2387 
2388 	return dev;
2389 }
2390 
2391 static void its_free_device(struct its_device *its_dev)
2392 {
2393 	unsigned long flags;
2394 
2395 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2396 	list_del(&its_dev->entry);
2397 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2398 	kfree(its_dev->itt);
2399 	kfree(its_dev);
2400 }
2401 
2402 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2403 {
2404 	int idx;
2405 
2406 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2407 				  dev->event_map.nr_lpis);
2408 	if (idx == dev->event_map.nr_lpis)
2409 		return -ENOSPC;
2410 
2411 	*hwirq = dev->event_map.lpi_base + idx;
2412 	set_bit(idx, dev->event_map.lpi_map);
2413 
2414 	return 0;
2415 }
2416 
2417 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2418 			   int nvec, msi_alloc_info_t *info)
2419 {
2420 	struct its_node *its;
2421 	struct its_device *its_dev;
2422 	struct msi_domain_info *msi_info;
2423 	u32 dev_id;
2424 
2425 	/*
2426 	 * We ignore "dev" entierely, and rely on the dev_id that has
2427 	 * been passed via the scratchpad. This limits this domain's
2428 	 * usefulness to upper layers that definitely know that they
2429 	 * are built on top of the ITS.
2430 	 */
2431 	dev_id = info->scratchpad[0].ul;
2432 
2433 	msi_info = msi_get_domain_info(domain);
2434 	its = msi_info->data;
2435 
2436 	if (!gic_rdists->has_direct_lpi &&
2437 	    vpe_proxy.dev &&
2438 	    vpe_proxy.dev->its == its &&
2439 	    dev_id == vpe_proxy.dev->device_id) {
2440 		/* Bad luck. Get yourself a better implementation */
2441 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2442 			  dev_id);
2443 		return -EINVAL;
2444 	}
2445 
2446 	its_dev = its_find_device(its, dev_id);
2447 	if (its_dev) {
2448 		/*
2449 		 * We already have seen this ID, probably through
2450 		 * another alias (PCI bridge of some sort). No need to
2451 		 * create the device.
2452 		 */
2453 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2454 		goto out;
2455 	}
2456 
2457 	its_dev = its_create_device(its, dev_id, nvec, true);
2458 	if (!its_dev)
2459 		return -ENOMEM;
2460 
2461 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2462 out:
2463 	info->scratchpad[0].ptr = its_dev;
2464 	return 0;
2465 }
2466 
2467 static struct msi_domain_ops its_msi_domain_ops = {
2468 	.msi_prepare	= its_msi_prepare,
2469 };
2470 
2471 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2472 				    unsigned int virq,
2473 				    irq_hw_number_t hwirq)
2474 {
2475 	struct irq_fwspec fwspec;
2476 
2477 	if (irq_domain_get_of_node(domain->parent)) {
2478 		fwspec.fwnode = domain->parent->fwnode;
2479 		fwspec.param_count = 3;
2480 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2481 		fwspec.param[1] = hwirq;
2482 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2483 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2484 		fwspec.fwnode = domain->parent->fwnode;
2485 		fwspec.param_count = 2;
2486 		fwspec.param[0] = hwirq;
2487 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2488 	} else {
2489 		return -EINVAL;
2490 	}
2491 
2492 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2493 }
2494 
2495 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2496 				unsigned int nr_irqs, void *args)
2497 {
2498 	msi_alloc_info_t *info = args;
2499 	struct its_device *its_dev = info->scratchpad[0].ptr;
2500 	irq_hw_number_t hwirq;
2501 	int err;
2502 	int i;
2503 
2504 	for (i = 0; i < nr_irqs; i++) {
2505 		err = its_alloc_device_irq(its_dev, &hwirq);
2506 		if (err)
2507 			return err;
2508 
2509 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2510 		if (err)
2511 			return err;
2512 
2513 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2514 					      hwirq, &its_irq_chip, its_dev);
2515 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2516 		pr_debug("ID:%d pID:%d vID:%d\n",
2517 			 (int)(hwirq - its_dev->event_map.lpi_base),
2518 			 (int) hwirq, virq + i);
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 static int its_irq_domain_activate(struct irq_domain *domain,
2525 				   struct irq_data *d, bool reserve)
2526 {
2527 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2528 	u32 event = its_get_event_id(d);
2529 	const struct cpumask *cpu_mask = cpu_online_mask;
2530 	int cpu;
2531 
2532 	/* get the cpu_mask of local node */
2533 	if (its_dev->its->numa_node >= 0)
2534 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2535 
2536 	/* Bind the LPI to the first possible CPU */
2537 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2538 	if (cpu >= nr_cpu_ids) {
2539 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2540 			return -EINVAL;
2541 
2542 		cpu = cpumask_first(cpu_online_mask);
2543 	}
2544 
2545 	its_dev->event_map.col_map[event] = cpu;
2546 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2547 
2548 	/* Map the GIC IRQ and event to the device */
2549 	its_send_mapti(its_dev, d->hwirq, event);
2550 	return 0;
2551 }
2552 
2553 static void its_irq_domain_deactivate(struct irq_domain *domain,
2554 				      struct irq_data *d)
2555 {
2556 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2557 	u32 event = its_get_event_id(d);
2558 
2559 	/* Stop the delivery of interrupts */
2560 	its_send_discard(its_dev, event);
2561 }
2562 
2563 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2564 				unsigned int nr_irqs)
2565 {
2566 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2567 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2568 	int i;
2569 
2570 	for (i = 0; i < nr_irqs; i++) {
2571 		struct irq_data *data = irq_domain_get_irq_data(domain,
2572 								virq + i);
2573 		u32 event = its_get_event_id(data);
2574 
2575 		/* Mark interrupt index as unused */
2576 		clear_bit(event, its_dev->event_map.lpi_map);
2577 
2578 		/* Nuke the entry in the domain */
2579 		irq_domain_reset_irq_data(data);
2580 	}
2581 
2582 	/* If all interrupts have been freed, start mopping the floor */
2583 	if (bitmap_empty(its_dev->event_map.lpi_map,
2584 			 its_dev->event_map.nr_lpis)) {
2585 		its_lpi_free(its_dev->event_map.lpi_map,
2586 			     its_dev->event_map.lpi_base,
2587 			     its_dev->event_map.nr_lpis);
2588 		kfree(its_dev->event_map.col_map);
2589 
2590 		/* Unmap device/itt */
2591 		its_send_mapd(its_dev, 0);
2592 		its_free_device(its_dev);
2593 	}
2594 
2595 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2596 }
2597 
2598 static const struct irq_domain_ops its_domain_ops = {
2599 	.alloc			= its_irq_domain_alloc,
2600 	.free			= its_irq_domain_free,
2601 	.activate		= its_irq_domain_activate,
2602 	.deactivate		= its_irq_domain_deactivate,
2603 };
2604 
2605 /*
2606  * This is insane.
