1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 37 #include <linux/irqchip.h> 38 #include <linux/irqchip/arm-gic-v3.h> 39 #include <linux/irqchip/arm-gic-v4.h> 40 41 #include <asm/cputype.h> 42 #include <asm/exception.h> 43 44 #include "irq-gic-common.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 51 52 static u32 lpi_id_bits; 53 54 /* 55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 56 * deal with (one configuration byte per interrupt). PENDBASE has to 57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 58 */ 59 #define LPI_NRBITS lpi_id_bits 60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 62 63 #define LPI_PROP_DEFAULT_PRIO 0xa0 64 65 /* 66 * Collection structure - just an ID, and a redistributor address to 67 * ping. We use one per CPU as a bag of interrupts assigned to this 68 * CPU. 69 */ 70 struct its_collection { 71 u64 target_address; 72 u16 col_id; 73 }; 74 75 /* 76 * The ITS_BASER structure - contains memory information, cached 77 * value of BASER register configuration and ITS page size. 78 */ 79 struct its_baser { 80 void *base; 81 u64 val; 82 u32 order; 83 u32 psz; 84 }; 85 86 /* 87 * The ITS structure - contains most of the infrastructure, with the 88 * top-level MSI domain, the command queue, the collections, and the 89 * list of devices writing to it. 90 */ 91 struct its_node { 92 raw_spinlock_t lock; 93 struct list_head entry; 94 void __iomem *base; 95 phys_addr_t phys_base; 96 struct its_cmd_block *cmd_base; 97 struct its_cmd_block *cmd_write; 98 struct its_baser tables[GITS_BASER_NR_REGS]; 99 struct its_collection *collections; 100 struct list_head its_device_list; 101 u64 flags; 102 u32 ite_size; 103 u32 device_ids; 104 int numa_node; 105 bool is_v4; 106 }; 107 108 #define ITS_ITT_ALIGN SZ_256 109 110 /* The maximum number of VPEID bits supported by VLPI commands */ 111 #define ITS_MAX_VPEID_BITS (16) 112 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 113 114 /* Convert page order to size in bytes */ 115 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 116 117 struct event_lpi_map { 118 unsigned long *lpi_map; 119 u16 *col_map; 120 irq_hw_number_t lpi_base; 121 int nr_lpis; 122 struct mutex vlpi_lock; 123 struct its_vm *vm; 124 struct its_vlpi_map *vlpi_maps; 125 int nr_vlpis; 126 }; 127 128 /* 129 * The ITS view of a device - belongs to an ITS, owns an interrupt 130 * translation table, and a list of interrupts. If it some of its 131 * LPIs are injected into a guest (GICv4), the event_map.vm field 132 * indicates which one. 133 */ 134 struct its_device { 135 struct list_head entry; 136 struct its_node *its; 137 struct event_lpi_map event_map; 138 void *itt; 139 u32 nr_ites; 140 u32 device_id; 141 }; 142 143 static struct { 144 raw_spinlock_t lock; 145 struct its_device *dev; 146 struct its_vpe **vpes; 147 int next_victim; 148 } vpe_proxy; 149 150 static LIST_HEAD(its_nodes); 151 static DEFINE_SPINLOCK(its_lock); 152 static struct rdists *gic_rdists; 153 static struct irq_domain *its_parent; 154 155 /* 156 * We have a maximum number of 16 ITSs in the whole system if we're 157 * using the ITSList mechanism 158 */ 159 #define ITS_LIST_MAX 16 160 161 static unsigned long its_list_map; 162 static u16 vmovp_seq_num; 163 static DEFINE_RAW_SPINLOCK(vmovp_lock); 164 165 static DEFINE_IDA(its_vpeid_ida); 166 167 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 168 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 169 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 170 171 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 172 u32 event) 173 { 174 struct its_node *its = its_dev->its; 175 176 return its->collections + its_dev->event_map.col_map[event]; 177 } 178 179 /* 180 * ITS command descriptors - parameters to be encoded in a command 181 * block. 182 */ 183 struct its_cmd_desc { 184 union { 185 struct { 186 struct its_device *dev; 187 u32 event_id; 188 } its_inv_cmd; 189 190 struct { 191 struct its_device *dev; 192 u32 event_id; 193 } its_clear_cmd; 194 195 struct { 196 struct its_device *dev; 197 u32 event_id; 198 } its_int_cmd; 199 200 struct { 201 struct its_device *dev; 202 int valid; 203 } its_mapd_cmd; 204 205 struct { 206 struct its_collection *col; 207 int valid; 208 } its_mapc_cmd; 209 210 struct { 211 struct its_device *dev; 212 u32 phys_id; 213 u32 event_id; 214 } its_mapti_cmd; 215 216 struct { 217 struct its_device *dev; 218 struct its_collection *col; 219 u32 event_id; 220 } its_movi_cmd; 221 222 struct { 223 struct its_device *dev; 224 u32 event_id; 225 } its_discard_cmd; 226 227 struct { 228 struct its_collection *col; 229 } its_invall_cmd; 230 231 struct { 232 struct its_vpe *vpe; 233 } its_vinvall_cmd; 234 235 struct { 236 struct its_vpe *vpe; 237 struct its_collection *col; 238 bool valid; 239 } its_vmapp_cmd; 240 241 struct { 242 struct its_vpe *vpe; 243 struct its_device *dev; 244 u32 virt_id; 245 u32 event_id; 246 bool db_enabled; 247 } its_vmapti_cmd; 248 249 struct { 250 struct its_vpe *vpe; 251 struct its_device *dev; 252 u32 event_id; 253 bool db_enabled; 254 } its_vmovi_cmd; 255 256 struct { 257 struct its_vpe *vpe; 258 struct its_collection *col; 259 u16 seq_num; 260 u16 its_list; 261 } its_vmovp_cmd; 262 }; 263 }; 264 265 /* 266 * The ITS command block, which is what the ITS actually parses. 267 */ 268 struct its_cmd_block { 269 u64 raw_cmd[4]; 270 }; 271 272 #define ITS_CMD_QUEUE_SZ SZ_64K 273 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 274 275 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 276 struct its_cmd_desc *); 277 278 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_cmd_block *, 279 struct its_cmd_desc *); 280 281 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 282 { 283 u64 mask = GENMASK_ULL(h, l); 284 *raw_cmd &= ~mask; 285 *raw_cmd |= (val << l) & mask; 286 } 287 288 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 289 { 290 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 291 } 292 293 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 294 { 295 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 296 } 297 298 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 299 { 300 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 301 } 302 303 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 304 { 305 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 306 } 307 308 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 309 { 310 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 311 } 312 313 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 314 { 315 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 316 } 317 318 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 319 { 320 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 321 } 322 323 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 324 { 325 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 326 } 327 328 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 329 { 330 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 331 } 332 333 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 334 { 335 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 336 } 337 338 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 339 { 340 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 341 } 342 343 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 344 { 345 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 346 } 347 348 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 349 { 350 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 351 } 352 353 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 354 { 355 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 356 } 357 358 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 359 { 360 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 361 } 362 363 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 364 { 365 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 366 } 367 368 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 369 { 370 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 371 } 372 373 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 374 { 375 /* Let's fixup BE commands */ 376 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 377 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 378 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 379 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 380 } 381 382 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 383 struct its_cmd_desc *desc) 384 { 385 unsigned long itt_addr; 386 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 387 388 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 389 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 390 391 its_encode_cmd(cmd, GITS_CMD_MAPD); 392 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 393 its_encode_size(cmd, size - 1); 394 its_encode_itt(cmd, itt_addr); 395 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 396 397 its_fixup_cmd(cmd); 398 399 return NULL; 400 } 401 402 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 403 struct its_cmd_desc *desc) 404 { 405 its_encode_cmd(cmd, GITS_CMD_MAPC); 406 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 407 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 408 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 409 410 its_fixup_cmd(cmd); 411 412 return desc->its_mapc_cmd.col; 413 } 414 415 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd, 416 struct its_cmd_desc *desc) 417 { 418 struct its_collection *col; 419 420 col = dev_event_to_col(desc->its_mapti_cmd.dev, 421 desc->its_mapti_cmd.event_id); 422 423 its_encode_cmd(cmd, GITS_CMD_MAPTI); 424 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 425 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 426 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 427 its_encode_collection(cmd, col->col_id); 428 429 its_fixup_cmd(cmd); 430 431 return col; 432 } 433 434 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 435 struct its_cmd_desc *desc) 436 { 437 struct its_collection *col; 438 439 col = dev_event_to_col(desc->its_movi_cmd.dev, 440 desc->its_movi_cmd.event_id); 441 442 its_encode_cmd(cmd, GITS_CMD_MOVI); 443 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 444 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 445 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 446 447 its_fixup_cmd(cmd); 448 449 return col; 450 } 451 452 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 453 struct its_cmd_desc *desc) 454 { 455 struct its_collection *col; 456 457 col = dev_event_to_col(desc->its_discard_cmd.dev, 458 desc->its_discard_cmd.event_id); 459 460 its_encode_cmd(cmd, GITS_CMD_DISCARD); 461 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 462 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 463 464 its_fixup_cmd(cmd); 465 466 return col; 467 } 468 469 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 470 struct its_cmd_desc *desc) 471 { 472 struct its_collection *col; 473 474 col = dev_event_to_col(desc->its_inv_cmd.dev, 475 desc->its_inv_cmd.event_id); 476 477 its_encode_cmd(cmd, GITS_CMD_INV); 478 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 479 