1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
48 
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
50 
51 /*
52  * Collection structure - just an ID, and a redistributor address to
53  * ping. We use one per CPU as a bag of interrupts assigned to this
54  * CPU.
55  */
56 struct its_collection {
57 	u64			target_address;
58 	u16			col_id;
59 };
60 
61 /*
62  * The ITS_BASER structure - contains memory information, cached
63  * value of BASER register configuration and ITS page size.
64  */
65 struct its_baser {
66 	void		*base;
67 	u64		val;
68 	u32		order;
69 	u32		psz;
70 };
71 
72 /*
73  * The ITS structure - contains most of the infrastructure, with the
74  * top-level MSI domain, the command queue, the collections, and the
75  * list of devices writing to it.
76  */
77 struct its_node {
78 	raw_spinlock_t		lock;
79 	struct list_head	entry;
80 	void __iomem		*base;
81 	phys_addr_t		phys_base;
82 	struct its_cmd_block	*cmd_base;
83 	struct its_cmd_block	*cmd_write;
84 	struct its_baser	tables[GITS_BASER_NR_REGS];
85 	struct its_collection	*collections;
86 	struct list_head	its_device_list;
87 	u64			flags;
88 	u32			ite_size;
89 	u32			device_ids;
90 	int			numa_node;
91 };
92 
93 #define ITS_ITT_ALIGN		SZ_256
94 
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
97 
98 struct event_lpi_map {
99 	unsigned long		*lpi_map;
100 	u16			*col_map;
101 	irq_hw_number_t		lpi_base;
102 	int			nr_lpis;
103 };
104 
105 /*
106  * The ITS view of a device - belongs to an ITS, a collection, owns an
107  * interrupt translation table, and a list of interrupts.
108  */
109 struct its_device {
110 	struct list_head	entry;
111 	struct its_node		*its;
112 	struct event_lpi_map	event_map;
113 	void			*itt;
114 	u32			nr_ites;
115 	u32			device_id;
116 };
117 
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122 
123 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
125 
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 					       u32 event)
128 {
129 	struct its_node *its = its_dev->its;
130 
131 	return its->collections + its_dev->event_map.col_map[event];
132 }
133 
134 /*
135  * ITS command descriptors - parameters to be encoded in a command
136  * block.
137  */
138 struct its_cmd_desc {
139 	union {
140 		struct {
141 			struct its_device *dev;
142 			u32 event_id;
143 		} its_inv_cmd;
144 
145 		struct {
146 			struct its_device *dev;
147 			u32 event_id;
148 		} its_int_cmd;
149 
150 		struct {
151 			struct its_device *dev;
152 			int valid;
153 		} its_mapd_cmd;
154 
155 		struct {
156 			struct its_collection *col;
157 			int valid;
158 		} its_mapc_cmd;
159 
160 		struct {
161 			struct its_device *dev;
162 			u32 phys_id;
163 			u32 event_id;
164 		} its_mapti_cmd;
165 
166 		struct {
167 			struct its_device *dev;
168 			struct its_collection *col;
169 			u32 event_id;
170 		} its_movi_cmd;
171 
172 		struct {
173 			struct its_device *dev;
174 			u32 event_id;
175 		} its_discard_cmd;
176 
177 		struct {
178 			struct its_collection *col;
179 		} its_invall_cmd;
180 	};
181 };
182 
183 /*
184  * The ITS command block, which is what the ITS actually parses.
185  */
186 struct its_cmd_block {
187 	u64	raw_cmd[4];
188 };
189 
190 #define ITS_CMD_QUEUE_SZ		SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192 
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 						    struct its_cmd_desc *);
195 
196 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
197 {
198 	u64 mask = GENMASK_ULL(h, l);
199 	*raw_cmd &= ~mask;
200 	*raw_cmd |= (val << l) & mask;
201 }
202 
203 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
204 {
205 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
206 }
207 
208 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
209 {
210 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
211 }
212 
213 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
214 {
215 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
216 }
217 
218 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
219 {
220 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
221 }
222 
223 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
224 {
225 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
226 }
227 
228 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
229 {
230 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
231 }
232 
233 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
234 {
235 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
236 }
237 
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
241 }
242 
243 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
244 {
245 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
246 }
247 
248 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
249 {
250 	/* Let's fixup BE commands */
251 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
252 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
253 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
254 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
255 }
256 
257 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
258 						 struct its_cmd_desc *desc)
259 {
260 	unsigned long itt_addr;
261 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
262 
263 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
264 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
265 
266 	its_encode_cmd(cmd, GITS_CMD_MAPD);
267 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
268 	its_encode_size(cmd, size - 1);
269 	its_encode_itt(cmd, itt_addr);
270 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
271 
272 	its_fixup_cmd(cmd);
273 
274 	return NULL;
275 }
276 
277 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
278 						 struct its_cmd_desc *desc)
279 {
280 	its_encode_cmd(cmd, GITS_CMD_MAPC);
281 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
282 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
283 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
284 
285 	its_fixup_cmd(cmd);
286 
287 	return desc->its_mapc_cmd.col;
288 }
289 
290 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
291 						  struct its_cmd_desc *desc)
292 {
293 	struct its_collection *col;
294 
295 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
296 			       desc->its_mapti_cmd.event_id);
297 
298 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
299 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
300 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
301 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
302 	its_encode_collection(cmd, col->col_id);
303 
304 	its_fixup_cmd(cmd);
305 
306 	return col;
307 }
308 
309 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
310 						 struct its_cmd_desc *desc)
311 {
312 	struct its_collection *col;
313 
314 	col = dev_event_to_col(desc->its_movi_cmd.dev,
315 			       desc->its_movi_cmd.event_id);
316 
317 	its_encode_cmd(cmd, GITS_CMD_MOVI);
318 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
319 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
320 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
321 
322 	its_fixup_cmd(cmd);
323 
324 	return col;
325 }
326 
327 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
328 						    struct its_cmd_desc *desc)
329 {
330 	struct its_collection *col;
331 
332 	col = dev_event_to_col(desc->its_discard_cmd.dev,
333 			       desc->its_discard_cmd.event_id);
334 
335 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
336 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
337 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
338 
339 	its_fixup_cmd(cmd);
340 
341 	return col;
342 }
343 
344 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
345 						struct its_cmd_desc *desc)
346 {
347 	struct its_collection *col;
348 
349 	col = dev_event_to_col(desc->its_inv_cmd.dev,
350 			       desc->its_inv_cmd.event_id);
351 
352 	its_encode_cmd(cmd, GITS_CMD_INV);
353 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
354 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
355 
356 	its_fixup_cmd(cmd);
357 
358 	return col;
359 }
360 
361 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
362 						   struct its_cmd_desc *desc)
363 {
364 	its_encode_cmd(cmd, GITS_CMD_INVALL);
365 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
366 
367 	its_fixup_cmd(cmd);
368 
369 	return NULL;
370 }
371 
372 static u64 its_cmd_ptr_to_offset(struct its_node *its,
373 				 struct its_cmd_block *ptr)
374 {
375 	return (ptr - its->cmd_base) * sizeof(*ptr);
376 }
377 
378 static int its_queue_full(struct its_node *its)
379 {
380 	int widx;
381 	int ridx;
382 
383 	widx = its->cmd_write - its->cmd_base;
384 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
385 
386 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
387 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
388 		return 1;
389 
390 	return 0;
391 }
392 
393 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
394 {
395 	struct its_cmd_block *cmd;
396 	u32 count = 1000000;	/* 1s! */
397 
398 	while (its_queue_full(its)) {
399 		count--;
400 		if (!count) {
401 			pr_err_ratelimited("ITS queue not draining\n");
402 			return NULL;
403 		}
404 		cpu_relax();
405 		udelay(1);
406 	}
407 
408 	cmd = its->cmd_write++;
409 
410 	/* Handle queue wrapping */
411 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
412 		its->cmd_write = its->cmd_base;
413 
414 	/* Clear command  */
415 	cmd->raw_cmd[0] = 0;
416 	cmd->raw_cmd[1] = 0;
417 	cmd->raw_cmd[2] = 0;
418 	cmd->raw_cmd[3] = 0;
419 
420 	return cmd;
421 }
422 
423 static struct its_cmd_block *its_post_commands(struct its_node *its)
424 {
425 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
426 
427 	writel_relaxed(wr, its->base + GITS_CWRITER);
428 
429 	return its->cmd_write;
430 }
431 
432 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
433 {
434 	/*
435 	 * Make sure the commands written to memory are observable by
436 	 * the ITS.