2607  *
2608  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2609  * likely), the only way to perform an invalidate is to use a fake
2610  * device to issue an INV command, implying that the LPI has first
2611  * been mapped to some event on that device. Since this is not exactly
2612  * cheap, we try to keep that mapping around as long as possible, and
2613  * only issue an UNMAP if we're short on available slots.
2614  *
2615  * Broken by design(tm).
2616  */
2617 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2618 {
2619 	/* Already unmapped? */
2620 	if (vpe->vpe_proxy_event == -1)
2621 		return;
2622 
2623 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2624 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2625 
2626 	/*
2627 	 * We don't track empty slots at all, so let's move the
2628 	 * next_victim pointer if we can quickly reuse that slot
2629 	 * instead of nuking an existing entry. Not clear that this is
2630 	 * always a win though, and this might just generate a ripple
2631 	 * effect... Let's just hope VPEs don't migrate too often.
2632 	 */
2633 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2634 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2635 
2636 	vpe->vpe_proxy_event = -1;
2637 }
2638 
2639 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2640 {
2641 	if (!gic_rdists->has_direct_lpi) {
2642 		unsigned long flags;
2643 
2644 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2645 		its_vpe_db_proxy_unmap_locked(vpe);
2646 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2647 	}
2648 }
2649 
2650 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2651 {
2652 	/* Already mapped? */
2653 	if (vpe->vpe_proxy_event != -1)
2654 		return;
2655 
2656 	/* This slot was already allocated. Kick the other VPE out. */
2657 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2658 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2659 
2660 	/* Map the new VPE instead */
2661 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2662 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2663 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2664 
2665 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2666 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2667 }
2668 
2669 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2670 {
2671 	unsigned long flags;
2672 	struct its_collection *target_col;
2673 
2674 	if (gic_rdists->has_direct_lpi) {
2675 		void __iomem *rdbase;
2676 
2677 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2678 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2679 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2680 			cpu_relax();
2681 
2682 		return;
2683 	}
2684 
2685 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2686 
2687 	its_vpe_db_proxy_map_locked(vpe);
2688 
2689 	target_col = &vpe_proxy.dev->its->collections[to];
2690 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2691 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2692 
2693 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2694 }
2695 
2696 static int its_vpe_set_affinity(struct irq_data *d,
2697 				const struct cpumask *mask_val,
2698 				bool force)
2699 {
2700 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2701 	int cpu = cpumask_first(mask_val);
2702 
2703 	/*
2704 	 * Changing affinity is mega expensive, so let's be as lazy as
2705 	 * we can and only do it if we really have to. Also, if mapped
2706 	 * into the proxy device, we need to move the doorbell
2707 	 * interrupt to its new location.
2708 	 */
2709 	if (vpe->col_idx != cpu) {
2710 		int from = vpe->col_idx;
2711 
2712 		vpe->col_idx = cpu;
2713 		its_send_vmovp(vpe);
2714 		its_vpe_db_proxy_move(vpe, from, cpu);
2715 	}
2716 
2717 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2718 
2719 	return IRQ_SET_MASK_OK_DONE;
2720 }
2721 
2722 static void its_vpe_schedule(struct its_vpe *vpe)
2723 {
2724 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2725 	u64 val;
2726 
2727 	/* Schedule the VPE */
2728 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2729 		GENMASK_ULL(51, 12);
2730 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2731 	val |= GICR_VPROPBASER_RaWb;
2732 	val |= GICR_VPROPBASER_InnerShareable;
2733 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2734 
2735 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2736 		GENMASK_ULL(51, 16);
2737 	val |= GICR_VPENDBASER_RaWaWb;
2738 	val |= GICR_VPENDBASER_NonShareable;
2739 	/*
2740 	 * There is no good way of finding out if the pending table is
2741 	 * empty as we can race against the doorbell interrupt very
2742 	 * easily. So in the end, vpe->pending_last is only an
2743 	 * indication that the vcpu has something pending, not one
2744 	 * that the pending table is empty. A good implementation
2745 	 * would be able to read its coarse map pretty quickly anyway,
2746 	 * making this a tolerable issue.