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 480 481 its_fixup_cmd(cmd); 482 483 return col; 484 } 485 486 static struct its_collection *its_build_int_cmd(struct its_cmd_block *cmd, 487 struct its_cmd_desc *desc) 488 { 489 struct its_collection *col; 490 491 col = dev_event_to_col(desc->its_int_cmd.dev, 492 desc->its_int_cmd.event_id); 493 494 its_encode_cmd(cmd, GITS_CMD_INT); 495 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 496 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 497 498 its_fixup_cmd(cmd); 499 500 return col; 501 } 502 503 static struct its_collection *its_build_clear_cmd(struct its_cmd_block *cmd, 504 struct its_cmd_desc *desc) 505 { 506 struct its_collection *col; 507 508 col = dev_event_to_col(desc->its_clear_cmd.dev, 509 desc->its_clear_cmd.event_id); 510 511 its_encode_cmd(cmd, GITS_CMD_CLEAR); 512 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 513 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 514 515 its_fixup_cmd(cmd); 516 517 return col; 518 } 519 520 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 521 struct its_cmd_desc *desc) 522 { 523 its_encode_cmd(cmd, GITS_CMD_INVALL); 524 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 525 526 its_fixup_cmd(cmd); 527 528 return NULL; 529 } 530 531 static struct its_vpe *its_build_vinvall_cmd(struct its_cmd_block *cmd, 532 struct its_cmd_desc *desc) 533 { 534 its_encode_cmd(cmd, GITS_CMD_VINVALL); 535 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 536 537 its_fixup_cmd(cmd); 538 539 return desc->its_vinvall_cmd.vpe; 540 } 541 542 static struct its_vpe *its_build_vmapp_cmd(struct its_cmd_block *cmd, 543 struct its_cmd_desc *desc) 544 { 545 unsigned long vpt_addr; 546 547 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 548 549 its_encode_cmd(cmd, GITS_CMD_VMAPP); 550 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 551 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 552 its_encode_target(cmd, desc->its_vmapp_cmd.col->target_address); 553 its_encode_vpt_addr(cmd, vpt_addr); 554 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 555 556 its_fixup_cmd(cmd); 557 558 return desc->its_vmapp_cmd.vpe; 559 } 560 561 static struct its_vpe *its_build_vmapti_cmd(struct its_cmd_block *cmd, 562 struct its_cmd_desc *desc) 563 { 564 u32 db; 565 566 if (desc->its_vmapti_cmd.db_enabled) 567 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 568 else 569 db = 1023; 570 571 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 572 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 573 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 574 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 575 its_encode_db_phys_id(cmd, db); 576 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 577 578 its_fixup_cmd(cmd); 579 580 return desc->its_vmapti_cmd.vpe; 581 } 582 583 static struct its_vpe *its_build_vmovi_cmd(struct its_cmd_block *cmd, 584 struct its_cmd_desc *desc) 585 { 586 u32 db; 587 588 if (desc->its_vmovi_cmd.db_enabled) 589 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 590 else 591 db = 1023; 592 593 its_encode_cmd(cmd, GITS_CMD_VMOVI); 594 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 595 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 596 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 597 its_encode_db_phys_id(cmd, db); 598 its_encode_db_valid(cmd, true); 599 600 its_fixup_cmd(cmd); 601 602 return desc->its_vmovi_cmd.vpe; 603 } 604 605 static struct its_vpe *its_build_vmovp_cmd(struct its_cmd_block *cmd, 606 struct its_cmd_desc *desc) 607 { 608 its_encode_cmd(cmd, GITS_CMD_VMOVP); 609 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 610 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 611 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 612 its_encode_target(cmd, desc->its_vmovp_cmd.col->target_address); 613 614 its_fixup_cmd(cmd); 615 616 return desc->its_vmovp_cmd.vpe; 617 } 618 619 static u64 its_cmd_ptr_to_offset(struct its_node *its, 620 struct its_cmd_block *ptr) 621 { 622 return (ptr - its->cmd_base) * sizeof(*ptr); 623 } 624 625 static int its_queue_full(struct its_node *its) 626 { 627 int widx; 628 int ridx; 629 630 widx = its->cmd_write - its->cmd_base; 631 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 632 633 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 634 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 635 return 1; 636 637 return 0; 638 } 639 640 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 641 { 642 struct its_cmd_block *cmd; 643 u32 count = 1000000; /* 1s! */ 644 645 while (its_queue_full(its)) { 646 count--; 647 if (!count) { 648 pr_err_ratelimited("ITS queue not draining\n"); 649 return NULL; 650 } 651 cpu_relax(); 652 udelay(1); 653 } 654 655 cmd = its->cmd_write++; 656 657 /* Handle queue wrapping */ 658 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 659 its->cmd_write = its->cmd_base; 660 661 /* Clear command */ 662 cmd->raw_cmd[0] = 0; 663 cmd->raw_cmd[1] = 0; 664 cmd->raw_cmd[2] = 0; 665 cmd->raw_cmd[3] = 0; 666 667 return cmd; 668 } 669 670 static struct its_cmd_block *its_post_commands(struct its_node *its) 671 { 672 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 673 674 writel_relaxed(wr, its->base + GITS_CWRITER); 675 676 return its->cmd_write; 677 } 678 679 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 680 { 681 /* 682 * Make sure the commands written to memory are observable by 683 * the ITS. 684 */ 685 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 686 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 687 else 688 dsb(ishst); 689 } 690 691 static void its_wait_for_range_completion(struct its_node *its, 692 struct its_cmd_block *from, 693 struct its_cmd_block *to) 694 { 695 u64 rd_idx, from_idx, to_idx; 696 u32 count = 1000000; /* 1s! */ 697 698 from_idx = its_cmd_ptr_to_offset(its, from); 699 to_idx = its_cmd_ptr_to_offset(its, to); 700 701 while (1) { 702 rd_idx = readl_relaxed(its->base + GITS_CREADR); 703 704 /* Direct case */ 705 if (from_idx < to_idx && rd_idx >= to_idx) 706 break; 707 708 /* Wrapped case */ 709 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 710 break; 711 712 count--; 713 if (!count) { 714 pr_err_ratelimited("ITS queue timeout\n"); 715 return; 716 } 717 cpu_relax(); 718 udelay(1); 719 } 720 } 721 722 /* Warning, macro hell follows */ 723 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 724 void name(struct its_node *its, \ 725 buildtype builder, \ 726 struct its_cmd_desc *desc) \ 727 { \ 728 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 729 synctype *sync_obj; \ 730 unsigned long flags; \ 731 \ 732 raw_spin_lock_irqsave(&its->lock, flags); \ 733 \ 734 cmd = its_allocate_entry(its); \ 735 if (!cmd) { /* We're soooooo screewed... */ \ 736 raw_spin_unlock_irqrestore(&its->lock, flags); \ 737 return; \ 738 } \ 739 sync_obj = builder(cmd, desc); \ 740 its_flush_cmd(its, cmd); \ 741 \ 742 if (sync_obj) { \ 743 sync_cmd = its_allocate_entry(its); \ 744 if (!sync_cmd) \ 745 goto post; \ 746 \ 747 buildfn(sync_cmd, sync_obj); \ 748 its_flush_cmd(its, sync_cmd); \ 749 } \ 750 \ 751 post: \ 752 next_cmd = its_post_commands(its); \ 753 raw_spin_unlock_irqrestore(&its->lock, flags); \ 754 \ 755 its_wait_for_range_completion(its, cmd, next_cmd); \ 756 } 757 758 static void its_build_sync_cmd(struct its_cmd_block *sync_cmd, 759 struct its_collection *sync_col) 760 { 761 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 762 its_encode_target(sync_cmd, sync_col->target_address); 763 764 its_fixup_cmd(sync_cmd); 765 } 766 767 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 768 struct its_collection, its_build_sync_cmd) 769 770 static void its_build_vsync_cmd(struct its_cmd_block *sync_cmd, 771 struct its_vpe *sync_vpe) 772 { 773 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 774 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 775 776 its_fixup_cmd(sync_cmd); 777 } 778 779 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 780 struct its_vpe, its_build_vsync_cmd) 781 782 static void its_send_int(struct its_device *dev, u32 event_id) 783 { 784 struct its_cmd_desc desc; 785 786 desc.its_int_cmd.dev = dev; 787 desc.its_int_cmd.event_id = event_id; 788 789 its_send_single_command(dev->its, its_build_int_cmd, &desc); 790 } 791 792 static void its_send_clear(struct its_device *dev, u32 event_id) 793 { 794 struct its_cmd_desc desc; 795 796 desc.its_clear_cmd.dev = dev; 797 desc.its_clear_cmd.event_id = event_id; 798 799 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 800 } 801 802 static void its_send_inv(struct its_device *dev, u32 event_id) 803 { 804 struct its_cmd_desc desc; 805 806 desc.its_inv_cmd.dev = dev; 807 desc.its_inv_cmd.event_id = event_id; 808 809 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 810 } 811 812 static void its_send_mapd(struct its_device *dev, int valid) 813 { 814 struct its_cmd_desc desc; 815 816 desc.its_mapd_cmd.dev = dev; 817 desc.its_mapd_cmd.valid = !!valid; 818 819 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 820 } 821 822 static void its_send_mapc(struct its_node *its, struct its_collection *col, 823 int valid) 824 { 825 struct its_cmd_desc desc; 826 827 desc.its_mapc_cmd.col = col; 828 desc.its_mapc_cmd.valid = !!valid; 829 830 its_send_single_command(its, its_build_mapc_cmd, &desc); 831 } 832 833 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 834 { 835 struct its_cmd_desc desc; 836 837 desc.its_mapti_cmd.dev = dev; 838 desc.its_mapti_cmd.phys_id = irq_id; 839 desc.its_mapti_cmd.event_id = id; 840 841 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 842 } 843 844 static void its_send_movi(struct its_device *dev, 845 struct its_collection *col, u32 id) 846 { 847 struct its_cmd_desc desc; 848 849 desc.its_movi_cmd.dev = dev; 850 desc.its_movi_cmd.col = col; 851 desc.its_movi_cmd.event_id = id; 852 853 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 854 } 855 856 static void its_send_discard(struct its_device *dev, u32 id) 857 { 858 struct its_cmd_desc desc; 859 860 desc.its_discard_cmd.dev = dev; 861 desc.its_discard_cmd.event_id = id; 862 863 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 864 } 865 866 static void its_send_invall(struct its_node *its, struct its_collection *col) 867 { 868 struct its_cmd_desc desc; 869 870 desc.its_invall_cmd.col = col; 871 872 its_send_single_command(its, its_build_invall_cmd, &desc); 873 } 874 875 static void its_send_vmapti(struct its_device *dev, u32 id) 876 { 877 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 878 struct its_cmd_desc desc; 879 880 desc.its_vmapti_cmd.vpe = map->vpe; 881 desc.its_vmapti_cmd.dev = dev; 882 desc.its_vmapti_cmd.virt_id = map->vintid; 883 desc.its_vmapti_cmd.event_id = id; 884 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 885 886 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 887 } 888 889 static void its_send_vmovi(struct its_device *dev, u32 id) 890 { 891 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 892 struct its_cmd_desc desc; 893 894 desc.its_vmovi_cmd.vpe = map->vpe; 895 desc.its_vmovi_cmd.dev = dev; 896 desc.its_vmovi_cmd.event_id = id; 897 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 898 899 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 900 } 901 902 static void its_send_vmapp(struct its_vpe *vpe, bool valid) 903 { 904 struct its_cmd_desc desc; 905 struct its_node *its; 906 907 desc.its_vmapp_cmd.vpe = vpe; 908 desc.its_vmapp_cmd.valid = valid; 909 910 list_for_each_entry(its, &its_nodes, entry) { 911 if (!its->is_v4) 912 continue; 913 914 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 915 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 916 } 917 } 918 919 static void its_send_vmovp(struct its_vpe *vpe) 920 { 921 struct its_cmd_desc desc; 922 struct its_node *its; 923 unsigned long flags; 924 int col_id = vpe->col_idx; 925 926 desc.its_vmovp_cmd.vpe = vpe; 927 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 928 929 if (!its_list_map) { 930 its = list_first_entry(&its_nodes, struct its_node, entry); 931 desc.its_vmovp_cmd.seq_num = 0; 932 desc.its_vmovp_cmd.col = &its->collections[col_id]; 933 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 934 return; 935 } 936 937 /* 938 * Yet another marvel of the architecture. If using the 939 * its_list "feature", we need to make sure that all ITSs 940 * receive all VMOVP commands in the same order. The only way 941 * to guarantee this is to make vmovp a serialization point. 