437 	 */
438 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
439 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
440 	else
441 		dsb(ishst);
442 }
443 
444 static void its_wait_for_range_completion(struct its_node *its,
445 					  struct its_cmd_block *from,
446 					  struct its_cmd_block *to)
447 {
448 	u64 rd_idx, from_idx, to_idx;
449 	u32 count = 1000000;	/* 1s! */
450 
451 	from_idx = its_cmd_ptr_to_offset(its, from);
452 	to_idx = its_cmd_ptr_to_offset(its, to);
453 
454 	while (1) {
455 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
456 		if (rd_idx >= to_idx || rd_idx < from_idx)
457 			break;
458 
459 		count--;
460 		if (!count) {
461 			pr_err_ratelimited("ITS queue timeout\n");
462 			return;
463 		}
464 		cpu_relax();
465 		udelay(1);
466 	}
467 }
468 
469 static void its_send_single_command(struct its_node *its,
470 				    its_cmd_builder_t builder,
471 				    struct its_cmd_desc *desc)
472 {
473 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
474 	struct its_collection *sync_col;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&its->lock, flags);
478 
479 	cmd = its_allocate_entry(its);
480 	if (!cmd) {		/* We're soooooo screewed... */
481 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
482 		raw_spin_unlock_irqrestore(&its->lock, flags);
483 		return;
484 	}
485 	sync_col = builder(cmd, desc);
486 	its_flush_cmd(its, cmd);
487 
488 	if (sync_col) {
489 		sync_cmd = its_allocate_entry(its);
490 		if (!sync_cmd) {
491 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
492 			goto post;
493 		}
494 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
495 		its_encode_target(sync_cmd, sync_col->target_address);
496 		its_fixup_cmd(sync_cmd);
497 		its_flush_cmd(its, sync_cmd);
498 	}
499 
500 post:
501 	next_cmd = its_post_commands(its);
502 	raw_spin_unlock_irqrestore(&its->lock, flags);
503 
504 	its_wait_for_range_completion(its, cmd, next_cmd);
505 }
506 
507 static void its_send_inv(struct its_device *dev, u32 event_id)
508 {
509 	struct its_cmd_desc desc;
510 
511 	desc.its_inv_cmd.dev = dev;
512 	desc.its_inv_cmd.event_id = event_id;
513 
514 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
515 }
516 
517 static void its_send_mapd(struct its_device *dev, int valid)
518 {
519 	struct its_cmd_desc desc;
520 
521 	desc.its_mapd_cmd.dev = dev;
522 	desc.its_mapd_cmd.valid = !!valid;
523 
524 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
525 }
526 
527 static void its_send_mapc(struct its_node *its, struct its_collection *col,
528 			  int valid)
529 {
530 	struct its_cmd_desc desc;
531 
532 	desc.its_mapc_cmd.col = col;
533 	desc.its_mapc_cmd.valid = !!valid;
534 
535 	its_send_single_command(its, its_build_mapc_cmd, &desc);
536 }
537 
538 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
539 {
540 	struct its_cmd_desc desc;
541 
542 	desc.its_mapti_cmd.dev = dev;
543 	desc.its_mapti_cmd.phys_id = irq_id;
544 	desc.its_mapti_cmd.event_id = id;
545 
546 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
547 }
548 
549 static void its_send_movi(struct its_device *dev,
550 			  struct its_collection *col, u32 id)
551 {
552 	struct its_cmd_desc desc;
553 
554 	desc.its_movi_cmd.dev = dev;
555 	desc.its_movi_cmd.col = col;
556 	desc.its_movi_cmd.event_id = id;
557 
558 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
559 }
560 
561 static void its_send_discard(struct its_device *dev, u32 id)
562 {
563 	struct its_cmd_desc desc;
564 
565 	desc.its_discard_cmd.dev = dev;
566 	desc.its_discard_cmd.event_id = id;
567 
568 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
569 }
570 
571 static void its_send_invall(struct its_node *its, struct its_collection *col)
572 {
573 	struct its_cmd_desc desc;
574 
575 	desc.its_invall_cmd.col = col;
576 
577 	its_send_single_command(its, its_build_invall_cmd, &desc);
578 }
579 
580 /*
581  * irqchip functions - assumes MSI, mostly.
582  */
583 
584 static inline u32 its_get_event_id(struct irq_data *d)
585 {
586 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
587 	return d->hwirq - its_dev->event_map.lpi_base;
588 }
589 
590 static void lpi_set_config(struct irq_data *d, bool enable)
591 {
592 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
593 	irq_hw_number_t hwirq = d->hwirq;
594 	u32 id = its_get_event_id(d);
595 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
596 
597 	if (enable)
598 		*cfg |= LPI_PROP_ENABLED;
599 	else
600 		*cfg &= ~LPI_PROP_ENABLED;
601 
602 	/*
603 	 * Make the above write visible to the redistributors.