2747 	 */
2748 	val |= GICR_VPENDBASER_PendingLast;
2749 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2750 	val |= GICR_VPENDBASER_Valid;
2751 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2752 }
2753 
2754 static void its_vpe_deschedule(struct its_vpe *vpe)
2755 {
2756 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2757 	u32 count = 1000000;	/* 1s! */
2758 	bool clean;
2759 	u64 val;
2760 
2761 	/* We're being scheduled out */
2762 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2763 	val &= ~GICR_VPENDBASER_Valid;
2764 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2765 
2766 	do {
2767 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2768 		clean = !(val & GICR_VPENDBASER_Dirty);
2769 		if (!clean) {
2770 			count--;
2771 			cpu_relax();
2772 			udelay(1);
2773 		}
2774 	} while (!clean && count);
2775 
2776 	if (unlikely(!clean && !count)) {
2777 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2778 		vpe->idai = false;
2779 		vpe->pending_last = true;
2780 	} else {
2781 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2782 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2783 	}
2784 }
2785 
2786 static void its_vpe_invall(struct its_vpe *vpe)
2787 {
2788 	struct its_node *its;
2789 
2790 	list_for_each_entry(its, &its_nodes, entry) {
2791 		if (!its->is_v4)
2792 			continue;
2793 
2794 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2795 			continue;
2796 
2797 		/*
2798 		 * Sending a VINVALL to a single ITS is enough, as all
2799 		 * we need is to reach the redistributors.
2800 		 */
2801 		its_send_vinvall(its, vpe);
2802 		return;
2803 	}
2804 }
2805 
2806 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2807 {
2808 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2809 	struct its_cmd_info *info = vcpu_info;
2810 
2811 	switch (info->cmd_type) {
2812 	case SCHEDULE_VPE:
2813 		its_vpe_schedule(vpe);
2814 		return 0;
2815 
2816 	case DESCHEDULE_VPE:
2817 		its_vpe_deschedule(vpe);
2818 		return 0;
2819 
2820 	case INVALL_VPE:
2821 		its_vpe_invall(vpe);
2822 		return 0;
2823 
2824 	default:
2825 		return -EINVAL;
2826 	}
2827 }
2828 
2829 static void its_vpe_send_cmd(struct its_vpe *vpe,
2830 			     void (*cmd)(struct its_device *, u32))
2831 {
2832 	unsigned long flags;
2833 
2834 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2835 
2836 	its_vpe_db_proxy_map_locked(vpe);
2837 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2838 
2839 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2840 }
2841 
2842 static void its_vpe_send_inv(struct irq_data *d)
2843 {
2844 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2845 
2846 	if (gic_rdists->has_direct_lpi) {
2847 		void __iomem *rdbase;
2848 
2849 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2850 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2851 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2852 			cpu_relax();
2853 	} else {
2854 		its_vpe_send_cmd(vpe, its_send_inv);
2855 	}
2856 }
2857 
2858 static void its_vpe_mask_irq(struct irq_data *d)
2859 {
2860 	/*
2861 	 * We need to unmask the LPI, which is described by the parent
2862 	 * irq_data. Instead of calling into the parent (which won't
2863 	 * exactly do the right thing, let's simply use the
2864 	 * parent_data pointer. Yes, I'm naughty.
2865 	 */
2866 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2867 	its_vpe_send_inv(d);
2868 }
2869 
2870 static void its_vpe_unmask_irq(struct irq_data *d)
2871 {
2872 	/* Same hack as above... */
2873 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2874 	its_vpe_send_inv(d);
2875 }
2876 
2877 static int its_vpe_set_irqchip_state(struct irq_data *d,
2878 				     enum irqchip_irq_state which,
2879 				     bool state)
2880 {
2881 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2882 
2883 	if (which != IRQCHIP_STATE_PENDING)
2884 		return -EINVAL;
2885 
2886 	if (gic_rdists->has_direct_lpi) {
2887 		void __iomem *rdbase;
2888 
2889 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2890 		if (state) {
2891 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2892 		} else {
2893 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2894 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2895 				cpu_relax();
2896 		}
2897 	} else {
2898 		if (state)
2899 			its_vpe_send_cmd(vpe, its_send_int);
2900 		else
2901 			its_vpe_send_cmd(vpe, its_send_clear);
2902 	}
2903 
2904 	return 0;
2905 }
2906 
2907 static struct irq_chip its_vpe_irq_chip = {
2908 	.name			= "GICv4-vpe",
2909 	.irq_mask		= its_vpe_mask_irq,
2910 	.irq_unmask		= its_vpe_unmask_irq,
2911 	.irq_eoi		= irq_chip_eoi_parent,
2912 	.irq_set_affinity	= its_vpe_set_affinity,
2913 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2914 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2915 };
2916 
2917 static int its_vpe_id_alloc(void)
2918 {
2919 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2920 }
2921 
2922 static void its_vpe_id_free(u16 id)
2923 {