942 * 943 * Wall <-- Head. 944 */ 945 raw_spin_lock_irqsave(&vmovp_lock, flags); 946 947 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 948 949 /* Emit VMOVPs */ 950 list_for_each_entry(its, &its_nodes, entry) { 951 if (!its->is_v4) 952 continue; 953 954 desc.its_vmovp_cmd.col = &its->collections[col_id]; 955 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 956 } 957 958 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 959 } 960 961 static void its_send_vinvall(struct its_vpe *vpe) 962 { 963 struct its_cmd_desc desc; 964 struct its_node *its; 965 966 desc.its_vinvall_cmd.vpe = vpe; 967 968 list_for_each_entry(its, &its_nodes, entry) { 969 if (!its->is_v4) 970 continue; 971 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 972 } 973 } 974 975 /* 976 * irqchip functions - assumes MSI, mostly. 977 */ 978 979 static inline u32 its_get_event_id(struct irq_data *d) 980 { 981 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 982 return d->hwirq - its_dev->event_map.lpi_base; 983 } 984 985 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 986 { 987 irq_hw_number_t hwirq; 988 struct page *prop_page; 989 u8 *cfg; 990 991 if (irqd_is_forwarded_to_vcpu(d)) { 992 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 993 u32 event = its_get_event_id(d); 994 995 prop_page = its_dev->event_map.vm->vprop_page; 996 hwirq = its_dev->event_map.vlpi_maps[event].vintid; 997 } else { 998 prop_page = gic_rdists->prop_page; 999 hwirq = d->hwirq; 1000 } 1001 1002 cfg = page_address(prop_page) + hwirq - 8192; 1003 *cfg &= ~clr; 1004 *cfg |= set | LPI_PROP_GROUP1; 1005 1006 /* 1007 * Make the above write visible to the redistributors. 1008 * And yes, we're flushing exactly: One. Single. Byte. 1009 * Humpf... 1010 */ 1011 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1012 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1013 else 1014 dsb(ishst); 1015 } 1016 1017 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1018 { 1019 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1020 1021 lpi_write_config(d, clr, set); 1022 its_send_inv(its_dev, its_get_event_id(d)); 1023 } 1024 1025 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1026 { 1027 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1028 u32 event = its_get_event_id(d); 1029 1030 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1031 return; 1032 1033 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1034 1035 /* 1036 * More fun with the architecture: 1037 * 1038 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1039 * value or to 1023, depending on the enable bit. But that 1040 * would be issueing a mapping for an /existing/ DevID+EventID 1041 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1042 * to the /same/ vPE, using this opportunity to adjust the 1043 * doorbell. Mouahahahaha. We loves it, Precious. 1044 */ 1045 its_send_vmovi(its_dev, event); 1046 } 1047 1048 static void its_mask_irq(struct irq_data *d) 1049 { 1050 if (irqd_is_forwarded_to_vcpu(d)) 1051 its_vlpi_set_doorbell(d, false); 1052 1053 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1054 } 1055 1056 static void its_unmask_irq(struct irq_data *d) 1057 { 1058 if (irqd_is_forwarded_to_vcpu(d)) 1059 its_vlpi_set_doorbell(d, true); 1060 1061 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1062 } 1063 1064 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1065 bool force) 1066 { 1067 unsigned int cpu; 1068 const struct cpumask *cpu_mask = cpu_online_mask; 1069 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1070 struct its_collection *target_col; 1071 u32 id = its_get_event_id(d); 1072 1073 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1074 if (irqd_is_forwarded_to_vcpu(d)) 1075 return -EINVAL; 1076 1077 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1078 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1079 if (its_dev->its->numa_node >= 0) { 1080 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1081 if (!cpumask_intersects(mask_val, cpu_mask)) 1082 return -EINVAL; 1083 } 1084 } 1085 1086 cpu = cpumask_any_and(mask_val, cpu_mask); 1087 1088 if (cpu >= nr_cpu_ids) 1089 return -EINVAL; 1090 1091 /* don't set the affinity when the target cpu is same as current one */ 1092 if (cpu != its_dev->event_map.col_map[id]) { 1093 target_col = &its_dev->its->collections[cpu]; 1094 its_send_movi(its_dev, target_col, id); 1095 its_dev->event_map.col_map[id] = cpu; 1096 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1097 } 1098 1099 return IRQ_SET_MASK_OK_DONE; 1100 } 1101 1102 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1103 { 1104 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1105 struct its_node *its; 1106 u64 addr; 1107 1108 its = its_dev->its; 1109 addr = its->phys_base + GITS_TRANSLATER; 1110 1111 msg->address_lo = lower_32_bits(addr); 1112 msg->address_hi = upper_32_bits(addr); 1113 msg->data = its_get_event_id(d); 1114 1115 iommu_dma_map_msi_msg(d->irq, msg); 1116 } 1117 1118 static int its_irq_set_irqchip_state(struct irq_data *d, 1119 enum irqchip_irq_state which, 1120 bool state) 1121 { 1122 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1123 u32 event = its_get_event_id(d); 1124 1125 if (which != IRQCHIP_STATE_PENDING) 1126 return -EINVAL; 1127 1128 if (state) 1129 its_send_int(its_dev, event); 1130 else 1131 its_send_clear(its_dev, event); 1132 1133 return 0; 1134 } 1135 1136 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1137 { 1138 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1139 u32 event = its_get_event_id(d); 1140 int ret = 0; 1141 1142 if (!info->map) 1143 return -EINVAL; 1144 1145 mutex_lock(&its_dev->event_map.vlpi_lock); 1146 1147 if (!its_dev->event_map.vm) { 1148 struct its_vlpi_map *maps; 1149 1150 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis, 1151 GFP_KERNEL); 1152 if (!maps) { 1153 ret = -ENOMEM; 1154 goto out; 1155 } 1156 1157 its_dev->event_map.vm = info->map->vm; 1158 its_dev->event_map.vlpi_maps = maps; 1159 } else if (its_dev->event_map.vm != info->map->vm) { 1160 ret = -EINVAL; 1161 goto out; 1162 } 1163 1164 /* Get our private copy of the mapping information */ 1165 its_dev->event_map.vlpi_maps[event] = *info->map; 1166 1167 if (irqd_is_forwarded_to_vcpu(d)) { 1168 /* Already mapped, move it around */ 1169 its_send_vmovi(its_dev, event); 1170 } else { 1171 /* Drop the physical mapping */ 1172 its_send_discard(its_dev, event); 1173 1174 /* and install the virtual one */ 1175 its_send_vmapti(its_dev, event); 1176 irqd_set_forwarded_to_vcpu(d); 1177 1178 /* Increment the number of VLPIs */ 1179 its_dev->event_map.nr_vlpis++; 1180 } 1181 1182 out: 1183 mutex_unlock(&its_dev->event_map.vlpi_lock); 1184 return ret; 1185 } 1186 1187 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1188 { 1189 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1190 u32 event = its_get_event_id(d); 1191 int ret = 0; 1192 1193 mutex_lock(&its_dev->event_map.vlpi_lock); 1194 1195 if (!its_dev->event_map.vm || 1196 !its_dev->event_map.vlpi_maps[event].vm) { 1197 ret = -EINVAL; 1198 goto out; 1199 } 1200 1201 /* Copy our mapping information to the incoming request */ 1202 *info->map = its_dev->event_map.vlpi_maps[event]; 1203 1204 out: 1205 mutex_unlock(&its_dev->event_map.vlpi_lock); 1206 return ret; 1207 } 1208 1209 static int its_vlpi_unmap(struct irq_data *d) 1210 { 1211 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1212 u32 event = its_get_event_id(d); 1213 int ret = 0; 1214 1215 mutex_lock(&its_dev->event_map.vlpi_lock); 1216 1217 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1218 ret = -EINVAL; 1219 goto out; 1220 } 1221 1222 /* Drop the virtual mapping */ 1223 its_send_discard(its_dev, event); 1224 1225 /* and restore the physical one */ 1226 irqd_clr_forwarded_to_vcpu(d); 1227 its_send_mapti(its_dev, d->hwirq, event); 1228 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1229 LPI_PROP_ENABLED | 1230 LPI_PROP_GROUP1)); 1231 1232 /* 1233 * Drop the refcount and make the device available again if 1234 * this was the last VLPI. 1235 */ 1236 if (!--its_dev->event_map.nr_vlpis) { 1237 its_dev->event_map.vm = NULL; 1238 kfree(its_dev->event_map.vlpi_maps); 1239 } 1240 1241 out: 1242 mutex_unlock(&its_dev->event_map.vlpi_lock); 1243 return ret; 1244 } 1245 1246 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1247 { 1248 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1249 1250 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1251 return -EINVAL; 1252 1253 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1254 lpi_update_config(d, 0xff, info->config); 1255 else 1256 lpi_write_config(d, 0xff, info->config); 1257 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1258 1259 return 0; 1260 } 1261 1262 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1263 { 1264 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1265 struct its_cmd_info *info = vcpu_info; 1266 1267 /* Need a v4 ITS */ 1268 if (!its_dev->its->is_v4) 1269 return -EINVAL; 1270 1271 /* Unmap request? */ 1272 if (!info) 1273 return its_vlpi_unmap(d); 1274 1275 switch (info->cmd_type) { 1276 case MAP_VLPI: 1277 return its_vlpi_map(d, info); 1278 1279 case GET_VLPI: 1280 return its_vlpi_get(d, info); 1281 1282 case PROP_UPDATE_VLPI: 1283 case PROP_UPDATE_AND_INV_VLPI: 1284 return its_vlpi_prop_update(d, info); 1285 1286 default: 1287 return -EINVAL; 1288 } 1289 } 1290 1291 static struct irq_chip its_irq_chip = { 1292 .name = "ITS", 1293 .irq_mask = its_mask_irq, 1294 .irq_unmask = its_unmask_irq, 1295 .irq_eoi = irq_chip_eoi_parent, 1296 .irq_set_affinity = its_set_affinity, 1297 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1298 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1299 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1300 }; 1301 1302 /* 1303 * How we allocate LPIs: 1304 * 1305 * The GIC has id_bits bits for interrupt identifiers. From there, we 1306 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 1307 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 1308 * bits to the right. 