604 	 * And yes, we're flushing exactly: One. Single. Byte.
605 	 * Humpf...
606 	 */
607 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
608 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
609 	else
610 		dsb(ishst);
611 	its_send_inv(its_dev, id);
612 }
613 
614 static void its_mask_irq(struct irq_data *d)
615 {
616 	lpi_set_config(d, false);
617 }
618 
619 static void its_unmask_irq(struct irq_data *d)
620 {
621 	lpi_set_config(d, true);
622 }
623 
624 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
625 			    bool force)
626 {
627 	unsigned int cpu;
628 	const struct cpumask *cpu_mask = cpu_online_mask;
629 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
630 	struct its_collection *target_col;
631 	u32 id = its_get_event_id(d);
632 
633        /* lpi cannot be routed to a redistributor that is on a foreign node */
634 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
635 		if (its_dev->its->numa_node >= 0) {
636 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
637 			if (!cpumask_intersects(mask_val, cpu_mask))
638 				return -EINVAL;
639 		}
640 	}
641 
642 	cpu = cpumask_any_and(mask_val, cpu_mask);
643 
644 	if (cpu >= nr_cpu_ids)
645 		return -EINVAL;
646 
647 	/* don't set the affinity when the target cpu is same as current one */
648 	if (cpu != its_dev->event_map.col_map[id]) {
649 		target_col = &its_dev->its->collections[cpu];
650 		its_send_movi(its_dev, target_col, id);
651 		its_dev->event_map.col_map[id] = cpu;
652 	}
653 
654 	return IRQ_SET_MASK_OK_DONE;
655 }
656 
657 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
658 {
659 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
660 	struct its_node *its;
661 	u64 addr;
662 
663 	its = its_dev->its;
664 	addr = its->phys_base + GITS_TRANSLATER;
665 
666 	msg->address_lo		= lower_32_bits(addr);
667 	msg->address_hi		= upper_32_bits(addr);
668 	msg->data		= its_get_event_id(d);
669 
670 	iommu_dma_map_msi_msg(d->irq, msg);
671 }
672 
673 static struct irq_chip its_irq_chip = {
674 	.name			= "ITS",
675 	.irq_mask		= its_mask_irq,
676 	.irq_unmask		= its_unmask_irq,
677 	.irq_eoi		= irq_chip_eoi_parent,
678 	.irq_set_affinity	= its_set_affinity,
679 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
680 };
681 
682 /*
683  * How we allocate LPIs:
684  *
685  * The GIC has id_bits bits for interrupt identifiers. From there, we
686  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
687  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
688  * bits to the right.
689  *
690  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
691  */
692 #define IRQS_PER_CHUNK_SHIFT	5
693 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
694 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
695 
696 static unsigned long *lpi_bitmap;
697 static u32 lpi_chunks;
698 static u32 lpi_id_bits;
699 static DEFINE_SPINLOCK(lpi_lock);
700 
701 static int its_lpi_to_chunk(int lpi)
702 {
703 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
704 }
705 
706 static int its_chunk_to_lpi(int chunk)
707 {
708 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
709 }
710 
711 static int __init its_lpi_init(u32 id_bits)
712 {
713 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
714 
715 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
716 			     GFP_KERNEL);
717 	if (!lpi_bitmap) {
718 		lpi_chunks = 0;
719 		return -ENOMEM;
720 	}
721 
722 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
723 	return 0;
724 }
725 
726 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
727 {
728 	unsigned long *bitmap = NULL;
729 	int chunk_id;
730 	int nr_chunks;
731 	int i;
732 
733 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
734 
735 	spin_lock(&lpi_lock);
736 
737 	do {
738 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
739 						      0, nr_chunks, 0);
740 		if (chunk_id < lpi_chunks)
741 			break;
742 
743 		nr_chunks--;
744 	} while (nr_chunks > 0);
745 
746 	if (!nr_chunks)
747 		goto out;
748 
749 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
750 			 GFP_ATOMIC);
751 	if (!bitmap)
752 		goto out;
753 
754 	for (i = 0; i < nr_chunks; i++)
755 		set_bit(chunk_id + i, lpi_bitmap);
756 
757 	*base = its_chunk_to_lpi(chunk_id);
758 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
759 
760 out:
761 	spin_unlock(&lpi_lock);
762 
763 	if (!bitmap)
764 		*base = *nr_ids = 0;
765 
766 	return bitmap;
767 }
768 
769 static void its_lpi_free(struct event_lpi_map *map)
770 {
771 	int base = map->lpi_base;
772 	int nr_ids = map->nr_lpis;
773 	int lpi;
774 
775 	spin_lock(&lpi_lock);
776 
777 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
778 		int chunk = its_lpi_to_chunk(lpi);
779 		BUG_ON(chunk > lpi_chunks);
780 		if (test_bit(chunk, lpi_bitmap)) {
781 			clear_bit(chunk, lpi_bitmap);
782 		} else {
783 			pr_err("Bad LPI chunk %d\n", chunk);
784 		}
785 	}
786 
787 	spin_unlock(&lpi_lock);
788 
789 	kfree(map->lpi_map);
790 	kfree(map->col_map);
791 }
792 
793 /*
794  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
795  * deal with (one configuration byte per interrupt). PENDBASE has to
796  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
797  */
798 #define LPI_NRBITS		lpi_id_bits
799 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
800 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
801 
802 #define LPI_PROP_DEFAULT_PRIO	0xa0
803 
804 static int __init its_alloc_lpi_tables(void)
805 {
806 	phys_addr_t paddr;
807 
808 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
809 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
810 					   get_order(LPI_PROPBASE_SZ));
811 	if (!gic_rdists->prop_page) {
812 		pr_err("Failed to allocate PROPBASE\n");
813 		return -ENOMEM;
814 	}
815 
816 	paddr = page_to_phys(gic_rdists->prop_page);
817 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
818 
819 	/* Priority 0xa0, Group-1, disabled */
820 	memset(page_address(gic_rdists->prop_page),
821 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
822 	       LPI_PROPBASE_SZ);
823 
824 	/* Make sure the GIC will observe the written configuration */
825 	gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
826 
827 	return its_lpi_init(lpi_id_bits);
828 }
829 
830 static const char *its_base_type_string[] = {
831 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
832 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
833 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
834 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
835 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
836 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
837 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
838 };
839 
840 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
841 {
842 	u32 idx = baser - its->tables;
843 
844 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
845 }
846 
847 static void its_write_baser(struct its_node *its, struct its_baser *baser,
848 			    u64 val)
849 {
850 	u32 idx = baser - its->tables;
851 
852 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
853 	baser->val = its_read_baser(its, baser);
854 }
855 
856 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
857 			   u64 cache, u64 shr, u32 psz, u32 order,
858 			   bool indirect)
859 {
860 	u64 val = its_read_baser(its, baser);
861 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
862 	u64 type = GITS_BASER_TYPE(val);
863 	u32 alloc_pages;
864 	void *base;
865 	u64 tmp;
866 
867 retry_alloc_baser:
868 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
869 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
870 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
871 			&its->phys_base, its_base_type_string[type],
872 			alloc_pages, GITS_BASER_PAGES_MAX);
873 		alloc_pages = GITS_BASER_PAGES_MAX;
874 		order = get_order(GITS_BASER_PAGES_MAX * psz);
875 	}
876 
877 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
878 	if (!base)
879 		return -ENOMEM;
880 
881 retry_baser:
882 	val = (virt_to_phys(base)				 |
883 		(type << GITS_BASER_TYPE_SHIFT)			 |
884 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
885 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
886 		cache						 |
887 		shr						 |
888 		GITS_BASER_VALID);
889 
890 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
891 
892 	switch (psz) {
893 	case SZ_4K:
894 		val |= GITS_BASER_PAGE_SIZE_4K;
895 		break;
896 	case SZ_16K:
897 		val |= GITS_BASER_PAGE_SIZE_16K;
898 		break;
899 	case SZ_64K:
900 		val |= GITS_BASER_PAGE_SIZE_64K;
901 		break;
902 	}
903 
904 	its_write_baser(its, baser, val);
905 	tmp = baser->val;
906 
907 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
908 		/*
909 		 * Shareability didn't stick. Just use
910 		 * whatever the read reported, which is likely
911 		 * to be the only thing this redistributor
912 		 * supports. If that's zero, make it
913 		 * non-cacheable as well.