2924 	ida_simple_remove(&its_vpeid_ida, id);
2925 }
2926 
2927 static int its_vpe_init(struct its_vpe *vpe)
2928 {
2929 	struct page *vpt_page;
2930 	int vpe_id;
2931 
2932 	/* Allocate vpe_id */
2933 	vpe_id = its_vpe_id_alloc();
2934 	if (vpe_id < 0)
2935 		return vpe_id;
2936 
2937 	/* Allocate VPT */
2938 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2939 	if (!vpt_page) {
2940 		its_vpe_id_free(vpe_id);
2941 		return -ENOMEM;
2942 	}
2943 
2944 	if (!its_alloc_vpe_table(vpe_id)) {
2945 		its_vpe_id_free(vpe_id);
2946 		its_free_pending_table(vpe->vpt_page);
2947 		return -ENOMEM;
2948 	}
2949 
2950 	vpe->vpe_id = vpe_id;
2951 	vpe->vpt_page = vpt_page;
2952 	vpe->vpe_proxy_event = -1;
2953 
2954 	return 0;
2955 }
2956 
2957 static void its_vpe_teardown(struct its_vpe *vpe)
2958 {
2959 	its_vpe_db_proxy_unmap(vpe);
2960 	its_vpe_id_free(vpe->vpe_id);
2961 	its_free_pending_table(vpe->vpt_page);
2962 }
2963 
2964 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2965 				    unsigned int virq,
2966 				    unsigned int nr_irqs)
2967 {
2968 	struct its_vm *vm = domain->host_data;
2969 	int i;
2970 
2971 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2972 
2973 	for (i = 0; i < nr_irqs; i++) {
2974 		struct irq_data *data = irq_domain_get_irq_data(domain,
2975 								virq + i);
2976 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2977 
2978 		BUG_ON(vm != vpe->its_vm);
2979 
2980 		clear_bit(data->hwirq, vm->db_bitmap);
2981 		its_vpe_teardown(vpe);
2982 		irq_domain_reset_irq_data(data);
2983 	}
2984 
2985 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2986 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2987 		its_free_prop_table(vm->vprop_page);
2988 	}
2989 }
2990 
2991 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2992 				    unsigned int nr_irqs, void *args)
2993 {
2994 	struct its_vm *vm = args;
2995 	unsigned long *bitmap;
2996 	struct page *vprop_page;
2997 	int base, nr_ids, i, err = 0;
2998 
2999 	BUG_ON(!vm);
3000 
3001 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3002 	if (!bitmap)
3003 		return -ENOMEM;
3004 
3005 	if (nr_ids < nr_irqs) {
3006 		its_lpi_free(bitmap, base, nr_ids);
3007 		return -ENOMEM;
3008 	}
3009 
3010 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3011 	if (!vprop_page) {
3012 		its_lpi_free(bitmap, base, nr_ids);
3013 		return -ENOMEM;
3014 	}
3015 
3016 	vm->db_bitmap = bitmap;
3017 	vm->db_lpi_base = base;
3018 	vm->nr_db_lpis = nr_ids;
3019 	vm->vprop_page = vprop_page;
3020 
3021 	for (i = 0; i < nr_irqs; i++) {
3022 		vm->vpes[i]->vpe_db_lpi = base + i;
3023 		err = its_vpe_init(vm->vpes[i]);
3024 		if (err)
3025 			break;
3026 		err = its_irq_gic_domain_alloc(domain, virq + i,
3027 					       vm->vpes[i]->vpe_db_lpi);
3028 		if (err)
3029 			break;
3030 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3031 					      &its_vpe_irq_chip, vm->vpes[i]);
3032 		set_bit(i, bitmap);
3033 	}
3034 
3035 	if (err) {
3036 		if (i > 0)
3037 			its_vpe_irq_domain_free(domain, virq, i - 1);
3038 
3039 		its_lpi_free(bitmap, base, nr_ids);
3040 		its_free_prop_table(vprop_page);
3041 	}
3042 
3043 	return err;
3044 }
3045 
3046 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3047 				       struct irq_data *d, bool reserve)
3048 {
3049 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3050 	struct its_node *its;
3051 
3052 	/* If we use the list map, we issue VMAPP on demand... */
3053 	if (its_list_map)
3054 		return 0;
3055 
3056 	/* Map the VPE to the first possible CPU */
3057 	vpe->col_idx = cpumask_first(cpu_online_mask);
3058 
3059 	list_for_each_entry(its, &its_nodes, entry) {
3060 		if (!its->is_v4)
3061 			continue;
3062 
3063 		its_send_vmapp(its, vpe, true);
3064 		its_send_vinvall(its, vpe);
3065 	}
3066 
3067 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3068 
3069 	return 0;
3070 }
3071 
3072 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3073 					  struct irq_data *d)
3074 {
3075 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3076 	struct its_node *its;
3077 
3078 	/*
3079 	 * If we use the list map, we unmap the VPE once no VLPIs are
3080 	 * associated with the VM.
3081 	 */
3082 	if (its_list_map)
3083 		return;
3084 
3085 	list_for_each_entry(its, &its_nodes, entry) {
3086 		if (!its->is_v4)
3087 			continue;
3088 
3089 		its_send_vmapp(its, vpe, false);
3090 	}
3091 }
3092 
3093 static const struct irq_domain_ops its_vpe_domain_ops = {
3094 	.alloc			= its_vpe_irq_domain_alloc,
3095 	.free			= its_vpe_irq_domain_free,
3096 	.activate		= its_vpe_irq_domain_activate,
3097 	.deactivate		= its_vpe_irq_domain_deactivate,
3098 };
3099 
3100 static int its_force_quiescent(void __iomem *base)
3101 {
3102 	u32 count = 1000000;	/* 1s */
3103 	u32 val;
3104 
3105 	val = readl_relaxed(base + GITS_CTLR);
3106 	/*
3107 	 * GIC architecture specification requires the ITS to be both
3108 	 * disabled and quiescent for writes to GITS_BASER<n> or
3109 	 * GITS_CBASER to not have UNPREDICTABLE results.