1309 * 1310 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 1311 */ 1312 #define IRQS_PER_CHUNK_SHIFT 5 1313 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 1314 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1315 1316 static unsigned long *lpi_bitmap; 1317 static u32 lpi_chunks; 1318 static DEFINE_SPINLOCK(lpi_lock); 1319 1320 static int its_lpi_to_chunk(int lpi) 1321 { 1322 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 1323 } 1324 1325 static int its_chunk_to_lpi(int chunk) 1326 { 1327 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 1328 } 1329 1330 static int __init its_lpi_init(u32 id_bits) 1331 { 1332 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 1333 1334 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 1335 GFP_KERNEL); 1336 if (!lpi_bitmap) { 1337 lpi_chunks = 0; 1338 return -ENOMEM; 1339 } 1340 1341 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 1342 return 0; 1343 } 1344 1345 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 1346 { 1347 unsigned long *bitmap = NULL; 1348 int chunk_id; 1349 int nr_chunks; 1350 int i; 1351 1352 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 1353 1354 spin_lock(&lpi_lock); 1355 1356 do { 1357 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 1358 0, nr_chunks, 0); 1359 if (chunk_id < lpi_chunks) 1360 break; 1361 1362 nr_chunks--; 1363 } while (nr_chunks > 0); 1364 1365 if (!nr_chunks) 1366 goto out; 1367 1368 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 1369 GFP_ATOMIC); 1370 if (!bitmap) 1371 goto out; 1372 1373 for (i = 0; i < nr_chunks; i++) 1374 set_bit(chunk_id + i, lpi_bitmap); 1375 1376 *base = its_chunk_to_lpi(chunk_id); 1377 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 1378 1379 out: 1380 spin_unlock(&lpi_lock); 1381 1382 if (!bitmap) 1383 *base = *nr_ids = 0; 1384 1385 return bitmap; 1386 } 1387 1388 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids) 1389 { 1390 int lpi; 1391 1392 spin_lock(&lpi_lock); 1393 1394 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 1395 int chunk = its_lpi_to_chunk(lpi); 1396 1397 BUG_ON(chunk > lpi_chunks); 1398 if (test_bit(chunk, lpi_bitmap)) { 1399 clear_bit(chunk, lpi_bitmap); 1400 } else { 1401 pr_err("Bad LPI chunk %d\n", chunk); 1402 } 1403 } 1404 1405 spin_unlock(&lpi_lock); 1406 1407 kfree(bitmap); 1408 } 1409 1410 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1411 { 1412 struct page *prop_page; 1413 1414 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1415 if (!prop_page) 1416 return NULL; 1417 1418 /* Priority 0xa0, Group-1, disabled */ 1419 memset(page_address(prop_page), 1420 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1421 LPI_PROPBASE_SZ); 1422 1423 /* Make sure the GIC will observe the written configuration */ 1424 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1425 1426 return prop_page; 1427 } 1428 1429 static void its_free_prop_table(struct page *prop_page) 1430 { 1431 free_pages((unsigned long)page_address(prop_page), 1432 get_order(LPI_PROPBASE_SZ)); 1433 } 1434 1435 static int __init its_alloc_lpi_tables(void) 1436 { 1437 phys_addr_t paddr; 1438 1439 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS); 1440 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1441 if (!gic_rdists->prop_page) { 1442 pr_err("Failed to allocate PROPBASE\n"); 1443 return -ENOMEM; 1444 } 1445 1446 paddr = page_to_phys(gic_rdists->prop_page); 1447 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1448 1449 return its_lpi_init(lpi_id_bits); 1450 } 1451 1452 static const char *its_base_type_string[] = { 1453 [GITS_BASER_TYPE_DEVICE] = "Devices", 1454 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1455 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1456 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1457 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1458 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1459 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1460 }; 1461 1462 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1463 { 1464 u32 idx = baser - its->tables; 1465 1466 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1467 } 1468 1469 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1470 u64 val) 1471 { 1472 u32 idx = baser - its->tables; 1473 1474 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1475 baser->val = its_read_baser(its, baser); 1476 } 1477 1478 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1479 u64 cache, u64 shr, u32 psz, u32 order, 1480 bool indirect) 1481 { 1482 u64 val = its_read_baser(its, baser); 1483 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1484 u64 type = GITS_BASER_TYPE(val); 1485 u64 baser_phys, tmp; 1486 u32 alloc_pages; 1487 void *base; 1488 1489 retry_alloc_baser: 1490 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1491 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1492 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1493 &its->phys_base, its_base_type_string[type], 1494 alloc_pages, GITS_BASER_PAGES_MAX); 1495 alloc_pages = GITS_BASER_PAGES_MAX; 1496 order = get_order(GITS_BASER_PAGES_MAX * psz); 1497 } 1498 1499 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1500 if (!base) 1501 return -ENOMEM; 1502 1503 baser_phys = virt_to_phys(base); 1504 1505 /* Check if the physical address of the memory is above 48bits */ 1506 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1507 1508 /* 52bit PA is supported only when PageSize=64K */ 1509 if (psz != SZ_64K) { 1510 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1511 free_pages((unsigned long)base, order); 1512 return -ENXIO; 1513 } 1514 1515 /* Convert 52bit PA to 48bit field */ 1516 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1517 } 1518 1519 retry_baser: 1520 val = (baser_phys | 1521 (type << GITS_BASER_TYPE_SHIFT) | 1522 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1523 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1524 cache | 1525 shr | 1526 GITS_BASER_VALID); 1527 1528 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1529 1530 switch (psz) { 1531 case SZ_4K: 1532 val |= GITS_BASER_PAGE_SIZE_4K; 1533 break; 1534 case SZ_16K: 1535 val |= GITS_BASER_PAGE_SIZE_16K; 1536 break; 1537 case SZ_64K: 1538 val |= GITS_BASER_PAGE_SIZE_64K; 1539 break; 1540 } 1541 1542 its_write_baser(its, baser, val); 1543 tmp = baser->val; 1544 1545 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1546 /* 1547 * Shareability didn't stick. Just use 1548 * whatever the read reported, which is likely 1549 * to be the only thing this redistributor 1550 * supports. If that's zero, make it 1551 * non-cacheable as well. 1552 */ 1553 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1554 if (!shr) { 1555 cache = GITS_BASER_nC; 1556 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1557 } 1558 goto retry_baser; 1559 } 1560 1561 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1562 /* 1563 * Page size didn't stick. Let's try a smaller 1564 * size and retry. If we reach 4K, then 1565 * something is horribly wrong... 1566 */ 1567 free_pages((unsigned long)base, order); 1568 baser->base = NULL; 1569 1570 switch (psz) { 1571 case SZ_16K: 1572 psz = SZ_4K; 1573 goto retry_alloc_baser; 1574 case SZ_64K: 1575 psz = SZ_16K; 1576 goto retry_alloc_baser; 1577 } 1578 } 1579 1580 if (val != tmp) { 1581 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1582 &its->phys_base, its_base_type_string[type], 1583 val, tmp); 1584 free_pages((unsigned long)base, order); 1585 return -ENXIO; 1586 } 1587 1588 baser->order = order; 1589 baser->base = base; 1590 baser->psz = psz; 1591 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1592 1593 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1594 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1595 its_base_type_string[type], 1596 (unsigned long)virt_to_phys(base), 1597 indirect ? "indirect" : "flat", (int)esz, 1598 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1599 1600 return 0; 1601 } 1602 1603 static bool its_parse_indirect_baser(struct its_node *its, 1604 struct its_baser *baser, 1605 u32 psz, u32 *order, u32 ids) 1606 { 1607 u64 tmp = its_read_baser(its, baser); 1608 u64 type = GITS_BASER_TYPE(tmp); 1609 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1610 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1611 u32 new_order = *order; 1612 bool indirect = false; 1613 1614 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1615 if ((esz << ids) > (psz * 2)) { 1616 /* 1617 * Find out whether hw supports a single or two-level table by 1618 * table by reading bit at offset '62' after writing '1' to it. 1619 */ 1620 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1621 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1622 1623 if (indirect) { 1624 /* 1625 * The size of the lvl2 table is equal to ITS page size 1626 * which is 'psz'. For computing lvl1 table size, 1627 * subtract ID bits that sparse lvl2 table from 'ids' 1628 * which is reported by ITS hardware times lvl1 table 1629 * entry size. 1630 */ 1631 ids -= ilog2(psz / (int)esz); 1632 esz = GITS_LVL1_ENTRY_SIZE; 1633 } 1634 } 1635 1636 /* 1637 * Allocate as many entries as required to fit the 1638 * range of device IDs that the ITS can grok... The ID 1639 * space being incredibly sparse, this results in a 1640 * massive waste of memory if two-level device table 1641 * feature is not supported by hardware. 1642 */ 1643 new_order = max_t(u32, get_order(esz << ids), new_order); 1644 if (new_order >= MAX_ORDER) { 1645 new_order = MAX_ORDER - 1; 1646 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1647 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1648 &its->phys_base, its_base_type_string[type], 1649 its->device_ids, ids); 1650 } 1651 1652 *order = new_order; 1653 1654 return indirect; 1655 } 1656 1657 static void its_free_tables(struct its_node *its) 1658 { 1659 int i; 1660 1661 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1662 if (its->tables[i].base) { 1663 free_pages((unsigned long)its->tables[i].base, 1664 its->tables[i].order); 1665 its->tables[i].base = NULL; 1666 } 1667 } 1668 } 1669 1670 static int its_alloc_tables(struct its_node *its) 1671 { 1672 u64 typer = gic_read_typer(its->base + GITS_TYPER); 1673 u32 ids = GITS_TYPER_DEVBITS(typer); 1674 u64 shr = GITS_BASER_InnerShareable; 1675 u64 cache = GITS_BASER_RaWaWb; 1676 u32 psz = SZ_64K; 1677 int err, i; 1678 1679 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 1680 /* 1681 * erratum 22375: only alloc 8MB table size 1682 * erratum 24313: ignore memory access type 1683 */ 1684 cache = GITS_BASER_nCnB; 1685 ids = 0x14; /* 20 bits, 8MB */ 1686 } 1687 1688 its->device_ids = ids; 1689 1690 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1691 struct its_baser *baser = its->tables + i; 1692 u64 val = its_read_baser(its, baser); 1693 u64 type = GITS_BASER_TYPE(val); 1694 u32 order = get_order(psz); 1695 bool indirect = false; 1696 1697 switch (type) { 1698 case GITS_BASER_TYPE_NONE: 1699 continue; 1700 1701 case GITS_BASER_TYPE_DEVICE: 1702 indirect = its_parse_indirect_baser(its, baser, 