914 		 */
915 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
916 		if (!shr) {
917 			cache = GITS_BASER_nC;
918 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
919 		}
920 		goto retry_baser;
921 	}
922 
923 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
924 		/*
925 		 * Page size didn't stick. Let's try a smaller
926 		 * size and retry. If we reach 4K, then
927 		 * something is horribly wrong...
928 		 */
929 		free_pages((unsigned long)base, order);
930 		baser->base = NULL;
931 
932 		switch (psz) {
933 		case SZ_16K:
934 			psz = SZ_4K;
935 			goto retry_alloc_baser;
936 		case SZ_64K:
937 			psz = SZ_16K;
938 			goto retry_alloc_baser;
939 		}
940 	}
941 
942 	if (val != tmp) {
943 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
944 		       &its->phys_base, its_base_type_string[type],
945 		       val, tmp);
946 		free_pages((unsigned long)base, order);
947 		return -ENXIO;
948 	}
949 
950 	baser->order = order;
951 	baser->base = base;
952 	baser->psz = psz;
953 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
954 
955 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
956 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
957 		its_base_type_string[type],
958 		(unsigned long)virt_to_phys(base),
959 		indirect ? "indirect" : "flat", (int)esz,
960 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
961 
962 	return 0;
963 }
964 
965 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
966 				   u32 psz, u32 *order)
967 {
968 	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
969 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
970 	u32 ids = its->device_ids;
971 	u32 new_order = *order;
972 	bool indirect = false;
973 
974 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
975 	if ((esz << ids) > (psz * 2)) {
976 		/*
977 		 * Find out whether hw supports a single or two-level table by
978 		 * table by reading bit at offset '62' after writing '1' to it.
979 		 */
980 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
981 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
982 
983 		if (indirect) {
984 			/*
985 			 * The size of the lvl2 table is equal to ITS page size
986 			 * which is 'psz'. For computing lvl1 table size,
987 			 * subtract ID bits that sparse lvl2 table from 'ids'
988 			 * which is reported by ITS hardware times lvl1 table
989 			 * entry size.
990 			 */
991 			ids -= ilog2(psz / (int)esz);
992 			esz = GITS_LVL1_ENTRY_SIZE;
993 		}
994 	}
995 
996 	/*
997 	 * Allocate as many entries as required to fit the
998 	 * range of device IDs that the ITS can grok... The ID
999 	 * space being incredibly sparse, this results in a
1000 	 * massive waste of memory if two-level device table
1001 	 * feature is not supported by hardware.
1002 	 */
1003 	new_order = max_t(u32, get_order(esz << ids), new_order);
1004 	if (new_order >= MAX_ORDER) {
1005 		new_order = MAX_ORDER - 1;
1006 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1007 		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1008 			&its->phys_base, its->device_ids, ids);
1009 	}
1010 
1011 	*order = new_order;
1012 
1013 	return indirect;
1014 }
1015 
1016 static void its_free_tables(struct its_node *its)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1021 		if (its->tables[i].base) {
1022 			free_pages((unsigned long)its->tables[i].base,
1023 				   its->tables[i].order);
1024 			its->tables[i].base = NULL;
1025 		}
1026 	}
1027 }
1028 
1029 static int its_alloc_tables(struct its_node *its)
1030 {
1031 	u64 typer = gic_read_typer(its->base + GITS_TYPER);
1032 	u32 ids = GITS_TYPER_DEVBITS(typer);
1033 	u64 shr = GITS_BASER_InnerShareable;
1034 	u64 cache = GITS_BASER_RaWaWb;
1035 	u32 psz = SZ_64K;
1036 	int err, i;
1037 
1038 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1039 		/*
1040 		* erratum 22375: only alloc 8MB table size
1041 		* erratum 24313: ignore memory access type
1042 		*/
1043 		cache   = GITS_BASER_nCnB;
1044 		ids     = 0x14;                 /* 20 bits, 8MB */
1045 	}
1046 
1047 	its->device_ids = ids;
1048 
1049 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1050 		struct its_baser *baser = its->tables + i;
1051 		u64 val = its_read_baser(its, baser);
1052 		u64 type = GITS_BASER_TYPE(val);
1053 		u32 order = get_order(psz);
1054 		bool indirect = false;
1055 
1056 		if (type == GITS_BASER_TYPE_NONE)
1057 			continue;
1058 
1059 		if (type == GITS_BASER_TYPE_DEVICE)
1060 			indirect = its_parse_baser_device(its, baser, psz, &order);
1061 
1062 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1063 		if (err < 0) {
1064 			its_free_tables(its);
1065 			return err;
1066 		}
1067 
1068 		/* Update settings which will be used for next BASERn */
1069 		psz = baser->psz;
1070 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1071 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static int its_alloc_collections(struct its_node *its)
1078 {
1079 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1080 				   GFP_KERNEL);
1081 	if (!its->collections)
1082 		return -ENOMEM;
1083 
1084 	return 0;
1085 }
1086 
1087 static void its_cpu_init_lpis(void)
1088 {
1089 	void __iomem *rbase = gic_data_rdist_rd_base();
1090 	struct page *pend_page;
1091 	u64 val, tmp;
1092 
1093 	/* If we didn't allocate the pending table yet, do it now */
1094 	pend_page = gic_data_rdist()->pend_page;
1095 	if (!pend_page) {
1096 		phys_addr_t paddr;
1097 		/*
1098 		 * The pending pages have to be at least 64kB aligned,
1099 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1100 		 */
1101 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1102 					get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1103 		if (!pend_page) {
1104 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1105 			       smp_processor_id());
1106 			return;
1107 		}
1108 
1109 		/* Make sure the GIC will observe the zero-ed page */
1110 		gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1111 
1112 		paddr = page_to_phys(pend_page);
1113 		pr_info("CPU%d: using LPI pending table @%pa\n",
1114 			smp_processor_id(), &paddr);
1115 		gic_data_rdist()->pend_page = pend_page;
1116 	}
1117 
1118 	/* Disable LPIs */
1119 	val = readl_relaxed(rbase + GICR_CTLR);
1120 	val &= ~GICR_CTLR_ENABLE_LPIS;
1121 	writel_relaxed(val, rbase + GICR_CTLR);
1122 
1123 	/*
1124 	 * Make sure any change to the table is observable by the GIC.