3110 	 */
3111 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3112 		return 0;
3113 
3114 	/* Disable the generation of all interrupts to this ITS */
3115 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3116 	writel_relaxed(val, base + GITS_CTLR);
3117 
3118 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3119 	while (1) {
3120 		val = readl_relaxed(base + GITS_CTLR);
3121 		if (val & GITS_CTLR_QUIESCENT)
3122 			return 0;
3123 
3124 		count--;
3125 		if (!count)
3126 			return -EBUSY;
3127 
3128 		cpu_relax();
3129 		udelay(1);
3130 	}
3131 }
3132 
3133 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3134 {
3135 	struct its_node *its = data;
3136 
3137 	/* erratum 22375: only alloc 8MB table size */
3138 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3139 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3140 
3141 	return true;
3142 }
3143 
3144 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3145 {
3146 	struct its_node *its = data;
3147 
3148 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3149 
3150 	return true;
3151 }
3152 
3153 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3154 {
3155 	struct its_node *its = data;
3156 
3157 	/* On QDF2400, the size of the ITE is 16Bytes */
3158 	its->ite_size = 16;
3159 
3160 	return true;
3161 }
3162 
3163 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3164 {
3165 	struct its_node *its = its_dev->its;
3166 
3167 	/*
3168 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3169 	 * which maps 32-bit writes targeted at a separate window of
3170 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3171 	 * with device ID taken from bits [device_id_bits + 1:2] of
3172 	 * the window offset.
3173 	 */
3174 	return its->pre_its_base + (its_dev->device_id << 2);
3175 }
3176 
3177 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3178 {
3179 	struct its_node *its = data;
3180 	u32 pre_its_window[2];
3181 	u32 ids;
3182 
3183 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3184 					   "socionext,synquacer-pre-its",
3185 					   pre_its_window,
3186 					   ARRAY_SIZE(pre_its_window))) {
3187 
3188 		its->pre_its_base = pre_its_window[0];
3189 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3190 
3191 		ids = ilog2(pre_its_window[1]) - 2;
3192 		if (its->device_ids > ids)
3193 			its->device_ids = ids;
3194 
3195 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3196 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3197 		return true;
3198 	}
3199 	return false;
3200 }
3201 
3202 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3203 {
3204 	struct its_node *its = data;
3205 
3206 	/*
3207 	 * Hip07 insists on using the wrong address for the VLPI
3208 	 * page. Trick it into doing the right thing...
3209 	 */
3210 	its->vlpi_redist_offset = SZ_128K;
3211 	return true;
3212 }
3213 
3214 static const struct gic_quirk its_quirks[] = {
3215 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3216 	{
3217 		.desc	= "ITS: Cavium errata 22375, 24313",
3218 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3219 		.mask	= 0xffff0fff,
3220 		.init	= its_enable_quirk_cavium_22375,
3221 	},
3222 #endif
3223 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3224 	{
3225 		.desc	= "ITS: Cavium erratum 23144",
3226 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3227 		.mask	= 0xffff0fff,
3228 		.init	= its_enable_quirk_cavium_23144,
3229 	},
3230 #endif
3231 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3232 	{
3233 		.desc	= "ITS: QDF2400 erratum 0065",
3234 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3235 		.mask	= 0xffffffff,
3236 		.init	= its_enable_quirk_qdf2400_e0065,
3237 	},
3238 #endif
3239 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3240 	{
3241 		/*
3242 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3243 		 * implementation, but with a 'pre-ITS' added that requires
3244 		 * special handling in software.
3245 		 */
3246 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3247 		.iidr	= 0x0001143b,
3248 		.mask	= 0xffffffff,
3249 		.init	= its_enable_quirk_socionext_synquacer,
3250 	},
3251 #endif
3252 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3253 	{
3254 		.desc	= "ITS: Hip07 erratum 161600802",
3255 		.iidr	= 0x00000004,
3256 		.mask	= 0xffffffff,
3257 		.init	= its_enable_quirk_hip07_161600802,
3258 	},
3259 #endif
3260 	{
3261 	}
3262 };
3263 
3264 static void its_enable_quirks(struct its_node *its)
3265 {
3266 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3267 
3268 	gic_enable_quirks(iidr, its_quirks, its);
3269 }
3270 
3271 static int its_save_disable(void)
3272 {
3273 	struct its_node *its;
3274 	int err = 0;
3275 
3276 	raw_spin_lock(&its_lock);
3277 	list_for_each_entry(its, &its_nodes, entry) {
3278 		void __iomem *base;
3279 
3280 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3281 			continue;
3282 
3283 		base = its->base;
3284 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3285 		err = its_force_quiescent(base);
3286 		if (err) {
3287 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3288 			       &its->phys_base, err);
3289 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3290 			goto err;
3291 		}
3292 
3293 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3294 	}
3295 
3296 err:
3297 	if (err) {
3298 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3299 			void __iomem *base;
3300 
3301 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3302 				continue;
3303 
3304 			base = its->base;
3305 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3306 		}
3307 	}
3308 	raw_spin_unlock(&its_lock);
3309 
3310 	return err;
3311 }
3312 
3313 static void its_restore_enable(void)
3314 {
3315 	struct its_node *its;
3316 	int ret;
3317 
3318 	raw_spin_lock(&its_lock);
3319 	list_for_each_entry(its, &its_nodes, entry) {
3320 		void __iomem *base;
3321 		int i;
3322 
3323 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3324 			continue;
3325 
3326 		base = its->base;
3327 
3328 		/*
3329 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3330 		 * don't restore it since writing to CBASER or BASER<n>
3331 		 * registers is undefined according to the GIC v3 ITS
3332 		 * Specification.