1703 psz, &order, 1704 its->device_ids); 1705 case GITS_BASER_TYPE_VCPU: 1706 indirect = its_parse_indirect_baser(its, baser, 1707 psz, &order, 1708 ITS_MAX_VPEID_BITS); 1709 break; 1710 } 1711 1712 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1713 if (err < 0) { 1714 its_free_tables(its); 1715 return err; 1716 } 1717 1718 /* Update settings which will be used for next BASERn */ 1719 psz = baser->psz; 1720 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1721 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static int its_alloc_collections(struct its_node *its) 1728 { 1729 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1730 GFP_KERNEL); 1731 if (!its->collections) 1732 return -ENOMEM; 1733 1734 return 0; 1735 } 1736 1737 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1738 { 1739 struct page *pend_page; 1740 /* 1741 * The pending pages have to be at least 64kB aligned, 1742 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1743 */ 1744 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1745 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1746 if (!pend_page) 1747 return NULL; 1748 1749 /* Make sure the GIC will observe the zero-ed page */ 1750 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1751 1752 return pend_page; 1753 } 1754 1755 static void its_free_pending_table(struct page *pt) 1756 { 1757 free_pages((unsigned long)page_address(pt), 1758 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1759 } 1760 1761 static void its_cpu_init_lpis(void) 1762 { 1763 void __iomem *rbase = gic_data_rdist_rd_base(); 1764 struct page *pend_page; 1765 u64 val, tmp; 1766 1767 /* If we didn't allocate the pending table yet, do it now */ 1768 pend_page = gic_data_rdist()->pend_page; 1769 if (!pend_page) { 1770 phys_addr_t paddr; 1771 1772 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1773 if (!pend_page) { 1774 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1775 smp_processor_id()); 1776 return; 1777 } 1778 1779 paddr = page_to_phys(pend_page); 1780 pr_info("CPU%d: using LPI pending table @%pa\n", 1781 smp_processor_id(), &paddr); 1782 gic_data_rdist()->pend_page = pend_page; 1783 } 1784 1785 /* Disable LPIs */ 1786 val = readl_relaxed(rbase + GICR_CTLR); 1787 val &= ~GICR_CTLR_ENABLE_LPIS; 1788 writel_relaxed(val, rbase + GICR_CTLR); 1789 1790 /* 1791 * Make sure any change to the table is observable by the GIC. 1792 */ 1793 dsb(sy); 1794 1795 /* set PROPBASE */ 1796 val = (page_to_phys(gic_rdists->prop_page) | 1797 GICR_PROPBASER_InnerShareable | 1798 GICR_PROPBASER_RaWaWb | 1799 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1800 1801 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1802 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1803 1804 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1805 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1806 /* 1807 * The HW reports non-shareable, we must 1808 * remove the cacheability attributes as 1809 * well. 1810 */ 1811 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1812 GICR_PROPBASER_CACHEABILITY_MASK); 1813 val |= GICR_PROPBASER_nC; 1814 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1815 } 1816 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1817 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1818 } 1819 1820 /* set PENDBASE */ 1821 val = (page_to_phys(pend_page) | 1822 GICR_PENDBASER_InnerShareable | 1823 GICR_PENDBASER_RaWaWb); 1824 1825 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1826 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 1827 1828 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1829 /* 1830 * The HW reports non-shareable, we must remove the 1831 * cacheability attributes as well. 1832 */ 1833 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1834 GICR_PENDBASER_CACHEABILITY_MASK); 1835 val |= GICR_PENDBASER_nC; 1836 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1837 } 1838 1839 /* Enable LPIs */ 1840 val = readl_relaxed(rbase + GICR_CTLR); 1841 val |= GICR_CTLR_ENABLE_LPIS; 1842 writel_relaxed(val, rbase + GICR_CTLR); 1843 1844 /* Make sure the GIC has seen the above */ 1845 dsb(sy); 1846 } 1847 1848 static void its_cpu_init_collection(void) 1849 { 1850 struct its_node *its; 1851 int cpu; 1852 1853 spin_lock(&its_lock); 1854 cpu = smp_processor_id(); 1855 1856 list_for_each_entry(its, &its_nodes, entry) { 1857 u64 target; 1858 1859 /* avoid cross node collections and its mapping */ 1860 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1861 struct device_node *cpu_node; 1862 1863 cpu_node = of_get_cpu_node(cpu, NULL); 1864 if (its->numa_node != NUMA_NO_NODE && 1865 its->numa_node != of_node_to_nid(cpu_node)) 1866 continue; 1867 } 1868 1869 /* 1870 * We now have to bind each collection to its target 1871 * redistributor. 1872 */ 1873 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1874 /* 1875 * This ITS wants the physical address of the 1876 * redistributor. 1877 */ 1878 target = gic_data_rdist()->phys_base; 1879 } else { 1880 /* 1881 * This ITS wants a linear CPU number. 1882 */ 1883 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1884 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1885 } 1886 1887 /* Perform collection mapping */ 1888 its->collections[cpu].target_address = target; 1889 its->collections[cpu].col_id = cpu; 1890 1891 its_send_mapc(its, &its->collections[cpu], 1); 1892 its_send_invall(its, &its->collections[cpu]); 1893 } 1894 1895 spin_unlock(&its_lock); 1896 } 1897 1898 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1899 { 1900 struct its_device *its_dev = NULL, *tmp; 1901 unsigned long flags; 1902 1903 raw_spin_lock_irqsave(&its->lock, flags); 1904 1905 list_for_each_entry(tmp, &its->its_device_list, entry) { 1906 if (tmp->device_id == dev_id) { 1907 its_dev = tmp; 1908 break; 1909 } 1910 } 1911 1912 raw_spin_unlock_irqrestore(&its->lock, flags); 1913 1914 return its_dev; 1915 } 1916 1917 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 1918 { 1919 int i; 1920 1921 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1922 if (GITS_BASER_TYPE(its->tables[i].val) == type) 1923 return &its->tables[i]; 1924 } 1925 1926 return NULL; 1927 } 1928 1929 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 1930 { 1931 struct page *page; 1932 u32 esz, idx; 1933 __le64 *table; 1934 1935 /* Don't allow device id that exceeds single, flat table limit */ 1936 esz = GITS_BASER_ENTRY_SIZE(baser->val); 1937 if (!(baser->val & GITS_BASER_INDIRECT)) 1938 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 1939 1940 /* Compute 1st level table index & check if that exceeds table limit */ 1941 idx = id >> ilog2(baser->psz / esz); 1942 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 1943 return false; 1944 1945 table = baser->base; 1946 1947 /* Allocate memory for 2nd level table */ 1948 if (!table[idx]) { 1949 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 1950 if (!page) 1951 return false; 1952 1953 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 1954 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1955 gic_flush_dcache_to_poc(page_address(page), baser->psz); 1956 1957 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 1958 1959 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 1960 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1961 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 1962 1963 /* Ensure updated table contents are visible to ITS hardware */ 1964 dsb(sy); 1965 } 1966 1967 return true; 1968 } 1969 1970 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 1971 { 1972 struct its_baser *baser; 1973 1974 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 1975 1976 /* Don't allow device id that exceeds ITS hardware limit */ 1977 if (!baser) 1978 return (ilog2(dev_id) < its->device_ids); 1979 1980 return its_alloc_table_entry(baser, dev_id); 1981 } 1982 1983 static bool its_alloc_vpe_table(u32 vpe_id) 1984 { 1985 struct its_node *its; 1986 1987 /* 1988 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 1989 * could try and only do it on ITSs corresponding to devices 1990 * that have interrupts targeted at this VPE, but the 1991 * complexity becomes crazy (and you have tons of memory 1992 * anyway, right?). 1993 */ 1994 list_for_each_entry(its, &its_nodes, entry) { 1995 struct its_baser *baser; 1996 1997 if (!its->is_v4) 1998 continue; 1999 2000 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2001 if (!baser) 2002 return false; 2003 2004 if (!its_alloc_table_entry(baser, vpe_id)) 2005 return false; 2006 } 2007 2008 return true; 2009 } 2010 2011 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2012 int nvecs, bool alloc_lpis) 2013 { 2014 struct its_device *dev; 2015 unsigned long *lpi_map = NULL; 2016 unsigned long flags; 2017 u16 *col_map = NULL; 2018 void *itt; 2019 int lpi_base; 2020 int nr_lpis; 2021 int nr_ites; 2022 int sz; 2023 2024 if (!its_alloc_device_table(its, dev_id)) 2025 return NULL; 2026 2027 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2028 /* 2029 * At least one bit of EventID is being used, hence a minimum 2030 * of two entries. No, the architecture doesn't let you 2031 * express an ITT with a single entry. 2032 */ 2033 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 2034 sz = nr_ites * its->ite_size; 2035 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2036 itt = kzalloc(sz, GFP_KERNEL); 2037 if (alloc_lpis) { 2038 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 2039 if (lpi_map) 2040 col_map = kzalloc(sizeof(*col_map) * nr_lpis, 2041 GFP_KERNEL); 2042 } else { 2043 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL); 2044 nr_lpis = 0; 2045 lpi_base = 0; 2046 } 2047 2048 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2049 kfree(dev); 2050 kfree(itt); 2051 kfree(lpi_map); 2052 kfree(col_map); 2053 return NULL; 2054 } 2055 2056 gic_flush_dcache_to_poc(itt, sz); 2057 2058 dev->its = its; 2059 dev->itt = itt; 2060 dev->nr_ites = nr_ites; 2061 dev->event_map.lpi_map = lpi_map; 2062 dev->event_map.col_map = col_map; 2063 dev->event_map.lpi_base = lpi_base; 2064 dev->event_map.nr_lpis = nr_lpis; 2065 mutex_init(&dev->event_map.vlpi_lock); 2066 dev->device_id = dev_id; 2067 INIT_LIST_HEAD(&dev->entry); 2068 2069 raw_spin_lock_irqsave(&its->lock, flags); 2070 list_add(&dev->entry, &its->its_device_list); 2071 raw_spin_unlock_irqrestore(&its->lock, flags); 2072 2073 /* Map device to its ITT */ 2074 its_send_mapd(dev, 1); 2075 2076 return dev; 2077 } 2078 2079 static void its_free_device(struct its_device *its_dev) 2080 { 2081 unsigned long flags; 2082 2083 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2084 list_del(&its_dev->entry); 2085 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2086 kfree(its_dev->itt); 2087 kfree(its_dev); 2088 } 2089 2090 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2091 { 2092 int idx; 2093 2094 idx = find_first_zero_bit(dev->event_map.lpi_map, 2095 dev->event_map.nr_lpis); 2096 if (idx == dev->event_map.nr_lpis) 2097 return -ENOSPC; 2098 2099 *hwirq = dev->event_map.lpi_base + idx; 2100 set_bit(idx, dev->event_map.lpi_map); 2101 2102 return 0; 2103 } 2104 2105 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2106 int nvec, msi_alloc_info_t *info) 2107 { 2108 struct its_node *its; 2109 struct its_device *its_dev; 2110 struct msi_domain_info *msi_info; 2111 u32 dev_id; 2112 2113 /* 2114 * We ignore "dev" entierely, and rely on the dev_id that has 2115 * been passed via the scratchpad. This limits this domain's 2116 * usefulness to upper layers that definitely know that they 2117 * are built on top of the ITS. 2118 */ 2119 dev_id = info->scratchpad[0].ul; 2120 2121 msi_info = msi_get_domain_info(domain); 2122 its = msi_info->data; 2123 2124 if (!gic_rdists->has_direct_lpi && 2125 vpe_proxy.dev && 2126 vpe_proxy.dev->its == its && 2127 dev_id == vpe_proxy.dev->device_id) { 2128 /* Bad luck. Get yourself a better implementation */ 2129 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2130 dev_id); 2131 return -EINVAL; 2132 } 2133 2134 its_dev = its_find_device(its, dev_id); 2135 if (its_dev) { 2136 /* 2137 * We already have seen this ID, probably through 2138 * another alias (PCI bridge of some sort). No need to 2139 * create the device. 