1125 	 */
1126 	dsb(sy);
1127 
1128 	/* set PROPBASE */
1129 	val = (page_to_phys(gic_rdists->prop_page) |
1130 	       GICR_PROPBASER_InnerShareable |
1131 	       GICR_PROPBASER_RaWaWb |
1132 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1133 
1134 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1135 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1136 
1137 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1138 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1139 			/*
1140 			 * The HW reports non-shareable, we must
1141 			 * remove the cacheability attributes as
1142 			 * well.
1143 			 */
1144 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1145 				 GICR_PROPBASER_CACHEABILITY_MASK);
1146 			val |= GICR_PROPBASER_nC;
1147 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1148 		}
1149 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1150 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1151 	}
1152 
1153 	/* set PENDBASE */
1154 	val = (page_to_phys(pend_page) |
1155 	       GICR_PENDBASER_InnerShareable |
1156 	       GICR_PENDBASER_RaWaWb);
1157 
1158 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1159 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1160 
1161 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1162 		/*
1163 		 * The HW reports non-shareable, we must remove the
1164 		 * cacheability attributes as well.
1165 		 */
1166 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1167 			 GICR_PENDBASER_CACHEABILITY_MASK);
1168 		val |= GICR_PENDBASER_nC;
1169 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1170 	}
1171 
1172 	/* Enable LPIs */
1173 	val = readl_relaxed(rbase + GICR_CTLR);
1174 	val |= GICR_CTLR_ENABLE_LPIS;
1175 	writel_relaxed(val, rbase + GICR_CTLR);
1176 
1177 	/* Make sure the GIC has seen the above */
1178 	dsb(sy);
1179 }
1180 
1181 static void its_cpu_init_collection(void)
1182 {
1183 	struct its_node *its;
1184 	int cpu;
1185 
1186 	spin_lock(&its_lock);
1187 	cpu = smp_processor_id();
1188 
1189 	list_for_each_entry(its, &its_nodes, entry) {
1190 		u64 target;
1191 
1192 		/* avoid cross node collections and its mapping */
1193 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1194 			struct device_node *cpu_node;
1195 
1196 			cpu_node = of_get_cpu_node(cpu, NULL);
1197 			if (its->numa_node != NUMA_NO_NODE &&
1198 				its->numa_node != of_node_to_nid(cpu_node))
1199 				continue;
1200 		}
1201 
1202 		/*
1203 		 * We now have to bind each collection to its target
1204 		 * redistributor.
1205 		 */
1206 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1207 			/*
1208 			 * This ITS wants the physical address of the
1209 			 * redistributor.
1210 			 */
1211 			target = gic_data_rdist()->phys_base;
1212 		} else {
1213 			/*
1214 			 * This ITS wants a linear CPU number.
1215 			 */
1216 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1217 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1218 		}
1219 
1220 		/* Perform collection mapping */
1221 		its->collections[cpu].target_address = target;
1222 		its->collections[cpu].col_id = cpu;
1223 
1224 		its_send_mapc(its, &its->collections[cpu], 1);
1225 		its_send_invall(its, &its->collections[cpu]);
1226 	}
1227 
1228 	spin_unlock(&its_lock);
1229 }
1230 
1231 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1232 {
1233 	struct its_device *its_dev = NULL, *tmp;
1234 	unsigned long flags;
1235 
1236 	raw_spin_lock_irqsave(&its->lock, flags);
1237 
1238 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1239 		if (tmp->device_id == dev_id) {
1240 			its_dev = tmp;
1241 			break;
1242 		}
1243 	}
1244 
1245 	raw_spin_unlock_irqrestore(&its->lock, flags);
1246 
1247 	return its_dev;
1248 }
1249 
1250 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1251 {
1252 	int i;
1253 
1254 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1255 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1256 			return &its->tables[i];
1257 	}
1258 
1259 	return NULL;
1260 }
1261 
1262 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1263 {
1264 	struct its_baser *baser;
1265 	struct page *page;
1266 	u32 esz, idx;
1267 	__le64 *table;
1268 
1269 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1270 
1271 	/* Don't allow device id that exceeds ITS hardware limit */
1272 	if (!baser)
1273 		return (ilog2(dev_id) < its->device_ids);
1274 
1275 	/* Don't allow device id that exceeds single, flat table limit */
1276 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1277 	if (!(baser->val & GITS_BASER_INDIRECT))
1278 		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1279 
1280 	/* Compute 1st level table index & check if that exceeds table limit */
1281 	idx = dev_id >> ilog2(baser->psz / esz);
1282 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1283 		return false;
1284 
1285 	table = baser->base;
1286 
1287 	/* Allocate memory for 2nd level table */
1288 	if (!table[idx]) {
1289 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1290 		if (!page)
1291 			return false;
1292 
1293 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1294 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1295 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
1296 
1297 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1298 
1299 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1300 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1301 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1302 
1303 		/* Ensure updated table contents are visible to ITS hardware */
1304 		dsb(sy);
1305 	}
1306 
1307 	return true;
1308 }
1309 
1310 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1311 					    int nvecs)
1312 {
1313 	struct its_device *dev;
1314 	unsigned long *lpi_map;
1315 	unsigned long flags;
1316 	u16 *col_map = NULL;
1317 	void *itt;
1318 	int lpi_base;
1319 	int nr_lpis;
1320 	int nr_ites;
1321 	int sz;
1322 
1323 	if (!its_alloc_device_table(its, dev_id))
1324 		return NULL;
1325 
1326 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1327 	/*
1328 	 * At least one bit of EventID is being used, hence a minimum
1329 	 * of two entries. No, the architecture doesn't let you
1330 	 * express an ITT with a single entry.