3333 		 */
3334 		ret = its_force_quiescent(base);
3335 		if (ret) {
3336 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3337 			       &its->phys_base, ret);
3338 			continue;
3339 		}
3340 
3341 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3342 
3343 		/*
3344 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3345 		 * cmd_write line up with it.
3346 		 */
3347 		its->cmd_write = its->cmd_base;
3348 		gits_write_cwriter(0, base + GITS_CWRITER);
3349 
3350 		/* Restore GITS_BASER from the value cache. */
3351 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3352 			struct its_baser *baser = &its->tables[i];
3353 
3354 			if (!(baser->val & GITS_BASER_VALID))
3355 				continue;
3356 
3357 			its_write_baser(its, baser, baser->val);
3358 		}
3359 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3360 
3361 		/*
3362 		 * Reinit the collection if it's stored in the ITS. This is
3363 		 * indicated by the col_id being less than the HCC field.
3364 		 * CID < HCC as specified in the GIC v3 Documentation.
3365 		 */
3366 		if (its->collections[smp_processor_id()].col_id <
3367 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3368 			its_cpu_init_collection(its);
3369 	}
3370 	raw_spin_unlock(&its_lock);
3371 }
3372 
3373 static struct syscore_ops its_syscore_ops = {
3374 	.suspend = its_save_disable,
3375 	.resume = its_restore_enable,
3376 };
3377 
3378 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3379 {
3380 	struct irq_domain *inner_domain;
3381 	struct msi_domain_info *info;
3382 
3383 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3384 	if (!info)
3385 		return -ENOMEM;
3386 
3387 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3388 	if (!inner_domain) {
3389 		kfree(info);
3390 		return -ENOMEM;
3391 	}
3392 
3393 	inner_domain->parent = its_parent;
3394 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3395 	inner_domain->flags |= its->msi_domain_flags;
3396 	info->ops = &its_msi_domain_ops;
3397 	info->data = its;
3398 	inner_domain->host_data = info;
3399 
3400 	return 0;
3401 }
3402 
3403 static int its_init_vpe_domain(void)
3404 {
3405 	struct its_node *its;
3406 	u32 devid;
3407 	int entries;
3408 
3409 	if (gic_rdists->has_direct_lpi) {
3410 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3411 		return 0;
3412 	}
3413 
3414 	/* Any ITS will do, even if not v4 */
3415 	its = list_first_entry(&its_nodes, struct its_node, entry);
3416 
3417 	entries = roundup_pow_of_two(nr_cpu_ids);
3418 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3419 				 GFP_KERNEL);
3420 	if (!vpe_proxy.vpes) {
3421 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3422 		return -ENOMEM;
3423 	}
3424 
3425 	/* Use the last possible DevID */
3426 	devid = GENMASK(its->device_ids - 1, 0);
3427 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3428 	if (!vpe_proxy.dev) {
3429 		kfree(vpe_proxy.vpes);
3430 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3431 		return -ENOMEM;
3432 	}
3433 
3434 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3435 
3436 	raw_spin_lock_init(&vpe_proxy.lock);
3437 	vpe_proxy.next_victim = 0;
3438 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3439 		devid, vpe_proxy.dev->nr_ites);
3440 
3441 	return 0;
3442 }
3443 
3444 static int __init its_compute_its_list_map(struct resource *res,
3445 					   void __iomem *its_base)
3446 {
3447 	int its_number;
3448 	u32 ctlr;
3449 
3450 	/*
3451 	 * This is assumed to be done early enough that we're
3452 	 * guaranteed to be single-threaded, hence no
3453 	 * locking. Should this change, we should address
3454 	 * this.
3455 	 */
3456 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3457 	if (its_number >= GICv4_ITS_LIST_MAX) {
3458 		pr_err("ITS@%pa: No ITSList entry available!\n",
3459 		       &res->start);
3460 		return -EINVAL;
3461 	}
3462 
3463 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3464 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3465 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3466 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3467 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3468 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3469 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3470 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3471 	}
3472 
3473 	if (test_and_set_bit(its_number, &its_list_map)) {
3474 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3475 		       &res->start, its_number);
3476 		return -EINVAL;
3477 	}
3478 
3479 	return its_number;
3480 }
3481 
3482 static int __init its_probe_one(struct resource *res,
3483 				struct fwnode_handle *handle, int numa_node)
3484 {
3485 	struct its_node *its;
3486 	void __iomem *its_base;
3487 	u32 val, ctlr;
3488 	u64 baser, tmp, typer;
3489 	int err;
3490 
3491 	its_base = ioremap(res->start, resource_size(res));
3492 	if (!its_base) {
3493 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3494 		return -ENOMEM;
3495 	}
3496 
3497 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3498 	if (val != 0x30 && val != 0x40) {
3499 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3500 		err = -ENODEV;
3501 		goto out_unmap;
3502 	}
3503 
3504 	err = its_force_quiescent(its_base);
3505 	if (err) {
3506 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3507 		goto out_unmap;
3508 	}
3509 
3510 	pr_info("ITS %pR\n", res);
3511 
3512 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3513 	if (!its) {
3514 		err = -ENOMEM;
3515 		goto out_unmap;
3516 	}
3517 
3518 	raw_spin_lock_init(&its->lock);
3519 	INIT_LIST_HEAD(&its->entry);
3520 	INIT_LIST_HEAD(&its->its_device_list);
3521 	typer = gic_read_typer(its_base + GITS_TYPER);
3522 	its->base = its_base;
3523 	its->phys_base = res->start;
3524 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3525 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3526 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3527 	if (its->is_v4) {
3528 		if (!(typer & GITS_TYPER_VMOVP)) {
3529 			err = its_compute_its_list_map(res, its_base);
3530 			if (err < 0)
3531 				goto out_free_its;
3532 
3533 			its->list_nr = err;
3534 
3535 			pr_info("ITS@%pa: Using ITS number %d\n",
3536 				&res->start, err);
3537 		} else {
3538 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3539 		}
3540 	}
3541 
3542 	its->numa_node = numa_node;
3543 
3544 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3545 						get_order(ITS_CMD_QUEUE_SZ));
3546 	if (!its->cmd_base) {
3547 		err = -ENOMEM;
3548 		goto out_free_its;
3549 	}
3550 	its->cmd_write = its->cmd_base;
3551 	its->fwnode_handle = handle;
3552 	its->get_msi_base = its_irq_get_msi_base;
3553 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3554 
3555 	its_enable_quirks(its);
3556 
3557 	err = its_alloc_tables(its);
3558 	if (err)
3559 		goto out_free_cmd;
3560 
3561 	err = its_alloc_collections(its);
3562 	if (err)
3563 		goto out_free_tables;
3564 
3565 	baser = (virt_to_phys(its->cmd_base)	|
3566 		 GITS_CBASER_RaWaWb		|
3567 		 GITS_CBASER_InnerShareable	|
3568 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3569 		 GITS_CBASER_VALID);
3570 
3571 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3572 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3573 
3574 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3575 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3576 			/*
3577 			 * The HW reports non-shareable, we must
3578 			 * remove the cacheability attributes as
3579 			 * well.