2140 */ 2141 pr_debug("Reusing ITT for devID %x\n", dev_id); 2142 goto out; 2143 } 2144 2145 its_dev = its_create_device(its, dev_id, nvec, true); 2146 if (!its_dev) 2147 return -ENOMEM; 2148 2149 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2150 out: 2151 info->scratchpad[0].ptr = its_dev; 2152 return 0; 2153 } 2154 2155 static struct msi_domain_ops its_msi_domain_ops = { 2156 .msi_prepare = its_msi_prepare, 2157 }; 2158 2159 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2160 unsigned int virq, 2161 irq_hw_number_t hwirq) 2162 { 2163 struct irq_fwspec fwspec; 2164 2165 if (irq_domain_get_of_node(domain->parent)) { 2166 fwspec.fwnode = domain->parent->fwnode; 2167 fwspec.param_count = 3; 2168 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2169 fwspec.param[1] = hwirq; 2170 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2171 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2172 fwspec.fwnode = domain->parent->fwnode; 2173 fwspec.param_count = 2; 2174 fwspec.param[0] = hwirq; 2175 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2176 } else { 2177 return -EINVAL; 2178 } 2179 2180 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2181 } 2182 2183 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2184 unsigned int nr_irqs, void *args) 2185 { 2186 msi_alloc_info_t *info = args; 2187 struct its_device *its_dev = info->scratchpad[0].ptr; 2188 irq_hw_number_t hwirq; 2189 int err; 2190 int i; 2191 2192 for (i = 0; i < nr_irqs; i++) { 2193 err = its_alloc_device_irq(its_dev, &hwirq); 2194 if (err) 2195 return err; 2196 2197 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2198 if (err) 2199 return err; 2200 2201 irq_domain_set_hwirq_and_chip(domain, virq + i, 2202 hwirq, &its_irq_chip, its_dev); 2203 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2204 pr_debug("ID:%d pID:%d vID:%d\n", 2205 (int)(hwirq - its_dev->event_map.lpi_base), 2206 (int) hwirq, virq + i); 2207 } 2208 2209 return 0; 2210 } 2211 2212 static void its_irq_domain_activate(struct irq_domain *domain, 2213 struct irq_data *d) 2214 { 2215 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2216 u32 event = its_get_event_id(d); 2217 const struct cpumask *cpu_mask = cpu_online_mask; 2218 int cpu; 2219 2220 /* get the cpu_mask of local node */ 2221 if (its_dev->its->numa_node >= 0) 2222 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2223 2224 /* Bind the LPI to the first possible CPU */ 2225 cpu = cpumask_first(cpu_mask); 2226 its_dev->event_map.col_map[event] = cpu; 2227 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2228 2229 /* Map the GIC IRQ and event to the device */ 2230 its_send_mapti(its_dev, d->hwirq, event); 2231 } 2232 2233 static void its_irq_domain_deactivate(struct irq_domain *domain, 2234 struct irq_data *d) 2235 { 2236 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2237 u32 event = its_get_event_id(d); 2238 2239 /* Stop the delivery of interrupts */ 2240 its_send_discard(its_dev, event); 2241 } 2242 2243 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2244 unsigned int nr_irqs) 2245 { 2246 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2247 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2248 int i; 2249 2250 for (i = 0; i < nr_irqs; i++) { 2251 struct irq_data *data = irq_domain_get_irq_data(domain, 2252 virq + i); 2253 u32 event = its_get_event_id(data); 2254 2255 /* Mark interrupt index as unused */ 2256 clear_bit(event, its_dev->event_map.lpi_map); 2257 2258 /* Nuke the entry in the domain */ 2259 irq_domain_reset_irq_data(data); 2260 } 2261 2262 /* If all interrupts have been freed, start mopping the floor */ 2263 if (bitmap_empty(its_dev->event_map.lpi_map, 2264 its_dev->event_map.nr_lpis)) { 2265 its_lpi_free_chunks(its_dev->event_map.lpi_map, 2266 its_dev->event_map.lpi_base, 2267 its_dev->event_map.nr_lpis); 2268 kfree(its_dev->event_map.col_map); 2269 2270 /* Unmap device/itt */ 2271 its_send_mapd(its_dev, 0); 2272 its_free_device(its_dev); 2273 } 2274 2275 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2276 } 2277 2278 static const struct irq_domain_ops its_domain_ops = { 2279 .alloc = its_irq_domain_alloc, 2280 .free = its_irq_domain_free, 2281 .activate = its_irq_domain_activate, 2282 .deactivate = its_irq_domain_deactivate, 2283 }; 2284 2285 /* 2286 * This is insane. 2287 * 2288 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2289 * likely), the only way to perform an invalidate is to use a fake 2290 * device to issue an INV command, implying that the LPI has first 2291 * been mapped to some event on that device. Since this is not exactly 2292 * cheap, we try to keep that mapping around as long as possible, and 2293 * only issue an UNMAP if we're short on available slots. 2294 * 2295 * Broken by design(tm). 2296 */ 2297 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2298 { 2299 /* Already unmapped? */ 2300 if (vpe->vpe_proxy_event == -1) 2301 return; 2302 2303 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2304 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2305 2306 /* 2307 * We don't track empty slots at all, so let's move the 2308 * next_victim pointer if we can quickly reuse that slot 2309 * instead of nuking an existing entry. Not clear that this is 2310 * always a win though, and this might just generate a ripple 2311 * effect... Let's just hope VPEs don't migrate too often. 2312 */ 2313 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2314 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2315 2316 vpe->vpe_proxy_event = -1; 2317 } 2318 2319 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2320 { 2321 if (!gic_rdists->has_direct_lpi) { 2322 unsigned long flags; 2323 2324 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2325 its_vpe_db_proxy_unmap_locked(vpe); 2326 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2327 } 2328 } 2329 2330 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2331 { 2332 /* Already mapped? */ 2333 if (vpe->vpe_proxy_event != -1) 2334 return; 2335 2336 /* This slot was already allocated. Kick the other VPE out. */ 2337 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2338 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2339 2340 /* Map the new VPE instead */ 2341 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2342 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2343 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2344 2345 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2346 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2347 } 2348 2349 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2350 { 2351 unsigned long flags; 2352 struct its_collection *target_col; 2353 2354 if (gic_rdists->has_direct_lpi) { 2355 void __iomem *rdbase; 2356 2357 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2358 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2359 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2360 cpu_relax(); 2361 2362 return; 2363 } 2364 2365 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2366 2367 its_vpe_db_proxy_map_locked(vpe); 2368 2369 target_col = &vpe_proxy.dev->its->collections[to]; 2370 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2371 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2372 2373 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2374 } 2375 2376 static int its_vpe_set_affinity(struct irq_data *d, 2377 const struct cpumask *mask_val, 2378 bool force) 2379 { 2380 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2381 int cpu = cpumask_first(mask_val); 2382 2383 /* 2384 * Changing affinity is mega expensive, so let's be as lazy as 2385 * we can and only do it if we really have to. Also, if mapped 2386 * into the proxy device, we need to move the doorbell 2387 * interrupt to its new location. 2388 */ 2389 if (vpe->col_idx != cpu) { 2390 int from = vpe->col_idx; 2391 2392 vpe->col_idx = cpu; 2393 its_send_vmovp(vpe); 2394 its_vpe_db_proxy_move(vpe, from, cpu); 2395 } 2396 2397 return IRQ_SET_MASK_OK_DONE; 2398 } 2399 2400 static void its_vpe_schedule(struct its_vpe *vpe) 2401 { 2402 void * __iomem vlpi_base = gic_data_rdist_vlpi_base(); 2403 u64 val; 2404 2405 /* Schedule the VPE */ 2406 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2407 GENMASK_ULL(51, 12); 2408 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2409 val |= GICR_VPROPBASER_RaWb; 2410 val |= GICR_VPROPBASER_InnerShareable; 2411 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2412 2413 val = virt_to_phys(page_address(vpe->vpt_page)) & 2414 GENMASK_ULL(51, 16); 2415 val |= GICR_VPENDBASER_RaWaWb; 2416 val |= GICR_VPENDBASER_NonShareable; 2417 /* 2418 * There is no good way of finding out if the pending table is 2419 * empty as we can race against the doorbell interrupt very 2420 * easily. So in the end, vpe->pending_last is only an 2421 * indication that the vcpu has something pending, not one 2422 * that the pending table is empty. A good implementation 2423 * would be able to read its coarse map pretty quickly anyway, 2424 * making this a tolerable issue. 2425 */ 2426 val |= GICR_VPENDBASER_PendingLast; 2427 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2428 val |= GICR_VPENDBASER_Valid; 2429 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2430 } 2431 2432 static void its_vpe_deschedule(struct its_vpe *vpe) 2433 { 2434 void * __iomem vlpi_base = gic_data_rdist_vlpi_base(); 2435 u32 count = 1000000; /* 1s! */ 2436 bool clean; 2437 u64 val; 2438 2439 /* We're being scheduled out */ 2440 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2441 val &= ~GICR_VPENDBASER_Valid; 2442 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2443 2444 do { 2445 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2446 clean = !