1331 	 */
1332 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1333 	sz = nr_ites * its->ite_size;
1334 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1335 	itt = kzalloc(sz, GFP_KERNEL);
1336 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1337 	if (lpi_map)
1338 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1339 
1340 	if (!dev || !itt || !lpi_map || !col_map) {
1341 		kfree(dev);
1342 		kfree(itt);
1343 		kfree(lpi_map);
1344 		kfree(col_map);
1345 		return NULL;
1346 	}
1347 
1348 	gic_flush_dcache_to_poc(itt, sz);
1349 
1350 	dev->its = its;
1351 	dev->itt = itt;
1352 	dev->nr_ites = nr_ites;
1353 	dev->event_map.lpi_map = lpi_map;
1354 	dev->event_map.col_map = col_map;
1355 	dev->event_map.lpi_base = lpi_base;
1356 	dev->event_map.nr_lpis = nr_lpis;
1357 	dev->device_id = dev_id;
1358 	INIT_LIST_HEAD(&dev->entry);
1359 
1360 	raw_spin_lock_irqsave(&its->lock, flags);
1361 	list_add(&dev->entry, &its->its_device_list);
1362 	raw_spin_unlock_irqrestore(&its->lock, flags);
1363 
1364 	/* Map device to its ITT */
1365 	its_send_mapd(dev, 1);
1366 
1367 	return dev;
1368 }
1369 
1370 static void its_free_device(struct its_device *its_dev)
1371 {
1372 	unsigned long flags;
1373 
1374 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1375 	list_del(&its_dev->entry);
1376 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1377 	kfree(its_dev->itt);
1378 	kfree(its_dev);
1379 }
1380 
1381 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1382 {
1383 	int idx;
1384 
1385 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1386 				  dev->event_map.nr_lpis);
1387 	if (idx == dev->event_map.nr_lpis)
1388 		return -ENOSPC;
1389 
1390 	*hwirq = dev->event_map.lpi_base + idx;
1391 	set_bit(idx, dev->event_map.lpi_map);
1392 
1393 	return 0;
1394 }
1395 
1396 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1397 			   int nvec, msi_alloc_info_t *info)
1398 {
1399 	struct its_node *its;
1400 	struct its_device *its_dev;
1401 	struct msi_domain_info *msi_info;
1402 	u32 dev_id;
1403 
1404 	/*
1405 	 * We ignore "dev" entierely, and rely on the dev_id that has
1406 	 * been passed via the scratchpad. This limits this domain's
1407 	 * usefulness to upper layers that definitely know that they
1408 	 * are built on top of the ITS.
1409 	 */
1410 	dev_id = info->scratchpad[0].ul;
1411 
1412 	msi_info = msi_get_domain_info(domain);
1413 	its = msi_info->data;
1414 
1415 	its_dev = its_find_device(its, dev_id);
1416 	if (its_dev) {
1417 		/*
1418 		 * We already have seen this ID, probably through
1419 		 * another alias (PCI bridge of some sort). No need to
1420 		 * create the device.
1421 		 */
1422 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1423 		goto out;
1424 	}
1425 
1426 	its_dev = its_create_device(its, dev_id, nvec);
1427 	if (!its_dev)
1428 		return -ENOMEM;
1429 
1430 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1431 out:
1432 	info->scratchpad[0].ptr = its_dev;
1433 	return 0;
1434 }
1435 
1436 static struct msi_domain_ops its_msi_domain_ops = {
1437 	.msi_prepare	= its_msi_prepare,
1438 };
1439 
1440 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1441 				    unsigned int virq,
1442 				    irq_hw_number_t hwirq)
1443 {
1444 	struct irq_fwspec fwspec;
1445 
1446 	if (irq_domain_get_of_node(domain->parent)) {
1447 		fwspec.fwnode = domain->parent->fwnode;
1448 		fwspec.param_count = 3;
1449 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1450 		fwspec.param[1] = hwirq;
1451 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1452 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1453 		fwspec.fwnode = domain->parent->fwnode;
1454 		fwspec.param_count = 2;
1455 		fwspec.param[0] = hwirq;
1456 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1457 	} else {
1458 		return -EINVAL;
1459 	}
1460 
1461 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1462 }
1463 
1464 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1465 				unsigned int nr_irqs, void *args)
1466 {
1467 	msi_alloc_info_t *info = args;
1468 	struct its_device *its_dev = info->scratchpad[0].ptr;
1469 	irq_hw_number_t hwirq;
1470 	int err;
1471 	int i;
1472 
1473 	for (i = 0; i < nr_irqs; i++) {
1474 		err = its_alloc_device_irq(its_dev, &hwirq);
1475 		if (err)
1476 			return err;
1477 
1478 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1479 		if (err)
1480 			return err;
1481 
1482 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1483 					      hwirq, &its_irq_chip, its_dev);
1484 		pr_debug("ID:%d pID:%d vID:%d\n",
1485 			 (int)(hwirq - its_dev->event_map.lpi_base),
1486 			 (int) hwirq, virq + i);
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static void its_irq_domain_activate(struct irq_domain *domain,
1493 				    struct irq_data *d)
1494 {
1495 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496 	u32 event = its_get_event_id(d);
1497 	const struct cpumask *cpu_mask = cpu_online_mask;
1498 
1499 	/* get the cpu_mask of local node */
1500 	if (its_dev->its->numa_node >= 0)
1501 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1502 
1503 	/* Bind the LPI to the first possible CPU */
1504 	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1505 
1506 	/* Map the GIC IRQ and event to the device */
1507 	its_send_mapti(its_dev, d->hwirq, event);
1508 }
1509 
1510 static void its_irq_domain_deactivate(struct irq_domain *domain,
1511 				      struct irq_data *d)
1512 {
1513 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1514 	u32 event = its_get_event_id(d);
1515 
1516 	/* Stop the delivery of interrupts */
1517 	its_send_discard(its_dev, event);
1518 }
1519 
1520 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1521 				unsigned int nr_irqs)
1522 {
1523 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1524 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1525 	int i;
1526 
1527 	for (i = 0; i < nr_irqs; i++) {
1528 		struct irq_data *data = irq_domain_get_irq_data(domain,
1529 								virq + i);
1530 		u32 event = its_get_event_id(data);
1531 
1532 		/* Mark interrupt index as unused */
1533 		clear_bit(event, its_dev->event_map.lpi_map);
1534 
1535 		/* Nuke the entry in the domain */
1536 		irq_domain_reset_irq_data(data);
1537 	}
1538 
1539 	/* If all interrupts have been freed, start mopping the floor */
1540 	if (bitmap_empty(its_dev->event_map.lpi_map,
1541 			 its_dev->event_map.nr_lpis)) {
1542 		its_lpi_free(&its_dev->event_map);
1543 
1544 		/* Unmap device/itt */
1545 		its_send_mapd(its_dev, 0);
1546 		its_free_device(its_dev);
1547 	}
1548 
1549 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1550 }
1551 
1552 static const struct irq_domain_ops its_domain_ops = {
1553 	.alloc			= its_irq_domain_alloc,
1554 	.free			= its_irq_domain_free,
1555 	.activate		= its_irq_domain_activate,
1556 	.deactivate		= its_irq_domain_deactivate,
1557 };
1558 
1559 static int its_force_quiescent(void __iomem *base)
1560 {
1561 	u32 count = 1000000;	/* 1s */
1562 	u32 val;
1563 
1564 	val = readl_relaxed(base + GITS_CTLR);
1565 	/*
1566 	 * GIC architecture specification requires the ITS to be both
1567 	 * disabled and quiescent for writes to GITS_BASER<n> or
1568 	 * GITS_CBASER to not have UNPREDICTABLE results.