3580 			 */
3581 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3582 				   GITS_CBASER_CACHEABILITY_MASK);
3583 			baser |= GITS_CBASER_nC;
3584 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3585 		}
3586 		pr_info("ITS: using cache flushing for cmd queue\n");
3587 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3588 	}
3589 
3590 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3591 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3592 	ctlr |= GITS_CTLR_ENABLE;
3593 	if (its->is_v4)
3594 		ctlr |= GITS_CTLR_ImDe;
3595 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3596 
3597 	if (GITS_TYPER_HCC(typer))
3598 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3599 
3600 	err = its_init_domain(handle, its);
3601 	if (err)
3602 		goto out_free_tables;
3603 
3604 	raw_spin_lock(&its_lock);
3605 	list_add(&its->entry, &its_nodes);
3606 	raw_spin_unlock(&its_lock);
3607 
3608 	return 0;
3609 
3610 out_free_tables:
3611 	its_free_tables(its);
3612 out_free_cmd:
3613 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3614 out_free_its:
3615 	kfree(its);
3616 out_unmap:
3617 	iounmap(its_base);
3618 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3619 	return err;
3620 }
3621 
3622 static bool gic_rdists_supports_plpis(void)
3623 {
3624 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3625 }
3626 
3627 static int redist_disable_lpis(void)
3628 {
3629 	void __iomem *rbase = gic_data_rdist_rd_base();
3630 	u64 timeout = USEC_PER_SEC;
3631 	u64 val;
3632 
3633 	if (!gic_rdists_supports_plpis()) {
3634 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3635 		return -ENXIO;
3636 	}
3637 
3638 	val = readl_relaxed(rbase + GICR_CTLR);
3639 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3640 		return 0;
3641 
3642 	/*
3643 	 * If coming via a CPU hotplug event, we don't need to disable
3644 	 * LPIs before trying to re-enable them. They are already
3645 	 * configured and all is well in the world.
3646 	 *
3647 	 * If running with preallocated tables, there is nothing to do.
3648 	 */
3649 	if (gic_data_rdist()->lpi_enabled ||
3650 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3651 		return 0;
3652 
3653 	/*
3654 	 * From that point on, we only try to do some damage control.
3655 	 */
3656 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3657 		smp_processor_id());
3658 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3659 
3660 	/* Disable LPIs */
3661 	val &= ~GICR_CTLR_ENABLE_LPIS;
3662 	writel_relaxed(val, rbase + GICR_CTLR);
3663 
3664 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3665 	dsb(sy);
3666 
3667 	/*
3668 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3669 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3670 	 * Error out if we time out waiting for RWP to clear.
3671 	 */
3672 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3673 		if (!timeout) {
3674 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3675 			       smp_processor_id());
3676 			return -ETIMEDOUT;
3677 		}
3678 		udelay(1);
3679 		timeout--;
3680 	}
3681 
3682 	/*
3683 	 * After it has been written to 1, it is IMPLEMENTATION
3684 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3685 	 * cleared to 0. Error out if clearing the bit failed.