(val & GICR_VPENDBASER_Dirty); 2447 if (!clean) { 2448 count--; 2449 cpu_relax(); 2450 udelay(1); 2451 } 2452 } while (!clean && count); 2453 2454 if (unlikely(!clean && !count)) { 2455 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2456 vpe->idai = false; 2457 vpe->pending_last = true; 2458 } else { 2459 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2460 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2461 } 2462 } 2463 2464 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2465 { 2466 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2467 struct its_cmd_info *info = vcpu_info; 2468 2469 switch (info->cmd_type) { 2470 case SCHEDULE_VPE: 2471 its_vpe_schedule(vpe); 2472 return 0; 2473 2474 case DESCHEDULE_VPE: 2475 its_vpe_deschedule(vpe); 2476 return 0; 2477 2478 case INVALL_VPE: 2479 its_send_vinvall(vpe); 2480 return 0; 2481 2482 default: 2483 return -EINVAL; 2484 } 2485 } 2486 2487 static void its_vpe_send_cmd(struct its_vpe *vpe, 2488 void (*cmd)(struct its_device *, u32)) 2489 { 2490 unsigned long flags; 2491 2492 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2493 2494 its_vpe_db_proxy_map_locked(vpe); 2495 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2496 2497 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2498 } 2499 2500 static void its_vpe_send_inv(struct irq_data *d) 2501 { 2502 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2503 2504 if (gic_rdists->has_direct_lpi) { 2505 void __iomem *rdbase; 2506 2507 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2508 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2509 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2510 cpu_relax(); 2511 } else { 2512 its_vpe_send_cmd(vpe, its_send_inv); 2513 } 2514 } 2515 2516 static void its_vpe_mask_irq(struct irq_data *d) 2517 { 2518 /* 2519 * We need to unmask the LPI, which is described by the parent 2520 * irq_data. Instead of calling into the parent (which won't 2521 * exactly do the right thing, let's simply use the 2522 * parent_data pointer. Yes, I'm naughty. 2523 */ 2524 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2525 its_vpe_send_inv(d); 2526 } 2527 2528 static void its_vpe_unmask_irq(struct irq_data *d) 2529 { 2530 /* Same hack as above... */ 2531 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2532 its_vpe_send_inv(d); 2533 } 2534 2535 static int its_vpe_set_irqchip_state(struct irq_data *d, 2536 enum irqchip_irq_state which, 2537 bool state) 2538 { 2539 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2540 2541 if (which != IRQCHIP_STATE_PENDING) 2542 return -EINVAL; 2543 2544 if (gic_rdists->has_direct_lpi) { 2545 void __iomem *rdbase; 2546 2547 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2548 if (state) { 2549 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2550 } else { 2551 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2552 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2553 cpu_relax(); 2554 } 2555 } else { 2556 if (state) 2557 its_vpe_send_cmd(vpe, its_send_int); 2558 else 2559 its_vpe_send_cmd(vpe, its_send_clear); 2560 } 2561 2562 return 0; 2563 } 2564 2565 static struct irq_chip its_vpe_irq_chip = { 2566 .name = "GICv4-vpe", 2567 .irq_mask = its_vpe_mask_irq, 2568 .irq_unmask = its_vpe_unmask_irq, 2569 .irq_eoi = irq_chip_eoi_parent, 2570 .irq_set_affinity = its_vpe_set_affinity, 2571 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2572 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2573 }; 2574 2575 static int its_vpe_id_alloc(void) 2576 { 2577 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2578 } 2579 2580 static void its_vpe_id_free(u16 id) 2581 { 2582 ida_simple_remove(&its_vpeid_ida, id); 2583 } 2584 2585 static int its_vpe_init(struct its_vpe *vpe) 2586 { 2587 struct page *vpt_page; 2588 int vpe_id; 2589 2590 /* Allocate vpe_id */ 2591 vpe_id = its_vpe_id_alloc(); 2592 if (vpe_id < 0) 2593 return vpe_id; 2594 2595 /* Allocate VPT */ 2596 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2597 if (!vpt_page) { 2598 its_vpe_id_free(vpe_id); 2599 return -ENOMEM; 2600 } 2601 2602 if (!its_alloc_vpe_table(vpe_id)) { 2603 its_vpe_id_free(vpe_id); 2604 its_free_pending_table(vpe->vpt_page); 2605 return -ENOMEM; 2606 } 2607 2608 vpe->vpe_id = vpe_id; 2609 vpe->vpt_page = vpt_page; 2610 vpe->vpe_proxy_event = -1; 2611 2612 return 0; 2613 } 2614 2615 static void its_vpe_teardown(struct its_vpe *vpe) 2616 { 2617 its_vpe_db_proxy_unmap(vpe); 2618 its_vpe_id_free(vpe->vpe_id); 2619 its_free_pending_table(vpe->vpt_page); 2620 } 2621 2622 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2623 unsigned int virq, 2624 unsigned int nr_irqs) 2625 { 2626 struct its_vm *vm = domain->host_data; 2627 int i; 2628 2629 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2630 2631 for (i = 0; i < nr_irqs; i++) { 2632 struct irq_data *data = irq_domain_get_irq_data(domain, 2633 virq + i); 2634 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2635 2636 BUG_ON(vm != vpe->its_vm); 2637 2638 clear_bit(data->hwirq, vm->db_bitmap); 2639 its_vpe_teardown(vpe); 2640 irq_domain_reset_irq_data(data); 2641 } 2642 2643 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2644 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2645 its_free_prop_table(vm->vprop_page); 2646 } 2647 } 2648 2649 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2650 unsigned int nr_irqs, void *args) 2651 { 2652 struct its_vm *vm = args; 2653 unsigned long *bitmap; 2654 struct page *vprop_page; 2655 int base, nr_ids, i, err = 0; 2656 2657 BUG_ON(!vm); 2658 2659 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids); 2660 if (!bitmap) 2661 return -ENOMEM; 2662 2663 if (nr_ids < nr_irqs) { 2664 its_lpi_free_chunks(bitmap, base, nr_ids); 2665 return -ENOMEM; 2666 } 2667 2668 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2669 if (!vprop_page) { 2670 its_lpi_free_chunks(bitmap, base, nr_ids); 2671 return -ENOMEM; 2672 } 2673 2674 vm->db_bitmap = bitmap; 2675 vm->db_lpi_base = base; 2676 vm->nr_db_lpis = nr_ids; 2677 vm->vprop_page = vprop_page; 2678 2679 for (i = 0; i < nr_irqs; i++) { 2680 vm->vpes[i]->vpe_db_lpi = base + i; 2681 err = its_vpe_init(vm->vpes[i]); 2682 if (err) 2683 break; 2684 err = its_irq_gic_domain_alloc(domain, virq + i, 2685 vm->vpes[i]->vpe_db_lpi); 2686 if (err) 2687 break; 2688 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2689 &its_vpe_irq_chip, vm->vpes[i]); 2690 set_bit(i, bitmap); 2691 } 2692 2693 if (err) { 2694 if (i > 0) 2695 its_vpe_irq_domain_free(domain, virq, i - 1); 2696 2697 its_lpi_free_chunks(bitmap, base, nr_ids); 2698 its_free_prop_table(vprop_page); 2699 } 2700 2701 return err; 2702 } 2703 2704 static void its_vpe_irq_domain_activate(struct irq_domain *domain, 2705 struct irq_data *d) 2706 { 2707 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2708 2709 /* Map the VPE to the first possible CPU */ 2710 vpe->col_idx = cpumask_first(cpu_online_mask); 2711 its_send_vmapp(vpe, true); 2712 its_send_vinvall(vpe); 2713 } 2714 2715 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2716 struct irq_data *d) 2717 { 2718 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2719 2720 its_send_vmapp(vpe, false); 2721 } 2722 2723 static const struct irq_domain_ops its_vpe_domain_ops = { 2724 .alloc = its_vpe_irq_domain_alloc, 2725 .free = its_vpe_irq_domain_free, 2726 .activate = its_vpe_irq_domain_activate, 2727 .deactivate = its_vpe_irq_domain_deactivate, 2728 }; 2729 2730 static int its_force_quiescent(void __iomem *base) 2731 { 2732 u32 count = 1000000; /* 1s */ 2733 u32 val; 2734 2735 val = readl_relaxed(base + GITS_CTLR); 2736 /* 2737 * GIC architecture specification requires the ITS to be both 2738 * disabled and quiescent for writes to GITS_BASER<n> or 2739 * GITS_CBASER to not have UNPREDICTABLE results. 2740 */ 2741 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2742 return 0; 2743 2744 /* Disable the generation of all interrupts to this ITS */ 2745 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2746 writel_relaxed(val, base + GITS_CTLR); 2747 2748 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2749 while (1) { 2750 val = readl_relaxed(base + GITS_CTLR); 2751 if (val & GITS_CTLR_QUIESCENT) 2752 return 0; 2753 2754 count--; 2755 if (!count) 2756 return -EBUSY; 2757 2758 cpu_relax(); 2759 udelay(1); 2760 } 2761 } 2762 2763 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 2764 { 2765 struct its_node *its = data; 2766 2767 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 2768 } 2769 2770 static void __maybe_unused its_enable_quirk_cavium_23144(void *data) 2771 { 2772 struct its_node *its = data; 2773 2774 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 2775 } 2776 2777 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 2778 { 2779 struct its_node *its = data; 2780 2781 /* On QDF2400, the size of the ITE is 16Bytes */ 2782 its->ite_size = 16; 2783 } 2784 2785 static const struct gic_quirk its_quirks[] = { 2786 #ifdef CONFIG_CAVIUM_ERRATUM_22375 2787 { 2788 .desc = "ITS: Cavium errata 22375, 24313", 2789 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2790 .mask = 0xffff0fff, 2791 .init = its_enable_quirk_cavium_22375, 2792 }, 2793 #endif 2794 #ifdef CONFIG_CAVIUM_ERRATUM_23144 2795 { 2796 .desc = "ITS: Cavium erratum 23144", 2797 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2798 .mask = 0xffff0fff, 2799 .init = its_enable_quirk_cavium_23144, 2800 }, 2801 #endif 2802 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 2803 { 2804 .desc = "ITS: QDF2400 erratum 0065", 2805 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 2806 .mask = 0xffffffff, 2807 .init = its_enable_quirk_qdf2400_e0065, 2808 }, 2809 #endif 2810 { 2811 } 2812 }; 2813 2814 static void its_enable_quirks(struct its_node *its) 2815 { 2816 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 2817 2818 gic_enable_quirks(iidr, its_quirks, its); 2819 } 2820 2821 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 2822 { 2823 struct irq_domain *inner_domain; 2824 struct msi_domain_info *info; 2825 2826 info = kzalloc(sizeof(*info), GFP_KERNEL); 2827 if (!info) 2828 return -ENOMEM; 2829 2830 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 2831 if (!inner_domain) { 2832 kfree(info); 2833 return -ENOMEM; 2834 } 2835 2836 inner_domain->parent = its_parent; 2837 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 2838 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP; 2839 info->ops = &its_msi_domain_ops; 2840 info->data = its; 2841 inner_domain->host_data = info; 2842 2843 return 0; 2844 } 2845 2846 static int its_init_vpe_domain(void) 2847 { 2848 struct its_node *its; 2849 u32 devid; 2850 int entries; 2851 2852 if (gic_rdists->has_direct_lpi) { 2853 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 2854 return 0; 2855 } 2856 2857 /* Any ITS will do, even if not v4 */ 2858 its = list_first_entry(&its_nodes, struct its_node, entry); 2859 2860 entries = roundup_pow_of_two(nr_cpu_ids); 2861 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries, 2862 GFP_KERNEL); 2863 if (!vpe_proxy.vpes) { 2864 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 2865 return -ENOMEM; 2866 } 2867 2868 /* Use the last possible DevID */ 2869 devid = GENMASK(its->device_ids - 1, 0); 2870 vpe_proxy.dev = its_create_device(its, devid, entries, false); 2871 if (!vpe_proxy.dev) { 2872 kfree(vpe_proxy.vpes); 2873 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 2874 return -ENOMEM; 2875 } 2876 2877 BUG_ON(entries > vpe_proxy.dev->nr_ites); 2878 2879 raw_spin_lock_init(&vpe_proxy.lock); 2880 vpe_proxy.next_victim = 0; 2881 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 2882 devid, vpe_proxy.dev->nr_ites); 2883 2884 return 0; 2885 } 2886 2887 static int __init its_compute_its_list_map(struct resource *res, 2888 void __iomem *its_base) 2889 { 2890 int its_number; 2891 u32 ctlr; 2892 2893 /* 2894 * This is assumed to be done early enough that we're 2895 * guaranteed to be single-threaded, hence no 2896 * locking. Should this change, we should address 2897 * this. 2898 */ 2899 its_number = find_first_zero_bit(&its_list_map, ITS_LIST_MAX); 2900 if (its_number >= ITS_LIST_MAX) { 2901 pr_err("ITS@%pa: No ITSList entry available!