1569 	 */
1570 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1571 		return 0;
1572 
1573 	/* Disable the generation of all interrupts to this ITS */
1574 	val &= ~GITS_CTLR_ENABLE;
1575 	writel_relaxed(val, base + GITS_CTLR);
1576 
1577 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1578 	while (1) {
1579 		val = readl_relaxed(base + GITS_CTLR);
1580 		if (val & GITS_CTLR_QUIESCENT)
1581 			return 0;
1582 
1583 		count--;
1584 		if (!count)
1585 			return -EBUSY;
1586 
1587 		cpu_relax();
1588 		udelay(1);
1589 	}
1590 }
1591 
1592 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1593 {
1594 	struct its_node *its = data;
1595 
1596 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1597 }
1598 
1599 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1600 {
1601 	struct its_node *its = data;
1602 
1603 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1604 }
1605 
1606 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
1607 {
1608 	struct its_node *its = data;
1609 
1610 	/* On QDF2400, the size of the ITE is 16Bytes */
1611 	its->ite_size = 16;
1612 }
1613 
1614 static const struct gic_quirk its_quirks[] = {
1615 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1616 	{
1617 		.desc	= "ITS: Cavium errata 22375, 24313",
1618 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1619 		.mask	= 0xffff0fff,
1620 		.init	= its_enable_quirk_cavium_22375,
1621 	},
1622 #endif
1623 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1624 	{
1625 		.desc	= "ITS: Cavium erratum 23144",
1626 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1627 		.mask	= 0xffff0fff,
1628 		.init	= its_enable_quirk_cavium_23144,
1629 	},
1630 #endif
1631 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
1632 	{
1633 		.desc	= "ITS: QDF2400 erratum 0065",
1634 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
1635 		.mask	= 0xffffffff,
1636 		.init	= its_enable_quirk_qdf2400_e0065,
1637 	},
1638 #endif
1639 	{
1640 	}
1641 };
1642 
1643 static void its_enable_quirks(struct its_node *its)
1644 {
1645 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1646 
1647 	gic_enable_quirks(iidr, its_quirks, its);
1648 }
1649 
1650 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1651 {
1652 	struct irq_domain *inner_domain;
1653 	struct msi_domain_info *info;
1654 
1655 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1656 	if (!info)
1657 		return -ENOMEM;
1658 
1659 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1660 	if (!inner_domain) {
1661 		kfree(info);
1662 		return -ENOMEM;
1663 	}
1664 
1665 	inner_domain->parent = its_parent;
1666 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
1667 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
1668 	info->ops = &its_msi_domain_ops;
1669 	info->data = its;
1670 	inner_domain->host_data = info;
1671 
1672 	return 0;
1673 }
1674 
1675 static int __init its_probe_one(struct resource *res,
1676 				struct fwnode_handle *handle, int numa_node)
1677 {
1678 	struct its_node *its;
1679 	void __iomem *its_base;
1680 	u32 val;
1681 	u64 baser, tmp;
1682 	int err;
1683 
1684 	its_base = ioremap(res->start, resource_size(res));
1685 	if (!its_base) {
1686 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1687 		return -ENOMEM;
1688 	}
1689 
1690 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1691 	if (val != 0x30 && val != 0x40) {
1692 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1693 		err = -ENODEV;
1694 		goto out_unmap;
1695 	}
1696 
1697 	err = its_force_quiescent(its_base);
1698 	if (err) {
1699 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1700 		goto out_unmap;
1701 	}
1702 
1703 	pr_info("ITS %pR\n", res);
1704 
1705 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1706 	if (!its) {
1707 		err = -ENOMEM;
1708 		goto out_unmap;
1709 	}
1710 
1711 	raw_spin_lock_init(&its->lock);
1712 	INIT_LIST_HEAD(&its->entry);
1713 	INIT_LIST_HEAD(&its->its_device_list);
1714 	its->base = its_base;
1715 	its->phys_base = res->start;
1716 	its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1717 	its->numa_node = numa_node;
1718 
1719 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1720 						get_order(ITS_CMD_QUEUE_SZ));
1721 	if (!its->cmd_base) {
1722 		err = -ENOMEM;
1723 		goto out_free_its;
1724 	}
1725 	its->cmd_write = its->cmd_base;
1726 
1727 	its_enable_quirks(its);
1728 
1729 	err = its_alloc_tables(its);
1730 	if (err)
1731 		goto out_free_cmd;
1732 
1733 	err = its_alloc_collections(its);
1734 	if (err)
1735 		goto out_free_tables;
1736 
1737 	baser = (virt_to_phys(its->cmd_base)	|
1738 		 GITS_CBASER_RaWaWb		|
1739 		 GITS_CBASER_InnerShareable	|
1740 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1741 		 GITS_CBASER_VALID);
1742 
1743 	gits_write_cbaser(baser, its->base + GITS_CBASER);
1744 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
1745 
1746 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1747 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1748 			/*
1749 			 * The HW reports non-shareable, we must
1750 			 * remove the cacheability attributes as
1751 			 * well.