3686 	 */
3687 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3688 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3689 		return -EBUSY;
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 int its_cpu_init(void)
3696 {
3697 	if (!list_empty(&its_nodes)) {
3698 		int ret;
3699 
3700 		ret = redist_disable_lpis();
3701 		if (ret)
3702 			return ret;
3703 
3704 		its_cpu_init_lpis();
3705 		its_cpu_init_collections();
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 static const struct of_device_id its_device_id[] = {
3712 	{	.compatible	= "arm,gic-v3-its",	},
3713 	{},
3714 };
3715 
3716 static int __init its_of_probe(struct device_node *node)
3717 {
3718 	struct device_node *np;
3719 	struct resource res;
3720 
3721 	for (np = of_find_matching_node(node, its_device_id); np;
3722 	     np = of_find_matching_node(np, its_device_id)) {
3723 		if (!of_device_is_available(np))
3724 			continue;
3725 		if (!of_property_read_bool(np, "msi-controller")) {
3726 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3727 				np);
3728 			continue;
3729 		}
3730 
3731 		if (of_address_to_resource(np, 0, &res)) {
3732 			pr_warn("%pOF: no regs?\n", np);
3733 			continue;
3734 		}
3735 
3736 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3737 	}
3738 	return 0;
3739 }
3740 
3741 #ifdef CONFIG_ACPI
3742 
3743 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3744 
3745 #ifdef CONFIG_ACPI_NUMA
3746 struct its_srat_map {
3747 	/* numa node id */
3748 	u32	numa_node;
3749 	/* GIC ITS ID */
3750 	u32	its_id;
3751 };
3752 
3753 static struct its_srat_map *its_srat_maps __initdata;
3754 static int its_in_srat __initdata;
3755 
3756 static int __init acpi_get_its_numa_node(u32 its_id)
3757 {
3758 	int i;
3759 
3760 	for (i = 0; i < its_in_srat; i++) {
3761 		if (its_id == its_srat_maps[i].its_id)
3762 			return its_srat_maps[i].numa_node;
3763 	}
3764 	return NUMA_NO_NODE;
3765 }
3766 
3767 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3768 					  const unsigned long end)
3769 {
3770 	return 0;
3771 }
3772 
3773 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3774 			 const unsigned long end)
3775 {
3776 	int node;
3777 	struct acpi_srat_gic_its_affinity *its_affinity;
3778 
3779 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3780 	if (!its_affinity)
3781 		return -EINVAL;
3782 
3783 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3784 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3785 			its_affinity->header.length);
3786 		return -EINVAL;
3787 	}
3788 
3789 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3790 
3791 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3792 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3793 		return 0;
3794 	}
3795 
3796 	its_srat_maps[its_in_srat].numa_node = node;
3797 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3798 	its_in_srat++;
3799 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3800 		its_affinity->proximity_domain, its_affinity->its_id, node);
3801 
3802 	return 0;
3803 }
3804 
3805 static void __init acpi_table_parse_srat_its(void)
3806 {
3807 	int count;
3808 
3809 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3810 			sizeof(struct acpi_table_srat),
3811 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3812 			gic_acpi_match_srat_its, 0);
3813 	if (count <= 0)
3814 		return;
3815 
3816 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3817 				      GFP_KERNEL);
3818 	if (!its_srat_maps) {
3819 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3820 		return;
3821 	}
3822 
3823 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3824 			sizeof(struct acpi_table_srat),
3825 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3826 			gic_acpi_parse_srat_its, 0);
3827 }
3828 
3829 /* free the its_srat_maps after ITS probing */
3830 static void __init acpi_its_srat_maps_free(void)
3831 {
3832 	kfree(its_srat_maps);
3833 }
3834 #else
3835 static void __init acpi_table_parse_srat_its(void)	{ }
3836 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3837 static void __init acpi_its_srat_maps_free(void) { }
3838 #endif
3839 
3840 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3841 					  const unsigned long end)
3842 {
3843 	struct acpi_madt_generic_translator *its_entry;
3844 	struct fwnode_handle *dom_handle;
3845 	struct resource res;
3846 	int err;
3847 
3848 	its_entry = (struct acpi_madt_generic_translator *)header;
3849 	memset(&res, 0, sizeof(res));
3850 	res.start = its_entry->base_address;
3851 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3852 	res.flags = IORESOURCE_MEM;
3853 
3854 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3855 	if (!dom_handle) {
3856 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3857 		       &res.start);
3858 		return -ENOMEM;
3859 	}
3860 
3861 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3862 					 dom_handle);
3863 	if (err) {
3864 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3865 		       &res.start, its_entry->translation_id);
3866 		goto dom_err;
3867 	}
3868 
3869 	err = its_probe_one(&res, dom_handle,
3870 			acpi_get_its_numa_node(its_entry->translation_id));
3871 	if (!err)
3872 		return 0;
3873 
3874 	iort_deregister_domain_token(its_entry->translation_id);
3875 dom_err:
3876 	irq_domain_free_fwnode(dom_handle);
3877 	return err;
3878 }
3879 
3880 static void __init its_acpi_probe(void)
3881 {
3882 	acpi_table_parse_srat_its();
3883 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3884 			      gic_acpi_parse_madt_its, 0);
3885 	acpi_its_srat_maps_free();
3886 }
3887 #else
3888 static void __init its_acpi_probe(void) { }
3889 #endif
3890 
3891 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3892 		    struct irq_domain *parent_domain)
3893 {
3894 	struct device_node *of_node;
3895 	struct its_node *its;
3896 	bool has_v4 = false;
3897 	int err;
3898 
3899 	its_parent = parent_domain;
3900 	of_node = to_of_node(handle);
3901 	if (of_node)
3902 		its_of_probe(of_node);
3903 	else
3904 		its_acpi_probe();
3905 
3906 	if (list_empty(&its_nodes)) {
3907 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3908 		return -ENXIO;
3909 	}
3910 
3911 	gic_rdists = rdists;
3912 
3913 	err = allocate_lpi_tables();
3914 	if (err)
3915 		return err;
3916 
3917 	list_for_each_entry(its, &its_nodes, entry)
3918 		has_v4 |= its->is_v4;
3919 
3920 	if (has_v4 & rdists->has_vlpis) {
3921 		if (its_init_vpe_domain() ||
3922 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3923 			rdists->has_vlpis = false;
3924 			pr_err("ITS: Disabling GICv4 support\n");
3925 		}
3926 	}
3927 
3928 	register_syscore_ops(&its_syscore_ops);
3929 
3930 	return 0;
3931 }
3932