\n", 2902 &res->start); 2903 return -EINVAL; 2904 } 2905 2906 ctlr = readl_relaxed(its_base + GITS_CTLR); 2907 ctlr &= ~GITS_CTLR_ITS_NUMBER; 2908 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 2909 writel_relaxed(ctlr, its_base + GITS_CTLR); 2910 ctlr = readl_relaxed(its_base + GITS_CTLR); 2911 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 2912 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 2913 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 2914 } 2915 2916 if (test_and_set_bit(its_number, &its_list_map)) { 2917 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 2918 &res->start, its_number); 2919 return -EINVAL; 2920 } 2921 2922 return its_number; 2923 } 2924 2925 static int __init its_probe_one(struct resource *res, 2926 struct fwnode_handle *handle, int numa_node) 2927 { 2928 struct its_node *its; 2929 void __iomem *its_base; 2930 u32 val, ctlr; 2931 u64 baser, tmp, typer; 2932 int err; 2933 2934 its_base = ioremap(res->start, resource_size(res)); 2935 if (!its_base) { 2936 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 2937 return -ENOMEM; 2938 } 2939 2940 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 2941 if (val != 0x30 && val != 0x40) { 2942 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 2943 err = -ENODEV; 2944 goto out_unmap; 2945 } 2946 2947 err = its_force_quiescent(its_base); 2948 if (err) { 2949 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 2950 goto out_unmap; 2951 } 2952 2953 pr_info("ITS %pR\n", res); 2954 2955 its = kzalloc(sizeof(*its), GFP_KERNEL); 2956 if (!its) { 2957 err = -ENOMEM; 2958 goto out_unmap; 2959 } 2960 2961 raw_spin_lock_init(&its->lock); 2962 INIT_LIST_HEAD(&its->entry); 2963 INIT_LIST_HEAD(&its->its_device_list); 2964 typer = gic_read_typer(its_base + GITS_TYPER); 2965 its->base = its_base; 2966 its->phys_base = res->start; 2967 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 2968 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 2969 if (its->is_v4) { 2970 if (!(typer & GITS_TYPER_VMOVP)) { 2971 err = its_compute_its_list_map(res, its_base); 2972 if (err < 0) 2973 goto out_free_its; 2974 2975 pr_info("ITS@%pa: Using ITS number %d\n", 2976 &res->start, err); 2977 } else { 2978 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 2979 } 2980 } 2981 2982 its->numa_node = numa_node; 2983 2984 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2985 get_order(ITS_CMD_QUEUE_SZ)); 2986 if (!its->cmd_base) { 2987 err = -ENOMEM; 2988 goto out_free_its; 2989 } 2990 its->cmd_write = its->cmd_base; 2991 2992 its_enable_quirks(its); 2993 2994 err = its_alloc_tables(its); 2995 if (err) 2996 goto out_free_cmd; 2997 2998 err = its_alloc_collections(its); 2999 if (err) 3000 goto out_free_tables; 3001 3002 baser = (virt_to_phys(its->cmd_base) | 3003 GITS_CBASER_RaWaWb | 3004 GITS_CBASER_InnerShareable | 3005 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3006 GITS_CBASER_VALID); 3007 3008 gits_write_cbaser(baser, its->base + GITS_CBASER); 3009 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3010 3011 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3012 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3013 /* 3014 * The HW reports non-shareable, we must 3015 * remove the cacheability attributes as 3016 * well. 3017 */ 3018 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3019 GITS_CBASER_CACHEABILITY_MASK); 3020 baser |= GITS_CBASER_nC; 3021 gits_write_cbaser(baser, its->base + GITS_CBASER); 3022 } 3023 pr_info("ITS: using cache flushing for cmd queue\n"); 3024 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3025 } 3026 3027 gits_write_cwriter(0, its->base + GITS_CWRITER); 3028 ctlr = readl_relaxed(its->base + GITS_CTLR); 3029 ctlr |= GITS_CTLR_ENABLE; 3030 if (its->is_v4) 3031 ctlr |= GITS_CTLR_ImDe; 3032 writel_relaxed(ctlr, its->base + GITS_CTLR); 3033 3034 err = its_init_domain(handle, its); 3035 if (err) 3036 goto out_free_tables; 3037 3038 spin_lock(&its_lock); 3039 list_add(&its->entry, &its_nodes); 3040 spin_unlock(&its_lock); 3041 3042 return 0; 3043 3044 out_free_tables: 3045 its_free_tables(its); 3046 out_free_cmd: 3047 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3048 out_free_its: 3049 kfree(its); 3050 out_unmap: 3051 iounmap(its_base); 3052 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3053 return err; 3054 } 3055 3056 static bool gic_rdists_supports_plpis(void) 3057 { 3058 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3059 } 3060 3061 int its_cpu_init(void) 3062 { 3063 if (!list_empty(&its_nodes)) { 3064 if (!gic_rdists_supports_plpis()) { 3065 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3066 return -ENXIO; 3067 } 3068 its_cpu_init_lpis(); 3069 its_cpu_init_collection(); 3070 } 3071 3072 return 0; 3073 } 3074 3075 static const struct of_device_id its_device_id[] = { 3076 { .compatible = "arm,gic-v3-its", }, 3077 {}, 3078 }; 3079 3080 static int __init its_of_probe(struct device_node *node) 3081 { 3082 struct device_node *np; 3083 struct resource res; 3084 3085 for (np = of_find_matching_node(node, its_device_id); np; 3086 np = of_find_matching_node(np, its_device_id)) { 3087 if (!of_property_read_bool(np, "msi-controller")) { 3088 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3089 np); 3090 continue; 3091 } 3092 3093 if (of_address_to_resource(np, 0, &res)) { 3094 pr_warn("%pOF: no regs?\n", np); 3095 continue; 3096 } 3097 3098 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3099 } 3100 return 0; 3101 } 3102 3103 #ifdef CONFIG_ACPI 3104 3105 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3106 3107 #ifdef CONFIG_ACPI_NUMA 3108 struct its_srat_map { 3109 /* numa node id */ 3110 u32 numa_node; 3111 /* GIC ITS ID */ 3112 u32 its_id; 3113 }; 3114 3115 static struct its_srat_map *its_srat_maps __initdata; 3116 static int its_in_srat __initdata; 3117 3118 static int __init acpi_get_its_numa_node(u32 its_id) 3119 { 3120 int i; 3121 3122 for (i = 0; i < its_in_srat; i++) { 3123 if (its_id == its_srat_maps[i].its_id) 3124 return its_srat_maps[i].numa_node; 3125 } 3126 return NUMA_NO_NODE; 3127 } 3128 3129 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3130 const unsigned long end) 3131 { 3132 return 0; 3133 } 3134 3135 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3136 const unsigned long end) 3137 { 3138 int node; 3139 struct acpi_srat_gic_its_affinity *its_affinity; 3140 3141 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3142 if (!its_affinity) 3143 return -EINVAL; 3144 3145 if (its_affinity->header.length < sizeof(*its_affinity)) { 3146 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3147 its_affinity->header.length); 3148 return -EINVAL; 3149 } 3150 3151 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3152 3153 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3154 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3155 return 0; 3156 } 3157 3158 its_srat_maps[its_in_srat].numa_node = node; 3159 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3160 its_in_srat++; 3161 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3162 its_affinity->proximity_domain, its_affinity->its_id, node); 3163 3164 return 0; 3165 } 3166 3167 static void __init acpi_table_parse_srat_its(void) 3168 { 3169 int count; 3170 3171 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3172 sizeof(struct acpi_table_srat), 3173 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3174 gic_acpi_match_srat_its, 0); 3175 if (count <= 0) 3176 return; 3177 3178 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map), 3179 GFP_KERNEL); 3180 if (!its_srat_maps) { 3181 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3182 return; 3183 } 3184 3185 acpi_table_parse_entries(ACPI_SIG_SRAT, 3186 sizeof(struct acpi_table_srat), 3187 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3188 gic_acpi_parse_srat_its, 0); 3189 } 3190 3191 /* free the its_srat_maps after ITS probing */ 3192 static void __init acpi_its_srat_maps_free(void) 3193 { 3194 kfree(its_srat_maps); 3195 } 3196 #else 3197 static void __init acpi_table_parse_srat_its(void) { } 3198 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3199 static void __init acpi_its_srat_maps_free(void) { } 3200 #endif 3201 3202 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3203 const unsigned long end) 3204 { 3205 struct acpi_madt_generic_translator *its_entry; 3206 struct fwnode_handle *dom_handle; 3207 struct resource res; 3208 int err; 3209 3210 its_entry = (struct acpi_madt_generic_translator *)header; 3211 memset(&res, 0, sizeof(res)); 3212 res.start = its_entry->base_address; 3213 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3214 res.flags = IORESOURCE_MEM; 3215 3216 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3217 if (!dom_handle) { 3218 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3219 &res.start); 3220 return -ENOMEM; 3221 } 3222 3223 err = iort_register_domain_token(its_entry->translation_id, dom_handle); 3224 if (err) { 3225 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3226 &res.start, its_entry->translation_id); 3227 goto dom_err; 3228 } 3229 3230 err = its_probe_one(&res, dom_handle, 3231 acpi_get_its_numa_node(its_entry->translation_id)); 3232 if (!err) 3233 return 0; 3234 3235 iort_deregister_domain_token(its_entry->translation_id); 3236 dom_err: 3237 irq_domain_free_fwnode(dom_handle); 3238 return err; 3239 } 3240 3241 static void __init its_acpi_probe(void) 3242 { 3243 acpi_table_parse_srat_its(); 3244 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3245 gic_acpi_parse_madt_its, 0); 3246 acpi_its_srat_maps_free(); 3247 } 3248 #else 3249 static void __init its_acpi_probe(void) { } 3250 #endif 3251 3252 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3253 struct irq_domain *parent_domain) 3254 { 3255 struct device_node *of_node; 3256 struct its_node *its; 3257 bool has_v4 = false; 3258 int err; 3259 3260 its_parent = parent_domain; 3261 of_node = to_of_node(handle); 3262 if (of_node) 3263 its_of_probe(of_node); 3264 else 3265 its_acpi_probe(); 3266 3267 if (list_empty(&its_nodes)) { 3268 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3269 return -ENXIO; 3270 } 3271 3272 gic_rdists = rdists; 3273 err = its_alloc_lpi_tables(); 3274 if (err) 3275 return err; 3276 3277 list_for_each_entry(its, &its_nodes, entry) 3278 has_v4 |= its->is_v4; 3279 3280 if (has_v4 & rdists->has_vlpis) { 3281 if (its_init_vpe_domain() || 3282 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3283 rdists->has_vlpis = false; 3284 pr_err("ITS: Disabling GICv4 support\n"); 3285 } 3286 } 3287 3288 return 0; 3289 } 3290