1752 			 */
1753 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1754 				   GITS_CBASER_CACHEABILITY_MASK);
1755 			baser |= GITS_CBASER_nC;
1756 			gits_write_cbaser(baser, its->base + GITS_CBASER);
1757 		}
1758 		pr_info("ITS: using cache flushing for cmd queue\n");
1759 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1760 	}
1761 
1762 	gits_write_cwriter(0, its->base + GITS_CWRITER);
1763 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1764 
1765 	err = its_init_domain(handle, its);
1766 	if (err)
1767 		goto out_free_tables;
1768 
1769 	spin_lock(&its_lock);
1770 	list_add(&its->entry, &its_nodes);
1771 	spin_unlock(&its_lock);
1772 
1773 	return 0;
1774 
1775 out_free_tables:
1776 	its_free_tables(its);
1777 out_free_cmd:
1778 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
1779 out_free_its:
1780 	kfree(its);
1781 out_unmap:
1782 	iounmap(its_base);
1783 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1784 	return err;
1785 }
1786 
1787 static bool gic_rdists_supports_plpis(void)
1788 {
1789 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1790 }
1791 
1792 int its_cpu_init(void)
1793 {
1794 	if (!list_empty(&its_nodes)) {
1795 		if (!gic_rdists_supports_plpis()) {
1796 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1797 			return -ENXIO;
1798 		}
1799 		its_cpu_init_lpis();
1800 		its_cpu_init_collection();
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static const struct of_device_id its_device_id[] = {
1807 	{	.compatible	= "arm,gic-v3-its",	},
1808 	{},
1809 };
1810 
1811 static int __init its_of_probe(struct device_node *node)
1812 {
1813 	struct device_node *np;
1814 	struct resource res;
1815 
1816 	for (np = of_find_matching_node(node, its_device_id); np;
1817 	     np = of_find_matching_node(np, its_device_id)) {
1818 		if (!of_property_read_bool(np, "msi-controller")) {
1819 			pr_warn("%s: no msi-controller property, ITS ignored\n",
1820 				np->full_name);
1821 			continue;
1822 		}
1823 
1824 		if (of_address_to_resource(np, 0, &res)) {
1825 			pr_warn("%s: no regs?\n", np->full_name);
1826 			continue;
1827 		}
1828 
1829 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1830 	}
1831 	return 0;
1832 }
1833 
1834 #ifdef CONFIG_ACPI
1835 
1836 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1837 
1838 #if defined(CONFIG_ACPI_NUMA) && (ACPI_CA_VERSION >= 0x20170531)
1839 struct its_srat_map {
1840 	/* numa node id */
1841 	u32	numa_node;
1842 	/* GIC ITS ID */
1843 	u32	its_id;
1844 };
1845 
1846 static struct its_srat_map its_srat_maps[MAX_NUMNODES] __initdata;
1847 static int its_in_srat __initdata;
1848 
1849 static int __init acpi_get_its_numa_node(u32 its_id)
1850 {
1851 	int i;
1852 
1853 	for (i = 0; i < its_in_srat; i++) {
1854 		if (its_id == its_srat_maps[i].its_id)
1855 			return its_srat_maps[i].numa_node;
1856 	}
1857 	return NUMA_NO_NODE;
1858 }
1859 
1860 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
1861 			 const unsigned long end)
1862 {
1863 	int node;
1864 	struct acpi_srat_gic_its_affinity *its_affinity;
1865 
1866 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
1867 	if (!its_affinity)
1868 		return -EINVAL;
1869 
1870 	if (its_affinity->header.length < sizeof(*its_affinity)) {
1871 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
1872 			its_affinity->header.length);
1873 		return -EINVAL;
1874 	}
1875 
1876 	if (its_in_srat >= MAX_NUMNODES) {
1877 		pr_err("SRAT: ITS affinity exceeding max count[%d]\n",
1878 				MAX_NUMNODES);
1879 		return -EINVAL;
1880 	}
1881 
1882 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
1883 
1884 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
1885 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
1886 		return 0;
1887 	}
1888 
1889 	its_srat_maps[its_in_srat].numa_node = node;
1890 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
1891 	its_in_srat++;
1892 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
1893 		its_affinity->proximity_domain, its_affinity->its_id, node);
1894 
1895 	return 0;
1896 }
1897 
1898 static void __init acpi_table_parse_srat_its(void)
1899 {
1900 	acpi_table_parse_entries(ACPI_SIG_SRAT,
1901 			sizeof(struct acpi_table_srat),
1902 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
1903 			gic_acpi_parse_srat_its, 0);
1904 }
1905 #else
1906 static void __init acpi_table_parse_srat_its(void)	{ }
1907 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
1908 #endif
1909 
1910 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1911 					  const unsigned long end)
1912 {
1913 	struct acpi_madt_generic_translator *its_entry;
1914 	struct fwnode_handle *dom_handle;
1915 	struct resource res;
1916 	int err;
1917 
1918 	its_entry = (struct acpi_madt_generic_translator *)header;
1919 	memset(&res, 0, sizeof(res));
1920 	res.start = its_entry->base_address;
1921 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1922 	res.flags = IORESOURCE_MEM;
1923 
1924 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1925 	if (!dom_handle) {
1926 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1927 		       &res.start);
1928 		return -ENOMEM;
1929 	}
1930 
1931 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1932 	if (err) {
1933 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1934 		       &res.start, its_entry->translation_id);
1935 		goto dom_err;
1936 	}
1937 
1938 	err = its_probe_one(&res, dom_handle,
1939 			acpi_get_its_numa_node(its_entry->translation_id));
1940 	if (!err)
1941 		return 0;
1942 
1943 	iort_deregister_domain_token(its_entry->translation_id);
1944 dom_err:
1945 	irq_domain_free_fwnode(dom_handle);
1946 	return err;
1947 }
1948 
1949 static void __init its_acpi_probe(void)
1950 {
1951 	acpi_table_parse_srat_its();
1952 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1953 			      gic_acpi_parse_madt_its, 0);
1954 }
1955 #else
1956 static void __init its_acpi_probe(void) { }
1957 #endif
1958 
1959 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1960 		    struct irq_domain *parent_domain)
1961 {
1962 	struct device_node *of_node;
1963 
1964 	its_parent = parent_domain;
1965 	of_node = to_of_node(handle);
1966 	if (of_node)
1967 		its_of_probe(of_node);
1968 	else
1969 		its_acpi_probe();
1970 
1971 	if (list_empty(&its_nodes)) {
1972 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1973 		return -ENXIO;
1974 	}
1975 
1976 	gic_rdists = rdists;
1977 	return its_alloc_lpi_tables();
1978 }
1979